WO2021056392A1 - 光学指纹装置,电子设备和测量距离的方法 - Google Patents

光学指纹装置,电子设备和测量距离的方法 Download PDF

Info

Publication number
WO2021056392A1
WO2021056392A1 PCT/CN2019/108449 CN2019108449W WO2021056392A1 WO 2021056392 A1 WO2021056392 A1 WO 2021056392A1 CN 2019108449 W CN2019108449 W CN 2019108449W WO 2021056392 A1 WO2021056392 A1 WO 2021056392A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
display screen
optical
distance
light
Prior art date
Application number
PCT/CN2019/108449
Other languages
English (en)
French (fr)
Inventor
何嘉明
丘芳芳
陈伟文
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980002077.3A priority Critical patent/CN110832503B/zh
Priority to PCT/CN2019/108449 priority patent/WO2021056392A1/zh
Publication of WO2021056392A1 publication Critical patent/WO2021056392A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the embodiments of the present application relate to the field of optical fingerprint technology, and more specifically, to optical fingerprint devices, electronic devices, and methods for measuring distances.
  • the under-screen optical fingerprint recognition technology is to set the optical fingerprint device under the display screen, and use the fingerprint sensor in the optical fingerprint device to receive the light reflected from the finger to perform fingerprint imaging to realize fingerprint recognition.
  • the distance between the finger and the fingerprint sensor may be different, and the intensity of the light signal received by the corresponding fingerprint sensor is different, resulting in different fingerprint recognition performance. Therefore, how to determine the distance between the finger and the fingerprint sensor to adjust the fingerprint recognition algorithm or determine whether the optical fingerprint device is qualified or not is a problem that needs to be solved urgently.
  • the embodiments of the present application provide an optical fingerprint device, an electronic device, and a method for measuring distance, which can determine the distance between a finger and an optical sensor.
  • an optical fingerprint device which is used to be arranged under the display screen of an electronic device, and includes: an optical component for a first optical signal returned from the first pattern on the display screen along the first One direction is guided to the optical sensor, and the second light signal returned from the second pattern on the display screen is guided to the optical sensor along a second direction, wherein the first direction and the second direction are different
  • An optical sensor for receiving the optical signal returned from the first pattern and the second pattern on the display screen and transmitted through the optical component to obtain the first pattern and the second pattern The image formed on the imaging surface of the optical sensor;
  • the distance between the first pattern and the second pattern on the display screen is used to determine the distance between the display screen and the imaging surface of the optical sensor.
  • the first direction and the second direction are both at a first angle with the normal direction of the display screen, and the first direction and the second direction are along the display
  • the normal direction of the screen is symmetrical.
  • the distance P between the display screen and the imaging surface of the optical sensor is determined according to the following formula:
  • the D1 represents the distance between the first pattern and the second pattern on the display screen
  • the D2 represents the distance between the image of the first pattern and the image of the second pattern
  • the ⁇ represents the first angle.
  • the optical assembly includes an oblique hole collimator
  • the oblique hole collimator includes at least one first collimating hole and at least one second collimating hole, wherein the first collimator
  • the straight hole is used to guide the first light signal returned from the first pattern to the optical sensor along the first direction
  • the second collimating hole is used to guide the return signal from the second pattern to the optical sensor.
  • the second optical signal is guided to the optical sensor along the second direction.
  • each of the at least one first collimating hole forms the first angle with the normal direction of the display screen
  • the at least one second collimating hole Each second collimating hole in the holes forms the first angle with the normal direction of the display screen.
  • the optical component includes a lens for transmitting the first optical signal returned from the first pattern to the optical sensor along the first direction, and The second optical signal returned from the second pattern is transmitted to the optical sensor along the second direction.
  • the optical component includes at least one light-blocking layer and a microlens array, the at least one light-blocking layer is disposed under the microlens array, and each of the at least one light-blocking layer A plurality of light-passing holes are provided in the light blocking layer, and the plurality of light-passing holes correspond to the plurality of microlenses in the microlens array;
  • the microlens array is used to transmit the first optical signal returned from the first pattern to the optical sensor along the first direction, and the first optical signal returned from the second pattern Two optical signals are transmitted to the optical sensor along the second direction.
  • the plurality of microlenses include at least one first microlens and at least one second microlens
  • the plurality of light-passing holes includes at least one first light-passing hole and at least one second light-passing hole.
  • the at least one first light hole corresponds to the at least one first microlens one to one
  • the at least one second light hole corresponds to the at least one second microlens one to one
  • the line connecting the center of the first microlens and the center of the corresponding first light-passing hole forms a first angle with the normal direction of the display screen
  • the center of the second micro-lens and the corresponding second light-passing hole The connection line between the center of and the normal direction of the display screen is at the first angle.
  • the display screen is an organic light emitting diode OLED display screen, and the display screen includes a plurality of OLED light sources, and the optical fingerprint device uses at least part of the OLED light sources as excitation light sources for optical fingerprint detection.
  • an electronic device including: a display screen;
  • the first aspect or the optical fingerprint device in any possible implementation of the first aspect, wherein the optical fingerprint device is arranged below the display screen.
  • the display screen is an organic light emitting diode OLED display screen, and the display screen includes a plurality of OLED light sources, and the optical fingerprint device uses at least part of the OLED light sources as excitation light sources for optical fingerprint detection.
  • a method for measuring distance is provided, which is applied to an optical fingerprint device, wherein the optical fingerprint device is configured to be installed under the display screen of an electronic device, and the method includes:
  • the distance between the first pattern and the second pattern on the display screen is used to determine the distance between the display screen and the imaging surface of the optical sensor.
  • the method further includes:
  • the distance between the first pattern and the second pattern on the display screen determines the distance between the image of the first pattern and the image of the second pattern, and the first direction and the The angle between the second direction and the normal direction of the display screen determines the distance between the display screen and the imaging surface of the optical sensor.
  • the first direction and the second direction are at a first angle to the normal direction of the display screen, and the first direction and the second direction are along the display screen.
  • the normal direction is symmetrical, wherein, according to the distance between the first pattern and the second pattern on the display screen, the distance between the image of the first pattern and the image of the second pattern is The distance and the angle between the first direction and the second direction and the normal direction of the display screen to determine the distance between the display screen and the imaging surface of the optical sensor includes: The following formula is used to determine the distance P between the display screen and the imaging surface of the optical sensor:
  • the D1 represents the distance between the first pattern and the second pattern on the display screen
  • the D2 represents the distance between the image of the first pattern and the image of the second pattern
  • the ⁇ represents the first angle.
  • the light signals returned from the at least two patterns on the display screen can be guided to the optical sensor in different directions through the optical component, and the optical sensor can perform the detection of the at least two patterns on the at least two patterns according to the received light signals.
  • the patterns are imaged, so that the distance between the images of the at least two patterns and the distance between the at least two patterns on the display screen can be combined with the angles corresponding to the transmission directions of the at least two patterns to determine the The distance between the display screen and the imaging surface of the optical sensor.
  • Fig. 1 is a schematic plan view of an electronic device to which the present application can be applied.
  • Fig. 2 is a schematic partial cross-sectional view of the electronic device shown in Fig. 1 along A'-A'.
  • FIG. 3 is a schematic diagram of an application of the optical fingerprint device according to an embodiment of the present application.
  • Figures 4 to 6 are schematic diagrams of implementations of the optical components of the embodiments of the present application.
  • Fig. 7 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a method for measuring a distance according to an embodiment of the present application.
  • the fingerprint identification device provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other terminal devices; more specifically, in the above-mentioned terminal devices, fingerprint identification
  • the device may specifically be an optical fingerprint device, which may be arranged in a partial area or an entire area under the display screen, thereby forming an under-display optical fingerprint system.
  • Figures 1 and 2 show schematic diagrams of electronic devices to which the embodiments of the present application can be applied, wherein Figure 1 is a schematic diagram of the orientation of the electronic device 10, and Figure 2 is a diagram of the electronic device 10 shown in Figure 1 along A'-A' Schematic diagram of partial cross-sectional structure.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed in a partial area below the display screen 120, for example, the middle area of the display screen.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array with a plurality of optical sensing units, and the area where the sensing array is located or the sensing area thereof is the fingerprint detection area 103 of the optical fingerprint device 130. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130, for example, through optical path design such as lens imaging, reflective folding optical path design, or other optical path design such as light convergence or reflection, etc.
  • the area of the fingerprint detection area 103 of the optical fingerprint device 130 can be made larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 can also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the electronic device 10 adopting the above structure does not need to reserve space on the front side to set a fingerprint button (such as the Home button), so that a full-screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire electronic device 10.
  • a fingerprint button such as the Home button
  • the optical fingerprint device 130 includes a light detection part 134 and an optical component 132.
  • the light detection part 134 includes the sensor array and is electrically connected to the sensor array.
  • the connected reading circuit and other auxiliary circuits can be fabricated on a chip (Die) through a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector (Photodetector) array, which includes A plurality of photodetectors distributed in an array, the photodetector can be used as the optical sensing unit as described above; the optical component 132 can be arranged above the sensing array of the photodetecting part 134, which can specifically include A filter, a light guide layer or a light path guide structure, and other optical elements.
  • the filter layer can be used to filter ambient light penetrating the finger, for example, infrared light that interferes with imaging, and the light guide layer Or the light path guiding structure is mainly used to guide the reflected light reflected from the finger surface to the sensing array for optical detection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 may be packaged in the same optical fingerprint chip, or the optical component 132 may be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 is attached above the chip, or some components of the optical assembly 132 are integrated into the chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer may specifically be a collimator layer made on a semiconductor silicon wafer, which has multiple solutions.
  • a collimating unit or a micro-hole array, the collimating unit may be specifically a small hole.
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimating unit can pass through and be passed by the optical sensing unit below it.
  • the light with an excessively large incident angle is attenuated by multiple reflections inside the collimating unit. Therefore, each optical sensor unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it.
  • the sensor array can detect the fingerprint image of the finger.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses, which The sensing array used to condense the reflected light reflected from the finger to the light detection part 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device to improve the optical The fingerprint imaging effect of the fingerprint device 130.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses, which can be grown by semiconductors.
  • a process or other processes are formed above the sensing array of the light detecting part 134, and each microlens may correspond to one of the sensing units of the sensing array.
  • other optical film layers may be formed between the micro lens layer and the sensing unit, such as a dielectric layer or a passivation layer.
  • the micro lens layer and the sensing unit may also include The light-blocking layer of the micro-hole, wherein the micro-hole is formed between the corresponding micro-lens and the sensing unit, the light-blocking layer can block the optical interference between the adjacent micro-lens and the sensing unit, and make the sensing
  • the light corresponding to the unit is condensed into the micro hole through the micro lens and is transmitted to the sensing unit through the micro hole to perform optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the microlens layer, its specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or a micro-LED (Micro-LED) display Screen.
  • OLED Organic Light-Emitting Diode
  • the optical fingerprint device 130 may use the display unit (ie, an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 emits a beam of light to the target finger above the fingerprint detection area 103. The light is reflected on the surface of the finger to form reflected light or is scattered inside the finger.
  • the scattered light is formed.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light.
  • the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light from the fingerprint ridge and the emitted light from the fingerprint ridge have different light intensities.
  • the sensing array in the device 130 receives and converts it into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby implementing the electronic device 10 Optical fingerprint recognition function.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the terminal device 10 may also include an excitation light source for optical fingerprint detection.
  • the excitation light source may specifically be an infrared light source or a light source of non-visible light of a specific wavelength, which may be arranged under the backlight module of the liquid crystal display screen or arranged in the edge area under the protective cover of the terminal device 10, and the The optical fingerprint device 130 can be arranged under the edge area of the liquid crystal panel or the protective cover and guided through the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 can also be arranged in the backlight module. Under the group, and the backlight module is designed to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130 through openings or other optical designs on the film layers such as diffuser, brightness enhancement film, and reflective film. .
  • the display screen 120 may also be a non-self-luminous display screen, such as a backlit liquid crystal display screen; in this case, the optical detection device 130 cannot use the display screen 120.
  • the display unit is used as an excitation light source, so it is necessary to integrate an excitation light source inside the optical detection device 130 or set an excitation light source outside it to achieve optical fingerprint detection.
  • a built-in light source or an external light source is used to provide when the optical signal is used for fingerprint detection, the detection principle is consistent with the content described above.
  • the electronic device 10 further includes a transparent protective cover, which is located above the display screen 120 and covers the front surface of the electronic device 10. Because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing on the cover plate above the display screen 120 or covering the surface of the protective layer of the cover plate.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position, so the user is performing fingerprint input At this time, it is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side in the middle area of the display screen 120 in a splicing manner, and the multiple The sensing area of the optical fingerprint sensor collectively constitutes the fingerprint detection area 103 of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint device 130 can be It extends to the main area of the middle part of the display screen, that is, extends to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the optical fingerprint device 130 may further include a circuit board for transmitting signals (such as the fingerprint detection signal).
  • the circuit board may be a flexible printed circuit board (Flexible Printed Circuit Board). Circuit, FPC).
  • the optical fingerprint sensor can be connected to the FPC, and through the FPC, electrical interconnection and signal transmission with other peripheral circuits or other elements in the electronic device can be realized.
  • the optical fingerprint sensor may receive the control signal of the processing unit of the electronic device through the FPC, and may also output a fingerprint detection signal (for example, a fingerprint image) to the processing unit of the electronic device through the FPC or Control unit, etc.
  • FIG. 3 is a schematic diagram of a cross-sectional structure of an electronic device applied to an optical fingerprint device according to an embodiment of the present application.
  • the optical fingerprint device 40 may be disposed under the display screen 200 of the electronic device. As shown in FIG. 3, the optical fingerprint device 40 can include:
  • the optical assembly 400 is used to guide the first optical signal 241 returned from the first pattern 211 on the display screen 200 to the optical sensor 300 in the first direction, and to transfer the second pattern 212 on the display screen 200 to the optical sensor 300.
  • the returned second optical signal 242 is guided to the optical sensor 300 along a second direction, wherein the first direction and the second direction are different;
  • the optical sensor 300 is configured to receive the optical signals returned from the first pattern 211 and the second pattern 212 on the display screen 200 and transmitted through the optical component 400 to obtain the first pattern 211 and
  • the distance between the first pattern 211 and the second pattern 212 on the display screen 200, the distance between the image 311 of the first pattern and the image 312 of the second pattern, and the distance The angles between the first direction and the second direction and the normal direction 201 of the display screen are used to determine the distance P between the display screen 200 and the imaging surface of the optical sensor 300.
  • the display screen 200 here may correspond to the display screen 120 in FIG. 1 and FIG. 2
  • the optical sensor 300 may correspond to the light detection part 134 in FIG. 2
  • the optical sensor 300 may include a plurality of pixel units.
  • the pixel array formed reference may be made to the related description of the embodiment shown in FIG. 2 for specific implementation. For brevity, details are not repeated here.
  • the pixel unit may be referred to as a sensing unit, or an optical sensing unit, or a photoelectric sensing unit, etc., for receiving light signals returned from an object above the display screen to form the optical sensor.
  • the pixel array can be called a sensor array, an optical sensor array, or a photoelectric sensor array.
  • the optical signal collected by the pixel array can be used to form an image.
  • the imaging surface of the optical sensor It may be the surface where the pixel array of the optical sensor is located.
  • the embodiments of the present application do not particularly limit the specific directions of the first direction and the second direction.
  • the first direction and the normal direction 201 of the display screen are in the first direction.
  • Angle, the second direction and the normal direction 201 of the display screen form a second angle, and the first direction and the second direction are located on both sides of the normal direction 201 of the display screen.
  • the first angle and the second angle are equal, that is, the first direction and the second direction are symmetrical with respect to the normal direction 201 of the display screen; or, the first angle and the second angle
  • the angles are not equal, that is, the first direction and the second direction are asymmetric with respect to the normal direction 201 of the display screen.
  • the first direction forms a first angle with the normal direction 201 of the display screen
  • the second direction forms a second angle with the normal direction 201 of the display screen
  • the The first direction and the second direction are located on one side of the normal direction 201 of the display screen. In this case, the first angle and the second angle are not equal.
  • the embodiment of the present application does not specifically limit the shape and size of the first pattern and the second pattern.
  • the first pattern may be a dot, a straight line, or a specific mark, or may be a fingerprint pattern, similar to
  • the second pattern may be a dot, a straight line, or a specific mark, or may also be a fingerprint pattern.
  • the distance between the first pattern and the second pattern on the display screen may be the distance between a specific point on the first pattern and the second pattern, or a specific edge
  • the distance between the two points, or the horizontal distance or the linear distance between the two closest points on the first pattern and the second pattern, etc., is not limited in the embodiment of the present application.
  • the distance between the first pattern and the second pattern may be the same position of the first pattern and the second pattern The distance between the points (such as the center, the vertex, etc.), or the horizontal offset distance between the first pattern relative to the second pattern; for another example, if the first pattern and the second pattern
  • the patterns are different patterns, and the distance between the first pattern and the second pattern may be a horizontal distance or a linear distance between the two closest points on the first pattern and the second pattern.
  • the distance between the image of the first pattern and the image of the second pattern may be the distance between the corresponding position on the image of the first pattern and the corresponding position on the image of the second pattern.
  • the corresponding position on the image of the first pattern is the position on the first pattern used when determining the distance between the first pattern and the second pattern on the display screen.
  • the second pattern The corresponding position on the image of the pattern is the position on the second pattern used when determining the distance between the first pattern and the second pattern on the display screen.
  • the distance between the first pattern and the second pattern on the display screen is the center of the first pattern and the center of the second pattern
  • the distance between the image of the first pattern and the image of the second pattern may be the distance between the center of the image of the first pattern and the center of the image of the second pattern
  • the distance between the first pattern and the second pattern on the display screen is the distance between the two sides close to the first pattern and the second pattern
  • the first pattern The distance between the image of the image and the image of the second pattern may be the distance between the two sides close to the image of the first pattern and the image of the second pattern, etc.
  • the embodiment of the present application is not limited to this .
  • the way to determine the distance P is described. If the first pattern and the second pattern are both dots, the image of the first pattern The image with the second pattern is also a dot, and the distance between the image of the first pattern and the image of the second pattern is the distance between two dots.
  • the distance between the two points can be determined according to the distance between the pixel units where the two points are located. Specifically, the area of the imaging surface of the optical sensor is known, and the size and arrangement of the pixel array If the method is known, the area of each pixel unit is known.
  • the distance P for example, if there are K pixel units between these two points and the size of a single pixel unit is L*L, the distance between the two points can be K*L.
  • the electronic device may further include a cover plate, which is arranged above the display screen 200.
  • the distance between the display screen and the imaging surface of the optical sensor The distance P may be the distance from the cover plate to the imaging surface of the optical sensor.
  • a film may be attached to the upper part of the display screen 200.
  • the distance between the display screen and the optical sensor The distance P between the imaging surface of the sensor may be the distance from the film to the imaging surface of the optical sensor.
  • the distance between the display screen and the imaging surface of the optical fingerprint sensor may be The distance P between the pressing surface of the finger and the imaging surface of the optical sensor.
  • the distance P can also be used to determine the thickness of the display screen, or if the electronic device is filmed, it can also be used to determine the display screen and the film.
  • the difference between the determined distance P and the fixed installation distance can be determined as the thickness of the display screen, or the thickness of the display screen and the film.
  • the excitation light source for fingerprint detection can emit light signals to illuminate the first pattern 211 and the second pattern 212 on the display screen 200, and the optical assembly 400 is specially designed, It can realize that the light signals returned by reflection or scattering from the first pattern 211 and the second pattern 212 are transmitted to the optical sensor 300 in different directions, and the image is further imaged on the imaging surface of the optical sensor 300 , The image 311 and the image 312 are obtained. Since the first pattern and the second pattern 212 are transmitted in different directions, the image of the first pattern and the image of the second pattern are different from each other. The distance between the two patterns is different from the distance between the first pattern and the second pattern on the display screen.
  • the excitation light source for fingerprint detection can adopt various implementation modes of the excitation light source in the embodiment shown in Figs. 1 and 2, for example, the OLED light source in the display screen, or other built-in or external excitation light source.
  • the first optical signal 241 returned from the first pattern 211 may be transmitted to the optical sensor 300 along the first direction
  • the second optical signal 242 returned from the second pattern 212 may be transmitted along the second direction.
  • the direction is transmitted to the optical sensor 300, and the first direction and the second direction are symmetrical along the normal direction of the display screen, and the first direction and the second direction are the same as those of the display screen.
  • the normal directions are all at the first angle ⁇ , as shown in FIG. 3.
  • the distance P between the display screen 200 and the imaging surface of the optical sensor 300 can be determined according to the following formula:
  • the D1 represents the distance between the first pattern 211 and the second pattern 212 on the display screen
  • the D2 represents the distance between the image of the first pattern and the image of the second pattern. the distance.
  • optical assembly 400 does not limit the specific implementation of the optical assembly 400, as long as it can guide different patterns to the optical sensor in different directions.
  • optical assembly will be described with reference to FIGS. 4 to 6 Several optional implementations of 400.
  • FIG. 4 is a schematic diagram of an implementation manner of the optical assembly 400 according to an embodiment of the present application.
  • the optical assembly 400 may include an oblique hole collimator 410, and the oblique hole collimator includes at least One first collimating hole 411 and at least one second collimating hole 412, wherein the first collimating hole 411 is used for the first optical signal 241 returned from the first pattern 211 along the first One direction is guided to the optical sensor 300, and the second collimating hole 412 is used to guide the second optical signal 242 returned from the second pattern 212 to the optical sensor 300 along the second direction Further, the optical sensor 300 can image the first light signal and the second light signal to obtain the image 311 and the image 312.
  • each first collimating hole 411 in the at least one first collimating hole is set to form the first angle with the normal direction 201 of the display screen
  • Each of the second collimating holes 412 in is arranged to form a second angle with the normal direction 201 of the display screen.
  • the first angle and the second angle are equal, and the first direction and the second direction are symmetrical with respect to the normal direction 201 of the display screen.
  • the aforementioned formula ( 1) Determine the distance P.
  • the first angle and the second angle are not equal, and the first direction and the second direction are located on both sides of the normal direction 201 of the display screen. In this case, it can be based on the following The formula determines the distance P:
  • the D1 represents the distance between the first pattern 211 and the second pattern 212 on the display screen
  • the D2 represents the distance between the image of the first pattern and the image of the second pattern.
  • ⁇ 1 represents the first angle
  • ⁇ 2 represents the second angle.
  • the first angle and the second angle are not equal, and the first direction and the second direction are located on the side of the normal direction 201 of the display screen.
  • the following can be used The formula determines the distance P:
  • the D1 represents the distance between the first pattern 211 and the second pattern 212 on the display screen
  • the D2 represents the distance between the image of the first pattern and the image of the second pattern.
  • ⁇ 1 represents the first angle
  • ⁇ 2 represents the second angle.
  • FIG. 5 is a schematic diagram of another implementation manner of the optical assembly 400 according to an embodiment of the present application.
  • the optical assembly 400 may include a lens 460, and the lens may include at least one lens.
  • 460 is used to transmit the first light signal 241 returned from the first pattern 211 to the optical sensor 300 along the first direction, and the second light signal 241 returned from the second pattern 212
  • the signal 242 is transmitted to the optical sensor 300 along the second direction.
  • the optical sensor 300 can image the first optical signal and the second optical signal to obtain the image 311 and the Like 312.
  • the lens 460 can transmit the light signals returned from multiple patterns to the optical sensor 300 in different directions to obtain images corresponding to the multiple patterns.
  • the distance between the images, the distance between the multiple patterns on the display screen, and the optical parameters such as the focal length and numerical aperture of the lens determine the distance P between the display screen and the imaging surface of the optical sensor 300.
  • FIG. 6 is a schematic diagram of still another implementation manner of the optical assembly 400 according to an embodiment of the present application.
  • the optical assembly 400 may include at least one light blocking layer 420 and a microlens array 450.
  • a light-blocking layer 420 is provided under the microlens array 450, and each light-blocking layer of the at least one light-blocking layer 420 is provided with a plurality of light-passing holes, and the plurality of light-shielding holes correspond to the A plurality of microlenses in the microlens array 450, wherein the microlens array 450 is used to transmit the first optical signal 241 returned from the first pattern 211 to the optical sensor along the first direction 300, and the second optical signal 242 returned from the second pattern 212 is transmitted to the optical sensor 300 along the second direction.
  • the optical sensor 300 can respond to the first optical signal Perform imaging with the second optical signal to obtain the image 311 and the image 312.
  • the microlens array 450 includes at least one first microlens 451 and at least one second microlens 452, and at least one first light-passing hole 421 and at least one second light-passing hole 421 are provided in the light blocking layer 420.
  • the at least one first light-passing hole 421 corresponds to the at least one first microlens 451 one-to-one
  • the at least one second light-passing hole 422 corresponds to the at least one second microlens 452 one-to-one
  • the first microlens 451 is used to guide the first light signal 241 returned from the first pattern 211 to the first through hole 421 corresponding to the first microlens 451 along the first direction, and pass through all
  • the first light through hole 421 is transmitted to the optical sensor 300
  • the second microlens 452 is used to guide the second optical signal 242 returned from the first pattern 212 to the second microlens in the second direction.
  • the lens 452 corresponds to the second light-passing hole 422 and is transmitted to the optical sensor 300 through the second light-passing hole 422.
  • the direction of the line connecting the center of the first microlens 451 and the center of the first light-passing hole 421 corresponding to the first microlens 451 is the first direction
  • the second microlens 452 The direction of the connecting line between the center of and the center of the second light-passing hole 422 corresponding to the second microlens 452 is the second direction.
  • connection line between the center F 0 of the first microlens 451 and the center F 1 of the first light-passing hole 421 corresponding to the first microlens 451 is connected to the normal direction of the display screen.
  • 201 forms a first angle ⁇
  • connection line between the center F 0 of the second microlens 452 and the center F 1 of the second light through hole 422 corresponding to the second microlens 452 is in the normal direction of the display screen 201 is the first angle ⁇ .
  • the above description only takes the determination of the distance between the display screen and the imaging surface of the optical sensor based on two patterns as an example for description.
  • the imaging from the display screen to the optical sensor may also be determined based on more patterns.
  • the distance between the surfaces is not limited to this in the embodiment of the present application.
  • the optical signal returned from the at least two patterns on the display screen can be guided to the optical sensor in different directions through the optical component, and the optical sensor can perform the detection of the at least two patterns according to the received optical signal.
  • Imaging of the at least two patterns, so that the display screen can be determined according to the imaging distance of the at least two patterns and the distance between the at least two patterns on the display screen, and combined with the angles corresponding to the transmission directions of the at least two patterns The distance P to the imaging surface of the optical sensor.
  • the distance P can be used to determine whether the optical fingerprint device 40 is qualified. For example, if the P is within a preset range, it can be determined that the optical fingerprint device is qualified, and the preset range can be used to correspond to Fingerprint recognition algorithm for fingerprint recognition can ensure good fingerprint recognition performance; or, if the P is not within the preset range, it can be determined that the optical fingerprint device is unqualified, or the fingerprint recognition algorithm can also be adjusted to determine The fingerprint recognition algorithm suitable for the P value can further use the adjusted fingerprint recognition algorithm for fingerprint recognition to improve fingerprint recognition performance.
  • the corresponding fingerprint recognition algorithm can be determined according to the distance P.
  • the distance P corresponding to different optical fingerprint devices can be measured to determine the range of the P value (which can be the preset range described above). ), further, a suitable fingerprint recognition algorithm can be determined based on the preset range to ensure that the distance P can have good fingerprint recognition performance when the distance P is within the preset range, and the optical fingerprint device can be further performed based on the preset range
  • the product card control please refer to the relevant description of the previous embodiment, which will not be repeated here.
  • a part of the optical component 400 may be used to transmit the optical signal used to determine the distance P, and the other part may be used to transmit the optical signal for fingerprint detection.
  • the optical assembly 400 may only include a small number of the first and second collimation holes for measuring the distance P, the other collimation holes are used for fingerprint detection, and the collimation holes are used for fingerprint detection. It may be an oblique hole with the same inclination angle, or it may be a straight hole, which is not limited in the embodiment of the present application.
  • the collimating hole for measuring the distance P can be arranged in the edge area of the optical component, and the collimating hole for fingerprint detection can be arranged in the middle area of the optical component, that is, the optical component in the edge area can be used. Perform distance measurement with the sensor unit in the edge area, and use the optical component in the middle area and the sensor unit in the middle area to perform fingerprint detection, which can reduce the influence of distance measurement on the fingerprint detection function.
  • the optical fingerprint device may further include a filter arranged in the light path from the display screen to the optical sensor, for example, the filter may be arranged at The upper side of the optical component, or the upper surface of the optical sensor, etc.
  • the electronic device 700 may include a display screen 710 and an optical fingerprint device 720, wherein the optical fingerprint device 720 is arranged below the display screen 710 .
  • the optical fingerprint device 720 may be the optical fingerprint device 40 in the foregoing embodiment, and for the specific structure, reference may be made to the related description above, which will not be repeated here.
  • the display screen 710 may specifically be a self-luminous display (such as an OLED display), and it includes a plurality of self-luminous display units (such as an OLED pixel or an OLED light source).
  • a part of the self-luminous display unit in the display screen can be used as an excitation light source for the biometric identification system to perform biometric identification, and is used to direct the biometrics to the biometric detection area. Emit light signals for biometric detection.
  • the embodiment of the present application also provides a method for measuring distance.
  • the method 800 can be applied to the optical fingerprint device 40 described above or an electronic device installed with the optical fingerprint device 40, wherein the The optical fingerprint device is used to be installed below the display screen of the electronic device, and the method 800 may include the following contents:
  • the distance between the first pattern and the second pattern on the display screen is used to determine the distance between the display screen and the imaging surface of the optical sensor.
  • the method 800 further includes:
  • the distance between the first pattern and the second pattern on the display screen determines the distance between the image of the first pattern and the image of the second pattern, and the first direction and the The angle between the second direction and the normal direction of the display screen determines the distance between the display screen and the imaging surface of the optical sensor.
  • the first direction and the second direction form a first angle with the normal direction of the display screen, and the first direction and the second direction are along the The normal direction of the display screen is symmetrical, wherein, according to the distance between the first pattern and the second pattern on the display screen, the image of the first pattern is different from the image of the second pattern.
  • the distance between the display screen and the angle between the first direction and the second direction and the normal direction of the display screen to determine the distance between the display screen and the imaging surface of the optical sensor includes : Determine the distance P between the display screen and the imaging surface of the optical sensor according to the following formula:
  • the D1 represents the distance between the first pattern and the second pattern on the display screen
  • the D2 represents the distance between the image of the first pattern and the image of the second pattern
  • the ⁇ represents the first angle.
  • the operation of determining the distance between the display screen and the imaging surface of the optical sensor in the method 800 may be performed by the processing module in the optical fingerprint device, or may also be performed by the processing module in the electronic device This embodiment of the application does not limit this.
  • the units can be implemented by electronic hardware, computer software, or a combination of the two, in order to clearly illustrate the interchangeability of hardware and software.
  • the composition and steps of each example have been described generally in terms of function. Whether these functions are performed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the disclosed system and device may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Image Input (AREA)

Abstract

一种光学指纹装置、电子设备和测量距离的方法,该光学指纹装置包括用于设置在电子设备的显示屏的下方,包括:光学组件,用于将从显示屏上的第一图案返回的第一光信号沿第一方向引导至光学传感器,并且将从显示屏上的第二图案返回的第二光信号沿第二方向引导至光学传感器,其中,第一方向和第二方向不同;光学传感器,用于接收从显示屏上的第一图案和第二图案返回并经光学组件传输的光信号,以得到第一图案和第二图案在光学传感器的成像面上所成的像;显示屏上第一图案和第二图案之间的距离,第一图案的像和第二图案的像之间的距离,以及第一方向和第二方向分别与显示屏的法线方向之间的夹角用于确定显示屏到光学传感器的成像面之间的距离。

Description

光学指纹装置,电子设备和测量距离的方法 技术领域
本申请实施例涉及光学指纹技术领域,并且更具体地,涉及光学指纹装置,电子设备和测量距离的方法。
背景技术
随着终端行业的高速发展,生物识别技术越来越受到人们重视,性能更优的屏下生物特征识别技术,例如屏下光学指纹识别技术已成为大众所需。
屏下光学指纹识别技术是将光学指纹装置设置于显示屏下,通过光学指纹装置中的指纹传感器接收从手指反射的光进行指纹成像,实现指纹识别。但是,受工艺误差,安装误差和贴膜等因素的影响,手指到指纹传感器的距离可能不同,相应的指纹传感器接收到的光信号的强度不同,导致指纹识别性能也不同。因此,如何确定手指到指纹传感器的距离,以调整指纹识别算法或确定该光学指纹装置的安装是否合格是一项亟需解决的问题。
发明内容
本申请实施例提供了一种光学指纹装置,电子设备和测量距离的方法,能够确定手指到光学传感器之间的距离。
第一方面,提供了一种光学指纹装置,用于设置在电子设备的显示屏的下方,包括:光学组件,用于将从所述显示屏上的第一图案返回的第一光信号沿第一方向引导至光学传感器,并且将从所述显示屏上的第二图案返回的第二光信号沿第二方向引导至所述光学传感器,其中,所述第一方向和所述第二方向不同;光学传感器,用于接收从所述显示屏上的所述第一图案和所述第二图案返回并经所述光学组件传输的光信号,以得到所述第一图案和所述第二图案在所述光学传感器的成像面上所成的像;
其中,所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角用于确定所述显示屏到所述光学传感器的成像面之间的距离。
在一些可能的实现方式中,所述第一方向和所述第二方向与所述显示屏 的法线方向均呈第一角度,且所述第一方向和所述第二方向沿所述显示屏的法线方向对称。
在一些可能的实现方式中,所述显示屏到所述光学传感器的成像面之间的距离P根据以下公式确定:
Figure PCTCN2019108449-appb-000001
其中,所述D1表示所述显示屏上所述第一图案和所述第二图案之间的距离,所述D2表示所述第一图案的像和所述第二图案的像之间的距离,所述θ表示所述第一角度。
在一些可能的实现方式中,所述光学组件包括斜孔准直器,所述斜孔准直器包括至少一个第一准直孔和至少一个第二准直孔,其中,所述第一准直孔用于将从所述第一图案返回的所述第一光信号沿所述第一方向引导至所述光学传感器,所述第二准直孔用于将从所述第二图案返回的所述第二光信号沿所述第二方向引导至所述光学传感器。
在一些可能的实现方式中,所述至少一个第一准直孔中的每个第一准直孔与所述显示屏的法线方向呈所述第一角度,所述至少一个第二准直孔中的每个第二准直孔与所述显示屏的法线方向呈所述第一角度。
在一些可能的实现方式中,所述光学组件包括镜头,所述镜头用于将从所述第一图案返回的所述第一光信号沿所述第一方向传输至所述光学传感器,以及将从所述第二图案返回的所述第二光信号沿所述第二方向传输至所述光学传感器。
在一些可能的实现方式中,所述光学组件包括至少一挡光层和微透镜阵列,所述至少一挡光层设置在所述微透镜阵列下方,所述至少一挡光层中的每个挡光层中设置有多个通光孔,所述多个通光孔对应于所述微透镜阵列中的多个微透镜;
其中,所述微透镜阵列用于将从所述第一图案返回的所述第一光信号沿所述第一方向传输至所述光学传感器,以及将从所述第二图案返回的所述第二光信号沿所述第二方向传输至所述光学传感器。
在一些可能的实现方式中,所述多个微透镜包括至少一个第一微透镜和至少一个第二微透镜,所述多个通光孔包括至少一个第一通光孔和至少一个第二通光孔,所述至少一个第一通光孔与所述至少一个第一微透镜一一对应, 所述至少一个第二通光孔与所述至少一个第二微透镜一一对应,其中,所述第一微透镜的中心和对应的第一通光孔的中心的连线与所述显示屏的法线方向呈第一角度,所述第二微透镜的中心和对应的第二通光孔的中心的连线与所述显示屏的法线方向呈所述第一角度。
在一些可能的实现方式中,所述显示屏为有机发光二极管OLED显示屏,所述显示屏包括多个OLED光源,其中所述光学指纹装置采用至少部分OLED光源作为光学指纹检测的激励光源。
第二方面,提供了一种电子设备,包括:显示屏;
以及第一方面或第一方面的任意可能的实现方式中的光学指纹装置,其中,所述光学指纹装置设置在所述显示屏的下方。
在一些可能的实现方式中,所述显示屏为有机发光二极管OLED显示屏,所述显示屏包括多个OLED光源,其中所述光学指纹装置采用至少部分OLED光源作为光学指纹检测的激励光源。
第三方面,提供了一种测量距离的方法,应用于光学指纹装置,其中,所述光学指纹装置用于设置在电子设备的显示屏的下方,所述方法包括:
接收从所述显示屏上的第一图案返回的第一光信号,以及从所述显示屏上的第二图案返回的第二光信号,以得到所述第一图案和所述第二图案在所述光学指纹装置的光学传感器的成像面上所成的像,其中,所述第一光信号是沿第一方向传输至所述光学传感器的,所述第二光信号是沿第二方向传输至所述光学传感器的,所述第一方向和所述第二方向不同;
其中,所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角用于确定所述显示屏到所述光学传感器的成像面之间的距离。
在一些可能的实现方式中,所述方法还包括:
根据所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角确定所述显示屏到所述光学传感器的成像面之间的距离。
在一些可能的实现方式中,所述第一方向和所述第二方向与所述显示屏的法线方向呈第一角度,且所述第一方向和所述第二方向沿所述显示屏的法 线方向对称,其中,所述根据所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角确定所述显示屏到所述光学传感器的成像面之间的距离,包括:根据如下公式,确定所述显示屏到所述光学传感器的成像面之间的距离P:
Figure PCTCN2019108449-appb-000002
其中,所述D1表示所述显示屏上所述第一图案和所述第二图案之间的距离,所述D2表示所述第一图案的像和所述第二图案的像之间的距离,所述θ表示所述第一角度。
本申请实施例的技术方案,可以通过光学组件将从显示屏上的至少两个图案返回的光信号沿不同方向引导至光学传感器,所述光学传感器可以根据接收的光信号对所述至少两个图案进行成像,从而可以根据该至少两个图案的像之间的距离,以及显示屏上的该至少两个图案之间的距离,结合该至少两个图案的传输方向对应的角度,确定所述显示屏到所述光学传感器的成像面之间的距离。
附图说明
图1是本申请可以适用的电子设备的平面示意图。
图2是图1所示的电子设备沿A’-A’的部分剖面示意图。
图3是本申请实施例的光学指纹装置的一种应用示意图。
图4至图6至本申请实施例的光学组件的实现方式的示意图。
图7是本申请实施例的电子设备的示意框图。
图8是本申请实施例的测量距离的方法的示意性框图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
作为一种常见的应用场景,本申请实施例提供的指纹识别装置可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下 (Under-display)光学指纹***。
图1和图2示出了本申请实施例可以适用的电子设备的示意图,其中,图1为电子设备10的定向示意图,图2为图1所示的电子设备10沿A’-A’的部分剖面结构示意图。
如图1至图2所示,所述电子设备10包括显示屏120和光学指纹装置130,其中,所述光学指纹装置130设置在所述显示屏120下方的局部区域,例如,显示屏中间区域的下方。所述光学指纹装置130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元的感应阵列,所述感应阵列所在区域或者其感应区域为所述光学指纹装置130的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。
应当理解,所述指纹检测区域103的面积可以与所述光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线会聚或者反射等光路设计,可以使得所述光学指纹装置130的指纹检测区域103的面积大于所述光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述光学指纹装置130的指纹检测区域103也可以设计成与所述光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对所述终端设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
作为一种可选的实现方式,如图2所示,所述光学指纹装置130包括光检测部分134和光学组件132,所述光检测部分134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,所述感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元;所述光学组件132可以设置在所述光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,所述滤光层可以 用于滤除穿透手指的环境光,例如,干扰成像的红外光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光引导至所述感应阵列进行光学检测。
在具体实现上,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹部件。比如,所述光学组件132可以与所述光学检测部分134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。
其中,所述光学组件132的导光层或者光路引导结构有多种实现方案,比如,所述导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,所述准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到所述准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在所述准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而所述感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,所述导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光会聚到其下方的光检测部分134的感应阵列,以使得所述感应阵列可以基于所述反射光进行成像,从而得到所述手指的指纹图像。可选地,所述光学透镜层在所述透镜单元的光路中还可以形成有针孔,所述针孔可以配合所述光学透镜层扩大所述光学指纹装置的视场,以提高所述光学指纹装置130的指纹成像效果。
在其他实施例中,所述导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,所述微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在所述光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于所述感应阵列的其中一个感应单元。并且,所述微透镜层和所述感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,所述微透镜层和所述感应单元之间还可以包括具有微孔的挡光层,其中所述微孔形成在其对应的微透镜和感应单元之间,所述挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得所述感应单元所对应的光线通过所述微透镜会聚到所述微孔内部并经由所述微孔 传输到所述感应单元以进行光学指纹成像。
应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在所述准直器层或者所述光学透镜层下方进一步设置微透镜层。当然,在所述准直器层或者所述光学透镜层与所述微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
作为一种可选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹装置130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指发出一束光,该光在手指的表面发生反射形成反射光或者经过所述手指内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(valley)对于光的反射能力不同,因此,来自指纹嵴的反射光和来自指纹峪的发射光具有不同的光强,反射光经过光学组件后,被光学指纹装置130中的感应阵列所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述电子设备10实现光学指纹识别功能。在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。
在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述终端设备10的光学指纹***还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述终端设备10的保护盖板下方的边缘区域,而所述光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述光学指纹装置130;或者,所述光学指纹装置130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等 膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹装置130。在其他替代实现方式中,所述显示屏120也可以采用非自发光的显示屏,比如采用背光的液晶显示屏;在这种情况下,所述光学检测装置130便无法采用所述显示屏120的显示单元作为激励光源,因此需要在所述光学检测装置130内部集成激励光源或者在其外部设置激励光源来实现光学指纹检测,当采用所述光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
应当理解的是,在具体实现上,所述电子设备10还包括透明保护盖板,其位于所述显示屏120的上方并覆盖所述电子设备10的正面。因为,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
另一方面,在某些实施例中,所述光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述光学指纹装置130可以具体包括多个光学指纹传感器;所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的中间区域,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹装置130的指纹检测区域103。也就是说,所述光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将所述光学指纹装置130的指纹采集区域103可以扩展到所述显示屏的中间部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当所述光学指纹传感器数量足够时,所述指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
可选地,在本申请一些实施例中,该光学指纹装置130还可以包括用于传输信号(例如所述指纹检测信号)的电路板,例如,所述电路板可以为柔性电路板(Flexible Printed Circuit,FPC)。光学指纹传感器可以连接到FPC,并通过所述FPC实现与其他***电路或者电子设备中的其他元件的电性互连和信号传输。比如,所述光学指纹传感器可以通过所述FPC接收所述电子 设备的处理单元的控制信号,并且还可以通过所述FPC将指纹检测信号(例如指纹图像)输出给所述电子设备的处理单元或者控制单元等。
需要说明的是,为便于理解,在以下示出的实施例中,对于不同实施例中示出的结构中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
应理解,在以下示出的本申请实施例中的光学指纹装置中的各种结构件的尺寸仅为示例性说明,而不应对本申请构成任何限定。
图3是根据本申请实施例的光学指纹装置的所应用的电子设备的剖面结构示意图,该光学指纹装置40可以设置在电子设备的显示屏200的下方,如图3所示,该光学指纹装置40可以包括:
光学组件400,用于将从所述显示屏200上的第一图案211返回的第一光信号241沿第一方向引导至光学传感器300,并且将从所述显示屏200上的第二图案212返回的第二光信号242沿第二方向引导至所述光学传感器300,其中,所述第一方向和所述第二方向不同;
光学传感器300,用于接收从所述显示屏200上的所述第一图案211和所述第二图案212返回并经所述光学组件400传输的光信号,以得到所述第一图案211和所述第二图案212在所述光学传感器300的成像面上所成的像,即像311和像312,分别对应所述第一图案211和所述第二图案212;
其中,所述显示屏200上所述第一图案211和所述第二图案212之间的距离,所述第一图案的像311和所述第二图案的像312之间的距离,以及所述第一方向和所述第二方向分别与显示屏的法线方向201之间的夹角用于确定所述显示屏200到所述光学传感器300的成像面之间的距离P。
需要说明的是,这里的显示屏200可以对应于图1和图2中的显示屏120,光学传感器300可以对应于图2中的光检测部分134,该光学传感器300可以包括由多个像素单元组成的像素阵列,具体实现可以参考图2所示实施例的相关描述,为了简洁,这里不再赘述。
应理解,在本申请实施例中,像素单元可以称为感应单元,或光学感应单元,或光电感应单元等,用于接收从显示屏上方的物体返回的光信号,以形成所述光学传感器所采集的图像中的一个像素,所述像素阵列可以称为感应阵列,光学感应阵列,或光电感应阵列等,该像素阵列所采集的光信号可以用于形成一幅图像,该光学传感器的成像面可以为所述光学传感器的像素 阵列所在的面。
应理解,本申请实施例并不特别限定所述第一方向和所述第二方向的具体方向,在一些实施例中,所述第一方向与所述显示屏的法线方向201呈第一角度,所述第二方向与所述显示屏的法线方向201呈第二角度,并且所述第一方向和所述第二方向位于所述显示屏的法线方向201的两侧。例如,所述第一角度和所述第二角度相等,即所述第一方向和所述第二方向相对于显示屏的法线方向201对称;或者,所述第一角度和所述第二角度不相等,即所述第一方向与所述第二方向相对于所述显示屏的法线方向201不对称。在另一些实施例中,所述第一方向与所述显示屏的法线方向201呈第一角度,所述第二方向与所述显示屏的法线方向201呈第二角度,并且所述第一方向和所述第二方向位于所述显示屏的法线方向201的一侧,此情况下,所述第一角度和所述第二角度不相等。
应理解,本申请实施例对于该第一图案和第二图案的形状、大小等不作具体限定,例如,所述第一图案可以为点,直线,或特定标识,或也可以为指纹图案,类似地,所述第二图案可以为点,直线,或特定标识,或也可以为指纹图案。
在本申请实施例中,显示屏上所述第一图案和所述第二图案之间的距离可以为所述第一图案和所述第二图案上的特定点之间的距离,或特定边之间的距离,或者所述第一图案和所述第二图案上最近的两点之间的水平距离或直线距离等,本申请实施例对此不作限定。例如,若所述第一图案和所述第二图案为相同的图案,所述第一图案和所述第二图案之间的距离可以为所述第一图案和所述第二图案的相同位置的点(例如中心,顶点等)之间的距离,或者,所述第一图案相对于所述第二图案之间的水平偏移距离;又例如,若所述第一图案和所述第二图案为不同的图案,所述第一图案和所述第二图案之间的距离可以为所述第一图案和所述第二图案上最近的两点之间的水平距离或直线距离等。
对应地,所述第一图案的像和所述第二图案的像之间的距离可以为所述第一图案的像上的对应位置和所述第二图案的像上的对应位置之间的距离,这里,所述第一图案的像上的对应位置为确定显示屏上的第一图案和第二图案之间的距离时所使用的第一图案上的位置,类似地,所述第二图案的像上的对应位置为确定显示屏上的第一图案和第二图案之间的距离时所使用的 第二图案上的位置。例如,若所述第一图案和第二图案为矩形,所述显示屏上的所述第一图案和第二图案之间的距离为所述第一图案的中心和所述第二图案的中心之间的距离,则所述第一图案的像和所述第二图案的像之间的距离可以为所述第一图案的像的中心和所述第二图案的像的中心之间的距离;或者,所述显示屏上的所述第一图案和第二图案之间的距离为所述第一图案和所述第二图案靠近的两条边之间的距离,则所述第一图案的像和所述第二图案的像之间的距离可以为所述第一图案的像和所述第二图案的像靠近的两条边之间的距离等,本申请实施例并不限于此。
以所述第一图案和所述第二图案均为点为例,说明该距离P的确定方式,若所述第一图案和所述第二图案均为点,则所述第一图案的像和所述第二图案的像也为点,所述第一图案的像和所述第二图案的像之间的距离为两个点之间的距离。在一些实现方式中,可以根据这两个点所在的像素单元之间的距离确定这两个点之间的距离,具体地,光学传感器的成像面的面积已知,像素阵列的大小和排布方式已知,则每个像素单元的面积已知,因此,可以根据第一图案的像所在的像素单元和所述第二图案的像所在的像素单元之间所间隔的像素单元的个数确定该距离P,例如,若这两个点之间间隔K个像素单元,单个像素单元的尺寸为L*L,则这两个点之间的距离可以为K*L。
需要说明的是,在一些实施例中,所述电子设备还可以包括盖板,设置在所述显示屏200的上方,此情况下,所述显示屏到所述光学传感器的成像面之间的距离P可以为从盖板到所述光学传感器的成像面之间的距离,在另一些实施例中,所述显示屏200上方还可以贴膜,这种情况下,所述显示屏到所述光学传感器的成像面之间的距离P可以为从所述贴膜到所述光学传感器的成像面之间的距离,总的来说,所述显示屏到光学指纹传感器的成像面之间的距离可以为手指的按压面到光学传感器的成像面之间的距离P。
在一些实施例中,若显示屏到光学传感器的成像面之间的安装距离固定,该距离P还可以用于确定显示屏的厚度,或者若该电子设备贴膜的话,还可以确定显示屏和贴膜的整体厚度,例如,可以将确定的距离P减去上述固定的安装距离的差值确定为该显示屏的厚度,或显示屏和贴膜的厚度。
在本申请实施例中,用于指纹检测的激励光源可以发射光信号照射所述显示屏200上的所述第一图案211和所述第二图案212,所述光学组件400是特别设计的,其可以实现将从所述第一图案211和所述第二图案212反射 或散射而返回的光信号沿不同的方向传输到所述光学传感器300,进一步在所述光学传感器300的成像面上成像,得到所述像311和所述像312,由于所述第一图案和所述第二图案212是沿不同方向传输的,因此,所述第一图案的像和所述第二图案的像之间的距离与显示屏上所述第一图案和所述第二图案之间的距离不同,因此,可以根据所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,结合所述第一图案和所述第二图案的传输方向对应的角度,确定所述显示屏到光学传感器的成像面之间的距离P。
需要说明的是,该用于指纹检测的激励光源可以采用图1和图2所示实施例中的激励光源的各种实现方式,例如,显示屏中的OLED光源,或其他内置或外置激励光源。
作为一个实施例,从所述第一图案211返回的第一光信号241可以沿第一方向传输到所述光学传感器300,从所述第二图案212返回的第二光信号242可以沿第二方向传输到所述光学传感器300,并且所述第一方向和所述第二方向沿所述显示屏的法线方向对称,并且所述第一方向和所述第二方向与所述显示屏的法线方向均呈第一角度θ,如图3所示。此情况下,所述显示屏200到光学传感器300的成像面之间的距离P可以根据如下公式确定:
Figure PCTCN2019108449-appb-000003
其中,所述D1表示所述显示屏上所述第一图案211和所述第二图案212之间的距离,所述D2表示所述第一图案的像和所述第二图案的像之间的距离。
应理解,本申请实施例并不限定该光学组件400的具体实现方式,只要其能够将不同的图案沿不同的方向引导至光学传感器即可,以下,结合图4至图6,说明该光学组件400的几种可选实现方式。
图4是根据本申请实施例的光学组件400的一种实现方式的示意性图,如图4所示,该光学组件400可以包括斜孔准直器410,所述斜孔准直器包括至少一个第一准直孔411和至少一个第二准直孔412,其中,所述第一准直孔411用于将从所述第一图案211返回的所述第一光信号241沿所述第一方向引导至所述光学传感器300,所述第二准直孔412用于将从所述第二图案212返回的所述第二光信号242沿所述第二方向引导至所述光学传感器300,进一步地,所述光学传感器300可以对所述第一光信号和所述第二光 信号进行成像,得到所述像311和所述像312。
其中,所述至少一个第一准直孔中的每个第一准直孔411被设置为与所述显示屏的法线方向201呈所述第一角度,所述至少一个第二准直孔中的每个第二准直孔412被设置为与所述显示屏的法线方向201呈第二角度。
作为一个实施例,所述第一角度和所述第二角度相等,且所述第一方向和所述第二方向相对于显示屏的法线方向201对称,此情况下,可以根据前述公式(1)确定距离P。
作为另一实施例,所述第一角度和所述第二角度不相等,且所述第一方向和所述第二方向位于显示屏的法线方向201两侧,此情况下,可以根据如下公式确定所述距离P:
Figure PCTCN2019108449-appb-000004
其中,所述D1表示所述显示屏上所述第一图案211和所述第二图案212之间的距离,所述D2表示所述第一图案的像和所述第二图案的像之间的距离,θ1表示所述第一角度,θ2表示所述第二角度。
作为再一实施例,所述第一角度和所述第二角度不相等,且所述第一方向和所述第二方向位于显示屏的法线方向201一侧,此情况下,可以根据如下公式确定所述距离P:
Figure PCTCN2019108449-appb-000005
其中,所述D1表示所述显示屏上所述第一图案211和所述第二图案212之间的距离,所述D2表示所述第一图案的像和所述第二图案的像之间的距离,θ1表示所述第一角度,θ2表示所述第二角度。
图5是根据本申请实施例的光学组件400的另一种实现方式的示意性图,如图5所示,该光学组件400可以包括镜头460,所述镜头可以包括至少一个透镜,所述镜头460用于将从所述第一图案211返回的所述第一光信号241沿所述第一方向传输至所述光学传感器300,以及将从所述第二图案212返回的所述第二光信号242沿所述第二方向传输至所述光学传感器300,进一步地,所述光学传感器300可以对所述第一光信号和所述第二光信号进行成像,得到所述像311和所述像312。
在该实施例中,基于透镜的成像原理,镜头460可以将从多个图案返回的光信号沿不同方向传输至光学传感器300,得到该多个图案对应的像,进 一步可以根据该多个图案的像之间的距离,显示屏上所述多个图案之间的距离,结合镜头的焦距和数值孔径等光学参数确定所述显示屏到光学传感器300的成像面之间的距离P。
图6是根据本申请实施例的光学组件400的再一种实现方式的示意性图,如图6所示,该光学组件400可以包括至少一挡光层420和微透镜阵列450,所述至少一挡光层420设置在所述微透镜阵列450下方,所述至少一挡光层420中的每个挡光层中设置有多个通光孔,所述多个通光孔对应于所述微透镜阵列450中的多个微透镜,其中,所述微透镜阵列450用于将从所述第一图案211返回的所述第一光信号241沿所述第一方向传输至所述光学传感器300,以及将从所述第二图案212返回的所述第二光信号242沿所述第二方向传输至所述光学传感器300,进一步地,所述光学传感器300可以对所述第一光信号和所述第二光信号进行成像,得到所述像311和所述像312。
具体地,所述微透镜阵列450包括至少一个第一微透镜451和至少一个第二微透镜452,所述挡光层420中设置有至少一个第一通光孔421和至少一个第二通光孔422,所述至少一个第一通光孔421与所述至少一个第一微透镜451一一对应,所述至少一个第二通光孔422与所述至少一个第二微透镜452一一对应,所述第一微透镜451用于将从所述第一图案211返回的第一光信号241沿第一方向引导至所述第一微透镜451对应的第一通光孔421,并经过所述第一通光孔421传输至所述光学传感器300,所述第二微透镜452用于将从所述第一图案212返回的第二光信号242沿第二方向引导至所述第二微透镜452对应的第二通光孔422,并经过所述第二通光孔422传输至所述光学传感器300。
也就是说,所述第一微透镜451的中心和所述第一微透镜451对应的第一通光孔421的中心的连线的方向为所述第一方向,所述第二微透镜452的中心和所述第二微透镜452对应的第二通光孔422的中心的连线的方向为所述第二方向。
在一个具体实施例中,所述第一微透镜451的中心F 0和所述第一微透镜451对应的第一通光孔421的中心F 1的连线与所述显示屏的法线方向201呈第一角度θ,所述第二微透镜452的中心F 0和所述第二微透镜452对应的第二通光孔422的中心F 1的连线与所述显示屏的法线方向201呈第一角度θ。
应理解,以上,仅以根据两个图案确定显示屏到光学传感器的成像面之 间的距离为例进行描述,在其他实施例中,也可以基于更多个图案确定显示屏到光学传感器的成像面之间的距离,本申请实施例并不限于此。
因此,在本申请实施例中,可以通过光学组件将从显示屏上的至少两个图案返回的光信号沿不同方向引导至光学传感器,所述光学传感器可以根据接收的光信号对所述至少两个图案进行成像,从而可以根据该至少两个图案的成像距离,以及显示屏上的该至少两个图案之间的距离,结合该至少两个图案的传输方向对应的角度,确定所述显示屏到所述光学传感器的成像面之间的距离P。
在一些实施例中,可以根据该距离P,确定该光学指纹装置40安装是否合格,例如,若该P在预设范围内,可以确定该光学指纹装置安装合格,则可以使用该预设范围对应的指纹识别算法进行指纹识别,能够保证良好的指纹识别性能;或者,若该P不在预设范围内,则可以确定该光学指纹装置安装不合格,或者也可以对指纹识别算法进行调整,以确定适用于该P值的指纹识别算法,进一步可以使用调整后的指纹识别算法进行指纹识别,以提升指纹识别性能。
在另一些实施例中,可以根据该距离P,确定相应的指纹识别算法,例如,可以测量不同的光学指纹装置对应的该距离P,确定P值的范围(可以为前文所述的预设范围),进一步地,可以基于该预设范围,确定合适的指纹识别算法,以保证距离P在该预设范围内时,能够具有良好的指纹识别性能,进一步可以基于该预设范围进行光学指纹装置的产品卡控,具体实现可以参考上一实施例的相关描述,这里不再赘述。
可选地,在一些实施例中,可以使用所述光学组件400中的部分传输用于确定所述距离P的光信号,其他部分用于传输进行指纹检测的光信号,例如,对于图4所示实施例,光学组件400可以只包括少量的所述第一准直孔和第二准直孔用于测量所述距离P,其他准直孔用于指纹检测,用于指纹检测的准直孔可以是具有相同倾斜角度的斜孔,或者也可以为直孔,本申请实施例对此不作限定。在一种实现方式中,用于测量距离P的准直孔可以设置在光学组件的边缘区域,用于指纹检测的准直孔可以设置在光学组件的中间区域,即可以利用边缘区域的光学组件和边缘区域的感应单元进行距离测量,利用中间区域的光学组件和中间区域的感应单元进行指纹检测,能够降低距离测量对指纹检测功能的影响。
可选地,在一些实施例中,所述光学指纹装置还可以包括滤光片,设置在从所述显示屏到所述光学传感器之间的光路中,例如,所述滤光片可以设置在所述光学组件的上方,或者设置在所述光学传感器的上表面等。
本申请实施例还提供了一种电子设备,如图7所示,所述电子设备700可以包括显示屏710和光学指纹装置720,其中,该光学指纹装置720设置在所述显示屏710的下方。
可选地,所述光学指纹装置720可以为前述实施例中的光学指纹装置40,具体结构可以参考前文的相关描述,这里不再赘述。
可选地,在本申请一个实施例中,所述显示屏710可以具体为自发光显示屏(比如OLED显示屏),且其包括多个自发光显示单元(比如OLED像素或者OLED光源)。在所述光学图像采集***为生物特征识别***时,所述显示屏中的部分自发光显示单元可以作为所述生物特征识别***进行生物特征识别的激励光源,用于向所述生物特征检测区域发射光信号,以用于生物特征检测。
上文结合图3至图7,详细描述了本申请的装置实施例,下文结合图8,详细描述本申请的方法实施例,应理解,方法实施例与装置实施例相互对应,类似的描述可以参照装置实施例。
本申请实施例还提供了一种测量距离的方法,如图8所示,该方法800可以应用于前文所述的光学指纹装置40或安装有所述光学指纹装置40的电子设备,其中,该光学指纹装置用于设置在所述电子设备的显示屏的下方,该方法800可以包括如下内容:
S810,接收从所述显示屏上的第一图案返回的第一光信号,以及从所述显示屏上的第二图案返回的第二光信号,以得到所述第一图案和所述第二图案在所述光学指纹装置的光学传感器的成像面上所成的像,其中,所述第一光信号是沿第一方向传输至所述光学传感器的,所述第二光信号是沿第二方向传输至所述光学传感器的,所述第一方向和所述第二方向不同;
其中,所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角用于确定所述显示屏到所述光学传感器的成像面之间的距离。
可选地,在一些实施例中,所述方法800还包括:
根据所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角确定所述显示屏到所述光学传感器的成像面之间的距离。
可选地,在一些实施例中,所述第一方向和所述第二方向与所述显示屏的法线方向呈第一角度,且所述第一方向和所述第二方向沿所述显示屏的法线方向对称,其中,所述根据所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角确定所述显示屏到所述光学传感器的成像面之间的距离,包括:根据如下公式,确定所述显示屏到所述光学传感器的成像面之间的距离P:
Figure PCTCN2019108449-appb-000006
其中,所述D1表示所述显示屏上所述第一图案和所述第二图案之间的距离,所述D2表示所述第一图案的像和所述第二图案的像之间的距离,所述θ表示所述第一角度。
应理解,该方法800中确定所述显示屏到所述光学传感器的成像面之间的距离的操作可以由该光学指纹装置中的处理模块执行,或者也可以由电子设备中的处理模块来执行,本申请实施例对此不作限定。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的 范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种光学指纹装置,其特征在于,用于设置在电子设备的显示屏的下方,包括:
    光学组件,用于将从所述显示屏上的第一图案返回的第一光信号沿第一方向引导至光学传感器,并且将从所述显示屏上的第二图案返回的第二光信号沿第二方向引导至所述光学传感器,其中,所述第一方向和所述第二方向不同;
    光学传感器,用于接收从所述显示屏上的所述第一图案和所述第二图案返回并经所述光学组件传输的光信号,以得到所述第一图案和所述第二图案在所述光学传感器的成像面上所成的像;
    其中,所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角用于确定所述显示屏到所述光学传感器的成像面之间的距离。
  2. 根据权利要求1所述的光学指纹装置,其特征在于,所述第一方向和所述第二方向与所述显示屏的法线方向均呈第一角度,且所述第一方向和所述第二方向沿所述显示屏的法线方向对称。
  3. 根据权利要求2所述的光学指纹装置,其特征在于,所述显示屏到所述光学传感器的成像面之间的距离P根据以下公式确定:
    Figure PCTCN2019108449-appb-100001
    其中,所述D1表示所述显示屏上所述第一图案和所述第二图案之间的距离,所述D2表示所述第一图案的像和所述第二图案的像之间的距离,所述θ表示所述第一角度。
  4. 根据权利要求1至3中任一项所述的光学指纹装置,其特征在于,所述光学组件包括斜孔准直器,所述斜孔准直器包括至少一个第一准直孔和至少一个第二准直孔,其中,所述第一准直孔用于将从所述第一图案返回的所述第一光信号沿所述第一方向引导至所述光学传感器,所述第二准直孔用于将从所述第二图案返回的所述第二光信号沿所述第二方向引导至所述光学传感器。
  5. 根据权利要求4所述的光学指纹装置,其特征在于,所述至少一个 第一准直孔中的每个第一准直孔与所述显示屏的法线方向呈所述第一角度,所述至少一个第二准直孔中的每个第二准直孔与所述显示屏的法线方向呈所述第一角度。
  6. 根据权利要求1至3中任一项所述的光学指纹装置,其特征在于,所述光学组件包括镜头,所述镜头用于将从所述第一图案返回的所述第一光信号沿所述第一方向传输至所述光学传感器,以及将从所述第二图案返回的所述第二光信号沿所述第二方向传输至所述光学传感器。
  7. 根据权利要求1至3中任一项所述的光学指纹装置,其特征在于,所述光学组件包括至少一挡光层和微透镜阵列,所述至少一挡光层设置在所述微透镜阵列下方,所述至少一挡光层中的每个挡光层中设置有多个通光孔,所述多个通光孔对应于所述微透镜阵列中的多个微透镜;
    其中,所述微透镜阵列用于将从所述第一图案返回的所述第一光信号沿所述第一方向传输至所述光学传感器,以及将从所述第二图案返回的所述第二光信号沿所述第二方向传输至所述光学传感器。
  8. 根据权利要求7所述的光学指纹装置,其特征在于,所述多个微透镜包括至少一个第一微透镜和至少一个第二微透镜,所述多个通光孔包括至少一个第一通光孔和至少一个第二通光孔,所述至少一个第一通光孔与所述至少一个第一微透镜一一对应,所述至少一个第二通光孔与所述至少一个第二微透镜一一对应,其中,所述第一微透镜的中心和对应的第一通光孔的中心的连线与所述显示屏的法线方向呈第一角度,所述第二微透镜的中心和对应的第二通光孔的中心的连线与所述显示屏的法线方向呈所述第一角度。
  9. 根据权利要求1至8中任一项所述的光学指纹装置,其特征在于,所述显示屏为有机发光二极管OLED显示屏,所述显示屏包括多个OLED光源,其中所述光学指纹装置采用至少部分OLED光源作为光学指纹检测的激励光源。
  10. 一种电子设备,其特征在于,包括:
    显示屏;
    如权利要求1至9中任一项所述的光学指纹装置,其中,所述光学指纹装置设置在所述显示屏的下方。
  11. 根据权利要求10所述的电子设备,其特征在于,所述显示屏为有机发光二极管OLED显示屏,所述显示屏包括多个OLED光源,其中所述 光学指纹装置采用至少部分OLED光源作为光学指纹检测的激励光源
  12. 一种测量距离的方法,其特征在于,应用于光学指纹装置,其中,所述光学指纹装置用于设置在电子设备的显示屏的下方,所述方法包括:
    接收从所述显示屏上的第一图案返回的第一光信号,以及从所述显示屏上的第二图案返回的第二光信号,以得到所述第一图案和所述第二图案在所述光学指纹装置的光学传感器的成像面上所成的像,其中,所述第一光信号是沿第一方向传输至所述光学传感器的,所述第二光信号是沿第二方向传输至所述光学传感器的,所述第一方向和所述第二方向不同;
    其中,所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角用于确定所述显示屏到所述光学传感器的成像面之间的距离。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    根据所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角确定所述显示屏到所述光学传感器的成像面之间的距离。
  14. 根据权利要求13所述的方法,其特征在于,所述第一方向和所述第二方向与所述显示屏的法线方向呈第一角度,且所述第一方向和所述第二方向沿所述显示屏的法线方向对称,
    其中,所述根据所述显示屏上所述第一图案和所述第二图案之间的距离,所述第一图案的像和所述第二图案的像之间的距离,以及所述第一方向和所述第二方向分别与所述显示屏的法线方向之间的夹角确定所述显示屏到所述光学传感器的成像面之间的距离,包括:
    根据如下公式,确定所述显示屏到所述光学传感器的成像面之间的距离P:
    Figure PCTCN2019108449-appb-100002
    其中,所述D1表示所述显示屏上所述第一图案和所述第二图案之间的距离,所述D2表示所述第一图案的像和所述第二图案的像之间的距离,所述θ表示所述第一角度。
PCT/CN2019/108449 2019-09-27 2019-09-27 光学指纹装置,电子设备和测量距离的方法 WO2021056392A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980002077.3A CN110832503B (zh) 2019-09-27 2019-09-27 光学指纹装置,电子设备和测量距离的方法
PCT/CN2019/108449 WO2021056392A1 (zh) 2019-09-27 2019-09-27 光学指纹装置,电子设备和测量距离的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108449 WO2021056392A1 (zh) 2019-09-27 2019-09-27 光学指纹装置,电子设备和测量距离的方法

Publications (1)

Publication Number Publication Date
WO2021056392A1 true WO2021056392A1 (zh) 2021-04-01

Family

ID=69546624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108449 WO2021056392A1 (zh) 2019-09-27 2019-09-27 光学指纹装置,电子设备和测量距离的方法

Country Status (2)

Country Link
CN (1) CN110832503B (zh)
WO (1) WO2021056392A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000165A1 (zh) * 2020-06-29 2022-01-06 深圳市汇顶科技股份有限公司 检测显示屏与指纹传感器之间距离的方法、装置和显示屏
CN111523523B (zh) * 2020-06-29 2020-09-25 深圳市汇顶科技股份有限公司 检测显示屏与指纹传感器之间距离的方法、装置和显示屏

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108323207A (zh) * 2018-02-06 2018-07-24 深圳市汇顶科技股份有限公司 屏下生物特征识别装置、生物特征识别组件和终端设备
US20190057240A1 (en) * 2017-08-15 2019-02-21 Beijing Xiaomi Mobile Software Co., Ltd. Fingerprint recognition process
CN110062931A (zh) * 2019-03-12 2019-07-26 深圳市汇顶科技股份有限公司 指纹识别装置、指纹识别方法和电子设备
US20190244002A1 (en) * 2018-02-06 2019-08-08 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display device
CN110163150A (zh) * 2019-05-21 2019-08-23 上海天马微电子有限公司 一种指纹识别方法、显示装置及计算机可读存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454335B2 (ja) * 2004-02-12 2010-04-21 Necインフロンティア株式会社 指紋入力装置
CN104035620B (zh) * 2014-06-20 2018-09-07 深圳印象认知技术有限公司 光学感应键、触摸屏、指纹采集设备、电子设备
TW201640418A (zh) * 2015-05-04 2016-11-16 曦威科技股份有限公司 指紋檢測裝置、使用其之行動裝置以及其製造方法
CN107004130B (zh) * 2015-06-18 2020-08-28 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
CN105184248B (zh) * 2015-08-28 2019-03-12 京东方科技集团股份有限公司 一种指纹识别装置及指纹识别***
CN105488464B (zh) * 2015-11-26 2019-02-19 小米科技有限责任公司 指纹识别方法及装置
CN108537090A (zh) * 2017-03-01 2018-09-14 上海箩箕技术有限公司 指纹成像模组和电子设备
WO2020150888A1 (zh) * 2019-01-22 2020-07-30 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2020155151A1 (zh) * 2019-02-02 2020-08-06 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190057240A1 (en) * 2017-08-15 2019-02-21 Beijing Xiaomi Mobile Software Co., Ltd. Fingerprint recognition process
CN108323207A (zh) * 2018-02-06 2018-07-24 深圳市汇顶科技股份有限公司 屏下生物特征识别装置、生物特征识别组件和终端设备
US20190244002A1 (en) * 2018-02-06 2019-08-08 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display device
CN110062931A (zh) * 2019-03-12 2019-07-26 深圳市汇顶科技股份有限公司 指纹识别装置、指纹识别方法和电子设备
CN110163150A (zh) * 2019-05-21 2019-08-23 上海天马微电子有限公司 一种指纹识别方法、显示装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN110832503A (zh) 2020-02-21
CN110832503B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US11275922B2 (en) Fingerprint identification apparatus and electronic device
CN110088768B (zh) 屏下指纹识别装置和电子设备
US11514709B2 (en) Biometric identification device using a light detection apparatus with light blocking layer/diaphragm
WO2020151158A1 (zh) 生物特征识别的装置
WO2020191596A1 (zh) 指纹识别装置和电子设备
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
WO2020133378A1 (zh) 指纹识别装置和电子设备
WO2019237872A1 (zh) 指纹识别装置和电子设备
WO2021072753A1 (zh) 指纹检测装置和电子设备
WO2020147018A1 (zh) 光学图像采集***和电子设备
WO2021203337A1 (zh) 指纹识别的方法、装置和电子设备
KR102374723B1 (ko) 광학 지문 장치 및 전자 기기
CN211319247U (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
WO2021081891A1 (zh) 用于指纹识别的方法、指纹识别装置和电子设备
WO2021189478A1 (zh) 指纹检测的装置和电子设备
CN111133442B (zh) 指纹检测的装置和电子设备
WO2021007730A1 (zh) 指纹检测装置和电子设备
WO2021077406A1 (zh) 指纹识别装置和电子设备
WO2021007964A1 (zh) 指纹检测装置和电子设备
CN112528953A (zh) 指纹识别装置、电子设备和指纹识别的方法
WO2021056392A1 (zh) 光学指纹装置,电子设备和测量距离的方法
WO2021007953A1 (zh) 指纹检测装置和电子设备
WO2021056318A1 (zh) 指纹识别的方法、装置和电子设备
WO2022016547A1 (zh) 指纹识别装置和电子设备
CN209897141U (zh) 光学图像采集单元、光学图像采集***和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947273

Country of ref document: EP

Kind code of ref document: A1