WO2019097842A1 - Capacity control valve for variable capacity compressor - Google Patents

Capacity control valve for variable capacity compressor Download PDF

Info

Publication number
WO2019097842A1
WO2019097842A1 PCT/JP2018/035244 JP2018035244W WO2019097842A1 WO 2019097842 A1 WO2019097842 A1 WO 2019097842A1 JP 2018035244 W JP2018035244 W JP 2018035244W WO 2019097842 A1 WO2019097842 A1 WO 2019097842A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
communication space
chamber
control pressure
discharge
Prior art date
Application number
PCT/JP2018/035244
Other languages
French (fr)
Japanese (ja)
Inventor
中村 慎二
田口 幸彦
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2019097842A1 publication Critical patent/WO2019097842A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/365Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor the fluid acting on a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus

Definitions

  • the present invention relates to a displacement control valve used in a variable displacement compressor whose discharge displacement is controlled by pressure regulation of a control pressure chamber.
  • the body (valve housing) 303 of the displacement control valve 300 described in Patent Document 1 includes a pressure-sensitive chamber (intake chamber communication space) 301 communicating with the suction chamber 119 of the variable displacement compressor 100 via the communication hole 303b.
  • a valve chamber (control pressure chamber communication space) 309 communicated with the crank chamber (control pressure chamber) 105 of the variable displacement compressor 100 via the communication hole 307a, and a discharge chamber of the variable displacement compressor 100 via the communication hole 303a.
  • a discharge chamber communication space communicating with the pressure chamber 120 and located between the pressure sensing chamber 301 and the valve chamber 309 is formed.
  • a pressure sensitive member 302 which senses the pressure of the suction chamber 119 and operates to expand and contract is disposed.
  • a valve body 305a that opens and closes the valve hole 304 is disposed.
  • the valve body 305 a is integrated with a connecting portion 305 b that abuts the connecting portion 302 a of the pressure sensitive member 302 and a rod 305 c slidably supported by the body 303 to form a valve forming body 305.
  • a communication hole 305d is formed which penetrates the both ends.
  • valve hole 304 forms a part of a communication passage (supply passage) 122 between the discharge chamber 120 and the crank chamber 105, and the communication hole 305 d communicates the crank chamber 105 with the suction chamber 119. 2
  • the pressure-sensitive member 302 contracts and the connecting portion 302 of the pressure sensing member 302 and the connecting portion 305 b of the valve forming member 305 separate from each other.
  • the valve chamber 309 communicate with each other through the through hole 305 d of the rod 305 c.
  • the valve body 305 a is biased by the spring 306 to close the valve hole 304.
  • the communication passage between the discharge chamber 120 and the crank chamber 105 is closed, and the second pressure release passage connecting the crank chamber 105 and the suction chamber 119 is opened, and the refrigerant in the crank chamber 105 is in the suction chamber. It is discharged to 119.
  • the pressure in the suction chamber 119 becomes lower than the predetermined value, the pressure-sensitive member 30 expands and the connecting portion 302a of the pressure-sensitive member 302 and the connecting portion 305b of the valve forming member 305 abut each other.
  • the extension movement of the valve body 305c is transmitted to the valve body 305c via the rod 305c, and the valve body 305a opens the valve hole 304.
  • the second pressure release passage connecting the crank chamber 105 and the suction chamber 119 is closed and the communication passage between the discharge chamber 120 and the crank chamber 105 is opened, and the refrigerant in the discharge chamber 120 is the crank chamber. It is introduced (supplied) at 105.
  • the pressure difference between the discharge chamber communication space communicating with the discharge chamber 120 and the pressure sensing chamber (suction chamber communication space) 301 communicating with the suction chamber 119 is largest. Further, a minute gap is formed between the outer peripheral surface of the rod 305 c of the valve-forming member 305 and the inner peripheral surface of the insertion hole through which the rod is inserted. Furthermore, when the valve hole 304 (the communication passage) is opened, the refrigerant flowing into the discharge chamber communication space may contain minute foreign matter.
  • this invention aims at providing the capacity control valve of the variable displacement compressor which can prevent the malfunction of the valve body resulting from the micro foreign material contained in the refrigerant which flows in.
  • a suction chamber into which a refrigerant is introduced, a compression unit that compresses the refrigerant introduced into the suction chamber, a discharge chamber into which the refrigerant compressed by the compression unit is discharged, and a control pressure chamber
  • the refrigerant in the discharge chamber is supplied to the control pressure chamber through the supply passage, or the refrigerant in the control pressure chamber is discharged through the discharge passage to the suction chamber.
  • the pressure is regulated, thereby providing a displacement control valve for use in a variable displacement compressor in which the displacement is controlled.
  • the volume control valve internally communicates with the suction chamber communication space communicating with the suction chamber, the control pressure chamber communication space communicating with the control pressure chamber, and the suction chamber communication space with the discharge chamber.
  • a valve housing having a discharge chamber communication space disposed between the pressure chamber communication space, and a pressure-sensitive member disposed in the suction chamber communication space and capable of sensing and expanding the pressure in the suction chamber;
  • the valve body disposed in the control pressure chamber communication space, which opens and closes a valve hole formed between the control pressure chamber communication space and the discharge chamber communication space to form a part of the supply passage.
  • a valve member and a rod member for transmitting the expansion and contraction operation of the pressure-sensitive member to the valve member, and axially moving to an insertion hole formed between the suction chamber communication space and the control pressure chamber communication space And the rod member freely inserted.
  • the insertion hole is formed at a position different from the valve hole, and is separated from the discharge chamber communication space.
  • an insertion hole through which the rod member for transmitting the expansion and contraction operation of the pressure sensing member to the valve body is axially movably inserted supplies refrigerant in the discharge chamber to the control pressure chamber.
  • the discharge chamber communication space is formed at a position different from the valve hole that forms a part of the supply passage, and communicates with the discharge chamber. For this reason, the valve body caused by the minute foreign matter contained in the refrigerant does not flow in the gap between the outer peripheral surface of the rod member and the inner peripheral surface of the insertion hole, the refrigerant flowing into the discharge chamber communication space Malfunction of is prevented.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a swash plate type variable displacement compressor to which a displacement control valve according to an embodiment of the present invention is applied.
  • This variable displacement compressor is applied to, for example, an air conditioner system (air conditioner system) for a vehicle.
  • 1 shows the installation state of the variable displacement compressor, the upper side in FIG. 1 is the upper side in the vertical direction, and the lower side in FIG. 1 is the lower side in the vertical direction.
  • FIG. 1 shows the installation state of the variable displacement compressor, the upper side in FIG. 1 is the upper side in the vertical direction, and the lower side in FIG. 1 is the lower side in the vertical direction.
  • the variable displacement compressor 100 includes a cylinder block 101 in which a plurality of cylinder bores 101 a are formed, a front housing 102 provided on one end side of the cylinder block 101, and the other end side of the cylinder block 101. And a cylinder head 104 provided via a valve plate 103.
  • the cylinder block 101, the front housing 102, the valve plate 103 and the cylinder head 104 are fastened by a plurality of through bolts 131 to constitute a compressor housing.
  • a center gasket is disposed between the front housing 102 and the cylinder block 101, and a cylinder other than the valve plate 103 is disposed between the cylinder block 101 and the cylinder head 104.
  • a gasket, a suction valve forming plate, a discharge valve forming plate and a head gasket are disposed.
  • a control pressure chamber 105 is formed by the cylinder block 101 and the front housing 102 inside the compressor housing.
  • the variable displacement compressor 100 is also provided with a drive shaft 106 extending through the control pressure chamber 105.
  • the drive shaft 106 is rotatably supported by the compressor housing. One end (left end in FIG. 1) of the drive shaft 106 extends through the boss portion 102 a of the front housing 102 to the outside of the front housing 102. Further, the one end of the drive shaft 106 is connected to an external drive source (not shown) via a clutch and a power transmission device (both not shown).
  • the external drive source is an engine or an electric motor of the vehicle.
  • a swash plate 107 is accommodated in the control pressure chamber 105.
  • a through hole 107 a is formed at the center of the swash plate 107, and the drive shaft 106 is inserted into the through hole 107 a of the swash plate 107.
  • the through hole 107 a is formed in a shape that allows the swash plate 107 to incline on the drive shaft 106.
  • the swash plate 107 is connected to a rotor 108 fixed to the drive shaft 106 via a connecting portion 109.
  • the connection unit 109 is a link mechanism, a hinge mechanism, or the like.
  • the swash plate 107 is integrally rotated with the drive shaft 106 (and the rotor 108) by the support of the drive shaft 106 through the through hole 107a and the connection with the rotor 108 through the connecting portion 109, and the axis of the drive shaft 106.
  • the angle (hereinafter referred to as "tilt angle") with respect to the plane orthogonal to the angle .alpha.
  • a tilt angle reducing spring 110 is disposed which biases the swash plate 107 toward the minimum tilt angle (a state substantially orthogonal to the axis O of the drive shaft 106).
  • the inclination angle of the swash plate 107 is the minimum inclination angle.
  • an inclination increasing spring may be disposed on the opposite side of the swash plate 107 to the inclination reducing spring 110 to bias the swash plate 107 in the direction of increasing the inclination.
  • the swash plate 107 is positioned at a balance inclination angle (> the above-mentioned minimum inclination angle) in which the biasing force of the tilting angle reducing spring 110 and the biasing force of the tilting angle increase spring are balanced. .
  • the coupling body of the drive shaft 106 and the rotor 108 is supported by bearings 112 and 113 in the radial direction, and supported by the bearing 114 and the thrust plate 115 in the thrust direction.
  • the clearance between the other end of the drive shaft 106, that is, the end on the thrust plate 115 side, and the thrust plate 115 is adjusted to a predetermined clearance by the adjustment member 116.
  • a piston 117 is disposed in each cylinder bore 101a.
  • a predetermined range on the outer peripheral portion side of the swash plate 107 is accommodated in the recess 117 a of the projecting portion projecting into the control pressure chamber 105 of the piston 117 via the pair of shoes 118.
  • a suction chamber 119 and a discharge chamber 120 are formed in the cylinder head 104.
  • the suction chamber 119 is connected to the low pressure side of a refrigerant circuit (not shown) of the air conditioning system via a suction port 104a. Further, the suction chamber 119 communicates with the cylinder bore 101a through a communication hole 103a formed in the valve plate 103 and a suction valve (not shown) formed in the suction valve forming plate (not shown).
  • the discharge chamber 120 is connected to the high pressure side of the refrigerant circuit of the air conditioning system via a discharge port (not shown). Further, the discharge chamber 120 communicates with the cylinder bore 101a through a discharge valve (not shown) formed in the discharge valve forming plate (not shown) and a communication hole 103b provided in the valve plate 103.
  • the refrigerant on the low pressure side of the refrigerant circuit of the air conditioning system is led to the suction chamber 119 via the suction port 104a.
  • the refrigerant introduced into the suction chamber 119 is sucked into the cylinder bore 101 a by the reciprocating motion of the piston 117 accompanying the rotation of the drive shaft 106, compressed and discharged into the discharge chamber 120.
  • the cylinder bore 101 a and the piston 117 constitute a compression unit that compresses the refrigerant introduced to the suction chamber 119.
  • coolant discharged to the discharge chamber 120 is guide
  • the supply passage 150 and the first discharge passage 160 are opened and closed by a displacement control valve 200 attached to the cylinder head 104.
  • the displacement control valve 200 is configured to be able to adjust the opening degree of the supply passage 150 and the opening degree of the first discharge passage 160. Furthermore, the displacement control valve 200 closes the supply passage 150 and the first discharge passage 160, adjusts the opening degree of the first discharge passage 160 with the supply passage 150 closed, and the first discharge. It is possible to adjust the opening degree of the supply passage 150 with the passage 160 closed.
  • the displacement control valve 200, the supply passage 150, and the first discharge passage 160 will be described later.
  • the control pressure chamber 105 and the suction chamber 119 are a gap between the drive shaft 106 and the bearing 113, a gap between the drive shaft 106 and the thrust plate 115, and a gap between the drive shaft 106 and the adjustment member 116.
  • the space communicates with a space 101 b formed in the cylinder block 101 and a second discharge passage 170 formed by a fixed throttle (orifice) 103 c formed in the valve plate 103. Therefore, when the displacement control valve 200 closes the first discharge passage 160, the refrigerant in the control pressure chamber 105 is discharged to the suction chamber 119 only through the second discharge passage 170, and the displacement control valve 200 is closed.
  • the refrigerant in the control pressure chamber 105 is discharged to the suction chamber 119 via the first discharge passage 160 and the second discharge passage 170.
  • the opening degree of the first discharge passage 160 is small, the pressure of the control pressure chamber 105 is increased by the blowby gas leaking from the gap between the piston 117 and the cylinder bore 101a.
  • the opening degree of the first discharge passage 160 is increased, the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 is larger than that of the blowby gas, and the pressure of the control pressure chamber 105 is decreased.
  • the volume control valve 200 opens the supply passage 150, the pressure of the control pressure chamber 105 is increased mainly by the refrigerant supplied from the discharge chamber 120 to the control pressure chamber 105 via the supply passage 150.
  • the pressure in the control pressure chamber 105 is increased or decreased, the pressure difference between the front and back of each piston 117, that is, the pressure difference between the compression chamber in the cylinder bore 101a and the control pressure chamber 105 changes.
  • the tilt angle of 107 also changes.
  • the stroke amount of the piston 117 changes, and the displacement of the variable displacement compressor 100 changes.
  • the displacement control valve 200 adjusts the opening degree of the first discharge passage 160 to adjust the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 or adjusts the opening degree of the supply passage 150.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the displacement control valve 200.
  • the displacement control valve 200 has a valve housing 210.
  • a suction chamber communication space 211 communicating with the suction chamber 119, a control pressure chamber communication space 212 communicating with the control pressure chamber 105, and a discharge chamber communication space 213 communicating with the discharge chamber 120 are formed in the valve housing 210. .
  • the suction chamber communication space 211 is located on the uppermost side in the vertical direction of the three communication spaces 211, 212, 213 when the displacement control valve 200 is attached to the cylinder head 104.
  • the suction chamber communication space 211 is in communication with the suction chamber 119 via the first communication hole 214 formed in the valve housing 210 and the first communication passage 104 b formed in the cylinder head 104.
  • the control pressure chamber communication space 212 is located at the lowermost side in the vertical direction of the three communication spaces 211, 212, 213 when the displacement control valve 200 is attached to the cylinder head 104.
  • the control pressure chamber communication space 212 is controlled via the second communication hole 215 formed in the valve housing 210, the second communication passage 104c formed in the cylinder head 104, and the third communication passage 101c formed in the cylinder block 101. It is in communication with the pressure chamber 105.
  • the discharge chamber communication space 213 is located between the suction chamber communication space 211 and the control pressure chamber communication space 212.
  • the discharge chamber communication space 213 is in communication with the discharge chamber 120 via the third communication hole 216 formed in the valve housing 210 and the fourth communication passage 104 d formed in the cylinder head 104.
  • the suction chamber communication space 211 and the discharge chamber communication space 213 are partitioned by the partition wall 217, and the control pressure chamber communication space 212 and the discharge chamber communication space 213 are partitioned by the partition wall 218.
  • an insertion hole 219 is formed between the suction chamber communication space 211 and the control pressure chamber communication space 212, and between the control pressure chamber communication space 212 and the discharge chamber communication space 213.
  • the valve hole 220 is formed.
  • the insertion hole 219 is disposed substantially at the center of the cross section of the valve housing 210. An upper end of the insertion hole 219 opens to the suction chamber communication space 211 and extends linearly, and a lower end opens to the control pressure chamber communication space 212.
  • the suction chamber communication space 211 and the control pressure chamber communication space 212 communicate with each other through the insertion hole 219. Further, the insertion hole 219 is separated from the discharge chamber communication space 213.
  • the valve hole 220 penetrates a dividing wall 218 which divides the control pressure chamber communication space 212 and the discharge chamber communication space 213 in the radial direction outward of the insertion hole 219. That is, the control pressure chamber communication space 212 and the discharge chamber communication space 213 communicate with each other through the valve hole 220.
  • the above-described supply passage 150 for communicating the discharge chamber 120 with the control pressure chamber 105 and supplying the refrigerant in the discharge chamber 120 to the control pressure chamber 105 is formed by the three communication passage 101 c.
  • the rod member 221 is inserted in the insertion hole 219 so as to be movable in the axial direction (vertical direction). The upper end of the rod member 221 protrudes into the suction chamber communication space 211, and the lower end of the rod member 221 protrudes into the control pressure chamber communication space 212.
  • an internal passage 221 a penetrating in the axial direction is formed inside the rod member 221.
  • One end of the internal passage 221a opens to the upper end of the rod member 221 (ie, in the suction chamber communication space 211), and the other end of the internal passage 221a is the lower end of the rod member 221 (ie, the control pressure chamber communication space 212). It is open to the inside).
  • the control pressure chamber communication space 212 accommodates a valve body 222 for opening and closing the valve hole 220.
  • the valve body 222 is integrally formed or fixed to the lower end portion of the rod member 221. The valve body 222 moves up and down in the control pressure chamber communication space 212 as the rod member 221 moves up and down in the insertion hole 219.
  • a first biasing spring 231 which biases the valve body 222 in the direction of closing the valve hole 220 (valve closing direction) is accommodated. Then, when the valve body 222 abuts on the valve seat 218 a formed on the surface on the control pressure chamber communication space 212 side of the partition wall 218 with the movement of the rod member 221, the valve hole 220 (that is, the supply passage 150) It is closed. On the other hand, when the valve body 222 separates from the valve seat 218a with the movement of the rod member 221, the valve hole 220 (that is, the supply passage 150) is opened. The degree of opening of the supply passage 150 increases as the valve body 222 moves away from the valve seat 218a.
  • the valve body 222 closes the valve hole 220, the communication between the suction chamber communication space 211 and the control pressure chamber communication space 212 via the gap between the outer peripheral surface of the rod member 221 and the inner peripheral surface of the insertion hole 219 is also blocked. Ru. However, the suction chamber communication space 211 and the control pressure chamber communication space 212 communicate with each other through the internal passage 221 a of the rod member 221. In the present embodiment, the third communication passage 101c, the second communication passage 104c, the second communication hole 215, the control pressure chamber communication space 212, the internal passage 221a of the rod member 221, the suction chamber communication space 211, and the first communication.
  • the above-mentioned first discharge passage 160 for communicating the control pressure chamber 105 with the suction chamber 119 and discharging the refrigerant in the control pressure chamber 105 to the suction chamber 119 is formed by the hole 214 and the first communication passage 104 b.
  • a bellows (pressure-sensitive member) 223 that senses the pressure of the suction chamber 119 and expands and contracts is accommodated.
  • the bellows 223 is disposed substantially at the center of the cross section of the valve housing 210.
  • the upper end portion of the bellows 223 is fixed to the valve housing 210, and a second biasing spring 232 for biasing the bellows 223 in the extension direction is accommodated in the bellows 223.
  • a rod-shaped connecting member 224 configured to be capable of coming into and coming out of contact with the rod member 221 is attached.
  • the connecting member 224 is formed in a cylindrical shape having substantially the same diameter as the rod member 221, and an upper end (a base end) thereof is fixed to the lower end of the bellows 223.
  • the connecting member 224 moves in the vertical direction according to the expansion and contraction of the bellows 223, and the lower end portion (tip end portion) thereof is configured to be in contact with and separated from the upper end portion of the rod member 221.
  • an outward projecting portion 224a which protrudes outward from the outer peripheral surface is formed.
  • connection member 224 is disposed between the suction chamber communication space 211 side surface of the partition wall 217 that divides the suction chamber communication space 211 and the discharge chamber communication space 213, and the lower surface of the outward protrusion 224a.
  • a biasing spring 233 biases the rod member 221 in a direction away from the rod member 221 (in other words, in a direction in which the bellows 223 is contracted).
  • connection member 224 and the rod member 221 have a function of transmitting the extension of the bellows 223 to the valve body 222.
  • the rod member 221 is moved to the first biasing spring 231 when the bellows 223 contracts and the connecting member 224 moves upward. It moves upward in the insertion hole 219 by the biasing force of Then, when the valve body 222 abuts on the valve seat 218a as the rod member 221 moves, the valve hole 220 (that is, the supply passage 150) is closed.
  • connection member 224 and the rod member 221 have a function of transmitting the contraction of the bellows 223 to the valve body 222.
  • the bellows 223 is further contracted from this state, the lower end of the connecting member 224 is separated from the upper end of the rod member 221, and the internal passage 221a of the rod member 221 (that is, the first discharge passage 160) is opened.
  • the degree of opening of the first discharge passage 160 increases as the lower end portion (tip end portion) of the connecting member 224 separates from the upper end portion of the rod member 221.
  • a fixed iron core 225, a movable iron core 226 and a coil 227 are further accommodated in the suction chamber communication space 211.
  • the stationary core 225 is fixed to the valve housing 210.
  • the fixed core 225 is formed in a cylindrical shape, and accommodates the bellows 223 inside.
  • the fixed iron core 225 is formed with an annular inward protruding portion 225 a that protrudes inward from the inner peripheral surface below the bellows 223. Further, a predetermined portion on the upper end side (base end side) of the connection member 224 with respect to the outward protrusion portion 224a is axially movably inserted through the inner peripheral surface of the inward protrusion portion 225a.
  • the movable core 226 is formed in a cylindrical shape having a diameter smaller than that of the fixed core 225, and is held movably in the vertical direction below the inward protrusion portion 225a of the fixed core 225.
  • the movable core 226 is disposed such that the upper end thereof faces the lower surface of the inward protrusion 225 a of the fixed core 225.
  • the upper end of the movable core 226 abuts on the lower surface of the inward projection 225 a of the fixed core 225 so that the upper limit position is restricted, and the lower end abuts on a not-shown restriction formed on the valve housing 210.
  • the lower limit position is thereby regulated.
  • the movable iron core 226 is formed with a pressing portion 226a which abuts on the peripheral edge portion of the lower surface of the outward projecting portion 224a of the connection member 224 when the movable iron core 226 moves upward and presses the connection member 224 upward. It is done.
  • the pressing portion 226 a annularly protrudes inward from the inner circumferential surface in the vicinity of the lower end portion of the movable core 226.
  • the coil 227 is covered with resin and disposed around the outer periphery of the fixed core 225 and the movable core 226.
  • an electromagnetic force of a magnitude corresponding to the amount of energization of the coil 227 is generated between the fixed core 225 and the movable core 226, and the generated electromagnetic force causes the movable core 226 to move toward the fixed core 225. And move upwards. That is, the fixed iron core 225, the movable iron core 226, and the coil 227 constitute a solenoid unit 270.
  • the bellows 223 is biased in the contraction direction via the connection member 224. That is, the biasing force in the contraction direction corresponding to the amount of current supplied to the coil 227 is applied to the bellows 223.
  • the opening area of the valve hole 220 forming a part of the supply passage 150 is smaller than the passage cross sectional area of the internal passage 221 a of the rod member 221 forming a part of the first discharge passage 160. .
  • the biasing forces of the second and third biasing springs 232 and 233 separate from the upper end of the rod member 221 at the lower end of the connecting member 224 when the energization of the coil 227 is turned off (that is, The first discharge passage 160 is adjusted to be opened.
  • the valve body 222 is in contact with the valve seat 218a by the biasing force of the first biasing spring 231 to close the valve hole 220 (ie, the supply passage 150). Is configured.
  • the solenoid section 270 is configured to change the operation switching point of the bellows 223 in accordance with the amount of energization of the coil 227.
  • the solenoid unit 270 is configured to change the operation switching point of the bellows 223 higher as the amount of energization of the coil 227 decreases.
  • the control operation of the discharge displacement of the variable displacement compressor 100 by the displacement control valve 200 will be described with reference to FIGS.
  • the air conditioning system is OFF, the clutch is OFF (released), and the variable displacement compressor 100 is stopped.
  • the pressure of the control pressure chamber 105 is equal to the pressure of the suction chamber 119, and the inclination angle of the swash plate 107 is the minimum inclination angle (or the balance inclination angle).
  • the energization of the coil 227 is turned off, and the lower end of the connecting member 224 is separated from the upper end of the rod member 221, as shown in FIG. That is, the first discharge passage 160 is open.
  • valve body 222 is in contact with the valve seat 218a by the biasing force of the first biasing spring 231, and the valve hole 220 (that is, the supply passage 150) is closed.
  • the clutch is turned on (engaged) to rotate the drive shaft 106 of the variable displacement compressor 100.
  • each piston 117 reciprocates in the corresponding cylinder bore 101 a to generate the blowby gas, and the generated blowby gas is discharged from the control pressure chamber 105 through the first discharge passage 160 and the second discharge passage 170. It flows to 119.
  • the refrigerant (gas refrigerant, liquid refrigerant) remaining in the control pressure chamber 105 is also discharged to the suction chamber 119 via the first discharge passage 160 and the second discharge passage 170.
  • the tilt angle of the swash plate 107 is increased to be the maximum tilt angle, and the stroke amount of the piston 117 (that is, the discharge capacity of the variable displacement compressor 100) is It will be the largest.
  • the energization amount of the coil 227 is set based on the air conditioning setting in the air conditioner system, the external environment, and the like.
  • an urging force in a contraction direction corresponding to the amount of energization of the coil 227 acts on the bellows 223, and the operation conversion point of the bellows 223 is changed (decided).
  • the operation switching point corresponds to the set pressure (of the suction chamber 119) corresponding to the amount of energization of the coil 227 described later.
  • FIG. 3 shows the displacement control valve 200 in a state where the coil 227 is energized.
  • the pressing portion 226a of the movable iron core 226 abuts on the peripheral portion of the lower surface of the outward projecting portion 224a of the connecting member 224 to press the connecting member 224,
  • the electromagnetic force corresponding to the amount of current flow acts to make the bellows 223 in the reference state.
  • the displacement control valve 200 adjusts (changes) the pressure of the control pressure chamber 105 so that the pressure of the suction chamber 119 becomes the set pressure corresponding to the amount of current supplied to the coil 227, and discharges the displacement of the variable displacement compressor 100 Control.
  • the displacement control valve 200 reduces the opening degree of the first discharge passage 160.
  • the reduction of the distance from the upper end of the rod member 221 at the lower end of the connecting member 224 includes the contact of the lower end of the connecting member 224 with the upper end of the rod member 221, Reducing the opening degree of the first discharge passage 160 includes closing the first discharge passage 160.
  • the opening degree of the first discharge passage decreases.
  • the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 via the first discharge passage is limited. Then, the pressure of the control pressure chamber 105 is increased by the blow-by gas, and the inclination angle of the swash plate 107 is reduced, so that the displacement of the variable displacement compressor 100 is reduced. Further, when the refrigerant circulation amount increases and the pressure in the suction chamber 119 decreases rapidly due to a sharp increase in the rotational speed of the drive shaft 106, etc., as shown in FIG.
  • the lower end of the connecting member 224 abuts against the upper end of the rod member 221, and the connecting member 224 presses the rod member 221 downward, whereby the valve body 222 is separated from the valve seat 218a and the valve hole is formed. 220 is released. That is, the volume control valve 200 closes the first discharge passage 160 and opens the supply passage 150.
  • the refrigerant in the discharge chamber 120 is supplied to the control pressure chamber 105 through the supply passage 150, the pressure in the control pressure chamber 105 is rapidly increased, and the inclination angle of the swash plate 107 is reduced.
  • the discharge capacity of 100 decreases.
  • the opening area of the valve hole 220 forming a part of the supply passage 150 is relatively small, but when the supply passage 150 is opened, the first discharge passage 160 is closed. Therefore, the pressure in the control pressure chamber 105 can be rapidly increased by the refrigerant in the discharge chamber 120 supplied via the supply passage 150.
  • the opening area of the valve hole 220 is relatively small, the influence of the pressure difference between the discharge chamber 120 and the control pressure chamber 105 on the operation characteristics of the valve body 222 is suppressed.
  • the pressure in the suction chamber 119 is higher than the set pressure, in the displacement control valve 200, as shown in FIG. 5, the bellows 223 contracts more than the reference state and the lower end portion of the connecting member 224 The distance from the upper end of the rod member 221 increases. That is, the displacement control valve 200 increases the opening degree of the first discharge passage 160.
  • the increase in the distance from the upper end of the rod member 221 at the lower end of the connecting member 224 includes the separation of the lower end of the connecting member 224 from the upper end of the rod member 221, Increasing the opening degree of the first discharge passage 160 includes opening the first discharge passage 160. Further, as the difference between the pressure in the suction chamber 119 and the set pressure increases, the opening degree of the first discharge passage 160 increases. As a result, the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 via the first discharge passage 160 increases, the pressure in the control pressure chamber 105 decreases, and the inclination angle of the swash plate 107 increases. The discharge capacity of the capacity compressor 100 is increased.
  • the displacement control valve 200 is disposed in the suction chamber communication space 211, and is disposed in the control pressure chamber communication space 212 and a bellows (pressure sensitive member) 223 that senses the pressure of the suction chamber 119 and expands and contracts.
  • the insertion hole 219 is formed at a position different from the valve hole 220, and is separated from the discharge chamber communication space 213.
  • the insertion hole 219 is provided substantially at the center of the cross section of the valve housing 210, and one end is open to the suction chamber communication space 211 and extends linearly, and the other end is open to the control pressure chamber communication space 212 doing.
  • the valve hole 220 is provided outside the insertion hole 219, that is, radially outward of the insertion hole 219, and penetrates a dividing wall 218 that divides the control pressure chamber communication space 212 and the discharge chamber communication space 213. .
  • the refrigerant flowing from the discharge chamber 120 into the discharge chamber communication space 213 does not flow in the gap between the outer peripheral surface of the rod member 221 and the inner peripheral surface of the insertion hole 219, and minute foreign substances contained in the refrigerant There is no risk of being caught in the gap. Therefore, the operation failure of the rod member 221 and the valve body 222 caused by the minute foreign matter contained in the refrigerant is prevented, and the stable operation of the valve body 222 is secured. Further, when the valve body 222 closes the valve hole 220, at the same time, the suction chamber communication space 211 and the control pressure chamber communication space through the gap between the outer peripheral surface of the rod member 221 and the inner peripheral surface of the insertion hole 219.
  • the rod member 221 When the valve body 222 closes the valve hole 220, the rod member 221 causes the suction chamber communication space 211 and the control pressure chamber communication space 212 to communicate with each other. It has an internal passage 221 a which forms a part of the discharge passage 160. Therefore, even if the refrigerant flowing from the control pressure chamber 105 into the control pressure chamber communication space 212 contains minute foreign matter, the foreign matter may be the outer circumferential surface of the rod member 221 and the inner circumferential surface of the insertion hole 219. You will not get caught in the gap.
  • 6A and 6B are cross-sectional views schematically showing the configuration of a displacement control valve 300 according to another embodiment.
  • the displacement control valve 300 has a connecting rod 321 integrally formed instead of the rod member 221 and the connecting member 224 in the displacement control valve 200 described above.
  • the rest is basically the same as the displacement control valve 200.
  • the displacement control valve 300 is configured to be able to adjust the opening degree of the supply passage 150 and the first discharge passage 160.
  • the connecting rod 321 is axially movably inserted through the inner peripheral surface of the inward protruding portion 225 a of the fixed core 225 and the insertion hole 219.
  • the upper end (base end) of the connecting rod 321 is fixed to the lower end of the bellows 223, and the lower end (tip) of the connecting rod 321 protrudes into the control pressure chamber communication space 212.
  • the valve body 222 is integrally formed or fixed to the said lower end part (tip part) of the connection rod 321.
  • the connecting rod 321 has an outward projecting portion 321a having the same function as the outward projecting portion 224a of the connecting member 224 in the above-described displacement control valve 200, and an internal passage of the rod member 221 in the above-described displacement control valve 200.
  • An inner passage 321 b having the same function as that of the inner case 221 a is formed.
  • the internal passage 321 b has a refrigerant inlet 321 b 1 opening at the lower end (tip) of the connecting rod 321 and a refrigerant outlet 321 b 2 opening at the side of the connecting rod 321.
  • the entire refrigerant outlet portion 321b2 of the internal passage 321b is exposed in the suction chamber communication space 211 when the valve body 222 is in contact with the valve seat 218a and the valve hole 220 is closed (see FIG. 6A).
  • a part or all of the valve body 222 is closed by the inner peripheral surface of the insertion hole 219 (see FIG. 6B).
  • the biasing force of the second and third biasing springs 232 and 233 causes the whole of the refrigerant outlet portion 321b2 of the internal passage 321b to be in the suction chamber communication space 211 when the coil 227 is deenergized. Are adjusted so that the first discharge passage 160 is opened.
  • the movable core 226 moves upward, and the pressing portion 226a of the movable core 226 abuts on the peripheral portion of the lower surface of the outward protrusion 321a of the connecting rod 321 to move the connecting rod 321 upward. Press to.
  • the region not closed by the inner circumferential surface of the insertion hole 219 in the refrigerant outlet portion 321b2 of the inner passage 321b (the region exposed in the suction chamber communication space 211 in the refrigerant outlet portion 321b2 of the inner passage 321b) is 1 corresponds to the opening degree of the discharge passage 160. That is, the displacement control valve 300 reduces the opening degree of the first discharge passage 160 and increases the opening degree of the supply passage 150. The larger the difference between the set pressure and the pressure in the suction chamber 119, the smaller the opening degree of the first discharge passage 160, and the larger the opening degree of the supply passage 150.
  • the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 via the first discharge passage 160 is limited, and the pressure in the control pressure chamber 105 is supplied via the supply passage 150.
  • the bellows 223 contracts more than the reference state, and the connecting rod 321 moves upward.
  • the displacement control valve 300 increases the opening degree of the first discharge passage 160 and reduces the opening degree of the supply passage 150.
  • FIG. 7 is a cross-sectional view schematically showing a configuration of a displacement control valve 400 according to still another embodiment.
  • the displacement control valve 400 is configured to be applicable to a so-called clutchless variable displacement compressor.
  • the first discharge passage 160 does not pass through the displacement control valve 400 (therefore, the first discharge passage 160 is not shown).
  • the volume control valve 400 adjusts the opening degree of the supply passage 150. Configured The same reference numerals are assigned to elements common to the variable displacement compressor 100 and the displacement control valves 200 and 300 described above, and the description thereof is omitted.
  • the suction chamber communication space 211 is located at the lowermost side in the vertical direction of the three communication spaces 211, 212 and 213, and the control pressure chamber
  • the communication space 212 is located on the uppermost side in the vertical direction of the three communication spaces 211, 212, 213.
  • the lower end portion of the bellows 223 accommodated in the suction chamber communication space 211 is fixed to the valve housing 210.
  • a biasing spring (not shown) is accommodated which biases the bellows 223 in the extending direction.
  • the upper end portion of a rod member 221 inserted in the insertion hole 219 so as to be movable in the axial direction (vertical direction) is fixed to the lower surface of the valve body 222 accommodated in the control pressure chamber communication space 212.
  • the lower end portion of the lower end portion is connected to the upper end portion of the bellows 223 so as to be capable of coming into and coming out of contact.
  • the lower end portion of the solenoid rod 401 is fixed to the upper surface of the valve body 222.
  • the solenoid rod 401 is inserted into the stationary core 402, and the upper end of the solenoid rod 401 protrudes from the stationary core 402.
  • a movable iron core 403 is fixed to the upper end portion of the solenoid rod 401, and between the fixed iron core 402 and the movable iron core 403, the movable iron core 403 is biased in a direction (valve opening direction) away from the fixed iron core 402.
  • a biasing spring 404 is disposed.
  • a coil 405 covered with a resin is disposed around the outside of the fixed core 402 and the movable core 403. When the coil 405 is energized, an electromagnetic force of a magnitude corresponding to the amount of energization of the coil 405 is generated between the fixed core 402 and the movable core 403, and the generated electromagnetic force causes the movable core 403 to move toward the fixed core 402. Move.
  • the fixed iron core 402, the movable iron core 403, and the coil 405 constitute a solenoid unit 270.
  • the valve body 222 is biased in the valve closing direction via the solenoid rod 401.
  • the bellows 223 is biased in the contraction direction via the rod member 221. That is, a biasing force in the contraction direction acts on the bellows 223 in accordance with the amount of energization of the coil 405.
  • the valve body 222 is configured to be separated from the valve seat 218a by the biasing force of the biasing spring 404 and open the valve hole 220 (that is, the supply passage 150).
  • variable displacement compressor the discharge control operation of the clutchless variable displacement compressor (hereinafter simply referred to as “variable displacement compressor”) by the displacement control valve 400 will be briefly described.
  • variable displacement compressor the clutchless variable displacement compressor
  • the coil 405 is deenergized, and the biasing force of the biasing spring 404 causes the valve body 222 to move to the valve seat 218a.
  • the valve hole 220 supply passage 150
  • the first discharge passage 160 is closed by the control valve (not shown).
  • each piston 117 reciprocates in the corresponding cylinder bore 101a, and the refrigerant discharged to the discharge chamber 120 is supplied to the supply passage 150 Is supplied to the control pressure chamber 105 via the control pressure chamber 105.
  • the pressure in the control pressure chamber 105 is increased, the inclination angle of the swash plate 107 is decreased, and the displacement of the variable displacement compressor 100 is decreased.
  • the air conditioning system is turned on, the coil 405 is energized and the valve body 222 closes the valve hole 220 (supply passage 150). At this time, the first discharge passage is opened by the control valve.
  • the refrigerant in the control pressure chamber 105 is rapidly discharged to the suction chamber 119, the pressure in the control pressure chamber 105 becomes equal to the pressure in the suction chamber 119, and the inclination angle of the swash plate 107 becomes maximum. Thereafter, when the pressure in the suction chamber 119 drops below the set pressure corresponding to the energization amount of the coil 405, the bellows 223 extends, the rod member 221 moves upward, and the valve body 222 opens the valve hole 220 (supply passage 150). Open At this time, the first discharge passage 160 is closed by the control valve.
  • the pressure in the control pressure chamber 105 is increased by the refrigerant in the discharge chamber 120 supplied via the supply passage 150, and the inclination angle of the swash plate 107 is reduced, and the discharge capacity of the variable displacement compressor 100 is reduced.
  • the bellows 223 contracts and the rod member 221 moves downward, and the valve body 222 abuts on the valve seat 218a to close the valve hole 220 (supply passage 150). Do. At this time, the first discharge passage 160 is opened by the control valve.
  • the refrigerant in the control pressure chamber 105 is discharged to the suction chamber 119, the pressure in the control pressure chamber 105 decreases, the inclination angle of the swash plate 107 increases, and the displacement of the variable displacement compressor 100 increases.
  • the displacement control valve 400 the same effect as that of the displacement control valve 200 described above can be obtained.
  • the present invention is not limited to the above-described embodiments and modifications, and it is needless to say that further modifications and changes are possible based on the technical idea of the present invention.
  • variable displacement compressor 101a: cylinder bore (compression unit), 105: control pressure chamber, 117: piston (compression unit), 119: suction chamber, 120: discharge chamber, 150: supply passage, 160: first discharge passage 170: second discharge passage 200, 300, 400: volume control valve 210: valve housing 211: suction chamber communication space 212: control pressure chamber communication space 213: discharge chamber communication space 217, 218 section Wall 219, insertion hole 220, valve hole 221, 321 rod member 221a internal passage 222 valve body 223 bellows (pressure-sensitive member) 224 connection member 321 connection rod

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Fluid-Driven Valves (AREA)
  • Details Of Valves (AREA)

Abstract

Provided is a capacity control valve for a variable capacity compressor. The capacity control valve can prevent valve body malfunctions caused by minute foreign matter that is included in inwardly flowing refrigerant. A capacity control valve 200 that includes: a valve housing 210 that has formed therein an intake chamber communication space 211 that communicates with an intake chamber 119, a control pressure chamber communication space 212 that communicates with a control pressure chamber 105, and a discharge chamber communication space 213 that communicates with a discharge chamber; a bellows (a pressure-sensitive member) 223 that is arranged in the intake chamber communication space 211 and that senses the pressure of the intake chamber and thereby expands/contracts; a valve body 222 that is arranged in the control pressure chamber communication space 212 and that opens/closes a valve hole 220 that forms a part of a supply passage; and a rod member 221 that is inserted through an insertion hole 219 so as to be capable of moving in the axial direction and that transmits the expansion/contraction of the bellows 223 to the valve body 222. The insertion hole 219 is formed in a different location from the valve hole 220 and is demarcated from the discharge chamber communication space 213.

Description

可変容量圧縮機の容量制御弁Capacity control valve of variable displacement compressor
 本発明は、制御圧室の調圧によって吐出容量が制御される可変容量圧縮機に用いられる容量制御弁に関する。 The present invention relates to a displacement control valve used in a variable displacement compressor whose discharge displacement is controlled by pressure regulation of a control pressure chamber.
 この種の容量制御弁の一例が特許文献1に記載されている。特許文献1に記載された容量制御弁300のボディ(弁ハウジング)303には、連通孔303bを介して可変容量圧縮機100の吸入室119に連通する感圧室(吸入室連通空間)301、連通孔307aを介して可変容量圧縮機100のクランク室(制御圧室)105に連通する弁室(制御圧室連通空間)309、及び、連通孔303aを介して可変容量圧縮機100の吐出室120に連通すると共に感圧室301と弁室309との間に位置する吐出室連通空間と、が形成されている。
 感圧室301には、吸入室119の圧力を感知して伸縮動作する感圧部材302が配設されている。弁室309には、弁孔304を開閉する弁体305aが配設されている。弁体305aは、感圧部材302の連結部302aに当接する連結部305b及びボディ303に摺動可能に支持されたロッド305cと一体化されて弁形成体305を形成している。ロッド305cの内部には、その両端を貫通する連通孔305dが形成されている。ここで、弁孔304は、吐出室120とクランク室105との連通路(供給通路)122の一部を形成しており、連通孔305dは、クランク室105と吸入室119とを連通する第2放出通路(排出通路)の一部を形成している。
 そして、吸入室119の圧力が所定値よりも高くなると、感圧部材302が収縮して連感圧部材302の連結部302と弁形成体305の連結部305bとが離間し、感圧室301と弁室309とがロッド305cの貫通孔305dを介して連通する。また、弁体305aがバネ306によって付勢されて弁孔304を閉鎖する。これにより、吐出室120とクランク室105との前記連通路が閉鎖されると共にクランク室105と吸入室119とを連通する前記第2放圧通路が開放され、クランク室105内の冷媒が吸入室119に排出される。
 一方、吸入室119の圧力が前記所定値よりも低くなると、感圧部材30が伸長して感圧部材302の連結部302aと弁形成体305の連結部305bとが当接し、感圧装置303の伸長動作がロッド305cを介して弁体305cに伝達されて弁体305aが弁孔304を開放する。これにより、クランク室105と吸入室119とを連通する前記第2放圧通路が閉鎖されると共に吐出室120とクランク室105との前記連通路が開放され、吐出室120内の冷媒がクランク室105に導入(供給)される。
An example of this type of capacity control valve is described in Patent Document 1. The body (valve housing) 303 of the displacement control valve 300 described in Patent Document 1 includes a pressure-sensitive chamber (intake chamber communication space) 301 communicating with the suction chamber 119 of the variable displacement compressor 100 via the communication hole 303b. A valve chamber (control pressure chamber communication space) 309 communicated with the crank chamber (control pressure chamber) 105 of the variable displacement compressor 100 via the communication hole 307a, and a discharge chamber of the variable displacement compressor 100 via the communication hole 303a. A discharge chamber communication space communicating with the pressure chamber 120 and located between the pressure sensing chamber 301 and the valve chamber 309 is formed.
In the pressure sensitive chamber 301, a pressure sensitive member 302 which senses the pressure of the suction chamber 119 and operates to expand and contract is disposed. In the valve chamber 309, a valve body 305a that opens and closes the valve hole 304 is disposed. The valve body 305 a is integrated with a connecting portion 305 b that abuts the connecting portion 302 a of the pressure sensitive member 302 and a rod 305 c slidably supported by the body 303 to form a valve forming body 305. In the inside of the rod 305c, a communication hole 305d is formed which penetrates the both ends. Here, the valve hole 304 forms a part of a communication passage (supply passage) 122 between the discharge chamber 120 and the crank chamber 105, and the communication hole 305 d communicates the crank chamber 105 with the suction chamber 119. 2 Form a part of the discharge passage (discharge passage).
When the pressure in the suction chamber 119 becomes higher than a predetermined value, the pressure-sensitive member 302 contracts and the connecting portion 302 of the pressure sensing member 302 and the connecting portion 305 b of the valve forming member 305 separate from each other. And the valve chamber 309 communicate with each other through the through hole 305 d of the rod 305 c. Also, the valve body 305 a is biased by the spring 306 to close the valve hole 304. As a result, the communication passage between the discharge chamber 120 and the crank chamber 105 is closed, and the second pressure release passage connecting the crank chamber 105 and the suction chamber 119 is opened, and the refrigerant in the crank chamber 105 is in the suction chamber. It is discharged to 119.
On the other hand, when the pressure in the suction chamber 119 becomes lower than the predetermined value, the pressure-sensitive member 30 expands and the connecting portion 302a of the pressure-sensitive member 302 and the connecting portion 305b of the valve forming member 305 abut each other. The extension movement of the valve body 305c is transmitted to the valve body 305c via the rod 305c, and the valve body 305a opens the valve hole 304. As a result, the second pressure release passage connecting the crank chamber 105 and the suction chamber 119 is closed and the communication passage between the discharge chamber 120 and the crank chamber 105 is opened, and the refrigerant in the discharge chamber 120 is the crank chamber. It is introduced (supplied) at 105.
特開2007−64028号公報(図4)Unexamined-Japanese-Patent No. 2007-64028 (FIG. 4)
 ところで、容量制御弁300内では、吐出室120に連通する前記吐出室連通空間と吸入室119に連通する感圧室(吸入室連通空間)301との圧力差が最も大きくなる。また、弁形成体305のロッド305cの外周面とこれが挿通される挿通孔の内周面との間には微小な隙間が形成される。さらに、弁孔304(前記連通路)が開放されたときに前記吐出室連通空間に流入する冷媒には微小な異物が含まれる場合がある。このため、前記吐出室連通空間に流入した前記冷媒の一部が前記隙間を流れ、その際、前記微小な異物が前記隙間に挟まってしまい、ロッド305cの移動、ひいては、弁体305aの動作が阻害されるおそれがあった。
 そこで、本発明は、流入する冷媒に含まれる微小な異物に起因する弁体の動作不良を防止することのできる可変容量圧縮機の容量制御弁を提供することを目的とする。
In the displacement control valve 300, the pressure difference between the discharge chamber communication space communicating with the discharge chamber 120 and the pressure sensing chamber (suction chamber communication space) 301 communicating with the suction chamber 119 is largest. Further, a minute gap is formed between the outer peripheral surface of the rod 305 c of the valve-forming member 305 and the inner peripheral surface of the insertion hole through which the rod is inserted. Furthermore, when the valve hole 304 (the communication passage) is opened, the refrigerant flowing into the discharge chamber communication space may contain minute foreign matter. For this reason, a part of the refrigerant that has flowed into the discharge chamber communication space flows through the gap, and at this time, the minute foreign matter is caught in the gap, and the movement of the rod 305c and, consequently, the operation of the valve body 305a There was a risk of being blocked.
Then, this invention aims at providing the capacity control valve of the variable displacement compressor which can prevent the malfunction of the valve body resulting from the micro foreign material contained in the refrigerant which flows in.
 本発明の一側面によると、冷媒が導かれる吸入室と、前記吸入室に導かれた冷媒を圧縮する圧縮部と、前記圧縮部によって圧縮された冷媒が吐出される吐出室と、制御圧室と、を含み、供給通路を介して前記吐出室内の冷媒が前記制御圧室に供給され又は排出通路を介して前記制御圧室の冷媒が前記吸入室に排出されることで前記制御圧室の圧力が調整され、これによって、吐出容量が制御される可変容量圧縮機に用いられる容量制御弁が提供される。前記容量制御弁は、内部に、前記吸入室に連通する吸入室連通空間と、前記制御圧室に連通する制御圧室連通空間と、前記吐出室に連通すると共に前記吸入室連通空間と前記制御圧室連通空間との間に配置された吐出室連通空間と、が形成されたバルブハウジングと、前記吸入室連通空間に配置され、前記吸入室の圧力を感知して伸縮する感圧部材と、前記制御圧室連通空間に配置された弁体であって、前記制御圧室連通空間と前記吐出室連通空間との間に形成されて前記供給通路の一部を形成する弁孔を開閉する前記弁体と、前記感圧部材の伸縮動作を前記弁体に伝達するロッド部材であって、前記吸入室連通空間と前記制御圧室連通空間との間に形成された挿通孔に軸方向に移動自在に挿通された前記ロッド部材と、を含む。そして、前記挿通孔は、前記弁孔とは異なる位置に形成され、かつ、前記吐出室連通空間とは区画されている。 According to one aspect of the present invention, a suction chamber into which a refrigerant is introduced, a compression unit that compresses the refrigerant introduced into the suction chamber, a discharge chamber into which the refrigerant compressed by the compression unit is discharged, and a control pressure chamber And the refrigerant in the discharge chamber is supplied to the control pressure chamber through the supply passage, or the refrigerant in the control pressure chamber is discharged through the discharge passage to the suction chamber. The pressure is regulated, thereby providing a displacement control valve for use in a variable displacement compressor in which the displacement is controlled. The volume control valve internally communicates with the suction chamber communication space communicating with the suction chamber, the control pressure chamber communication space communicating with the control pressure chamber, and the suction chamber communication space with the discharge chamber. A valve housing having a discharge chamber communication space disposed between the pressure chamber communication space, and a pressure-sensitive member disposed in the suction chamber communication space and capable of sensing and expanding the pressure in the suction chamber; The valve body disposed in the control pressure chamber communication space, which opens and closes a valve hole formed between the control pressure chamber communication space and the discharge chamber communication space to form a part of the supply passage. A valve member and a rod member for transmitting the expansion and contraction operation of the pressure-sensitive member to the valve member, and axially moving to an insertion hole formed between the suction chamber communication space and the control pressure chamber communication space And the rod member freely inserted. The insertion hole is formed at a position different from the valve hole, and is separated from the discharge chamber communication space.
 前記容量制御弁において、前記感圧部材の伸縮動作を前記弁体に伝達する前記ロッド部材が軸方向に移動自在に挿通される挿通孔は、前記吐出室内の冷媒を前記制御圧室に供給する前記供給通路の一部を形成する前記弁孔とは異なる位置に形成され、かつ、前記吐出室に連通する前記吐出室連通空間とは区画されている。このため、前記吐出室連通空間に流入した冷媒が前記ロッド部材の外周面と前記挿通孔の内周面との隙間を流れることがなく、前記冷媒に含まれる微小な異物に起因する前記弁体の動作不良が防止される。 In the displacement control valve, an insertion hole through which the rod member for transmitting the expansion and contraction operation of the pressure sensing member to the valve body is axially movably inserted supplies refrigerant in the discharge chamber to the control pressure chamber. The discharge chamber communication space is formed at a position different from the valve hole that forms a part of the supply passage, and communicates with the discharge chamber. For this reason, the valve body caused by the minute foreign matter contained in the refrigerant does not flow in the gap between the outer peripheral surface of the rod member and the inner peripheral surface of the insertion hole, the refrigerant flowing into the discharge chamber communication space Malfunction of is prevented.
本発明の一実施形態に係る容量制御弁が適用された可変容量圧縮機の概略構成を示す断面図である。It is a sectional view showing a schematic structure of a variable displacement compressor to which a displacement control valve concerning one embodiment of the present invention was applied. 前記容量制御弁の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of the said volume control valve typically. 前記容量制御弁による前記可変容量圧縮機の吐出容量の制御動作を説明するための図である。It is a figure for demonstrating control operation of the discharge capacity of said variable displacement compressor by said capacity control valve. 前記容量制御弁による前記可変容量圧縮機の吐出容量の制御動作を説明するための図である。It is a figure for demonstrating control operation of the discharge capacity of said variable displacement compressor by said capacity control valve. 前記容量制御弁による前記可変容量圧縮機の吐出容量の制御動作を説明するための図である。It is a figure for demonstrating control operation of the discharge capacity of said variable displacement compressor by said capacity control valve. 他の実施形態に係る容量制御弁の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the displacement control valve which concerns on other embodiment. さらに他の実施形態に係る容量制御弁の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the displacement control valve which concerns on other embodiment.
 以下、本発明の実施の形態を添付図面に基づいて説明する。
 図1は、本発明の一実施形態に係る容量制御弁が適用された斜板式の可変容量圧縮機の概略構成を示す断面図である。この可変容量圧縮機は、例えば車両用のエアコンシステム(エア・コンディショナー・システム)に適用される。なお、図1は、可変容量圧縮機の設置状態を示しており、図1における上側が鉛直方向の上側であり、図1における下側が鉛直方向の下側である。
 図1に示されるように、可変容量圧縮機100は、複数のシリンダボア101aが形成されたシリンダブロック101と、シリンダブロック101の一端側に設けられたフロントハウジング102と、シリンダブロック101の他端側にバルブプレート103を介して設けられたシリンダヘッド104と、を含む。そして、シリンダブロック101、フロントハウジング102、バルブプレート103及びシリンダヘッド104は、複数の通しボルト131によって締結されて圧縮機ハウジングを構成している。
 なお、図では省略しているが、フロントハウジング102とシリンダブロック101との間にはセンターガスケットが配置され、シリンダブロック101とシリンダヘッド104との間には、バルブプレート103の他にも、シリンダガスケット、吸入弁形成板、吐出弁形成板及びヘッドガスケットが配置されている。
 前記圧縮機ハウジングの内部には、シリンダブロック101とフロントハウジング102とによって制御圧室105が形成されている。また、可変容量圧縮機100には、制御圧室105を貫通して延びる駆動軸106が設けられている。駆動軸106は、前記圧縮機ハウジングに回転自在に支持されている。
 駆動軸106の一端(図1における左端)は、フロントハウジング102のボス部102aを貫通してフロントハウジング102の外側まで延在している。また、駆動軸106の前記一端は、クラッチ及び動力伝達装置(いずれも図示省略)を介して外部駆動源(図示省略)に連結されている。前記外部駆動源は、前記車両のエンジンや電動モータなどである。そして、前記クラッチが締結(ON)されて前記外部駆動源からの回転駆動力が駆動軸106に伝達されることによって駆動軸106が回転する。
 制御圧室105内には、斜板107が収容されている。斜板107の中央には貫通孔107aが形成されており、駆動軸106は、斜板107の貫通孔107aに挿通されている。貫通孔107aは、駆動軸106上で斜板107が傾斜することを許容する形状に形成されている。また、斜板107は、駆動軸106に固定されたロータ108に連結部109を介して連結されている。連結部109は、リンク機構やヒンジ機構などである。
 斜板107は、貫通孔107aを介した駆動軸106の支持と連結部109を介したロータ108との連結とによって、駆動軸106(及びロータ108)と一体に回転すると共に駆動軸106の軸線に直交する平面に対する角度(以下「傾角」という)が変更可能になっている。
 斜板107とロータ108との間には、斜板107を最小傾角(駆動軸106の軸線Oにほぼ直交する状態)に向けて付勢する傾角減少バネ110が配置されており、駆動軸106が回転していないとき、斜板107の傾角は前記最小傾角となる。なお、図示は省略するが、斜板107を挟んで傾角減少バネ110とは反対側に、斜板107の傾角を増大する方向に付勢する傾角増大バネが配置されてもよい。この場合、駆動軸106が回転していないとき、斜板107は、傾角減少バネ110の付勢力と前記傾角増大バネの付勢力とがバランスされたバランス傾角(>前記最小傾角)に位置決めされる。
 駆動軸106とロータ108との連結体は、ラジアル方向においては軸受112、113で支持され、スラスト方向においては軸受114、スラストプレート115で支持されている。駆動軸106の他端、すなわち、スラストプレート115側の端部と、スラストプレート115との隙間は、調整部材116によって所定の隙間に調整されている。
 各シリンダボア101a内には、ピストン117が配置されている。ピストン117の制御圧室105内に突出する突出部のくぼみ117aには、一対のシュー118を介して斜板107の外周部側の所定範囲が収容されている。そして、駆動軸106の回転は、斜板107及びシュー118を介してピストン117の往復運動に変換される。なお、ピストン117のストローク量は、斜板107の前記傾角に応じて変化する。
 シリンダヘッド104には、吸入室119と吐出室120とが形成されている。吸入室119は、吸入ポート104aを介して前記エアコンシステムの冷媒回路(図示省略)の低圧側に接続されている。また、吸入室119は、バルブプレート103に形成された連通孔103a及び前記吸入弁形成板(図示省略)に形成された吸入弁(図示省略)を介してシリンダボア101aに連通している。吐出室120は、図示省略の吐出ポートを介して前記エアコンシステムの前記冷媒回路の高圧側に接続されている。また、吐出室120は、前記吐出弁形成板(図示省略)に形成された吐出弁(図示省略)及びバルブプレート103に設けられた連通孔103bを介してシリンダボア101aに連通している。
 前記エアコンシステムの前記冷媒回路の低圧側の冷媒は、吸入ポート104aを介して吸入室119に導かれる。吸入室119に導かれた冷媒は、駆動軸106の回転に伴うピストン117の往復運動によってシリンダボア101a内に吸入され、圧縮されて吐出室120に吐出される。すなわち、本実施形態においては、シリンダボア101a及びピストン117によって、吸入室119に導かれた冷媒を圧縮する圧縮部が構成されている。そして、吐出室120に吐出された冷媒は、前記吐出ポートを介して前記エアコンシステムの前記冷媒回路の高圧側へと導かれる。
 可変容量圧縮機100には、吐出室120と制御圧室105とを連通させて吐出室120内の冷媒を制御圧室105に供給するための供給通路150と、制御圧室105と吸入室119とを連通させて制御圧室105内の冷媒を吸入室119に排出するための第1排出通路160と、が設けられている。供給通路150及び第1排出通路160は、シリンダヘッド104に取り付けられた容量制御弁200によって開閉される。本実施形態において、容量制御弁200は、供給通路150の開度及び第1排出通路160の開度を調整することが可能に構成されている。さらに言えば、容量制御弁200は、供給通路150及び第1排出通路160を閉鎖すること、供給通路150を閉鎖した状態で第1排出通路160の開度を調整すること、及び、第1排出通路160を閉鎖した状態で供給通路150の開度を調整すること、が可能に構成されている。なお、容量制御弁200、供給通路150及び第1排出通路160については後述する。
 また、可変容量圧縮機100において、制御圧室105と吸入室119とは、駆動軸106と軸受113との隙間、駆動軸106とスラストプレート115との隙間、駆動軸106と調整部材116との隙間、シリンダブロック101に形成された空間101b、及び、バルブプレート103に形成された固定絞り(オリフィス)103cで形成される第2排出通路170を介して連通している。
 したがって、容量制御弁200が第1排出通路160を閉鎖している場合、制御圧室105内の冷媒は、第2排出通路170のみを介して吸入室119に排出され、容量制御弁200が第1排出通路160を開放している場合、制御圧室105内の冷媒は、第1排出通路160及び第2排出通路170を介して吸入室119に排出される。
 第1排出通路160の開度が小さい場合、ピストン117とシリンダボア101aとの隙間から漏れ出るブローバイガスによって制御圧室105の圧力が上昇する。一方、第1排出通路160の開度が大きくなると、前記ブローバイガスよりも制御圧室105から吸入室119に排出される冷媒の量が多くなって制御圧室105の圧力が低下する。
 また、容量制御弁200が供給通路150を開放した場合、制御圧室105の圧力は、主に供給通路150を介して吐出室120から制御圧室105に供給される冷媒によって上昇する。
 そして、制御圧室105の圧力が上昇又は低下すると、各ピストン117の前後の圧力差、すなわち、シリンダボア101a内の圧縮室と制御圧室105との圧力差が変化し、これに伴って斜板107の前記傾角も変化する。その結果、ピストン117のストローク量が変化して可変容量圧縮機100の吐出容量が変化する。例えば、制御圧室105の圧力が上昇すると、斜板107の前記傾角が小さくなり、ピストン117のストローク量が減少して可変容量圧縮機100の吐出容量が減少する。また、制御圧室105の圧力が低下すると、斜板107の前記傾角が大きくなり、ピストン117のストローク量が増加して可変容量圧縮機100の吐出容量が増加する。
 このように、容量制御弁200は、第1排出通路160の開度を調整して制御圧室105から吸入室119に排出される冷媒量を調整し又は供給通路150の開度を調整して吐出室120から制御圧室105に供給される冷媒量を調整し、これによって、制御圧室105の圧力を調整(変更)して可変容量圧縮機100の吐出容量を制御するように構成されている。
 なお、本実施形態においては、制御圧室105内の冷媒を吸入室119に排出するための排出通路として第1排出通路160及び第2排出通路170が形成されているが、第2排出通路170を省略することも可能である。
 図2は、容量制御弁200の構成を模式的に示す断面図である。
 図2に示されるように、容量制御弁200は、バルブハウジング210を有している。バルブハウジング210の内部には、吸入室119に連通する吸入室連通空間211、制御圧室105に連通する制御圧室連通空間212及び吐出室120に連通する吐出室連通空間213が形成されている。
 吸入室連通空間211は、容量制御弁200がシリンダヘッド104に取り付けられたときに三つの連通空間211、212、213のうちの鉛直方向の最も上側に位置する。吸入室連通空間211は、バルブハウジング210に形成された第1連通孔214及びシリンダヘッド104に形成された第1連通路104bを介して吸入室119に連通している。
 制御圧室連通空間212は、容量制御弁200がシリンダヘッド104に取り付けられたときに三つの連通空間211、212、213のうちの鉛直方向の最も下側に位置する。制御圧室連通空間212は、バルブハウジング210に形成された第2連通孔215、シリンダヘッド104に形成された第2連通路104c及びシリンダブロック101に形成された第3連通路101cを介して制御圧室105に連通している。
 吐出室連通空間213は、吸入室連通空間211と制御圧室連通空間212との間に位置している。吐出室連通空間213は、バルブハウジング210に形成された第3連通孔216と、シリンダヘッド104に形成された第4連通路104dを介して吐出室120に連通している。
 吸入室連通空間211と吐出室連通空間213とは、区画壁217によって区画されており、制御圧室連通空間212と吐出室連通空間213とは、区画壁218によって区画されている。
 また、バルブハウジング210内において、吸入室連通空間211と制御圧室連通空間212との間には挿通孔219が形成されており、制御圧室連通空間212と吐出室連通空間213との間には弁孔220が形成されている。
 挿通孔219は、バルブハウジング210の横断面のほぼ中央に配置されている。挿通孔219は、上端が吸入室連通空間211に開口すると共に直線状に延びて下端が制御圧室連通空間212に開口している。すなわち、吸入室連通空間211と制御圧室連通空間212とは、挿通孔219を介して連通している。また、挿通孔219は、吐出室連通空間213とは区画されている。
 弁孔220は、挿通孔219の径方向外方において、制御圧室連通空間212と吐出室連通空間213とを区画する区画壁218を貫通している。すなわち、制御圧室連通空間212と吐出室連通空間213とは、弁孔220を介して連通している。
 そして、本実施形態においては、第4連通路104d、第3連通孔216、吐出室連通空間213、弁孔220、制御圧室連通空間212、第2連通孔215、第2連通路104c及び第3連通路101cによって、吐出室120と制御圧室105とを連通させて吐出室120内の冷媒を制御圧室105に供給するための上述の供給通路150が形成されている。
 挿通孔219には、ロッド部材221が軸方向(上下方向)に移動自在に挿通されている。ロッド部材221の上端部は、吸入室連通空間211内に突出しており、ロッド部材221の下端部は、制御圧室連通空間212内に突出している。また、ロッド部材221の内部には、軸方向に貫通する内部通路221aが形成されている。内部通路221aの一端はロッド部材221の前記上端部(すなわち、吸入室連通空間211内)に開口し、内部通路221aの他端はロッド部材221の前記下端部(すなわち、制御圧室連通空間212内)に開口している。
 制御圧室連通空間212には、弁孔220を開閉する弁体222が収容されている。本実施形態において、弁体222は、ロッド部材221の前記下端部に一体的に形成され又は固定されている。弁体222は、ロッド部材221が挿通孔219内を上下方向に移動することによって制御圧室連通空間212内を上下に移動する。また、制御圧室連通空間212には、弁孔220を閉鎖する方向(閉弁方向)に弁体222を付勢する第1付勢バネ231が収容されている。
 そして、ロッド部材221の移動に伴って弁体222が区画壁218の制御圧室連通空間212側の面に形成された弁座218aに当接すると、弁孔220(すなわち、供給通路150)が閉鎖される。一方、ロッド部材221の移動に伴って弁体222が弁座218aから離間すると、弁孔220(すなわち、供給通路150)が開放される。なお、弁体222が弁座218aから離れるほど、供給通路150の開度は大きくなる。
 弁体222が弁孔220を閉鎖したとき、ロッド部材221の外周面と挿通孔219の内周面との隙間を介した吸入室連通空間211と制御圧室連通空間212との連通も遮断される。但し、吸入室連通空間211と制御圧室連通空間212とは、ロッド部材221の内部通路221aを介して連通する。
 そして、本実施形態においては、第3連通路101c、第2連通路104c、第2連通孔215、制御圧室連通空間212、ロッド部材221の内部通路221a、吸入室連通空間211、第1連通孔214及び第1連通路104bによって、制御圧室105と吸入室119とを連通させて制御圧室105内の冷媒を吸入室119に排出するための上述の第1排出通路160が形成されている。
 吸入室連通空間211には、吸入室119の圧力を感知して伸縮するベローズ(感圧部材)223が収容されている。ベローズ223は、バルブハウジング210の横断面のほぼ中央に配置されている。ベローズ223の上端部は、バルブハウジング210に固定されており、ベローズ223の内部には、ベローズ223を伸長方向に付勢する第2付勢バネ232が収容されている。また、ベローズ223の下端部には、ロッド部材221に対して接離可能に構成されたロッド状の連結部材224が取り付けられている。
 連結部材224は、ロッド部材221とほぼ同径の円柱状に形成されており、その上端部(基端部)がベローズ223の前記下端部に固定されている。連結部材224は、ベローズ223の伸縮に応じて上下方向に移動し、その下端部(先端部)がロッド部材221の前記上端部に接離するように構成されている。
 また、連結部材224の軸方向の中間部には、外周面から外方に突出した外方突出部224aが形成されている。連結部材224は、吸入室連通空間211と吐出室連通空間213とを区画する区画壁217の吸入室連通空間211側の面と、外方突出部224aに下面と、の間に配置された第3付勢バネ233によって、ロッド部材221から離れる方向(換言すれば、ベローズ223を収縮させる方向)に付勢されている。
 そして、連結部材224の前記下端部(先端部)がロッド部材221の前記上端部から離間してロッド部材221aの内部通路221aが開放されているとき、ベローズ223が伸長して連結部材224の前記下端部(先端部)がロッド部材221の前記上端部に当接すると、ロッド部材221の内部通路221a(すなわち、第1排出通路160)が閉鎖される。この状態からベローズ223がさらに伸長すると、ロッド部材221が連結部材224によって押圧されて挿通孔219内を下方に移動し、弁体222が弁座218aから離間して弁孔220(すなわち、供給通路150)が開放される。つまり、連結部材224及びロッド部材221は、ベローズ223の伸長を弁体222に伝達する機能を有している。
 一方、弁体222が弁座218aから離間して弁孔220が開放されているとき、ベローズ223が収縮して前記連結部材224が上方に移動すると、ロッド部材221は、第1付勢バネ231の付勢力によって挿通孔219内を上方に移動する。そして、ロッド部材221に移動に伴い弁体222が弁座218aに当接すると弁孔220(すなわち、供給通路150)が閉鎖される。つまり、連結部材224及びロッド部材221は、ベローズ223の収縮を弁体222に伝達する機能を有している。この状態からベローズ223がさらに収縮すると、連結部材224の前記下端部がロッド部材221の前記上端部から離間し、ロッド部材221の内部通路221a(すなわち、第1排出通路160)が開放される。なお、連結部材224の前記下端部(先端部)がロッド部材221の前記上端部から離れるほど、第1排出通路160の開度は大きくなる。
 吸入室連通空間211には、さらに固定鉄心225、可動鉄心226及びコイル227が収容されている。
 固定鉄心225は、バルブハウジング210に固定されている。固定鉄心225は、円筒状に形成されており、内部にベローズ223を収容している。固定鉄心225には、ベローズ223の下方においてその内周面から内方に突出する環状の内方突出部225aが形成されている。また、連結部材224の外方突出部224aよりも前記上端側(基端側)の所定部位は、内方突出部225aの内周面に軸方向に移動自在に挿通されている。
 可動鉄心226は、固定鉄心225よりも小径の円筒状に形成されており、固定鉄心225の内方突出部225aの下方において、上下方向に移動可能に保持されている。可動鉄心226は、その上端部が固定鉄心225の内方突出部225aの下面に対向するように配置されている。可動鉄心226は、前記上端部が固定鉄心225の内方突出部225aの前記下面に当接することによって上限位置が規制され、下端部がバルブハウジング210に形成された図示省略の規制部に当接することによって下限位置が規制されている。また、可動鉄心226には、可動鉄心226が上方に移動したときに連結部材224の外方突出部224aの前記下面の周縁部に当接して連結部材224を上方に押圧する押圧部226aが形成されている。本実施形態において、押圧部226aは、可動鉄心226の前記下端部近傍において内周面から内方に環状に突出している。
 コイル227は、樹脂で覆われており、固定鉄心225及び可動鉄心226の外側周囲に配置されている。コイル227が通電されると、固定鉄心225と可動鉄心226との間にコイル227の通電量に応じた大きさの電磁力が発生し、発生した電磁力によって可動鉄心226が固定鉄心225に向かって上方に移動する。すなわち、固定鉄心225、可動鉄心226及びコイル227によってソレノイド部270が構成されている。
 そして、可動鉄心226が上方に移動すると、可動鉄心226の押圧部226aが連結部材224の外方突出部224aの前記下面の前記周縁部に当接して連結部材224を上方に押圧する。これにより、ベローズ223は、連結部材224を介して収縮方向に付勢される。すなわち、ベローズ223には、コイル227の通電量に応じた収縮方向の付勢力が付与される。
 本実施形態において、供給通路150の一部を形成する弁孔220の開口面積は、第1排出通路160の一部を形成するロッド部材221の内部通路221aの通路断面積よりも小さくなっている。また、第2、第3付勢バネ232、233の付勢力は、コイル227の通電がOFFされているとき、連結部材224の前記下端部のロッド部材221の前記上端部から離間する(すなわち、第1排出通路160が開放される)ように調整されている。なお、第1排出通路160が開放されているとき、弁体222は、第1付勢バネ231の付勢力によって弁座218aに当接して弁孔220(すなわち、供給通路150)を閉鎖するように構成されている。さらに、コイル227の通電量に応じた収縮方向の付勢力がベローズ223に作用する(付与される)ことによって、ベローズ223が伸長動作から収縮動作に切り替わる吸入室119の圧力(動作転換点)が変更されるようになっている。つまり、ソレノイド部270は、コイル227の通電量に応じてベローズ223の前記動作転換点を変更するように構成されている。具体的には、ソレノイド部270は、コイル227の通電量が小さいほどベローズ223の前記動作転換点を高く変更するように構成されている。
 次に、図2~図5を参照して容量制御弁200による可変容量圧縮機100の吐出容量の制御動作について説明する。
 まず、前記エアコンシステムがOFFのとき、前記クラッチはOFF(解放)されており、可変容量圧縮機100は停止している。このとき、制御圧室105の圧力は、吸入室119の圧力と同等であり、斜板107の前記傾角は、前記最小傾角(又は前記バランス傾角)となっている。容量制御弁200においては、コイル227の通電がOFFされており、図2に示されるように、連結部材224の前記下端部はロッド部材221の前記上端部から離間している。すなわち、第1排出通路160は開放されている。また、弁体222は、第1付勢バネ231の付勢力によって弁座218aに当接しており、弁孔220(すなわち、供給通路150)は閉鎖されている。
 前記エアコンシステムがONされると、前記クラッチがON(締結)されて可変容量圧縮機100の駆動軸106が回転する。すると、各ピストン117が対応するシリンダボア101a内を往復運動して前記ブローバイガスが発生し、発生した前記ブローバイガスが制御圧室105から第1排出通路160及び第2排出通路170を介して吸入室119へと流れる。このとき、制御圧室105内に残留する冷媒(ガス冷媒、液冷媒)も第1排出通路160及び第2排出通路170を介して吸入室119に排出される。また、各ピストン117の圧縮反力が斜板107に作用することによって斜板107の前記傾角が増加して最大傾角となり、ピストン117のストローク量(すなわち、可変容量圧縮機100の吐出容量)が最大となる。
 前記クラッチがONされてから所定時間が経過すると、コイル227の通電がONされる。コイル227の通電量は、前記エアコンシステムにおける空調設定や外部環境などに基づいて設定される。コイル227の通電がONされることによってコイル227の通電量に応じた収縮方向の付勢力がベローズ223に作用してベローズ223の前記動作転換点が変更(決定)される。ここで、前記動作転換点は、後述するコイル227の通電量に対応する(吸入室119の)設定圧力に相当する。
 図3は、コイル227の通電がONされた状態の容量制御弁200を示している。コイル227の通電がONされると、可動鉄心226の押圧部226aが連結部材224の外方突出部224aの前記下面の前記周縁部に当接して連結部材224を押圧し、ベローズ223にコイル227の通電量に応じた電磁力が作用してベローズ223が基準状態となる。そして、容量制御弁200は、吸入室119の圧力がコイル227の通電量に対応する設定圧力になるように制御圧室105の圧力を調整(変更)して可変容量圧縮機100の吐出容量を制御する。
 具体的には、吸入室119の圧力が前記設定圧力よりも低い場合、容量制御弁200においては、ベローズ223が前記基準状態よりも伸長して連結部材224の前記下端部のロッド部材221の前記上端部からの離間量が小さくなる。すなわち、容量制御弁200は、第1排出通路160の開度を小さくする。なお、連結部材224の前記下端部のロッド部材221の前記上端部からの前記離間量が小さくなることは、連結部材224の前記下端部がロッド部材221の前記上端部に当接することを含み、第1排出通路160の開度を小さくすることは、第1排出通路160を閉鎖することを含む。また、前記設定圧力と吸入室119の圧力との差が大きいほど、前記第1排出通路の開度は小さくなる。これにより、制御圧室105から前記第1排出通路を介して吸入室119に排出される冷媒量が制限される。そして、制御圧室105の圧力が前記ブローバイガスによって上昇し、斜板107の前記傾角が減少して可変容量圧縮機100の吐出容量が減少する。
 また、駆動軸106の回転数の急激な上昇などによって冷媒循環量が増大して吸入室119の圧力が急激に低下した場合には、図4に示されるように、ベローズ223の伸長量が大きくなり、連結部材224の前記下端部がロッド部材221の前記上端部に当接すると共に連結部材224がロッド部材221を下方に押圧し、これによって、弁体222が弁座218aから離間して弁孔220が開放される。すなわち、容量制御弁200は、第1排出通路160を閉鎖すると共に供給通路150を開放する。なお、吸入室119の圧力の低下量が大きいほど、弁体222の弁座218aからの離間量が大きくなって、供給通路150の開度は大きくなる。これにより、吐出室120内の冷媒が供給通路150を介して制御圧室105に供給され、制御圧室105の圧力が速やかに上昇し、斜板107の前記傾角が減少して可変容量圧縮機100の吐出容量が減少する。
 ここで、本実施形態においては、供給通路150の一部を形成する弁孔220の開口面積が比較的小さくなっているが、供給通路150が開放されたときには第1排出通路160が閉鎖されるため、供給通路150を介して供給される吐出室120内の冷媒によって制御圧室105の圧力は速やかに上昇し得る。また、弁孔220の開口面積が比較的小さいため、吐出室120と制御圧室105との圧力差による弁体222の作動特性への影響は抑制される。
 一方、吸入室119の圧力が前記設定圧力よりも高い場合、容量制御弁200においては、図5に示されるように、ベローズ223が前記基準状態よりも収縮して連結部材224の前記下端部のロッド部材221の前記上端部からの前記離間量が大きくなる。すなわち、容量制御弁200は、第1排出通路160の開度を大きくする。なお、連結部材224の前記下端部のロッド部材221の前記上端部からの前記離間量が大きくなることは、連結部材224の前記下端部がロッド部材221の前記上端部から離間することを含み、第1排出通路160の開度を大きくすることは、第1排出通路160を開放することを含む。また、吸入室119の圧力と前記設定圧力との差が大きいほど、第1排出通路160の開度は大きくなる。これにより、制御圧室105から第1排出通路160を介して吸入室119に排出される冷媒量が多くなり、制御圧室105の圧力が低下し、斜板107の前記傾角が増加して可変容量圧縮機100の吐出容量が増加する。
 本実施形態に係る容量制御弁200は、吸入室連通空間211に配置されて吸入室119の圧力を感知して伸縮するベローズ(感圧部材)223と、制御圧室連通空間212に配置されて供給通路150の一部を形成する弁孔220を開閉する弁体222と、挿通孔219に軸方向に移動自在に挿通されてベローズ223の伸縮を弁体222に伝達するロッド部材221と、を含む。挿通孔219は、弁孔220と異なる位置に形成され、かつ、吐出室連通空間213とは区画されている。具体的には、挿通孔219は、バルブハウジング210の横断面のほぼ中央に設けられ、一端が吸入室連通空間211に開口すると共に直線状に延びて他端が制御圧室連通空間212に開口している。弁孔220は、挿通孔219よりも外側、すなわち、挿通孔219の径方向外方に設けられ、制御圧室連通空間212と吐出室連通空間213とを区画する区画壁218を貫通している。
 このため、吐出室120から吐出室連通空間213に流入した冷媒がロッド部材221の外周面と挿通孔219の内周面との隙間を流れることがなく、当該冷媒に含まれた微小な異物が前記隙間に挟まってしまうことがない。したがって、前記冷媒に含まれる微小な異物に起因するロッド部材221及び弁体222の動作不良が防止され、弁体222の安定した動作が確保される。
 また、弁体222は、弁孔220を閉鎖したとき、同時に、ロッド部材221の外周面と挿通孔219の内周面との間の隙間を介した吸入室連通空間211と制御圧室連通空間212との連通を遮断するように形成されており、ロッド部材221は、弁体222が弁孔220を閉鎖したとき、吸入室連通空間211と制御圧室連通空間212とを連通させて第1排出通路160の一部を形成する内部通路221aを有している。
 このため、制御圧室105から制御圧室連通空間212に流入した冷媒が微小な異物が含まれる場合であっても、当該異物がロッド部材221の外周面と挿通孔219の内周面との隙間に挟まってしまうことがない。
 図6(A)、(B)は、他の実施形態に係る容量制御弁300の構成を模式的に示す断面図である。なお、上述の容量制御弁200と共通する要素については同一の番号を付してその説明は省略する。容量制御弁300は、上述の容量制御弁200におけるロッド部材221及び連結部材224に代えて、これらが一体的に形成された連結ロッド321を有する。それ以外については基本的に容量制御弁200と同じである。容量制御弁300は、供給通路150及び第1排出通路160の開度を調整することが可能に構成されている。
 連結ロッド321は、固定鉄心225の内方突出部225aの内周面及び挿通孔219に軸方向に移動自在に挿通されている。連結ロッド321の上端部(基端部)はベローズ223の前記下端部に固定され、連結ロッド321の下端部(先端部)は制御圧室連通空間212内に突出している。そして、連結ロッド321の前記下端部(先端部)に弁体222が一体的に形成され又は固定されている。
 また、連結ロッド321には、上述の容量制御弁200における連結部材224の外方突出部224aと同様の機能を有する外方突出部321aと、上述の容量制御弁200におけるロッド部材221の内部通路221aと同様の機能を有する内部通路321bとが形成されている。
 内部通路321bは、連結ロッド321の前記下端部(先端部)に開口する冷媒入口部321b1と、連結ロッド321の側面に開口する冷媒出口部321b2と、を有する。内部通路321bの冷媒出口部321b2は、弁体222が弁座218aに当接して弁孔220を閉鎖しているときにはその全体が吸入室連通空間211内に露出し(図6(A)参照)、弁体222が弁座218aから離間して弁孔220を開放しているときにはその一部又は全部が挿通孔219の内周面によって閉鎖される(図6(B)参照)。
 容量制御弁300において、第2、第3付勢バネ232、233の付勢力は、コイル227の通電がOFFされているとき、内部通路321bの冷媒出口部321b2の全体が吸入室連通空間211内に露出するように、すなわち、第1排出通路160が開放されるように調整されている。また、コイル227が通電されると、可動鉄心226が上方に移動し、可動鉄心226の押圧部226aが連結ロッド321の外方突出部321aの下面の周縁部に当接して連結ロッド321を上方に押圧する。これにより、コイル227の通電量に応じた収縮方向の付勢力がベローズ223に作用して、ベローズ223の前記動作転換点が変更される。
 吸入室119の圧力がコイル227の通電量に対応する設定圧力よりも低い場合、ベローズ223が前記基準状態から伸長して連結ロッド321が下方に移動する。すると、内部通路321bの冷媒出口部321b2の一部又は全部が挿通孔219の内周面によって閉鎖されると共に、弁体222が弁座218aから離間して弁孔220が開放される。ここで、内部通路321bの冷媒出口部321b2における挿通孔219の内周面によって閉鎖されていない領域(内部通路321bの冷媒出口部321b2における吸入室連通空間211内に露出している領域)が第1排出通路160の開度に相当する。つまり、容量制御弁300は、第1排出通路160の開度を小さくすると共に、供給通路150の開度を大きくする。なお、前記設定圧力と吸入室119の圧力との差が大きいほど、第1排出通路160の開度は小さくなり、供給通路150の開度は大きくなる。これにより、制御圧室105から第1排出通路160を介して吸入室119に排出される冷媒量が制限されると共に、制御圧室105の圧力が供給通路150を介して供給される吐出室120内の冷媒によって上昇し、斜板107の前記傾角が減少して可変容量圧縮機100の吐出容量が減少する。
 一方、吸入室119の圧力が前記設定圧力よりも高い場合、ベローズ223が前記基準状態よりも収縮して連結ロッド321が上方に移動する。すると、内部通路321bの冷媒出口部321b2における吸入室連通空間211内に露出している領域が増加すると共に、弁体222が弁座218aに接近し又は弁座218aに当接する。すなわち、容量制御弁300は、第1排出通路160の開度を大きくすると共に、供給通路150の開度を小さくする。なお、吸入室119の圧力と前記設定圧力との差が大きいほど、第1排出通路160の開度は大きくなり、供給通路150の開度は小さくなる。これにより、制御圧室105から第1排出通路160を介して吸入室119に排出される冷媒量が多くなり、制御圧室105の圧力が低下し、斜板107の前記傾角が増加して可変容量圧縮機100の吐出容量が増加する。
 容量制御弁300においては連結ロッド321が本発明の「ロッド部材」に相当する。容量制御弁300においても上述の容量制御弁200と同様の効果が得られる。
 図7は、さらに他の実施形態に係る容量制御弁400の構成を模式的に示す断面図である。上述の容量制御弁200、300は、主にクラッチ付き可変容量圧縮機に適用されるのに対し、容量制御弁400は、いわゆるクラッチレス可変容量圧縮機に適用可能に構成されたものである。なお、容量制御弁400が適用されるクラッチレス可変容量圧縮機においては、第1排出通路160が容量制御弁400を経由せず(従って、第1排出通路160は図示されていない)第1排出通路160の開度が容量制御弁400とは別の制御弁(図示省略)によって調整されるように構成されているものとし、容量制御弁400は、供給通路150の開度を調整するように構成される。また、上述の可変容量圧縮機100、容量制御弁200、300と共通する要素については同一の番号を付してその説明は省略する。
 容量制御弁400においては、上述の容量制御弁200、300とは異なり、吸入室連通空間211が三つの連通空間211、212、213のうちの鉛直方向の最も下側に位置し、制御圧室連通空間212が三つの連通空間211、212、213のうちの鉛直方向の最も上側に位置している。
 容量制御弁400において、吸入室連通空間211に収容されたベローズ223は、下端部がバルブハウジング210に固定されている。ベローズ223の内部には、ベローズ223を伸長させる方向に付勢する付勢バネ(図示省略)が収容されている。制御圧室連通空間212に収容された弁体222の下面には、挿通孔219に軸方向(上下方向)に移動自在に挿通されたロッド部材221の上端部が固定されており、ロッド部材221の下端部は、ベローズ223の上端部に接離可能に連結されている。
 弁体222の上面には、ソレノイドロッド401の下端部が固定されている。ソレノイドロッド401は、固定鉄心402に内挿されており、ソレノイドロッド401の上端部は、固定鉄心402から突出している。ソレノイドロッド401の前記上端部には、可動鉄心403が固定されており、固定鉄心402と可動鉄心403との間には、可動鉄心403を固定鉄心402から離れる方向(開弁方向)に付勢する付勢バネ404が配置されている。また、固定鉄心402及び可動鉄心403の外側周囲には、樹脂で覆われたコイル405が配置されている。
 コイル405が通電されると、固定鉄心402と可動鉄心403との間にコイル405の通電量に応じた大きさの電磁力が発生し、発生した電磁力によって可動鉄心403が固定鉄心402に向かって移動する。すなわち、固定鉄心402、可動鉄心403及びコイル405によってソレノイド部270が構成されている。そして、可動鉄心403が移動すると、弁体222がソレノイドロッド401を介して閉弁方向に付勢される。弁体222が閉弁方向に付勢されると、ベローズ223がロッド部材221を介して収縮方向に付勢される。つまり、ベローズ223には、コイル405の通電量に応じた収縮方向の付勢力が作用する。
 また、コイル405の通電がOFFされているとき、弁体222は、付勢バネ404の付勢力によって弁座218aから離間して弁孔220(すなわち、供給通路150)を開放するように構成されている。
 次に、容量制御弁400による前記クラッチレス可変容量圧縮機(以下単に「可変容量圧縮機」という)の吐出容御動作について簡単に説明する。
 前記クラッチレス可変容量圧縮機(以下単に「可変容量圧縮機」という)が停止しているとき、コイル405の通電はOFFされており、付勢バネ404の付勢力によって弁体222が弁座218aから離間して弁孔220(供給通路150)が開放されている。このとき、第1排出通路160は、図示省略の前記制御弁によって閉鎖されている。
 前記車両のエンジン又は電動モータが始動して前記可変容量圧縮機の駆動軸106が回転すると、各ピストン117が対応するシリンダボア101a内を往復運動し、吐出室120に吐出された冷媒が供給通路150を介して制御圧室105に供給される。これにより、制御圧室105の圧力が上昇し、斜板107の前記傾角が減少して可変容量圧縮機100の吐出容量が減少する。
 前記エアコンシステムがONされると、コイル405の通電がONされて弁体222が弁孔220(供給通路150)を閉鎖する。また、このとき、前記制御弁によって第1排出通路が開放される。これにより、制御圧室105内の冷媒が速やかに吸入室119に排出され、制御圧室105の圧力が吸入室119の圧力と同等となり、斜板107の前記傾角が最大となる。
 その後、吸入室119の圧力がコイル405の通電量に対応する設定圧力よりも低下すると、ベローズ223が伸長してロッド部材221が上方に移動し、弁体222が弁孔220(供給通路150)を開放する。また、このとき、前記制御弁によって第1排出通路160が閉鎖される。これにより、制御圧室105の圧力が供給通路150を介して供給される吐出室120内の冷媒によって上昇し、斜板107の前記傾角が減少して可変容量圧縮機100の吐出容量が減少する。
 一方、吸入室119の圧力が前記設定圧力よりも上昇すると、ベローズ223が収縮してロッド部材221が下方し、弁体222が弁座218aに当接して弁孔220(供給通路150)を閉鎖する。また、このとき、前記制御弁によって第1排出通路160が開放される。これにより、制御圧室105内の冷媒が吸入室119に排出されて制御圧室105の圧力が低下し、斜板107の前記傾角が増加して可変容量圧縮機100の吐出容量が増加する。
 容量制御弁400においても上述の容量制御弁200と同様の効果が得られる。
 なお、本発明は、上述の実施形態及び変形例に制限されるものではなく、本発明の技術的思想に基づいてさらなる変形及び変更が可能であることはもちろんである。
Hereinafter, an embodiment of the present invention will be described based on the attached drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a swash plate type variable displacement compressor to which a displacement control valve according to an embodiment of the present invention is applied. This variable displacement compressor is applied to, for example, an air conditioner system (air conditioner system) for a vehicle. 1 shows the installation state of the variable displacement compressor, the upper side in FIG. 1 is the upper side in the vertical direction, and the lower side in FIG. 1 is the lower side in the vertical direction.
As shown in FIG. 1, the variable displacement compressor 100 includes a cylinder block 101 in which a plurality of cylinder bores 101 a are formed, a front housing 102 provided on one end side of the cylinder block 101, and the other end side of the cylinder block 101. And a cylinder head 104 provided via a valve plate 103. The cylinder block 101, the front housing 102, the valve plate 103 and the cylinder head 104 are fastened by a plurality of through bolts 131 to constitute a compressor housing.
Although not shown in the drawings, a center gasket is disposed between the front housing 102 and the cylinder block 101, and a cylinder other than the valve plate 103 is disposed between the cylinder block 101 and the cylinder head 104. A gasket, a suction valve forming plate, a discharge valve forming plate and a head gasket are disposed.
A control pressure chamber 105 is formed by the cylinder block 101 and the front housing 102 inside the compressor housing. The variable displacement compressor 100 is also provided with a drive shaft 106 extending through the control pressure chamber 105. The drive shaft 106 is rotatably supported by the compressor housing.
One end (left end in FIG. 1) of the drive shaft 106 extends through the boss portion 102 a of the front housing 102 to the outside of the front housing 102. Further, the one end of the drive shaft 106 is connected to an external drive source (not shown) via a clutch and a power transmission device (both not shown). The external drive source is an engine or an electric motor of the vehicle. Then, the clutch is engaged (ON) and the rotational drive force from the external drive source is transmitted to the drive shaft 106, whereby the drive shaft 106 is rotated.
In the control pressure chamber 105, a swash plate 107 is accommodated. A through hole 107 a is formed at the center of the swash plate 107, and the drive shaft 106 is inserted into the through hole 107 a of the swash plate 107. The through hole 107 a is formed in a shape that allows the swash plate 107 to incline on the drive shaft 106. Further, the swash plate 107 is connected to a rotor 108 fixed to the drive shaft 106 via a connecting portion 109. The connection unit 109 is a link mechanism, a hinge mechanism, or the like.
The swash plate 107 is integrally rotated with the drive shaft 106 (and the rotor 108) by the support of the drive shaft 106 through the through hole 107a and the connection with the rotor 108 through the connecting portion 109, and the axis of the drive shaft 106. The angle (hereinafter referred to as "tilt angle") with respect to the plane orthogonal to the angle .alpha.
Between the swash plate 107 and the rotor 108, a tilt angle reducing spring 110 is disposed which biases the swash plate 107 toward the minimum tilt angle (a state substantially orthogonal to the axis O of the drive shaft 106). Is not rotating, the inclination angle of the swash plate 107 is the minimum inclination angle. Although not shown, an inclination increasing spring may be disposed on the opposite side of the swash plate 107 to the inclination reducing spring 110 to bias the swash plate 107 in the direction of increasing the inclination. In this case, when the drive shaft 106 is not rotating, the swash plate 107 is positioned at a balance inclination angle (> the above-mentioned minimum inclination angle) in which the biasing force of the tilting angle reducing spring 110 and the biasing force of the tilting angle increase spring are balanced. .
The coupling body of the drive shaft 106 and the rotor 108 is supported by bearings 112 and 113 in the radial direction, and supported by the bearing 114 and the thrust plate 115 in the thrust direction. The clearance between the other end of the drive shaft 106, that is, the end on the thrust plate 115 side, and the thrust plate 115 is adjusted to a predetermined clearance by the adjustment member 116.
A piston 117 is disposed in each cylinder bore 101a. A predetermined range on the outer peripheral portion side of the swash plate 107 is accommodated in the recess 117 a of the projecting portion projecting into the control pressure chamber 105 of the piston 117 via the pair of shoes 118. Then, the rotation of the drive shaft 106 is converted to the reciprocating motion of the piston 117 through the swash plate 107 and the shoe 118. The stroke amount of the piston 117 changes in accordance with the inclination angle of the swash plate 107.
A suction chamber 119 and a discharge chamber 120 are formed in the cylinder head 104. The suction chamber 119 is connected to the low pressure side of a refrigerant circuit (not shown) of the air conditioning system via a suction port 104a. Further, the suction chamber 119 communicates with the cylinder bore 101a through a communication hole 103a formed in the valve plate 103 and a suction valve (not shown) formed in the suction valve forming plate (not shown). The discharge chamber 120 is connected to the high pressure side of the refrigerant circuit of the air conditioning system via a discharge port (not shown). Further, the discharge chamber 120 communicates with the cylinder bore 101a through a discharge valve (not shown) formed in the discharge valve forming plate (not shown) and a communication hole 103b provided in the valve plate 103.
The refrigerant on the low pressure side of the refrigerant circuit of the air conditioning system is led to the suction chamber 119 via the suction port 104a. The refrigerant introduced into the suction chamber 119 is sucked into the cylinder bore 101 a by the reciprocating motion of the piston 117 accompanying the rotation of the drive shaft 106, compressed and discharged into the discharge chamber 120. That is, in the present embodiment, the cylinder bore 101 a and the piston 117 constitute a compression unit that compresses the refrigerant introduced to the suction chamber 119. And the refrigerant | coolant discharged to the discharge chamber 120 is guide | induced to the high voltage | pressure side of the said refrigerant circuit of the said air-conditioner system via the said discharge port.
In the variable displacement compressor 100, a supply passage 150 for communicating the discharge chamber 120 with the control pressure chamber 105 to supply the refrigerant in the discharge chamber 120 to the control pressure chamber 105, and the control pressure chamber 105 and the suction chamber 119. , And a first discharge passage 160 for discharging the refrigerant in the control pressure chamber 105 to the suction chamber 119. The supply passage 150 and the first discharge passage 160 are opened and closed by a displacement control valve 200 attached to the cylinder head 104. In the present embodiment, the displacement control valve 200 is configured to be able to adjust the opening degree of the supply passage 150 and the opening degree of the first discharge passage 160. Furthermore, the displacement control valve 200 closes the supply passage 150 and the first discharge passage 160, adjusts the opening degree of the first discharge passage 160 with the supply passage 150 closed, and the first discharge. It is possible to adjust the opening degree of the supply passage 150 with the passage 160 closed. The displacement control valve 200, the supply passage 150, and the first discharge passage 160 will be described later.
In the variable displacement compressor 100, the control pressure chamber 105 and the suction chamber 119 are a gap between the drive shaft 106 and the bearing 113, a gap between the drive shaft 106 and the thrust plate 115, and a gap between the drive shaft 106 and the adjustment member 116. The space communicates with a space 101 b formed in the cylinder block 101 and a second discharge passage 170 formed by a fixed throttle (orifice) 103 c formed in the valve plate 103.
Therefore, when the displacement control valve 200 closes the first discharge passage 160, the refrigerant in the control pressure chamber 105 is discharged to the suction chamber 119 only through the second discharge passage 170, and the displacement control valve 200 is closed. When the first discharge passage 160 is opened, the refrigerant in the control pressure chamber 105 is discharged to the suction chamber 119 via the first discharge passage 160 and the second discharge passage 170.
When the opening degree of the first discharge passage 160 is small, the pressure of the control pressure chamber 105 is increased by the blowby gas leaking from the gap between the piston 117 and the cylinder bore 101a. On the other hand, when the opening degree of the first discharge passage 160 is increased, the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 is larger than that of the blowby gas, and the pressure of the control pressure chamber 105 is decreased.
When the volume control valve 200 opens the supply passage 150, the pressure of the control pressure chamber 105 is increased mainly by the refrigerant supplied from the discharge chamber 120 to the control pressure chamber 105 via the supply passage 150.
When the pressure in the control pressure chamber 105 is increased or decreased, the pressure difference between the front and back of each piston 117, that is, the pressure difference between the compression chamber in the cylinder bore 101a and the control pressure chamber 105 changes. The tilt angle of 107 also changes. As a result, the stroke amount of the piston 117 changes, and the displacement of the variable displacement compressor 100 changes. For example, when the pressure of the control pressure chamber 105 is increased, the inclination angle of the swash plate 107 is decreased, the stroke amount of the piston 117 is decreased, and the discharge displacement of the variable displacement compressor 100 is decreased. When the pressure in the control pressure chamber 105 decreases, the inclination angle of the swash plate 107 increases, the stroke amount of the piston 117 increases, and the discharge capacity of the variable displacement compressor 100 increases.
Thus, the displacement control valve 200 adjusts the opening degree of the first discharge passage 160 to adjust the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 or adjusts the opening degree of the supply passage 150. The amount of refrigerant supplied from the discharge chamber 120 to the control pressure chamber 105 is adjusted, whereby the pressure of the control pressure chamber 105 is adjusted (changed) to control the discharge capacity of the variable displacement compressor 100. There is.
In the present embodiment, the first discharge passage 160 and the second discharge passage 170 are formed as the discharge passages for discharging the refrigerant in the control pressure chamber 105 to the suction chamber 119, but the second discharge passage 170 is formed. It is also possible to omit
FIG. 2 is a cross-sectional view schematically showing the configuration of the displacement control valve 200. As shown in FIG.
As shown in FIG. 2, the displacement control valve 200 has a valve housing 210. A suction chamber communication space 211 communicating with the suction chamber 119, a control pressure chamber communication space 212 communicating with the control pressure chamber 105, and a discharge chamber communication space 213 communicating with the discharge chamber 120 are formed in the valve housing 210. .
The suction chamber communication space 211 is located on the uppermost side in the vertical direction of the three communication spaces 211, 212, 213 when the displacement control valve 200 is attached to the cylinder head 104. The suction chamber communication space 211 is in communication with the suction chamber 119 via the first communication hole 214 formed in the valve housing 210 and the first communication passage 104 b formed in the cylinder head 104.
The control pressure chamber communication space 212 is located at the lowermost side in the vertical direction of the three communication spaces 211, 212, 213 when the displacement control valve 200 is attached to the cylinder head 104. The control pressure chamber communication space 212 is controlled via the second communication hole 215 formed in the valve housing 210, the second communication passage 104c formed in the cylinder head 104, and the third communication passage 101c formed in the cylinder block 101. It is in communication with the pressure chamber 105.
The discharge chamber communication space 213 is located between the suction chamber communication space 211 and the control pressure chamber communication space 212. The discharge chamber communication space 213 is in communication with the discharge chamber 120 via the third communication hole 216 formed in the valve housing 210 and the fourth communication passage 104 d formed in the cylinder head 104.
The suction chamber communication space 211 and the discharge chamber communication space 213 are partitioned by the partition wall 217, and the control pressure chamber communication space 212 and the discharge chamber communication space 213 are partitioned by the partition wall 218.
Further, in the valve housing 210, an insertion hole 219 is formed between the suction chamber communication space 211 and the control pressure chamber communication space 212, and between the control pressure chamber communication space 212 and the discharge chamber communication space 213. The valve hole 220 is formed.
The insertion hole 219 is disposed substantially at the center of the cross section of the valve housing 210. An upper end of the insertion hole 219 opens to the suction chamber communication space 211 and extends linearly, and a lower end opens to the control pressure chamber communication space 212. That is, the suction chamber communication space 211 and the control pressure chamber communication space 212 communicate with each other through the insertion hole 219. Further, the insertion hole 219 is separated from the discharge chamber communication space 213.
The valve hole 220 penetrates a dividing wall 218 which divides the control pressure chamber communication space 212 and the discharge chamber communication space 213 in the radial direction outward of the insertion hole 219. That is, the control pressure chamber communication space 212 and the discharge chamber communication space 213 communicate with each other through the valve hole 220.
In the present embodiment, the fourth communication passage 104 d, the third communication hole 216, the discharge chamber communication space 213, the valve hole 220, the control pressure chamber communication space 212, the second communication hole 215, the second communication passage 104 c and the fourth The above-described supply passage 150 for communicating the discharge chamber 120 with the control pressure chamber 105 and supplying the refrigerant in the discharge chamber 120 to the control pressure chamber 105 is formed by the three communication passage 101 c.
The rod member 221 is inserted in the insertion hole 219 so as to be movable in the axial direction (vertical direction). The upper end of the rod member 221 protrudes into the suction chamber communication space 211, and the lower end of the rod member 221 protrudes into the control pressure chamber communication space 212. Further, an internal passage 221 a penetrating in the axial direction is formed inside the rod member 221. One end of the internal passage 221a opens to the upper end of the rod member 221 (ie, in the suction chamber communication space 211), and the other end of the internal passage 221a is the lower end of the rod member 221 (ie, the control pressure chamber communication space 212). It is open to the inside).
The control pressure chamber communication space 212 accommodates a valve body 222 for opening and closing the valve hole 220. In the present embodiment, the valve body 222 is integrally formed or fixed to the lower end portion of the rod member 221. The valve body 222 moves up and down in the control pressure chamber communication space 212 as the rod member 221 moves up and down in the insertion hole 219. Further, in the control pressure chamber communication space 212, a first biasing spring 231 which biases the valve body 222 in the direction of closing the valve hole 220 (valve closing direction) is accommodated.
Then, when the valve body 222 abuts on the valve seat 218 a formed on the surface on the control pressure chamber communication space 212 side of the partition wall 218 with the movement of the rod member 221, the valve hole 220 (that is, the supply passage 150) It is closed. On the other hand, when the valve body 222 separates from the valve seat 218a with the movement of the rod member 221, the valve hole 220 (that is, the supply passage 150) is opened. The degree of opening of the supply passage 150 increases as the valve body 222 moves away from the valve seat 218a.
When the valve body 222 closes the valve hole 220, the communication between the suction chamber communication space 211 and the control pressure chamber communication space 212 via the gap between the outer peripheral surface of the rod member 221 and the inner peripheral surface of the insertion hole 219 is also blocked. Ru. However, the suction chamber communication space 211 and the control pressure chamber communication space 212 communicate with each other through the internal passage 221 a of the rod member 221.
In the present embodiment, the third communication passage 101c, the second communication passage 104c, the second communication hole 215, the control pressure chamber communication space 212, the internal passage 221a of the rod member 221, the suction chamber communication space 211, and the first communication. The above-mentioned first discharge passage 160 for communicating the control pressure chamber 105 with the suction chamber 119 and discharging the refrigerant in the control pressure chamber 105 to the suction chamber 119 is formed by the hole 214 and the first communication passage 104 b. There is.
In the suction chamber communication space 211, a bellows (pressure-sensitive member) 223 that senses the pressure of the suction chamber 119 and expands and contracts is accommodated. The bellows 223 is disposed substantially at the center of the cross section of the valve housing 210. The upper end portion of the bellows 223 is fixed to the valve housing 210, and a second biasing spring 232 for biasing the bellows 223 in the extension direction is accommodated in the bellows 223. Further, at the lower end portion of the bellows 223, a rod-shaped connecting member 224 configured to be capable of coming into and coming out of contact with the rod member 221 is attached.
The connecting member 224 is formed in a cylindrical shape having substantially the same diameter as the rod member 221, and an upper end (a base end) thereof is fixed to the lower end of the bellows 223. The connecting member 224 moves in the vertical direction according to the expansion and contraction of the bellows 223, and the lower end portion (tip end portion) thereof is configured to be in contact with and separated from the upper end portion of the rod member 221.
Further, at an axially intermediate portion of the connecting member 224, an outward projecting portion 224a which protrudes outward from the outer peripheral surface is formed. The connection member 224 is disposed between the suction chamber communication space 211 side surface of the partition wall 217 that divides the suction chamber communication space 211 and the discharge chamber communication space 213, and the lower surface of the outward protrusion 224a. A biasing spring 233 biases the rod member 221 in a direction away from the rod member 221 (in other words, in a direction in which the bellows 223 is contracted).
Then, when the lower end portion (tip end portion) of the connecting member 224 is separated from the upper end portion of the rod member 221 and the internal passage 221a of the rod member 221a is opened, the bellows 223 is extended and the connecting member 224 is expanded When the lower end (tip end) abuts on the upper end of the rod member 221, the internal passage 221a of the rod member 221 (that is, the first discharge passage 160) is closed. When the bellows 223 further extends from this state, the rod member 221 is pressed by the connecting member 224 to move downward in the insertion hole 219, and the valve body 222 is separated from the valve seat 218a to open the valve hole 220 (ie, the supply passage). 150) is released. That is, the connection member 224 and the rod member 221 have a function of transmitting the extension of the bellows 223 to the valve body 222.
On the other hand, when the valve body 222 is separated from the valve seat 218 a and the valve hole 220 is opened, the rod member 221 is moved to the first biasing spring 231 when the bellows 223 contracts and the connecting member 224 moves upward. It moves upward in the insertion hole 219 by the biasing force of Then, when the valve body 222 abuts on the valve seat 218a as the rod member 221 moves, the valve hole 220 (that is, the supply passage 150) is closed. That is, the connection member 224 and the rod member 221 have a function of transmitting the contraction of the bellows 223 to the valve body 222. When the bellows 223 is further contracted from this state, the lower end of the connecting member 224 is separated from the upper end of the rod member 221, and the internal passage 221a of the rod member 221 (that is, the first discharge passage 160) is opened. The degree of opening of the first discharge passage 160 increases as the lower end portion (tip end portion) of the connecting member 224 separates from the upper end portion of the rod member 221.
A fixed iron core 225, a movable iron core 226 and a coil 227 are further accommodated in the suction chamber communication space 211.
The stationary core 225 is fixed to the valve housing 210. The fixed core 225 is formed in a cylindrical shape, and accommodates the bellows 223 inside. The fixed iron core 225 is formed with an annular inward protruding portion 225 a that protrudes inward from the inner peripheral surface below the bellows 223. Further, a predetermined portion on the upper end side (base end side) of the connection member 224 with respect to the outward protrusion portion 224a is axially movably inserted through the inner peripheral surface of the inward protrusion portion 225a.
The movable core 226 is formed in a cylindrical shape having a diameter smaller than that of the fixed core 225, and is held movably in the vertical direction below the inward protrusion portion 225a of the fixed core 225. The movable core 226 is disposed such that the upper end thereof faces the lower surface of the inward protrusion 225 a of the fixed core 225. The upper end of the movable core 226 abuts on the lower surface of the inward projection 225 a of the fixed core 225 so that the upper limit position is restricted, and the lower end abuts on a not-shown restriction formed on the valve housing 210. The lower limit position is thereby regulated. Further, the movable iron core 226 is formed with a pressing portion 226a which abuts on the peripheral edge portion of the lower surface of the outward projecting portion 224a of the connection member 224 when the movable iron core 226 moves upward and presses the connection member 224 upward. It is done. In the present embodiment, the pressing portion 226 a annularly protrudes inward from the inner circumferential surface in the vicinity of the lower end portion of the movable core 226.
The coil 227 is covered with resin and disposed around the outer periphery of the fixed core 225 and the movable core 226. When the coil 227 is energized, an electromagnetic force of a magnitude corresponding to the amount of energization of the coil 227 is generated between the fixed core 225 and the movable core 226, and the generated electromagnetic force causes the movable core 226 to move toward the fixed core 225. And move upwards. That is, the fixed iron core 225, the movable iron core 226, and the coil 227 constitute a solenoid unit 270.
Then, when the movable core 226 moves upward, the pressing portion 226a of the movable core 226 abuts on the peripheral edge portion of the lower surface of the outward projecting portion 224a of the connecting member 224 to press the connecting member 224 upward. Thereby, the bellows 223 is biased in the contraction direction via the connection member 224. That is, the biasing force in the contraction direction corresponding to the amount of current supplied to the coil 227 is applied to the bellows 223.
In the present embodiment, the opening area of the valve hole 220 forming a part of the supply passage 150 is smaller than the passage cross sectional area of the internal passage 221 a of the rod member 221 forming a part of the first discharge passage 160. . Further, the biasing forces of the second and third biasing springs 232 and 233 separate from the upper end of the rod member 221 at the lower end of the connecting member 224 when the energization of the coil 227 is turned off (that is, The first discharge passage 160 is adjusted to be opened. When the first discharge passage 160 is open, the valve body 222 is in contact with the valve seat 218a by the biasing force of the first biasing spring 231 to close the valve hole 220 (ie, the supply passage 150). Is configured. Furthermore, by exerting (applying) a biasing force in the contraction direction according to the amount of energization of the coil 227 on the bellows 223, the pressure (operation conversion point) of the suction chamber 119 at which the bellows 223 switches from the extension operation to the contraction operation is It is supposed to be changed. In other words, the solenoid section 270 is configured to change the operation switching point of the bellows 223 in accordance with the amount of energization of the coil 227. Specifically, the solenoid unit 270 is configured to change the operation switching point of the bellows 223 higher as the amount of energization of the coil 227 decreases.
Next, the control operation of the discharge displacement of the variable displacement compressor 100 by the displacement control valve 200 will be described with reference to FIGS.
First, when the air conditioning system is OFF, the clutch is OFF (released), and the variable displacement compressor 100 is stopped. At this time, the pressure of the control pressure chamber 105 is equal to the pressure of the suction chamber 119, and the inclination angle of the swash plate 107 is the minimum inclination angle (or the balance inclination angle). In the displacement control valve 200, the energization of the coil 227 is turned off, and the lower end of the connecting member 224 is separated from the upper end of the rod member 221, as shown in FIG. That is, the first discharge passage 160 is open. Further, the valve body 222 is in contact with the valve seat 218a by the biasing force of the first biasing spring 231, and the valve hole 220 (that is, the supply passage 150) is closed.
When the air conditioning system is turned on, the clutch is turned on (engaged) to rotate the drive shaft 106 of the variable displacement compressor 100. Then, each piston 117 reciprocates in the corresponding cylinder bore 101 a to generate the blowby gas, and the generated blowby gas is discharged from the control pressure chamber 105 through the first discharge passage 160 and the second discharge passage 170. It flows to 119. At this time, the refrigerant (gas refrigerant, liquid refrigerant) remaining in the control pressure chamber 105 is also discharged to the suction chamber 119 via the first discharge passage 160 and the second discharge passage 170. Further, when the compression reaction force of each piston 117 acts on the swash plate 107, the tilt angle of the swash plate 107 is increased to be the maximum tilt angle, and the stroke amount of the piston 117 (that is, the discharge capacity of the variable displacement compressor 100) is It will be the largest.
When a predetermined time has elapsed since the clutch was turned on, energization of the coil 227 is turned on. The energization amount of the coil 227 is set based on the air conditioning setting in the air conditioner system, the external environment, and the like. When energization of the coil 227 is turned on, an urging force in a contraction direction corresponding to the amount of energization of the coil 227 acts on the bellows 223, and the operation conversion point of the bellows 223 is changed (decided). Here, the operation switching point corresponds to the set pressure (of the suction chamber 119) corresponding to the amount of energization of the coil 227 described later.
FIG. 3 shows the displacement control valve 200 in a state where the coil 227 is energized. When energization of the coil 227 is turned on, the pressing portion 226a of the movable iron core 226 abuts on the peripheral portion of the lower surface of the outward projecting portion 224a of the connecting member 224 to press the connecting member 224, The electromagnetic force corresponding to the amount of current flow acts to make the bellows 223 in the reference state. Then, the displacement control valve 200 adjusts (changes) the pressure of the control pressure chamber 105 so that the pressure of the suction chamber 119 becomes the set pressure corresponding to the amount of current supplied to the coil 227, and discharges the displacement of the variable displacement compressor 100 Control.
Specifically, when the pressure in the suction chamber 119 is lower than the set pressure, in the displacement control valve 200, the bellows 223 extends more than the reference state and the rod member 221 at the lower end portion of the connecting member 224 The amount of separation from the upper end decreases. That is, the displacement control valve 200 reduces the opening degree of the first discharge passage 160. The reduction of the distance from the upper end of the rod member 221 at the lower end of the connecting member 224 includes the contact of the lower end of the connecting member 224 with the upper end of the rod member 221, Reducing the opening degree of the first discharge passage 160 includes closing the first discharge passage 160. In addition, as the difference between the set pressure and the pressure in the suction chamber 119 increases, the opening degree of the first discharge passage decreases. As a result, the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 via the first discharge passage is limited. Then, the pressure of the control pressure chamber 105 is increased by the blow-by gas, and the inclination angle of the swash plate 107 is reduced, so that the displacement of the variable displacement compressor 100 is reduced.
Further, when the refrigerant circulation amount increases and the pressure in the suction chamber 119 decreases rapidly due to a sharp increase in the rotational speed of the drive shaft 106, etc., as shown in FIG. The lower end of the connecting member 224 abuts against the upper end of the rod member 221, and the connecting member 224 presses the rod member 221 downward, whereby the valve body 222 is separated from the valve seat 218a and the valve hole is formed. 220 is released. That is, the volume control valve 200 closes the first discharge passage 160 and opens the supply passage 150. The larger the amount of decrease in pressure in the suction chamber 119, the larger the amount of separation of the valve body 222 from the valve seat 218a, and the larger the degree of opening of the supply passage 150. As a result, the refrigerant in the discharge chamber 120 is supplied to the control pressure chamber 105 through the supply passage 150, the pressure in the control pressure chamber 105 is rapidly increased, and the inclination angle of the swash plate 107 is reduced. The discharge capacity of 100 decreases.
Here, in the present embodiment, the opening area of the valve hole 220 forming a part of the supply passage 150 is relatively small, but when the supply passage 150 is opened, the first discharge passage 160 is closed. Therefore, the pressure in the control pressure chamber 105 can be rapidly increased by the refrigerant in the discharge chamber 120 supplied via the supply passage 150. Further, since the opening area of the valve hole 220 is relatively small, the influence of the pressure difference between the discharge chamber 120 and the control pressure chamber 105 on the operation characteristics of the valve body 222 is suppressed.
On the other hand, when the pressure in the suction chamber 119 is higher than the set pressure, in the displacement control valve 200, as shown in FIG. 5, the bellows 223 contracts more than the reference state and the lower end portion of the connecting member 224 The distance from the upper end of the rod member 221 increases. That is, the displacement control valve 200 increases the opening degree of the first discharge passage 160. The increase in the distance from the upper end of the rod member 221 at the lower end of the connecting member 224 includes the separation of the lower end of the connecting member 224 from the upper end of the rod member 221, Increasing the opening degree of the first discharge passage 160 includes opening the first discharge passage 160. Further, as the difference between the pressure in the suction chamber 119 and the set pressure increases, the opening degree of the first discharge passage 160 increases. As a result, the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 via the first discharge passage 160 increases, the pressure in the control pressure chamber 105 decreases, and the inclination angle of the swash plate 107 increases. The discharge capacity of the capacity compressor 100 is increased.
The displacement control valve 200 according to the present embodiment is disposed in the suction chamber communication space 211, and is disposed in the control pressure chamber communication space 212 and a bellows (pressure sensitive member) 223 that senses the pressure of the suction chamber 119 and expands and contracts. A valve body 222 for opening and closing a valve hole 220 forming a part of the supply passage 150, and a rod member 221 axially movably inserted in the insertion hole 219 to transmit the expansion and contraction of the bellows 223 to the valve body 222; Including. The insertion hole 219 is formed at a position different from the valve hole 220, and is separated from the discharge chamber communication space 213. Specifically, the insertion hole 219 is provided substantially at the center of the cross section of the valve housing 210, and one end is open to the suction chamber communication space 211 and extends linearly, and the other end is open to the control pressure chamber communication space 212 doing. The valve hole 220 is provided outside the insertion hole 219, that is, radially outward of the insertion hole 219, and penetrates a dividing wall 218 that divides the control pressure chamber communication space 212 and the discharge chamber communication space 213. .
Therefore, the refrigerant flowing from the discharge chamber 120 into the discharge chamber communication space 213 does not flow in the gap between the outer peripheral surface of the rod member 221 and the inner peripheral surface of the insertion hole 219, and minute foreign substances contained in the refrigerant There is no risk of being caught in the gap. Therefore, the operation failure of the rod member 221 and the valve body 222 caused by the minute foreign matter contained in the refrigerant is prevented, and the stable operation of the valve body 222 is secured.
Further, when the valve body 222 closes the valve hole 220, at the same time, the suction chamber communication space 211 and the control pressure chamber communication space through the gap between the outer peripheral surface of the rod member 221 and the inner peripheral surface of the insertion hole 219. When the valve body 222 closes the valve hole 220, the rod member 221 causes the suction chamber communication space 211 and the control pressure chamber communication space 212 to communicate with each other. It has an internal passage 221 a which forms a part of the discharge passage 160.
Therefore, even if the refrigerant flowing from the control pressure chamber 105 into the control pressure chamber communication space 212 contains minute foreign matter, the foreign matter may be the outer circumferential surface of the rod member 221 and the inner circumferential surface of the insertion hole 219. You will not get caught in the gap.
6A and 6B are cross-sectional views schematically showing the configuration of a displacement control valve 300 according to another embodiment. In addition, about the element which is common to the above-mentioned displacement control valve 200, the same number is attached | subjected and the description is abbreviate | omitted. The displacement control valve 300 has a connecting rod 321 integrally formed instead of the rod member 221 and the connecting member 224 in the displacement control valve 200 described above. The rest is basically the same as the displacement control valve 200. The displacement control valve 300 is configured to be able to adjust the opening degree of the supply passage 150 and the first discharge passage 160.
The connecting rod 321 is axially movably inserted through the inner peripheral surface of the inward protruding portion 225 a of the fixed core 225 and the insertion hole 219. The upper end (base end) of the connecting rod 321 is fixed to the lower end of the bellows 223, and the lower end (tip) of the connecting rod 321 protrudes into the control pressure chamber communication space 212. And the valve body 222 is integrally formed or fixed to the said lower end part (tip part) of the connection rod 321. As shown in FIG.
Further, the connecting rod 321 has an outward projecting portion 321a having the same function as the outward projecting portion 224a of the connecting member 224 in the above-described displacement control valve 200, and an internal passage of the rod member 221 in the above-described displacement control valve 200. An inner passage 321 b having the same function as that of the inner case 221 a is formed.
The internal passage 321 b has a refrigerant inlet 321 b 1 opening at the lower end (tip) of the connecting rod 321 and a refrigerant outlet 321 b 2 opening at the side of the connecting rod 321. The entire refrigerant outlet portion 321b2 of the internal passage 321b is exposed in the suction chamber communication space 211 when the valve body 222 is in contact with the valve seat 218a and the valve hole 220 is closed (see FIG. 6A). When the valve body 222 is separated from the valve seat 218a and the valve hole 220 is opened, a part or all of the valve body 222 is closed by the inner peripheral surface of the insertion hole 219 (see FIG. 6B).
In the displacement control valve 300, the biasing force of the second and third biasing springs 232 and 233 causes the whole of the refrigerant outlet portion 321b2 of the internal passage 321b to be in the suction chamber communication space 211 when the coil 227 is deenergized. Are adjusted so that the first discharge passage 160 is opened. In addition, when the coil 227 is energized, the movable core 226 moves upward, and the pressing portion 226a of the movable core 226 abuts on the peripheral portion of the lower surface of the outward protrusion 321a of the connecting rod 321 to move the connecting rod 321 upward. Press to. As a result, an urging force in the contraction direction corresponding to the amount of energization of the coil 227 acts on the bellows 223, and the operation conversion point of the bellows 223 is changed.
When the pressure in the suction chamber 119 is lower than the set pressure corresponding to the energization amount of the coil 227, the bellows 223 extends from the reference state and the connecting rod 321 moves downward. Then, a part or all of the refrigerant outlet portion 321b2 of the internal passage 321b is closed by the inner peripheral surface of the insertion hole 219, and the valve body 222 is separated from the valve seat 218a to open the valve hole 220. Here, the region not closed by the inner circumferential surface of the insertion hole 219 in the refrigerant outlet portion 321b2 of the inner passage 321b (the region exposed in the suction chamber communication space 211 in the refrigerant outlet portion 321b2 of the inner passage 321b) is 1 corresponds to the opening degree of the discharge passage 160. That is, the displacement control valve 300 reduces the opening degree of the first discharge passage 160 and increases the opening degree of the supply passage 150. The larger the difference between the set pressure and the pressure in the suction chamber 119, the smaller the opening degree of the first discharge passage 160, and the larger the opening degree of the supply passage 150. Thus, the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 via the first discharge passage 160 is limited, and the pressure in the control pressure chamber 105 is supplied via the supply passage 150. The refrigerant rises and the inclination angle of the swash plate 107 decreases, and the displacement of the variable displacement compressor 100 decreases.
On the other hand, when the pressure in the suction chamber 119 is higher than the set pressure, the bellows 223 contracts more than the reference state, and the connecting rod 321 moves upward. Then, the region of the refrigerant outlet portion 321b2 of the internal passage 321b exposed in the suction chamber communication space 211 increases, and the valve body 222 approaches the valve seat 218a or abuts on the valve seat 218a. That is, the displacement control valve 300 increases the opening degree of the first discharge passage 160 and reduces the opening degree of the supply passage 150. The larger the difference between the pressure in the suction chamber 119 and the set pressure, the larger the opening degree of the first discharge passage 160, and the smaller the opening degree of the supply passage 150. As a result, the amount of refrigerant discharged from the control pressure chamber 105 to the suction chamber 119 via the first discharge passage 160 increases, the pressure in the control pressure chamber 105 decreases, and the inclination angle of the swash plate 107 increases. The discharge capacity of the capacity compressor 100 is increased.
In the displacement control valve 300, the connecting rod 321 corresponds to the "rod member" of the present invention. Also in the displacement control valve 300, the same effect as that of the displacement control valve 200 described above can be obtained.
FIG. 7 is a cross-sectional view schematically showing a configuration of a displacement control valve 400 according to still another embodiment. While the above-described displacement control valve 200, 300 is mainly applied to a clutch-equipped variable displacement compressor, the displacement control valve 400 is configured to be applicable to a so-called clutchless variable displacement compressor. In the clutchless variable displacement compressor to which the displacement control valve 400 is applied, the first discharge passage 160 does not pass through the displacement control valve 400 (therefore, the first discharge passage 160 is not shown). Assuming that the opening degree of the passage 160 is adjusted by a control valve (not shown) different from the volume control valve 400, the volume control valve 400 adjusts the opening degree of the supply passage 150. Configured The same reference numerals are assigned to elements common to the variable displacement compressor 100 and the displacement control valves 200 and 300 described above, and the description thereof is omitted.
In the displacement control valve 400, unlike the displacement control valves 200 and 300 described above, the suction chamber communication space 211 is located at the lowermost side in the vertical direction of the three communication spaces 211, 212 and 213, and the control pressure chamber The communication space 212 is located on the uppermost side in the vertical direction of the three communication spaces 211, 212, 213.
In the displacement control valve 400, the lower end portion of the bellows 223 accommodated in the suction chamber communication space 211 is fixed to the valve housing 210. Inside the bellows 223, a biasing spring (not shown) is accommodated which biases the bellows 223 in the extending direction. The upper end portion of a rod member 221 inserted in the insertion hole 219 so as to be movable in the axial direction (vertical direction) is fixed to the lower surface of the valve body 222 accommodated in the control pressure chamber communication space 212. The lower end portion of the lower end portion is connected to the upper end portion of the bellows 223 so as to be capable of coming into and coming out of contact.
The lower end portion of the solenoid rod 401 is fixed to the upper surface of the valve body 222. The solenoid rod 401 is inserted into the stationary core 402, and the upper end of the solenoid rod 401 protrudes from the stationary core 402. A movable iron core 403 is fixed to the upper end portion of the solenoid rod 401, and between the fixed iron core 402 and the movable iron core 403, the movable iron core 403 is biased in a direction (valve opening direction) away from the fixed iron core 402. A biasing spring 404 is disposed. In addition, a coil 405 covered with a resin is disposed around the outside of the fixed core 402 and the movable core 403.
When the coil 405 is energized, an electromagnetic force of a magnitude corresponding to the amount of energization of the coil 405 is generated between the fixed core 402 and the movable core 403, and the generated electromagnetic force causes the movable core 403 to move toward the fixed core 402. Move. That is, the fixed iron core 402, the movable iron core 403, and the coil 405 constitute a solenoid unit 270. Then, when the movable core 403 moves, the valve body 222 is biased in the valve closing direction via the solenoid rod 401. When the valve body 222 is biased in the valve closing direction, the bellows 223 is biased in the contraction direction via the rod member 221. That is, a biasing force in the contraction direction acts on the bellows 223 in accordance with the amount of energization of the coil 405.
Further, when the coil 405 is deenergized, the valve body 222 is configured to be separated from the valve seat 218a by the biasing force of the biasing spring 404 and open the valve hole 220 (that is, the supply passage 150). ing.
Next, the discharge control operation of the clutchless variable displacement compressor (hereinafter simply referred to as “variable displacement compressor”) by the displacement control valve 400 will be briefly described.
When the clutchless variable displacement compressor (hereinafter simply referred to as "variable displacement compressor") is stopped, the coil 405 is deenergized, and the biasing force of the biasing spring 404 causes the valve body 222 to move to the valve seat 218a. And the valve hole 220 (supply passage 150) is opened. At this time, the first discharge passage 160 is closed by the control valve (not shown).
When the engine or electric motor of the vehicle starts and the drive shaft 106 of the variable displacement compressor rotates, each piston 117 reciprocates in the corresponding cylinder bore 101a, and the refrigerant discharged to the discharge chamber 120 is supplied to the supply passage 150 Is supplied to the control pressure chamber 105 via the control pressure chamber 105. As a result, the pressure in the control pressure chamber 105 is increased, the inclination angle of the swash plate 107 is decreased, and the displacement of the variable displacement compressor 100 is decreased.
When the air conditioning system is turned on, the coil 405 is energized and the valve body 222 closes the valve hole 220 (supply passage 150). At this time, the first discharge passage is opened by the control valve. As a result, the refrigerant in the control pressure chamber 105 is rapidly discharged to the suction chamber 119, the pressure in the control pressure chamber 105 becomes equal to the pressure in the suction chamber 119, and the inclination angle of the swash plate 107 becomes maximum.
Thereafter, when the pressure in the suction chamber 119 drops below the set pressure corresponding to the energization amount of the coil 405, the bellows 223 extends, the rod member 221 moves upward, and the valve body 222 opens the valve hole 220 (supply passage 150). Open At this time, the first discharge passage 160 is closed by the control valve. As a result, the pressure in the control pressure chamber 105 is increased by the refrigerant in the discharge chamber 120 supplied via the supply passage 150, and the inclination angle of the swash plate 107 is reduced, and the discharge capacity of the variable displacement compressor 100 is reduced. .
On the other hand, when the pressure in the suction chamber 119 rises above the set pressure, the bellows 223 contracts and the rod member 221 moves downward, and the valve body 222 abuts on the valve seat 218a to close the valve hole 220 (supply passage 150). Do. At this time, the first discharge passage 160 is opened by the control valve. As a result, the refrigerant in the control pressure chamber 105 is discharged to the suction chamber 119, the pressure in the control pressure chamber 105 decreases, the inclination angle of the swash plate 107 increases, and the displacement of the variable displacement compressor 100 increases.
In the displacement control valve 400, the same effect as that of the displacement control valve 200 described above can be obtained.
The present invention is not limited to the above-described embodiments and modifications, and it is needless to say that further modifications and changes are possible based on the technical idea of the present invention.
 100…可変容量圧縮機、101a…シリンダボア(圧縮部)、105…制御圧室、117…ピストン(圧縮部)、119…吸入室、120…吐出室、150…供給通路、160…第1排出通路、170…第2排出通路、200,300,400…容量制御弁、210…バルブハウジング、211…吸入室連通空間、212…制御圧室連通空間、213…吐出室連通空間、217,218…区画壁、219…挿通孔、220…弁孔、221,321…ロッド部材、221a…内部通路、222…弁体、223…ベローズ(感圧部材)、224…連結部材、321…連結ロッド 100: variable displacement compressor, 101a: cylinder bore (compression unit), 105: control pressure chamber, 117: piston (compression unit), 119: suction chamber, 120: discharge chamber, 150: supply passage, 160: first discharge passage 170: second discharge passage 200, 300, 400: volume control valve 210: valve housing 211: suction chamber communication space 212: control pressure chamber communication space 213: discharge chamber communication space 217, 218 section Wall 219, insertion hole 220, valve hole 221, 321 rod member 221a internal passage 222 valve body 223 bellows (pressure-sensitive member) 224 connection member 321 connection rod

Claims (5)

  1.  冷媒が導かれる吸入室と、前記吸入室に導かれた冷媒を圧縮する圧縮部と、前記圧縮部によって圧縮された冷媒が吐出される吐出室と、制御圧室と、を含み、供給通路を介して前記吐出室内の冷媒が前記制御圧室に供給され又は排出通路を介して前記制御圧室の冷媒が前記吸入室に排出されることで前記制御圧室の圧力が調整され、これによって、吐出容量が制御される可変容量圧縮機に用いられる容量制御弁であって、
     内部に、前記吸入室に連通する吸入室連通空間と、前記制御圧室に連通する制御圧室連通空間と、前記吐出室に連通すると共に前記吸入室連通空間と前記制御圧室連通空間との間に配置された吐出室連通空間と、が形成されたバルブハウジングと、
     前記吸入室連通空間に配置され、前記吸入室の圧力を感知して伸縮する感圧部材と、
     前記制御圧室連通空間と前記吐出室連通空間との間に形成されて前記供給通路の一部を形成する弁孔を開閉する弁体であって、前記制御圧室連通空間に配置された前記弁体と、
     前記吸入室連通空間と前記制御圧室連通空間との間に形成された挿通孔に軸方向に移動自在に挿通され、前記感圧部材の伸縮を前記弁体に伝達するロッド部材と、
     を含み、
     前記挿通孔は、前記弁孔とは異なる位置に形成され、かつ、前記吐出室連通空間とは区画されている、
     容量制御弁。
    A supply passage including a suction chamber into which the refrigerant is introduced, a compression unit for compressing the refrigerant introduced into the suction chamber, a discharge chamber from which the refrigerant compressed by the compression unit is discharged, and a control pressure chamber The pressure in the control pressure chamber is adjusted by the refrigerant in the discharge chamber being supplied to the control pressure chamber via the discharge chamber, or the refrigerant in the control pressure chamber being discharged via the discharge passage to the suction chamber. A displacement control valve for use in a variable displacement compressor in which the displacement is controlled,
    Inside the suction chamber communication space communicating with the suction chamber, the control pressure chamber communication space communicating with the control pressure chamber, and the discharge chamber communicating with the suction chamber communication space and the control pressure chamber communication space A discharge chamber communicating space disposed between the valve housing and the valve housing;
    A pressure sensitive member disposed in the suction chamber communication space, which senses and expands the pressure in the suction chamber;
    A valve body formed between the control pressure chamber communication space and the discharge chamber communication space to open and close a valve hole forming a part of the supply passage, the valve body being disposed in the control pressure chamber communication space With a disc,
    A rod member axially movably inserted in an insertion hole formed between the suction chamber communication space and the control pressure chamber communication space, and transmitting the expansion and contraction of the pressure sensitive member to the valve body;
    Including
    The insertion hole is formed at a position different from the valve hole, and is separated from the discharge chamber communication space.
    Volume control valve.
  2.  前記挿通孔は、前記バルブハウジングの横断面のほぼ中央に設けられ、前記弁孔は、前記挿通孔よりも外側に設けられている、請求項1に記載の容量制御弁。 The displacement control valve according to claim 1, wherein the insertion hole is provided substantially at the center of a cross section of the valve housing, and the valve hole is provided outside the insertion hole.
  3.  前記挿通孔は、一端が前記吸入室連通空間に開口すると共に直線状に延びて他端が前記制御圧室連通空間に開口しており、
     前記弁孔は、前記挿通孔の径方向外方において、前記制御圧室連通空間と前記吐出室連通空間とを区画する区画壁を貫通している、
     請求項1又は2に記載の容量制御弁。
    One end of the insertion hole is open to the suction chamber communication space, and the insertion hole linearly extends, and the other end is open to the control pressure chamber communication space.
    The valve hole penetrates a dividing wall that divides the control pressure chamber communication space and the discharge chamber communication space on the radially outer side of the insertion hole.
    A displacement control valve according to claim 1 or 2.
  4.  前記弁体は、前記弁孔を閉鎖したとき、同時に前記ロッド部材と前記挿通孔との隙間を介した前記吸入室連通空間と前記制御圧室連通空間との連通を遮断するように形成され、
     前記ロッド部材は、前記弁体が前記弁孔を閉鎖したときに前記吸入室連通空間と前記制御圧室連通空間とを連通させて前記排出通路の一部を形成する内部通路を有する、
     請求項1~3のいずれか一つに記載の容量制御弁。
    The valve body is formed to simultaneously shut off the communication between the suction chamber communication space and the control pressure chamber communication space through the gap between the rod member and the insertion hole when the valve hole is closed.
    The rod member has an internal passage which makes the suction chamber communication space and the control pressure chamber communication space communicate with each other to form a part of the discharge passage when the valve body closes the valve hole.
    The displacement control valve according to any one of claims 1 to 3.
  5.  冷媒が導かれる吸入室と、前記吸入室に導かれた冷媒を圧縮する圧縮部と、前記圧縮部によって圧縮された冷媒が吐出される吐出室と、制御圧室と、を含み、供給通路を介して前記吐出室内の冷媒が前記制御圧室に供給され又は排出通路を介して前記制御圧室の冷媒が前記吸入室に排出されることで前記制御圧室の圧力が調整され、これによって、吐出容量が制御される可変容量圧縮機であって、
     請求項1~4のいずれか一つに記載の容量制御弁を備えた、可変容量圧縮機。
    A supply passage including a suction chamber into which the refrigerant is introduced, a compression unit for compressing the refrigerant introduced into the suction chamber, a discharge chamber from which the refrigerant compressed by the compression unit is discharged, and a control pressure chamber The pressure in the control pressure chamber is adjusted by the refrigerant in the discharge chamber being supplied to the control pressure chamber via the discharge chamber, or the refrigerant in the control pressure chamber being discharged via the discharge passage to the suction chamber. A variable displacement compressor whose discharge displacement is controlled, comprising
    A variable displacement compressor comprising the displacement control valve according to any one of claims 1 to 4.
PCT/JP2018/035244 2017-11-17 2018-09-18 Capacity control valve for variable capacity compressor WO2019097842A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017221872A JP2019094918A (en) 2017-11-17 2017-11-17 Displacement control valve of variable displacement compressor
JP2017-221872 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019097842A1 true WO2019097842A1 (en) 2019-05-23

Family

ID=66538601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035244 WO2019097842A1 (en) 2017-11-17 2018-09-18 Capacity control valve for variable capacity compressor

Country Status (2)

Country Link
JP (1) JP2019094918A (en)
WO (1) WO2019097842A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176659A (en) * 1996-12-16 1998-06-30 Toyota Autom Loom Works Ltd Control valve for variable displacement compressor
JP2001099060A (en) * 1999-10-04 2001-04-10 Fuji Koki Corp Control valve for variable displacement compressor
JP2004116407A (en) * 2002-09-26 2004-04-15 Eagle Ind Co Ltd Capacity control valve and method for controlling the same
US20040120829A1 (en) * 2002-12-23 2004-06-24 Pitla Srinivas S. Controls for variable displacement compressor
JP2007247512A (en) * 2006-03-15 2007-09-27 Toyota Industries Corp Capacity control valve in variable capacity type compressor
US20140248163A1 (en) * 2011-05-23 2014-09-04 Doowon Electronics Co., Ltd Control valve for a variable capacity compressor and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176659A (en) * 1996-12-16 1998-06-30 Toyota Autom Loom Works Ltd Control valve for variable displacement compressor
JP2001099060A (en) * 1999-10-04 2001-04-10 Fuji Koki Corp Control valve for variable displacement compressor
JP2004116407A (en) * 2002-09-26 2004-04-15 Eagle Ind Co Ltd Capacity control valve and method for controlling the same
US20040120829A1 (en) * 2002-12-23 2004-06-24 Pitla Srinivas S. Controls for variable displacement compressor
JP2007247512A (en) * 2006-03-15 2007-09-27 Toyota Industries Corp Capacity control valve in variable capacity type compressor
US20140248163A1 (en) * 2011-05-23 2014-09-04 Doowon Electronics Co., Ltd Control valve for a variable capacity compressor and method for manufacturing same

Also Published As

Publication number Publication date
JP2019094918A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP6810131B2 (en) Capacity control valve
JP6843869B2 (en) Capacity control valve
WO2019146674A1 (en) Capacity control valve
EP2784320B1 (en) Control valve for variable displacement compressor
KR100276036B1 (en) Control Valves for Variable Capacity Compressors
JP6115393B2 (en) Variable capacity swash plate compressor
JP6932146B2 (en) Capacity control valve
WO2014091975A1 (en) Capacity control valve
EP2366901A2 (en) Variable displacement compressor
JP5222447B2 (en) Variable capacity compressor
JP6135521B2 (en) Variable capacity swash plate compressor
JPWO2017057160A1 (en) Control valve for variable displacement compressor
CN109844312B (en) Control valve for variable displacement compressor
US20170356439A1 (en) Variable Capacity Compressor
US20060165534A1 (en) Displacement control valve for variable displacement compressor
WO2019142931A1 (en) Capacity control valve
WO2019044759A1 (en) Electromagnetic valve
JP6709410B2 (en) Variable capacity compressor and its control valve
CN109154285B (en) Variable displacement compressor
US9631612B2 (en) Variable displacement type swash plate compressor
JP6141930B2 (en) Capacity control valve
WO2019097841A1 (en) Capacity control valve for clutch-equipped swash-plate-type variable capacity compressor
US10815980B2 (en) Variable displacement swash plate type compressor
WO2019097842A1 (en) Capacity control valve for variable capacity compressor
JP7399950B2 (en) capacity control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879018

Country of ref document: EP

Kind code of ref document: A1