WO2019218489A1 - 一种对二甲苯合成用催化剂及其制备方法和应用 - Google Patents

一种对二甲苯合成用催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2019218489A1
WO2019218489A1 PCT/CN2018/098051 CN2018098051W WO2019218489A1 WO 2019218489 A1 WO2019218489 A1 WO 2019218489A1 CN 2018098051 W CN2018098051 W CN 2018098051W WO 2019218489 A1 WO2019218489 A1 WO 2019218489A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
modified
zinc
catalyst
spinel oxide
Prior art date
Application number
PCT/CN2018/098051
Other languages
English (en)
French (fr)
Inventor
倪友明
朱文良
刘中民
刘勇
刘红超
马现刚
刘世平
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2019218489A1 publication Critical patent/WO2019218489A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/80Mixtures of different zeolites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a catalyst for synthesizing p-xylene and a preparation method and application thereof.
  • Paraxylene, ethylene and propylene are the three most important hydrocarbon chemicals.
  • Para-xylene is mainly used to prepare terephthalic acid to produce polyethylene terephthalate.
  • Para-xylene is mainly obtained by an aromatic hydrocarbon combination device.
  • the naphtha is obtained by reforming, aromatics extraction, aromatic fractionation, disproportionation and transalkylation, xylene isomerization and adsorption separation to obtain a high-purity paraxylene product. Due to thermodynamic constraints, the proportion of p-xylene in three xylenes is less than 25%, the material circulation is large, energy consumption is high, and investment is high.
  • a catalyst comprising a zinc aluminum spinel oxide and a modified acidic molecular sieve is very suitable for a method for producing ethylene and propylene in parallel by hydrogenation of carbon dioxide to produce paraxylene, thereby completing the present invention.
  • a catalyst for synthesizing p-xylene comprising a zinc-aluminum spinel oxide and a modified acidic molecular sieve having a mass ratio of 1:5 to 5:1, wherein the zinc-aluminum
  • the spinel oxide optionally contains at least one other element selected from the group consisting of chromium, zirconium, copper, manganese, indium, gallium, and silicon, and the modified acidic molecule is selected from the modified acidic ZSM-5 molecular sieve.
  • Another object of the present invention is to provide a process for preparing the above catalyst.
  • the present invention provides a catalyst for synthesizing p-xylene comprising a zinc-aluminum spinel oxide and a modified acidic molecular sieve in a mass ratio of 1:5 to 5:1, wherein the zinc-aluminum tip
  • the spar oxide optionally contains at least one other element selected from the group consisting of chromium, zirconium, copper, manganese, indium, gallium, and silicon, and the modified acidic molecule is selected from the modified acidic ZSM-5 molecular sieve, Modified acidic ZSM-11 molecular sieves and mixtures thereof.
  • the p-xylene synthesis catalyst is composed of a zinc aluminum spinel oxide having a mass ratio of 1:5 to 5:1 and a modified acidic molecular sieve, wherein the zinc aluminum spinel oxide
  • at least one other element selected from the group consisting of chromium, zirconium, copper, manganese, indium, gallium, and silicon and the modified acidic molecule is selected from the modified acidic ZSM-5 molecular sieve, modified Acidic ZSM-11 molecular sieves and mixtures thereof.
  • the mass ratio of the zinc aluminum spinel oxide to the modified acidic molecular sieve is from 1:5 to 5:1, for example, 1:1, 1:5, 2:1 or 5:1.
  • the zinc aluminum spinel oxide has a zinc aluminum spinel crystal size of less than or equal to 30 nm.
  • the zinc aluminum spinel oxide further contains at least one other element selected from the group consisting of chromium, zirconium, copper, manganese, indium, gallium, and silicon.
  • the other elements may be added to the zinc aluminum spinel oxide by one or both of impregnation or coprecipitation methods.
  • the mass fraction of the other element in the zinc aluminum spinel oxide is less than or equal to 10%, such as 1%, 3%, 5%, 7%, 9% or 10%.
  • modified acidic molecules in the catalyst of the present invention are screened from modified acidic ZSM-5 molecular sieves, modified acidic ZSM-11 molecular sieves, and mixtures thereof.
  • the modified acidic molecular sieve is an acidic molecular sieve modified using one or more of phosphorus modification, boron modification, and silicon modification methods.
  • the crystals of the acidic ZSM-5 and ZSM-11 molecular sieves are microscale or nanoscale, and the crystals contain a microporous structure or a mesoporous-microporous structure.
  • Modified acidic molecular sieves useful in the present invention are either commercially available or can be prepared by methods known per se. There is no particular limitation on the specific method of preparing the modified acidic molecular sieve.
  • the modified acidic molecular sieve can be obtained by modifying a commercially available acidic ZSM-5 molecular sieve or an acidic ZSM-11 molecular sieve.
  • the acidic molecular sieve may be impregnated with, for example, H 3 PO 4 , NH 4 H 2 PO 4 or an aqueous solution of (NH 4 ) 2 HPO 4 , and then the impregnated acidic molecular sieve is dried and then calcined.
  • a phosphorus-modified acidic molecular sieve containing 0.5 to 10.0% by weight of phosphorus based on the weight of the modified molecular sieve is obtained.
  • the acidic molecular sieve may be impregnated with, for example, an aqueous solution of H 3 BO 3 , and then the impregnated acidic molecular sieve is dried and then calcined to obtain 0.5 to 10.0% by weight based on the weight of the modified molecular sieve.
  • Boron modified acidic molecular sieves of boron are examples of Boron modified acidic molecular sieves of boron.
  • the silicon-modified acidic molecular sieve can be prepared by treatment with a siloxane compound by liquid phase deposition and/or treatment with a silane compound by vapor phase deposition.
  • the siloxane compound and the silane compound which can be used are respectively represented by the following structural formula:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a C 1-10 alkyl group.
  • An example of the siloxane compound is tetraethyl orthosilicate, and an example of the silane compound is tetramethylsilane.
  • the liquid phase deposition process is carried out by dissolving a silicone compound in an inert organic solvent to provide a solution of the siloxane compound, then soaking or impregnating the acidic molecular sieve with the solution, drying and then calcining A silicon modified acidic molecular sieve is obtained.
  • the silicon-modified acidic molecular sieve may have a silicon loading of 0.5 to 10.0% by weight based on the weight of the modified molecular sieve, and the silicon loading does not include the original silicon in the acidic molecular sieve.
  • the inert organic solvent may be any solvent which does not react with the siloxane compound and the molecular sieve, such as n-hexane, cyclohexane, n-heptane.
  • the vapor deposition process is carried out by passing a silane compound gas through an acidic molecular sieve and then calcining the treated acidic molecular sieve to obtain a silicon-modified acidic molecular sieve.
  • the silicon-modified acidic molecular sieve may have a silicon loading of 0.5 to 10.0% by weight based on the weight of the modified molecular sieve. The silicon loading does not include the original silicon in the acidic molecular sieve.
  • the catalyst of the present invention can have any shape and size known in the art to be suitable for use in fixed bed reactor applications.
  • the shape of the catalyst may be spherical, cylindrical, semi-cylindrical, prismatic, clover, annular, pellet, regular or irregular particles or flakes.
  • the present invention provides a method of preparing the above catalyst, the method comprising the steps of:
  • zinc aluminum spinel oxide optionally contains at least one other element selected from the group consisting of chromium, zirconium, copper, manganese, indium, gallium, and silicon;
  • the zinc aluminum spinel oxide that can be used to prepare the catalyst of the present invention is prepared by a precipitation-calcination process, and optionally at least one other element is added.
  • the zinc aluminum spinel oxide is prepared by a method comprising the steps of: formulating a zinc salt and an aluminum salt into a mixed metal salt aqueous solution; contacting the mixed metal salt aqueous solution with an aqueous solution of a precipitating agent to make Co-precipitation of metal ions in a mixed metal salt aqueous solution; aging; and washing the precipitate, drying and calcining to obtain the zinc aluminum spinel oxide; and optionally, at least one by impregnation and/or coprecipitation A brine solution of other elements is added to add the at least one other element.
  • precipitating agents include, but are not limited to, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, ammonium hydrogencarbonate, aqueous ammonia, sodium hydroxide, potassium hydroxide, and mixtures thereof.
  • the temperature during the coprecipitation is from 20 ° C to 95 ° C
  • the pH during the coprecipitation is from 7.0 to 9.0
  • the aging time is not less than 1 hour
  • the calcination temperature is from 450 ° C to 800 ° C.
  • the zinc aluminum spinel oxide is prepared by dissolving a zinc salt and an aluminum salt in any ratio in deionized water to prepare a mixed metal salt aqueous solution having a concentration of the mixed metal salt aqueous solution.
  • the room temperature can be completely dissolved in any concentration of deionized water; the precipitating agent is dissolved in deionized water to prepare a precipitant solution, and the concentration of the precipitating agent solution is completely soluble in any concentration of deionized water at room temperature;
  • the mixed metal salt aqueous solution is contacted with the precipitant solution, and coprecipitated at 20 to 95 ° C.
  • the pH of the mixed metal salt aqueous solution and the precipitant solution is controlled during the precipitation to control the pH between 7.0 and 9.0.
  • the mixture is aged at 20 to 95 ° C for 1 to 24 hours, then centrifuged, washed with deionized water, dried at 100 ° C for 24 hours, and finally calcined at 450 to 800 ° C for 2 to 10 hours to obtain zinc aluminum spinel oxide.
  • the kinds of the salts of the zinc salt, the aluminum salt and at least one other element are not particularly limited as long as they are water-soluble, for example, have a water solubility of more than 1 g/L at 25 °C.
  • Examples of salts of the zinc salt, aluminum salt, and at least one other element include, but are not limited to, hydrochloride, sulfate, and nitrate.
  • the manner of contacting the mixed metal salt aqueous solution with the aqueous solution of the precipitating agent is not particularly limited.
  • the contacting can be accomplished by cocurrent, feed or reverse feed.
  • the details of the modified acidic molecular sieve are as described in the first aspect of the invention.
  • the molding method employed in the step (3) of the catalyst preparation method of the present invention is not particularly limited.
  • the mixture can be molded into a catalyst shape suitable for fixed bed reactor applications using an extrusion process or a molding process.
  • the present invention provides a method for producing ethylene and propylene in parallel by hydrogenation of carbon dioxide to produce para-xylene, the method comprising:
  • the catalyst in the method of the present invention comprises a zinc aluminum spinel oxide and a modified acidic molecular sieve in a mass ratio of 1:5 to 5:1, wherein the zinc aluminum spinel oxide optionally contains a chromium selected from the group consisting of chromium At least one other element of zirconium, copper, manganese, indium, gallium, and silicon, and the modified acidic molecules are selected from modified acidic ZSM-5 molecular sieves, modified acidic ZSM-11 molecular sieves, and mixture.
  • the details of the catalyst are as described in the first aspect of the invention.
  • carbon dioxide and hydrogen are used as feed gases.
  • the molar ratio of hydrogen to carbon dioxide is from 1:9 to 9:1, preferably from 1:9 to 1:1.
  • the main side reaction in the reaction of carbon dioxide hydrogenation to produce xylene is reverse water gas shift reaction, which is a typical equilibrium reaction.
  • the addition of carbon monoxide is beneficial to inhibit the reverse water gas shift reaction and improve the utilization efficiency of carbon dioxide. Therefore, the raw material gas in the method of the present invention may further contain carbon monoxide, and the molar concentration of carbon monoxide in the raw material gas is 1.0 to 20.0%, for example, 1%, 3%, 5%, 8%, 10%, 13%. , 15%, 17% and 20%.
  • the reaction zone may be one or more fixed bed reactors.
  • the fixed bed reactor can be operated in a continuous mode.
  • the plurality of reactors can be in series, parallel, or a combination of series and parallel.
  • the reaction conditions include: a reaction temperature of 300 to 450 ° C, a reaction pressure of 0.5 to 10.0 MPa, a molar ratio of hydrogen to carbon dioxide in a feed gas of 1:9 to 9:1, and 1000 to Syngas volume hourly space velocity in the standard state of 20000 h -1 .
  • the reaction conditions include: a reaction temperature of 310 to 360 ° C, a reaction pressure of 1.0 to 4.0 MPa, a molar ratio of hydrogen to carbon dioxide in the feed gas of 3:1 to 6:1, and 3000. Syngas volume hourly space velocity in the standard state of ⁇ 8000h -1 .
  • the catalyst used in the present invention can produce high-selective hydrogenation of carbon dioxide to produce para-xylene to produce ethylene and propylene in parallel, and the catalyst has good stability.
  • the method of the invention realizes carbon dioxide hydrogenation in one step to produce para-xylene to produce ethylene and propylene in parallel, which reduces the problem of large energy consumption caused by step-by-step production.
  • Example 1 is an XRD chart of material A in Example 1 of the present application.
  • Example 2 is a TEM image of material A in Example 1 of the present application.
  • automated analysis was performed using two Agilent 7890 gas chromatographs with a gas autosampler, a TCD detector coupled to a TDX-1 packed column, and an FID detector coupled to an FFAP and PLOT-Q capillary column.
  • Carbon dioxide conversion [(mole carbon dioxide carbon in feed) - (molar carbon dioxide carbon in the discharge)] ⁇ (molar carbon dioxide carbon in the feed) ⁇ 100%
  • Para-xylene selectivity (p-xylene carbon moles in discharge) ⁇ (sum of all hydrocarbon products in the discharge, methanol, dimethyl ether) ⁇ 100%
  • Ethylene selectivity (moles of ethylene carbon in the discharge) ⁇ (sum of all hydrocarbon products in the discharge, carbon moles of methanol, dimethyl ether) ⁇ 100%
  • Propylene selectivity (molar moles of propylene carbon in the discharge) ⁇ (sum of all hydrocarbon products in the discharge, carbon moles of methanol, dimethyl ether) ⁇ 100%
  • Relative selectivity to p-xylene (number of moles of p-xylene carbon in the discharge) ⁇ (all moles of xylene carbon in the discharge) ⁇ 100%
  • Carbon monoxide selectivity (moles of carbon monoxide carbon produced by the reaction) ⁇ (moles of converted carbon dioxide carbon) ⁇ 100%
  • the zinc-aluminum spinel oxide A and the modified molecular sieve were uniformly mixed at a mass ratio of 1:1, ground by agate milling for 10 minutes, and then tableted at 40 MPa by a tableting machine to prepare a physical mixed catalyst G.
  • the zinc-aluminum spinel oxide B and the modified molecular sieve were uniformly mixed at a mass ratio of 2:1, ground by agate milling for 10 minutes, and then tableted at 40 MPa by a tableting machine to prepare a physical mixed catalyst H.
  • the zinc-aluminum spinel oxide C and the modified molecular sieve were uniformly mixed at a mass ratio of 5:1, ground with an agate grind for 10 minutes, and then tableted at 40 MPa by a tableting machine to prepare a physically mixed catalyst I.
  • An acidic ZSM-5 molecular sieve having a B mass fraction of 8% was obtained.
  • the zinc-aluminum spinel oxide D and the modified molecular sieve were uniformly mixed at a mass ratio of 1:5, ground with an agate grind for 10 minutes, and then tableted at 40 MPa by a tableting machine to prepare a physical mixed catalyst J.
  • Acidic ZSM-5 molecular sieve with a fraction of 4%.
  • the zinc-aluminum spinel oxide G and the modified molecular sieve were uniformly mixed at a mass ratio of 2:1, ground with an agate grind for 10 minutes, and then tableted at 40 MPa by a tableting machine to prepare a physical mixed catalyst L.
  • Example 13 The catalyst deactivated in Example 13 was treated with a mixture of a volume fraction of 2% oxygen and 98% nitrogen at 550 ° C for 10 h to allow the catalyst to regenerate for one round and reacted under the conditions of Example 13. Five rounds were regenerated in the same manner, and the catalytic activity data after 500 hours of each reaction was selected for comparison. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种对二甲苯合成用催化剂及其制备方法和应用。其中催化剂包含质量比为1∶5~5∶1的锌铝尖晶石氧化物与改性酸性分子筛,锌铝尖晶石氧化物中任选含有选自铬、锆、铜、锰、铟、镓和硅中的至少一种其它元素,改性酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。该催化剂在应用于二氧化碳加氢制备对二甲苯并联产乙烯和丙烯的方法中时,能使二氧化碳加氢高选择性生成对二甲苯并联产乙烯和丙烯,催化剂稳定性好。实现了二氧化碳加氢一步生成对二甲苯并联产乙烯和丙烯,降低了分步生产带来的大量能耗问题。

Description

一种对二甲苯合成用催化剂及其制备方法和应用 技术领域
本发明涉及一种对二甲苯合成用催化剂及其制备方法和应用。
背景技术
近两个世纪以来,以石油、煤炭、天然气为代表的石化资源大规模开发利用,为人类社会提供了丰富的能量和原料,推动了经济和文明的空前繁荣发展。然而,同时也导致了大量的二氧化碳排放。众所知周,二氧化碳是一种典型的温室效应气体,大规模工业排放会对人类生存环境造成严重威胁。以太阳能、风能、潮汐能、地热能等为代表的洁净能源,能量总量大,不产生额外二氧化碳排放,然而因为能量密度低,波动性大等缺点,很难进行高效利用。如果利用洁净能源产生的电能电解水,获得氢气,然后与石化资源产生的二氧化碳反应,制取大宗燃料或者化学品,可以有效解决以上两个问题。
对二甲苯、乙烯和丙烯是最重要的三个烃类大宗化工品。对二甲苯主要用来制备对苯二甲酸,进而生产聚对苯二甲酸乙二醇酯。对二甲苯主要经芳烃联合装置得到,首先将石脑油通过重整、芳烃抽提、芳烃分馏、歧化和烷基转移,二甲苯异构化以及吸附分离得到高纯度对二甲苯产品。因热力学限制,对二甲苯在三个二甲苯中比例不到25%,物料循环处理量大,能耗高,投资高。甲醇甲苯烷基化制对二甲苯反应不仅能够突破热力学限制得到高比例的对二甲苯,还能够充分利用煤化工路线生产的甲醇产能,是一个非常有前景的对二甲苯生产路线,近年来国内外对此路线进行了大量的研究。然而,因催化剂很难同时保持高活性、高选择性与高稳定性,目前仍未见该路线的工业化应用报道。乙烯和丙烯是合成化学的基础,需求量巨大,主要通过石油化工的催化裂化生产。在“富煤贫油”的能源结构国家,如中国,煤化工路线制取乙烯和丙烯技术非常有意义。在煤化工生产低碳烯烃的技术中,以甲醇为原料制取低碳烯烃(MTO)技术最为成 熟。
因二氧化碳化学惰性,目前还没有发现能够通过二氧化碳加氢直接高选择性制取对二甲苯并联产乙烯和丙烯的研究报道。
发明内容
为了克服现有技术中存在的问题,本发明人进行了勤勉的研究。结果发现,一种包含锌铝尖晶石氧化物与改性酸性分子筛的催化剂非常适合使用二氧化碳加氢制备对二甲苯并联产乙烯和丙烯的方法,由此完成了本发明。
因此,本发明的一个目的是提供一种对二甲苯合成用催化剂,该催化剂包含质量比为1∶5~5∶1的锌铝尖晶石氧化物与改性酸性分子筛,其中所述锌铝尖晶石氧化物中任选含有选自铬、锆、铜、锰、铟、镓和硅中的至少一种其它元素,并且所述改性酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
本发明的另一个目的是提供一种制备上述催化剂的方法。
本发明的再一个目的是提供一种利用上述催化剂由二氧化碳加氢制备对二甲苯并联产乙烯和丙烯的方法。
优选实施方案的描述
在第一方面,本发明提供了一种对二甲苯合成用催化剂,其包含质量比为1∶5~5∶1的锌铝尖晶石氧化物与改性酸性分子筛,其中所述锌铝尖晶石氧化物中任选含有选自铬、锆、铜、锰、铟、镓和硅中的至少一种其它元素,并且所述改性酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
在一个实施方案中,所述对二甲苯合成用催化剂由质量比为1∶5~5∶1的锌铝尖晶石氧化物与改性酸性分子筛构成,其中所述锌铝尖晶石氧化物中任选含有选自铬、锆、铜、锰、铟、镓和硅中的至少一种其它元素,并且所述改性酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
在本发明催化剂中,锌铝尖晶石氧化物与改性酸性分子筛的质量比为 1∶5~5∶1,例如1∶1,1∶5,2∶1或5∶1。
本发明催化剂中的锌铝尖晶石氧化物中Zn/Al摩尔比为任意比例,优选Zn/Al=1∶9~1∶1,例如1∶1,1∶2,1∶4.5或1∶9。
在一些实施方案中,所述锌铝尖晶石氧化物中锌铝尖晶石晶体尺度小于或等于30nm。
在一些实施方案中,所述锌铝尖晶石氧化物中还含有选自铬、锆、铜、锰、铟、镓和硅中的至少一种其它元素。所述其它元素可以通过浸渍或者共沉淀法中的一种或两种加入到锌铝尖晶石氧化物中。优选地,所述其它元素在锌铝尖晶石氧化物中的质量分数小于或等于10%,例如1%,3%,5%,7%,9%或10%。
本发明催化剂中的所述改性酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
在一些实施方案中,所述改性酸性分子筛为使用磷改性、硼改性和硅改性方法中的一种或多种方法改性后的酸性分子筛。
在一些实施方案中,所述酸性ZSM-5和ZSM-11分子筛中硅和铝的原子比为Si/Al=3~200,优选Si/Al=100~150。
在一些实施方案中,所述酸性ZSM-5与ZSM-11分子筛的晶体是微米尺度或纳米尺度,晶体中含有微孔结构或介孔-微孔结构。
可用于本发明的改性酸性分子筛可商购得到,或者可以通过本质上已知的方法制备。对制备所述改性酸性分子筛的具体方法没有特殊的限制。例如,可以通过对可商购得到的上述酸性ZSM-5分子筛或酸性ZSM-11分子筛进行改性处理得到所述改性的酸性分子筛。
在一个具体实施方案中,可以通过用例如H 3PO 4,NH 4H 2PO 4或(NH 4) 2HPO 4水溶液浸渍酸性分子筛,然后将所述浸渍过的酸性分子筛烘干和然后煅烧,得到基于改性分子筛的重量计含0.5~10.0重量%的磷的磷改性酸性分子筛。
在另一个具体实施方案中,可以通过用例如H 3BO 3水溶液浸渍酸性分子筛,然后将所述浸渍过的酸性分子筛烘干和然后煅烧,得到基于改性分子筛的重量计含0.5~10.0重量%的硼的硼改性酸性分子筛。
在又一个具体实施方案中,可以通过用硅氧烷化合物经液相沉积法处 理和/或用硅烷化合物经气相沉积法处理来制备硅改性的酸性分子筛。可以使用的硅氧烷化合物和硅烷化合物分别由以下结构式表示:
Figure PCTCN2018098051-appb-000001
其中R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8各自独立地为C 1-10烷基。所述硅氧烷化合物的一个实例为正硅酸乙酯,和所述硅烷化合物的一个实例为四甲基硅烷。
在一个具体实施方案中,所述液相沉积法如下进行:将硅氧烷化合物溶解到惰性有机溶剂中以提供硅氧烷化合物溶液,然后用所述溶液浸泡或浸渍酸性分子筛,干燥和然后煅烧,得到硅改性的酸性分子筛。基于改性分子筛的重量计,该硅改性的酸性分子筛中硅负载量可以为0.5~10.0重量%,所述硅负载量不包括酸性分子筛中原有的硅。所述的惰性有机溶剂可以是任何不与硅氧烷化合物以及分子筛反应的溶剂,例如正己烷、环己烷、正庚烷。
在一个具体实施方案中,所述气相沉积法如下进行:使硅烷化合物气体通过酸性分子筛,然后煅烧处理过的酸性分子筛,得到硅改性的酸性分子筛。基于改性分子筛的重量计,该硅改性的酸性分子筛中硅负载量可以为0.5~10.0重量%。所述硅负载量不包括酸性分子筛中原有的硅。
本发明的催化剂可以具有本领域已知适用于固定床反应器应用的任何形状和大小。例如,所述催化剂的形状可以为球形、圆柱形、半圆柱形、棱柱形、三叶草形、环形、丸形、规则或不规则颗粒或片状。
在第二方面,本发明提供了制备上述催化剂的方法,该方法包括以下步骤:
(1)提供锌铝尖晶石氧化物,其中所述锌铝尖晶石氧化物中任选含有选自铬、锆、铜、锰、铟、镓和硅中的至少一种其它元素;
(2)提供改性酸性分子筛;
(3)混合由步骤(1)得到的锌铝尖晶石氧化物和由步骤(2)得到 的改性酸性分子筛,并将所得到的混合物模制成型。
在一个实施方案中,可用于制备本发明催化剂的锌铝尖晶石氧化物是通过沉淀-煅烧方法制备的,并任选添加至少一种其它元素。例如,所述锌铝尖晶石氧化物是通过包括如下步骤的方法制备的:将锌盐与铝盐配成混合金属盐水溶液;使所述混合金属盐水溶液和沉淀剂水溶液接触,以使所述混合金属盐水溶液中的金属离子共沉淀;老化;和将沉淀物洗涤、干燥后煅烧,制得所述锌铝尖晶石氧化物;和任选地,通过浸渍和/或共沉淀至少一种其它元素的盐水溶液来添加所述至少一种其它元素。所述的沉淀剂的实例包括但不限于碳酸钠、碳酸钾、碳酸铵、碳酸氢钠、碳酸氢钾、碳酸氢铵、氨水、氢氧化钠、氢氧化钾和它们的混合物。
在一个实施方案中,所述共沉淀过程中温度为20℃至95℃,共沉淀过程中pH值为7.0至9.0,老化时间不低于1小时,煅烧温度为450℃至800℃。
在一个具体实施方案中,所述锌铝尖晶石氧化物如下制备:将任意比例的锌盐和铝盐溶于去离子水中,配制成混合金属盐水溶液,所述混合金属盐水溶液的浓度为室温可完全溶解于去离子水的任意浓度;将沉淀剂溶于去离子水中,配制成沉淀剂溶液,所述沉淀剂溶液的浓度为室温可完全溶解于去离子水的任意浓度;使所述混合金属盐水溶液与所述沉淀剂溶液进行接触,在20~95℃下共沉淀,沉淀过程中通过控制混合金属盐水溶液与沉淀剂溶液的流量来控制pH值为7.0~9.0之间。共沉淀完毕后,在20~95℃下老化1~24h,然后离心分离,去离子水洗涤,100℃下干燥24h,最后450~800℃下煅烧2~10h获得锌铝尖晶石氧化物。
在本发明中,对所述锌盐、铝盐和至少一种其它元素的盐的种类没有特殊的限制,只要它们是水溶性的,例如在25℃下具有大于1g/L的水溶解度。所述锌盐、铝盐和至少一种其它元素的盐的实例包括但不限于盐酸盐、硫酸盐和硝酸盐。
在本发明方法中,对所述混合金属盐水溶液与所述沉淀剂水溶液的接触方式没有特殊的限制。在一个具体的实施方案中,所述接触可以采取并流加料、正加料或反加料的方式完成。
如前所述,可用于本发明催化剂制备方法中的改性酸性分子筛的实例 包括但不限于磷改性、硼改性和/或硅改性的ZSM-5分子筛或ZSM-11分子筛。所述改性酸性分子筛的细节如本发明第一方面中所述。
对本发明催化剂制备方法的步骤(3)中采用的模制方法没有特殊的限制。例如,可以采用挤出方法或模压方法将所述混合物模制成适合固定床反应器应用的催化剂形状。
在第三方面,本发明提供了一种二氧化碳加氢制备对二甲苯并联产乙烯和丙烯的方法,该方法包括:
a)使包含二氧化碳和氢气的原料气通过载有催化剂的反应区,在足以转化至少部分原料的反应条件下反应,以得到包含对二甲苯、乙烯、丙烯和未转化的原料的反应流出物;和
b)从所述反应流出物中分离所述对二甲苯、乙烯和丙烯。
据信,在反应区中发生的反应非常复杂,并且包括一系列的反应过程,例如:
1)甲醇合成反应:
CO 2+3H 2=CH 3OH+H 2O
2)甲醇制对二甲苯、乙烯、丙烯反应:
CH 3OH→对二甲苯+C 2H 4+C 3H 6+H 2O
3)逆水煤气变换反应(RWGS):
CO 2+H 2=CO+H 2O
本发明方法中的所述催化剂包含质量比为1∶5~5∶1的锌铝尖晶石氧化物与改性酸性分子筛,其中所述锌铝尖晶石氧化物中任选含有选自铬、锆、铜、锰、铟、镓和硅中的至少一种其它元素,并且所述改性酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。所述催化剂的细节如本发明第一方面中所述。
在本发明的方法中,使用二氧化碳和氢气作为原料气。在所述原料气中,氢气与二氧化碳的摩尔比为1∶9~9∶1,优选1∶9~1∶1。
由于二氧化碳加氢制备二甲苯的反应中主要的副反应为逆水煤气变换反应,此反应为典型的平衡反应,加入一氧化碳有利于抑制逆水煤气变换反应,提高二氧化碳的利用效率。所以,本发明方法中的所述原料气中还可以含有一氧化碳,一氧化碳在原料气中的摩尔浓度为1.0~20.0%,例 如,1%,3%,5%,8%,10%,13%,15%,17%和20%。
在本发明的方法中,所述反应区可以为一个或多个固定床反应器。所述固定床反应器可以采用连续模式操作。当采用多个固定床反应器时,所述多个反应器可以呈串联、并联、或者串联与并联相结合的构型。
在本发明的方法中,所述反应条件包括:300~450℃的反应温度,0.5~10.0MPa的反应压力,1∶9~9∶1的原料气中氢气与二氧化碳的摩尔比,和1000~20000h -1的标准状态下合成气体积小时空速。
在一个优选的实施方案中,所述反应条件包括:310~360℃的反应温度,1.0~4.0MPa的反应压力,3∶1~6∶1的原料气中氢气与二氧化碳的摩尔比,和3000~8000h -1的标准状态下合成气体积小时空速。
本发明能产生的有益效果包括:
1)本发明中使用的催化剂,能使二氧化碳加氢高选择性生成对二甲苯并联产乙烯和丙烯,催化剂稳定性好。
2)通过加入一氧化碳,能有效抑制逆水煤气变换反应,二氧化碳利用效率高。
3)本发明的方法实现了二氧化碳加氢一步生成对二甲苯并联产乙烯和丙烯,降低了分步生产带来的大量能耗问题。
附图说明
图1为本申请实施例1中材料A的XRD图。
图2为本申请实施例1中材料A的TEM图。
具体实施方式
下面结合实施例详述本发明,但本发明并不局限于这些实施例。
除非另外指明,本发明实施例中的原料均通过商业途径购买。
在实施例中,利用带有气体自动进样器、连接TDX-1填充柱的TCD检测器以及连接FFAP与PLOT-Q毛细管柱的FID检测器的两台Agilent7890气相色谱仪进行自动分析。
在实施例中,转化率和选择性均基于碳摩尔数进行计算:
二氧化碳转化率=[(进料中的二氧化碳碳摩尔数)-(出料中的二氧 化碳碳摩尔数)]÷(进料中的二氧化碳碳摩尔数)×100%
对二甲苯选择性=(出料中的对二甲苯碳摩尔数)÷(出料中所有烃类产物、甲醇、二甲醚的碳摩尔数总和)×100%
乙烯选择性=(出料中的乙烯碳摩尔数)÷(出料中所有烃类产物、甲醇、二甲醚的碳摩尔数总和)×100%
丙烯选择性=(出料中的丙烯碳摩尔数)÷(出料中所有烃类产物、甲醇、二甲醚的碳摩尔数总和)×100%
对二甲苯相对选择性=(出料中的对二甲苯碳摩尔数)÷(出料中的所有二甲苯碳摩尔数)×100%
一氧化碳选择性=(反应生成的一氧化碳碳摩尔数)÷(已转化的二氧化碳碳摩尔数)×100%
锌铝尖晶石氧化物制备
实施例1
将95g Zn(NO 3) 26H 2O与80g Al(NO 3) 39H 2O溶于200ml去离子水中,配制成盐溶液。将25g碳酸铵溶于200ml去离子水中,配制成碱溶液。将盐溶液与碱溶液分别用两个蠕动泵并流混合共沉淀,沉淀反应温度控制在60℃,pH值为7.2,并在此温度下老化4h,过滤、洗涤后100℃干燥24h,500℃煅烧4h,得到锌铝尖晶石氧化物,编号为A。X射线荧光光谱分析(XRF)显示A中Zn/Al(摩尔比)=1∶1,XRD图如图1所示,TEM图如图2所示。
实施例2
将48g Zn(NO 3) 26H 2O与80g Al(NO 3) 39H 2O溶于200ml去离子水中,配制成盐溶液。将25g氨水(含25%NH 3)溶于200ml去离子水中,配制成碱溶液。将盐溶液与碱溶液分别用两个蠕动泵并流混合共沉淀,沉淀反应温度控制在70℃,pH值为7.5,并在此温度下老化6h,过滤、洗涤后100℃干燥24h,500℃煅烧4h,得到锌铝尖晶石氧化物,编号为B。XRF显示B中Zn/Al(摩尔比)=1∶2。
实施例3
将10.6g Zn(NO 3) 26H 2O与80g Al(NO 3) 39H 2O溶于200ml去离子水 中,配制成盐溶液。将25g碳酸钠溶于200ml去离子水中,配制成碱溶液。将盐溶液与碱溶液分别用两个蠕动泵并流混合共沉淀,沉淀反应温度控制在80℃,pH值为7.8,并在此温度下老化6h,过滤、洗涤后100℃干燥24h,500℃煅烧6h,得到锌铝尖晶石氧化物,编号为C。XRF显示C中Zn/Al(摩尔比)=1∶9。
实施例4
将10.6g Zn(NO 3) 26H 2O与40g Al(NO 3) 39H 2O溶于200ml去离子水中,配制成盐溶液。将15g碳酸钾溶于200ml去离子水中,配制成碱溶液。将盐溶液与碱溶液分别用两个蠕动泵并流混合共沉淀,沉淀反应温度控制在70℃,pH值为7.1,并在此温度下老化6h,过滤、洗涤后100℃干燥24h,500℃煅烧4h,得到锌铝尖晶石氧化物,编号为D。XRF显示D中Zn/Al(摩尔比)=1∶4.5。
实施例5
取7.7g Cr(NO 3) 39H 2O溶于15ml去离子水中,然后室温24h浸渍20g催化剂B,100℃干燥24h,500℃煅烧4h,得到5%(质量分数)铬改性的锌铝尖晶石氧化物,编号为E。
实施例6
取4.7g Zr(NO 3) 45H 2O溶于15ml去离子水中,然后室温24h浸渍20g催化剂B,100℃干燥24h,500℃煅烧4h,得到5%(质量分数)锆改性的锌铝尖晶石氧化物,编号为F。
催化剂制备
实施例7
选取H-ZSM-5(Si/Al=200)(南开大学催化剂厂)分子筛,利用正硅酸乙酯的环己烷溶液在50℃下反应4小时,蒸干后,再在空气气氛下550℃煅烧4h,得到含Si质量分数为8%(不包括分子筛原有的Si)的酸性ZSM-5分子筛。锌铝尖晶石氧化物A与此改性分子筛以质量比为1∶1混合均匀,用玛瑙碾钵研磨10分钟,然后用压片机在40MPa下压片,制成物理混合催化剂G。
实施例8
选取H-ZSM-5(Si/Al=150)(南开大学催化剂厂)分子筛,利用氮气携带5%体积分数的四甲基硅烷,在200℃下处理3小时,再在空气气氛下550℃煅烧4h,得到含Si质量分数为2%(不包括分子筛原有的Si)的酸性ZSM-5分子筛。锌铝尖晶石氧化物B与此改性分子筛以质量比为2∶1混合均匀,用玛瑙碾钵研磨10分钟,然后用压片机在40MPa下压片,制成物理混合催化剂H。
实施例9
选取H-ZSM-11(Si/Al=40)(奥科公司)分子筛,然后利用(NH 4) 2HPO 4水溶液在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含P质量分数为4%的酸性ZSM-5分子筛。锌铝尖晶石氧化物C与此改性分子筛以质量比为5∶1混合均匀,用玛瑙碾钵研磨10分钟,然后用压片机在40MPa下压片,制成物理混合催化剂I。
实施例10
选取H-ZSM-5(Si/Al=3)(奥科公司)分子筛,然后利用H 3BO 3水溶液在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含B质量分数为8%的酸性ZSM-5分子筛。锌铝尖晶石氧化物D与此改性分子筛以质量比为1∶5混合均匀,用玛瑙碾钵研磨10分钟,然后用压片机在40MPa下压片,制成物理混合催化剂J。
实施例11
选取H-ZSM-5(Si/Al=150)(南开大学催化剂厂)分子筛,利用正硅酸乙酯的环己烷溶液在50℃下反应4小时,蒸干后,再在空气气氛下550℃煅烧4h。然后利用(NH 4)H 2PO 4水溶液在室温下等体积浸渍24小时,烘干后,再在空气气氛下550℃煅烧4h,得到含Si质量分数为4%(不包括分子筛原有的Si)、P质量分数为4%的酸性ZSM-5分子筛。锌铝尖晶石氧化物E与此改性分子筛以质量比为2∶1混合均匀,用玛瑙碾钵研磨10分钟,然后用压片机在40MPa下压片,制成物理混合催化剂K。
实施例12
选取H-ZSM-5(Si/Al=150)(南开大学催化剂厂)分子筛,利用正硅酸乙酯的环己烷溶液在50℃下反应4小时,蒸干后,再在空气气氛下550℃煅烧4h。然后利用H 3BO 3水溶液在室温下等体积浸渍24小时,烘干后, 再在空气气氛下550℃煅烧4h,得到含Si质量分数为4%(不包括分子筛原有的Si)、B质量分数为4%的酸性ZSM-5分子筛。锌铝尖晶石氧化物G与此改性分子筛以质量比为2∶1混合均匀,用玛瑙碾钵研磨10分钟,然后用压片机在40MPa下压片,制成物理混合催化剂L。
催化剂性能测试
实施例13
将催化剂G破碎筛分成0.4~0.8mm颗粒,取2g装入内径为8mm的不锈钢反应管内,用50ml/min氢气在300℃下活化1h,在以下条件进行反应:反应温度(T)=320℃,反应压力(P)=4.0MPa,原料气中氢气与二氧化碳的摩尔比为(H 2∶CO 2)=3∶1;标准状况下原料气体积小时空速(GHSV)=6000h -1。反应500h后,用气相色谱分析产物,反应结果见表1。
实施例14-18
反应条件和反应结果见表1。其他操作同实施例13。
实施例19
将催化剂G破碎筛分成0.4~0.8mm颗粒,取2g装入内径为8mm的不锈钢反应管内,用50ml/min氢气在300℃下活化1h,在以下条件进行反应:反应温度(T)=320℃,反应压力(P)=4.0MPa,原料气中氢气、二氧化碳、一氧化碳的摩尔比为(H 2∶CO 2∶CO)=3∶1∶0.04(即CO在原料气中含量为1%);标准状况下原料气体积小时空速(GHSV)=6000h -1。反应500h后,用气相色谱分析产物,反应结果见表1。
实施例20
将催化剂G破碎筛分成0.4~0.8mm颗粒,取2g装入内径为8mm的不锈钢反应管内,用50ml/min氢气在300℃下活化1h,在以下条件进行反应:反应温度(T)=320℃,反应压力(P)=4.0MPa,原料气中氢气、二氧化碳、一氧化碳的摩尔比为(H 2∶CO 2∶CO)=3∶1∶0.2(即CO在原料气中含量为4.8%);标准状况下原料气体积小时空速(GHSV)=6000h -1。反应500h后,用气相色谱分析产物,反应结果见表1。
实施例21
将催化剂G破碎筛分成0.4~0.8mm颗粒,取2g装入内径为8mm的不锈钢反应管内,用50ml/min氢气在300℃下活化1h,在以下条件进行反应:反应温度(T)=320℃,反应压力(P)=4.0MPa,原料气中氢气、二氧化碳、一氧化碳的摩尔比为(H 2∶CO 2∶CO)=3∶1∶1(即CO在原料气中含量为20%);标准状况下原料气体积小时空速(GHSV)=6000h -1。反应500h后,用气相色谱分析产物,反应结果见表1。
表1实施例13-21中的催化反应结果
Figure PCTCN2018098051-appb-000002
催化剂重生性能测试
实施例22
将实施例13中失活后的催化剂利用体积分数为2%氧气和98%氮气的混合气,在550℃处理10h,使得催化剂重生一轮,在实施例13的条件下反应。按照同样的方式重生五轮,选取每轮反应500h后的催化活性数据进行比较,结果见表2。
表2实施例22中的催化反应结果
Figure PCTCN2018098051-appb-000003
以上所述,仅是本发明的几个实施例,并非对本发明做任何形式的限制,虽然本发明以较佳实施例揭示如上,然而并非用以限制本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

  1. 一种对二甲苯合成用催化剂,该催化剂包含质量比为1∶5~5∶1的锌铝尖晶石氧化物与改性酸性分子筛,其中所述锌铝尖晶石氧化物中任选含有选自铬、锆、铜、锰、铟、镓和硅中的至少一种其它元素,并且所述改性酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
  2. 权利要求1的催化剂,其具有以下特征中至少之一:
    -改性酸性分子筛为使用磷改性、硼改性和硅改性方法中的一种或多种方法改性后的酸性分子筛;
    -所述酸性ZSM-5和ZSM-11分子筛中硅和铝的原子比为Si/Al=3~200,优选Si/Al=100~150;
    -所述锌铝尖晶石氧化物中Zn/Al摩尔比为Zn/Al=1∶9~1∶1;和
    -所述其它元素在锌铝尖晶石氧化物中的质量分数小于或等于10%。
  3. 制备权利要求1-2中任一项所述的催化剂的方法,该方法包括以下步骤:
    (1)提供锌铝尖晶石氧化物,其中所述锌铝尖晶石氧化物中任选含有选自铬、锆、铜、锰、铟、镓和硅中的至少一种其它元素;
    (2)提供改性酸性分子筛;
    (3)混合由步骤(1)得到的锌铝尖晶石氧化物和由步骤(2)得到的改性酸性分子筛,并将所得到的混合物模制成型。
  4. 权利要求3的方法,其具有以下特征中至少之一:
    -在步骤(1)中,通过沉淀-煅烧方法制备所述锌铝尖晶石氧化物,和任选添加至少一种其它元素;
    -所述改性酸性分子筛选自磷改性、硼改性和/或硅改性的ZSM-5分子筛和ZSM-11分子筛;
    -在步骤(3)中,采用挤出方法或模压方法将所述混合物模制成催化剂颗粒。
  5. 权利要求4的方法,其中在步骤(1)中,通过包括如下步骤的方法提供所述锌铝尖晶石氧化物:将锌盐与铝盐配成混合金属盐水溶液;使 所述混合金属盐水溶液和沉淀剂水溶液接触,以使所述混合金属盐水溶液中的金属离子共沉淀;老化;和将沉淀物洗涤、干燥后煅烧,制得所述锌铝尖晶石氧化物;和任选地,通过浸渍和/或共沉淀至少一种其它元素的盐水溶液来添加所述至少一种其它元素。
  6. 权利要求5的方法,其具有以下特征中至少之一:
    -所述锌盐、铝盐和至少一种其它元素的盐选自盐酸盐、硫酸盐和硝酸盐;
    -所述沉淀剂选自碳酸钠、碳酸钾、碳酸铵、碳酸氢钠、碳酸氢钾、碳酸氢铵、氨水、氢氧化钠、氢氧化钾和它们的混合物;
    -所述共沉淀在20℃至95℃下进行;
    -所述共沉淀过程中pH值为7.0至9.0;
    -所述老化时间不低于1小时;
    -所述煅烧在450℃至800℃下进行。
  7. 一种二氧化碳加氢制备对二甲苯并联产乙烯和丙烯的方法,该方法包括:
    a)使包含二氧化碳和氢气的原料气通过载有催化剂的反应区,在足以转化至少部分原料的反应条件下反应,以得到包含对二甲苯、乙烯、丙烯和未转化的原料的反应流出物;和
    b)从所述反应流出物中分离所述对二甲苯、乙烯和丙烯,
    其中所述催化剂包含质量比为1∶5~5∶1的锌铝尖晶石氧化物与改性酸性分子筛,其中所述锌铝尖晶石氧化物中任选含有选自铬、锆、铜、锰、铟、镓和硅中的至少一种其它元素,并且所述改性酸性分子筛选自经过改性的酸性ZSM-5分子筛、经过改性的酸性ZSM-11分子筛和它们的混合物。
  8. 权利要求7所述的方法,该方法具有以下特征中至少之一:
    -所述反应区包括一个固定床反应器,或者以串联和/或并联方式连接的多个固定床反应器;
    -所述反应条件包括:300~450℃的反应温度,0.5~10.0MPa的反应压力,1∶9~9∶1的原料气中氢气与二氧化碳的摩尔比,和1000~20000h -1的标准状态下合成气体积小时空速;
    -所述改性酸性分子筛为使用磷改性、硼改性和硅改性方法中的一种或 多种方法改性后的酸性分子筛;
    -所述酸性ZSM-5和ZSM-11分子筛中硅和铝的原子比为Si/Al=3~200,优选Si/Al=100~150;
    -所述锌铝尖晶石氧化物中Zn/Al摩尔比为Zn/Al=1∶9~1∶1;和
    -所述其它元素在锌铝尖晶石氧化物中的质量分数小于或等于10%。
  9. 权利要求7或8所述的方法,其中所述原料气中还含有一氧化碳,一氧化碳在原料气中的摩尔浓度为1.0~20.0%。
  10. 根据权利要求8所述的方法,其中所述反应条件为:310~360℃的反应温度,1.0~4.0MPa的反应压力,3∶1~6∶1的原料气中氢气与二氧化碳的摩尔比,和3000~8000h -1的标准状态下合成气体积小时空速。
PCT/CN2018/098051 2018-05-17 2018-08-01 一种对二甲苯合成用催化剂及其制备方法和应用 WO2019218489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810476840.3A CN110496640B (zh) 2018-05-17 2018-05-17 一种对二甲苯合成用催化剂及其制备方法和应用
CN201810476840.3 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019218489A1 true WO2019218489A1 (zh) 2019-11-21

Family

ID=68539571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098051 WO2019218489A1 (zh) 2018-05-17 2018-08-01 一种对二甲苯合成用催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110496640B (zh)
WO (1) WO2019218489A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646536A (zh) * 2022-10-20 2023-01-31 中国科学院山西煤炭化学研究所 Co2加氢耦合苯/甲苯烷基化用催化剂及其制备与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113277923B (zh) * 2020-02-20 2022-04-15 中国科学院大连化学物理研究所 一种制备对二甲苯同时联产低碳烯烃的方法
CN116393160B (zh) * 2023-04-03 2024-05-10 浙江大学 催化co2加氢制甲醇的铜锌铝-分子筛催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057476A (zh) * 1991-08-05 1992-01-01 中国石油化工总公司 抗锌流失的烃类芳构化含锌沸石催化剂
CN106540740A (zh) * 2016-10-28 2017-03-29 厦门大学 由合成气高选择性制轻质芳烃的催化剂及其制备方法
CN106694029A (zh) * 2016-12-06 2017-05-24 中国科学院山西煤炭化学研究所 一种非金属改性催化剂及其制备方法
CA3006021A1 (en) * 2015-11-30 2017-06-08 Haldor Topsoe A/S Bifunctional catalyst comprising phosphorous
CN107970988A (zh) * 2016-10-24 2018-05-01 中国科学院大连化学物理研究所 一种用于合成芳烃的催化剂和其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911041A (en) * 1974-09-23 1975-10-07 Mobil Oil Corp Conversion of methanol and dimethyl ether
US4049573A (en) * 1976-02-05 1977-09-20 Mobil Oil Corporation Zeolite catalyst containing oxide of boron or magnesium
US4060568A (en) * 1976-03-31 1977-11-29 Mobil Oil Corporation Silica-modified zeolite catalyst and conversion therewith
US6388156B1 (en) * 1999-05-14 2002-05-14 Exxonmobil Chemical Patents Inc. Direct selective synthesis of para-xylene by reacting an aromatic compound with a methylating agent formed from CO, Co2 and H2
CN101780417B (zh) * 2010-02-10 2012-04-18 中国海洋石油总公司 一种甲醇转化制备对二甲苯和低碳烯烃的催化剂及其制备方法与应用
CN107469857B (zh) * 2016-06-07 2020-12-01 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制芳烃的方法
CN107262142A (zh) * 2017-07-10 2017-10-20 清华大学 一种一步合成芳烃的催化剂及其应用方法和制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057476A (zh) * 1991-08-05 1992-01-01 中国石油化工总公司 抗锌流失的烃类芳构化含锌沸石催化剂
CA3006021A1 (en) * 2015-11-30 2017-06-08 Haldor Topsoe A/S Bifunctional catalyst comprising phosphorous
CA3006025A1 (en) * 2015-11-30 2017-06-08 Haldor Topsoe A/S Bifunctional catalyst comprising evenly distributed phosphorous
CN107970988A (zh) * 2016-10-24 2018-05-01 中国科学院大连化学物理研究所 一种用于合成芳烃的催化剂和其制备方法
CN106540740A (zh) * 2016-10-28 2017-03-29 厦门大学 由合成气高选择性制轻质芳烃的催化剂及其制备方法
CN106694029A (zh) * 2016-12-06 2017-05-24 中国科学院山西煤炭化学研究所 一种非金属改性催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646536A (zh) * 2022-10-20 2023-01-31 中国科学院山西煤炭化学研究所 Co2加氢耦合苯/甲苯烷基化用催化剂及其制备与应用
CN115646536B (zh) * 2022-10-20 2024-04-26 中国科学院山西煤炭化学研究所 Co2加氢耦合苯/甲苯烷基化用催化剂及其制备与应用

Also Published As

Publication number Publication date
CN110496640A (zh) 2019-11-26
CN110496640B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
US11427516B2 (en) Multistage nanoreactor catalyst and preparation and application thereof
WO2019095405A1 (zh) 一种由合成气直接制取芳烃并联产低碳烯烃的方法
WO2019218488A1 (zh) 一种芳烃合成用催化剂及其制备方法和应用
WO2019095986A1 (zh) 一种由合成气直接制取芳烃的方法
US11225443B2 (en) Method for directly preparing p-xylene from synthetic gas and aromatic hydrocarbon
WO2019218489A1 (zh) 一种对二甲苯合成用催化剂及其制备方法和应用
CN107970988B (zh) 一种用于合成芳烃的催化剂和其制备方法
WO2017093881A1 (en) Alkane aromatization by oxidative dehydrogenation with co2
WO2019095985A1 (zh) 一种芳烃合成用催化剂及其制备方法
Maftei et al. Conversion of industrial feedstock mainly with butanes and butenes over HZSM-5 and Zn/HZSM-5 (nitrate) catalysts
Zhao et al. Examination of key factors determining the catalytic performance of Zn-Ga/HZSM-5 bifunctional catalysts and establishment of reaction network in alkylation of benzene with carbon dioxide
RU2749513C1 (ru) Смешанный катализатор, модифицированный органическим основанием, и способ получения этилена путем гидрирования монооксида углерода
JPS60146835A (ja) オレフイン類の製造法
WO2019095987A1 (zh) 一种由合成气与甲苯直接制取对二甲苯的方法
CN111039738A (zh) 一种合成气制取低碳烯烃的方法
WO2019218490A1 (zh) 一种合成气直接制备二甲醚的方法
EA040601B1 (ru) Способ прямого получения п-ксилола из синтез-газа и ароматического углеводорода
CN115368200B (zh) 一种生物质转化制备对二甲苯的方法
CN109748774B (zh) 合成气制备乙苯苯乙烯的方法
EA041174B1 (ru) Способ прямого получения ароматических соединений из синтез-газа
WO2020073598A1 (zh) 一种合成气制取低碳烯烃的方法
WO2024135773A1 (ja) 有機化合物製造用触媒、有機化合物製造用触媒の製造方法、及び有機化合物の製造方法
張柏章 Reaction and catalyst for direct synthesis of aromatics from carbon monoxide hydrogenation
WO2024135771A1 (ja) 有機化合物製造用触媒、有機化合物製造用触媒の製造方法、及び有機化合物の製造方法
CN115959961A (zh) 一种芳烃的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919081

Country of ref document: EP

Kind code of ref document: A1