WO2019085956A1 - 喷气增焓热泵空调***和包括该热泵空调***的电动车 - Google Patents

喷气增焓热泵空调***和包括该热泵空调***的电动车 Download PDF

Info

Publication number
WO2019085956A1
WO2019085956A1 PCT/CN2018/113257 CN2018113257W WO2019085956A1 WO 2019085956 A1 WO2019085956 A1 WO 2019085956A1 CN 2018113257 W CN2018113257 W CN 2018113257W WO 2019085956 A1 WO2019085956 A1 WO 2019085956A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
conditioning system
condenser
communication
heat pump
Prior art date
Application number
PCT/CN2018/113257
Other languages
English (en)
French (fr)
Inventor
赵瑞坡
文保平
韩芳
王磊
王学士
高杰
李伟
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Priority to EP18874781.0A priority Critical patent/EP3705323B1/en
Publication of WO2019085956A1 publication Critical patent/WO2019085956A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3223Cooling devices using compression characterised by the arrangement or type of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00957Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising locations with heat exchange within the refrigerant circuit itself, e.g. cross-, counter-, or parallel heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • the invention belongs to the field of air conditioning equipment, and in particular provides a jet boosting heat pump air conditioning system and an electric vehicle including the heat pump air conditioning system.
  • the passenger cabin heating utilizes the heat generated by the engine cooling, and the water temperature is higher, and the warm air effect is better.
  • the passenger compartment refrigeration uses a mechanical compressor to drive the refrigerant circuit, and the cooling effect is achieved by pressure change and phase change heat.
  • the temperature of the coolant of the pure electric vehicle powertrain needs to be relatively low to control, and it is not possible to provide a better warm air effect for the passenger compartment.
  • electric heaters and conventional heat pumps are often used as heat sources.
  • the electric heating energy consumption is high, which affects the cruising range of the electric vehicle.
  • the traditional heat pump can't work below -10 °C, and it needs to start the electric heater for cabin heating, which not only consumes a lot of energy, but also affects the cruising range at low temperature.
  • the present invention provides a jet boosting heat pump air conditioning system, the heat pump
  • the air conditioning system includes a heating circuit, the heating circuit includes a compressor that is connected end to end, a first condenser, a first heat exchanger, a first expansion valve, and a second condenser; wherein the first heat exchange The first passage and the second passage, the first end of the first passage is in communication with the first condenser, and the second end of the first passage is in communication with the first expansion valve; A first end of the passage is in communication with the first condenser through a second expansion valve, and a second end of the second passage is in communication with an inlet of the compressor.
  • the heating circuit further includes a first shutoff valve and a second shutoff valve, the first shutoff valve being connected to an outlet of the compressor and the first condenser The second shutoff valve is connected between the inlet of the compressor and the second condenser.
  • the heat pump air conditioning system further includes a refrigeration circuit, the refrigeration circuit including the compressor, the second condenser, the third expansion valve, and the evaporator that are sequentially connected end to end. .
  • the refrigeration circuit further includes the first heat exchanger; the first end of the first passage is in communication with the second condenser, and the first passage is The second end is in communication with the third expansion valve; the first end of the second passage is in communication with the second condenser through the second expansion valve, and the second end of the second passage is connected to the compressor The entrance is connected.
  • the refrigeration circuit further includes a third shutoff valve connected between the outlet of the compressor and the second condenser.
  • the heat pump air conditioning system further includes a defogging circuit, the defogging circuit including the compressor, the first condenser, and the third expansion that are sequentially connected end to end. Valve and the evaporator.
  • the demisting circuit further includes the first heat exchanger; a first end of the first passage is in communication with the first condenser, and the first passage is a second end is in communication with the third expansion valve; a first end of the second passage is in communication with the first condenser through the second expansion valve, and a second end of the second passage is coupled to the compression The entrance of the machine is connected.
  • the heat pump air conditioning system further includes a defrost circuit, the defrost circuit including the compressor, the second condenser, the fourth expansion valve, and the like, which are sequentially connected end to end.
  • a second heat exchanger includes a third passage and a fourth passage, the first end of the third passage is in communication with the fourth expansion valve, and the second end of the third passage is The inlet of the compressor is in communication; the two ends of the fourth passage are respectively in communication with a heat source.
  • the defrost circuit further includes the first heat exchanger; a first end of the first passage is in communication with the second condenser, and the first passage is a second end is in communication with the fourth expansion valve; a first end of the second passage is in communication with the second condenser through the second expansion valve, and a second end of the second passage is coupled to the compression
  • the inlet of the machine is in communication; wherein the second expansion valve is in a closed state.
  • the heat pump air conditioning system further includes a first fan for providing airflow to the first condenser and/or the evaporator.
  • the heat pump air conditioning system further includes a second fan for providing airflow to the second condenser.
  • the present invention provides an electric vehicle including the air-jet heat-increasing air-conditioning system according to any one of the preferred embodiments of the heat pump air-conditioning system.
  • the first fan blows airflow into the vehicle.
  • the second fan blows airflow out of the vehicle.
  • the heat source includes at least one of a battery and a motor.
  • the heat exchanger air conditioning system can reduce the cooling in the entire circuit when heating is performed by connecting the first heat exchanger in series in the heating circuit of the heat pump air conditioning system.
  • the first heat exchanger includes a first passage and a second passage.
  • the heating circuit is mainly composed of a compressor that is connected end to end, a first condenser, a first passage of the first heat exchanger, a first expansion valve, and a second condenser.
  • the first end of the second passage is in communication with the first condenser through a second expansion valve, and the second end of the second passage is in communication with the compressor.
  • the compressor compresses the low temperature and low pressure coolant into a high temperature and high pressure coolant.
  • the high-temperature and high-pressure coolant passes through the first condenser to transfer heat to the air inside the vehicle to become a low-temperature high-pressure coolant.
  • a portion of the low-temperature high-pressure coolant passes through the first passage and becomes a low-temperature low-pressure coolant as it passes through the first expansion valve.
  • the low-temperature low-pressure coolant passes through the second condenser and absorbs heat from the air outside the vehicle to become a high-temperature and low-pressure coolant.
  • the high temperature and low pressure coolant turns into a high temperature and high pressure coolant again after passing through the compressor.
  • Another portion of the low-temperature, high-pressure coolant passes through the second expansion valve to vaporize (or expand) the endothermic heat to a low-temperature, low-pressure coolant (the temperature of which is lower than the temperature of the coolant in the first passage).
  • the low temperature and low pressure coolant absorbs heat from the low temperature and high pressure coolant in the first passage when passing through the second passage, and then returns to the compressor.
  • the temperature of the coolant in the first passage becomes lower, so that the temperature of the coolant flowing through the second condenser and the compressor also becomes lower, thereby lowering the operating temperature of the compressor relative to the prior art. Therefore, when the outdoor temperature is lower than -10 ° C, the heating circuit will not be used because the heating in the cabin environment is too fast.
  • the first condenser is further provided with a first fan for blowing hot air around the first condenser into the cabin.
  • Solution 1 A jet boosting heat pump air conditioning system, characterized in that the heat pump air conditioning system comprises a heating circuit,
  • the heating circuit includes a compressor that is connected end to end, a first condenser, a first heat exchanger, a first expansion valve, and a second condenser;
  • the first heat exchanger comprises a first channel and a second channel
  • the first end of the first passage is in communication with the first condenser, and the second end of the first passage is in communication with the first expansion valve;
  • a first end of the second passage is in communication with the first condenser through a second expansion valve, and a second end of the second passage is in communication with an inlet of the compressor.
  • the heating circuit further comprises a first shut-off valve and a second shut-off valve, wherein the first shut-off valve is connected to the compressor Between the outlet and the first condenser, the second shutoff valve is connected between the inlet of the compressor and the second condenser.
  • the air-jet heat pump air-conditioning system according to claim 1, characterized in that the heat pump air-conditioning system further comprises a refrigeration circuit.
  • the refrigeration circuit includes the compressor, the second condenser, the third expansion valve, and the evaporator that are sequentially connected end to end.
  • the air-conditioning heat pump air conditioning system according to claim 3, wherein the refrigeration circuit further comprises the first heat exchanger;
  • the first end of the first passage is in communication with the second condenser, and the second end of the first passage is in communication with the third expansion valve;
  • a first end of the second passage is in communication with the second condenser through the second expansion valve, and a second end of the second passage is in communication with an inlet of the compressor.
  • the air-conditioning heat pump air-conditioning system according to claim 4, wherein the refrigeration circuit further comprises a third shut-off valve connected to the outlet of the compressor and the second Between the condensers.
  • Item 6 The air-jet heat pump air conditioning system according to claim 3, wherein the heat pump air conditioning system further comprises a defogging circuit.
  • the demisting circuit includes the compressor, the first condenser, the third expansion valve, and the evaporator that are sequentially connected end to end.
  • the air-conditioning heat pump air conditioning system according to claim 6, wherein the defogging circuit further comprises the first heat exchanger;
  • the first end of the first passage is in communication with the first condenser, and the second end of the first passage is in communication with the third expansion valve;
  • a first end of the second passage is in communication with the first condenser through the second expansion valve, and a second end of the second passage is in communication with an inlet of the compressor.
  • Item 8 The air-jet heat pump air conditioning system according to claim 1, wherein the heat pump air conditioning system further comprises a defrost circuit.
  • the defrost circuit includes the compressor, the second condenser, the fourth expansion valve, and the second heat exchanger that are connected end to end in sequence;
  • the second heat exchanger includes a third passage and a fourth passage.
  • a first end of the third passage is in communication with the fourth expansion valve, and a second end of the third passage is in communication with an inlet of the compressor;
  • Both ends of the fourth channel are respectively connected to a heat source.
  • the ventilating heat pump air conditioning system according to claim 8, wherein the defrosting circuit further comprises the first heat exchanger;
  • the first end of the first passage is in communication with the second condenser, and the second end of the first passage is in communication with the fourth expansion valve;
  • a first end of the second passage is in communication with the second condenser through the second expansion valve, and a second end of the second passage is in communication with an inlet of the compressor;
  • the air-jet heat-enhanced air-conditioning system according to any one of claims 3 to 7, wherein the heat pump air-conditioning system further comprises a first fan, wherein the first fan is used for the first condensation And/or the evaporator provides an air flow.
  • thermoelectric heat-enhanced air-conditioning system according to any one of claims 1 to 9, wherein the heat pump air-conditioning system further comprises a second fan, wherein the second fan is used for the second condensation Provides airflow.
  • Item 12 An electric vehicle, comprising the air-jet heat pump air conditioning system according to any one of aspects 1 to 11.
  • Figure 1 is a schematic view of a heat pump air conditioning system of the present invention
  • FIG. 2 is a heating circuit diagram of the heat pump air conditioning system of the present invention.
  • FIG. 3 is a refrigeration circuit diagram of the heat pump air conditioning system of the present invention.
  • FIG. 4 is a defogging circuit diagram of the heat pump air conditioning system of the present invention.
  • Figure 5 is a defrosting circuit diagram of the heat pump air conditioning system of the present invention.
  • the embodiments of the present invention are merely used to explain the technical principles of the present invention and are not intended to limit the scope of the present invention.
  • the air-jet heat pump air-conditioning system of the present invention can be applied to any other feasible electric vehicle, such as an electric bus or a high-speed train. , subway, etc.
  • Those skilled in the art can adjust it as needed to adapt to a specific application, and the adjusted technical solution will still fall within the protection scope of the present invention.
  • the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed connections, for example, or It is a detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the air-jet heat pump air-conditioning system of the present invention mainly comprises a compressor 1, a first condenser 3, a first heat exchanger 6, a second condenser 9, an evaporator 15, and a second heat exchanger 17. .
  • the first condenser 3 can supply heat to the cabin of the electric vehicle
  • the second condenser 9 can dissipate heat to the external environment or absorb heat from the external environment
  • the evaporator 15 can absorb heat from the cabin of the electric vehicle.
  • the heat pump air conditioning system of the present invention further includes a first fan 19 and a second fan 20.
  • the first fan 19 is for blowing hot air around the first condenser 3 and cold air or hot air around the evaporator 15 toward the cabin;
  • the second fan 20 is for blowing the hot air around the second condenser 9.
  • the heat pump air conditioning system of the present invention can heat the cabin of the electric vehicle.
  • the heat pump air conditioning system of the present invention can cool the cabin of the electric vehicle.
  • the heat pump air conditioning system of the present invention is capable of defogging the cabin of the electric vehicle.
  • the heat pump air conditioning system of the present invention is capable of defrosting the second condenser 9 when the compressor 1, the second condenser 9, and the second heat exchanger 17 are operated.
  • the air-jet heat-increasing air-conditioning system of the present invention comprises a heating circuit, a refrigeration circuit, a defogging circuit and a defrosting circuit for causing the heat pump air-conditioning system to perform the above four working processes respectively.
  • Fig. 2 is a view showing a heating circuit of the heat pump air conditioning system of the present invention when heating a cabin of an electric vehicle.
  • the heating circuit of the present invention mainly includes a compressor 1, a first condenser 3, a first heat exchanger 6, a first expansion valve 7, and a second condenser 9, which are sequentially connected end to end.
  • the first heat exchanger 6 includes a first passage 61 and a second passage 62.
  • the first end of the first passage 61 (the upper end of the first passage 61 in Fig. 2) communicates with the first condenser 3, the second end of the first passage 61 (the lower end of the first passage 61 in Fig. 2) and the first expansion
  • the valve 7 is in communication;
  • the first end of the second passage 62 (the lower end of the second passage 62 in FIG. 2) communicates with the first condenser 3 through the second expansion valve 8, and the second end of the second passage 62 (in FIG. 2
  • the upper end of the second passage 62 is in communication with the compressor 1.
  • the compressor 1 includes a first input end, a second input end, and an output end, wherein the first input end is in communication with the second condenser 9 and the second input end is in communication with the second end of the second passage 62 The output end is in communication with the first condenser 3.
  • Compressor 1 compresses low temperature and low pressure coolant into high temperature and high pressure coolant.
  • the high-temperature high-pressure coolant passes through the first condenser 3 to transfer heat to the air inside the vehicle to become a low-temperature high-pressure coolant.
  • a part of the low-temperature high-pressure coolant passes through the first passage 61 of the first heat exchanger 6 and becomes a low-temperature low-pressure coolant when passing through the first expansion valve 7.
  • the low-temperature low-pressure coolant passes through the second condenser 9 to absorb heat from the outside air to become a high-temperature low-pressure coolant.
  • the high temperature and low pressure coolant passes through the compressor 1 and becomes a high temperature and high pressure coolant again.
  • a jet boosting circuit another portion of the low-temperature high-pressure coolant flowing out of the first condenser 3 passes through the second expansion valve 8 to vaporize (or expand) the heat-absorbing into a low-temperature low-pressure coolant (the temperature is lower than the first passage) The temperature of the coolant in 61).
  • the low-temperature low-pressure coolant absorbs heat from the low-temperature high-pressure coolant in the first passage 61 while passing through the second passage 62, and then returns to the compressor 1.
  • the temperature of the coolant in the circuit is the temperature of the coolant in the current state relative to the temperature of the coolant in the previous state. For example, the temperature of the coolant after passing through the first condenser 3 and the temperature of the coolant passing through the first condenser 3.
  • hot air around the first condenser 3 can be continuously blown into the cabin by the first fan 19.
  • the jet boosting circuit in the heat pump air conditioning system of the present invention can keep the operating temperature of the compressor 1 within a safe range. In particular, it is avoided that the heating circuit is heated too fast in the outdoor environment when the outdoor temperature is lower than -10 °C, and the compressor 1 cannot be used.
  • Fig. 3 is a view showing the refrigeration circuit of the heat pump air conditioning system of the present invention when cooling the cabin of the electric vehicle.
  • the refrigeration circuit of the present invention mainly includes a compressor 1, a second condenser 9, a first heat exchanger 6, a third expansion valve 14, and an evaporator 15 which are sequentially connected end to end.
  • the first end of the first passage 61 of the first heat exchanger 6 is in communication with the second condenser 9, and the second end of the first passage 61 of the first heat exchanger 6 is in communication with the third expansion valve 14;
  • the first end of the second passage 62 of the heat exchanger 6 is in communication with the second condenser 9 through a second expansion valve 8, and the second end of the second passage 62 of the first heat exchanger 6 is in communication with the compressor 1.
  • the first input of compressor 1 is in communication with evaporator 15
  • the second input of compressor 1 is in communication with the second end of second passage 62
  • the output is in communication with second condenser 9.
  • Compressor 1 compresses low temperature and low pressure coolant into high temperature and high pressure coolant.
  • the high-temperature high-pressure coolant passes through the second condenser 9 to transfer heat to the air of the external environment to become a low-temperature high-pressure coolant.
  • a part of the low-temperature high-pressure coolant passes through the first passage 61 of the first heat exchanger 6 and becomes a low-temperature low-pressure coolant when passing through the third expansion valve 14.
  • the low temperature and low pressure coolant passes through the evaporator 15 and absorbs heat from the air in the cabin to become a high temperature and low pressure coolant.
  • the high temperature and low pressure coolant passes through the compressor 1 and becomes a high temperature and high pressure coolant again.
  • Jet boosting circuit another portion of the low-temperature high-pressure coolant flowing from the second condenser 9 passes through the second expansion valve 8 to vaporize (or expand) the heat-absorbing into a low-temperature low-pressure coolant (the temperature is lower than the first passage) The temperature of the coolant in 61).
  • the low-temperature low-pressure coolant absorbs heat from the low-temperature high-pressure coolant in the first passage 61 while passing through the second passage 62, and then returns to the compressor 1.
  • those skilled in the art can also close the second expansion valve 8 so that the low temperature and high pressure coolant passes only the first passage 61 of the first heat exchanger 6.
  • the air-conditioning heat pump air-conditioning system of the present invention has a higher outdoor temperature when the cabin is cooled, and the operating temperature of the compressor 1 is not too high, the person skilled in the art can also close the second expansion valve 8 as needed. Even if the jet boosting circuit does not operate, all of the low-temperature high-pressure coolant flowing out of the first condenser 3 flows to the first passage 61 of the first heat exchanger 6.
  • cold air around the evaporator 15 can be continuously blown into the cabin by the first fan 19.
  • the jet boosting circuit in the heat pump air conditioning system of the present invention can keep the operating temperature of the compressor 1 within a safe range.
  • Fig. 4 is a view showing the defogging circuit of the heat pump air conditioning system of the present invention when defogging the cabin of an electric vehicle.
  • the demisting circuit of the present invention mainly includes a compressor 1, a first condenser 3, a first heat exchanger 6, a third expansion valve 14, and an evaporator 15 which are sequentially connected end to end.
  • the first end of the first passage 61 of the first heat exchanger 6 is in communication with the first condenser 3, and the second end of the first passage 61 of the first heat exchanger 6 is in communication with the third expansion valve 14;
  • the first end of the second passage 62 of the heat exchanger 6 is in communication with the first condenser 3 via a second expansion valve 8, and the second end of the second passage 62 of the first heat exchanger 6 is in communication with the compressor 1.
  • the first input of compressor 1 is in communication with evaporator 15
  • the second input of compressor 1 is in communication with the second end of second passage 62
  • the output is in communication with first condenser 3.
  • Compressor 1 compresses low temperature and low pressure coolant into high temperature and high pressure coolant.
  • the high temperature and high pressure coolant passes through the first condenser 3 to transfer heat to the air in the cabin to become a low temperature and high pressure coolant.
  • a part of the low-temperature high-pressure coolant passes through the first passage 61 of the first heat exchanger 6 and becomes a low-temperature low-pressure coolant when passing through the third expansion valve 14.
  • the low temperature and low pressure coolant passes through the evaporator 15 and absorbs heat from the air in the cabin to become a high temperature and low pressure coolant.
  • the high temperature and low pressure coolant passes through the compressor 1 and becomes a high temperature and high pressure coolant again.
  • a jet boosting circuit another portion of the low-temperature high-pressure coolant flowing out of the first condenser 3 passes through the second expansion valve 8 to vaporize (or expand) the heat-absorbing into a low-temperature low-pressure coolant (the temperature is lower than the first passage) The temperature of the coolant in 61).
  • the low-temperature low-pressure coolant absorbs heat from the low-temperature high-pressure coolant in the first passage 61 while passing through the second passage 62, and then returns to the compressor 1.
  • those skilled in the art can also close the second expansion valve 8 so that the low-temperature high-pressure coolant passes only through the first passage 61 of the first heat exchanger 6.
  • the air-conditioning heat pump air-conditioning system of the present invention has a high outdoor temperature when the vehicle cabin is defogged, and the operating temperature of the compressor 1 is not excessively high, those skilled in the art can also apply the second expansion valve 8 as needed. Turning off, even if the jet boosting circuit is not working, all of the low-temperature high-pressure coolant flowing out of the first condenser 3 flows to the first passage 61 of the first heat exchanger 6.
  • the hot air around the first condenser 3 and/or the cold air around the evaporator 15 can be continuously blown into the cabin by the first fan 19.
  • the electric vehicle of the present invention has a first shutter member that blocks the first condenser 3 and a second shutter member that blocks the evaporator 15.
  • first shutter member and the second shutter member By adjusting the first shutter member and the second shutter member, the contact area of the airflow blown by the first fan 19 with the first condenser 3 and the evaporator 15 can be changed, and the temperature of the airflow of the first fan 19 to the cabin can be adjusted.
  • the air flow is adjusted to a suitable temperature to defog the glass of the electric vehicle (especially the front windshield).
  • the heat pump air conditioning system of the present invention further includes a second heat exchanger 17.
  • the second heat exchanger 17 includes a third passage 171 and a fourth passage 172.
  • the first end of the third passage 171 (the lower end of the third passage 171 in FIG. 3) communicates with the first passage 61 of the first heat exchanger 6 through the fourth expansion valve 16, and the second end of the third passage 171 (Fig. 3
  • the upper end of the middle third passage 171 is in communication with the compressor 1.
  • Both ends of the fourth passage 172 are in communication with the battery 18 (power battery) of the electric vehicle.
  • those skilled in the art can also connect the two ends of the fourth passage 172 with other heat sources of the electric vehicle, such as a drive motor, as needed.
  • the heat pump air conditioning system of the present invention can also selectively open the fourth expansion valve 16 to cool the battery 18 of the electric vehicle when performing cooling and defogging on the cabin.
  • the low-temperature high-pressure coolant flowing out of the first passage 61 of the first heat exchanger 6 passes through the fourth expansion valve 16 to become a low-temperature low-pressure coolant.
  • the low-temperature low-pressure coolant passes through the third passage 171 of the second heat exchanger 17, and absorbs heat from the cooling medium circulating in the fourth passage 172 to become a high-temperature low-pressure coolant.
  • the high temperature and low pressure coolant passes through the compressor 1 and becomes a high temperature and high pressure coolant again.
  • Fig. 5 is a view showing the defrosting circuit of the heat pump air-conditioning system of the present invention when defrosting the second condenser 9 outside the vehicle.
  • the defrosting circuit of the present invention mainly includes a compressor 1, a second condenser 9, a first heat exchanger 6, a fourth expansion valve 16, and a second heat exchanger 17, which are sequentially connected end to end.
  • the first end of the first passage 61 of the first heat exchanger 6 is in communication with the second condenser 9, and the second end of the first passage 61 of the first heat exchanger 6 is in communication with the fourth expansion valve 16;
  • the first end of the second passage 62 of the heat exchanger 6 is in communication with the second condenser 9 through a second expansion valve 8, and the second end of the second passage 62 of the first heat exchanger 6 is in communication with the compressor 1.
  • the first input of the compressor 1 is in communication with the second heat exchanger 17, the second input of the compressor 1 is in communication with the second end of the second passage 62, and the output is in communication with the second condenser 9. .
  • Compressor 1 compresses low temperature and low pressure coolant into high temperature and high pressure coolant.
  • the high temperature and high pressure coolant passes through the second condenser 9 to dissipate heat into a low temperature and high pressure coolant.
  • All of the low-temperature high-pressure coolant passes through the first passage 61 of the first heat exchanger 6 and becomes a low-temperature low-pressure coolant when passing through the fourth expansion valve 16.
  • the low temperature and low pressure coolant passes through the third passage 171 of the second heat exchanger 17 to absorb heat from the cooling medium in the fourth passage 172 to become a high temperature and low pressure coolant.
  • the high temperature and low pressure coolant passes through the compressor 1 and becomes a high temperature and high pressure coolant again.
  • the jet boosting circuit at this time the second expansion valve 8 is closed, the jet boosting circuit is not working, and no coolant leads to the second passage 62 of the first heat exchanger 6.
  • the second fan 20 may not operate so that the high temperature and high pressure coolant passing through the second condenser 9 can transfer heat to the frost outside the second condenser 9 as much as possible, thereby promoting the melting of the frost.
  • the heat of the cooling medium in the fourth passage 172 of the second heat exchanger 17 is provided by the working battery 18.
  • the heat pump air conditioning system of the present invention further includes a first shutoff valve 2, a second shutoff valve 10, and a third shutoff valve 12, which are first controlled by the control as shown in FIGS. 2 to 5.
  • the opening and closing of the shutoff valve 2, the second shutoff valve 10, and the third shutoff valve 12 enables the heat pump air conditioning system of the present invention to freely switch between the heating circuit, the refrigeration circuit, the demisting circuit, and the defrost circuit.
  • the first shut-off valve 2, the second shut-off valve 10 and the third shut-off valve 12 are all electrically controlled shut-off valves so that the controller of the electric vehicle controls the passage of the three electronically controlled shut-off valves The break enables the heat pump air conditioning system to freely switch between the heating circuit, the refrigeration circuit, the defogging circuit and the defrost circuit.
  • the first shutoff valve 2, the second shutoff valve 10, and the third shutoff valve 12 of the present invention are not limited to one position connection relationship shown in FIGS.
  • first shutoff valve 2 is disposed between the first condenser 3 and the first heat exchanger 6.
  • the person skilled in the art can also set the first shutoff valve 2 and the third shutoff valve 12 as a two-position three-way reversing valve, and switch the slave three-way reversing valve to make the slave compressor 1
  • the flowing coolant can optionally flow to the first condenser 3 or the second condenser 9.
  • the second shutoff valve 10 and the third shutoff valve 12 are arranged as a three-position three-way reversing valve, and the second condenser 9 is selectively exchanged with the first input of the compressor 1 by switching the three-position three-way reversing valve
  • the end or output is in communication and the second condenser 9 is disconnected from the compressor 1.
  • the heat pump air conditioning system of the present invention further includes a first check valve 4, a second check valve 13, and a third check valve 21.
  • the first check valve 3 is disposed on the lower side of the first condenser 3 shown in FIGS. 1 to 5; the second check valve 13 is disposed in the first condenser 3 and the first shown in FIGS. 1 to 5.
  • a third check valve 21 is disposed between the first heat exchanger 6 and the compressor 1 shown in FIGS. 1 to 5.
  • the first check valve 4, the second check valve 13, and the third check valve 21 only allow the coolant to flow in one direction and cannot flow in the reverse direction, and therefore, the first check valve 4 and the second check valve 13 Cooperating with the first shutoff valve 2, the second shutoff valve 10, and the third shutoff valve 12 simplifies the heat pump air conditioning system, reducing the setting of excessive shutoff valves.
  • the third check valve 21 can prevent the cold refrigerant in the compressor 1 from flowing back to the first heat exchanger 6 when the second expansion valve 8 is closed.
  • the person skilled in the art can also omit the first check valve 4 and the second check valve 13 as needed, and add a corresponding shut-off valve in the heat pump air-conditioning system, so that the heat pump air-conditioning system of the present invention can be in the heating circuit. Free switching between the four circuits of the refrigeration circuit, demisting circuit and defrost circuit. Or the person skilled in the art can also omit the first shut-off valve 2, the second shut-off valve 10 and the third shut-off valve 12, and optionally the first check valve 4 and the second check valve 13, as needed.
  • the first control valve, the second control valve, the third control valve and the fourth control valve are respectively arranged for the heating circuit, the refrigeration circuit, the demisting circuit and the defrost circuit, respectively for controlling the heating circuit, the refrigeration circuit, and the defogging
  • the circuit and the defrost circuit are switched on and off.
  • the heat pump air conditioning system of the present invention is in four circuits of a heating circuit, a refrigeration circuit, a defogging circuit and a defrost circuit. Switch between freely.
  • the first expansion valve 7, the second expansion valve 8, the third expansion valve 14, and the fourth expansion valve 16 are all electronic expansion valves, so that the controller of the electric vehicle passes Controlling the four electronic expansion valves can automatically adjust the flow rate of the coolant in the heat pump air conditioning system, thereby adjusting the temperature in the cabin, effectively demisting the cabin (especially the front windshield of the vehicle) and effectively The second condenser 9 located outside the vehicle performs defrosting.
  • the heat pump air conditioning system of the present invention further includes a liquid storage drying bottle 5 and a gas-liquid separator 11.
  • the liquid storage drying bottle 5 is disposed at the inlet end of the first heat exchanger 6, for removing moisture in the coolant, and storing more coolant in the circuit.
  • the gas-liquid separator 11 is in communication with the first input end of the compressor 1 for functioning to separate the gas and the liquid, preventing the liquid refrigerant from entering the compressor 1, and improving the oil return capability of the system.
  • a person skilled in the art can also provide a two-position three-way valve at the output end of the liquid storage drying bottle 5 as needed, so that the input end of the two-position three-way valve communicates with the output end of the liquid storage drying bottle 5, so that The first output end of the two-position three-way valve is in communication with the input ends of the first heat exchanger 6 (the input ends of the first passage 61 and the second passage 62), so that the second output end of the two-position three-way valve and the third The expansion valve 14 and the fourth expansion valve 16 are in communication. In order to allow the coolant to flow directly to the third expansion valve 14 and/or the fourth expansion valve 16 when the first heat exchanger 6 is not required to operate.
  • the air-jet heat-enhanced air-conditioning system of the present invention can ensure that the compressor 1 does not overheat due to an increase in the compression ratio when the outdoor temperature is low (for example, -20 ° C or higher). phenomenon. Therefore, the air-jet heat pump air-conditioning system of the present invention can also heat the cabin of an electric vehicle when the outdoor temperature is low. The invention reduces the waste of electric energy of the electric vehicle and improves the cruising range of the electric vehicle by means of the phase change heating method compared with the conventional electric heating method.
  • the coolant of the present invention may be any feasible coolant, for example, an inorganic compound refrigerant, a freon, a saturated hydrocarbon refrigerant, an unsaturated hydrocarbon refrigerant, and an azeotropic mixture refrigeration. Agents, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种喷气增焓热泵空调***和包括该热泵空调***的电动车。该热泵空调***包括依次首尾相接的压缩机(1)、第一冷凝器(3)、第一换热器(6)、第一膨胀阀(7)和第二冷凝器(9);其中,第一换热器(6)包括第一通道(61)和第二通道(62),第一通道(61)的第一端与第一冷凝器(3)连通,第一通道(61)的第二端与第一膨胀阀(7)连通;第二通道(62)的第一端通过第二膨胀阀(8)与第一冷凝器(3)连通,第二通道(62)的第二端与压缩机(1)连通。进入第二通道(62)内的冷却剂由于经过了第二膨胀阀(8)的减压汽化作用,其温度低于第一通道(61)内的冷却剂的温度。因此,在第一通道(61)内的冷却剂再次流过压缩机(1)时,能够防止压缩机(1)温度过高,使得热泵空调***在-10℃以下也能够制热,为电动车内部提供热风。

Description

喷气增焓热泵空调***和包括该热泵空调***的电动车 技术领域
本发明属于空调设备领域,具体提供一种喷气增焓热泵空调***和包括该热泵空调***的电动车。
背景技术
传统汽车的空调***,乘员舱采暖利用发动机冷却散发的热量,其水温较高,暖风效果较好。乘员舱制冷利用机械压缩机驱动制冷剂回路,通过压力变化和相变换热达到降温效果。
纯电动车动力总成的冷却液的温度需要控制的相对较低,无法为乘员舱提供较好的暖风效果。当前纯电动车的乘员舱采暖多采用电加热器和传统热泵作为热源。但是,电加热能耗较高,影响电动汽车的续航里程。而传统热泵在-10℃以下又无法工作,需要启动电热器进行舱内加热,不仅能耗大,而且还影响低温下的续航里程。
相应地,本领域需要一种新的热泵空调***来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有电动汽车的热泵空调***中的热泵无法在-10℃以下工作的问题,本发明提供了一种喷气增焓热泵空调***,所述热泵空调***包括制热回路,所述制热回路包括依次首尾相接的压缩机、第一冷凝器、第一换热器、第一膨胀阀和第二冷凝器;其中,所述第一换热器包括第一通道和第二通道,所述第一通道的第一端与所述第一冷凝器连通,所述第一通道的第二端与所述第一膨胀阀连通;所述第二通道的第一端通过第二膨胀阀与所述第一冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通。
在上述热泵空调***的优选技术方案中,所述制热回路还包括第一截止阀和第二截止阀,所述第一截止阀连接在所述压缩机的出口与所述第一冷凝器之间,所述第二截止阀连接在所述压缩机的入口与所述第二冷凝器之间。
在上述热泵空调***的优选技术方案中,所述热泵空调***还包括制冷回路,所述制冷回路包括依次首尾相接的所述压缩机、所述第二冷凝器、第三膨胀阀和蒸发器。
在上述热泵空调***的优选技术方案中,所述制冷回路还包括所述第一换热器;所述第一通道的第一端与所述第二冷凝器连通,所述第一通道的第二端与所述第三膨胀阀连通;所述第二通道的第一端通过所述第二膨胀阀与所述第二冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通。
在上述热泵空调***的优选技术方案中,所述制冷回路还包括第三截止阀,所述第三截止阀连接在所述压缩机的出口与所述第二冷凝器之间。
在上述热泵空调***的优选技术方案中,所述热泵空调***还包括除雾回路,所述除雾回路包括依次首尾相接的所述压缩机、所述第一冷凝器、所述第三膨胀阀和所述蒸发器。
在上述热泵空调***的优选技术方案中,所述除雾回路还包括所述第一换热器;所述第一通道的第一端与所述第一冷凝器连通,所述第一通道的第二端与所述第三膨胀阀连通;所述第二通道的第一端通过所述第二膨胀阀与所述第一冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通。
在上述热泵空调***的优选技术方案中,所述热泵空调***还包括除霜回路,所述除霜回路包括依次首尾相接的所述压缩机、所述第二冷凝器、第四膨胀阀和第二换热器;所述第二换热器包括第三通道和第四通道,所述第三通道的第一端与所述第四膨胀阀连通,所述第三通道的第二端与所述压缩机的入口连通;所述第四通道的两端分别与热源连通。
在上述热泵空调***的优选技术方案中,所述除霜回路还包括所述第一换热器;所述第一通道的第一端与所述第二冷凝器连通,所述第一通道的第二端与所述第四膨胀阀连通;所述第二通道的第一端通过所述第二膨胀阀与所述第二冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通;其中,所述第二膨胀阀处于关闭状态。
在上述热泵空调***的优选技术方案中,所述热泵空调***还包括第一风扇,所述第一风扇用于为所述第一冷凝器和/或所述蒸发器提供气流。
在上述热泵空调***的优选技术方案中,所述热泵空调***还包括第二风扇,所述第二风扇用于为所述第二冷凝器提供气流。
此外,本发明还提供了一种电动车,所述电动车包括上述热泵空调***的优选技术方案中任一项所述的喷气增焓热泵空调***。
在上述电动车的优选技术方案中,所述第一风扇将气流吹向车内。
在上述电动车的优选技术方案中,所述第二风扇将气流吹向车外。
在上述电动车的优选技术方案中,所述热源包括电池和电机中的至少一个。
本领域技术人员能够理解的是,在本发明的优选技术方案中,通过在热泵空调***的制热回路中串联第一换热器,使热泵空调***在进行制热时能够降低整个回路内冷却剂的温度,从而使热泵空调***在-10℃以下也能够制热,为电动车内部提供热风。
具体地,第一换热器包括第一通道和第二通道。制热回路主要由依次首尾相接的压缩机、第一冷凝器、第一换热器的第一通道、第一膨胀阀和第二冷凝器构成。第二通道的第一端通过第二膨胀阀与第一冷凝器连通,第二通道的第二端与压缩机连通。
当制热回路工作时,压缩机将低温低压的冷却剂压缩成高温高压的冷却剂。高温高压的冷却剂经过第一冷凝器时向车内的空气传递热量变成低温高压的冷却剂。低温高压的冷却剂的一部分经过第一通道之后在经过第一膨胀阀时变成低温低压的冷却剂。低温低压的冷却剂经过第二冷凝器时从车外的空气中吸收热量变成高温低压的冷却剂。最后高温低压的冷却剂经压缩机后再次变成高温高压的冷却剂。
低温高压的冷却剂的另一部分经过第二膨胀阀时汽化(或膨胀)吸热变成低温低压的冷却剂(其温度低于第一通道内冷却剂的温度)。低温低压的冷却剂在经过第二通道时从第一通道内的低温高压的冷却剂中吸收热量,然后回到压缩机内。在此过程中,第一通道内的冷却剂温度变低,进而使得流过第二冷凝器和压缩机的冷却剂温度也都变低,从 而相对于现有技术降低了压缩机的工作温度。因此,在室外温度低于-10℃时,制热回路也不会因对车舱内的环境加热过快而导致压缩机不能使用。
进一步,为了优化电动车的采暖效果,第一冷凝器还配置有第一风扇,用于将第一冷凝器周围的热风吹到车舱内。
方案1、一种喷气增焓热泵空调***,其特征在于,所述热泵空调***包括制热回路,
所述制热回路包括依次首尾相接的压缩机、第一冷凝器、第一换热器、第一膨胀阀和第二冷凝器;
其中,所述第一换热器包括第一通道和第二通道,
所述第一通道的第一端与所述第一冷凝器连通,所述第一通道的第二端与所述第一膨胀阀连通;
所述第二通道的第一端通过第二膨胀阀与所述第一冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通。
方案2、根据方案1所述的喷气增焓热泵空调***,其特征在于,所述制热回路还包括第一截止阀和第二截止阀,所述第一截止阀连接在所述压缩机的出口与所述第一冷凝器之间,所述第二截止阀连接在所述压缩机的入口与所述第二冷凝器之间。
方案3、根据方案1所述的喷气增焓热泵空调***,其特征在于,所述热泵空调***还包括制冷回路,
所述制冷回路包括依次首尾相接的所述压缩机、所述第二冷凝器、第三膨胀阀和蒸发器。
方案4、根据方案3所述的喷气增焓热泵空调***,其特征在于,所述制冷回路还包括所述第一换热器;
所述第一通道的第一端与所述第二冷凝器连通,所述第一通道的第二端与所述第三膨胀阀连通;
所述第二通道的第一端通过所述第二膨胀阀与所述第二冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通。
方案5、根据方案4所述的喷气增焓热泵空调***,其特征在于,所述制冷回路还包括第三截止阀,所述第三截止阀连接在所述压缩机的出口与所述第二冷凝器之间。
方案6、根据方案3所述的喷气增焓热泵空调***,其特征在于,所 述热泵空调***还包括除雾回路,
所述除雾回路包括依次首尾相接的所述压缩机、所述第一冷凝器、所述第三膨胀阀和所述蒸发器。
方案7、根据方案6所述的喷气增焓热泵空调***,其特征在于,所述除雾回路还包括所述第一换热器;
所述第一通道的第一端与所述第一冷凝器连通,所述第一通道的第二端与所述第三膨胀阀连通;
所述第二通道的第一端通过所述第二膨胀阀与所述第一冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通。
方案8、根据方案1所述的喷气增焓热泵空调***,其特征在于,所述热泵空调***还包括除霜回路,
所述除霜回路包括依次首尾相接的所述压缩机、所述第二冷凝器、第四膨胀阀和第二换热器;
所述第二换热器包括第三通道和第四通道,
所述第三通道的第一端与所述第四膨胀阀连通,所述第三通道的第二端与所述压缩机的入口连通;
所述第四通道的两端分别与热源连通。
方案9、根据方案8所述的喷气增焓热泵空调***,其特征在于,所述除霜回路还包括所述第一换热器;
所述第一通道的第一端与所述第二冷凝器连通,所述第一通道的第二端与所述第四膨胀阀连通;
所述第二通道的第一端通过所述第二膨胀阀与所述第二冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通;
其中,所述第二膨胀阀处于关闭状态。
方案10、根据方案3至7中任一项所述的喷气增焓热泵空调***,其特征在于,所述热泵空调***还包括第一风扇,所述第一风扇用于为所述第一冷凝器和/或所述蒸发器提供气流。
方案11、根据方案1至9中任一项所述的喷气增焓热泵空调***,其特征在于,所述热泵空调***还包括第二风扇,所述第二风扇用于为所述第二冷凝器提供气流。
方案12、一种电动车,其特征在于,所述电动车包括方案1至11中任一项所述的喷气增焓热泵空调***。
方案13、根据引用方案10的方案12所述的电动车,其特征在于,所述第一风扇将气流吹向车内。
方案14、根据引用方案11的方案12所述的电动车,其特征在于,所述第二风扇将气流吹向车外。
方案15、根据引用方案8的方案11所述的电动车,其特征在于,所述热源包括电池和电机中的至少一个。
附图说明
下面参照附图并结合电动汽车来描述本发明的优选实施方式,附图中:
图1是本发明的热泵空调***的原理图;
图2是本发明的热泵空调***的制热回路图;
图3是本发明的热泵空调***的制冷回路图;
图4是本发明的热泵空调***的除雾回路图;
图5是本发明的热泵空调***的除霜回路图。
附图标记列表:
1、压缩机;2、第一截止阀;3、第一冷凝器;4、第一单向阀;5、储液干燥瓶;6、第一换热器;61、第一通道;62、第二通道;7、第一膨胀阀;8、第二膨胀阀;9、第二冷凝器;10、第二截止阀;11、气液分离器;12、第三截止阀;13、第二单向阀;14、第三膨胀阀;15、蒸发器;16、第四膨胀阀;17、第二换热器;171、第三通道171;172、第四通道;18、电池;19、第一风扇;20、第二风扇;21、第三单向阀。
具体实施方式
本领域技术人员应当理解的是,本节实施方式仅仅用于解释本发明的技术原理,并非用于限制本发明的保护范围。例如,虽然本发明的喷气增焓热泵空调***是以电动汽车为例进行介绍的,但是本发明的喷气增焓热泵空调***还可以被应用其他任何可行的电动车,譬如,电动公交车、高铁、地铁等。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合,调整后的技术方案仍将落入本发明的保护范围。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,本发明的喷气增焓热泵空调***主要包括压缩机1、第一冷凝器3、第一换热器6、第二冷凝器9、蒸发器15和第二换热器17。其中,第一冷凝器3能够为电动汽车的车舱提供热量,第二冷凝器9能够向外部环境散热或从外部环境吸热,蒸发器15能够从电动汽车的车舱内吸收热量。为了增加第一冷凝器3和第二冷凝器9的散热速度,以及增加蒸发器15的吸热速度,本发明的热泵空调***还包括第一风扇19和第二风扇20。其中,第一风扇19用于将第一冷凝器3周围的热风和蒸发器15周围的冷风或热风吹向车舱;第二风扇20用于将第二冷凝器9周围的热风吹散。
当压缩机1、第一冷凝器3、第一换热器6和第二冷凝器9工作时,本发明的热泵空调***能够对电动汽车的车舱进行供暖。当压缩机1、第一换热器6、第二冷凝器9和蒸发器15工作时,本发明的热泵空调***能够对电动汽车的车舱进行制冷。当压缩机1、第一冷凝器3、第一换热器6和蒸发器15工作时,本发明的热泵空调***能够对电动汽车的车舱进行除雾。当压缩机1、第二冷凝器9和第二换热器17工作时,本发明的热泵空调***能够对第二冷凝器9进行除霜。
本发明的喷气增焓热泵空调***包括制热回路、制冷回路、除雾回路和除霜回路,用于使热泵空调***分别执行上述四个工作过程。
图2示出的是,本发明的热泵空调***在对电动汽车的车舱进行供暖时的制热回路。
如图2所示,本发明的制热回路主要包括依次首尾相接的压缩机1、第一冷凝器3、第一换热器6、第一膨胀阀7和第二冷凝器9。其中,第一换热器6包括第一通道61和第二通道62。第一通道61的第一端(图2中第一通道61的上端)与第一冷凝器3连通,第一通道61的第二端(图2中第一通道61的下端)与第一膨胀阀7连通;第二通道62的第一端(图2中第二通道62的下端)通过第二膨胀阀8与第一冷凝器3连通,第二通道62的第二端(图2中第二通道62的上端)与压缩机1连通。
继续参阅图2,压缩机1包括第一输入端、第二输入端和输出端,其中,第一输入端与第二冷凝器9连通,第二输入端与第二通道62的第二端连通,输出端与第一冷凝器3连通。
图2中所示制热回路的工作原理如下:
主回路:压缩机1将低温低压的冷却剂压缩成高温高压的冷却剂。高温高压的冷却剂经过第一冷凝器3时向车内的空气传递热量变成低温高压的冷却剂。低温高压的冷却剂中的一部分经过第一换热器6的第一通道61之后在经过第一膨胀阀7时变成低温低压的冷却剂。低温低压的冷却剂经过第二冷凝器9时从外界的空气中吸收热量变成高温低压的冷却剂。最后高温低压的冷却剂经压缩机1后再次变成高温高压的冷却剂。
喷气增焓回路:从第一冷凝器3流出的低温高压的冷却剂的另一部分经过第二膨胀阀8时汽化(或膨胀)吸热变成低温低压的冷却剂(其温度低于第一通道61内冷却剂的温度)。低温低压的冷却剂在经过第二通道62时从第一通道61内的低温高压的冷却剂中吸收热量,然后回到压缩机1内。
需要说明的是,回路中冷却剂的温度高低是当前状态的冷却剂的温度相对于前一状态的冷却剂的温度。例如,经过第一冷凝器3后的冷却剂的温度和经过第一冷凝器3前的冷却剂的温度。
在此过程中,通过第一风扇19能够持续地将第一冷凝器3周围的热风吹向车舱内。
本领域技术人员能够理解的是,第一通道61内的冷却剂温度变低能够使得流过第二冷凝器9和压缩机1的冷却剂温度也都变低。 因此,本发明的热泵空调***中的喷气增焓回路能够使压缩机1的工作温度保持安全范围之内。尤其是避免了制热回路在室外温度低于-10℃时,对车舱内的环境加热过快而导致压缩机1不能使用的现象的发生。
图3示出的是,本发明的热泵空调***在对电动汽车的车舱进行制冷时的制冷回路。
如图3所示,本发明的制冷回路主要包括依次首尾相接的压缩机1、第二冷凝器9、第一换热器6、第三膨胀阀14和蒸发器15。其中,第一换热器6的第一通道61的第一端与第二冷凝器9连通,第一换热器6的第一通道61的第二端与第三膨胀阀14连通;第一换热器6的第二通道62的第一端通过第二膨胀阀8与第二冷凝器9连通,第一换热器6的第二通道62的第二端与压缩机1连通。
继续参阅图3,压缩机1的第一输入端与蒸发器15连通,压缩机1的第二输入端与第二通道62的第二端连通,输出端与第二冷凝器9连通。
图3中所示制冷回路的工作原理如下:
主回路:压缩机1将低温低压的冷却剂压缩成高温高压的冷却剂。高温高压的冷却剂经过第二冷凝器9时向外部环境的空气传递热量变成低温高压的冷却剂。低温高压的冷却剂中的一部分经过第一换热器6的第一通道61之后在经过第三膨胀阀14时变成低温低压的冷却剂。低温低压的冷却剂经过蒸发器15时从车舱的空气中吸收热量变成高温低压的冷却剂。最后高温低压的冷却剂经压缩机1后再次变成高温高压的冷却剂。
喷气增焓回路:从第二冷凝器9流出的低温高压的冷却剂的另一部分经过第二膨胀阀8时汽化(或膨胀)吸热变成低温低压的冷却剂(其温度低于第一通道61内冷却剂的温度)。低温低压的冷却剂在经过第二通道62时从第一通道61内的低温高压的冷却剂中吸收热量,然后回到压缩机1内。此外,由于制冷回路工作时室外温度并不是很低,所以本领域技术人员还可以使第二膨胀阀8关闭,使低温高压的冷却剂只经过第一换热器6的第一通道61。
由于本发明的喷气增焓热泵空调***在对车舱进行制冷时室外温度较高,压缩机1的工作温度不会过高,所以本领域技术人员还可以根据需要,将第二膨胀阀8关闭,即使喷气增焓回路不工作,使从 第一冷凝器3流出的低温高压的冷却剂全部流向第一换热器6的第一通道61。
在此过程中,通过第一风扇19能够持续地将蒸发器15周围的冷风吹向车舱内。
本领域技术人员能够理解的是,第一通道61内的冷却剂温度变低能够使得流过第二冷凝器9和压缩机1的冷却剂温度也都变低。因此,本发明的热泵空调***中的喷气增焓回路能够使压缩机1的工作温度保持安全范围之内。
图4示出的是,本发明的热泵空调***在对电动汽车的车舱进行除雾时的除雾回路。
如图4所示,本发明的除雾回路主要包括依次首尾相接的压缩机1、第一冷凝器3、第一换热器6、第三膨胀阀14和蒸发器15。其中,第一换热器6的第一通道61的第一端与第一冷凝器3连通,第一换热器6的第一通道61的第二端与第三膨胀阀14连通;第一换热器6的第二通道62的第一端通过第二膨胀阀8与第一冷凝器3连通,第一换热器6的第二通道62的第二端与压缩机1连通。
继续参阅图4,压缩机1的第一输入端与蒸发器15连通,压缩机1的第二输入端与第二通道62的第二端连通,输出端与第一冷凝器3连通。
图4中所示除雾回路的工作原理如下:
主回路:压缩机1将低温低压的冷却剂压缩成高温高压的冷却剂。高温高压的冷却剂经过第一冷凝器3时向车舱内的空气传递热量变成低温高压的冷却剂。低温高压的冷却剂中的一部分经过第一换热器6的第一通道61之后在经过第三膨胀阀14时变成低温低压的冷却剂。低温低压的冷却剂经过蒸发器15时从车舱的空气中吸收热量变成高温低压的冷却剂。最后高温低压的冷却剂经压缩机1后再次变成高温高压的冷却剂。
喷气增焓回路:从第一冷凝器3流出的低温高压的冷却剂的另一部分经过第二膨胀阀8时汽化(或膨胀)吸热变成低温低压的冷却剂(其温度低于第一通道61内冷却剂的温度)。低温低压的冷却剂在经过第二通道62时从第一通道61内的低温高压的冷却剂中吸收热量,然后回到压缩机1内。此外,由于制冷回路工作时室外温度并不是很低, 所以本领域技术人员还可以使第二膨胀阀8关闭,使低温高压的冷却剂只经过第一换热器6的第一通道61。
由于本发明的喷气增焓热泵空调***在对车舱进行除雾时室外温度较高,压缩机1的工作温度不会过高,所以本领域技术人员还可以根据需要,将第二膨胀阀8关闭,即使喷气增焓回路不工作,使从第一冷凝器3流出的低温高压的冷却剂全部流向第一换热器6的第一通道61。
在此过程中,通过第一风扇19能够持续地将第一冷凝器3周围的热风和/或蒸发器15周围的冷风吹向车舱内。
优选地,在本发明的优选实施方案中,本发明的电动汽车具有对第一冷凝器3进行遮挡的第一遮挡构件和对蒸发器15进行遮挡的第二遮挡构件。通过调节第一遮挡构件和第二遮挡构件能够改变第一风扇19吹出的气流与第一冷凝器3和蒸发器15的接触面积,进而能够调整第一风扇19吹向车舱内气流的温度。该气流被调节到适宜温度时能够对电动汽车的玻璃(尤其是前挡风玻璃)进行除雾。
如图3和图4所示,本发明的热泵空调***还包括第二换热器17。第二换热器17包括第三通道171和第四通道172。第三通道171的第一端(图3中第三通道171的下端)通过第四膨胀阀16与第一换热器6的第一通道61连通,第三通道171的第二端(图3中第三通道171的上端)与压缩机1连通。第四通道172的两端与电动汽车的电池18(动力电池)连通。或者本领域技术人员还可以根据需要,使第四通道172的两端与电动汽车的其他热源连通,例如驱动电机。
继续参阅图3和图4,本发明的热泵空调***在对车舱执行制冷和除雾时,还能够可选地开启第四膨胀阀16,对电动汽车的电池18进行降温。
具体地,从第一换热器6的第一通道61流出的低温高压的冷却剂经过第四膨胀阀16时变成低温低压的冷却剂。低温低压的冷却剂经过第二换热器17的第三通道171时从第四通道172内循环的冷却介质吸收热量变成高温低压的冷却剂。最后高温低压的冷却剂经压缩机1后再次变成高温高压的冷却剂。
图5示出的是,本发明的热泵空调***在对车外的第二冷凝器9进行除霜时的除霜回路。
如图5所示,本发明的除霜回路主要包括依次首尾相接的压缩机1、第二冷凝器9、第一换热器6、第四膨胀阀16和第二换热器17。其中,第一换热器6的第一通道61的第一端与第二冷凝器9连通,第一换热器6的第一通道61的第二端与第四膨胀阀16连通;第一换热器6的第二通道62的第一端通过第二膨胀阀8与第二冷凝器9连通,第一换热器6的第二通道62的第二端与压缩机1连通。
继续参阅图5,压缩机1的第一输入端与第二换热器17连通,压缩机1的第二输入端与第二通道62的第二端连通,输出端与第二冷凝器9连通。
图5中所示除霜回路的工作原理如下:
主回路:压缩机1将低温低压的冷却剂压缩成高温高压的冷却剂。高温高压的冷却剂经过第二冷凝器9时散热变成低温高压的冷却剂。低温高压的冷却剂中全部经过第一换热器6的第一通道61之后在经过第四膨胀阀16时变成低温低压的冷却剂。低温低压的冷却剂经过第二换热器17的第三通道171时从第四通道172中的冷却介质吸收热量变成高温低压的冷却剂。最后高温低压的冷却剂经压缩机1后再次变成高温高压的冷却剂。
喷气增焓回路:此时第二膨胀阀8被关闭,喷气增焓回路不工作,没有冷却剂通向第一换热器6的第二通道62。
在此过程中,第二风扇20可以不工作,以便经过第二冷凝器9的高温高压的冷却剂能够尽可能将热量传递给第二冷凝器9外面的霜,从而促进霜的融化。
需要说明的是,在此过程中,第二换热器17的第四通道172内的冷却介质的热量由工作的电池18提供。
进一步,如图1至5所示,本发明的热泵空调***还包括第一截止阀2、第二截止阀10和第三截止阀12,通过如图2至图5中所示的控制第一截止阀2、第二截止阀10和第三截止阀12的通断能够使本发明的热泵空调***在制热回路、制冷回路、除雾回路和除霜回路四个回路之间自由切换。在本发明的优选实施方案中,第一截止阀2、第二截止阀10和第三截止阀12都是电控截止阀,以便电动汽车的控制器通过控制该三个电控截止阀的通断能够使热泵空调***在制热回路、制冷回路、除雾回路和除霜回路四个回路之间自由切换。此外,本发明的第一截止 阀2、第二截止阀10和第三截止阀12并不仅限于图1至图5中所示的一种位置连接关系,本领域技术人员还可根据需要,将第一截止阀2、第二截止阀10和第三截止阀12的位置进行适当调整,例如,将第一截止阀2设置在第一冷凝器3和第一换热器6之间。
更进一步,本领域技术人员还可以根据需要,将第一截止阀2和第三截止阀12设置为一个两位三通换向阀,通过切换该两位三通换向阀使从压缩机1流出的冷却剂可选择的流向第一冷凝器3或第二冷凝器9。将第二截止阀10和第三截止阀12设置为一个三位三通换向阀,通过切换该三位三通换向阀使第二冷凝器9可选择的与压缩机1的第一输入端或输出端连通,以及使第二冷凝器9断开与压缩机1的连通。
再进一步,本发明的热泵空调***还包括第一单向阀4、第二单向阀13和第三单向阀21。第一单向阀3设置在图1至图5中所示的第一冷凝器3的下侧;第二单向阀13设置在图1至图5中所示的第一冷凝器3和第二冷凝器9之间;第三单向阀21设置在图1至图5中所示的第一换热器6与压缩机1之间。第一单向阀4、第二单向阀13和第三单向阀21只允许冷却剂朝一个方向流动,而不能反向流动,因此,第一单向阀4和第二单向阀13配合第一截止阀2、第二截止阀10和第三截止阀12能够简化热泵空调***,减少了过多的截止阀的设置。第三单向阀21能够在第二膨胀阀8关闭时,防止压缩机1内的冷区剂倒流回第一换热器6。
此外,本领域技术人员还可以根据需要,省去第一单向阀4和第二单向阀13,在热泵空调***中增设相应的截止阀,以便本发明的热泵空调***能够在制热回路、制冷回路、除雾回路和除霜回路四个回路之间自由切换。或者本领域技术人员还可以根据需要,省去第一截止阀2、第二截止阀10和第三截止阀12,以及可选择地省去第一单向阀4和第二单向阀13,为制热回路、制冷回路、除雾回路和除霜回路分别配置第一控制阀、第二控制阀、第三控制阀和第四控制阀,用于分别控制制热回路、制冷回路、除雾回路和除霜回路的通断。通过控制第一控制阀、第二控制阀、第三控制阀和第四控制阀的通断来使本发明的热泵空调***在制热回路、制冷回路、除雾回路和除霜回路四个回路之间自由切换。
进一步,本领域技术人员还可以根据需要,省去制热回路、制冷回路、除雾回路和除霜回路中的任意一个或多个回路,以满足具体的应用场合。这种调整并未偏离本发明的技术原理,因此调整之后的技术方案仍将落入本发明的保护范围。
需要说明的是,在本发明的优选实施方案中,第一膨胀阀7、第二膨胀阀8、第三膨胀阀14和第四膨胀阀16都是电子膨胀阀,以便电动汽车的控制器通过控制该四个电子膨胀阀能够自动调整热泵空调***中冷却剂的流量,进而能够调整车舱内的温度、有效地对车舱内(尤其是汽车的前挡风玻璃)除雾以及有效地对位于车外的第二冷凝器9进行除霜。
需要补充说明的是,本发明的热泵空调***还包括储液干燥瓶5和气液分离器11。其中,储液干燥瓶5设置在第一换热器6的入口端,用于除去冷却剂中的水分,并储存回路中多于的冷却剂。气液分离器11与压缩机1的第一输入端相连通,用于起到分离气体和液体的作用,防止液体制冷剂进入压缩机1,提高***回油能力。
此外,本领域技术人员还可以根据需要,在储液干燥瓶5的输出端设置一个两位三通阀,使该两位三通阀的输入端与储液干燥瓶5的输出端连通,使两位三通阀的第一输出端与第一换热器6的输入端(第一通道61和第二通道62的输入端)连通,使两位三通阀的第二输出端与第三膨胀阀14和第四膨胀阀16连通。以便在不需要第一换热器6工作时,使冷却剂直接流向第三膨胀阀14和/或第四膨胀阀16。
综上所述,通过本发明的喷气增焓热泵空调***能够保证压缩机1在室外温度很低(例如-20℃以上)的情况下,也不会因压缩比的不断增加而过热发生停机的现象。因此,本发明的喷气增焓热泵空调***在室外温度较低时也能够为电动汽车的车舱进行加热。本发明通过相变加热的方式相对于传统的电加热方式减少了电动汽车电能的浪费,提高了电动汽车的续航里程。
本领域技术人员能够理解的是,本发明的冷却剂可以是任意可行的冷却剂,例如,无机化合物制冷剂、氟利昂、饱和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂等。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然 不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (15)

  1. 一种喷气增焓热泵空调***,其特征在于,所述热泵空调***包括制热回路,
    所述制热回路包括依次首尾相接的压缩机、第一冷凝器、第一换热器、第一膨胀阀和第二冷凝器;
    其中,所述第一换热器包括第一通道和第二通道,
    所述第一通道的第一端与所述第一冷凝器连通,所述第一通道的第二端与所述第一膨胀阀连通;
    所述第二通道的第一端通过第二膨胀阀与所述第一冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通。
  2. 根据权利要求1所述的喷气增焓热泵空调***,其特征在于,所述制热回路还包括第一截止阀和第二截止阀,所述第一截止阀连接在所述压缩机的出口与所述第一冷凝器之间,所述第二截止阀连接在所述压缩机的入口与所述第二冷凝器之间。
  3. 根据权利要求1所述的喷气增焓热泵空调***,其特征在于,所述热泵空调***还包括制冷回路,
    所述制冷回路包括依次首尾相接的所述压缩机、所述第二冷凝器、第三膨胀阀和蒸发器。
  4. 根据权利要求3所述的喷气增焓热泵空调***,其特征在于,所述制冷回路还包括所述第一换热器;
    所述第一通道的第一端与所述第二冷凝器连通,所述第一通道的第二端与所述第三膨胀阀连通;
    所述第二通道的第一端通过所述第二膨胀阀与所述第二冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通。
  5. 根据权利要求4所述的喷气增焓热泵空调***,其特征在于,所述制冷回路还包括第三截止阀,所述第三截止阀连接在所述压缩机的出口与所述第二冷凝器之间。
  6. 根据权利要求3所述的喷气增焓热泵空调***,其特征在于,所述热泵空调***还包括除雾回路,
    所述除雾回路包括依次首尾相接的所述压缩机、所述第一冷凝器、所述第三膨胀阀和所述蒸发器。
  7. 根据权利要求6所述的喷气增焓热泵空调***,其特征在于,所述除雾回路还包括所述第一换热器;
    所述第一通道的第一端与所述第一冷凝器连通,所述第一通道的第二端与所述第三膨胀阀连通;
    所述第二通道的第一端通过所述第二膨胀阀与所述第一冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通。
  8. 根据权利要求1所述的喷气增焓热泵空调***,其特征在于,所述热泵空调***还包括除霜回路,
    所述除霜回路包括依次首尾相接的所述压缩机、所述第二冷凝器、第四膨胀阀和第二换热器;
    所述第二换热器包括第三通道和第四通道,
    所述第三通道的第一端与所述第四膨胀阀连通,所述第三通道的第二端与所述压缩机的入口连通;
    所述第四通道的两端分别与热源连通。
  9. 根据权利要求8所述的喷气增焓热泵空调***,其特征在于,所述除霜回路还包括所述第一换热器;
    所述第一通道的第一端与所述第二冷凝器连通,所述第一通道的第二端与所述第四膨胀阀连通;
    所述第二通道的第一端通过所述第二膨胀阀与所述第二冷凝器连通,所述第二通道的第二端与所述压缩机的入口连通;
    其中,所述第二膨胀阀处于关闭状态。
  10. 根据权利要求3至7中任一项所述的喷气增焓热泵空调***,其特征在于,所述热泵空调***还包括第一风扇,所述第一风扇用于为所 述第一冷凝器和/或所述蒸发器提供气流。
  11. 根据权利要求1至9中任一项所述的喷气增焓热泵空调***,其特征在于,所述热泵空调***还包括第二风扇,所述第二风扇用于为所述第二冷凝器提供气流。
  12. 一种电动车,其特征在于,所述电动车包括权利要求1至11中任一项所述的喷气增焓热泵空调***。
  13. 根据引用权利要求10的权利要求12所述的电动车,其特征在于,所述第一风扇将气流吹向车内。
  14. 根据引用权利要求11的权利要求12所述的电动车,其特征在于,所述第二风扇将气流吹向车外。
  15. 根据引用权利要求8的权利要求11所述的电动车,其特征在于,所述热源包括电池和电机中的至少一个。
PCT/CN2018/113257 2017-11-01 2018-11-01 喷气增焓热泵空调***和包括该热泵空调***的电动车 WO2019085956A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18874781.0A EP3705323B1 (en) 2017-11-01 2018-11-01 Enhanced vapor injection heat pump air conditioning system and electric vehicle comprising heat pump air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711057911.8 2017-11-01
CN201711057911.8A CN107757298B (zh) 2017-11-01 2017-11-01 喷气增焓热泵空调***和包括该热泵空调***的电动车

Publications (1)

Publication Number Publication Date
WO2019085956A1 true WO2019085956A1 (zh) 2019-05-09

Family

ID=61272011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113257 WO2019085956A1 (zh) 2017-11-01 2018-11-01 喷气增焓热泵空调***和包括该热泵空调***的电动车

Country Status (4)

Country Link
EP (1) EP3705323B1 (zh)
CN (1) CN107757298B (zh)
TW (2) TWI696790B (zh)
WO (1) WO2019085956A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110254171A (zh) * 2019-06-28 2019-09-20 中原工学院 一种具有快速降温除湿除雾功能的汽车用空调***

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107757298B (zh) * 2017-11-01 2021-03-23 蔚来(安徽)控股有限公司 喷气增焓热泵空调***和包括该热泵空调***的电动车
CN108224842B (zh) * 2018-03-19 2024-04-16 吉林大学 一种具有电池热管理功能的补气式电动汽车热泵空调***
CN109094324B (zh) * 2018-07-17 2021-09-14 蔚来(安徽)控股有限公司 汽车、空调***及其控制方法
CN109398026B (zh) * 2018-09-11 2022-01-28 蔚来控股有限公司 电动汽车及其空调***
CN110667333B (zh) * 2019-09-20 2022-08-05 河南科技大学 一种电动汽车综合热管理***
DE102020107652A1 (de) * 2020-03-19 2021-09-23 Audi Aktiengesellschaft Verfahren zum Abtauen eines als Luftwärmepumpe betriebenen äußeren Wärmeübertragers einer Kälteanlage für ein Kraftfahrzeug, Kälteanlage und Kraftfahrzeug mit einer solchen Kälteanlage
WO2023004782A1 (zh) * 2021-07-30 2023-02-02 华为技术有限公司 一种热管理***和车辆
FR3126346A1 (fr) * 2021-08-26 2023-03-03 Valeo Systemes Thermiques Systeme de conditionnement thermique pour vehicule automobile
KR20230056996A (ko) * 2021-10-21 2023-04-28 한온시스템 주식회사 냉난방 베이퍼 인젝션 시스템 및 이에 사용되는 베이퍼 인젝션 모듈

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041601A (ja) * 1999-07-30 2001-02-16 Denso Corp 冷凍サイクル装置
CN1840988A (zh) * 2005-04-01 2006-10-04 株式会社电装 喷射器型制冷循环
CN104884285A (zh) * 2012-11-30 2015-09-02 三电控股株式会社 车辆用空调装置
CN105758061A (zh) * 2014-12-15 2016-07-13 比亚迪股份有限公司 车辆及其空调***
CN106004329A (zh) * 2016-06-17 2016-10-12 南方英特空调有限公司 一种新能源汽车超低温热泵空调***及控制方法
CN107187291A (zh) * 2017-05-02 2017-09-22 珠海格力电器股份有限公司 空调器***、交通工具及空调器***控制的方法
CN107757298A (zh) * 2017-11-01 2018-03-06 蔚来汽车有限公司 喷气增焓热泵空调***和包括该热泵空调***的电动车
CN207859887U (zh) * 2017-11-01 2018-09-14 蔚来汽车有限公司 喷气增焓热泵空调***和包括该热泵空调***的电动车

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2230873B (en) * 1989-02-27 1993-10-06 Toshiba Kk Multi-system air conditioning machine
JP2979802B2 (ja) * 1991-12-27 1999-11-15 株式会社デンソー 空気調和装置
FR2697209B1 (fr) * 1992-10-26 1994-12-09 Valeo Thermique Habitacle Dispositif et procédé de climatisation d'un véhicule, notamment d'un véhicule électrique.
KR100435064B1 (ko) * 2001-09-25 2004-06-30 (주)뉴그린테크 히트펌프식 폐열회수장치
CN101279580A (zh) * 2008-05-30 2008-10-08 清华大学 燃料电池车用余热热泵空调***
CN201757505U (zh) * 2010-08-06 2011-03-09 宁波奥克斯空调有限公司 一种空气源喷气增焓热泵热水器
DE102011118162C5 (de) * 2011-11-10 2020-03-26 Audi Ag Kombinierte Kälteanlage und Wärmepumpe und Verfahren zum Betreiben der Anlage mit funktionsabhängiger Kältemittelverlagerung innerhalb des Kältemittelkreislaufes
DE102012108731B4 (de) * 2012-09-17 2022-10-06 Audi Ag Klimaanlage für ein Kraftfahrzeug
JP6073652B2 (ja) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 車両用空気調和装置
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
CN103542606B (zh) * 2013-10-31 2016-08-03 Tcl空调器(中山)有限公司 热泵空调***及其控制方法
CN105216584B (zh) * 2015-10-20 2017-10-31 上海交通大学 闪蒸过冷补气的电动汽车废热回收热泵式综合热管理***
CN105423621B (zh) * 2016-01-11 2017-12-05 东北电力大学 一种双热源喷气增焓热泵***
CN105650919B (zh) * 2016-02-02 2018-11-30 珠海格力电器股份有限公司 空调***及喷气过热度调节方法
CN106016810B (zh) * 2016-05-31 2018-12-25 广东美的制冷设备有限公司 喷气增焓空调***及其除霜控制方法
CN106288080B (zh) * 2016-08-19 2019-02-19 广东美的暖通设备有限公司 喷气增焓空调***
CN206141270U (zh) * 2016-11-14 2017-05-03 吉林大学 具有电池热管理功能的热泵式汽车空调
CN106765617B (zh) * 2017-02-21 2019-08-30 广东美的暖通设备有限公司 喷气增焓热泵空调***、控制方法、控制装置和空调器
CN106802011A (zh) * 2017-03-23 2017-06-06 李章� 一种三联供低温***增焓热泵

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041601A (ja) * 1999-07-30 2001-02-16 Denso Corp 冷凍サイクル装置
CN1840988A (zh) * 2005-04-01 2006-10-04 株式会社电装 喷射器型制冷循环
CN104884285A (zh) * 2012-11-30 2015-09-02 三电控股株式会社 车辆用空调装置
CN105758061A (zh) * 2014-12-15 2016-07-13 比亚迪股份有限公司 车辆及其空调***
CN106004329A (zh) * 2016-06-17 2016-10-12 南方英特空调有限公司 一种新能源汽车超低温热泵空调***及控制方法
CN107187291A (zh) * 2017-05-02 2017-09-22 珠海格力电器股份有限公司 空调器***、交通工具及空调器***控制的方法
CN107757298A (zh) * 2017-11-01 2018-03-06 蔚来汽车有限公司 喷气增焓热泵空调***和包括该热泵空调***的电动车
CN207859887U (zh) * 2017-11-01 2018-09-14 蔚来汽车有限公司 喷气增焓热泵空调***和包括该热泵空调***的电动车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705323A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110254171A (zh) * 2019-06-28 2019-09-20 中原工学院 一种具有快速降温除湿除雾功能的汽车用空调***

Also Published As

Publication number Publication date
TWM580521U (zh) 2019-07-11
CN107757298A (zh) 2018-03-06
EP3705323A1 (en) 2020-09-09
TWI696790B (zh) 2020-06-21
EP3705323B1 (en) 2023-01-11
CN107757298B (zh) 2021-03-23
EP3705323A4 (en) 2021-08-25
TW201923287A (zh) 2019-06-16

Similar Documents

Publication Publication Date Title
WO2019085956A1 (zh) 喷气增焓热泵空调***和包括该热泵空调***的电动车
CN112339527B (zh) 一种新能源汽车热管理***及其工作方法
CN110525169B (zh) 纯电动汽车用集成乘员舱热泵空调及三电热管理***
JP6634160B2 (ja) 車両用ヒートポンプシステム
US10107545B2 (en) Air-conditioning apparatus for vehicle
CN109080406B (zh) 一种结合热管理的热泵车用空调***及其控制方法
EP3984795B1 (en) Thermal management system
KR101715723B1 (ko) 차량용 히트 펌프 시스템
KR101748209B1 (ko) 차량용 히트 펌프 시스템
KR102318996B1 (ko) 차량용 히트펌프 시스템
JP2016041585A (ja) 車両用空調装置およびその構成ユニット
CN109927507A (zh) 一种电动汽车用整车液流循环热管理***
CN110108055A (zh) 车用空调热泵一体化***
KR102047749B1 (ko) 차량용 히트 펌프 시스템
WO2015046194A1 (ja) 車両用空調装置、電動圧縮機、及び車両の空調方法
WO2014136446A1 (ja) 車両用空調装置
KR20120042104A (ko) 전기 자동차용 공기 조화 시스템
CN114714860A (zh) 热管理***
CN210337493U (zh) 一种电动车辆的热管理***
CN114212002B (zh) 一种电动汽车热管理***
CN207859887U (zh) 喷气增焓热泵空调***和包括该热泵空调***的电动车
JP2004106799A (ja) 車両用空調装置
KR20190098068A (ko) 차량용 열관리 시스템
KR20140027584A (ko) 차량용 공조장치
CN210554035U (zh) 一种应用复合阀的热泵***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018874781

Country of ref document: EP

Effective date: 20200602