WO2019095985A1 - 一种芳烃合成用催化剂及其制备方法 - Google Patents

一种芳烃合成用催化剂及其制备方法 Download PDF

Info

Publication number
WO2019095985A1
WO2019095985A1 PCT/CN2018/112417 CN2018112417W WO2019095985A1 WO 2019095985 A1 WO2019095985 A1 WO 2019095985A1 CN 2018112417 W CN2018112417 W CN 2018112417W WO 2019095985 A1 WO2019095985 A1 WO 2019095985A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
molecular sieve
inert carrier
oxide material
catalyst
Prior art date
Application number
PCT/CN2018/112417
Other languages
English (en)
French (fr)
Inventor
倪友明
朱文良
刘中民
刘勇
陈之旸
刘红超
马现刚
刘世平
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2019095985A1 publication Critical patent/WO2019095985A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a catalyst for synthesizing aromatic hydrocarbons and a preparation method thereof.
  • Para-xylene is an important basic chemical raw material, mainly used to prepare p-dibenzoic acid (PTA), and then to produce polyethylene terephthalate (PET).
  • PTA p-dibenzoic acid
  • PET polyethylene terephthalate
  • para-xylene is mainly obtained from an aromatic hydrocarbon combination device, in which high-purity PX products are obtained from naphtha by reforming, aromatics extraction, aromatics fractionation, disproportionation and transalkylation, xylene isomerization and adsorption separation. Due to thermodynamic constraints, the proportion of p-xylene in three xylenes is less than 25%, the material circulation is large, energy consumption is high, and investment is high. The alkylation of toluene with methanol to produce p-xylene can break through thermodynamic constraints to obtain a high proportion of para-xylene, which is a promising PX production route.
  • methanol is generally produced from syngas. If the syngas is reacted with toluene to produce p-xylene directly, such a method can shorten the reaction path, save energy, reduce sewage discharge and reduce fixed investment.
  • WO 2004/043593 discloses a process for the selective production of para-xylene by reacting an aromatic hydrocarbon with a feed comprising carbon monoxide and hydrogen in the presence of a selectively activated catalyst.
  • the catalyst used in the process comprises an acidic silicate-based material and a catalytically active metal or metal oxide.
  • Chinese patent application CN104945219A discloses a process for the preparation of toluene and p-xylene in one step from benzene and synthesis gas and a catalyst used therein.
  • the catalyst comprises a metal oxide component and a solid acid component.
  • U.S. Patent No. 4,487,984 discloses the preparation of alkylaromatic compounds by reacting an aromatic compound with a synthesis gas under alkylation conditions in the presence of a bifunctional catalyst.
  • the bifunctional catalyst comprises a composite oxide of copper, zinc and aluminum or chromium and an aluminosilicate.
  • a catalyst comprising at least one of a highly dispersed metal oxide material, an acidic molecular sieve, and optionally a graphite powder and a dispersant, which are inert carrier-limited, is very suitable for synthesis of aromatic hydrocarbons using synthesis gas as a raw material or a raw material.
  • the present invention has been accomplished by, for example, a method of producing p-xylene from syngas and toluene and a method of directly producing an aromatic hydrocarbon from syngas.
  • a catalyst for the synthesis of aromatic hydrocarbons comprising at least one of an inert carrier-limited high-dispersion metal oxide material, an acidic molecular sieve, and optionally a graphite powder and a dispersant.
  • the inert carrier is at least one of silicon oxide and aluminum oxide, and the content of the metal oxide in terms of metal is less than or equal to 10% by mass, based on The weight of the inert carrier-limited high dispersion metal oxide material; and wherein the acidic molecule is selected from the modified acidic ZSM-5 molecular sieve, the modified acidic ZSM-11 molecular sieve, and mixtures thereof.
  • Another object of the present invention is to provide a process for preparing the above catalyst.
  • the present invention provides a catalyst for aromatic hydrocarbon synthesis comprising at least one of an inert carrier-limited high-dispersion metal oxide material, an acidic molecular sieve, and optionally a graphite powder and a dispersant.
  • the inert carrier-limited high-dispersion metal oxide material the inert carrier is at least one of silicon oxide and aluminum oxide, and the metal oxide is contained in an amount of less than or equal to 10% by weight based on the metal, based on the inertia The weight of the carrier-limited, highly dispersed metal oxide material; and wherein the acidic molecule is selected from the modified acidic ZSM-5 molecular sieve, the modified acidic ZSM-11 molecular sieve, and mixtures thereof.
  • the metal oxide in the inert support-limited high dispersion metal oxide material is an oxide that removes at least one of aluminum and a metal other than the radioactive element.
  • the metal oxide in the inert carrier-limited high-dispersion metal oxide material is an oxide of at least one of zinc, chromium, zirconium, copper, manganese, platinum, and palladium. More preferably, the metal oxide in the inert carrier-limited high-dispersion metal oxide material is an oxide of at least one of zinc, chromium, and zirconium.
  • the metal oxide content of the metal oxide in the inert carrier-limited high-dispersion metal oxide material is less than or equal to 10% by weight; preferably less than or equal to 5% by weight; more preferably less than Or equal to 2% by weight, based on the weight of the inert carrier-limited high dispersion metal oxide material.
  • content of metal oxide does not include the content of alumina unless otherwise specified, if alumina is present.
  • the average particle size of the metal oxide in the inert carrier-limited highly dispersed metal oxide material is less than or equal to 100 nm, preferably less than or equal to 50 nm, more preferably less than or equal to 20 nm.
  • the X-ray powder diffraction pattern of the inert support-limited high dispersion metal oxide material does not exhibit characteristic diffraction peaks of the metal oxide.
  • the inert support limited high dispersion metal oxide material is different from conventional metal composite oxide materials known in the art.
  • the former has a high metal oxide dispersion (characteristic XRD diffraction peak without metal oxide), a small metal oxide mass fraction (generally less than 10%), and a small metal oxide average particle size (generally less than 100 nm) And usually has a large specific surface area (generally greater than 400 m 2 /g).
  • zirconium composite oxide material has a metal oxide mass fraction generally greater than 80%, has a significant metal oxide characteristic XRD diffraction peak, and has a specific surface area generally less than 100 m 2 /g.
  • the inert carrier which is abundantly present in the highly dispersed metal oxide material of the inert carrier of the present invention can provide both a large specific surface area and stability due to the confinement effect. Acts as a metal oxide that catalyzes the active component.
  • the inert carrier-limited high dispersion metal oxide material has an average particle size of less than or equal to 5 mm, preferably less than or equal to 1 mm, more preferably less than or equal to 0.5 mm, still more preferably less than or equal to 0.1 mm. Still more preferably less than or equal to 0.05 mm.
  • the acidic molecular sieve component of the catalyst of the present invention is selected from the group consisting of modified acidic ZSM-5 molecular sieves, modified acidic ZSM-11 molecular sieves, and mixtures thereof.
  • the modification of the acidic molecular sieve is one or more of phosphorus modification, boron modification, silicon modification, alkaline earth metal modification, and rare earth metal modification.
  • the crystals of the acidic ZSM-5 and ZSM-11 molecular sieves are microscale or nanoscale, and the crystals contain a microporous structure or a mesoporous-microporous structure.
  • modified acidic molecular sieves useful in the present invention are either commercially available or can be prepared by methods known per se. There is no particular limitation on the specific method of preparing the modified acidic molecular sieve.
  • the modified acidic molecular sieve can be obtained by modifying a commercially available acidic ZSM-5 molecular sieve or an acidic ZSM-11 molecular sieve.
  • the acidic molecular sieve may be impregnated with, for example, H 3 PO 4 , NH 4 H 2 PO 4 or an aqueous solution of (NH 4 ) 2 HPO 4 , and then the impregnated acidic molecular sieve is dried and then calcined.
  • a phosphorus-modified acidic molecular sieve containing 0.5 to 10.0% by weight of phosphorus based on the weight of the modified molecular sieve is obtained.
  • the acidic molecular sieve has an average particle size of less than or equal to 5 mm, preferably less than or equal to 0.5 mm, more preferably less than or equal to 0.1 mm, still more preferably less than or equal to 0.05 mm.
  • the acidic molecular sieve may be impregnated with, for example, an aqueous solution of H 3 BO 3 , and then the impregnated acidic molecular sieve is dried and then calcined to obtain 0.5 to 10.0% by weight based on the weight of the modified molecular sieve.
  • Boron modified acidic molecular sieves of boron are examples of Boron modified acidic molecular sieves of boron.
  • the silicon modified acidic molecular sieve can be prepared by treatment with a siloxane compound by liquid phase deposition and/or treatment with a silane compound by vapor deposition.
  • the siloxane compound and the silane compound which can be used are respectively represented by the following structural formula:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a C 1-10 alkyl group.
  • An example of the siloxane compound is tetraethyl orthosilicate, and an example of the silane compound is tetramethylsilane.
  • the liquid phase deposition process is carried out by dissolving a silicone compound in an inert organic solvent to provide a solution of the siloxane compound, then soaking or impregnating the acidic molecular sieve with the solution, drying and then calcining A silicon modified acidic molecular sieve is obtained.
  • the silicon-modified acidic molecular sieve may have a silicon loading of 0.5 to 10.0% by weight based on the weight of the modified molecular sieve, and the silicon loading does not include the original silicon in the acidic molecular sieve.
  • the inert organic solvent may be any solvent which does not react with the siloxane compound and the molecular sieve, such as n-hexane, cyclohexane, n-heptane.
  • the vapor deposition process is carried out by passing a silane compound gas through an acidic molecular sieve and then calcining the treated acidic molecular sieve to obtain a silicon-modified acidic molecular sieve.
  • the silicon-modified acidic molecular sieve may have a silicon loading of 0.5 to 10.0% by weight based on the weight of the modified molecular sieve. The silicon loading does not include the original silicon in the acidic molecular sieve.
  • the acidic molecular sieve may be impregnated with an alkaline earth or a rare earth metal salt aqueous solution, and then the impregnated acidic molecular sieve is filtered, dried and calcined to obtain a weight of 0.5 to 10.0% by weight based on the weight of the modified molecular sieve.
  • Alkaline earth or rare earth metal modified acidic molecular sieve of alkaline earth or rare earth metal may be impregnated with an alkaline earth or a rare earth metal salt aqueous solution, and then the impregnated acidic molecular sieve is filtered, dried and calcined to obtain a weight of 0.5 to 10.0% by weight based on the weight of the modified molecular sieve.
  • Alkaline earth or rare earth metal modified acidic molecular sieve of alkaline earth or rare earth metal Alkaline earth or rare earth metal modified acidic molecular sieve of alkaline earth or rare earth metal.
  • the dispersing agent is selected from the group consisting of alumina, silica, and mixtures thereof.
  • alumina, silica or alumina-silica which can be used as a dispersant, and they are commercially available from many suppliers.
  • the graphite powders usable in the present invention there are no particular limitations on the graphite powders usable in the present invention, and they are commercially available from many suppliers.
  • the graphite powder has an average particle size of from 0.05 to 5 microns.
  • the catalyst of the present invention comprises from 10 to 90% by weight of an inert carrier-limited, highly dispersed metal oxide material.
  • the lower limit of the content of the highly dispersed metal oxide material limited by the inert carrier may be 12, 15, 18, 20, 22, 25, 28, 30, 32, 35, 38, 40, 42, 45, 48, or 50 weight. %, and the upper limit may be 88, 85, 82, 80, 78, 75, 72, 70, 68, 65, 62, 60, 58, 55, 52, or 50% by weight, based on the weight of the catalyst.
  • the catalyst of the present invention comprises from 10 to 90% by weight of an acidic molecular sieve.
  • the lower limit of the content of the acidic molecular sieve may be 12, 15, 18, 20, 22, 25, 28, 30, 32, 35, 38, 40, 42, 45, 48, or 50% by weight, and the upper limit may be 88, 85. , 82, 80, 78, 75, 72, 70, 68, 65, 62, 60, 58, 55, 52, or 50% by weight, based on the weight of the catalyst.
  • the catalyst of the present invention comprises 0 to 10% by weight, such as 0 to 8% by weight, 0 to 7% by weight, 0 to 6% by weight, or 0 to 5% by weight, based on the weight of the catalyst. meter.
  • the catalyst of the present invention comprises 0 to 40% by weight, such as 0 to 38% by weight, 0 to 35% by weight, 0 to 30% by weight, or 0 to 25% by weight, based on the weight of the catalyst. meter.
  • the catalyst of the present invention comprises 10 to 90% by weight of an inert carrier-limited high-dispersion metal oxide material, 10 to 90% by weight of an acidic molecular sieve, 0 to 10% by weight of graphite powder, and 0 to 40% by weight of the dispersant, wherein the total content of the inert carrier-limited high-dispersion metal oxide material and the acidic molecular sieve is from 60 to 100% by weight, based on the total weight of the catalyst.
  • the catalyst of the present invention comprises 20 to 80% by weight of an inert carrier-limited high-dispersion metal oxide material, 20 to 80% by weight of an acidic molecular sieve, 0 to 5% by weight of graphite powder, and 0 to 30% by weight of a dispersant, the weight percentage being based on the total weight of the catalyst.
  • the catalyst of the present invention can have any shape and size known in the art to be suitable for use in fixed bed reactor applications.
  • the shape of the catalyst may be spherical, cylindrical, semi-cylindrical, prismatic, clover, annular, pellet, regular or irregular particles or flakes.
  • the catalyst may have an equivalent diameter of from 2 mm to 10 mm.
  • the above catalyst is suitable for an aromatic hydrocarbon synthesis method using synthesis gas as one of raw materials or raw materials, for example, a method for producing p-xylene by reacting synthesis gas with toluene and a method for directly producing aromatic hydrocarbon from synthesis gas.
  • the above catalyst is particularly suitable for a process for producing p-xylene by reacting a synthesis gas with toluene.
  • syngas refers to a mixed gas comprising primarily hydrogen and carbon monoxide, and aromatics are primarily benzene, toluene and xylene.
  • reaction conditions may be: reaction temperature 300-450 ° C, reaction pressure 0.5-10.0 MPa, toluene weight hourly space velocity 0.01-20 h -1 , standard state of synthesis gas
  • the gas volume has an hourly space velocity of 1000 to 20000 h -1 , and the molar ratio of hydrogen to carbon monoxide in the synthesis gas is 1:9 to 9:1.
  • the present invention provides a method of preparing the above catalyst, the method comprising the steps of:
  • an inert carrier-limited, highly dispersed metal oxide material useful in the process of the invention can be prepared by a coprecipitation-calcination process.
  • the inert carrier-limited high-dispersion metal oxide material can be prepared as follows: a salt of a catalytically active metal and an aluminum salt are mixed into a mixed metal salt aqueous solution; The mixed metal salt aqueous solution is contacted with the aqueous solution of the precipitating agent to coprecipitate the metal ions in the mixed metal salt aqueous solution; aging; and the precipitate is washed, dried, and calcined.
  • precipitating agents include, but are not limited to, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, ammonium hydrogencarbonate, aqueous ammonia, sodium hydroxide, potassium hydroxide, and mixtures thereof.
  • the temperature during the coprecipitation is from 0 ° C to 90 ° C
  • the pH during the coprecipitation is from 7.0 to 8.5
  • the aging time is not less than 1 hour
  • the calcination temperature is from 300 ° C to 700 ° C.
  • the inert carrier-limited high-dispersion metal oxide material is prepared by formulating a salt of an aluminum salt and a catalytically active metal to a total metal ion concentration of from 0.1 mol/L to 3.5 mol/L.
  • the mixed metal salt aqueous solution is contacted with a precipitating aqueous solution having a molar concentration of 0.1 mol/L to 3.5 mol/L at a temperature of 0 ° C to 90 ° C under stirring to coprecipitate the metal salt
  • the metal ions are then aged for a period of time, the pH of the solution during the coprecipitation may be 7.0 to 8.5, and the aging time is not less than 1 hour; the obtained precipitate is filtered and washed and calcined at a temperature of, for example, 300 ° C to 700 ° C.
  • a highly dispersed metal oxide material having an inert carrier confinement is obtained.
  • the kind of the salt of the aluminum salt and the catalytically active metal is not particularly limited as long as they are water-soluble, for example, having a water solubility of more than 1 g/L at 25 °C.
  • the aluminum salt and the salt of the catalytically active metal include, but are not limited to, hydrochloride, sulfate, and nitrate.
  • the manner of contacting the mixed metal salt aqueous solution with the aqueous solution of the precipitating agent is not particularly limited.
  • the contacting can be accomplished by cocurrent, feed or reverse feed.
  • the inert carrier-limited, highly dispersed metal oxide materials useful in the methods of the present invention can be prepared by a sol-gel process.
  • the inert carrier-limited high-dispersion metal oxide material can be prepared as follows: an aqueous solution of a salt of a catalytically active metal is added to a silicon oxychloride together with an aqueous solution of a precipitant. In the alkyl compound, and allowing the coprecipitation and the sol-gel reaction to proceed, the obtained gel is washed, dried, and calcined to obtain an inert carrier-limited high-dispersion metal oxide material.
  • the precipitating agent include, but are not limited to, one or more of ammonium carbonate, aqueous ammonia, ammonium hydrogencarbonate, ammonium dihydrogen phosphate, and urea.
  • the siloxane-based compound is an alkyl orthosilicate, examples of which include, but are not limited to, methyl orthosilicate, tetraethyl orthosilicate, n-propyl orthosilicate, orthosilicate Propyl ester, n-butyl orthosilicate, isobutyl orthosilicate, tert-butyl orthosilicate, and mixtures thereof.
  • modified acidic molecular sieves that can be used in the process of the invention include, but are not limited to, phosphorus modification, boron modification, silicon modification, alkaline earth metal modification, and/or rare earth metal modification of ZSM-5.
  • Molecular sieve or ZSM-11 molecular sieve The details of the modified acidic molecular sieve are as described in the first aspect of the invention.
  • the graphite powders and dispersants which can be used in the process of the invention are as described in the first aspect of the invention and are commercially available.
  • the molding method employed in the step (3) of the method of the present invention can be molded into catalyst particles suitable for fixed bed reactor applications using an extrusion process or a molding process.
  • the beneficial effects of the invention include: the catalyst of the invention can be applied to the direct reaction of syngas with toluene to produce p-xylene, the catalyst has a long service life, the selectivity to para-xylene is high, and the regeneration can be used multiple times.
  • the inert support-limited high-dispersion metal oxide material used in the present invention has a larger specific surface area, higher catalytic activity, and a lower relatively expensive active metal oxide than the conventional metal composite oxide material. Low content.
  • Figure 1 shows an XRD pattern of material A in Example 1.
  • Figure 2 shows an XRD pattern of material REF-1 in Comparative Example 1.
  • automatic gas composition analysis was performed using two Agilent 7890 gas chromatographs with a gas autosampler, a TCD detector coupled to a TDX-1 packed column, and an FID detector coupled to an FFAP and PLOT-Q capillary column.
  • Carbon monoxide conversion [( moles of carbon monoxide carbon in the feed) - (molar carbon monoxide carbon in the discharge)] ⁇ (moles of carbon monoxide in the feed) ⁇ 100%
  • Toluene conversion [(mole toluene in feed) - (moles of toluene in the discharge)] ⁇ (moles of toluene in the feed) ⁇ 100%
  • Xylene selectivity (mole carbon number in the discharge) ⁇ (carbon moles of all hydrocarbon products in the discharge - carbon moles of raw material toluene) ⁇ 100%
  • Paraxylene ratio (p-xylene carbon moles in the discharge) ⁇ (carbon moles of all xylene in the discharge) ⁇ 100%
  • a mixed nitrate aqueous solution containing 0.2 mol/L Zn 2+ and 0.2 mol/L Cr 3+ was prepared to prepare 100 mL of a 1.0 mol/L urea aqueous solution.
  • the above two solutions were added dropwise to 1 mol of ethyl orthosilicate, and reacted at room temperature for 24 hours to obtain a gel.
  • the gel was washed with deionized water, dried at 100 ° C, and calcined at 500 ° C for 4 h to obtain a highly dispersed zinc chromium oxide material having a silica as an inert carrier, numbered E.
  • E contains 1.8% by mass of zinc and 1.5% by mass of chromium.
  • a mixed nitrate aqueous solution containing 0.2 mol/L Zn 2+ and 0.2 mol/L Zr 4+ was prepared to prepare 100 mL of a 1.0 mol/L urea aqueous solution.
  • the above two solutions were added dropwise to 1 mol of ethyl orthosilicate, and reacted at room temperature for 24 hours to obtain a gel.
  • the gel was washed with deionized water, dried at 100 ° C, and calcined at 500 ° C for 4 h to obtain a highly dispersed zinc zirconium oxide material having a silica as an inert carrier confinement, numbered F.
  • F contains 1.8% by mass of zinc and 2.5% by mass of zirconium.
  • the ammonium type ZSM-5 molecular sieve was calcined at 550 ° C for 4 h in an air atmosphere, and then immersed in an equal volume at room temperature for 24 hours using an aqueous solution of (NH 4 ) 2 HPO 4 (the content of P in the aqueous solution was 5% by mass), and dried. Then, it was calcined at 550 ° C for 4 hours in an air atmosphere to obtain an acidic ZSM-5 molecular sieve containing 4% by mass of P, and numbered G.
  • the ammonium type ZSM-5 molecular sieve was calcined at 550 ° C for 4 h in an air atmosphere, and then immersed in an equal volume at room temperature for 24 hours using an aqueous solution of H 3 BO 3 (the content of B in the aqueous solution was 10% by mass), dried, and then Calcination at 550 ° C for 4 h in an air atmosphere gave an acidic ZSM-5 molecular sieve containing 8 mass% B, numbered H.
  • the ammonium type ZSM-11 molecular sieve was calcined at 550 ° C for 4 h in an air atmosphere, and then immersed in an equal volume at room temperature for 24 hours using an aqueous solution of H 3 BO 3 (the content of B in the aqueous solution was 10% by mass), dried, and then Calcination at 550 ° C for 4 h in an air atmosphere gave an acidic ZSM-11 molecular sieve containing 8 mass % B, numbered I.
  • the ammonium type ZSM-5 molecular sieve was calcined at 550 ° C for 4 hours in an air atmosphere, and then treated with a cyclohexane solution of tetraethyl orthosilicate (the content of Si in the solution was 10% by mass) at 50 ° C for 4 hours.
  • reaction mixture was evaporated to dryness, and then calcined at 550 ° C for 4 hr in an air atmosphere to obtain an acidic ZSM-5 molecular sieve containing 8% by mass of Si (excluding the original Si of the molecular sieve), No. J.
  • 500 g of the ammonium type ZSM-5 molecular sieve was calcined at 550 ° C for 4 h in an air atmosphere, and then treated with 1 L/min of nitrogen to carry 5% by volume of tetramethylsilane at 200 ° C for 3 hours, and then calcined at 550 ° C in an air atmosphere.
  • an acidic ZSM-5 molecular sieve containing 2% by mass of Si (excluding the original Si of the molecular sieve) was obtained, numbered K.
  • the ammonium type ZSM-5 molecular sieve was calcined at 550 ° C for 4 h in an air atmosphere, and then impregnated at room temperature with an aqueous solution of magnesium nitrate and cerium nitrate (contents of Mg and Ce in the aqueous solution were respectively 5% by mass and 1.3% by mass). After 24 hours, after drying, it was calcined at 550 ° C for 4 h in an air atmosphere to obtain an acidic ZSM-5 molecular sieve containing 4% by mass of Mg and 1% by mass of Ce, numbered L.
  • reaction temperature (T) 400 ° C
  • reaction pressure (P) 7.0 MPa
  • GHSV gas volumetric space velocity
  • WHSV tonnage mass space velocity
  • Example 25 was repeated, but the catalyst M in Example 25 was replaced with the catalyst N-R.
  • the reaction results are shown in Table 2.
  • Example 25 was repeated, but the catalyst M in Example 25 was replaced with the catalyst REF-2.
  • the reaction results are shown in Table 2.
  • Catalyst S 5g was placed in a stainless steel reaction tube having an inner diameter of 8 mm, and activated with 50 ml/min of hydrogen at 300 ° C for 4 h.
  • the product was analyzed by gas chromatography, and the reaction results are shown in Table 3.
  • reaction temperature (T) 400 ° C
  • reaction pressure (P) 4.0 MPa
  • GHSV syngas volume space velocity
  • V(H 2 )% 40%
  • WHSV toluene mass space velocity
  • Example 25 The catalyst deactivated in Example 25 was treated at 550 ° C for 10 h with a mixture of 2 vol% oxygen and 98 vol% nitrogen to regenerate the catalyst for one round. The reaction was then carried out under the conditions of Example 25. A total of five rounds were regenerated in the same way. The catalytic activity data after 500 h of each reaction was selected for comparison. The results are shown in Table 4.
  • Example 31 The catalyst deactivated in Example 31 was treated at 550 ° C for 10 h with a mixed gas consisting of 2 vol% oxygen and 98 vol% nitrogen to regenerate the catalyst for one round. Then, the reaction was carried out under the conditions of Example 31. A total of five rounds were regenerated in the same way. The catalytic activity data after 500 h of each reaction was selected for comparison. The results are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种芳烃合成用催化剂,该催化剂包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一,其中在惰性载体限域的高分散金属氧化物材料中,惰性载体为氧化硅和氧化铝中至少之一,并且金属氧化物以金属计的含量低于或等于10质量%;和其中酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性 ZSM -11分子筛和它们的混合物。催化剂在应用于合成气与甲苯反应直接制取对二甲苯的方法中时,催化剂具有长的寿命,高的二甲苯选择性,并可再生多次使用。

Description

一种芳烃合成用催化剂及其制备方法 技术领域
本发明涉及一种芳烃合成用催化剂及其制备方法。
背景技术
对二甲苯(PX)是重要的基本化工原料,主要用来制备对二苯甲酸(PTA),进而生产聚对苯二甲酸乙二醇酯(PET)。目前,对二甲苯主要由芳烃联合装置得到,其中由石脑油通过重整、芳烃抽提、芳烃分馏、歧化和烷基转移,二甲苯异构化以及吸附分离得到高纯度PX产品。因热力学限制,对二甲苯在三个二甲苯中比例不到25%,物料循环处理量大,能耗高,投资高。利用甲醇对甲苯进行烷基化制对二甲苯能够突破热力学限制得到高比例的对二甲苯,是一个有前景的PX生产路线。
众所周知,甲醇一般以合成气为原料进行生产。如果利用合成气与甲苯反应直接制取对二甲苯,这样的方法可以缩短反应路径、节约能耗、减少污水排放以及降低固定投资。
WO2004/043593公开了通过使芳烃与包含一氧化碳和氢气的进料在选择性活化的催化剂存在下反应来选择性生产对二甲苯的方法。所述方法中使用的催化剂包含酸性硅酸盐基材料和有催化活性的金属或金属氧化物。
中国专利申请CN104945219A公开了苯与合成气一步制备甲苯和对二甲苯的方法及其中使用的催化剂。所述催化剂包含金属氧化物组分和固体酸组分。
美国专利号4,487,984公开了通过使芳族化合物与合成气在烷基化条件下在双功能催化剂存在下反应制备烷基芳族化合物的方法。所述双功能催化剂包含铜、锌和铝或铬的复合氧化物和硅铝酸盐。
仍然需要具有长的寿命、高的二甲苯选择性和好的可再生性的、适用于合成气与甲苯反应直接制取对二甲苯的催化剂。
发明内容
为了克服现有技术中存在的问题,本发明人进行了勤勉的研究。结果发现,一种包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一的催化剂非常适合使用合成气作为原料或原料之一的芳烃合成方法,例如由合成气与甲苯制取对二甲苯的方法和由合成气直接制备芳烃的方法,由此完成了本发明。
因此,本发明的一个目的是提供一种芳烃合成用催化剂,该催化剂包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一,其中在所述惰性载体限域的高分散金属氧化物材料中,惰性载体为氧化硅和氧化铝中至少之一,并且所述金属氧化物以金属计的含量低于或等于10质量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计;和其中所述酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
本发明的另一个目的是提供一种制备上述催化剂的方法。
优选实施方案的描述
在第一方面,本发明提供了一种芳烃合成用催化剂,其包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一,其中在所述惰性载体限域的高分散金属氧化物材料中,惰性载体为氧化硅和氧化铝中至少之一,并且所述金属氧化物以金属计的含量低于或等于10重量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计;和其中所述酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
在一个实施方案中,所述惰性载体限域的高分散金属氧化物材料中的金属氧化物是除去铝和放射性元素外的金属中至少一种的氧化物。优选地,所述惰性载体限域的高分散金属氧化物材料中的金属氧化物为锌、铬、锆、铜、锰、铂和钯中的至少一种的氧化物。更优选地,所述惰性载体限域的高分散金属氧化物材料中的金属氧化物为锌、铬、锆中的至少一种的氧化物。
在一个实施方案中,所述惰性载体限域的高分散金属氧化物材料中金 属氧化物的以金属计的含量低于或等于10重量%;优选低于或等于5重量%;更优选低于或等于2重量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计。除非另外指明,本文中使用的术语“金属氧化物的含量”不包括氧化铝的含量,如果存在氧化铝的话。
在一个实施方案中,所述惰性载体限域的高分散金属氧化物材料中金属氧化物的平均颗粒尺度小于或等于100nm,优选小于或等于50nm,更优选小于或等于20nm。
在一个优选的实施方案中,所述惰性载体限域的高分散金属氧化物材料的X射线粉末衍射图不显示所述金属氧化物的特征衍射峰。
所述惰性载体限域的高分散金属氧化物材料与本领域已知的常规金属复合氧化物材料不同。例如,前者具有高的金属氧化物分散度(无金属氧化物的特征XRD衍射峰)、小的金属氧化物质量分数(一般小于10%)和小的金属氧化物平均颗粒尺寸(一般小于100nm),并且通常具有大的比表面积(一般大于400m 2/g)。常规复合金属氧化物材料如本领域已知的、用于低温甲醇合成的铜锌铝复合氧化物材料(CuZnAlO x)、用于高温甲醇合成的锌铬铝复合氧化物材料(ZnCrAlO x)以及锌锆复合氧化物材料(ZnZrO x)具有一般大于80%的金属氧化物质量分数,具有显著的金属氧化物特征XRD衍射峰,并且具有一般低于100m 2/g的比表面积。
不希望局限于任何特定的理论,据信在本发明的惰性载体限域的高分散金属氧化物材料中大量存在的惰性载体既能提供大的比表面积,又能因限域效应起到稳定用作催化活性组分的金属氧化物的作用。
在一个实施方案中,所述惰性载体限域的高分散金属氧化物材料的平均粒径小于或等于5mm,优选小于或等于1mm,更优选小于或等于0.5mm,仍更优选小于或等于0.1mm,仍更优选小于或等于0.05mm。
本发明催化剂中的酸性分子筛组分选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
在一些实施方案中,酸性分子筛的改性是磷改性、硼改性、硅改性、碱土金属改性和稀土金属改性中的一种或多种。
在一些实施方案中,所述酸性ZSM-5和ZSM-11分子筛中硅和铝的原子比为Si/Al=3~200,优选Si/Al=100~150。
在一些实施方案中,所述酸性ZSM-5与ZSM-11分子筛的晶体是微米尺度或纳米尺度,晶体中含有微孔结构或介孔-微孔结构。
可用于本发明的改性的酸性分子筛可商购得到,或者可以通过本质上已知的方法制备。对制备所述改性的酸性分子筛的具体方法没有特殊的限制。例如,可以通过对可商购得到的上述酸性ZSM-5分子筛或酸性ZSM-11分子筛进行改性处理得到所述改性的酸性分子筛。
在一个具体实施方案中,可以通过用例如H 3PO 4,NH 4H 2PO 4或(NH 4) 2HPO 4水溶液浸渍酸性分子筛,然后将所述浸渍过的酸性分子筛烘干和然后煅烧,得到基于改性分子筛的重量计含0.5~10.0重量%的磷的磷改性酸性分子筛。
在一个实施方案中,所述酸性分子筛的平均粒径小于或等于5mm,优选小于或等于0.5mm,更优选小于或等于0.1mm,仍更优选小于或等于0.05mm。
在另一个具体实施方案中,可以通过用例如H 3BO 3水溶液浸渍酸性分子筛,然后将所述浸渍过的酸性分子筛烘干和然后煅烧,得到基于改性分子筛的重量计含0.5~10.0重量%的硼的硼改性酸性分子筛。
在又一个具体实施方案中,可以通过用硅氧烷化合物经液相沉积法处理和/或用硅烷化合物经气相沉积法处理来制备硅改性的酸性分子筛。可以使用的硅氧烷化合物和硅烷化合物分别由以下结构式表示:
Figure PCTCN2018112417-appb-000001
其中R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8各自独立地为C 1-10烷基。所述硅氧烷化合物的一个实例为正硅酸乙酯,和所述硅烷化合物的一个实例为四甲基硅烷。
在一个具体实施方案中,所述液相沉积法如下进行:将硅氧烷化合物溶解到惰性有机溶剂中以提供硅氧烷化合物溶液,然后用所述溶液浸泡或浸渍酸性分子筛,干燥和然后煅烧,得到硅改性的酸性分子筛。基于改性分子筛的重量计,该硅改性的酸性分子筛中硅负载量可以为0.5~10.0重 量%,所述硅负载量不包括酸性分子筛中原有的硅。所述的惰性有机溶剂可以是任何不与硅氧烷化合物以及分子筛反应的溶剂,例如正己烷、环己烷、正庚烷。
在一个具体实施方案中,所述气相沉积法如下进行:使硅烷化合物气体通过酸性分子筛,然后煅烧处理过的酸性分子筛,得到硅改性的酸性分子筛。基于改性分子筛的重量计,该硅改性的酸性分子筛中硅负载量可以为0.5~10.0重量%。所述硅负载量不包括酸性分子筛中原有的硅。
在一个具体实施方案中,可以通过用碱土或稀土金属盐水溶液浸渍酸性分子筛,然后将浸渍过的酸性分子筛过滤、烘干和煅烧,得到基于改性分子筛的重量计含0.5~10.0重量的%的碱土或稀土金属的碱土或稀土金属改性酸性分子筛。
在一些实施方案中,所述分散剂选自氧化铝、二氧化硅和它们的混合物。对可用作分散剂的氧化铝、二氧化硅或氧化铝-二氧化硅没有特殊的限制,并且它们可从很多供应商处商购得到。
对于可用于本发明中的石墨粉没有特殊的限制,并且它们可从很多供应商处商购得到。在一些实施方案中,所述石墨粉具有0.05~5微米的平均颗粒大小。
在一些实施方案中,本发明的催化剂包含10~90重量%的惰性载体限域的高分散金属氧化物材料。惰性载体限域的高分散金属氧化物材料的含量的下限可以是12,15,18,20,22,25,28,30,32,35,38,40,42,45,48,或50重量%,并且上限可以是88,85,82,80,78,75,72,70,68,65,62,60,58,55,52,或50重量%,基于催化剂的重量计。
在一些实施方案中,本发明的催化剂包含10~90重量%的酸性分子筛。酸性分子筛的含量的下限可以是12,15,18,20,22,25,28,30,32,35,38,40,42,45,48,或50重量%,并且上限可以是88,85,82,80,78,75,72,70,68,65,62,60,58,55,52,或50重量%,基于催化剂的重量计。
在一些实施方案中,本发明的催化剂包含0~10重量%,例如0~8重量%,0~7重量%,0~6重量%,或0~5重量%的石墨粉,基于催化剂的重量计。
在一些实施方案中,本发明的催化剂包含0~40重量%,例如0~38重量%,0~35重量%,0~30重量%,或0~25重量%的分散剂,基于催化剂的重量计。
在一些实施方案中,本发明的催化剂包含10~90重量%的惰性载体限域的高分散金属氧化物材料,10~90重量%的酸性分子筛,0~10重量%的石墨粉,和0~40重量%的分散剂,其中惰性载体限域的高分散金属氧化物材料和酸性分子筛的总含量为60~100重量%,所述重量百分数基于催化剂的总重量计。在一些优选的实施方案中,本发明的催化剂包含20~80重量%的惰性载体限域的高分散金属氧化物材料,20~80重量%的酸性分子筛,0~5重量%的石墨粉,和0~30重量%的分散剂,所述重量百分数基于催化剂的总重量计。
本发明的催化剂可以具有本领域已知适用于固定床反应器应用的任何形状和大小。例如,所述催化剂的形状可以为球形、圆柱形、半圆柱形、棱柱形、三叶草形、环形、丸形、规则或不规则颗粒或片状。例如,所述催化剂可以具有2mm-10mm的等价直径。
上述催化剂适用于使用合成气作为原料或原料之一的芳烃合成方法,例如通过合成气与甲苯反应制取对二甲苯的方法和由合成气直接制取芳烃的方法。上述催化剂尤其适用于通过合成气与甲苯反应制取对二甲苯的方法。
如本领域公知的,合成气是指主要包含氢气和一氧化碳的混合气体,芳烃主要指苯、甲苯和二甲苯。
不希望局限于任何具体理论,据信合成气与甲苯反应制取对二甲苯的反应过程非常复杂,并且包括一系列的反应过程,例如:
1)合成气直接制取芳烃反应(以直接制取甲苯为例)
Figure PCTCN2018112417-appb-000002
2)合成气与甲苯的烷基化反应
Figure PCTCN2018112417-appb-000003
当上述催化剂用于合成气与甲苯反应制备对二甲苯时,反应条件可以为:反应温度300~450℃,反应压力0.5~10.0MPa,甲苯重时空速0.01~20h -1,合成气的标准状态下气体体积小时空速1000~20000h -1,合成气中氢气与一氧化碳的摩尔比为1:9~9:1。
在第二方面,本发明提供了制备上述催化剂的方法,该方法包括以下步骤:
(1)提供惰性载体限域的高分散金属氧化物材料;
(2)提供改性的酸性分子筛;
(3)混合所述惰性载体限域的高分散金属氧化物材料、所述改性的酸性分子筛、和任选的石墨粉和分散剂中至少之一,并将所得到的混合物模制成型。
在一些实施方案中,可用于本发明方法中的惰性载体限域的高分散金属氧化物材料可以通过共沉淀-煅烧方法制备。例如,在使用氧化铝作为载体的情况下,所述惰性载体限域的高分散金属氧化物材料可以如下所述制备:将催化活性金属的盐与铝盐配成混合金属盐水溶液;使所述混合金属盐水溶液和沉淀剂水溶液接触,以使所述混合金属盐水溶液中的金属离子共沉淀;老化;和将沉淀物洗涤、干燥后煅烧。所述的沉淀剂的实例包括但不限于碳酸钠、碳酸钾、碳酸铵、碳酸氢钠、碳酸氢钾、碳酸氢铵、氨水、氢氧化钠、氢氧化钾和它们的混合物。
在一个实施方案中,所述共沉淀过程中温度为0℃至90℃,共沉淀过程中pH值为7.0至8.5,老化时间不低于1小时,煅烧温度为300℃至700℃。
在一个具体的实施方案中,所述惰性载体限域的高分散金属氧化物材料如下制备:将铝盐和催化活性金属的盐配成总金属离子浓度为0.1mol/L至3.5mol/L的混合金属盐水溶液;然后使所述混合金属盐水溶液与摩尔浓度为0.1mol/L至3.5mol/L的沉淀剂水溶液在0℃至90℃的温度下在搅拌下接触以共沉淀金属盐中的金属离子并且然后老化一段时间,共沉淀过程中溶液pH值可以为7.0至8.5,老化时间不低于1小时;将所得到的沉 淀物过滤和洗涤后在例如300℃至700℃的温度下煅烧,制得惰性载体限域的高分散金属氧化物材料。
在本发明中,对所述铝盐和所述催化活性金属的盐的种类没有特殊的限制,只要它们是水溶性的,例如在25℃下具有大于1g/L的水溶解度。所述铝盐和所述催化活性金属的盐的实例包括但不限于盐酸盐、硫酸盐和硝酸盐。
在本发明方法中,对所述混合金属盐水溶液与所述沉淀剂水溶液的接触方式没有特殊的限制。在一个具体的实施方案中,所述接触可以采取并流加料、正加料或反加料的方式完成。
在另外一些实施方案中,可用于本发明方法中的惰性载体限域的高分散金属氧化物材料可以通过溶胶-凝胶方法制备。例如,在使用至少二氧化硅作为载体的情况下,所述惰性载体限域的高分散金属氧化物材料可以如下所述制备:将催化活性金属的盐的水溶液与沉淀剂水溶液一起加入到硅氧烷基化合物中,并允许共沉淀和溶胶凝胶反应进行,然后将所得到的凝胶洗涤、干燥后煅烧,制得惰性载体限域的高分散金属氧化物材料。所述的沉淀剂的实例包括但不限于碳酸铵、氨水、碳酸氢铵、碳酸二氢铵、尿素中的一种或多种。
在一个实施方案中,所述硅氧烷基化合物为正硅酸烷基酯,其实例包括但不限于正硅酸甲酯、正硅酸乙酯、正硅酸正丙酯、正硅酸异丙酯、正硅酸正丁酯、正硅酸异丁酯、正硅酸叔丁酯和它们的混合物。
如前所述,可用于本发明方法中的改性的酸性分子筛的实例包括但不限于磷改性、硼改性、硅改性、碱土金属改性和/或稀土金属改性的ZSM-5分子筛或ZSM-11分子筛。所述改性的酸性分子筛的细节如本发明第一方面中所述。
可用于本发明方法中的石墨粉和分散剂如本发明第一方面中所述,并且可以商购得到。
对本发明方法的步骤(3)中采用的模制方法没有特殊的限制。例如,可以采用挤出方法或模压方法将所述混合物模制成适合固定床反应器应用的催化剂颗粒。
本发明能产生的有益效果包括:本发明的催化剂可应用于合成气与甲 苯直接制取对二甲苯反应,催化剂寿命长,对二甲苯选择性高,可再生多次使用。与常规金属复合氧化物材料相比,本发明中使用的惰性载体限域的高分散金属氧化物材料具有更大的比表面、更高的催化活性、更低的相对较贵的活性金属氧化物含量低。
附图说明
图1显示了实施例1中材料A的XRD图。
图2显示了对比例1中材料REF-1的XRD图。
具体实施方式
下面结合实施例详述本发明,但本发明并不局限于这些实施例。
除非另外指明,本发明的实施例中的原料均通过商业途径购买。
在实施例中,利用带有气体自动进样器、连接TDX-1填充柱的TCD检测器以及连接FFAP与PLOT-Q毛细管柱的FID检测器的两台Agilent7890气相色谱仪进行气体组成自动分析。
在实施例中,转化率和选择性基于碳摩尔数进行计算:
一氧化碳转化率=[(进料中的一氧化碳碳摩尔数)-(出料中的一氧化碳碳摩尔数)]÷(进料中的一氧化碳碳摩尔数)×100%
甲苯转化率=[(进料中的甲苯碳摩尔数)-(出料中的甲苯碳摩尔数)]÷(进料中的甲苯碳摩尔数)×100%
二甲苯选择性=(出料中的二甲苯碳摩尔数)÷(出料中的所有烃类产物的碳摩尔数-原料甲苯的碳摩尔数)×100%
对二甲苯比例=(出料中的对二甲苯碳摩尔数)÷(出料中的所有二甲苯的碳摩尔数)×100%
惰性载体限域的高分散金属氧化物材料
实施例1
配制含0.05mol/L Zn 2+与1.0mol/L Al 3+的混合硝酸盐水溶液1L,将0.5mol/L的氨水溶液缓慢加入其中,同时控制共沉淀反应温度为70℃和控制pH值为7.2,使金属离子共沉淀。反应结束后使反应混合物在70℃ 的温度下老化4h。将沉淀物过滤、用去离子水洗涤后干燥,500℃煅烧4h,得到氧化铝作为惰性载体限域的高分散锌氧化物材料,编号为A。A含8.3重量%的锌,XRD图如图1所示。
实施例2
配制含0.02mol/L Zn 2+、0.02mol/L Cr 3+与1.0mol/L Al 3+的混合硝酸盐水溶液1L,将1.0mol/L的碳酸铵溶液缓慢加入其中,同时控制共沉淀反应温度为70℃和控制pH值为7.5,使金属离子共沉淀。反应结束后使反应混合物在70℃的温度下老化4h。将沉淀物过滤、用去离子水洗涤后干燥,500℃煅烧4h,得到氧化铝作为惰性载体限域的高分散锌铬氧化物材料,编号为B。B含3.1重量%的锌和2.5重量%的铬。
实施例3
配制含0.01mol/L Zn 2+、0.01mol/L Zr 4+与1.0mol/L Al 3+的混合硝酸盐水溶液1L,将1.2mol/L的碳酸钠溶液缓慢加入其中,同时控制共沉淀反应温度为70℃和控制pH值为7.3,使金属离子共沉淀。反应结束后使反应混合物在70℃的温度下老化4h。将沉淀物过滤、用去离子水洗涤后干燥,500℃煅烧4h,得到氧化铝作为惰性载体限域的高分散锌锆氧化物材料,编号为C。C含1.5质量%的锌和2.1质量%的锆。
实施例4
配制含0.01mol/L Zn 2+、0.02mol/L Cu 2+与1.0mol/L Al 3+的混合硝酸盐水溶液1L,将1.5mol/L的碳酸钾溶液缓慢加入其中,同时控制共沉淀反应温度为70℃和控制pH值为7.9,使金属离子共沉淀。反应结束后使反应混合物在70℃的温度下老化4h。将沉淀物过滤、用去离子水洗涤后干燥,500℃煅烧4h,得到氧化铝作为惰性载体限域的高分散锌铜氧化物材料,编号为D。D含1.5质量%的锌和3.1质量%的铜。
实施例5
配制含0.2mol/L Zn 2+与0.2mol/L Cr 3+的混合硝酸盐水溶液100mL,配制1.0mol/L的尿素水溶液100mL。将上述两种溶液滴加入1mol的正硅酸乙酯中,室温反应24h,获得凝胶。将所述凝胶用去离子水洗涤,在100℃干燥,500℃煅烧4h,得到二氧化硅作为惰性载体限域的高分散锌铬氧化物材料,编号为E。E含1.8质量%的锌和1.5质量%的铬。
实施例6
配制含0.2mol/L Zn 2+与0.2mol/L Zr 4+的混合硝酸盐水溶液100mL,配制1.0mol/L的尿素水溶液100mL。将上述两种溶液滴加入1mol的正硅酸乙酯中,室温反应24h,获得凝胶。将所述凝胶用去离子水洗涤,在100℃干燥,500℃煅烧4h,得到氧化硅作为惰性载体限域的高分散锌锆氧化物材料,编号为F。F含1.8质量%的锌和2.5质量%的锆。
对比例1
配制含1.0mol/L Zn 2+、0.50mol/L Cr 3+与0.20mol/L Al 3+的混合硝酸盐水溶液1L,将1.0mol/L的碳酸铵溶液缓慢加入其中,同时控制共沉淀反应温度为70℃和控制pH值为7.5,使金属离子共沉淀。反应结束后使反应混合物在70℃的温度下老化4h。将沉淀物过滤、用去离子水洗涤后干燥,500℃煅烧4h,得到锌铬铝复合氧化物,编号为REF-1。REF-1的XRD图如图2所示。
改性酸性分子筛制备
实施例7
将Si/Al=25(原子比)的钠型ZSM-5(得自南开大学催化剂厂)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20:1),得到铵型ZSM-5分子筛。将该铵型ZSM-5分子筛在空气气氛下550℃煅烧4h,然后利用(NH 4) 2HPO 4水溶液(水溶液中P的含量为5质量%)在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含4质量%P的酸性ZSM-5分子筛,编号为G。
实施例8
将Si/Al=200(原子比)的钠型ZSM-5(得自南开大学催化剂厂)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20:1),得到铵型ZSM-5分子筛。将该铵型ZSM-5分子筛在空气气氛下550℃煅烧4h,然后利用H 3BO 3水溶液(水溶液中B的含量为10质量%)在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含8质量%B的酸性ZSM-5分子筛,编号为H。
实施例9
将Si/Al=40(原子比)的钠型ZSM-11(得自奥科公司)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20:1),得到铵型ZSM-11分子筛。将该铵型ZSM-11分子筛在空气气氛下550℃煅烧4h,然后利用H 3BO 3水溶液(水溶液中B的含量为10质量%)在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含8质量%B的酸性ZSM-11分子筛,编号为I。
实施例10
将Si/Al=3(原子比)的钠型ZSM-5(得自奥科公司)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20:1),得到铵型ZSM-5分子筛。将该铵型ZSM-5分子筛在空气气氛下550℃煅烧4h,然后利用正硅酸乙酯的环己烷溶液(溶液中Si的含量为10质量%)在50℃下处理4小时。将反应混合物蒸干后在空气气氛下550℃煅烧4h,得到含8质量%Si(不包括分子筛原有的Si)的酸性ZSM-5分子筛,编号为J。
实施例11
将Si/Al=80(原子比)的钠型ZSM-5(得自复旭公司)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20:1),得到铵型ZSM-5分子筛。将该铵型ZSM-5分子筛500g在空气气氛下550℃煅烧4h,然后利用1L/min氮气携带5%体积分数的四甲基硅烷在200℃下处理3小时,再在空气气氛下550℃煅烧4h,得到含2质量%Si(不包括分子筛原有的Si)的酸性ZSM-5分子筛,编号为K。
实施例12
将Si/Al=60(原子比)的钠型ZSM-5(得自南开大学催化剂厂)用0.8mol/L的硝酸铵水溶液在80℃交换3次(硝酸铵水溶液与分子筛体积比为20:1),得到铵型ZSM-5分子筛。将该铵型ZSM-5分子筛在空气气氛下550℃煅烧4h,然后利用硝酸镁与硝酸铈混合水溶液(水溶液中Mg与Ce的含量分别为5质量%和1.3质量%)在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含4质量%Mg和1质量%Ce的酸性ZSM-5分子筛,编号为L。
催化剂制备
实施例13
将20质量份得自实施例1的惰性载体限域的高分散金属氧化物材料A、70质量份得自实施例7的酸性分子筛G、5质量份石墨粉和5质量份作为分散剂的氧化硅均匀混合,然后用打片机打片成直径为4mm,高度为4mm的柱状催化剂,编号为M。制备方案汇总见表1。
实施例14~18
制备方法与实施例13相似,具体方案见表1。
对比例2
将20质量份得自对比例1的金属复合氧化物REF-1、70质量份得自实施例7的酸性分子筛G、5质量份石墨粉和5质量份作为分散剂的氧化硅均匀混合,然后用打片机打片成直径为4mm,高度为4mm的柱状催化剂,编号为REF-2。
实施例19
将75质量份得自实施例1的惰性载体限域的高分散金属氧化物材料A与25质量份得自实施例7的酸性分子筛G均匀混合并碾碎成小于0.05mm的粉末,然后压片筛分制成1-2mm颗粒催化剂,编号为S,制备方案汇总见表1。
实施例20~24
制备方法与实施例19相似,具体方案见表1。
对比例3
将75质量份得自对比例1的金属复合氧化物REF-1与25质量份得自实施例7的酸性分子筛G均匀混合并碾碎成小于0.05mm的粉末,然后压片筛分制成1-2mm颗粒催化剂,编号为REF-3。
表1催化剂制备方案
Figure PCTCN2018112417-appb-000004
催化剂性能测试
实施例25
将催化剂M 200g装入内径为28mm的不锈钢反应管内,用1000ml/min氢气在300℃下活化4h。然后将氢气流切换为合成气流并引入甲苯流,并在以下条件下反应:反应温度(T)=400℃,反应压力(P)=7.0MPa,标准状况下气体体积空速(GHSV)=6000h -1,合成气中CO与H 2的体积比为1:1,甲苯质量空速(WHSV)=1.0h -1。反应稳定后,用气相色谱分析产物。反应结果见表2。
实施例26-30
重复实施例25,但是将实施例25中的催化剂M换成催化剂N-R。反应结果见表2。
对比例4
重复实施例25,但是将实施例25中的催化剂M换成催化剂REF-2。反应结果见表2。
表2实施例25-30和对比例4中的催化反应结果
Figure PCTCN2018112417-appb-000005
实施例31
将催化剂S 5g装入内径为8mm的不锈钢反应管内,用50ml/min氢气在300在℃下活化4h。然后将氢气流切换为合成气流并引入甲苯流,并在以下条件下反应:反应温度(T)=400℃,反应压力(P)=4.0MPa,标准状况下合成气气体体积空速(GHSV)=4000h -1,合成气中CO与H 2的体积比为1.5:1,甲苯质量空速(WHSV)=0.5h -1。反应500h后,用气相色谱分析产物,反应结果见表3。
实施例32-36
反应条件和反应结果见表3。其他操作同实施例31。
对比例5
将催化剂REF-3 5g装入内径为8mm的不锈钢反应管内,用50ml/min氢气在300在℃下活化4h,以下条件下反应:反应温度(T)=400℃,反应压力(P)=4.0MPa,标准状况下合成气体积空速(GHSV)=4000h -1,合成气(CO与H 2混合气)中氢气的体积分数V(H 2)%=40%,甲苯质量空速(WHSV)=0.5h -1。反应500h后,用气相色谱分析产物,反应结果见表3。
表3实施例31-36和对比例5中的催化反应结果
Figure PCTCN2018112417-appb-000006
催化剂再生性能测试
实施例37
将实施例25中失活后的催化剂利用由2体积%氧气和98体积%氮气组成的混合气在550℃处理10h,使得催化剂再生一轮。然后在实施例25的条件下反应。按照同样的方式总共再生五轮。选取每轮反应500h后的催化活性数据进行比较,结果见表4。
表4实施例37中的催化剂再生性能测试结果
Figure PCTCN2018112417-appb-000007
实施例38
将实施例31中失活后的催化剂利用由2体积%氧气和98体积%氮气 组成的混合气在550℃处理10h,使得催化剂再生一轮。然后在实施例31的条件下反应。按照同样的方式总共再生五轮。选取每轮反应500h后的催化活性数据进行比较,结果见表5。
表5实施例38中的催化剂再生性能测试结果
Figure PCTCN2018112417-appb-000008
以上所述,仅是本发明的几个实施例,并非对本发明做任何形式的限制,虽然本发明以较佳实施例揭示如上,然而并非用以限制本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (11)

  1. 一种芳烃合成用催化剂,该催化剂包含惰性载体限域的高分散金属氧化物材料、酸性分子筛、和任选的石墨粉和分散剂中至少之一,其中在所述惰性载体限域的高分散金属氧化物材料中,惰性载体为氧化硅和氧化铝中至少之一,并且所述金属氧化物以金属计的含量低于或等于10质量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计;和其中所述酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
  2. 权利要求1的催化剂,其具有以下特征中至少之一:
    -所述金属氧化物是锌、铬、锆、铜、锰、铂和钯中的至少一种的氧化物;
    -所述惰性载体限域的高分散金属氧化物材料中金属氧化物以金属计的含量低于或等于5重量%,基于所述惰性载体限域的高分散金属氧化物材料的重量计;
    -所述惰性载体限域的高分散金属氧化物材料中金属氧化物的颗粒尺度小于或等于100nm;
    -酸性分子筛的改性是磷改性、硼改性、硅改性、碱土金属改性和稀土金属改性中的一种或多种;
    -所述酸性ZSM-5和ZSM-11分子筛中硅和铝的原子比为Si/Al=3~200;
    -所述催化剂的形状为球形、圆柱形、半圆柱形、棱柱形、三叶草形、环形、丸形、不规则颗粒或片状。
  3. 权利要求1的催化剂,其中所述催化剂包含10~90重量%的惰性载体限域的高分散金属氧化物材料,10~90重量%的酸性分子筛,0~10重量%的石墨粉,和0~40重量%的分散剂,其中惰性载体限域的高分散金属氧化物材料和酸性分子筛的总含量为60~100重量%,所述重量百分数基于催化剂的总重量计。
  4. 权利要求1的催化剂,其中所述催化剂包含20~80重量%的惰性载体限域的高分散金属氧化物材料,20~80重量%的酸性分子筛,0~5 重量%的石墨粉,和0~30重量%的分散剂,所述重量百分数基于催化剂的总重量计。
  5. 权利要求1的催化剂,其中所述惰性载体限域的高分散金属氧化物材料的平均粒径小于或等于5mm,并且所述酸性分子筛颗粒的平均粒径小于或等于5mm;优选所述惰性载体限域的高分散金属氧化物材料的平均粒径小于或等于0.05mm,并且所述酸性分子筛颗粒的平均粒径小于或等于0.05mm。
  6. 制备权利要求1-5中任一项所述的催化剂的方法,该方法包括以下步骤:
    (1)提供惰性载体限域的高分散金属氧化物材料;
    (2)提供改性的酸性分子筛;
    (3)混合由步骤(1)得到的惰性载体限域的高分散金属氧化物材料、由步骤(2)得到的改性的酸性分子筛、和任选的石墨粉和分散剂中至少之一,并将所得到的混合物模制成型。
  7. 权利要求6的方法,其具有以下特征中至少之一:
    -在步骤(1)中,通过沉淀-煅烧方法制备所述惰性载体限域的高分散金属氧化物材料,或者通过溶胶-凝胶方法制备所述惰性载体限域的高分散金属氧化物材料;
    -所述改性的酸性分子筛选自磷改性、硼改性、硅改性、碱土金属改性和/或稀土金属改性的ZSM-5分子筛和ZSM-11分子筛;
    -在步骤(3)中,采用挤出方法或模压方法将所述混合物模制成催化剂颗粒。
  8. 权利要求6的方法,其中在步骤(1)中,通过包括如下步骤的方法提供所述惰性载体限域的高分散金属氧化物材料:将催化活性金属的盐与铝盐配成混合金属盐水溶液;使所述混合金属盐水溶液和沉淀剂水溶液接触,以使所述混合金属盐水溶液中的金属离子共沉淀;老化;和将沉淀物洗涤、干燥后煅烧,制得惰性载体限域的高分散金属氧化物材料。
  9. 权利要求8的方法,其具有以下特征中至少之一:
    -所述催化活性金属的盐和所述铝盐选自盐酸盐、硫酸盐和硝酸盐;
    -所述沉淀剂选自碳酸钠、碳酸钾、碳酸铵、碳酸氢钠、碳酸氢钾、 碳酸氢铵、氨水、氢氧化钠、氢氧化钾和它们的混合物;
    -所述共沉淀在0℃至90℃下进行;
    -所述共沉淀过程中pH值为7.0至8.5;
    -所述老化时间不低于1小时;
    -所述煅烧在300℃至700℃下进行。
  10. 权利要求6的方法,其中在步骤(1)中,通过包括如下步骤的方法提供所述惰性载体限域的高分散金属氧化物材料:将催化活性金属的盐的水溶液与沉淀剂水溶液一起加入到硅氧烷基化合物中,并允许共沉淀和溶胶凝胶反应进行,然后将所得到的凝胶洗涤、干燥后煅烧,制得惰性载体限域的高分散金属氧化物材料。
  11. 权利要求10的方法,其具有以下特征中至少之一:
    -所述沉淀剂选自碳酸铵、氨水、碳酸氢铵、碳酸二氢铵、尿素和它们的混合物;
    -所述硅氧烷基化合物为正硅酸烷基酯,优选选自正硅酸甲酯、正硅酸乙酯、正硅酸正丙酯、正硅酸异丙酯、正硅酸正丁酯、正硅酸异丁酯、正硅酸叔丁酯和它们的混合物。
PCT/CN2018/112417 2017-11-15 2018-10-29 一种芳烃合成用催化剂及其制备方法 WO2019095985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711133501.7 2017-11-15
CN201711133501.7A CN109772436B (zh) 2017-11-15 2017-11-15 一种芳烃合成用催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2019095985A1 true WO2019095985A1 (zh) 2019-05-23

Family

ID=66495371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112417 WO2019095985A1 (zh) 2017-11-15 2018-10-29 一种芳烃合成用催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN109772436B (zh)
WO (1) WO2019095985A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023978A (zh) * 2019-06-04 2020-12-04 中国石油化工股份有限公司 一种二甲苯异构化催化剂及其制备方法与应用
CN115109608A (zh) * 2022-05-19 2022-09-27 中国科学院大连化学物理研究所 一种制备低芳烃含量液体燃料的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743609B (zh) * 2019-11-21 2020-11-17 厦门大学 一种组合型催化剂及其制备方法和二氧化碳加氢耦合甲苯烷基化制二甲苯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559380A (zh) * 2009-06-03 2009-10-21 中国科学院大连化学物理研究所 用于催化汽油生产btx芳烃和清洁汽油的催化剂及制备
CN103357430A (zh) * 2012-03-30 2013-10-23 中国科学院大连化学物理研究所 一种芳构化用共结晶分子筛催化剂、制备方法及其应用
CN103539619A (zh) * 2012-07-12 2014-01-29 中国石油化工股份有限公司 混合碳四芳构化制备芳烃的方法
WO2014025371A1 (en) * 2012-08-09 2014-02-13 Saudi Basic Industries Corporation Method of making a catalyst and catalyst made thereby and its use in aromatic alkylation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239057B1 (en) * 1999-01-15 2001-05-29 Uop Llc Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst
KR100557558B1 (ko) * 2000-11-30 2006-03-03 에스케이 주식회사 탄화수소 혼합물로부터 방향족 탄화수소 및 액화석유가스를 제조하는 방법
US20040097769A1 (en) * 2002-11-14 2004-05-20 Ou John D. Y. Para-xylene production process employing in-situ catalyst selectivation
CN102078819A (zh) * 2009-11-26 2011-06-01 中国石油化工股份有限公司 轻烃芳构化催化剂及其制备方法
JP5517681B2 (ja) * 2010-03-09 2014-06-11 Jx日鉱日石エネルギー株式会社 芳香族化合物の製造方法
CN105817261B (zh) * 2015-01-08 2019-03-22 中国石油化工股份有限公司 一种c8芳烃异构化催化剂及其制备方法
CN104945219A (zh) * 2015-06-04 2015-09-30 华东理工大学 苯与合成气一步制备甲苯和对二甲苯的方法及其催化剂
CN106540740B (zh) * 2016-10-28 2019-09-10 厦门大学 由合成气高选择性制轻质芳烃的催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559380A (zh) * 2009-06-03 2009-10-21 中国科学院大连化学物理研究所 用于催化汽油生产btx芳烃和清洁汽油的催化剂及制备
CN103357430A (zh) * 2012-03-30 2013-10-23 中国科学院大连化学物理研究所 一种芳构化用共结晶分子筛催化剂、制备方法及其应用
CN103539619A (zh) * 2012-07-12 2014-01-29 中国石油化工股份有限公司 混合碳四芳构化制备芳烃的方法
WO2014025371A1 (en) * 2012-08-09 2014-02-13 Saudi Basic Industries Corporation Method of making a catalyst and catalyst made thereby and its use in aromatic alkylation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023978A (zh) * 2019-06-04 2020-12-04 中国石油化工股份有限公司 一种二甲苯异构化催化剂及其制备方法与应用
CN112023978B (zh) * 2019-06-04 2023-06-09 中国石油化工股份有限公司 一种二甲苯异构化催化剂及其制备方法与应用
CN115109608A (zh) * 2022-05-19 2022-09-27 中国科学院大连化学物理研究所 一种制备低芳烃含量液体燃料的方法
CN115109608B (zh) * 2022-05-19 2023-10-24 中国科学院大连化学物理研究所 一种制备低芳烃含量液体燃料的方法

Also Published As

Publication number Publication date
CN109772436B (zh) 2022-08-05
CN109772436A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2019095405A1 (zh) 一种由合成气直接制取芳烃并联产低碳烯烃的方法
WO2019095404A1 (zh) 一种由合成气与芳烃直接制取对二甲苯的方法
WO2019095986A1 (zh) 一种由合成气直接制取芳烃的方法
US4543347A (en) Catalyst composition for conversion of synthesis gas to hydrocarbons
JP5584891B2 (ja) 発熱法の触媒用担体および該担体から製造された触媒
WO2019095985A1 (zh) 一种芳烃合成用催化剂及其制备方法
WO2019218488A1 (zh) 一种芳烃合成用催化剂及其制备方法和应用
WO2018076909A1 (zh) 一种用于合成芳烃的催化剂和其制备方法
CN101410354A (zh) 乙苯的转化方法和对二甲苯的制备方法
WO2019218489A1 (zh) 一种对二甲苯合成用催化剂及其制备方法和应用
WO2019095987A1 (zh) 一种由合成气与甲苯直接制取对二甲苯的方法
US5705723A (en) Hydrogenation catalyst composition and a hydrogenation process
TW200410928A (en) Process for the preparation of phenol by means of the hydrodeoxygenation of benzene-diols
JP2000169863A (ja) 炭化水素の異性化方法
CN110721737A (zh) 一种轻质芳烃与甲醇高效烷基化的择形催化剂
EA040601B1 (ru) Способ прямого получения п-ксилола из синтез-газа и ароматического углеводорода
JPS61191517A (ja) イソパラフインに富む炭化水素の製法
WO2014093440A1 (en) Conversion of methane to aromatic compounds using uzm-44 aluminosilicate zeolite
US11590481B2 (en) Heteroatom-doped zeolites for bifunctional catalytic applications
JP3009249B2 (ja) モノまたは/およびジアルキルナフタレンの製造方法
EA041174B1 (ru) Способ прямого получения ароматических соединений из синтез-газа
JP2838195B2 (ja) ブタン水素化分解用触媒及びその製造方法
JPS6118433A (ja) 炭化水素合成用触媒
JP3465042B2 (ja) アルキル基を持つ芳香族炭化水素の脱水素化触媒及びそれを用いる不飽和炭化水素基を持つ芳香族炭化水素の製造方法
JP2004156049A (ja) 炭化水素の異性化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878048

Country of ref document: EP

Kind code of ref document: A1