WO2019085817A1 - 一种制备废弃物山竹壳石墨烯的方法 - Google Patents

一种制备废弃物山竹壳石墨烯的方法 Download PDF

Info

Publication number
WO2019085817A1
WO2019085817A1 PCT/CN2018/111847 CN2018111847W WO2019085817A1 WO 2019085817 A1 WO2019085817 A1 WO 2019085817A1 CN 2018111847 W CN2018111847 W CN 2018111847W WO 2019085817 A1 WO2019085817 A1 WO 2019085817A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
temperature
mangosteen shell
mangosteen
graphene
Prior art date
Application number
PCT/CN2018/111847
Other languages
English (en)
French (fr)
Inventor
曾功昶
曾和平
Original Assignee
曾功昶
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曾功昶 filed Critical 曾功昶
Publication of WO2019085817A1 publication Critical patent/WO2019085817A1/zh
Priority to ZA2020/01811A priority Critical patent/ZA202001811B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data

Definitions

  • the invention relates to biomass graphene, in particular to a method for preparing graphene by using a waste mangosteen shell as a raw material, and belongs to the field of biomass graphene preparation.
  • Mangosteen is a tropical fruit from South Asia. Mangosteen shells account for about two-thirds of the fruit. Mangosteen shells are mainly composed of cellulose, hemicellulose, lignin and pectin. Disposal of materials not only causes waste of resources, but also causes environmental pressure. It is necessary to make rational use of mangosteen shells. In the prior art, the mangosteen shell is often used as a raw material to prepare mangosteen charcoal, but the method has the advantages of low production efficiency, low yield, environmental pollution in the processing process, and low added value of the product, and has not been widely promoted.
  • the waste mangosteen shell charcoal is prepared into a product with high added value and superior performance, which is of great significance for the rational use of mangosteen waste.
  • the graphene prepared by using graphite powder as the raw material uses the Hummers method or the Hummers modified method to generate a large amount of acidic wastewater, which causes great pollution to the environment. If the conventional wastewater treatment method is used, the wastewater generated in the production process will inevitably consume a huge amount of waste.
  • the human and financial costs make the price of graphene high, which seriously hinders the large-scale application and promotion of graphene.
  • the mangosteen shell carbon material has the advantages of no pollution and wide source, which provides a possibility for large-scale production of graphene.
  • the invention provides a preparation method of waste mangosteen shell graphene, which has low cost, safety and environmental protection, overcomes the problems existing in the prior art, utilizes waste biomass waste mangosteen shell, avoids using a large amount of concentrated sulfuric acid in the production process, and obtains raw materials.
  • the material graphene is a multilayer graphene.
  • a method for preparing a graphene material by using a waste mangosteen shell as a raw material comprising the following steps:
  • step 2) The waste mangosteen shell powder obtained in step 1) is placed in a tube furnace under N2 atmosphere; the temperature is raised to 500-800 ° C, and the temperature is kept for 1 to 2 hours; the temperature is further increased to 800-1000 ° C, and the temperature is kept 0.5- 2 hours, slowly reduced to 25 ⁇ 35 ° C, to obtain the waste carnation shell pre-carbonization products;
  • step 2) mixing and dissolving the waste carnation shell pre-carbonized product obtained in step 2) with one or more of zinc nitrate, aluminum nitrate, zinc chloride and potassium hydroxide, and pre-carbonizing the waste mangosteen shell with zinc nitrate and chlorine
  • the weight ratio of zinc and potassium hydroxide is 1:1 to 4, and after drying, it is placed in a tube furnace under N2 atmosphere; the temperature is raised to 500-800 ° C, and the temperature is kept for 1 to 2 hours; and the temperature is further raised to 900 to 1200 ° C. The temperature was kept for 0.5 to 2 hours, and slowly dropped to room temperature to obtain waste mangosteen shell biomass graphene.
  • the heating rate is 0.5-2.0 ° C / min.
  • the heating rate is 3.0 to 5.0 ° C / min.
  • the cooling rate is 3 to 5 ° C / min.
  • the waste mangosteen shell is baked at 95-120 ° C for 12-24 hours before pulverization; after pulverization, it is screened by a 50-100 mesh sieve.
  • the method for preparing a graphene material by using the waste mangosteen shell as a raw material further comprises the steps of: washing the waste mangosteen shell biomass graphene to neutral with deionized water as an eluent, and then washing with anhydrous ethanol. Many times, the waste mangosteen shell biomass graphene was obtained by drying at 95-120 °C.
  • the waste mangosteen shell biomass graphene prepared by the invention has a specific surface area of 1859-2592 m2/g; the D, G and 2D peaks of the Raman spectrum form a single peak; and the IG/I2D is 1.54 to 2.18; the PXRD pattern 002 and The 100 peak is clear and arguable.
  • the present invention has the following advantages:
  • the method of the invention adopts the waste mangosteen shell as the raw material, has low cost and common raw materials, and solves the problem that the waste mangosteen wastes resources as garbage disposal.
  • the concentrated sulfuric acid commonly used in the Hummers method or the Hummers modification method is avoided, the wastewater discharge is reduced, the environment is not polluted, there is no explosion risk under industrial production conditions, and the production cost is low;
  • the waste mangosteen prepared by the invention Shell biomass graphene, IG/I2D is 1.54 ⁇ 2.18, and 2D is a single peak, indicating that the waste mangosteen shell biomass graphene is multi-layer graphene; improving the quality of biomass graphene under industrial production conditions, as a downstream product Such as supercapacitor, conductive carbon paste, graphene battery, lightweight body armor, etc.
  • the waste mangosteen shell biomass graphene prepared by the invention has a specific surface area of 1859-2592 m2/g, compared with the theoretical predicted graphene ratio. The surface area is close to 2620 m 2 /g, which indicates that the waste mangosteen shell biomass graphene prepared by the invention has good quality and can be used as a high value-added electronic material in the electronics industry.
  • the waste mangosteen shell biomass graphene obtained by the invention can be used as an electrode material of a conductive carbon paste, a supercapacitor or a lithium ion battery, or can be added to a resin or a rubber to enhance physical properties such as a resin and a rubber.
  • the invention has simple production process, low cost, safety and environmental protection, can realize continuous industrial production, and has broad market application prospects.
  • Example 1 is a Raman spectrum of the waste mangosteen shell biomass graphene obtained in Example 1.
  • a method for preparing a graphene material by using a waste mangosteen shell as a raw material comprising the following steps:
  • the waste mangosteen shell is washed, dried at 120 ° C overnight, crushed through a 50 mesh sieve to obtain waste mangosteen shell powder; under the N2 atmosphere, the waste mangosteen shell powder is placed in a tube furnace; the heating rate is controlled to be 1.0.
  • the specific surface area of the obtained product is: 1887 m2 / g;
  • Raman map is shown in Figure 1, instrument name: micro Raman spectrometer, model: LabRAM Aramis manufacturer: France HJY company, Figure 1 is the implementation
  • the Raman spectra of the products, D, G and 2D are all single peaks, consistent with the characterization of graphene Raman spectra.
  • the Raman map shows that the IG/I2D is 2.18. As can be seen from Fig. 1, in the present embodiment, in Fig.
  • the 2D peak is a single peak
  • the waste mangosteen shell is a multi-layer graphene, and the production process is simple, safe and environmentally friendly with respect to graphene prepared by using graphite powder as a raw material; Application can guarantee the quality of downstream products.
  • a method for preparing a graphene material by using a waste mangosteen shell as a raw material comprising the following steps: washing the mangosteen shell, drying at 110 ° C overnight, smashing through a 100 mesh sieve to obtain waste mangosteen shell powder; under N2 atmosphere conditions Next, the waste mangosteen shell powder is placed in a tube furnace; the temperature rise rate is controlled to 0.5 ° C / min, the temperature is raised to 700 ° C, and the temperature is kept for 2 hours; the temperature is further increased, the temperature rise rate is controlled to be 5.0 ° C / min, and the temperature is raised to 1000 ° C.
  • a method for preparing a graphene material by using a waste mangosteen shell as a raw material comprises the following steps: washing the waste mangosteen shell, drying at 105 ° C overnight, and then pulverizing through a 50 mesh sieve to obtain a waste mangosteen shell powder; Under the atmosphere condition, the waste mangosteen shell powder was placed in a tube furnace; the temperature rising rate was controlled to 1.0 ° C / min, the temperature was raised to 950 ° C, and the temperature was kept for 2 hours; the temperature was further increased, the temperature rising rate was controlled to be 5.0 ° C / min, and the temperature was raised to 1000.
  • a method for preparing a graphene material by using a waste mangosteen shell as a raw material comprising the steps of: washing a mangosteen shell, drying at 110 ° C overnight, and then pulverizing through a 100 mesh sieve to obtain a waste mangosteen shell powder; Under the atmosphere condition, the waste mangosteen shell was placed in a tube furnace, the heating rate was controlled at 1.0 ° C / min, the temperature was raised to 700 ° C, and the temperature was kept for 2 hours; the temperature was further increased, the temperature rising rate was controlled at 5.0 ° C / min, and the temperature was raised to 980 ° C.
  • a method for preparing a graphene material by using a waste mangosteen shell as a raw material comprises the following steps: washing the mangosteen shell, drying at 120 ° C overnight, and then pulverizing through a 50 mesh sieve to obtain a waste mangosteen shell powder; Under the atmosphere condition, the waste mangosteen shell powder was placed in a tube furnace, the heating rate was controlled to 0.5 ° C / min, the temperature was raised to 800 ° C, and the temperature was kept for 2 hours; the temperature was further increased, the temperature rising rate was controlled to be 5.0 ° C / min, and the temperature was raised to 950.
  • the temperature is raised to 950 ° C, and the temperature is kept for 2 hours; the temperature is increased, the temperature is controlled to 3.0 ° C / min, the temperature is raised to 1200 ° C, the temperature is kept for 1 hour, the temperature is slowly lowered to room temperature, the cooling rate is controlled to 5 ° C / min, and the sample is taken at room temperature.
  • Deionized water As an eluent, the washing solution was neutral, washed 3 times with absolute ethanol, and dried at 60 °C.
  • the specific surface area was: 1859 m 2 /g, and the Raman spectrum was measured by a micro Raman spectrometer with an IG/I 2D of 2.18.

Abstract

一种利用山竹壳为原料制备石墨烯的方法,先将干燥好的山竹壳粉碎;山竹壳粉末N 2气氛下,置于管式炉中;升温到500~800℃,保温1~2小时;继续升温到800~1000℃,保温1~2小时,缓慢降至25~35℃,获得山竹壳碳化产物;将所得山竹壳碳化产物与硝酸铝﹑硝酸锌﹑氯化锌和氢氧化钾单独或混合使用,在N 2气氛条件下,置于管式炉中;升温到800℃,保温1~2小时;继续升温到850~1200℃,保温0.5~2小时,缓慢降至室温,获得石墨烯。

Description

一种制备废弃物山竹壳石墨烯的方法 技术领域
本发明涉及生物质石墨烯,特别是涉及一种废弃物山竹壳为原料制备石墨烯的方法,属于生物质石墨烯制备领域。
背景技术
山竹是一种来自南亚的热带水果,山竹壳约占果实的三分之二重,山竹壳主要成分是纤维素、半纤维素、木质素和果胶等,食用时人们通常将壳体作为废弃物丢弃,既造成资源浪费,又造成环境压力,合理利用山竹壳很有必要。现有技术中常常将废弃山竹壳为原料制备山竹炭,但该方法存在生产效率低,产量低,加工过程存在环境污染,产品附加值低的状况,始终未能得到广泛的推广。因此,发明一种新的生产方法,将废弃物山竹壳炭制备成一种具备高附加值且性能优越的制品,对于合理利用山竹废弃物具有十分重要的意义。现有技术中制备石墨烯的方法很多,主要以机械剥离、气相沉积法和Hummers法等。其中,用石墨粉为原料制备的石墨烯使用Hummers法或Hummers改良法,产生大量的酸性废水对环境造成巨大的污染,如果采用传统的废水处理方法处理生产过程中产生的废水必然会消耗巨大的人力和财力成本,使得石墨烯的价格居高不下,严重阻碍了石墨烯的大规模应用和推广。废弃物山竹壳炭材料作为一种绿色环保、成本低廉且可持续发展的新能源,具有无污染、来源广等优点,为大规模生产石墨烯提供了可能。
发明内容
本发明提供了一种废弃物山竹壳石墨烯制备方法,成本低,安全环保,克服现有技术存在的问题,利用废弃生物质废弃物山竹壳,生产工艺过程避免使用大量的浓硫酸,所得生物质石墨烯为多层石墨烯。
本发明的目的通过如下技术方案实现:
一种利用废弃物山竹壳为原料制备石墨烯材料的方法,包括如下步骤:
1)将干燥的废弃物山竹壳粉碎,制得废弃物山竹壳粉末;
2)将步骤1)所得废弃物山竹壳粉末,在N2气氛条件下,置于管式炉中;升温到500-800℃,保温1~2小时;继续升温到800~1000℃,保温0.5~2小时,缓慢降至25~35℃,获得废弃物山竹壳预碳化产物;
3)将步骤2)所得废弃物山竹壳预碳化产物与硝酸锌﹑硝酸铝﹑氯化锌和氢氧化钾中的一种或多种混和溶解,废弃物山竹壳预碳化产物与硝酸锌﹑氯化锌和氢氧化钾重量比1:1~4, 干燥后在N2气氛条件下,置于管式炉中;升温到500~800℃,保温1~2小时;继续升温到900~1200℃,保温0.5~2小时,缓慢降至室温,获得废弃物山竹壳生物质石墨烯。
为进一步实现本发明目的,
优选的,所述步骤3)500-800℃升温过程中,升温速率为0.5~2.0℃/min。
优选的,所述步骤3)900~1000℃升温过程中,升温速率为3.0~5.0℃/min。
优选的,步骤2)和步骤3)的降温过程中,降温速率为3~5℃/min。
优选的,所述废弃物山竹壳在粉碎前,在95~120℃条件下烘烤12-24小时;粉碎后用50~100目筛筛选。
优选的,上述利用废弃物山竹壳为原料制备石墨烯材料的方法还包括如下的步骤:用去离子水作为洗脱剂,清洗废弃物山竹壳生物质石墨烯至中性,再无水乙醇洗涤多次,95-120℃烘干制得废弃物山竹壳生物质石墨烯。
本发明制得的废弃物山竹壳生物质石墨烯的比表面积为1859~2925m2/g;拉曼光谱的D﹑G和2D峰成单峰;且IG/I2D为1.54~2.18;PXRD图谱002和100峰清晰可辩。
与现有技术相比,本发明具有如下的优点:
本发明方法采用废弃物山竹壳作为原料,成本低且原料普遍,同时解决了废弃物山竹作为垃圾处理浪费资源的问题。在制备方法中,避免了使用Hummers法或Hummers改良法中常用的浓硫酸,减少了废水排放,不污染环境﹑在工业化生产条件下没有***危险,且生产成本低;本发明制备的废弃物山竹壳生物质石墨烯,IG/I2D为1.54~2.18,而且2D成单峰,表明废弃物山竹壳生物质石墨烯为多层石墨烯;在工业化生产条件下提高生物质石墨烯品质,为下游产品如超级电容﹑导电碳浆料﹑石墨烯电池﹑轻质防弹衣等提供质量保证;本发明制备的废弃物山竹壳生物质石墨烯,比表面积1859~2925m2/g,与理论预测的石墨烯比表面积2620m2/g接近,说明本发明制得的废弃物山竹壳生物质石墨烯,具备良好的质量,可以作为电子行业中高附加值的电子材料。本发明获得的废弃物山竹壳生物质石墨烯可用于导电碳浆、超级电容器、锂离子电池的电极材料,也可以添加到树脂、橡胶中,增强树脂、橡胶等的物理性质。本发明生产工艺简单,成本低廉,安全环保,可以实现连续工业化生产,具有广阔的市场应用前景。
附图说明
图1为实施例1所得废弃物山竹壳生物质石墨烯的拉曼图谱。
具体实施方式
为更好地理解本发明,下面结合实施例对本发明做进一步的说明,但本发明的实施 方式不限如此。
实施例1
一种利用废弃物山竹壳为原料制备石墨烯材料的方法,包括如下步骤:
废弃物山竹壳洗净,120℃烘干过夜,粉碎过50目筛,获得废弃物山竹壳粉末;在N2气氛条件下,将废弃物山竹壳粉末置于管式炉中;控制升温速度为1.0℃/分钟到600℃,保温2小时;继续升温,控制升温速度为5.0℃/分钟,升温到800℃,保温1小时,降温速度控制为5℃/分钟,慢慢降温到室温,获得废弃物山竹壳预碳化产物;称取2克废弃物山竹壳预碳化产物和2克氢氧化钾和1克硝酸锌混合,然后加入去离子水1mL溶解,搅拌,90℃干燥,除掉水,剩余物在N2气氛条件下,将其置于管式炉中;控制升温速度为1.0℃/分钟,升温到800℃,保温2小时;继续升温,控制升温速度为3.0℃/分钟,升温到1100℃保温0.5小时,降温到室温,降温速度控制为5℃/分钟,室温取出样品,用稀盐酸洗,去离子水作为洗涤液,直到清洗液为中性,用无水乙醇洗涤3次,在60℃烘干;制得废弃物山竹壳生物质石墨烯。
经测试,所得产物比表面积为:1887m2/g;拉曼图谱见附图如图1所示,仪器名称:显微拉曼光谱仪,型号:LabRAM Aramis生产厂家:法国H.J.Y公司,图1是本实施例产品的拉曼图谱,D,G和2D均为单峰,符合石墨烯拉曼图谱的的表征。拉曼图谱表明,IG/I2D为2.18。从图1可见,本实施例中,图1中,2D峰为单峰,废弃物山竹壳为多层石墨烯,相对于用石墨粉为原料制备的石墨烯,生产工艺简单,安全环保;在应用上可保证了下游产品的质量。
实施例2
一种利用废弃物山竹壳为原料制备石墨烯材料的方法,包括如下步骤:废弃物山竹壳洗净,110℃烘干过夜,粉碎过100目筛,获得废弃物山竹壳粉末;在N2气氛条件下,将废弃物山竹壳粉末置于管式炉中;控制升温速度为0.5℃/分钟,升温到700℃,保温2小时;继续升温,控制升温速度为5.0℃/分钟,升温到1000℃,保温1小时,慢慢降温到室温,降温速度控制为5℃/分钟,获得废弃物山竹壳预碳化产物;称取2克废弃物山竹壳预碳化产物和4克氢氧化钾和2克硝酸锌混合,然后加入去离子水2mL溶解;搅拌,850℃干燥,除掉水,剩余物在N2气氛条件下,将其置于管式炉中,控制升温速度为0.5℃/分钟,升温到800℃,保温1小时;继续升温,控制升温速度为3.0℃/分钟,升温到1200℃,保温1小时,慢慢降温到室温,降温速度控制为5℃/分钟,室温取出样品,用稀盐酸和去离子水作为洗脱剂,直到清洗液为中性,用无水乙醇洗涤3次,在60℃烘干。经测试,所得产物比表面积为:2070m2/g,用显微拉曼光谱仪测定,IG/I2D为1.45。
实施例3
一种利用废弃物山竹壳为原料制备石墨烯材料的方法,包括如下步骤:废弃物山竹壳洗净,105℃烘干过夜,然后,粉碎过50目筛,获得废弃物山竹壳粉末;在N2气氛条件下,将废弃物山竹壳粉末置于管式炉中;控制升温速度为1.0℃/分钟,升温到950℃,保温2小时;继续升温,控制升温速度为5.0℃/分钟,升温到1000℃,保温1小时,慢慢降温到室温,降温速度控制为5℃/分钟,获得废弃物山竹壳预碳化产物;称取2克废弃物山竹壳预碳化产物和6克氢氧化钾和2克氯化锌混合,然后加入去离子水3mL溶解,搅拌干燥100℃,除掉水,剩余物在N2气氛条件下,将其置于管式炉中,控制升温速度为1.0℃/分钟,升温到850℃,保温1小时;继续升温,控制升温速度为3.0℃/分钟,升温到1100℃,保温0.5小时,慢慢降温到室温,降温速度控制为5℃/分钟,室温取出样品,用去离子水作为洗脱剂,清洗液为中性,用无水乙醇洗涤3次,在60℃烘干。比表面积为:2276m2/g,拉曼图谱用显微拉曼光谱仪测定,IG/I2D为1.74。
实施例4
一种利用废弃物山竹壳为原料制备石墨烯材料的方法,包括如下步骤:废弃物山竹壳洗净,110℃烘干过夜,然后,粉碎过100目筛,获得废弃物山竹壳粉末;在N2气氛条件下,将废弃物山竹壳置于管式炉中,控制升温速度为1.0℃/分钟,升温到700℃,保温2小时;继续升温,控制升温速度为5.0℃/分钟,升温到980℃,保温1小时,慢慢降温到室温,降温速度控制为5℃/分钟,获得废弃物山竹壳预碳化产物;称取2克预碳化废弃物山竹壳生物质碳和2克Al(NO3)3和2克氯化锌混合,然后加入去离子水5mL溶解,搅拌干燥100℃,除掉水,剩余物在N2气氛条件下,将其置于管式炉中,控制升温速度为1.0℃/分钟到800℃,保温2小时;继续升温,升温控制速度为5.0℃/分钟,升温到1100℃,保温1小时,慢慢降温到室温,降温速度控制为5℃/分钟,室温取出样品,用稀酸和去离子水作为洗脱剂,直到清洗液为中性,用无水乙醇洗涤3次,在60℃烘干。经检测,所得产物比表面积为:1984m2/g,拉曼图谱用显微拉曼光谱仪测定,IG/I2D为2.16。
实施例5:
一种利用废弃物山竹壳为原料制备石墨烯材料的方法,包括如下步骤:废弃物山竹壳洗净,120℃烘干过夜,然后,粉碎过50目筛,获得废弃物山竹壳粉末;在N2气氛条件下,将废弃物山竹壳粉末置于管式炉中,控制升温速度为0.5℃/分钟,升温到800℃,保温2小时;继续升温,控制升温速度为5.0℃/分钟,升温到950℃,保温1小时,慢慢降温到室温,降温速度控制为5℃/分钟,获得废弃物山竹壳预碳化产物;称取2克废弃物山竹壳预碳化产物和2 克Zn(NO3)2和2克氯化锌混合,然后加入去离子水4mL溶解,搅拌干燥120℃,除掉水,剩余物在N2气氛条件下,将其置于管式炉中,控制升温速度为1.0℃/分钟,升温到950℃,保温2小时;继续升温,控制升温速度为3.0℃/分钟,升温到1200℃,保温1小时,慢慢降温到室温,降温速度控制为5℃/分钟,室温取出样品,用去离子水作为洗脱剂,清洗液为中性,用无水乙醇洗涤3次,在60℃烘干。比表面积为:1859m2/g,拉曼图谱用显微拉曼光谱仪测定,IG/I2D为2.18。
以上的实施例仅为本发明的优选实施方案,需要指出,对于本领域普通技术人来说,在不脱离本发明的前提下进行的部分改进,仍处于本发明的保护范围之中。

Claims (6)

  1. 一种利用废弃物山竹壳为原料制备石墨烯材料的方法,其特征在于,包括如下步骤:
    1)将干燥的废弃物山竹壳粉碎,制得废弃物山竹壳粉末;
    2)将步骤1)所得废弃物山竹壳粉末,在N2气氛条件下,置于管式炉中;升温到500-800℃,保温1~2小时;继续升温到800~1000℃,保温0.5~2小时,缓慢降至25~35℃,获得废弃物山竹壳预碳化产物;
    3)将步骤2)所得废弃物山竹壳预碳化产物与硝酸锌﹑硝酸铝﹑氯化锌和氢氧化钾中的一种或多种混和溶解,废弃物山竹壳预碳化产物与硝酸锌﹑氯化锌和氢氧化钾重量比1:1~4,干燥后在N2气氛条件下,置于管式炉中;升温到500~800℃,保温1~2小时;继续升温到900~1200℃,保温0.5~2小时,缓慢降至室温,获得废弃物山竹壳生物质石墨烯。
  2. 根据权利要求1所述的利用废弃物山竹壳为原料制备石墨烯材料的方法,其特征在于:所述步骤3)的500-800℃升温过程中,升温速率为0.5~2.0℃/min。
  3. 根据权利要求2所述的利用废弃物山竹壳为原料制备石墨烯材料的方法,其特征在于:所述步骤3)的900~1000℃升温过程中,升温速率为3.0~5.0℃/min。
  4. 根据权利要求3所述的利用废弃物山竹壳为原料制备石墨烯材料的方法,其特征在于:步骤2)和步骤3)的降温过程中,降温速率为3~5℃/min。
  5. 根据权利要求4所述的利用废弃物山竹壳为原料制备石墨烯材料的方法,其特征在于:所述废弃物山竹壳在粉碎前,在95~120℃条件下烘烤12-24小时;粉碎后用50~100目筛筛选。
  6. 根据权利要求5所述的利用废弃物山竹壳为原料制备石墨烯材料的方法,其特征在于:所述利用废弃物山竹壳为原料制备石墨烯材料的方法还包括如下的步骤:用去离子水作为洗脱剂,清洗废弃物山竹壳生物质石墨烯至中性,再无水乙醇洗涤多次,95-120℃烘干制得废弃物山竹壳生物质石墨烯。
PCT/CN2018/111847 2017-10-31 2018-10-25 一种制备废弃物山竹壳石墨烯的方法 WO2019085817A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2020/01811A ZA202001811B (en) 2017-10-31 2020-03-23 A method for preparing waste mangosteen shell graphene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711044434.1A CN107673330A (zh) 2017-10-31 2017-10-31 一种制备废弃物山竹壳石墨烯的方法
CN201711044434.1 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019085817A1 true WO2019085817A1 (zh) 2019-05-09

Family

ID=61143869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111847 WO2019085817A1 (zh) 2017-10-31 2018-10-25 一种制备废弃物山竹壳石墨烯的方法

Country Status (3)

Country Link
CN (1) CN107673330A (zh)
WO (1) WO2019085817A1 (zh)
ZA (1) ZA202001811B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117466A (zh) * 2020-09-26 2020-12-22 重庆大学 氮自掺杂多孔石墨碳MFCs空气阴极催化剂的制备方法
CN112794324A (zh) * 2019-11-14 2021-05-14 华南理工大学 一种高介孔率木质素多级孔碳材料及其制备方法与应用
CN113401894A (zh) * 2021-05-26 2021-09-17 武汉理工大学 一种以重芳烃为原料制备石墨烯的方法
CN114477176A (zh) * 2022-01-25 2022-05-13 南京智汇环境气象产业研究院有限公司 基于苹果衍生的活性碳材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107673330A (zh) * 2017-10-31 2018-02-09 曾功昶 一种制备废弃物山竹壳石墨烯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104118873A (zh) * 2014-08-13 2014-10-29 济南圣泉集团股份有限公司 一种活性多孔石墨烯的制备方法
CN104495796A (zh) * 2014-11-25 2015-04-08 武汉科技大学 以水葫芦为原料制备多孔类石墨烯材料的方法
CN105800600A (zh) * 2016-02-29 2016-07-27 武汉理工大学 利用果皮制备氮自掺杂三维石墨烯的方法
CN107673330A (zh) * 2017-10-31 2018-02-09 曾功昶 一种制备废弃物山竹壳石墨烯的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787321B (zh) * 2014-01-23 2016-01-20 广西师范大学 一种自支撑石墨烯材料及其制备方法
CN104925796B (zh) * 2015-06-24 2017-03-15 上海大学 一种多孔类石墨烯材料的制备方法
CN105502359B (zh) * 2015-12-22 2017-11-17 福州大学 一种低成本多孔石墨烯的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104118873A (zh) * 2014-08-13 2014-10-29 济南圣泉集团股份有限公司 一种活性多孔石墨烯的制备方法
CN104495796A (zh) * 2014-11-25 2015-04-08 武汉科技大学 以水葫芦为原料制备多孔类石墨烯材料的方法
CN105800600A (zh) * 2016-02-29 2016-07-27 武汉理工大学 利用果皮制备氮自掺杂三维石墨烯的方法
CN107673330A (zh) * 2017-10-31 2018-02-09 曾功昶 一种制备废弃物山竹壳石墨烯的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794324A (zh) * 2019-11-14 2021-05-14 华南理工大学 一种高介孔率木质素多级孔碳材料及其制备方法与应用
CN112794324B (zh) * 2019-11-14 2022-10-25 华南理工大学 一种高介孔率木质素多级孔碳材料及其制备方法与应用
CN112117466A (zh) * 2020-09-26 2020-12-22 重庆大学 氮自掺杂多孔石墨碳MFCs空气阴极催化剂的制备方法
CN112117466B (zh) * 2020-09-26 2022-08-02 重庆大学 氮自掺杂多孔石墨碳MFCs空气阴极催化剂的制备方法
CN113401894A (zh) * 2021-05-26 2021-09-17 武汉理工大学 一种以重芳烃为原料制备石墨烯的方法
CN114477176A (zh) * 2022-01-25 2022-05-13 南京智汇环境气象产业研究院有限公司 基于苹果衍生的活性碳材料及其制备方法

Also Published As

Publication number Publication date
ZA202001811B (en) 2021-10-27
CN107673330A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
WO2019085817A1 (zh) 一种制备废弃物山竹壳石墨烯的方法
Song et al. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance
CN101710632B (zh) 一种废旧锂离子电池阳极材料石墨的回收及修复方法
CN106348274A (zh) 一种以农林废弃生物质为碳源制备石墨烯的方法
CN108101051B (zh) 一种超级电容器用海藻基活性炭前驱体的制备方法
CN104891479B (zh) 植物基类石墨烯及其制备方法
CN103618120A (zh) 一种废旧锂离子电池负极材料中石墨与铜片的分离及回收方法
CN106744841B (zh) 一种单层石墨烯构筑的三维多孔石墨烯薄膜的制备方法
CN107887603B (zh) 一种金属有机框架mof-5作为锌离子电池正极材料的制备方法
WO2017107807A1 (zh) 一种锂离子电池负极材料的制备方法及应用
CN104150478B (zh) 一种由稻壳制备超级电容器用活性炭材料的绿色循环工艺
CN105271170A (zh) 一种纳米碳及其复合材料的制备方法
CN105174260B (zh) 一种沥青基活性炭的低碱活化制备方法及应用
WO2020103138A1 (zh) 一种基于生物质的官能团修饰的钠离子电池负极材料及其制备方法和应用
WO2020103139A1 (zh) 一种富缺陷的钠离子电池负极材料及其制备方法与应用
CN107902649A (zh) 一种超声波碱浸和微波消解联合处理电解铝废阴极炭块的方法
CN107352529A (zh) 一种利用废弃物香蕉皮为原料制备石墨烯材料的方法
CN106025235B (zh) 一种锂离子电池用石墨烯/SiC复合负极材料的制备方法
CN104150480A (zh) 一种吸附重金属用超高比表面积活性炭的制备方法
CN104803381A (zh) 利用湘油茶果壳制备活性炭的方法和该活性炭及其应用
CN110330014B (zh) 用于超级电容器电极材料的淀粉多孔碳微球的制备方法
CN107171036B (zh) 一种镍钴锰三元体系电池电容的回收处理方法
CN106146681A (zh) 一种低温连续相变提取浒苔多糖的方法
CN116654897A (zh) 一种钠离子电池硬碳负极材料的制备方法和应用
CN106744800B (zh) 利用花生壳制备钠离子电池电极碳材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18872260

Country of ref document: EP

Kind code of ref document: A1