WO2019085107A1 - Oled封装结构及oled封装方法 - Google Patents

Oled封装结构及oled封装方法 Download PDF

Info

Publication number
WO2019085107A1
WO2019085107A1 PCT/CN2017/113554 CN2017113554W WO2019085107A1 WO 2019085107 A1 WO2019085107 A1 WO 2019085107A1 CN 2017113554 W CN2017113554 W CN 2017113554W WO 2019085107 A1 WO2019085107 A1 WO 2019085107A1
Authority
WO
WIPO (PCT)
Prior art keywords
oled
substrate
package
blocking layer
tft substrate
Prior art date
Application number
PCT/CN2017/113554
Other languages
English (en)
French (fr)
Inventor
李文杰
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/741,932 priority Critical patent/US20190131568A1/en
Publication of WO2019085107A1 publication Critical patent/WO2019085107A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations

Definitions

  • the present invention relates to the field of OLED technologies, and in particular, to an OLED package structure and an OLED package method.
  • OLED Organic Light Emitting Diode
  • the OLED device is generally disposed on a Thin Film Transistor Array Substrate (TFT Array Substrate, TFT substrate), and includes an anode, a hole injection layer, a hole transport layer, and an organic light-emitting layer, which are sequentially formed on the TFT substrate.
  • the TFT in the TFT substrate serves as a switching device and a driving device of the OLED.
  • the biggest difference between an OLED and a conventional liquid crystal display (LCD) is that the OLED does not need to use a backlight, but is injected into the organic light-emitting layer through two carriers of electrons and holes and composite light-emitting in the organic light-emitting layer.
  • the organic light-emitting layer is very sensitive to water vapor and oxygen in the atmosphere, and is susceptible to electrochemical corrosion in an environment containing water vapor and oxygen, which causes damage to the OLED device, so water/oxygen permeation greatly reduces the lifetime of the OLED device, and must be applied to the OLED. Effective packaging prevents moisture and oxygen from entering the interior of the OLED.
  • OLEDs In order to meet the requirements of commercialization for the service life and stability of OLED devices, OLEDs have very high requirements for packaging effects, such as OLEDs with a service life of at least 10 4 hours, a water vapor transmission rate of less than 10 -6 g/m 2 /day, and oxygen. The penetration rate is less than 10 -5 cc/m 2 /day, so the package is very important in the production of OLED, which is one of the key factors affecting the yield of the product.
  • the existing OLED packaging method is mainly a glass package, that is, a frame glue is applied on a glass material package cover plate, or a sealant is coated and a desiccant is filled, and the frame glue is cured by ultraviolet (UV) light irradiation to provide an OLED device.
  • UV ultraviolet
  • the existing OLED packaging method has certain drawbacks, mainly in the process of curing the UV light by the UV light, because the energy of the UV tube is high, the TFT generates carriers under the UV illumination (electronic or empty). Hole), when the free carrier concentration increases, the threshold voltage (Vth) of the TFT will decrease, and the drift of Vth will directly cause the luminescence brightness of the OLED pixel to change, thereby affecting the overall display quality of the OLED; that is, UV light irradiation will destroy the TFT in the TFT substrate Electrical and stability.
  • the object of the present invention is to provide an OLED package structure, which can reduce the influence on the electrical conductivity and stability of the TFT during the UV curing frame glue process, and further block the water vapor and oxygen, thereby improving the life of the OLED device.
  • Another object of the present invention is to provide an OLED packaging method capable of reducing the influence on the electrical conductivity and stability of a TFT during a UV curing frame-bonding process, and further blocking moisture and oxygen to improve the lifetime of the OLED device.
  • the present invention firstly provides an OLED package structure, including a TFT substrate and a package cover plate disposed opposite to the TFT substrate, disposed on an edge of the TFT substrate adjacent to the package cover in an effective display area of the OLED.
  • the OLED device and the sealant disposed between the TFT substrate and the package cover on the periphery of the effective display area of the OLED;
  • the package cover plate includes a package substrate and a UV blocking layer disposed on the side of the package substrate adjacent to the TFT substrate and corresponding to an effective display area of the OLED; the UV blocking layer has low UV light transmittance and high visible light Transparent film with transmittance.
  • the package substrate is a glass substrate, a quartz substrate, or a polymer substrate.
  • the UV blocking layer has a thickness of 10 nm to 2000 nm.
  • the material of the UV blocking layer includes one or more of zinc oxide, titanium dioxide and cerium oxide.
  • a protective layer is disposed between the OLED device and the UV blocking layer.
  • the OLED package structure further includes a desiccant disposed on the inner side of the sealant on the periphery of the effective display area of the OLED.
  • the invention also provides an OLED packaging method, comprising the following steps:
  • Step S1 providing a TFT substrate, and preparing an OLED device on the TFT substrate in an OLED display region to be formed;
  • Step S2 providing a package substrate, preparing a UV blocking layer on the package substrate in the OLED display region to be formed;
  • the UV blocking layer is a transparent film having low UV light transmittance and high visible light transmittance
  • the package substrate and the UV blocking layer constitute a package cover
  • Step S3 applying a sealant on the peripheral edge of the package cover before the periphery of the OLED display area to be formed, and then pairing the package cover with the TFT substrate, and then irradiating the package cover with UV light to cure the sealant.
  • the step S1 further includes depositing a protective layer on the OLED device; the step S3 further A desiccant is placed on the inner side of the sealant on the periphery of the OLED display area to be formed.
  • the UV blocking layer is a zinc oxide inorganic film, a titanium dioxide inorganic film or a ceria inorganic film; the step S2 uses a thermal evaporation process, a magnetron sputtering process, a chemical vapor deposition process or an atomic layer deposition process to prepare a UV block. Floor.
  • the UV blocking layer is a film formed by dispersing one or more of zinc oxide particles, titanium dioxide particles or cerium oxide particles in an organic resin solution; the step S2 is performed by a spin coating process, a casting film forming process, and a spray
  • the UV blocking layer is prepared by an ink printing process, a nozzle printing process, or a dropping process.
  • the present invention also provides an OLED package structure, comprising a TFT substrate, a package cover plate disposed opposite to the TFT substrate, and an OLED device disposed on a side of the TFT substrate adjacent to the package cover in an effective display area of the OLED and the OLED The periphery of the effective display area is disposed between the TFT substrate and the package cover;
  • the package cover plate includes a package substrate and a UV blocking layer disposed on the side of the package substrate adjacent to the TFT substrate and corresponding to an effective display area of the OLED; the UV blocking layer has low UV light transmittance and high visible light Transparent film of transmittance;
  • the package substrate is a glass substrate, a quartz substrate or a polymer substrate;
  • the thickness of the UV blocking layer is from 10 nm to 2000 nm;
  • the material of the UV blocking layer comprises one or more of zinc oxide, titanium dioxide and cerium oxide;
  • a protective layer is disposed between the OLED device and the UV blocking layer
  • a desiccant disposed on the inside of the sealant around the effective display area of the OLED.
  • the present invention provides an OLED package structure.
  • the package cover plate includes a package substrate and a UV blocking layer.
  • the UV blocking layer has low UV light transmittance and high visible light transmittance.
  • the UV curing mask replaces the existing UV mask to block the UV illumination to the TFT in the TFT substrate, reducing the influence of UV light on the electrical conductivity and stability of the TFT, and on the other hand does not affect the light output intensity of the OLED device;
  • the UV blocking layer can also serve as another barrier to block water vapor and oxygen, and better protect the OLED device and improve the lifetime of the OLED device.
  • the invention provides an OLED packaging method, wherein a UV blocking layer is prepared on a package substrate, and a package cover plate is formed by the package substrate and the UV blocking layer, and the UV blocking layer has low UV light transmittance and high visible light transmittance.
  • the existing UV mask can be used to block the UV illumination to the TFT in the TFT substrate, thereby reducing the influence of UV light on the electrical properties and stability of the TFT, and on the other hand, it does not affect the OLED device.
  • the UV blocking layer can also serve as another barrier to block water vapor and oxygen, and better protect the OLED device and improve the lifetime of the OLED device.
  • FIG. 1 is a cross-sectional structural view showing a first embodiment of an OLED package structure of the present invention
  • FIG. 2 is a cross-sectional structural view showing a second embodiment of the OLED package structure of the present invention.
  • FIG. 3 is a flow chart of a method of packaging an OLED of the present invention.
  • the invention provides an OLED package structure.
  • 1 is a first embodiment of an OLED package structure of the present invention, including a TFT substrate 1, a package cover 3 disposed opposite to the TFT substrate 1, and disposed on the TFT substrate 1 in an effective display area AA of the OLED.
  • the OLED device 5 on one side of the package cover 3 and the sealant 7 between the TFT substrate 1 and the package cover 3 are disposed on the periphery of the effective display area AA of the OLED.
  • the package cover 3 is improved over the prior art, and includes a package substrate 31 and a UV blocking layer 33 disposed on the side of the package substrate 31 adjacent to the TFT substrate 1 and corresponding to the effective display area AA of the OLED.
  • the UV blocking layer 33 is a transparent film having low UV light transmittance and high visible light transmittance, that is, the UV blocking layer 33 can prevent most of the UV illumination from being effectively displayed on the TFT substrate 1 at the OLED.
  • the portion of the region AA, but the light of the OLED device 5 can be smoothly emitted through the UV blocking layer 33, ensuring that the OLED display is normal.
  • the low UV light transmittance means that the UV light transmittance is less than 5%
  • the high visible light transmittance means that the visible light transmittance is higher than 80%.
  • the TFT substrate 1 is provided with TFTs arranged in an array in an area corresponding to the effective display area AA of the OLED, and the TFT is used as a switching device and a driving device of the OLED, which is the same as the prior art, and is not performed here. Expand the narrative.
  • the OLED device 5 includes an anode, a hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, an electron injection layer, and a cathode which are sequentially formed on the TFT substrate 1.
  • a protective layer 4 is also provided between the OLED device 5 and the UV blocking layer 33, the main material composition of which is silicon nitride (SiOx).
  • the sealant 7 is used to bond the TFT substrate 1 and the package cover 3 together.
  • the package substrate 31 is transparent or has a high transmittance in the visible light band, and may be a glass substrate, a quartz substrate or a high molecular polymer (such as polyimide (PI), polyethylene terephthalate).
  • PI polyimide
  • PI polyethylene terephthalate
  • a material such as zinc oxide (ZnO), titanium oxide (TiO 2 ), or cerium oxide (CeO 2 ) can block the transmission of UV light without blocking the transmission of visible light.
  • the UV blocking layer 3 can be selected from a zinc oxide inorganic film.
  • As the titanium dioxide inorganic film or the cerium oxide inorganic film a film formed by dispersing one or more of zinc oxide particles, titanium oxide particles or cerium oxide particles in an organic resin solution may also be used.
  • the UV blocking layer 3 has a thickness of 10 nm to 2000 nm.
  • the UV blocking layer 3 can replace the existing UV mask to block the UV illumination to the TFT in the TFT substrate 1, reduce the influence of UV light on the electrical conductivity and stability of the TFT, and on the other hand, does not affect the light output intensity of the OLED device 5.
  • the UV blocking layer 3 can also serve as another barrier to block moisture and oxygen, and better protect the OLED device 5 and improve the lifetime of the OLED device 5.
  • the second embodiment is different from the first embodiment only in that it is further disposed on the inner side of the effective display area AA of the OLED.
  • the agent 8 is for absorbing water vapor; the rest of the structure is the same as that of the first embodiment, and the repeated description thereof will not be repeated here.
  • the present invention further provides an OLED packaging method, including the following steps:
  • step S1 the TFT substrate 1 is provided, and the OLED device 5 is prepared on the TFT substrate 1 in the OLED display area AA to be formed.
  • the TFT substrate 1 is provided with TFTs arranged in an array in a region corresponding to the effective display area AA of the OLED to be formed, and the TFT is used as a switching device and a driving device of the OLED.
  • the OLED device 5 is prepared by sequentially forming an anode, a hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, an electron injection layer and a cathode on the TFT substrate 1 by a conventional vapor deposition technique. Expand the narrative.
  • the step S1 further comprises: depositing a protective layer 4 having a main material composition of silicon nitride on the OLED device 5 by using a plasma enhanced chemical vapor deposition (PECVD) process, the specific process is: first, the OLED has been prepared. The TFT substrate 1 of the device 5 is aligned with the mask for vapor-depositing the protective layer 4, and then silane (SiH 4 ) and ammonia (NH 3 ) having a purity of more than 99.99% are used as a reaction gas, and the purity is greater than 99.99%.
  • PECVD plasma enhanced chemical vapor deposition
  • the argon gas (Ar) is an auxiliary ionized gas
  • the RF power supply is set to be 10 W to 500 W
  • the deposition chamber pressure is 10 Pa to 10 Pa
  • the protective layer 4 having a thickness of 500 nm to 800 nm is formed at a deposition rate of 10 nm/S to 20 nm/S.
  • Step S2 providing a package substrate 31, and preparing a UV blocking layer 33 on the package substrate 31 in the OLED display area AA to be formed; the UV blocking layer 33 has low UV light transmittance and high visible light transmittance.
  • the transparent film; the package substrate 31 and the UV blocking layer 33 constitute a package cover 3.
  • the package substrate 31 is transparent or has a high transmittance in the visible light band, and may be a glass substrate, a quartz substrate, or a polymer substrate.
  • the UV blocking layer 33 has a thickness of 10 nm to 2000 nm.
  • the UV blocking layer 33 may be a zinc oxide inorganic film, a titanium dioxide inorganic film or a ceria inorganic film.
  • the step S2 may be performed by a thermal evaporation process, a magnetron sputtering process, a chemical vapor deposition (CVD) process, or an atomic layer deposition (ALD) process to prepare the UV barrier layer 33, preferably a sputtering process.
  • the specific preparation process is: pre-treating a zinc oxide (ZnO 5 ) target, and setting a sputtering atmosphere to an argon gas having a purity greater than 99.99%, and a device.
  • a zinc oxide inorganic thin film is formed on the package substrate 31 with a vacuum of 10 -2 Pa to 10 -3 Pa and a radio frequency power of 100 W to 200 W.
  • the UV blocking layer 33 may further be a film formed by dispersing one or more of zinc oxide particles, titanium oxide particles or cerium oxide particles in an organic resin solution, and the organic resin should have good transparency. It may be polyurethane, acrylic polymer, acrylic resin or epoxy resin.
  • the step S2 prepares the UV barrier layer 33 by a spin coating process, a cast film forming process, an inkjet printing (IJP) process, a nozzle printing (Nozzle Printing) process, or an instillation (ODF) process.
  • Step S3 coating the sealant 7 on the peripheral edge of the package cover 3 before the periphery of the OLED display area AA to be formed, and then aligning the package cover 3 with the TFT substrate 1 so that the UV blocking layer 33 faces the TFT.
  • the substrate 1 is then irradiated with UV light to the package cover 3 to cure the sealant 7.
  • the wavelength of the UV light used in the step S3 is 365 nm, and the light intensity is 5000 mJ to 9000 mJ.
  • the step S3 further includes placing a desiccant 8 on the inner side of the sealant 7 on the periphery of the OLED display area AA to be formed.
  • the UV light can only be transmitted through the portion of the package substrate 31 located at the periphery of the effective display area AA of the OLED.
  • the sealant 7 is cured.
  • the UV blocking layer 33 can replace the existing UV mask to block the UV illumination to the TFT in the TFT substrate 1, and reduce the UV light to stabilize the TFT.
  • the effect of the property does not affect the light-emitting intensity of the OLED device 5; in addition, the UV-blocking layer 33 can also serve as another barrier to block moisture and oxygen, thereby better protecting the OLED device 5 and improving the OLED device 5 Life expectancy.
  • the OLED package structure of the present invention includes a package cover plate including a package substrate and a UV blocking layer, the UV blocking layer having low UV light transmittance and high visible light transmittance, and the UV light curing frame on the one hand
  • Replacing the existing UV reticle in the glue process blocks the UV illumination to the TFT in the TFT substrate, reduces the influence of UV light on the electrical conductivity and stability of the TFT, and on the other hand does not affect the light output intensity of the OLED device;
  • the UV blocking The layer can also serve as another barrier to block water vapor and oxygen, better protect the OLED device and improve the lifetime of the OLED device.
  • the invention provides an OLED packaging method, wherein a UV blocking layer is prepared on a package substrate, and a package cover plate is formed by the package substrate and the UV blocking layer, and the UV blocking layer has low UV light transmittance and high visible light transmittance.
  • the existing UV mask can be used to block the UV illumination to the TFT in the TFT substrate, thereby reducing the influence of UV light on the electrical properties and stability of the TFT, and on the other hand, it does not affect the OLED device.
  • the UV blocking layer can also serve as another barrier to block water vapor and oxygen, and better protect the OLED device and improve the lifetime of the OLED device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种OLED封装结构及OLED封装方法。该OLED封装结构包括TFT基板(1)、与TFT基板(1)相对设置的封装盖板(3)、于OLED的有效显示区(AA)内设置在TFT基板(1)靠近封装盖板(3)一侧上的OLED器件(5)及于OLED的有效显示区(AA)***设置在TFT基板(1)与封装盖板(3)之间的框胶(7);所述封装盖板(3)包括封装基板(31)及设置在封装基板(31)靠近TFT基板(1)一侧上与OLED的有效显示区(AA)相对应的UV阻挡层(33);所述UV阻挡层(33)为具有低UV光透过率与高可见光透过率的透明薄膜,能够降低在UV光固化框胶(7)过程中对TFT电性及稳定性的影响,并进一步阻隔水汽与氧气,提高OLED器件(5)的寿命。

Description

OLED封装结构及OLED封装方法 技术领域
本发明涉及OLED技术领域,尤其涉及一种OLED封装结构及OLED封装方法。
背景技术
有机发光二极管显示器(Organic Light Emitting Diode,OLED)具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,在显示领域、照明领域及智能穿戴等领域有着广泛地应用。
OLED器件通常设于薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate,简称TFT基板)上,包括依次形成于TFT基板上的阳极、空穴注入层、空穴传输层、有机发光层、电子传输层、电子注入层与阴极。TFT基板中的TFT作为OLED的开关器件和驱动器件。OLED与传统的液晶显示器(Liquid Crystal Display,LCD)的最大差异在于OLED无需采用背光灯,而是通过电子和空穴这两种载流子注入有机发光层并在有机发光层内复合发光。有机发光层对大气中的水汽以及氧气都非常敏感,在含有水汽、氧气的环境中容易发生电化学腐蚀,对OLED器件造成损害,所以水/氧渗透会大大缩减OLED器件的寿命,必须对OLED进行有效封装,阻止水汽、氧气进入OLED内部。
为达到商业化对于OLED器件使用寿命和稳定性的要求,OLED对于封装效果的要求非常高,比如OLED使用寿命至少在104小时、水汽透过率小于10-6g/m2/day、氧气穿透率小于10-5cc/m2/day等,因此封装在OLED制作中处于非常重要的位置,是影响产品良率的关键因素之一。
现有的OLED封装方式主要为玻璃封装,即在玻璃材质的封装盖板上涂覆框胶或涂覆框胶及填充干燥剂后经紫外(UV)光照射使框胶固化,为OLED器件提供一个相对密闭的环境,阻隔水汽以及氧气进入。
现有的OLED封装方式存在一定的弊端,主要表现在:在UV光照射框胶使其固化的过程中,由于UV管的能量很高,TFT在UV光照下会产生载流子(电子或空穴),当自由的载流子浓度增加时,TFT的阈值电压(Vth)便会降低,Vth的漂移会直接引起OLED像素的发光亮度发生变化,从而影响OLED的整体显示质量;也就是说,UV光照射会破坏TFT基板内TFT 的电性及稳定性。
发明内容
本发明的目的在于提供一种OLED封装结构,能够降低在UV光固化框胶过程中对TFT电性及稳定性的影响,并进一步阻隔水汽与氧气,提高OLED器件的寿命。
本发明的另一目的在于提供一种OLED封装方法,能够降低在UV光固化框胶过程中对TFT电性及稳定性的影响,并进一步阻隔水汽与氧气,提高OLED器件的寿命。
为实现上述目的,本发明首先提供一种OLED封装结构,包括TFT基板、与所述TFT基板相对设置的封装盖板、于OLED的有效显示区内设置在TFT基板靠近封装盖板一侧上的OLED器件及于OLED的有效显示区***设置在TFT基板与封装盖板之间的框胶;
所述封装盖板包括封装基板及设置在所述封装基板靠近TFT基板一侧上与OLED的有效显示区相对应的UV阻挡层;所述UV阻挡层为具有低UV光透过率与高可见光透过率的透明薄膜。
所述封装基板为玻璃基板、石英基板或高分子聚合物基板。
所述UV阻挡层的厚度为10nm~2000nm。
所述UV阻挡层的材料包括氧化锌、二氧化钛与二氧化铈中的一种或多种。
所述OLED器件与UV阻挡层之间设有保护层。
所述OLED封装结构还包括于OLED的有效显示区***设置在框胶内侧的干燥剂。
本发明还提供一种OLED封装方法,包括如下步骤:
步骤S1、提供TFT基板,于欲形成的OLED显示区内在所述TFT基板上制备出OLED器件;
步骤S2、提供封装基板,于欲形成的OLED显示区内在所述封装基板上制备出UV阻挡层;
所述UV阻挡层为具有低UV光透过率与高可见光透过率的透明薄膜;
所述封装基板与UV阻挡层构成封装盖板;
步骤S3、先于欲形成的OLED显示区***在封装盖板的四周边缘上涂布框胶,再将封装盖板与TFT基板进行对组,然后向封装盖板照射UV光,使框胶固化。
所述步骤S1还包括在所述OLED器件上沉积保护层;所述步骤S3还 包括于欲形成的OLED显示区***在框胶的内侧放置干燥剂。
所述UV阻挡层为氧化锌无机薄膜、二氧化钛无机薄膜或二氧化铈无机薄膜;所述步骤S2采用热蒸镀工艺、磁控溅射工艺、化学汽相沉积工艺或原子层沉积工艺制备UV阻挡层。
所述UV阻挡层为氧化锌粒子、二氧化钛粒子或二氧化铈粒子中的一种或多种分散在有机树脂溶液中形成的薄膜;所述步骤S2采用旋涂工艺、流延成膜工艺、喷墨打印工艺、喷嘴印刷工艺或滴注工艺制备UV阻挡层。
本发明还提供一种OLED封装结构,包括TFT基板、与所述TFT基板相对设置的封装盖板、于OLED的有效显示区内设置在TFT基板靠近封装盖板一侧上的OLED器件及于OLED的有效显示区***设置在TFT基板与封装盖板之间的框胶;
所述封装盖板包括封装基板及设置在所述封装基板靠近TFT基板一侧上与OLED的有效显示区相对应的UV阻挡层;所述UV阻挡层为具有低UV光透过率与高可见光透过率的透明薄膜;
其中,所述封装基板为玻璃基板、石英基板或高分子聚合物基板;
其中,所述UV阻挡层的厚度为10nm~2000nm;
其中,所述UV阻挡层的材料包括氧化锌、二氧化钛与二氧化铈中的一种或多种;
其中,所述OLED器件与UV阻挡层之间设有保护层;
还包括于OLED的有效显示区***设置在框胶内侧的干燥剂。
本发明的有益效果:本发明提供的一种OLED封装结构,设置封装盖板包括封装基板及UV阻挡层,该UV阻挡层具有低UV光透过率与高可见光透过率,一方面可以在UV光固化框胶过程中代替现有的UV光罩阻挡UV光照向TFT基板内的TFT,降低UV光对TFT电性及稳定性的影响,另一方面不会影响OLED器件的出光强度;此外,该UV阻挡层还可以作为阻隔水汽与氧气的另一道屏障,对OLED器件进行更好的保护,提高OLED器件的寿命。本发明提供的一种OLED封装方法,在封装基板上制备出UV阻挡层,由封装基板与UV阻挡层构成封装盖板,该UV阻挡层具有低UV光透过率与高可见光透过率,一方面可以在UV光固化框胶过程中代替现有的UV光罩阻挡UV光照向TFT基板内的TFT,降低UV光对TFT电性及稳定性的影响,另一方面不会影响OLED器件的出光强度;此外,该UV阻挡层还可以作为阻隔水汽与氧气的另一道屏障,对OLED器件进行更好的保护,提高OLED器件的寿命。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的OLED封装结构的第一实施例的剖面结构示意图;
图2为本发明的OLED封装结构的第二实施例的剖面结构示意图;
图3为本发明的OLED封装方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明提供一种OLED封装结构。图1所示为本发明的OLED封装结构的第一实施例,包括TFT基板1、与所述TFT基板1相对设置的封装盖板3、于OLED的有效显示区AA内设置在TFT基板1靠近封装盖板3一侧上的OLED器件5以及于OLED的有效显示区AA***设置在TFT基板1与封装盖板3之间的框胶7。
所述封装盖板3相比现有技术进行了改进,其包括封装基板31及设置在所述封装基板31靠近TFT基板1一侧上与OLED的有效显示区AA相对应的UV阻挡层33。所述UV阻挡层33为具有低UV光透过率与高可见光透过率的透明薄膜,也就是说所述UV阻挡层33能够阻止绝大部分的UV光照向TFT基板1位于OLED的有效显示区AA内的部分,但所述OLED器件5的出光能够顺利透过该UV阻挡层33射出,保证OLED显示正常。进一步地,所述低UV光透过率是指UV光透过率低于5%,所述高可见光透过率是指可见光透过率高于80%。
具体地:
所述TFT基板1在对应于OLED的有效显示区AA的区域内设置有呈阵列式排布的TFT,TFT用作OLED的开关器件和驱动器件,这与现有技术无异,此处不做展开叙述。
所述OLED器件5包括依次形成于TFT基板1上的阳极、空穴注入层、空穴传输层、有机发光层、电子传输层、电子注入层与阴极。
为了保护所述OLED器件5,在所述OLED器件5与UV阻挡层33之间还设有保护层4,该保护层4的主要材料成分为氮化硅(SiOx)。
所述框胶7用于将TFT基板1与封装盖板3粘结在一起。
进一步地,所述封装基板31透明或者在可见光波段具有较高的透过率,可以为玻璃基板、石英基板或高分子聚合物(比如聚酰亚胺(PI)、聚对苯二甲酸乙二醇脂(PET)与聚萘二甲酸乙二醇酯(PEN)等)基板。
利用氧化锌(ZnO)、二氧化钛(TiO2)、二氧化铈(CeO2)等材料能够阻挡UV光透过但不阻挡可见光透过的特性,所述UV阻挡层3可选用氧化锌无机薄膜、二氧化钛无机薄膜或二氧化铈无机薄膜,也可以选用将氧化锌粒子、二氧化钛粒子或二氧化铈粒子中的一种或多种分散在有机树脂溶液中形成的薄膜。所述UV阻挡层3的厚度为10nm~2000nm。
在将封装盖板3与TFT基板1对组后使用UV光固化所述框胶7的过程中,由于UV阻挡层3的设置,UV光只能透过封装基板31位于OLED的有效显示区AA***的部分照向框胶7使框胶7固化。UV阻挡层3一方面能够代替现有的UV光罩阻挡UV光照向TFT基板1内的TFT,降低UV光对TFT电性及稳定性的影响,另一方面不会影响OLED器件5的出光强度;此外,该UV阻挡层3还可以作为阻隔水汽与氧气的另一道屏障,对OLED器件5进行更好的保护,提高OLED器件5的寿命。
图2所示为本发明的OLED封装结构的第二实施例,该第二实施例与第一实施例的不同仅在于,还包括于OLED的有效显示区AA***设置在框胶7内侧的干燥剂8用于吸收水汽;其余结构均与第一实施例相同,此处不再进行重复描述。
请参阅图3,结合图1或图2,本发明还提供一种OLED封装方法,包括如下步骤:
步骤S1、提供TFT基板1,于欲形成的OLED显示区AA内在所述TFT基板1上制备出OLED器件5。
具体地,所述TFT基板1在对应于欲形成的OLED的有效显示区AA的区域内设置有呈阵列式排布的TFT,TFT用作OLED的开关器件和驱动器件。
制备所述OLED器件5可采用常规的蒸镀技术在TFT基板1上依次形成阳极、空穴注入层、空穴传输层、有机发光层、电子传输层、电子注入层与阴极,此处不做展开叙述。
进一步地,该步骤S1还包括采用等离子体增强化学汽相沉积(PECVD)工艺在OLED器件5上蒸镀出主要材料成分为氮化硅的保护层4,具体过程为:首先将已制备好OLED器件5的TFT基板1与用于蒸镀保护层4的光罩进行对位,然后以纯度大于99.99%的硅烷(SiH4)与氨气(NH3)为反应气体,以纯度大于99.99%的氩气(Ar)为辅助电离气体,设置射频电 源功率为10W~500W、沉积腔的压强为10Pa~10Pa,以10nm/S~20nm/S的沉积速度形成厚度为500nm~800nm的保护层4。
步骤S2、提供封装基板31,于欲形成的OLED显示区AA内在所述封装基板31上制备出UV阻挡层33;所述UV阻挡层33为具有低UV光透过率与高可见光透过率的透明薄膜;所述封装基板31与UV阻挡层33构成封装盖板3。
具体地:
所述封装基板31透明或者在可见光波段具有较高的透过率,可以为玻璃基板、石英基板或高分子聚合物基板。
所述UV阻挡层33的厚度为10nm~2000nm。
所述UV阻挡层33可为氧化锌无机薄膜、二氧化钛无机薄膜或二氧化铈无机薄膜。此种情况下,该步骤S2可采用热蒸镀工艺、磁控溅射工艺、化学汽相沉积(CVD)工艺或原子层沉积(ALD)工艺制备UV阻挡层33,优选溅射工艺。以所述UV阻挡层33可为氧化锌无机薄膜为例,具体的制备过程为:将五氧化锌(ZnO5)靶材进行前处理,设置溅射气氛为纯度大于99.99%的氩气、设备真空度为10-2Pa~10-3Pa以及射频电源功率100W~200W,在封装基板31上形成氧化锌无机薄膜。
所述UV阻挡层33还可以为将氧化锌粒子、二氧化钛粒子或二氧化铈粒子中的一种或多种分散在有机树脂溶液中形成的薄膜,所述有机树脂应具有较好的透明性,可以是聚氨酯、丙烯酸聚合物、亚克力树脂或环氧树脂等。此种情况下,该步骤S2采用旋涂工艺、流延成膜工艺、喷墨打印(IJP)工艺、喷嘴印刷(Nozzle Printing)工艺或滴注(ODF)工艺制备UV阻挡层33。
步骤S3、先于欲形成的OLED显示区AA***在封装盖板3的四周边缘上涂布框胶7,再将封装盖板3与TFT基板1进行对组使所述UV阻挡层33朝向TFT基板1,然后向封装盖板3照射UV光,使框胶7固化。
具体地,该步骤S3所使用UV光的波长选择365nm,光强为5000mJ~9000mJ。
进一步地,请参阅图2,该步骤S3还包括于欲形成的OLED显示区AA***在框胶7的内侧放置干燥剂8。
在该步骤S3使用UV光固化所述框胶7的过程中,由于UV阻挡层33的制备,UV光只能透过封装基板31位于OLED的有效显示区AA***的部分照向框胶7使框胶7固化。UV阻挡层33一方面能够代替现有的UV光罩阻挡UV光照向TFT基板1内的TFT,降低UV光对TFT电性及稳定 性的影响,另一方面不会影响OLED器件5的出光强度;此外,该UV阻挡层33还可以作为阻隔水汽与氧气的另一道屏障,对OLED器件5进行更好的保护,提高OLED器件5的寿命。
综上所述,本发明的OLED封装结构,设置封装盖板包括封装基板及UV阻挡层,该UV阻挡层具有低UV光透过率与高可见光透过率,一方面可以在UV光固化框胶过程中代替现有的UV光罩阻挡UV光照向TFT基板内的TFT,降低UV光对TFT电性及稳定性的影响,另一方面不会影响OLED器件的出光强度;此外,该UV阻挡层还可以作为阻隔水汽与氧气的另一道屏障,对OLED器件进行更好的保护,提高OLED器件的寿命。本发明提供的一种OLED封装方法,在封装基板上制备出UV阻挡层,由封装基板与UV阻挡层构成封装盖板,该UV阻挡层具有低UV光透过率与高可见光透过率,一方面可以在UV光固化框胶过程中代替现有的UV光罩阻挡UV光照向TFT基板内的TFT,降低UV光对TFT电性及稳定性的影响,另一方面不会影响OLED器件的出光强度;此外,该UV阻挡层还可以作为阻隔水汽与氧气的另一道屏障,对OLED器件进行更好的保护,提高OLED器件的寿命。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明的权利要求的保护范围。

Claims (11)

  1. 一种OLED封装结构,包括TFT基板、与所述TFT基板相对设置的封装盖板、于OLED的有效显示区内设置在TFT基板靠近封装盖板一侧上的OLED器件及于OLED的有效显示区***设置在TFT基板与封装盖板之间的框胶;
    所述封装盖板包括封装基板及设置在所述封装基板靠近TFT基板一侧上与OLED的有效显示区相对应的UV阻挡层;所述UV阻挡层为具有低UV光透过率与高可见光透过率的透明薄膜。
  2. 如权利要求1所述的OLED封装结构,其中,所述封装基板为玻璃基板、石英基板或高分子聚合物基板。
  3. 如权利要求1所述的OLED封装结构,其中,所述UV阻挡层的厚度为10nm~2000nm。
  4. 如权利要求1所述的OLED封装结构,其中,所述UV阻挡层的材料包括氧化锌、二氧化钛与二氧化铈中的一种或多种。
  5. 如权利要求1所述的OLED封装结构,其中,所述OLED器件与UV阻挡层之间设有保护层。
  6. 如权利要求1所述的OLED封装结构,还包括于OLED的有效显示区***设置在框胶内侧的干燥剂。
  7. 一种OLED封装方法,包括如下步骤:
    步骤S1、提供TFT基板,于欲形成的OLED显示区内在所述TFT基板上制备出OLED器件;
    步骤S2、提供封装基板,于欲形成的OLED显示区内在所述封装基板上制备出UV阻挡层;
    所述UV阻挡层为具有低UV光透过率与高可见光透过率的透明薄膜;
    所述封装基板与UV阻挡层构成封装盖板;
    步骤S3、先于欲形成的OLED显示区***在封装盖板的四周边缘上涂布框胶,再将封装盖板与TFT基板进行对组,然后向封装盖板照射UV光,使框胶固化。
  8. 如权利要求7所述的OLED封装方法,其中,所述步骤S1还包括在所述OLED器件上沉积保护层;所述步骤S3还包括于欲形成的OLED显示区***在框胶的内侧放置干燥剂。
  9. 如权利要求7所述的OLED封装方法,其中,所述UV阻挡层为氧 化锌无机薄膜、二氧化钛无机薄膜或二氧化铈无机薄膜;所述步骤S2采用热蒸镀工艺、磁控溅射工艺、化学汽相沉积工艺或原子层沉积工艺制备UV阻挡层。
  10. 如权利要求7所述的OLED封装方法,其中,所述UV阻挡层为氧化锌粒子、二氧化钛粒子或二氧化铈粒子中的一种或多种分散在有机树脂溶液中形成的薄膜;所述步骤S2采用旋涂工艺、流延成膜工艺、喷墨打印工艺、喷嘴印刷工艺或滴注工艺制备UV阻挡层。
  11. 一种OLED封装结构,包括TFT基板、与所述TFT基板相对设置的封装盖板、于OLED的有效显示区内设置在TFT基板靠近封装盖板一侧上的OLED器件及于OLED的有效显示区***设置在TFT基板与封装盖板之间的框胶;
    所述封装盖板包括封装基板及设置在所述封装基板靠近TFT基板一侧上与OLED的有效显示区相对应的UV阻挡层;所述UV阻挡层为具有低UV光透过率与高可见光透过率的透明薄膜;
    其中,所述封装基板为玻璃基板、石英基板或高分子聚合物基板;
    其中,所述UV阻挡层的厚度为10nm~2000nm;
    其中,所述UV阻挡层的材料包括氧化锌、二氧化钛与二氧化铈中的一种或多种;
    其中,所述OLED器件与UV阻挡层之间设有保护层;
    还包括于OLED的有效显示区***设置在框胶内侧的干燥剂。
PCT/CN2017/113554 2017-11-01 2017-11-29 Oled封装结构及oled封装方法 WO2019085107A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/741,932 US20190131568A1 (en) 2017-11-01 2017-11-29 Encapsulation structure of oled and encapsulation method for oled

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711058861.5A CN107706313A (zh) 2017-11-01 2017-11-01 Oled封装结构及oled封装方法
CN201711058861.5 2017-11-01

Publications (1)

Publication Number Publication Date
WO2019085107A1 true WO2019085107A1 (zh) 2019-05-09

Family

ID=61177516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113554 WO2019085107A1 (zh) 2017-11-01 2017-11-29 Oled封装结构及oled封装方法

Country Status (2)

Country Link
CN (1) CN107706313A (zh)
WO (1) WO2019085107A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109166893B (zh) * 2018-08-31 2020-08-04 深圳市华星光电半导体显示技术有限公司 顶发光型有机发光二极管显示装置及其封装方法
CN111162191B (zh) * 2019-03-18 2022-03-29 广东聚华印刷显示技术有限公司 封装结构、显示面板及其制备方法
CN109904335B (zh) 2019-03-26 2021-11-12 京东方科技集团股份有限公司 量子点层的图案化方法、量子点器件及其制备方法
CN112736118A (zh) * 2020-12-28 2021-04-30 广东聚华印刷显示技术有限公司 Oled显示面板、显示设备及制备方法
CN113054138A (zh) * 2021-03-15 2021-06-29 武汉华星光电半导体显示技术有限公司 一种盖板及其制备方法、显示装置
CN113193137B (zh) * 2021-04-07 2022-05-31 深圳市华星光电半导体显示技术有限公司 显示面板及显示面板的封装结构制备方法
CN114167631B (zh) * 2021-12-03 2023-10-31 武汉华星光电技术有限公司 显示面板及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070182314A1 (en) * 2006-02-03 2007-08-09 Oh Tae-Sik Organic light emitting display providing ultraviolet ray protection and method of manufacturing same
CN101336020A (zh) * 2002-02-12 2008-12-31 出光兴产株式会社 有机el显示装置及其制造方法
CN104037363A (zh) * 2014-06-17 2014-09-10 深圳市华星光电技术有限公司 基板的封装方法
CN104425542A (zh) * 2013-08-26 2015-03-18 昆山工研院新型平板显示技术中心有限公司 一种有机发光显示装置及其制备方法
CN105118393A (zh) * 2015-08-20 2015-12-02 上海和辉光电有限公司 一种抗紫外光的oled结构及制备方法
CN107086241A (zh) * 2017-04-28 2017-08-22 深圳市华星光电技术有限公司 Oled面板的制作方法及oled面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101336020A (zh) * 2002-02-12 2008-12-31 出光兴产株式会社 有机el显示装置及其制造方法
US20070182314A1 (en) * 2006-02-03 2007-08-09 Oh Tae-Sik Organic light emitting display providing ultraviolet ray protection and method of manufacturing same
CN104425542A (zh) * 2013-08-26 2015-03-18 昆山工研院新型平板显示技术中心有限公司 一种有机发光显示装置及其制备方法
CN104037363A (zh) * 2014-06-17 2014-09-10 深圳市华星光电技术有限公司 基板的封装方法
CN105118393A (zh) * 2015-08-20 2015-12-02 上海和辉光电有限公司 一种抗紫外光的oled结构及制备方法
CN107086241A (zh) * 2017-04-28 2017-08-22 深圳市华星光电技术有限公司 Oled面板的制作方法及oled面板

Also Published As

Publication number Publication date
CN107706313A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2019085107A1 (zh) Oled封装结构及oled封装方法
US20190131568A1 (en) Encapsulation structure of oled and encapsulation method for oled
US10181579B2 (en) Organic light-emitting diode (OLED) encapsulation methods and OLED encapsulation structure
US10446790B2 (en) OLED encapsulating structure and manufacturing method thereof
US10333105B2 (en) Organic light emitting display packaging structure and manufacturing method thereof
US20200381676A1 (en) Package method of oled element and oled package structure
JP6968994B2 (ja) Oledパッケージ方法およびoledパッケージ構造
US7943205B2 (en) Diffusion barrier coatings having graded compositions and devices incorporating the same
KR101375334B1 (ko) 유기 발광 디스플레이 장치 및 그 제조 방법
KR101169879B1 (ko) 유기 el 표시 장치 및 그의 제조 방법
US20060208634A1 (en) Diffusion barrier coatings having graded compositions and devices incorporating the same
KR102057176B1 (ko) 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선
CN108847451A (zh) 一种柔性oled器件及其制备方法
US10826016B2 (en) Organic light-emitting diode package, display panel and method for manufacturing the same
WO2018113005A1 (zh) Oled封装方法与oled封装结构
JP4619900B2 (ja) 有機elディスプレイ及び有機elディスプレイの製造方法
KR102631535B1 (ko) 유기 발광 표시 장치
KR20150035258A (ko) 유기 발광 장치와 이의 제조 방법
KR20050029790A (ko) 투습방지막을 구비한 유기이엘 패널 및 그의 제조방법
US20190334124A1 (en) Oled packaging structure and oled display panel
CN110911586B (zh) 一种oled面板、oled面板的制备方法和显示装置
KR20050029789A (ko) 투습방지막을 구비한 유기이엘 패널 및 그의 제조방법
KR20100124014A (ko) 오존 플라즈마를 이용한 플렉시블 디스플레이 기판 처리 방법
KR20060030543A (ko) 중성화 빔을 이용한 oled 및 그 제조 방법
KR20100124011A (ko) 산소 분위기 처리를 이용한 플렉시블 디스플레이 기판 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930474

Country of ref document: EP

Kind code of ref document: A1