WO2019082272A1 - 電動機駆動装置 - Google Patents

電動機駆動装置

Info

Publication number
WO2019082272A1
WO2019082272A1 PCT/JP2017/038358 JP2017038358W WO2019082272A1 WO 2019082272 A1 WO2019082272 A1 WO 2019082272A1 JP 2017038358 W JP2017038358 W JP 2017038358W WO 2019082272 A1 WO2019082272 A1 WO 2019082272A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
determination
inverter
motor
drive device
Prior art date
Application number
PCT/JP2017/038358
Other languages
English (en)
French (fr)
Inventor
博之 高山
和徳 畠山
圭一朗 志津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019549716A priority Critical patent/JP6727455B2/ja
Priority to PCT/JP2017/038358 priority patent/WO2019082272A1/ja
Priority to EP17929824.5A priority patent/EP3703247B1/en
Priority to US16/631,229 priority patent/US11431271B2/en
Priority to CN201780096055.9A priority patent/CN111247735B/zh
Publication of WO2019082272A1 publication Critical patent/WO2019082272A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/027Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an over-current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/184Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays wherein the motor speed is changed by switching from a delta to a star, e.g. wye, connection of its windings, or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/188Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays wherein the motor windings are switched from series to parallel or vice versa to control speed or torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a motor drive device for driving a motor configured to be capable of switching the connection state of a stator winding.
  • the air conditioner regulates the cooling and heating capabilities by controlling the number of revolutions of the motor for the compressor.
  • improvement of energy saving performance is required, and in the case of household air conditioners, energy saving performance is generally obtained for each of five conditions of cooling middle, heating middle, cooling rating, heating rating and heating low temperature. Is calculated.
  • the cooling middle and the heating middle are low load areas in which the motor rotates at low speed, and the cooling rating, the heating rating and the heating low temperature are high load areas in which the motor rotates at high speed. It is desirable that the motor can be made highly efficient in a wide range of rotational speeds.
  • a motor for a compressor of an air conditioner there is a motor configured to be able to switch the connection state of a stator winding.
  • the motor drive device for driving the motor capable of switching the connection state of the stator winding reduces the power consumption by switching the connection state of the stator winding to an appropriate state according to the change in the load state of the motor.
  • highly efficient operation can be realized (see, for example, Patent Document 1).
  • Examples of motors capable of switching the connection state of the stator winding include those capable of switching between star connection and delta connection, those configured capable of switching between parallel connection and series connection, etc. There is.
  • electric motors for compressors of air conditioners are driven with star connection in the case of low load condition with high contribution to annual power consumption, specifically, in the case of middle cooling and middle heating, and high load
  • the magnet is demagnetized when a winding current, which is a current flowing in a stator winding, exceeds a predetermined allowable value. Therefore, the motor drive device which drives the motor using a permanent magnet has a protective function which suppresses that a coil current becomes below an allowance, and prevents that a magnet demagnetizes.
  • the motor drive device for driving a motor using a permanent magnet the current flowing through the inverter is detected, and the operation of the inverter is continued if the detected current is less than the threshold, and the inverter is detected if the detected current exceeds the threshold Control to stop is often used.
  • the threshold used for star connection is 1 / ⁇ with respect to the threshold used for delta connection. It is necessary to triple (see Patent Document 1).
  • Patent Document 1 has a comparison circuit having a configuration corresponding to the case where the stator winding is a delta connection, and a comparison circuit having a configuration corresponding to the case where the stator winding has a star connection.
  • a motor drive device is described in which a central processing unit (CPU) detects an abnormality using a comparison result in a comparison circuit corresponding to a state (see paragraph 0042 of patent document 1 and FIG. 14B).
  • Patent Document 1 Paragraphs 0048 and 0070, and FIGS. 14 (c) and 14 (d)).
  • the digital transistor has a large variation in internal resistance, and it is necessary to set a constant in consideration of the variation. That is, it is necessary to increase the difference between the winding current at which the demagnetization of the magnet actually occurs and the reference value. Therefore, the accuracy of the protection level, specifically, the determination accuracy as to whether or not an excessive current flows in the stator winding is lowered. As a result, there is a problem that the operation of the motor is limited in practice when an excessive current does not flow in the stator winding, and the motor can not be operated to the limit of the capability.
  • the present invention has been made in view of the above, and it is an electric motor drive device capable of realizing high performance of the protection function of the motor while preventing the number of input ports required by the CPU to be used from increasing.
  • the purpose is to get.
  • the present invention is a motor drive device for driving a motor capable of switching the connection state of a stator winding, wherein the connection switching the connection state of the stator winding
  • the overcurrent protection circuit includes a plurality of determination circuits that are in a one-to-one correspondence with any one of a plurality of connection states that can be taken by the stator winding and determine whether the current flowing to the inverter has an abnormal value.
  • the overcurrent protection circuit invalidates the determination processing by the combination circuit that combines the determination results in each of the plurality of determination circuits, and the determination circuit of a part of the plurality of determination circuits, and selects the selected stator winding. And an invalidation circuit that causes the combining circuit to output the determination result of the determination circuit associated with the wire connection state.
  • the control device stops the inverter if the determination result output from the combining circuit indicates that the current flowing to the inverter is an abnormal value.
  • the motor drive device has an effect that the function of protecting the motor can be enhanced while preventing the number of input ports required by the CPU to be used from increasing.
  • FIG. 1 is a schematic wiring diagram showing an example of a motor drive device according to a first embodiment.
  • the wiring diagram which shows an example of the connection relation of the connection switching part of the electric motor drive device concerning Embodiment 1, and each winding of an electric motor.
  • Block diagram showing an example of a schematic configuration of a control device according to the first embodiment
  • Block diagram showing an example of a schematic configuration of the overcurrent protection circuit according to the first embodiment
  • Wiring diagram showing an example of the overcurrent protection circuit according to the first embodiment
  • a time chart showing an example of the operation of the overcurrent protection circuit according to the first embodiment
  • Wiring diagram showing an example of the overcurrent protection circuit according to the second embodiment
  • Wiring diagram showing an example of the overcurrent protection circuit according to the third embodiment
  • the figure which shows an example of the threshold value generation circuit with which the 2nd judgment circuit of the overcurrent protective circuit concerning Embodiment 4 is equipped.
  • a time chart showing an example of the operation of the overcurrent protection circuit according to the fourth embodiment Block diagram showing an example of a schematic configuration of the overcurrent protection circuit according to the fifth embodiment
  • Wiring diagram showing an example of the overcurrent protection circuit according to the fifth embodiment A time chart showing an example of the operation of the overcurrent protection circuit according to the fifth embodiment
  • a timing chart showing an example of the operation of the overcurrent protection circuit according to the sixth embodiment The wiring diagram which shows an example of the connection relation of the wire connection switching part with which the motor drive device concerning Embodiment 7 is equipped, and each winding of an electric motor.
  • FIG. 1 is a schematic wiring diagram showing an example of a motor drive device according to a first embodiment of the present invention. Note that FIG. 1 also describes the motor driven by the motor drive device. The motor drive device 2 according to the first embodiment shown in FIG. 1 generates power for driving the motor 4.
  • the motor drive device 2 includes a converter 20, an inverter 30, an inverter drive circuit 32, a connection switching unit 40, a control device 50, and an overcurrent protection circuit 60.
  • the inverter 30 and the inverter drive circuit 32 are mounted on an intelligent power module (IPM) 12.
  • IPM intelligent power module
  • AC power supply 6 is connected to the input side of converter 20, and motor 4 is connected to the output side of inverter 30.
  • the motor 4 is a permanent magnet synchronous motor in which a rotor is configured by a permanent magnet, and is driven by receiving supply of three-phase AC power from the inverter 30.
  • Converter 20 receives AC power from AC power supply 6 via reactor 7, rectifies and smooths AC power, and outputs DC power. Converter 20 acts as a DC power supply for supplying DC power to inverter 30.
  • the inverter 30 has an input terminal connected to the output terminal of the converter 20.
  • the U-phase output terminal of the inverter 30 is connected to one end of the winding 4 u of the motor 4 through the U-phase output line 30 u.
  • the V-phase output terminal of the inverter 30 is connected to one end of the winding 4 v of the motor 4 via the V-phase output line 30 v.
  • the W-phase output terminal of the inverter 30 is connected to one end of the winding 4 w of the motor 4 via the W-phase output line 30 w.
  • the inverter 30 includes switching elements provided in each of the six arms, generates three-phase AC power by turning on and off each switching element, and supplies the generated electric power to the motor 4. Specifically, inverter 30 turns on or off the switching elements of six arms according to the state of drive signals Sr # 1 to Sr # 6 corresponding to each arm, which are input from inverter drive circuit 32. , Generate three-phase AC power for driving the motor 4.
  • the drive signals Sr # 1 to Sr # 6 will be described later.
  • An overcurrent protection circuit 60 is provided to eliminate a state in which an excessive current flows. That is, in the overcurrent protection circuit 60, in order to protect the motor 4, an excessive current exceeding a predetermined value continues to flow in the stator winding of the motor 4 and the permanent magnet constituting the rotor is demagnetized. Prevent it from
  • the inverter drive circuit 32 generates an inverter based on a control signal input from a control device 50 described later, specifically, control signals Sm # 1 to Sm # 6 instructing the state of the switching elements of each arm of the inverter 30.
  • the above-described drive signals Sr # 1 to Sr # 6 to be input to 30 are generated.
  • the control signals Sm # 1 to Sm # 6 are on / off control signals for on / off controlling the switching elements of the respective arms of the inverter 30.
  • the control signals Sr # 1 to Sr # 6 generated by the inverter drive circuit 32 are, for example, PWM (Pulse Width Modulation) signals.
  • the motor 4 is configured to be operable in any one of a plurality of connection states of the stator winding, and the connection state is switched by the motor drive device 2.
  • the motor 4 shown in FIG. 1 is operated with the stator windings in a delta connection or a star connection.
  • a plurality of connection states are a star connection state and a delta connection state is explained.
  • connection switching unit 40 of the motor drive device 2 uses a configuration capable of switching to either the star connection or the delta connection. That is, the wire connection switching unit 40 switches the state of the stator winding of the motor 4 between the star wire connection and the delta wire connection.
  • the configuration of the connection switching unit 40 and the connection between the windings of the motor 4 and the connection switching unit 40 will be described in detail with reference to FIG.
  • FIG. 2 is a wiring diagram showing an example of the connection relationship between the connection switching unit 40 of the motor drive device 2 according to the first embodiment and the windings of the motor 4.
  • the motor 4 includes windings 4 u, 4 v and 4 w of three phases, ie, U phase, V phase and W phase, respectively.
  • First ends 4ua, 4va and 4wa of windings 4u, 4v and 4w are connected to external terminals 4uc, 4vc and 4wc, respectively, and second ends 4ub and 4vb of windings 4u, 4v and 4w.
  • And 4 wb are connected to the external terminals 41 ud, 41 vd and 41 wd, respectively, and can be connected to the outside of the motor 4.
  • Output lines 30u, 30v and 30w of the inverter 30 are connected to the external terminals 4uc, 4vc and 4wc, respectively.
  • the connection switching unit 40 is configured of three switching switches 41 u, 41 v and 41 w.
  • the three changeover switches 41u, 41v and 41w are respectively provided corresponding to the three phases.
  • changeover switches 41u, 41v and 41w electromagnetically driven mechanical switches are used.
  • a switch is called a relay, a contactor or the like, and takes different states when current is supplied to an excitation coil (not shown) and when current is not supplied.
  • the changeover switch 41u includes a normally open contact 41ua, a normally closed contact 41ub, and a common contact 41uc.
  • the common contact 41uc of the changeover switch 41u is connected to the external terminal 41ud via the lead wire 44u, and the normally closed contact 41ub is connected to the neutral point node 42.
  • the normally open contact 41 ua is connected to the V-phase output line 30 v of the inverter 30.
  • the changeover switch 41v includes a normally open contact 41va, a normally closed contact 41vb, and a common contact 41vc.
  • the common contact 41vc of the changeover switch 41v is connected to the external terminal 41vd through the lead wire 44v, and the normally closed contact 41vb is connected to the neutral point node 42.
  • the normally open contact 41 va is connected to the W-phase output line 30 w of the inverter 30.
  • the changeover switch 41w includes a normally open contact 41wa, a normally closed contact 41wb, and a common contact 41wc.
  • the common contact 41wc of the changeover switch 41w is connected to the external terminal 41wd via the lead wire 44w, and the normally closed contact 41wb is connected to the neutral point node 42.
  • the normally open contact 41wa is connected to the U-phase output line 30u of the inverter 30.
  • the changeover switches 41u, 41v and 41w are normally in the state shown in FIG.
  • the normal state is a state in which no current flows through the above-described exciting coil (not shown). Therefore, normally, in the state where the changeover switches 41u, 41v and 41w are switched to the normally closed contact side, that is, the common contacts 41uc, 41vc and 41wc are connected to the normally closed contacts 41ub, 41vb and 41wb, respectively. Become. In this case, the state of the stator winding of the motor 4 is star connection. When current flows through the excitation coil of each of the changeover switches 41u, 41v and 41w, the changeover switches 41u, 41v and 41w are in the reverse state to that shown in FIG. 2, that is, common contacts 41uc, 41vc and 41wc. Are connected to the normally open contacts 41ua, 41va and 41wa, respectively. In this case, the state of the stator winding of the motor 4 is a delta connection.
  • the states of the changeover switches 41 u, 41 v and 41 w of the connection switching unit 40 are controlled by the control device 50.
  • the common contacts (41uc, 41vc, 41wc) are normally closed contacts (41ub, 41vb, 41wb) when the connection selection signal Sw generated by the controller 50 indicates a star connection. It will be in the connected state.
  • the common contacts (41uc, 41vc, 41wc) are normally open contacts (41ua, 41va, 41wa) It is in the state of being connected to).
  • the control device 50 controls the wire connection switching unit 40 to switch the wire connection state of the stator winding of the motor 4 and controls the inverter 30 to turn on and off to supply AC power to the motor 4.
  • Control device 50 generates control signals Sm # 1 to Sm # 6 and supplies them to inverter drive circuit 32, and drives drive signals Sr # 1 to Sr # 6 corresponding to control signals Sm # 1 to Sm # 6. By causing the circuit 32 to generate each, each switching element of the inverter 30 is controlled.
  • the control apparatus 50 carries out PWM control of the inverter 30 is demonstrated.
  • the control device 50 supplies PWM signals to the inverter drive circuit 32 as the control signals Sm # 1 to Sm # 6.
  • the inverter 30 can generate three-phase AC power of variable frequency and voltage.
  • Another example of the on / off control that the control device 50 performs on the inverter 30 is rectangular wave drive control.
  • the control device 50 When performing rectangular wave drive control, for example, the control device 50 generates a control signal for energizing the winding of each phase by 120 degrees and supplies the control signal to the inverter drive circuit 32. In this case, the inverter 30 can generate frequency-variable three-phase AC power.
  • the control device 50 includes a microcomputer (micro controller) 52 as shown in FIGS. 1 and 3.
  • the microcomputer 52 is configured to include a CPU and a memory.
  • FIG. 3 is a view showing a configuration example of the control device 50.
  • the control device 50 includes a wire connection switching control unit 521 realized by the microcomputer 52, a PWM signal generation unit 524, a forced cutoff unit 525, and a switching determination unit 526.
  • the connection switching control unit 521 other than the forcible shutoff unit 525, the PWM signal generation unit 524, and the switching determination unit 526 are realized by the CPU in the microcomputer 52 executing programs for operating as these functional units.
  • the connection switching control unit 521 generates a connection selection signal Sw.
  • the connection selection signal Sw is a control signal for designating whether the stator winding of the motor 4 should be star connection or delta connection.
  • the connection switching control unit 521 performs star connection when the operating frequency of the motor 4 is less than or equal to a predetermined frequency, and delta connection when the operating frequency of the motor 4 is higher than a predetermined frequency. Control the connection of the stator windings of the The wire connection switching control unit 521 generates, for example, a wire connection selection signal Sw which becomes Low when designating a star wire connection and becomes High when designating a delta wire connection.
  • the operating frequency of the motor 4 uses detected values of current of each phase flowing from the inverter 30 to the motor 4, voltage of each phase output from the inverter 30, frequency command input from the outside of the motor driving device 2, etc. Ask.
  • the connection switching control unit 521 may obtain the operating frequency of the electric motor 4, or another processing unit (not shown) may obtain and input the operation frequency to the connection switching control unit 521. Note that in FIG. 3, the description of the input signal to the connection switching control unit 521 is omitted.
  • the wire connection selection signal Sw is supplied to the wire connection switching unit 40, and is used to control the states of the changeover switches 41u, 41v and 41w.
  • the switches 41u, 41v and 41w are If the connection selection signal Sw is at the low level, the state shown in FIG. 2, that is, the common contact and the normally closed contact are connected. Further, when the connection selection signal Sw is at the high level, the changeover switches 41u, 41v and 41w are in the reverse state to the state shown in FIG. 2, that is, the common contact and the normally open contact are connected. .
  • the connection switching control unit 521 further supplies the reverse connection selection signal Ss to the overcurrent protection circuit 60.
  • the reverse connection selection signal Ss takes a logic value opposite to that of the connection selection signal Sw. That is, the reverse connection selection signal Ss becomes High when the connection selection signal Sw is Low, and becomes Low when the connection selection signal Sw is High.
  • the PWM signal generation unit 524 outputs control signals Sm # 1 to Sm # 6 for PWM control of the inverter 30.
  • the control signals Sm # 1 to Sm # 6 are hereinafter referred to as PWM signals Sm # 1 to Sm # 6.
  • the PWM signals Sm # 1 to Sm # 6 are used for on / off control of the switching elements of the six arms of the inverter 30, respectively.
  • the PWM signals Sm # 1 to Sm # 6 maintain the high state during the period in which the corresponding switching elements are to be maintained in the on state, and maintain the low state in the period in which the corresponding switching elements are maintained in the off state. .
  • the PWM signals Sm # 1 to Sm # 6 generated by the PWM signal generation unit 524 are supplied to the inverter drive circuit 32 via the forcible shutoff unit 525.
  • inverter drive circuit 32 drives drive signals Sr # 1 to Sr # 6 for turning on or off the switching elements of the six arms of inverter 30 based on PWM signals Sm # 1 to Sm # 6. Generate and output.
  • the inverter drive circuit 32 is connected to the overcurrent blocking port Cin of the IPM 12, and when the level of the signal input to the overcurrent blocking port Cin becomes High, the state of the PWM signals Sm # 1 to Sm # 6 Regardless, it generates signals for turning off the switching elements of all the arms of the inverter 30, and outputs the signals as drive signals Sr # 1 to Sr # 6.
  • Drive signals Sr # 1 to Sr # 6 are generated corresponding to PWM signals Sm # 1 to Sm # 6, respectively, and while the corresponding PWM signal is High, the corresponding switching elements are in the on state. The state of the corresponding switching element is controlled so that the corresponding switching element is maintained in the OFF state while the corresponding PWM signal is low.
  • the PWM signals Sm # 1 to Sm # 6 are within the level of the signal level of the logic circuit, specifically, in the range of 0 to 5V.
  • the drive signals Sr # 1 to Sr # 6 have a voltage level necessary for controlling the switching elements, for example, 15V at High.
  • the forced shutoff unit 525 outputs the PWM signals Sm # 1 to Sm # 6 input from the PWM signal generation unit 524 to the inverter drive circuit 32 as they are, when the value of the current flowing through the motor 4 is normal. On the other hand, if the value of the current flowing through the motor 4 is abnormal, specifically, if the value of the current exceeds the determined reference value, the forced shutoff unit 525 receives the input from the PWM signal generation unit 524. The PWM signals Sm # 1 to Sm # 6 are not output to the inverter drive circuit 32.
  • the forced shutoff unit 525 is connected to a port POE which is an operation shutoff port of the microcomputer 52.
  • the signal input to the port POE is an overcurrent detection signal Se which is low when the value of the current flowing through the motor 4 is normal and high when the value of the current flowing through the motor 4 is abnormal.
  • the details of the overcurrent detection signal Se input to the port POE will be described separately.
  • Forcible shutoff unit 525 stops the output of PWM signals Sm # 1 to Sm # 6 input from PWM signal generation unit 524 to inverter drive circuit 32 when the input signal to port POE attains a high level.
  • the inverter drive circuit 32 When the PWM signals Sm # 1 to Sm # 6 are not supplied, the inverter drive circuit 32 generates signals for turning off the switching elements of all the arms of the inverter 30, and outputs the signals as drive signals Sr # 1 to Sr # 6. . As a result, the switching elements of all the arms of the inverter 30 are turned off. As a result of the switching elements of all the arms being turned off, the inverter 30 is stopped and the output of AC power is stopped.
  • the forced shutoff unit 525 is configured by hardware that operates independently from the control program executed by the microcomputer 52.
  • the process of stopping the output of the PWM signals Sm # 1 to Sm # 6 generated by the PWM signal generation unit 524 according to the state of the signal input to the operation shutoff port (port POE) is performed by a process that is configured by hardware.
  • the process is performed by the blocking unit 525, and is performed at high speed because the process by the software of the microcomputer 52 is not performed.
  • the forced shutoff unit 525 maintains the closed state when the input signal to the port POE is at the low level, and opens the switch that becomes open when the input signal to the port POE becomes the high level. This is realized by inserting each of the signal lines ⁇ Sm # 6 into each signal line for transmission.
  • the switching determination unit 526 generates an overcurrent in the stator winding of the motor 4 based on the reference value Vref2 of the two reference values Vref1 and Vref2 generated by the overcurrent protection circuit 60 described later and the connection selection signal Sw. It is determined whether the reference value used in the process of detecting the flowing state is normally switched to the value corresponding to the wire connection state of the stator winding. That is, in the overcurrent protection circuit 60 in which the switching determination unit 526 determines whether or not the overcurrent flows in the stator winding of the motor 4, a correct reference value corresponding to the connection state of the stator winding To determine if the correct protection action has been taken.
  • switch determination unit 526 instructs PWM signal generation unit 524 to stop the output of the PWM signal.
  • the output of the PWM signals Sm # 1 to Sm # 6 from the PWM signal generation unit 524 is stopped.
  • the inverter drive circuit 32 turns off the switching elements of all the arms of the inverter 30. As a result of the switching element being turned off, the inverter 30 is stopped and the output of AC power is stopped.
  • the PWM signal generation unit 524 When the PWM signal generation unit 524 receives an instruction to stop the output of the PWM signal from the switching determination unit 526, the PWM signal generation unit 524 sets all of the PWM signals Sm # 1 to Sm # 6 to Low level, and switches the switching elements of all arms of the inverter 30. You may make it turn off.
  • control device 50 double-executes the process for stopping the inverter 30 in order to perform the operation of the inverter 30 more quickly and more reliably when an abnormality occurs.
  • FIG. 4 is a block diagram showing an example of a schematic configuration of the overcurrent protection circuit 60 according to the first embodiment
  • FIG. 5 is a wiring diagram showing an example of the overcurrent protection circuit 60 according to the first embodiment.
  • the overcurrent protection circuit 60 includes a current detection circuit 61, a first determination circuit 62, a second determination circuit 63, a disabling circuit 65, and a combining circuit 66.
  • the first determination circuit 62 includes a threshold generation circuit 621 and a comparator 622
  • the second determination circuit 63 includes a threshold generation circuit 631 and a comparator 632.
  • the comparators 622 and 632 are composed of, for example, operational amplifiers.
  • the current detection circuit 61 detects the current flowing through the DC bus connecting the converter 20 and the inverter 30 shown in FIG. 1, and the current value signal Sc indicating the detection result is compared with the comparator 622 of the first determination circuit 62 and the second Output to the comparator 632 of the determination circuit 63 of FIG.
  • the current detection circuit 61 includes the resistor R 611 and the smoothing circuit 612 shown in FIG.
  • the resistor R611 is inserted in a bus connecting the output terminal of the converter 20 and the input terminal of the inverter 30, and the first end is connected to the ground.
  • the smoothing circuit 612 includes resistors R613 and R614 and a capacitor C615.
  • the first end of the resistor R613 is connected to the second end of the resistor R611.
  • a first end of the resistor R 614 is connected to a control power supply which outputs a control voltage Vd, and a second end of the resistor R 614 is connected to a second end of the resistor R 613.
  • the first terminal of the capacitor C615 is connected to the second end of the resistor R613, and the second terminal of the capacitor C615 is connected to the ground.
  • a voltage obtained by smoothing the voltage between both ends of the resistor R611 appears between both terminals of the capacitor C615, and the voltage between both terminals of the capacitor C615 is a signal indicating a current detection value.
  • the comparator 622 of the first determination circuit 62 and the comparator 632 of the second determination circuit 63 are supplied to the comparator 622 of the first determination circuit 62 and the comparator 632 of the second determination circuit 63.
  • the first determination circuit 62 determines whether or not an excessive current flows in the stator winding when the stator winding of the motor 4 shown in FIG. Output to
  • the threshold value generation circuit 621 of the first determination circuit 62 is composed of the resistors R623 and R624 shown in FIG. 5 and a smoothing capacitor C625.
  • the resistors R623 and R624 are connected in series to form a voltage divider circuit.
  • the first end of the resistor R623 is connected to the control power supply which outputs the control voltage Vd, and the first end of the resistor R624 is connected to the second end of the resistor R623 and the second end of the resistor R624 Is connected to ground.
  • a capacitor C625 is connected in parallel to the resistor R624.
  • the control voltage Vd output from the control power supply is divided by the voltage dividing circuit including the resistors R623 and R624, and the voltage Vt ⁇ corresponding to the voltage dividing ratio of the voltage dividing circuit is the connection between the resistors R623 and R624. It appears at the point, the voltage divider node of the voltage divider circuit.
  • the voltage Vt ⁇ is a threshold for delta connection.
  • the voltage Vt ⁇ is input to the positive terminal which is a non-inversion input terminal of the comparator 622 as a reference value Vref1 which is a first reference value.
  • a threshold for delta connection is taken as a first threshold.
  • the voltage Vt ⁇ appearing at the connection point of the resistor R623 and the resistor R624 is expressed by the following equation (1).
  • Vt ⁇ Vd ⁇ R624 / (R623 + R624) (1)
  • R ⁇ ⁇ represents a resistance value.
  • R624" of Formula (1) represents the resistance value of resistance R624. The same applies to each equation after equation (2) described later.
  • the current value signal Sc from the current detection circuit 61 is input to the ⁇ terminal, which is the inverting input terminal of the comparator 622.
  • the comparator 622 compares the current value signal Sc with the reference value Vref1. If the current value signal Sc is larger than the reference value Vref1, the signal output to the combining circuit 66 is at the low level, and the current value signal Sc is less than the reference value Vref1. If so, the signal output to the synthesis circuit 66 is set to the high level.
  • the signal output from the comparator 622 to the combining circuit 66 is a signal indicating the determination result by the first determination circuit 62.
  • the second determination circuit 63 determines whether or not an excessive current flows in the stator winding when the stator winding of the motor 4 shown in FIG. Output to
  • the threshold value generation circuit 631 of the second determination circuit 63 includes the resistors R633 and R634 shown in FIG. 5 and a smoothing capacitor C635.
  • the resistors R633 and R634 are connected in series to form a voltage divider circuit.
  • the first end of the resistor R633 is connected to the control power supply which outputs the control voltage Vd, and the first end of the resistor R634 is connected to the second end of the resistor R633 and the second end of the resistor R634 Is connected to ground.
  • a capacitor C635 is connected in parallel to the resistor R634.
  • the control voltage Vd output from the control power supply is divided by the voltage dividing circuit including the resistors R633 and R634, and the voltage VtY corresponding to the voltage dividing ratio of the voltage dividing circuit is a connection between the resistors R633 and R634. It appears at the point, the voltage divider node of the voltage divider circuit.
  • the voltage VtY is a threshold for star connection.
  • the voltage VtY is input to the positive terminal which is a non-inversion input terminal of the comparator 632 as a reference value Vref2 which is a second reference value.
  • a threshold for star connection is set as a second threshold.
  • the voltage VtY appearing at the connection point of the resistor R633 and the resistor R634 is expressed by the following equation (2).
  • VtY Vd ⁇ R634 / (R633 + R634) (2)
  • the current value signal Sc from the current detection circuit 61 is input to the ⁇ terminal which is the inverting input terminal of the comparator 632.
  • the comparator 632 compares the current value signal Sc with the reference value Vref2, and if the current value signal Sc is larger than the reference value Vref2, sets the signal output to the combining circuit 66 to the low level, and the current value signal Sc is less than the reference value Vref2. If so, the signal output to the synthesis circuit 66 is set to the high level.
  • the signal output from the comparator 632 to the combining circuit 66 is a signal indicating the determination result by the second determination circuit 63.
  • Vt ⁇ ⁇ 3 ⁇ VtY (3)
  • the resistance value of each of the resistors R623, R624, R633 and R634 is set to satisfy the equation (3).
  • Vt ⁇ may be configured to be smaller than ⁇ 3 times VtY.
  • Vt ⁇ is a value larger than VtY. That is, the resistance values of the resistors R623, R624, R633 and R634 may be set so as to satisfy “VtY ⁇ Vt ⁇ ⁇ 3 ⁇ VtY”.
  • the winding current is a circulating current flowing through the stator winding of each phase, but the winding current is an inverter current which is a current flowing through the inverter 30, that is, the current detection circuit 61 detects It does not contribute to the current.
  • the invalidation circuit 65 invalidates the determination result in the second determination circuit 63 when the above-described inversion connection selection signal Ss is at the high level.
  • the disabling circuit 65 is configured by the npn digital transistor Q651 shown in FIG.
  • the digital transistor Q651 has its emitter and collector connected respectively to both ends of the resistor R633 constituting the threshold value generation circuit 631 of the second determination circuit 63, that is, to the first end and the second end of the resistor R633. There is.
  • the inverted connection selection signal Ss output from the controller 50 is input to the base of the digital transistor Q651.
  • the digital transistor Q651 is turned off when the reverse connection selection signal Ss is at high level, that is, when the stator winding of the motor 4 is star connection.
  • the digital transistor Q651 is turned on when the reverse connection selection signal Ss is at low level, that is, when the stator winding of the motor 4 is delta connection.
  • threshold value generation circuit 631 of second determination circuit 63 When digital transistor Q651 is off, threshold value generation circuit 631 of second determination circuit 63 generates threshold value VtY represented by the above equation (2), and inputs it to the + terminal of comparator 632 as reference value Vref2.
  • the threshold value VtY is used as the reference value Vref2 when the digital transistor Q651 is in the off state
  • Vp Vd ⁇ Von is used as the reference value Vref2 when the digital transistor Q651 is in the on state.
  • the reference value Vref2 output from the threshold value generation circuit 631 is also input to the switching determination unit 526 of the control device 50 illustrated in FIG. 3 and is used in the determination processing in the switching determination unit 526.
  • the overcurrent protection circuit 60 that determines whether or not the overcurrent flows in the stator winding of the motor 4
  • wire connection of the stator winding is performed. It is a process of determining whether the correct reference value corresponding to the state is used.
  • the combining circuit 66 combines the determination result of the first determination circuit 62 and the determination result of the second determination circuit 63 to generate the overcurrent detection signal Se.
  • the synthesis circuit 66 is composed of the wired OR circuit 661 and the inverting circuit 662 shown in FIG.
  • the wired OR circuit 661 is composed of a resistor R663.
  • the first end of the resistor R 633 is connected to a control power supply that outputs the control voltage Vd, and the second end is connected to the output terminal of the comparator 622 and the output terminal of the comparator 632.
  • the wired OR circuit 661 sets the input to the inverting circuit 662 to the low level. Further, when both the output signal from the comparator 622 and the output signal from the comparator 632 are at the high level, the wired OR circuit 661 causes the input to the inverting circuit 662 to be at the high level.
  • the output of the wired OR circuit 661 is the second end of the resistor R633.
  • the inverting circuit 662 is composed of a digital transistor Q664 and a resistor R665.
  • An emitter terminal of the digital transistor Q664 is connected to a control power source for outputting a control voltage Vd, and a base terminal of the digital transistor Q664 is connected to a second end of a resistor R663 which is an output portion of the wired OR circuit 661.
  • the collector terminal of the digital transistor Q664 is connected to the first end of the resistor R665.
  • the second end of the resistor R665 is connected to ground.
  • a signal obtained by inverting the logic state of the signal input from the wired OR circuit 661 to the base terminal appears at the collector terminal of the digital transistor Q664, and this signal is the overcurrent detection signal Se.
  • the overcurrent detection signal Se which is the output of the overcurrent protection circuit 60 is input to the overcurrent blocking port Cin of the IPM 12 and the operation blocking port (port POE) of the microcomputer 52 as shown in FIGS. 1 and 3.
  • the inverter drive circuit 32 sets all of the drive signals Sr # 1 to Sr # 6 output to the inverter 30 to a low state, Turn off the switching elements of all 30 arms.
  • the forced shutoff unit 525 of the control device 50 generates the PWM signal Sm # generated by the PWM signal generation unit 524.
  • the output to the inverter drive circuit 32 of 1 to Sm # 6 is stopped.
  • the PWM signal is not supplied to the inverter drive circuit 32, and the inverter drive circuit 32 turns off the switching elements of all the arms of the inverter 30.
  • the process of stopping the inverter 30 is performed in duplicate.
  • the reverse connection selection signal Ss supplied to the base of the digital transistor Q651 which is the disabling circuit 65 is output from the connection switching control unit 521 of the control device 50 as described above.
  • the reverse connection selection signal Ss becomes high level as shown in (a) of FIG. 6, and in the case of delta connection, it is shown in (b) of FIG. It becomes low level. Therefore, the digital transistor Q651 is turned off as shown in FIG. 6 (a) when the stator winding of the motor 4 is star connected, and as shown in FIG. 6 (b) when delta connected. It turns on.
  • VtY when the stator winding of the motor 4 is star-connected, the VtY described above is input as the reference value Vref2 to the positive terminal of the comparator 632 constituting the second determination circuit 63 ((a) in FIG. 6).
  • Vp Vd ⁇ Von
  • the positive terminal of the comparator 622 constituting the first determination circuit 62 does not depend on the state of the stator winding of the motor 4, that is, the stator winding of the motor 4 is either star connection or delta connection. Even in this case, the above-mentioned Vt ⁇ is inputted as the reference value Vref1 (see (a) and (b) in FIG. 6).
  • the overcurrent protection circuit 60 generates an overcurrent detection signal when the current value signal Sc exceeds the threshold VtY determined for the star connection. Change Se from Low level to High level.
  • the current value signal Sc is configured not to exceed Vp, and the output signal of the comparator 632 maintains the High level. Also, there is a relationship of Vt ⁇ ⁇ Vp. Therefore, when the input current of the inverter 30 gradually increases, and accordingly, the current value signal Sc gradually increases, at some point, the comparator 622 determines that the current value signal Sc becomes larger than the reference value Vref1, Change the output signal from high level to low level. Therefore, at this time, the output of the wired OR circuit 661 becomes low level. As a result, the output of the inverting circuit 662, that is, the overcurrent detection signal Se that is the output of the combining circuit 66 becomes High level.
  • the overcurrent protection circuit 60 when the stator winding of the motor 4 is a delta connection, the overcurrent protection circuit 60 generates an overcurrent detection signal when the current value signal Sc exceeds the threshold Vt ⁇ determined for the delta connection. Change Se from Low level to High level.
  • the comparison processing using the threshold value VtY which is the reference value Vref2 corresponding to star connection in the second determination circuit 63 is invalidated. Therefore, regardless of whether the stator winding of the motor 4 is star connection or delta connection, overcurrent detection is performed based on the comparison result between the appropriate threshold value and the current value signal Sc in each case. Can be protected. “The appropriate threshold value in each case” is “a threshold value corresponding to each connection state”.
  • the invalidation circuit 65 for invalidating the comparison process in the second determination circuit 63 can be configured by a digital transistor. Since digital transistors are inexpensive, costs can be reduced. Furthermore, since the determination circuits 62 and 63 can be configured by comparators, resistors, etc. configured by relatively inexpensive operational amplifiers, costs can be suppressed.
  • the generation of the threshold values Vt ⁇ and VtY in the determination circuits 62 and 63 is not influenced by the circuit constant of the digital transistor. Therefore, the generation of the threshold and the comparison using the threshold can be accurately performed. Therefore, overcurrent protection can be performed with high accuracy. Since the overcurrent protection can be performed with high accuracy, the overcurrent protection level can be set as high as possible with respect to the demagnetization current, and high output can be achieved.
  • the microcomputer and the IPM also need a plurality of input ports in order to input their outputs to the microcomputer and the IPM.
  • a general microcomputer that is, a general-purpose microcomputer, has only one input port corresponding to the above-described operation shutoff port (port POE).
  • the general-purpose IPM has only one input port corresponding to the above-described overcurrent cutoff port Cin. Therefore, if the outputs of the plurality of determination circuits are directly input to the microcomputer and the IPM, there is a problem that the microcomputer and the IPM of a general-purpose product can not be used.
  • the determination results of the plurality of determination circuits are combined and input to the microcomputer 52 and the IPM 12 and thus correspond to the operation shutoff port (port POE) as a microcomputer.
  • the operation shutoff port port POE
  • One having only one input port can be used, and one having only one input port corresponding to the overcurrent blocking port Cin can be used as the IPM.
  • the overcurrent protection circuit 60 in particular, the first determination circuit 62 and the second determination circuit 63 are configured by hardware, the protection operation can be performed at high speed.
  • the forcible shutoff unit 525 of the control device 50 is configured by hardware and operates independently from the control program of the microcomputer 52, so that the operation can be performed at high speed. Further, even when the microcomputer 52 runs away, the forced shutoff unit 525 can reliably stop the supply of the PWM signals Sm # 1 to Sm # 6 to the inverter drive circuit 32.
  • the switching determination unit 526 of the control device 50 determines whether the overcurrent protection circuit 60 is performing the correct protection operation corresponding to the connection state of the stator winding of the motor 4 or not. Detection based on the reference value Vref2 generated by the determination circuit 63 of No. 2 and stopping the supply of the drive signals Sr # 1 to Sr # 6 to the inverter drive circuit 32 when the correct protection operation is not performed . Therefore, a highly reliable system can be realized.
  • the stator winding of the motor to be driven is a delta connection that is the first connection state, whether or not an excessive current flows in the stator winding
  • the first determination circuit that determines whether or not the stator winding of the motor to be driven is star connected in the second connection state, and it is determined whether or not an excessive current flows in the stator winding.
  • 2 determination circuits The motor drive device also performs a second determination when the synthesis circuit that combines the determination result in the first determination circuit and the determination result in the second determination circuit and the stator winding of the motor to be driven is delta connection.
  • a disabling circuit for disabling the determination process by the circuit.
  • the motor drive further causes the inverter to stop generating power to drive the motor if the signal generated by the combining circuit represents a state in which an excessive current flows in the stator winding of the motor. It has a control device to control.
  • the determination process as to whether or not an excessive current flows in the stator winding is performed using an appropriate threshold value corresponding to the state of the stator winding. It is possible to realize high performance of the protection function for preventing demagnetization of the permanent magnet that constitutes the rotor of the above.
  • the combining circuit is provided to combine a plurality of determination results and output as one signal, the CPU of the microcomputer constituting the control device needs only one input port for inputting the determination results. Therefore, it is possible to realize a motor drive device capable of realizing high performance of the protection function for protecting the motor while preventing the number of input ports required by the CPU to be used from increasing.
  • the motor drive device according to the second embodiment will be described.
  • the overall configuration of the motor drive device according to the second embodiment is the same as that of the motor drive device 2 according to the first embodiment (see FIG. 1).
  • the motor drive device according to the second embodiment will be referred to as a motor drive device 2a.
  • the difference between the motor drive device 2a according to the second embodiment and the motor drive device 1 according to the first embodiment is an overcurrent protection circuit.
  • FIG. 7 is a view showing a configuration example of the overcurrent protection circuit 60a of the motor drive device 2a according to the second embodiment.
  • the overcurrent protection circuit 60a includes a current detection circuit 61, a first determination circuit 62a, a second determination circuit 63a, an invalidation circuit 65, and a combining circuit 66a.
  • the current detection circuit 61 and the invalidation circuit 65 of the overcurrent protection circuit 60a are the same as the current detection circuit 61 and the invalidation circuit 65 of the overcurrent protection circuit 60 according to the first embodiment shown in FIG. Therefore, the description of the current detection circuit 61 and the disabling circuit 65 is omitted.
  • the first determination circuit 62 a includes a threshold generation circuit 621 and a comparator 622.
  • the difference between the first determination circuit 62 and the first determination circuit 62 a according to the first embodiment is the connection between the threshold generation circuit 621 and the comparator 622.
  • the reference value Vref1 generated by the threshold generation circuit 621 is input to the + terminal of the comparator 622, and the current value signal Sc from the current detection circuit 61 is input.
  • the second determination circuit 63 a includes a threshold generation circuit 631 and a comparator 632.
  • the difference between the second determination circuit 63 and the second determination circuit 63 a according to the first embodiment is the connection between the threshold generation circuit 631 and the comparator 632.
  • the reference value Vref2 generated by the threshold value generation circuit 631 is input to the + terminal of the comparator 632, and the current value signal Sc from the current detection circuit 61 is input.
  • the synthesis circuit 66 a is configured of a diode OR circuit 671.
  • Diode OR circuit 671 includes resistors R672 and R673, diodes D674 and D675, and resistor R676.
  • the resistor R 672 has a first end connected to the control power supply that outputs the control voltage Vd, and a second end connected to the output terminal of the comparator 622 and the anode of the diode D 674.
  • the diode D 674 has its anode connected to the output terminal of the comparator 622 and the second end of the resistor R 672, and its cathode connected to the first end of the resistor R 676 and the cathode of the diode D 675.
  • the resistor R 673 has a first end connected to a control power supply that outputs the control voltage Vd, and a second end connected to the output terminal of the comparator 632 and the anode of the diode D 675.
  • the diode D 675 has its anode connected to the output terminal of the comparator 632 and the second end of the resistor R 673, and has its cathode connected to the first end of the resistor R 676 and the cathode of the diode D 674.
  • the second end of the resistor R676 is connected to ground.
  • the diode OR circuit 671 outputs a high level signal as the overcurrent detection signal Se when at least one of the output signal from the comparator 622 and the output signal from the comparator 632 is at high level, and the output from the comparator 622 When both the signal and the output signal from the comparator 632 are at the low level, the low level signal is output as the overcurrent detection signal Se.
  • the operation of the overcurrent protection circuit 60a when the input current of the inverter 30 gradually increases is similar to the operation described with reference to FIG. 6 in the first embodiment.
  • the logic values of the output signals of the comparators 622 and 632 are opposite to the logic values shown in the second and third stages from the bottom of FIG.
  • the overcurrent protection circuit 60a generates the overcurrent detection signal Se in the same manner as the overcurrent protection circuit 60 according to the first embodiment. The same effect as the motor drive device 2 can be obtained.
  • the synthesis circuit 66a of the overcurrent protection circuit 60a is realized by the diode OR circuit 671.
  • transistors such as a MOS (Metal-Oxide-Semiconductor) transistor
  • An OR circuit performing the same operation as the diode OR circuit 671 may be realized.
  • the configuration of the overcurrent protection circuit in that case is shown in FIG.
  • the overcurrent protection circuit 60b of the motor drive device according to the third embodiment shown in FIG. 8 is obtained by replacing the synthesis circuit 66a of the overcurrent protection circuit 60a shown in FIG. 7 with a synthesis circuit 66b.
  • the synthesis circuit 66 b is an OR circuit 681 configured by combining transistors.
  • the operation of the overcurrent protection circuit 60b is the same as that of the overcurrent protection circuit 60a, and thus the description thereof is omitted.
  • the motor drive device performs the same operation as the motor drive device 2a according to the second embodiment, and can obtain the same effect as the motor drive device according to the first and second embodiments.
  • this configuration is not essential.
  • a threshold value generation circuit 631 c shown in FIG. 65 may be connected as shown in FIG.
  • the threshold generation circuit 631 c shown in FIG. 9 is obtained by replacing the resistor R 633 of the threshold generation circuit 631 shown in FIG. 5 and the like with a resistor R 633 A and a resistor R 633 B connected in series. Therefore, in the threshold value generation circuit 631c, a voltage dividing circuit is configured by the resistors R633A, R633B and R634 connected in series, and the digital transistor Q651 is provided to short both ends of the resistor R633A.
  • the resistance values of the resistors R633A and R633B of the threshold value generation circuit 631c are determined such that the relationship between the threshold value generation circuit 631 and the resistance R633 satisfies the equation (4).
  • R633A + R633B R633 (4)
  • the operation of the overcurrent protection circuit when the digital transistor Q651 is off that is, the operation of the overcurrent protection circuit when the stator winding of the motor 4 has a star connection. Is the same as the operation of the overcurrent protection circuit 60 (see FIG. 5) described with reference to FIG.
  • the comparator 622 determines that Sc exceeds Vt ⁇ . Therefore, when the current value signal Sc exceeds Vt ⁇ , the overcurrent detection signal Se becomes high level. As described above, the overcurrent detection signal Se becomes high level at the time when Sc exceeds Vt ⁇ , similarly to the operation of the overcurrent protection circuit 60 described with reference to FIG. 6B.
  • Embodiment 5 the motor drive device according to the fifth embodiment will be described.
  • the overall configuration of the motor drive device according to the fifth embodiment is the same as that of the motor drive device 2 according to the first embodiment (see FIG. 1).
  • the motor drive device according to the fifth embodiment will be referred to as a motor drive device 2d.
  • the difference between the motor drive device 2d according to the fifth embodiment and the motor drive device 2 according to the first embodiment is an overcurrent protection circuit.
  • the overcurrent protection circuit of the motor drive device 2d is called an overcurrent protection circuit 60d.
  • the overcurrent protection circuit 60d has a circuit configuration similar to that of the overcurrent protection circuit 60 of the motor drive device 2, but the operation of some of the circuits is different.
  • FIG. 11 is a block diagram showing an example of a schematic configuration of the overcurrent protection circuit 60 d according to the fifth embodiment.
  • the overcurrent protection circuit 60d includes a current detection circuit 61, a first determination circuit 62a, a second determination circuit 63a, a disabling circuit 65d, and a combining circuit 66d.
  • the current detection circuit 61 shown in FIG. 11 is the same as the current detection circuit 61 of the overcurrent protection circuit 60 described in the first embodiment.
  • the first determination circuit 62a and the second determination circuit 63a shown in FIG. 11 are the same as the first determination circuit 62a and the second determination circuit 63a of the overcurrent protection circuit 60a described in the second embodiment. is there.
  • the details of the current detection circuit 61, the first determination circuit 62a, and the second determination circuit 63a will not be described.
  • the overcurrent protection circuits 60, 60a, and 60b described in the first to fourth embodiments perform star connection with the current value signal Sc in the second determination circuit 63 and 63a when the stator winding of the motor 4 is delta connection.
  • the comparison processing with the threshold VtY for use is invalidated.
  • the overcurrent protection circuit 60d according to the present embodiment has the current value signal Sc and the threshold Vt ⁇ for delta connection in the first determination circuit 62a when the stator winding is star connection. Disable comparison processing.
  • the overcurrent protection circuit 60d makes the invalidation circuit 65d extremely reduce the reference value Vref1 compared with the current value signal Sc in the first determination circuit 62a.
  • the combining circuit 66d performs AND combination of the determination result of the first determination circuit 62a and the determination result of the second determination circuit 63a.
  • the reference value Vref2 of the two reference values generated by the overcurrent protection circuit is input to the switching determination unit 526 of the control device 50.
  • the reference value Vref1 is input to the switching determination unit 526 of the control device 50. That is, in the switching determination unit 526 of the motor drive device 2d, using the reference value Vref1, in the overcurrent protection circuit 60d, the correct protection operation is performed using the correct reference value corresponding to the connection state of the stator winding. It is determined whether or not it is closed.
  • FIG. 12 is a wiring diagram showing an example of the overcurrent protection circuit 60 d according to the fifth embodiment.
  • the arrangement of the current detection circuit 61 and the threshold generation circuit 621 of the first determination circuit 62a is replaced with that of FIG. 7, but the current detection circuit 61 and the first determination circuit 62a of the overcurrent protection circuit 60d are This circuit is the same as the current detection circuit 61 and the first determination circuit 62a of the overcurrent protection circuit 60a shown in FIG.
  • the threshold value generation circuit 631 In the second determination circuit 63a, the threshold value generation circuit 631 generates the voltage VtY expressed by the equation (6), and inputs the voltage VtY to the ⁇ terminal of the comparator 632 as the reference value Vref2.
  • VtY Vd ⁇ R634 / (R633 + R634) (6)
  • the disabling circuit 65d is formed of an npn type digital transistor Q653.
  • the digital transistor Q653 has its collector and emitter connected to both ends of the resistor R624 constituting the threshold value generation circuit 621 of the first determination circuit 62a, that is, to the first end and the second end of the resistor R624. There is.
  • the inverted connection selection signal Ss output from the control device 50 is input to the base of the digital transistor Q653.
  • the digital transistor Q653 is turned off when the reverse connection selection signal Ss is at a low level, that is, when the stator winding of the motor 4 is a delta connection.
  • the digital transistor Q653 is turned on when the reverse connection selection signal Ss is at high level, that is, when the stator winding of the motor 4 is star connection.
  • the threshold value generation circuit 621 of the first determination circuit 62a When the digital transistor Q653 is in the OFF state, the threshold value generation circuit 621 of the first determination circuit 62a generates the voltage Vt ⁇ represented by Expression (7), and inputs it to the ⁇ terminal of the comparator 622 as the reference value Vref1.
  • Vt ⁇ Vd ⁇ R624 / (R623 + R624) (7)
  • voltage Vt ⁇ is generated by threshold value generation circuit 621 when the stator winding of motor 4 becomes a delta connection and digital transistor Q 653 is turned off, and comparator 622 is generated as reference value Vref 1 which is the first reference value.
  • Input to the-terminal of the The voltage Vt ⁇ is a threshold for delta connection.
  • VtY represented by the equation (6) satisfy the relationship of the above equation (3) or “VtY ⁇ Vt ⁇ ⁇ 3 ⁇ VtY”. It shall be.
  • the threshold value generation circuit 621 of the first determination circuit 62a generates the threshold value Vt ⁇ represented by the above equation (7) and sets the reference value Vref1 to the ⁇ terminal of the comparator 622. Make it input.
  • the comparator 622 compares the current value signal Sc with the reference value Vref1, and if the current value signal Sc is larger than the reference value Vref1, sets the signal output to the combining circuit 66d to High level, and the current value signal Sc is less than the reference value Vref1. If so, the signal output to the synthesis circuit 66d is set to the low level.
  • the synthesis circuit 66 is composed of an AND circuit 683.
  • the AND circuit 683 detects high level overcurrent when both the signal output from the comparator 622 of the first determination circuit 62a and the signal output from the comparator 632 of the second determination circuit 63a are at high level.
  • the signal Se is output.
  • the AND circuit 683 is at low level when at least one of the signal output from the comparator 622 of the first determination circuit 62a and the signal output from the comparator 632 of the second determination circuit 63a is at low level. And outputs the over-current detection signal Se.
  • the reverse connection selection signal Ss supplied to the base of the digital transistor Q653 which is the disabling circuit 65d is output from the connection switching control unit 521 of the control device 50 as described above.
  • the reverse connection selection signal Ss becomes High level as shown in (a) of FIG. 13 and, in the case of delta connection, is shown in (b) of FIG. It becomes low level. Therefore, the digital transistor Q653 is turned on as shown in (a) of FIG. 13 when the stator winding of the motor 4 is star connected, and as shown in (b) of FIG. It will be off.
  • the above-mentioned Vt ⁇ is input as the reference value Vref1 to the negative terminal of the comparator 622 constituting the first determination circuit 62a ((b) in FIG. 13).
  • the negative terminal of the comparator 632 constituting the second determination circuit 63a does not depend on the state of the stator winding of the motor 4, that is, the stator winding of the motor 4 is either star connection or delta connection. Even, the above-mentioned VtY is input as the reference value Vref2 (see (a) and (b) in FIG. 13).
  • the output of the AND circuit 683 that is, the overcurrent detection signal Se that is the output of the combining circuit 66d becomes High level.
  • the overcurrent protection circuit 60d detects an overcurrent detection signal when the current value signal Sc exceeds the threshold Vt ⁇ determined for the delta connection. Change Se from Low level to High level.
  • the current value signal Sc is configured not to be less than or equal to Vq, and the output signal of the comparator 622 maintains the High level. Therefore, when the input current of the inverter 30 gradually increases, and accordingly, the current value signal Sc gradually increases, at some point in time, the comparator 632 determines that the current value signal Sc becomes larger than the reference value Vref2, Change the output signal from low level to high level. As a result, the output of the AND circuit 683, that is, the overcurrent detection signal Se that is the output of the combining circuit 66d becomes High level.
  • the overcurrent protection circuit 60d detects an overcurrent when the current value signal Sc exceeds the threshold VtY defined for the star connection.
  • the signal Se is changed from the low level to the high level.
  • Vref2 the reference value of the threshold value generation circuit 631 of the second determination circuit 63a. It may be configured to be input to the comparator 622 as the value Vref1.
  • a threshold value generation circuit 621e shown in FIG. 14 is used, and the invalidation circuit 65e is shown in FIG. You may connect to Similar to the disabling circuit 65 d shown in FIG. 12, the disabling circuit 65 e is configured by an npn type digital transistor Q 653.
  • the threshold value generation circuit 621 e shown in FIG. 14 is obtained by replacing the resistor R 624 of the threshold value generation circuit 621 with a resistor R 624 A and a resistor R 624 B connected in series. Therefore, in the threshold value generating circuit 621e, a voltage dividing circuit is configured by the resistors R623, R624A and R624B connected in series with one another, and the digital transistor Q653 is provided to short both ends of the resistor R624B.
  • the resistance values of the resistors R 624 A and R 624 B of the threshold value generation circuit 621 e are determined such that the relationship with the resistance R 624 of the threshold value generation circuit 621 satisfies Expression (8).
  • R624A + R624B R624 (8)
  • the operation of the overcurrent protection circuit when the digital transistor Q653 is off that is, the operation of the overcurrent protection circuit when the stator winding of the motor 4 is delta connection. Is the same as the operation of the overcurrent protection circuit 60d (see FIG. 12) described with reference to FIG. 13 (b).
  • the operation of the overcurrent protection circuit when the digital transistor Q653 is on that is, when the stator winding of the motor 4 has star connection.
  • the operation of the current protection circuit is as shown in FIG.
  • Embodiment 7 Subsequently, a motor drive device according to the seventh embodiment will be described.
  • the overall configuration of the motor drive device according to the seventh embodiment is the same as that of the motor drive device 2 according to the first embodiment (see FIG. 1).
  • the motor drive device according to the seventh embodiment will be referred to as a motor drive device 2f.
  • the wire connection switching unit 40 for switching the connection state of the stator winding of the motor 4 is realized by the changeover switch, but instead of the changeover switch, a normally closed switch And a normally open switch may be used.
  • FIG. 16 is a wiring diagram showing an example of a connection relationship between a wire connection switching unit provided in the motor drive device 2f according to the seventh embodiment and each winding of the motor.
  • connection switching unit 40f shown in FIG. 16 uses a combination of a normally closed switch 46u and a normally open switch 47u instead of the changeover switch 41u of the connection switching unit 40 (see FIG. 2) described in the first embodiment.
  • a combination of the normally closed switch 46v and the normally open switch 47v is used instead of the changeover switch 41v, and a combination of the normally closed switch 46w and the normally open switch 47w is used instead of the changeover switch 41w.
  • connection switching unit 40 shown in FIG. 2 and the connection switching unit 40f shown in FIG. Is preferably small, and mechanical switches such as relays and contactors are preferred.
  • a wide band gap such as SiC (silicon carbide) or GaN (gallium nitride)
  • a normally closed switch and a normally open switch may be realized using a wide band gap semiconductor.
  • the WBG semiconductor has low on-resistance, low loss, and little heat generation of the device.
  • the WBG semiconductor can perform the switching operation at high speed. Therefore, in the case of switching the wire connection state while the motor 4 is driven, it is preferable to use a WBG semiconductor.
  • connection switching unit 40f having the configuration shown in FIG. 16
  • the connection state used when the load on the compressor is small (for example, It is desirable to use a normally on semiconductor switch as a switch which is turned on when the star connection state is selected. By doing so, loss at light load can be reduced, and when applied to a motor used to drive a compressor of an air conditioner, the proportion of operation at light load among operating time is high. Because the overall efficiency is high.
  • connection switching unit 40f of the motor drive device 2f is the same as that of any one of the motor drive devices described in the first to sixth embodiments. That is, the motor drive device 2f is obtained by replacing the connection switching unit 40 of the motor drive device described in the first to sixth embodiments with a connection switching unit 40f.
  • the motor driving device for driving the motor having a configuration capable of switching so that the state of the stator winding is star connection or delta connection has been described.
  • the motor driving device according to the present invention The configuration of the motor driven by is not limited to this.
  • the motor drive device uses, for example, one in which the winding of each phase comprises two or more winding portions, and switches the connection of the plurality of winding portions between parallel connection and series connection. Can also be applied to motors capable of In this case, the motor drive device switches the connection state so that both ends of each of the two or more winding parts constituting the winding of each phase can be connected to the outside of the motor.
  • the motor drive device according to the present embodiment is referred to as a motor drive device 2g.
  • FIG. 17 is a wiring diagram showing an example of a connection relationship between a wire connection switching unit provided in the motor drive device 2g according to the eighth embodiment and each winding of the motor.
  • the connection switching unit provided in the motor drive device 2g according to the eighth embodiment is referred to as a connection switching unit 40g.
  • a motor driven by the motor drive device 2g is referred to as a motor 4g.
  • the wire connection switching unit 40g of the motor drive device 2g includes six changeover switches 48u, 48v, 48w, 49u, 49v and 49w.
  • the changeover switches 48u and 49u are provided corresponding to the u phase.
  • the changeover switches 48v and 49v are provided corresponding to the v phase, and the changeover switches 48w and 49w are provided corresponding to the w phase.
  • the stator winding of the motor 4g includes a u-phase winding 4u, a v-phase winding 4v and a w-phase winding 4w.
  • the winding 4u is composed of two winding parts 4ue and 4uf
  • the winding 4v is composed of two winding parts 4ve and 4vf
  • the winding 4w is composed of two winding parts 4we and 4wf.
  • the first ends of the winding portions 4ue, 4ve, 4we are connected to the output lines 30u, 30v, 30w of the inverter 30 via the external terminals 4uc, 4vc, 4wc, respectively.
  • the second ends of the winding portions 4ue, 4ve, 4we are connected to the common contacts of the changeover switches 48u, 48v, 48w via the external terminals 4ug, 4vg, 4wg, respectively.
  • the first ends of the winding portions 4uf, 4vf, 4wf are connected to the common contacts of the changeover switches 49u, 49v, 49w via external terminals 4uh, 4vh, 4wh, respectively.
  • the second ends of the winding parts 4uf, 4vf, 4wf are connected to the neutral point node 42 via external terminals 4ud, 4vd, 4wd, respectively.
  • the normally closed contacts of the changeover switches 48u, 48v, 48w are connected to the normally closed contacts of the changeover switches 49u, 49, 49w, respectively.
  • the normally open contacts of the changeover switches 48u, 48v, 48w are connected to the neutral point node 42, respectively.
  • the normally open contacts of the changeover switches 49u, 49v, 49w are connected to the output lines 30u, 30v, 30w of the inverter 30, respectively.
  • the overcurrent protection circuit described in the first to seventh embodiments is applied to apply excessive current to the stator winding of the motor 4g. Can be prevented from flowing.
  • the settings of the threshold values generated by the first determination circuit and the second determination circuit that constitute the overcurrent protection circuit are as follows.
  • stator windings of the motor 4g are connected in series. It becomes a state.
  • the changeover switches 48u, 48v, 48w, 49u, 49v and 49w are switched to the normally open contact side opposite to the illustrated state, the stator windings of the motor 4g are connected in parallel. In the series connection state and the parallel connection state, the ratio of the current flowing through the winding of the motor 4g to the inverter current is different.
  • connection switching unit 40g may be realized by combining the normally-closed switch and the normally-opened switch instead of the changeover switch.
  • the overcurrent protection circuit of the motor drive described in the first to eighth embodiments detects the input current of the inverter 30, and determines whether the value of the current flowing through the motor is normal or not based on the detection result. In the case of an abnormality, the inverter 30 is stopped to protect the motor. However, instead of the input current of the inverter 30, the output current of the inverter 30 may be detected and control may be performed using the output current.
  • a current detection element for example, a current transformer
  • over current detection may be performed based on the current of one phase.
  • a current detection element may be provided for each of the three phases, and the overcurrent may be detected using an average value or an instantaneous value of the currents detected in each of the three phases.
  • a current detection element may be provided for each of any two phases, and detection of overcurrent may be performed using an average value or an instantaneous value of the current detected in each of the two phases.
  • the stator winding of the motor to be driven can be in either of two connection states. That is, the overcurrent protection circuit of the motor drive device includes two determination circuits each performing determination using two thresholds respectively corresponding to two connection states, and determination using a threshold other than the threshold corresponding to the connection states Invalidate the process if necessary.
  • the switchable connection state is not limited to two. The present invention is also applicable to the case where the number of possible connection states of the motor is three or more. That is, if generalized, the present invention is applicable to the case where the motor can select any of a plurality of connection states.
  • the overcurrent protection circuit of the motor drive device is associated with any one of the three or more plurality of connection states in one-to-one correspondence.
  • a plurality of determination circuits equal in number to the states are provided, and each determination circuit uses a threshold value corresponding to the corresponding connection state to determine whether the current flowing in the stator winding of the motor is in an excessive state.
  • the overcurrent protection circuit invalidates a part of the determination processing in each of the combination circuit that combines and outputs the determination results in each of the plurality of determination circuits, and the determination corresponding to the connection state And an invalidation circuit that causes the result of determination by the circuit to be output from the combining circuit.
  • the overcurrent protection circuit detects the input current or the output current of the inverter as the inverter current, and stops the inverter when the detected inverter current becomes excessive.
  • the plurality of determination circuits of the overcurrent protection circuit are provided respectively corresponding to the plurality of connection states, and each determination circuit uses a threshold set according to the associated connection state as a reference value to use as a reference value. And the detected inverter current.
  • the invalidating circuit invalidates the comparison process in the determination circuits other than the determination circuit among the comparison processes in each of the plurality of determination circuits, as needed, and selects the connection state.
  • the output of the synthesis circuit is made to coincide with the output of the determination circuit associated with.
  • a plurality of combining circuits are provided.
  • the second determination circuit may be used as the invalidation circuit.
  • each of the plurality of determination circuits includes a voltage divider circuit that divides the control voltage supplied from the control power supply, and a threshold generation circuit that outputs a voltage appearing at a voltage division node of the voltage divider circuit as a threshold, and threshold generation And a comparator that determines whether the detected inverter current is larger than a reference value using a threshold value output from the circuit as a reference value, and each voltage dividing circuit controls a plurality of resistors connected in series.
  • the configuration is between the power supply and the ground. Then, the disabling circuit shorts one of the plurality of resistors connected in series for the voltage dividing circuit of each of the determination circuits corresponding to the second determination circuit, and each of the determination circuits is the first determination circuit.
  • the resistor short-circuited by the disabling circuit is, for example, a resistor connected between the voltage dividing node and the control power supply.
  • each of the plurality of determination circuits includes a voltage divider circuit that divides the control voltage supplied from the control power supply, and a threshold generation circuit that outputs a voltage appearing at a voltage division node of the voltage divider circuit as a threshold, and threshold generation And a comparator that determines whether the detected inverter current is larger than a reference value using a threshold value output from the circuit as a reference value, and each voltage dividing circuit controls a plurality of resistors connected in series.
  • the configuration is between the power supply and the ground. Then, the disabling circuit shorts one of the plurality of resistors connected in series for the voltage dividing circuit of each of the determination circuits corresponding to the second determination circuit, and each of the determination circuits is the first determination circuit.
  • the resistor short-circuited by the disabling circuit is, for example, a resistor connected between the voltage dividing node and the ground.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

電動機駆動装置は、固定子巻線の結線状態を切り替える結線切替部と、インバータと、結線切替部およびインバータを制御する制御装置と、電動機に予め定められた値を超える電流が流れ続けるのを防止する過電流保護回路(60)と、を備え、過電流保護回路は、固定子巻線がとり得る結線状態のいずれか1つと1対1で対応付けられ、インバータに流れる電流が異常な値か否かを判定する複数の判定回路である第1の判定回路(62)および第2の判定回路(63)と、判定回路の各々における判定結果を合成する合成回路(66)と、複数の判定回路の一部による判定処理を無効化し、選択されている固定子巻線の結線状態と対応付けられている判定回路による判定結果が合成回路から出力されるようにする無効化回路(65)と、を備え、制御装置は、合成回路から出力される判定結果がインバータに流れる電流が異常な値であることを示す場合、インバータを停止させる。

Description

電動機駆動装置
 本発明は、固定子巻線の結線状態を切り替え可能に構成された電動機を駆動する電動機駆動装置に関する。
 空気調和機は、圧縮機用の電動機の回転数を制御することによって冷房および暖房能力を調整している。空気調和機は、省エネ性能の向上が求められ、家庭用の空気調和機の場合、一般的に、冷房中間、暖房中間、冷房定格、暖房定格および暖房低温の5つの条件のそれぞれについて、省エネ性能が算出される。冷房中間および暖房中間は、電動機が低速回転を行う低負荷領域であり、冷房定格、暖房定格および暖房低温は、電動機が高速回転を行う高負荷領域である。電動機は、幅広い回転数領域で高効率化できることが望ましい。
 空気調和機の圧縮機用の電動機として、固定子巻線の結線状態を切り替え可能に構成された電動機が存在する。固定子巻線の結線状態を切り替え可能な電動機を駆動する電動機駆動装置は、電動機の負荷状態の変化に合わせて固定子巻線の結線状態を適切な状態に切り替えることにより、電力消費を少なくして高効率な運転を実現できる(例えば、特許文献1参照)。
 固定子巻線の結線状態を切り替え可能な構成の電動機としては、スター結線とデルタ結線との切り替えが可能に構成されたもの、並列結線と直列結線との切り替えが可能に構成されたもの、などがある。
 例えば、空気調和機の圧縮機用の電動機は、年間消費電力に対する寄与度が高い低負荷条件の場合、具体的には、冷房中間および暖房中間の場合はスター結線の状態で駆動し、高負荷条件の場合、具体的には、冷房定格、暖房定格および暖房低温の場合はデルタ結線の状態で駆動することが望ましい。このようにすることで、低負荷条件における効率を向上でき、高負荷条件での高出力化も可能な空気調和機を実現できる。
 ここで、永久磁石を用いた電動機は、固定子巻線に流れる電流である巻線電流が予め定められた許容値を超えると磁石が減磁する。そのため永久磁石を用いた電動機を駆動する電動機駆動装置は、巻線電流が許容値以下となるように抑えて磁石が減磁するのを防止する保護機能を有する。永久磁石を用いた電動機を駆動する電動機駆動装置では、インバータに流れる電流を検出し、検出した電流が閾値以下であればインバータの動作を継続させ、検出した電流が閾値を超えていればインバータを停止させる制御が多く用いられている。
 インバータに流れる電流を検出して閾値と比較する場合、検出した電流と巻線電流との比が結線状態に応じて異なるため、結線状態に応じて異なる閾値を用いる必要がある。例えば、スター結線においては、インバータから出力される電流と巻線電流とは大きさが同じであるが、デルタ結線においては、インバータから出力される電流は巻線電流の√3倍になる。従って、減磁の防止を目的としてインバータに流れる電流が閾値を超えないようにインバータを制御する場合、デルタ結線の場合に使用する閾値に対して、スター結線の場合に使用する閾値を1/√3倍にする必要がある(特許文献1参照)。
 特許文献1には、固定子巻線がデルタ結線の場合に対応した構成の比較回路と、固定子巻線がスター結線の場合に対応した構成の比較回路とを有し、固定子巻線の状態に対応する比較回路における比較結果を使用してCPU(Central Processing Unit)が異常検出を行う電動機駆動装置が記載されている(特許文献1の段落0042,図14(b)参照)。また、特許文献1には、固定子巻線がスター結線の場合に巻線電流との比較に用いる基準値と、固定子巻線がデルタ結線の場合に巻線電流との比較に用いる基準値とを生成する回路を有し、固定子巻線の状態に対応する基準値と巻線電流との比較結果を使用してCPUが異常検出を行う電動機駆動装置も記載されている(特許文献1の段落0048,0070,図14(c),図14(d)参照)。
特開2008-228513号公報
 特許文献1の図14(b)に記載の構成を適用する場合、2つの比較回路の各々における比較結果をCPUに入力させ、CPUは、入力された2つの比較結果のうち、結線状態に対応する比較結果を使用して制御を行う。そのため、CPUの入力ポートが2つ必要になるという問題がある。一方、特許文献1の図14(c)および図14(d)に記載の回路は、直列に接続された2つの抵抗の一方の抵抗をトランジスタにより短絡することで、2つの結線状態の各々に対応する2段階の基準値を生成し、生成した基準値と巻線電流との比較結果をCPUに入力する構成のため、CPUの入力ポートは1つで済む。しかしながら、デジタルトランジスタは内部抵抗のバラツキが大きく、バラツキを考慮した定数設定が必要となる。すなわち、磁石の減磁が実際に発生する巻線電流と基準値との差を大きくする必要がある。そのため、保護レベルの精度、具体的には、固定子巻線に過大な電流が流れている状態か否かの判定精度が低下する。その結果、実際には固定子巻線に過大な電流が流れていない状態のときに電動機の動作に制限をかけてしまい、電動機を能力の限界まで運転させることができないという問題がある。
 本発明は、上記に鑑みてなされたものであって、使用するCPUが必要とする入力ポートの数が増加するのを防止しつつ電動機の保護機能の高性能化を実現可能な電動機駆動装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、固定子巻線の結線状態を切り替え可能な電動機を駆動する電動機駆動装置であって、固定子巻線の結線状態を切り替える結線切替部と、電動機に供給する電力を生成するインバータと、結線切替部およびインバータを制御する制御装置と、電動機に予め定められた値を超える電流が流れ続けるのを防止する過電流保護回路と、を備える。過電流保護回路は、固定子巻線がとり得る複数の結線状態のいずれか1つと1対1で対応付けられ、インバータに流れる電流が異常な値か否かを判定する複数の判定回路を備える。また、過電流保護回路は、複数の判定回路の各々における判定結果を合成する合成回路と、複数の判定回路の一部の判定回路による判定処理を無効化し、選択されている固定子巻線の結線状態と対応付けられている判定回路による判定結果が合成回路から出力されるようにする無効化回路と、を備える。制御装置は、合成回路から出力される判定結果がインバータに流れる電流が異常な値であることを示す場合、インバータを停止させる。
 本発明にかかる電動機駆動装置は、使用するCPUが必要とする入力ポートの数が増加するのを防止しつつ電動機の保護機能を高性能化することができるという効果を奏する。
実施の形態1にかかる電動機駆動装置の一例を示す概略配線図 実施の形態1にかかる電動機駆動装置の結線切替部と電動機の各巻線との接続関係の一例を示す配線図 実施の形態1にかかる制御装置の概略構成の一例を示すブロック図 実施の形態1にかかる過電流保護回路の概略構成の一例を示すブロック図 実施の形態1にかかる過電流保護回路の一例を示す配線図 実施の形態1にかかる過電流保護回路の動作の一例を示すタイムチャート 実施の形態2にかかる過電流保護回路の一例を示す配線図 実施の形態3にかかる過電流保護回路の一例を示す配線図 実施の形態4にかかる過電流保護回路の第2の判定回路が備える閾値生成回路の一例を示す図 実施の形態4にかかる過電流保護回路の動作の一例を示すタイムチャート 実施の形態5にかかる過電流保護回路の概略構成の一例を示すブロック図 実施の形態5にかかる過電流保護回路の一例を示す配線図 実施の形態5にかかる過電流保護回路の動作の一例を示すタイムチャート 実施の形態6にかかる過電流保護回路の第1の判定回路が備える閾値生成回路の一例を示す図 実施の形態6にかかる過電流保護回路の動作の一例を示すタイムチャート 実施の形態7にかかる電動機駆動装置が備える結線切替部と電動機の各巻線との接続関係の一例を示す配線図 実施の形態8にかかる電動機駆動装置が備える結線切替部と電動機の各巻線との接続関係の一例を示す配線図
 以下に、本発明の実施の形態にかかる電動機駆動装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる電動機駆動装置の一例を示す概略配線図である。なお、図1では、電動機駆動装置により駆動される電動機についても併せて記載している。図1に示した実施の形態1にかかる電動機駆動装置2は、電動機4を駆動するための電力を生成する。
 図1に示したように、電動機駆動装置2は、コンバータ20と、インバータ30と、インバータ駆動回路32と、結線切替部40と、制御装置50と、過電流保護回路60とを備える。また、インバータ30およびインバータ駆動回路32は、インテリジェントパワーモジュール(IPM:Intelligent Power Module)12に実装されている。コンバータ20の入力側には交流電源6が接続され、インバータ30の出力側には電動機4が接続される。電動機4は、回転子が永久磁石で構成された永久磁石同期電動機であり、インバータ30から3相交流電力の供給を受けて駆動する。
 コンバータ20は、交流電源6からリアクトル7を介して交流電力を受け、交流電力に対して整流、平滑化等を行なって直流電力を出力する。コンバータ20は、インバータ30に直流電力を供給する直流電源として作用する。
 インバータ30は、入力端子がコンバータ20の出力端子に接続される。また、インバータ30のU相の出力端子は、U相の出力線30uを介して、電動機4の巻線4uの一端に接続される。インバータ30のV相の出力端子は、V相の出力線30vを介して、電動機4の巻線4vの一端に接続される。インバータ30のW相の出力端子は、W相の出力線30wを介して、電動機4の巻線4wの一端に接続される。
 インバータ30は、6つのアームの各々に設けられたスイッチング素子を備え、各スイッチング素子をオン、オフ動作させることにより3相交流電力を生成して電動機4に供給する。具体的には、インバータ30は、インバータ駆動回路32から入力される、各アームに対応する駆動信号Sr#1~Sr#6の状態に従い、6つのアームのスイッチング素子をオン状態またはオフ状態にして、電動機4を駆動させるための3相交流電力を生成する。駆動信号Sr#1~Sr#6については後述する。
 コンバータ20とインバータ30との間には、インバータ30に流れる電流に基づいて、電動機4の固定子巻線に過大な電流が流れている場合にこれを検知し、電動機4の固定子巻線に過大な電流が流れている状態を解消させる過電流保護回路60が設けられている。すなわち、過電流保護回路60は、電動機4を保護するために、電動機4の固定子巻線に予め定められた値を超える過大な電流が流れ続けて回転子を構成する永久磁石が減磁してしまうのを防止する。
 インバータ駆動回路32は、後述する制御装置50から入力される制御信号、具体的には、インバータ30の各アームのスイッチング素子の状態を指示する制御信号Sm#1~Sm#6に基づいて、インバータ30に入力させる上記の駆動信号Sr#1~Sr#6を生成する。制御信号Sm#1~Sm#6は、インバータ30の各アームのスイッチング素子をオンオフ制御するオンオフ制御信号である。インバータ駆動回路32が生成する制御信号Sr#1~Sr#6は、例えば、PWM(Pulse Width Modulation)信号である。
 電動機4は、固定子巻線の結線状態が複数の結線状態のいずれかで運転可能に構成され、結線状態は電動機駆動装置2により切り替えられる。図1に示した電動機4は、固定子巻線がデルタ結線またはスター結線の状態で運転される。以下では、複数の結線状態がスター結線状態およびデルタ結線状態である場合の例について説明する。
 電動機4がスター結線状態およびデルタ結線状態のいずれかで運転可能である場合、電動機駆動装置2の結線切替部40は、スター結線およびデルタ結線のいずれかへの切り替えが可能な構成が用いられる。すなわち、結線切替部40は、電動機4の固定子巻線の状態をスター結線とデルタ結線との間で切り替える。結線切替部40の構成および電動機4の各巻線と結線切替部40との接続関係について、図2を参照しながら詳しく説明する。図2は、実施の形態1にかかる電動機駆動装置2の結線切替部40と電動機4の各巻線との接続関係の一例を示す配線図である。
 図2に示したように、電動機4は、3つの相、すなわちU相、V相およびW相の各々の巻線4u、4vおよび4wを備える。巻線4u、4vおよび4wの第1の端部4ua、4vaおよび4waは、外部端子4uc、4vcおよび4wcにそれぞれ接続され、また、巻線4u、4vおよび4wの第2の端部4ub、4vbおよび4wbは、外部端子41ud、41vdおよび41wdにそれぞれ接続され、電動機4の外部との接続が可能となっている。外部端子4uc、4vcおよび4wcには、それぞれ、インバータ30の出力線30u、30vおよび30wが接続されている。
 結線切替部40は、3個の切替スイッチ41u、41vおよび41wで構成されている。3個の切替スイッチ41u、41vおよび41wは、それぞれ3つの相に対応して設けられたものである。
 切替スイッチ41u、41vおよび41wとしては、電磁的に駆動される機械スイッチが用いられている。このようなスイッチは、リレー、コンタクターなどと呼ばれるものであり、図示しない励磁コイルに電流が流されているときと、電流が流されていないときとで、異なる状態を取る。
 切替スイッチ41uは、常開接点41ua、常閉接点41ubおよび共通接点41ucを備える。切替スイッチ41uの共通接点41ucは、リード線44uを介して外部端子41udに接続され、常閉接点41ubは、中性点ノード42に接続される。また、常開接点41uaは、インバータ30のV相の出力線30vに接続される。
 切替スイッチ41vは、常開接点41va、常閉接点41vbおよび共通接点41vcを備える。切替スイッチ41vの共通接点41vcは、リード線44vを介して外部端子41vdに接続され、常閉接点41vbは、中性点ノード42に接続される。また、常開接点41vaは、インバータ30のW相の出力線30wに接続される。
 切替スイッチ41wは、常開接点41wa、常閉接点41wbおよび共通接点41wcを備える。切替スイッチ41wの共通接点41wcは、リード線44wを介して外部端子41wdに接続され、常閉接点41wbは、中性点ノード42に接続される。また、常開接点41waは、インバータ30のU相の出力線30uに接続される。
 切替スイッチ41u、41vおよび41wは、通常、図2に示した状態となっている。通常の状態とは、上述した励磁コイル(図示せず)に電流が流されていない状態である。よって、通常は、切替スイッチ41u、41vおよび41wが、常閉接点側に切り替わった状態、すなわち、共通接点41uc、41vcおよび41wcが、それぞれ、常閉接点41ub、41vbおよび41wbに接続された状態になる。この場合、電動機4の固定子巻線の状態はスター結線となる。切替スイッチ41u、41vおよび41wの各々が有する励磁コイルに電流が流されると、切替スイッチ41u、41vおよび41wは、図2に示した状態とは逆の状態、すなわち、共通接点41uc、41vcおよび41wcが、それぞれ、常開接点41ua、41vaおよび41waに接続された状態になる。この場合、電動機4の固定子巻線の状態はデルタ結線となる。
 結線切替部40の切替スイッチ41u、41vおよび41wの状態は、制御装置50により制御される。切替スイッチ41u、41vおよび41wは、制御装置50で生成される結線選択信号Swがスター結線を示す状態の場合、共通接点(41uc,41vc,41wc)が常閉接点(41ub,41vb,41wb)に接続された状態となる。また、切替スイッチ41u、41vおよび41wは、制御装置50で生成される結線選択信号Swがデルタ結線を示す状態の場合、共通接点(41uc,41vc,41wc)が常開接点(41ua,41va,41wa)に接続された状態となる。
 制御装置50は、結線切替部40を制御して電動機4の固定子巻線の結線状態を切り替える制御を行うとともに、インバータ30をオンオフ制御して電動機4に交流電力を供給させる。制御装置50は、制御信号Sm#1~Sm#6を生成してインバータ駆動回路32に供給し、制御信号Sm#1~Sm#6に対応する駆動信号Sr#1~Sr#6をインバータ駆動回路32に生成させることにより、インバータ30の各スイッチング素子を制御する。
 以下では、制御装置50がインバータ30をPWM制御する場合の例について説明する。インバータ30をPWM制御する場合、制御装置50は、制御信号Sm#1~Sm#6としてPWM信号をインバータ駆動回路32に供給する。この場合、インバータ30で周波数および電圧が可変の3相交流電力を発生させることができる。制御装置50がインバータ30に対して行うオンオフ制御の他の例としては、矩形波駆動制御がある。矩形波駆動制御を行う場合、制御装置50は、例えば、各相の巻線に120度ずつ通電させるための制御信号を生成してインバータ駆動回路32に供給する。この場合、インバータ30で周波数可変の3相交流電力を発生させることができる。
 制御装置50は、図1および図3に示すように、マイコン(マイクロコントローラ)52を備えている。マイコン52は、CPUおよびメモリを含んで構成される。図3は、制御装置50の構成例を示す図である。図3に示したように、制御装置50は、マイコン52により実現される結線切替制御部521、PWM信号生成部524、強制遮断部525および切替判定部526を備える。強制遮断部525以外の結線切替制御部521、PWM信号生成部524および切替判定部526は、これらの各機能部として動作するためのプログラムをマイコン52内のCPUが実行することにより実現される。
 結線切替制御部521は、結線選択信号Swを生成する。この結線選択信号Swは、電動機4の固定子巻線をスター結線にすべきかデルタ結線にすべきかを指定する制御信号である。結線切替制御部521は、電動機4の運転周波数が予め決められた周波数以下の場合はスター結線となり、電動機4の運転周波数が予め決められた周波数よりも高い場合はデルタ結線となるよう、電動機4の固定子巻線の結線状態を制御する。結線切替制御部521は、例えば、スター結線を指定するときはLowとなり、デルタ結線を指定するときはHighとなる結線選択信号Swを生成する。電動機4の運転周波数は、インバータ30から電動機4に流れる各相の電流の検出値、インバータ30から出力される各相の電圧、電動機駆動装置2の外部から入力される周波数指令、などを利用して求める。電動機4の運転周波数は結線切替制御部521が求めてもよいし、図示を省略している他の処理部が求めて結線切替制御部521に入力させる構成としてもよい。なお、図3では結線切替制御部521への入力信号の記載を省略している。
 結線選択信号Swは、結線切替部40に供給されて、切替スイッチ41u、41vおよび41wの状態の制御に用いられる。スター結線を指定する場合はレベルがLowとなり、デルタ結線を指定する場合はレベルがHighとなる結線選択信号Swを結線切替制御部521が生成する構成の場合、切替スイッチ41u、41vおよび41wは、結線選択信号SwがLowレベルであれば、図2に示した状態、すなわち、共通接点と常閉接点とが接続された状態となる。また、切替スイッチ41u、41vおよび41wは、結線選択信号SwがHighレベルであれば、図2に示した状態とは逆の状態、すなわち、共通接点と常開接点とが接続された状態となる。
 結線切替制御部521は、さらに、反転結線選択信号Ssを過電流保護回路60に供給する。反転結線選択信号Ssは、結線選択信号Swとは逆の論理値を取る。すなわち、反転結線選択信号Ssは、結線選択信号SwがLowであるときには、Highとなり、結線選択信号SwがHighであるときには、Lowとなる。
 PWM信号生成部524は、インバータ30をPWM制御するための制御信号Sm#1~Sm#6を出力する。以下、制御信号Sm#1~Sm#6をPWM信号Sm#1~Sm#6と称する。PWM信号Sm#1~Sm#6は、それぞれ、インバータ30の6つのアームのスイッチング素子のオンオフ制御に用いられる。PWM信号Sm#1~Sm#6は、それぞれ対応するスイッチング素子をオン状態に維持したい期間にHighの状態を維持し、それぞれ対応するスイッチング素子をオフ状態に維持したい期間にLowの状態を維持する。PWM信号生成部524が生成したPWM信号Sm#1~Sm#6は、強制遮断部525を経由してインバータ駆動回路32に供給される。
 上述したように、インバータ駆動回路32は、PWM信号Sm#1~Sm#6に基づいて、インバータ30の6つのアームのスイッチング素子をオンまたはオフさせるための駆動信号Sr#1~Sr#6を生成して出力する。ただし、インバータ駆動回路32は、IPM12の過電流遮断ポートCinに接続されており、過電流遮断ポートCinに入力される信号のレベルがHighになると、PWM信号Sm#1~Sm#6の状態によらず、インバータ30のすべてのアームのスイッチング素子をオフさせる信号を生成して駆動信号Sr#1~Sr#6として出力する。
 駆動信号Sr#1~Sr#6は、それぞれPWM信号Sm#1~Sm#6に対応して生成されるものであり、対応するPWM信号がHighの期間中は対応するスイッチング素子がオン状態を維持し、対応するPWM信号がLowの期間中は対応するスイッチング素子がオフ状態を維持するよう、対応するスイッチング素子の状態を制御する。PWM信号Sm#1~Sm#6は、論理回路の信号レベルの大きさ、具体的には0~5Vの範囲に収まる大きさである。これに対して、駆動信号Sr#1~Sr#6は、スイッチング素子を制御するのに必要な電圧レベル、例えばHighのときに15Vとなる大きさである。
 強制遮断部525は、電動機4に流れる電流の値が正常な状態ではPWM信号生成部524から入力されたPWM信号Sm#1~Sm#6をそのままインバータ駆動回路32へ出力する。一方、電動機4に流れる電流の値が異常な状態、具体的には、電流の値が決められた基準値を超えた状態の場合、強制遮断部525は、PWM信号生成部524から入力されたPWM信号Sm#1~Sm#6をインバータ駆動回路32へ出力しない。
 強制遮断部525は、マイコン52の動作遮断ポートであるポートPOEに接続されている。ポートPOEに入力される信号は、電動機4に流れる電流の値が正常な状態ではLowレベルとなり、電動機4に流れる電流の値が異常な状態ではHighレベルになる過電流検出信号Seである。ポートPOEに入力される過電流検出信号Seの詳細については別途説明する。強制遮断部525は、ポートPOEへの入力信号がHighレベルになると、PWM信号生成部524から入力されたPWM信号Sm#1~Sm#6のインバータ駆動回路32への出力を停止する。インバータ駆動回路32は、PWM信号Sm#1~Sm#6が供給されなくなると、インバータ30のすべてのアームのスイッチング素子をオフさせる信号を生成して駆動信号Sr#1~Sr#6として出力する。この結果、インバータ30のすべてのアームのスイッチング素子がオフとなる。すべてのアームのスイッチング素子がオフとなる結果、インバータ30は停止状態となり、交流電力の出力を停止する。
 強制遮断部525は、マイコン52で実行されている制御プログラムから独立して動作するハードウェアで構成されている。PWM信号生成部524で生成されたPWM信号Sm#1~Sm#6の出力を動作遮断ポート(ポートPOE)に入力される信号の状態に応じて停止させる処理は、ハードウェアで構成された強制遮断部525で行われ、マイコン52のソフトウェアによる処理を介さないため、高速に行われる。例えば、強制遮断部525は、ポートPOEへの入力信号がLowレベルの場合は閉じた状態を維持し、ポートPOEへの入力信号がHighレベルになると開いた状態となるスイッチをPWM信号Sm#1~Sm#6を伝送する各信号線に挿入することにより実現される。
 切替判定部526は、後述する過電流保護回路60で生成される2つの基準値Vref1およびVref2のうちの基準値Vref2と結線選択信号Swとに基づいて、電動機4の固定子巻線に過電流が流れている状態を検知する処理で使用する基準値が固定子巻線の結線状態に対応した値に正常に切り替わっているか否かを判定する。すなわち、切替判定部526は、電動機4の固定子巻線に過電流が流れている状態か否かの判定を行う過電流保護回路60において、固定子巻線の結線状態に対応した正しい基準値を使用して正しい保護動作が行われているか否かを判定する。
 切替判定部526は、基準値Vref2が、結線選択信号Swによって示される固定子巻線の結線状態に対応していない値の場合、PWM信号生成部524に対してPWM信号の出力停止を指示し、PWM信号生成部524からのPWM信号Sm#1~Sm#6の出力を停止させる。インバータ駆動回路32は、PWM信号Sm#1~Sm#6が供給されなくなると、インバータ30のすべてのアームのスイッチング素子をオフさせる。スイッチング素子がオフとなる結果、インバータ30は停止状態となり、交流電力の出力を停止する。PWM信号生成部524は、切替判定部526からPWM信号の出力停止の指示を受けた場合、PWM信号Sm#1~Sm#6の全てをLowレベルとし、インバータ30のすべてのアームのスイッチング素子をオフさせるようにしてもよい。
 以上のようにインバータ30を停止させるための処理を制御装置50が二重に行うのは、異常が発生した場合にインバータ30の動作をより高速に、かつより確実に行うためである。
 つづいて、過電流保護回路60について、図4および図5を参照しながら説明する。図4は、実施の形態1にかかる過電流保護回路60の概略構成の一例を示すブロック図、図5は、実施の形態1にかかる過電流保護回路60の一例を示す配線図である。
 図4に示したように、過電流保護回路60は、電流検出回路61、第1の判定回路62、第2の判定回路63、無効化回路65および合成回路66を備える。第1の判定回路62は、閾値生成回路621および比較器622を備え、第2の判定回路63は、閾値生成回路631および比較器632を備える。比較器622および632は、例えば演算増幅器で構成される。
(電流検出回路61)
 電流検出回路61は、図1に示したコンバータ20とインバータ30とを結ぶ直流母線に流れる電流を検出し、検出結果を示す電流値信号Scを第1の判定回路62の比較器622および第2の判定回路63の比較器632へ出力する。
 電流検出回路61は、図5に示した抵抗R611および平滑回路612で構成される。
 抵抗R611は、コンバータ20の出力端子とインバータ30の入力端子とを結ぶ母線に挿入され、第1の端部がグランドに接続されている。
 図5に示したように、平滑回路612は、抵抗R613およびR614とコンデンサC615とを備える。抵抗R613の第1の端部は抵抗R611の第2の端部に接続されている。抵抗R614の第1の端部は制御電圧Vdを出力する制御電源に接続され、抵抗R614の第2の端部は抵抗R613の第2に端部に接続されている。コンデンサC615の第1の端子は抵抗R613の第2の端部に接続され、コンデンサC615の第2の端子は、グランドに接続されている。
 電流検出回路61では、抵抗R611の両端間の電圧を平滑化した電圧がコンデンサC615の両端子間に現れ、コンデンサC615の両端子間の電圧が、電流検出値を示す信号である電流値信号Scとして第1の判定回路62の比較器622および第2の判定回路63の比較器632に供給される。
(第1の判定回路62)
 第1の判定回路62は、図1に示した電動機4の固定子巻線がデルタ結線の場合に固定子巻線に過大な電流が流れているか否かを判定し、判定結果を合成回路66へ出力する。
 第1の判定回路62の閾値生成回路621は、図5に示した抵抗R623およびR624と平滑用のコンデンサC625とで構成される。抵抗R623およびR624は直列に接続されて分圧回路を形成する。
 抵抗R623の第1の端部は制御電圧Vdを出力する制御電源に接続され、抵抗R624の第1の端部は抵抗R623の第2の端部に接続され、抵抗R624の第2の端部はグランドに接続されている。コンデンサC625は抵抗R624に並列に接続されている。
 閾値生成回路621において、制御電源から出力された制御電圧Vdは、抵抗R623およびR624からなる分圧回路で分圧され、分圧回路の分圧比に応じた電圧VtΔが抵抗R623と抵抗R624の接続点、すなわち分圧回路の分圧ノードに現れる。電圧VtΔはデルタ結線用の閾値である。電圧VtΔは、第1の基準値である基準値Vref1として比較器622の非反転入力端子である+端子に入力される。デルタ結線用の閾値を第1の閾値とする。抵抗R623と抵抗R624の接続点に現れる電圧VtΔは以下の式(1)で表される。
   VtΔ=Vd×R624/(R623+R624)  …(1)
 なお、式(1)において、「R○○○」は抵抗値を表す。例えば、式(1)の「R624」は抵抗R624の抵抗値を表す。後述する式(2)以降の各数式においても同様とする。
 比較器622の反転入力端子である-端子には、電流検出回路61から電流値信号Scが入力される。比較器622は、電流値信号Scを基準値Vref1と比較し、電流値信号Scが基準値Vref1よりも大きければ合成回路66へ出力する信号をLowレベルとし、電流値信号Scが基準値Vref1以下であれば合成回路66へ出力する信号をHighレベルとする。比較器622が合成回路66へ出力する信号は、第1の判定回路62による判定結果を示す信号である。
(第2の判定回路63)
 第2の判定回路63は、図1に示した電動機4の固定子巻線がスター結線の場合に固定子巻線に過大な電流が流れているか否かを判定し、判定結果を合成回路66へ出力する。
 第2の判定回路63の閾値生成回路631は、図5に示した抵抗R633およびR634と平滑用のコンデンサC635とで構成される。抵抗R633およびR634は直列に接続されて分圧回路を形成する。
 抵抗R633の第1の端部は制御電圧Vdを出力する制御電源に接続され、抵抗R634の第1の端部は抵抗R633の第2の端部に接続され、抵抗R634の第2の端部はグランドに接続されている。コンデンサC635は抵抗R634に並列に接続されている。
 閾値生成回路631において、制御電源から出力された制御電圧Vdは、抵抗R633およびR634からなる分圧回路で分圧され、分圧回路の分圧比に応じた電圧VtYが抵抗R633と抵抗R634の接続点、すなわち分圧回路の分圧ノードに現れる。電圧VtYはスター結線用の閾値である。電圧VtYは、第2の基準値である基準値Vref2として比較器632の非反転入力端子である+端子に入力される。スター結線用の閾値を第2の閾値とする。抵抗R633と抵抗R634の接続点に現れる電圧VtYは以下の式(2)で表される。
   VtY=Vd×R634/(R633+R634)   …(2)
 比較器632の反転入力端子である-端子には、電流検出回路61から電流値信号Scが入力される。比較器632は、電流値信号Scを基準値Vref2と比較し、電流値信号Scが基準値Vref2よりも大きければ合成回路66へ出力する信号をLowレベルとし、電流値信号Scが基準値Vref2以下であれば合成回路66へ出力する信号をHighレベルとする。比較器632が合成回路66へ出力する信号は、第2の判定回路63による判定結果を示す信号である。
 ここで、上述したVtΔとVtYとの関係について説明する。VtΔとVtYとは以下の式(3)の関係を満たすこととする。
   VtΔ=√3×VtY  …(3)
 すなわち、抵抗R623、R624、R633およびR634の各々の抵抗値は、式(3)を満たすように定められている。
 なお、VtΔがVtYの√3倍よりも小さい値になるように構成してもよい。但し、VtΔはVtYよりは大きい値とする。すなわち、「VtY<VtΔ<√3×VtY」を満たすように抵抗R623、R624、R633およびR634の抵抗値を設定してもよい。これは、例えば、デルタ結線では、巻線電流は各相の固定子巻線を流れる循環電流となるが、巻線電流はインバータ30に流れる電流であるインバータ電流、すなわち電流検出回路61が検出する電流には寄与しないためである。
(無効化回路65)
 無効化回路65は、上述した反転結線選択信号SsがHighレベルの場合に第2の判定回路63における判定結果を無効化する。無効化回路65は、図5に示したnpn型のデジタルトランジスタQ651で構成される。デジタルトランジスタQ651は、エミッタおよびコレクタが、第2の判定回路63の閾値生成回路631を構成する抵抗R633の両端、すなわち、抵抗R633の第1の端部および第2の端部にそれぞれ接続されている。
 デジタルトランジスタQ651のベースには、制御装置50から出力される反転結線選択信号Ssが入力される。デジタルトランジスタQ651は、反転結線選択信号SsがHighレベルの場合、すなわち電動機4の固定子巻線がスター結線の場合、オフ状態となる。また、デジタルトランジスタQ651は、反転結線選択信号SsがLowレベルの場合、すなわち電動機4の固定子巻線がデルタ結線の場合、オン状態となる。
 デジタルトランジスタQ651がオフ状態の場合、第2の判定回路63の閾値生成回路631は、上記の式(2)で表される閾値VtYを生成し、基準値Vref2として比較器632の+端子に入力させる。
 一方、デジタルトランジスタQ651がオン状態の場合、閾値生成回路631は、抵抗R633がデジタルトランジスタQ651により短絡されるため、制御電圧Vdに近い電位、具体的には、制御電圧VdよりもデジタルトランジスタQ651のオン時のエミッタ-コレクタ間の電圧降下量に相当する分だけ低い電圧を生成する。デジタルトランジスタQ651がオン状態の時のエミッタ-コレクタ間の電圧降下量をVonとし、このとき閾値生成回路631が生成する電圧をVpとすると、Vp=Vd-Vonとなる。すなわち、閾値生成回路631は、デジタルトランジスタQ651がオン状態になると、上記の式(2)で表される閾値VtYの代わりにVp=Vd-Vonを生成し、このVpを基準値Vref2として比較器632の+端子に入力させる。この場合、比較器632は、+端子から入力されたVp=Vd-Vonと-端子から入力された電流値信号Scとを比較し、比較結果を合成回路66へ出力する。
 以上のように、デジタルトランジスタQ651がオフ状態のときは、閾値VtYが基準値Vref2として用いられ、デジタルトランジスタQ651がオン状態のときは、Vp=Vd-Vonが基準値Vref2として用いられる。
 閾値生成回路631が出力する基準値Vref2は、図3に示した制御装置50の切替判定部526にも入力され、切替判定部526での判定処理で使用される。切替判定部526が行う判定処理は、上述したように、電動機4の固定子巻線に過電流が流れている状態か否かの判定を行う過電流保護回路60において、固定子巻線の結線状態に対応した正しい基準値が使用されているか否かを判定する処理である。
(合成回路66)
 合成回路66は、第1の判定回路62における判定結果と第2の判定回路63における判定結果とを合成して過電流検出信号Seを生成する。
 合成回路66は、図5に示したワイヤードOR回路661および反転回路662で構成される。
 ワイヤードOR回路661は抵抗R663で構成される。抵抗R633の第1の端部は制御電圧Vdを出力する制御電源に接続され、第2の端部は比較器622の出力端子および比較器632の出力端子に接続されている。
 ワイヤードOR回路661は、比較器622からの出力信号および比較器632からの出力信号の少なくとも一方がLowレベルの場合、反転回路662への入力をLowレベルにする。また、ワイヤードOR回路661は、比較器622からの出力信号および比較器632からの出力信号の双方がHighレベルの場合、反転回路662への入力をHighレベルにする。なお、ワイヤードOR回路661の出力部は、抵抗R633の第2の端部である。
 反転回路662は、デジタルトランジスタQ664および抵抗R665で構成される。デジタルトランジスタQ664のエミッタ端子は制御電圧Vdを出力する制御電源に接続され、デジタルトランジスタQ664のベース端子はワイヤードOR回路661の出力部である抵抗R663の第2の端部に接続されている。デジタルトランジスタQ664のコレクタ端子は抵抗R665の第1の端部に接続されている。抵抗R665の第2の端部はグランドに接続されている。
 デジタルトランジスタQ664のコレクタ端子には、ワイヤードOR回路661からベース端子に入力された信号の論理状態を反転した信号が現れ、この信号が過電流検出信号Seである。
 過電流保護回路60の出力である過電流検出信号Seは、図1および図3に示したように、IPM12の過電流遮断ポートCinおよびマイコン52の動作遮断ポート(ポートPOE)に入力される。
 インバータ駆動回路32は、IPM12の過電流遮断ポートCinに入力される過電流検出信号SeがHighレベルになると、インバータ30へ出力する駆動信号Sr#1~Sr#6を全てLow状態にして、インバータ30のすべてのアームのスイッチング素子をオフさせる。
 また、制御装置50の強制遮断部525は、マイコン52の動作遮断ポート(ポートPOE)に入力される過電流検出信号SeがHighレベルになると、PWM信号生成部524で生成されたPWM信号Sm#1~Sm#6のインバータ駆動回路32への出力を停止する。この結果、インバータ駆動回路32にはPWM信号が供給されなくなり、インバータ駆動回路32は、インバータ30のすべてのアームのスイッチング素子をオフさせる。
 このように、本実施の形態にかかる電動機駆動装置2においては、過電流保護回路60から出力される過電流検出信号SeがHighレベルになると、インバータ30を停止させる処理が二重に行われる。
 以下、過電流保護回路60の第1の判定回路62、第2の判定回路63および合成回路66の動作について、図6を参照しながら説明する。
 無効化回路65であるデジタルトランジスタQ651のベースに供給される反転結線選択信号Ssは、上述したように制御装置50の結線切替制御部521から出力される。この反転結線選択信号Ssは、電動機4の固定子巻線がスター結線の場合、図6の(a)に示すようにHighレベルとなり、デルタ結線の場合には、図6の(b)に示すようにLowレベルとなる。そのため、デジタルトランジスタQ651は、電動機4の固定子巻線がスター結線の場合は図6の(a)に示すようにオフとなり、デルタ結線時の場合には図6の(b)に示すようにオンとなる。
 従って、第2の判定回路63を構成する比較器632の+端子には、電動機4の固定子巻線がスター結線の場合は上述したVtYが基準値Vref2として入力され(図6の(a)参照)、デルタ結線の場合には上述したVp(=Vd-Von)が基準値Vref2として入力される(図6の(b)参照)。
 一方、第1の判定回路62を構成する比較器622の+端子には、電動機4の固定子巻線の状態によらず、すなわち、電動機4の固定子巻線がスター結線およびデルタ結線のどちらであっても、上述したVtΔが基準値Vref1として入力される(図6の(a)および(b)参照)。
 電動機4の固定子巻線がスター結線の場合、上述したように、比較器632の+端子に入力される基準値Vref2はVtYとなる(図6の(a)参照)。また、VtY<VtΔの関係がある。そのため、インバータ30の入力電流が次第に大きくなり、これに伴い、電流値信号Scも次第に大きくなると、ある時点で、比較器632が、電流値信号Scが基準値Vref2よりも大きくなったと判定し、出力信号をHighレベルからLowレベルに変化させる。よって、この時点で、ワイヤードOR回路661の出力がLowレベルとなる。その結果、反転回路662の出力、すなわち、合成回路66の出力である過電流検出信号SeがHighレベルとなる。なお、比較器632が出力信号をHighレベルからLowレベルに変化させた時点では、電流値信号Scが基準値Vref1(=VtΔ)よりも小さいため、比較器622の出力信号はHighレベルを維持する。
 このように、電動機4の固定子巻線がスター結線の場合には、電流値信号Scがスター結線用に定められた閾値VtYを超えた時点で、過電流保護回路60は、過電流検出信号SeをLowレベルからHighレベルに変化させる。
 電動機4の固定子巻線がデルタ結線の場合、上述したように、比較器632の+端子に入力される基準値Vref2はVp(=Vd-Von)となる(図6の(b)参照)。電流値信号ScはVpを上回ることがないように構成されており、比較器632の出力信号はHighレベルを維持する。また、VtΔ<Vpの関係がある。そのため、インバータ30の入力電流が次第に大きくなり、これに伴い、電流値信号Scが次第に大きくなると、ある時点で、比較器622が、電流値信号Scが基準値Vref1よりも大きくなったと判定し、出力信号をHighレベルからLowレベルに変化させる。よって、この時点で、ワイヤードOR回路661の出力がLowレベルとなる。その結果、反転回路662の出力、すなわち、合成回路66の出力である過電流検出信号SeがHighレベルとなる。
 このように、電動機4の固定子巻線がデルタ結線の場合には、電流値信号Scがデルタ結線用に定められた閾値VtΔを超えた時点で、過電流保護回路60は、過電流検出信号SeをLowレベルからHighレベルに変化させる。
 以上のように、電動機4の固定子巻線がデルタ結線の場合には、第2の判定回路63におけるスター結線に対応する基準値Vref2である閾値VtYを用いた比較処理が無効化される。従って、電動機4の固定子巻線がスター結線およびデルタ結線のいずれの場合にも、それぞれの場合に適切な閾値と電流値信号Scとの比較結果に基づいて過電流検知を行い、電動機4を保護することができる。「それぞれの場合に適切な閾値」とは、「それぞれの結線状態に対応する閾値」である。
 なお、過電流検出信号SeがHighレベルになると、上記のようにインバータ30が停止し、その結果、電流値信号Scが低下するが、図6では、比較器622および632の動作を分かり易くするため、電流値信号Scが低下しないものとしている。後述の図10、図13および図15についても同様である。
 上述したように、第2の判定回路63における比較処理を無効化するための無効化回路65は、デジタルトランジスタによって構成することができる。デジタルトランジスタは安価であるので、コストを抑制することができる。さらに、判定回路62および63は、比較的安価な演算増幅器で構成された比較器、抵抗などによって構成することができるので、コストを抑制することができる。
 また、判定回路62および63における閾値VtΔおよびVtYの生成は、デジタルトランジスタの回路定数の影響を受けない。従って、閾値の生成および閾値を用いた比較を正確に行うことができる。このため、過電流保護を高精度に行うことができる。過電流保護を高精度に行うことができるため、減磁電流に対して過電流保護レベルを極力高く設定することが可能となり、高出力化が可能である。
 複数の判定回路が設けられている場合、それらの出力をマイコンおよびIPMに入力しようとすれば、マイコンおよびIPMにも複数の入力ポートが必要となる。しかし、一般的なマイコン、すなわち汎用品のマイコンは、上述した動作遮断ポート(ポートPOE)に相当する入力ポートを一つしか備えていない。また、汎用品のIPMは、上述した過電流遮断ポートCinに相当する入力ポートを一つしか備えていない。従って、複数の判定回路の出力をそのままマイコンおよびIPMに入力する構成であれば、汎用品のマイコンおよびIPMを用いることができないという問題がある。これに対して、本実施の形態にかかる電動機駆動装置2では、複数の判定回路での判定結果を合成してマイコン52およびIPM12に入力させるため、マイコンとして動作遮断ポート(ポートPOE)に相当する入力ポートを一つしか備えていないものを用いることができ、IPMとして過電流遮断ポートCinに相当する入力ポートを一つしか備えていないものを用いることができる。
 また、過電流保護回路60、特に、第1の判定回路62および第2の判定回路63がハードウェアにより構成されているため、保護のための動作を高速に行うことができる。
 さらに、制御装置50の強制遮断部525は、ハードウェアで構成されており、マイコン52の制御プログラムから独立して動作するため、動作を高速に行うことができる。また、マイコン52が暴走した場合にも、強制遮断部525は、PWM信号Sm#1~Sm#6のインバータ駆動回路32への供給を確実に停止させることができる。
 さらに、制御装置50の切替判定部526は、電動機4の固定子巻線の結線状態に対応した正しい保護動作が過電流保護回路60で行われているか否かを、過電流保護回路60の第2の判定回路63で生成された基準値Vref2に基づいて検知し、正しい保護動作が行われていない場合には、インバータ駆動回路32への駆動信号Sr#1~Sr#6の供給を停止する。従って、信頼性の高いシステムを実現できる。
 以上のように、本実施の形態にかかる電動機駆動装置は、駆動させる電動機の固定子巻線が第1の結線状態であるデルタ結線の場合に固定子巻線に過大な電流が流れているか否かを判定する第1の判定回路と、駆動させる電動機の固定子巻線が第2の結線状態であるスター結線の場合に固定子巻線に過大な電流が流れているか否かを判定する第2の判定回路と、を備える。電動機駆動装置は、また、第1の判定回路における判定結果と第2の判定回路における判定結果とを合成する合成回路と、駆動させる電動機の固定子巻線がデルタ結線の場合に第2の判定回路による判定処理を無効化する無効化回路と、を備える。電動機駆動装置は、さらに、合成回路で生成される信号が電動機の固定子巻線に過大な電流が流れている状態を表す場合には電動機を駆動するための電力の生成を停止するようインバータを制御する制御装置を備える。本実施の形態にかかる電動機駆動装置によれば、固定子巻線に過大な電流が流れているか否かの判定処理を固定子巻線の状態に対応する適切な閾値を用いて行うため、電動機の回転子を構成する永久磁石が減磁するのを防止する保護機能の高性能化を実現できる。また、複数の判定結果を合成して1つの信号として出力する合成回路を備えるようにしたので、制御装置を構成するマイコンのCPUは、判定結果を入力させる入力ポートの数が1つで済む。したがって、使用するCPUが必要とする入力ポートの数が増加するのを防止しつつ、電動機を保護する保護機能の高性能化を実現可能な電動機駆動装置を実現できる。
実施の形態2.
 つづいて、実施の形態2にかかる電動機駆動装置について説明する。実施の形態2にかかる電動機駆動装置の全体構成は、実施の形態1にかかる電動機駆動装置2と同様である(図1参照)。以下、説明の便宜上、実施の形態2にかかる電動機駆動装置を電動機駆動装置2aと呼ぶ。実施の形態2にかかる電動機駆動装置2aと実施の形態1にかかる電動機駆動装置1との違いは、過電流保護回路である。
 図7は、実施の形態2にかかる電動機駆動装置2aの過電流保護回路60aの構成例を示す図である。過電流保護回路60aは、電流検出回路61、第1の判定回路62a、第2の判定回路63a、無効化回路65および合成回路66aを備える。過電流保護回路60aの電流検出回路61および無効化回路65は、図5に示した実施の形態1にかかる過電流保護回路60の電流検出回路61および無効化回路65と同じものである。そのため、電流検出回路61および無効化回路65については説明を省略する。
 第1の判定回路62aは、実施の形態1にかかる過電流保護回路60の第1の判定回路62と同様に、閾値生成回路621および比較器622を備える。実施の形態1にかかる第1の判定回路62と第1の判定回路62aとの違いは、閾値生成回路621と比較器622との接続関係である。具体的には、実施の形態1にかかる第1の判定回路62では、閾値生成回路621が生成する基準値Vref1を比較器622の+端子に入力させ、電流検出回路61からの電流値信号Scを比較器622の-端子に入力させる構成としていたが、第1の判定回路62aでは、基準値Vref1を比較器622の-端子に入力させ、電流値信号Scを比較器622の+端子に入力させる。
 第2の判定回路63aは、実施の形態1にかかる過電流保護回路60の第2の判定回路63と同様に、閾値生成回路631および比較器632を備える。実施の形態1にかかる第2の判定回路63と第2の判定回路63aとの違いは、閾値生成回路631と比較器632との接続関係である。具体的には、実施の形態1にかかる第2の判定回路63では、閾値生成回路631が生成する基準値Vref2を比較器632の+端子に入力させ、電流検出回路61からの電流値信号Scを比較器632の-端子に入力させる構成としていたが、第2の判定回路63aでは、基準値Vref2を比較器632の-端子に入力させ、電流値信号Scを比較器632の+端子に入力させる。
 合成回路66aは、ダイオードOR回路671で構成される。ダイオードOR回路671は、抵抗R672およびR673と、ダイオードD674およびD675と、抵抗R676とを備える。抵抗R672は、第1の端部が制御電圧Vdを出力する制御電源に接続され、第2の端部が比較器622の出力端子およびダイオードD674のアノードに接続されている。ダイオードD674は、アノードが比較器622の出力端子および抵抗R672の第2の端部に接続され、カソードが抵抗R676の第1の端部およびダイオードD675のカソードに接続されている。抵抗R673は、第1の端部が制御電圧Vdを出力する制御電源に接続され、第2の端部が比較器632の出力端子およびダイオードD675のアノードに接続されている。ダイオードD675は、アノードが比較器632の出力端子および抵抗R673の第2の端部に接続され、カソードが抵抗R676の第1の端部およびダイオードD674のカソードに接続されている。抵抗R676の第2の端部はグランドに接続されている。
 ダイオードOR回路671は、比較器622からの出力信号および比較器632からの出力信号の少なくとも一方がHighレベルの場合にHighレベルの信号を過電流検出信号Seとして出力し、比較器622からの出力信号および比較器632からの出力信号の双方がLowレベルの場合にLowレベルの信号を過電流検出信号Seとして出力する。
 インバータ30の入力電流が次第に大きくなっていくときの過電流保護回路60aの動作は、実施の形態1において図6を参照しながら説明した動作と同様である。但し、比較器622および632の出力信号の論理値が、図6の下から2段目および3段目に示した論理値とは逆になる。
 本実施の形態にかかる電動機駆動装置2aは、過電流保護回路60aが、実施の形態1にかかる過電流保護回路60と同様の動作で過電流検出信号Seを生成するので、実施の形態1にかかる電動機駆動装置2と同様の効果を得ることができる。
実施の形態3.
 実施の形態2にかかる電動機駆動装置2aは、過電流保護回路60aの合成回路66aをダイオードOR回路671で実現することとしたが、MOS(Metal-Oxide-Semiconductor)トランジスタなどのトランジスタを組み合わせることでダイオードOR回路671と同様の動作を行うOR回路を実現してもよい。その場合の過電流保護回路の構成を図8に示す。図8に示した実施の形態3にかかる電動機駆動装置の過電流保護回路60bは、図7に示した過電流保護回路60aの合成回路66aを合成回路66bに置き換えたものである。合成回路66bは、トランジスタを組み合わせて構成されたOR回路681である。
 過電流保護回路60bの動作は過電流保護回路60aと同様であるため、説明を省略する。
 本実施の形態にかかる電動機駆動装置は、実施の形態2にかかる電動機駆動装置2aと同様の動作を行い、実施の形態1,2にかかる電動機駆動装置と同様の効果を得ることができる。
実施の形態4.
 実施の形態1~3で説明した電動機駆動装置では、電動機4の固定子巻線がスター結線の場合に対応する第2の判定回路における閾値VtYを用いた比較処理を無効化する際に、第2の判定回路の閾値生成回路631の分圧ノードにVp(=Vd-Von)が現れるように構成していた。しかし、この構成は、必須ではない。要するに、第1の判定回路の閾値生成回路621から出力される基準値Vref1(=VtΔ)よりも高い電位Vpが第2の判定回路の閾値生成回路631の分圧ノードに現れて、基準値Vref2として比較器632に入力される構成であればよい。
 例えば、実施の形態1で説明した第2の判定回路63の閾値生成回路631(図5参照)の代わりに、図9に示した閾値生成回路631cを用い、この閾値生成回路631cに無効化回路65を図9に示すように接続してもよい。
 図9に示した閾値生成回路631cは、図5などに示した閾値生成回路631の抵抗R633を、直列に接続された抵抗R633Aおよび抵抗R633Bに置き換えたものである。従って、閾値生成回路631cは、互いに直列接続された抵抗R633A、R633BおよびR634により分圧回路が構成されており、デジタルトランジスタQ651が、抵抗R633Aの両端を短絡するように設けられている。
 閾値生成回路631cの抵抗R633AおよびR633Bの抵抗値は、閾値生成回路631の抵抗R633との関係が式(4)を満たすように定められている。
   R633A+R633B=R633  …(4)
 図9に示した閾値生成回路631cを適用した場合、デジタルトランジスタQ651がオフのときの過電流保護回路の動作、すなわち、電動機4の固定子巻線がスター結線のときの過電流保護回路の動作は、図6の(a)を参照して説明した過電流保護回路60(図5参照)の動作と同じである。
 また、図9に示した閾値生成回路631cを適用した過電流保護回路においてデジタルトランジスタQ651がオンのときの過電流保護回路の動作、すなわち、電動機4の固定子巻線がデルタ結線のときの過電流保護回路の動作は図10に示したものとなる。
 図9に示した閾値生成回路631cを適用した過電流保護回路においてデジタルトランジスタQ651がオン状態の場合、式(5)で表される電圧Vpが閾値生成回路631cの分圧ノードに現れ、この電圧Vpが基準値Vref2として比較器632に入力される。なお、ここでの分圧ノードは抵抗R633Bと抵抗R634の接続点である。式(5)において、Vonは、デジタルトランジスタQ651のオン状態の時のエミッタ-コレクタ間の電圧降下量を表す。
   Vp=(Vd-Von)×R634/(R633B+R634)                                …(5)
 図10に示したように、Vp(=Vref2)がVtΔ(=Vref1)よりも大きいので、電動機4の固定子巻線がデルタ結線の時には、比較器632で電流値信号ScがVpを超えたとの判定がなされる前に、比較器622でScがVtΔを超えたとの判定がなされる。従って、電流値信号ScがVtΔを超えた時点で過電流検出信号SeがHighレベルとなる。このように、過電流検出信号SeがHighレベルとなるのは、図6の(b)を参照して説明した過電流保護回路60の動作と同様に、ScがVtΔを超えた時点である。
 設計に当たっては、素子の定数のバラツキを考慮して、VpがVtΔよりも十分大きくなるように素子の定数を定めるのが望ましい。すなわち、式(5)で示したVpが、VtΔに余裕分を加算した値よりも大きくなるように、抵抗R633BおよびR634の抵抗値を定めるのが望ましい。
実施の形態5.
 つづいて、実施の形態5にかかる電動機駆動装置について説明する。実施の形態5にかかる電動機駆動装置の全体構成は、実施の形態1にかかる電動機駆動装置2と同様である(図1参照)。以下、説明の便宜上、実施の形態5にかかる電動機駆動装置を電動機駆動装置2dと呼ぶ。実施の形態5にかかる電動機駆動装置2dと実施の形態1にかかる電動機駆動装置2との違いは、過電流保護回路である。電動機駆動装置2dの過電流保護回路を過電流保護回路60dと呼ぶ。過電流保護回路60dは、電動機駆動装置2の過電流保護回路60と同様の回路構成であるが、一部の回路の動作が異なる。
 図11は、実施の形態5にかかる過電流保護回路60dの概略構成の一例を示すブロック図である。図11に示したように、過電流保護回路60dは、電流検出回路61、第1の判定回路62a、第2の判定回路63a、無効化回路65dおよび合成回路66dを備える。図11に示した電流検出回路61は、実施の形態1で説明した過電流保護回路60の電流検出回路61と同じものである。図11に示した第1の判定回路62aおよび第2の判定回路63aは、実施の形態2で説明した過電流保護回路60aの第1の判定回路62aおよび第2の判定回路63aと同じものである。電流検出回路61、第1の判定回路62aおよび第2の判定回路63aの詳細については説明を省略する。
 実施の形態1~4で説明した過電流保護回路60,60a,60bは、電動機4の固定子巻線がデルタ結線の場合に第2の判定回路63,63aにおける、電流値信号Scとスター結線用の閾値VtYとの比較処理を無効化するものであった。これに対して、本実施の形態にかかる過電流保護回路60dは、固定子巻線がスター結線の場合に、第1の判定回路62aにおける、電流値信号Scとデルタ結線用の閾値VtΔとの比較処理を無効化する。過電流保護回路60dは、例えば、電動機4の固定子巻線がスター結線の場合、無効化回路65dが、第1の判定回路62aにおいて電流値信号Scと比較される基準値Vref1を極めて小さくすることで、「電流値信号Scが基準値Vref1を上回っている」との判定結果が常時得られるようにする。そして、第1の判定回路62aでの判定結果と、第2の判定回路63aでの判定結果とを合成回路66dがAND合成する。
 また、実施の形態1~4で説明した電動機駆動装置では、過電流保護回路で生成される2つの基準値のうち、基準値Vref2を制御装置50の切替判定部526へ入力させていたが、本実施の形態にかかる電動機駆動装置2dでは、基準値Vref1を制御装置50の切替判定部526へ入力させる。すなわち、電動機駆動装置2dの切替判定部526では、基準値Vref1を使用して、過電流保護回路60dにおいて、固定子巻線の結線状態に対応した正しい基準値を使用して正しい保護動作が行われているか否かを判定する。
 本実施の形態で説明する電動機駆動装置2dの構成を適用した場合にも、実施の形態1~4で説明した電動機駆動装置と同様の効果を得ることができる。
 図12は、実施の形態5にかかる過電流保護回路60dの一例を示す配線図である。図12では、電流検出回路61と第1の判定回路62aの閾値生成回路621の配置が図7と入れ替わっているが、過電流保護回路60dの電流検出回路61および第1の判定回路62aは、図7に示した過電流保護回路60aの電流検出回路61および第1の判定回路62aと同じものである。
 第2の判定回路63aでは、閾値生成回路631が、式(6)で表される電圧VtYを生成し、この電圧VtYを基準値Vref2として比較器632の-端子に入力させる。
   VtY=Vd×R634/(R633+R634)   …(6)
 無効化回路65dは、npn型のデジタルトランジスタQ653で構成される。デジタルトランジスタQ653は、コレクタおよびエミッタが、第1の判定回路62aの閾値生成回路621を構成する抵抗R624の両端、すなわち、抵抗R624の第1の端部および第2の端部にそれぞれ接続されている。
 デジタルトランジスタQ653のベースには、制御装置50から出力される反転結線選択信号Ssが入力される。デジタルトランジスタQ653は、反転結線選択信号SsがLowレベルの場合、すなわち電動機4の固定子巻線がデルタ結線の場合、オフ状態となる。また、デジタルトランジスタQ653は、反転結線選択信号SsがHighレベルの場合、すなわち電動機4の固定子巻線がスター結線の場合、オン状態となる。
 デジタルトランジスタQ653がオフ状態の場合、第1の判定回路62aの閾値生成回路621は、式(7)で表される電圧VtΔを生成し、基準値Vref1として比較器622の-端子に入力させる。
   VtΔ=Vd×R624/(R623+R624)   …(7)
 すなわち、電圧VtΔは、電動機4の固定子巻線がデルタ結線となりデジタルトランジスタQ653がオフ状態となった場合に閾値生成回路621で生成され、第1の基準値である基準値Vref1として比較器622の-端子に入力される。電圧VtΔはデルタ結線用の閾値である。
 第1の判定回路62aの閾値生成部621を構成する抵抗R623およびR624の抵抗値と、第2の判定回路63aの閾値生成部631を構成する抵抗R633およびR634の抵抗値とは、式(7)で表されるVtΔおよび式(6)で表されるVtYが、上記の式(3)の関係を満たすように、または、「VtY<VtΔ<√3×VtY」を満たすように、定められているものとする。
 デジタルトランジスタQ653がオン状態の場合、第1の判定回路62aの閾値生成回路621は、抵抗R624がデジタルトランジスタQ653により短絡されるため、グランドの電位0Vに近い電位、具体的には、グランドの電位0VよりもデジタルトランジスタQ653のオン時のコレクタ-エミッタ間の電圧降下量に相当する分だけ高い電圧を生成する。デジタルトランジスタQ653がオン状態の時のコレクタ-エミッタ間の電圧降下量をVonとし、このとき閾値生成回路621が生成する電圧をVqとすると、Vq=Vonとなる。すなわち、閾値生成回路621は、デジタルトランジスタQ653がオン状態になると、上記の式(7)で表される閾値VtΔの代わりにVq=Vonを生成し、このVqを基準値Vref1として比較器622の-端子に入力させる。この場合、比較器622は、-端子から入力されたVq=Vonと+端子から入力された電流値信号Scとを比較し、比較結果を合成回路66dへ出力する。
 一方、デジタルトランジスタQ653がオフ状態の場合、第1の判定回路62aの閾値生成回路621は、上記の式(7)で表される閾値VtΔを生成し、基準値Vref1として比較器622の-端子に入力させる。
 比較器622は、電流値信号Scを基準値Vref1と比較し、電流値信号Scが基準値Vref1よりも大きければ合成回路66dへ出力する信号をHighレベルとし、電流値信号Scが基準値Vref1以下であれば合成回路66dへ出力する信号をLowレベルとする。
 合成回路66はAND回路683で構成されている。AND回路683は、第1の判定回路62aの比較器622から出力される信号および第2の判定回路63aの比較器632から出力される信号の双方がHighレベルの場合にHighレベルの過電流検出信号Seを出力する。また、AND回路683は、第1の判定回路62aの比較器622から出力される信号および第2の判定回路63aの比較器632から出力される信号の少なくとも一方がLowレベルの場合にはLowレベルの過電流検出信号Seを出力する。
 以下、過電流保護回路60dの第1の判定回路62a、第2の判定回路63aおよび合成回路66dの動作について、図13を参照しながら説明する。
 無効化回路65dであるデジタルトランジスタQ653のベースに供給される反転結線選択信号Ssは、上述したように制御装置50の結線切替制御部521から出力される。この反転結線選択信号Ssは、電動機4の固定子巻線がスター結線の場合、図13の(a)に示すようにHighレベルとなり、デルタ結線の場合には、図13の(b)に示すようにLowレベルとなる。そのため、デジタルトランジスタQ653は、電動機4の固定子巻線がスター結線の場合は図13の(a)に示すようにオンとなり、デルタ結線時の場合には図13の(b)に示すようにオフとなる。
 従って、第1の判定回路62aを構成する比較器622の-端子には、電動機4の固定子巻線がデルタ結線の場合は上述したVtΔが基準値Vref1として入力され(図13の(b)参照)、スター結線の場合には上述したVq(=Von)が基準値Vref1として入力される(図13の(a)参照)。
 一方、第2の判定回路63aを構成する比較器632の-端子には、電動機4の固定子巻線の状態によらず、すなわち、電動機4の固定子巻線がスター結線およびデルタ結線のどちらであっても、上述したVtYが基準値Vref2として入力される(図13の(a)および(b)参照)。
 電動機4の固定子巻線がデルタ結線の場合、上述したように、比較器622の-端子に入力される基準値Vref1はVtΔとなる(図13の(b)参照)。また、VtY<VtΔの関係がある。そのため、インバータ30の入力電流が次第に大きくなり、これに伴い、電流値信号Scも次第に大きくなると、ある時点で、比較器632が、電流値信号Scが基準値Vref2(=VtY)よりも大きくなったと判定し、出力信号をLowレベルからHighレベルに変化させる。その後、電流値信号Scがさらに大きくなると、比較器622が、電流値信号Scが基準値Vref1(=VtΔ)よりも大きくなったと判定し、出力信号をLowレベルからHighレベルに変化させる。その結果、AND回路683の出力、すなわち、合成回路66dの出力である過電流検出信号SeがHighレベルとなる。
 このように、電動機4の固定子巻線がデルタ結線の場合には、電流値信号Scがデルタ結線用に定められた閾値VtΔを超えた時点で、過電流保護回路60dは、過電流検出信号SeをLowレベルからHighレベルに変化させる。
 電動機4の固定子巻線がスター結線の場合、上述したように、比較器622の-端子に入力される基準値Vref1はVq(=Von)となる(図13の(a)参照)。電流値信号ScはVq以下となることがないように構成されており、比較器622の出力信号はHighレベルを維持する。そのため、インバータ30の入力電流が次第に大きくなり、これに伴い、電流値信号Scが次第に大きくなると、ある時点で、比較器632が、電流値信号Scが基準値Vref2よりも大きくなったと判定し、出力信号をLowレベルからHighレベルに変化させる。その結果、AND回路683の出力、すなわち、合成回路66dの出力である過電流検出信号SeがHighレベルとなる。
 このように、電動機4の固定子巻線がスター結線の場合には、電流値信号Scが、スター結線用に定められた閾値VtYを超えた時点で、過電流保護回路60dは、過電流検出信号SeをLowレベルからHighレベルに変化させる。
 以上のように、電動機4の固定子巻線がスター結線の場合には、第1の判定回路62aにおけるデルタ結線に対応する基準値Vref1である閾値VtΔを用いた比較処理が無効化される。従って、電動機4の固定子巻線がスター結線およびデルタ結線のいずれの場合にも、それぞれの場合に適切な閾値と電流値信号Scとの比較結果に基づいて過電流検知を行い、電動機4を保護することができる。
実施の形態6.
 実施の形態5で説明した電動機駆動装置2dでは、電動機4の固定子巻線がデルタ結線の場合に対応する第1の判定回路62aにおける閾値VtΔを用いた比較処理を無効化する際に、第1の判定回路62aの閾値生成回路621の分圧ノードにVq(=Von)が現れるように構成していた。しかし、この構成は、必須ではない。要するに、第2の判定回路63aの閾値生成回路631から出力される基準値Vref2(=VtY)よりも低い電位Vqが第1の判定回路62aの閾値生成回路621の分圧ノードに現れて、基準値Vref1として比較器622に入力される構成であればよい。
 例えば、第1の判定回路62aの閾値生成回路621(図12参照)の代わりに、図14に示した閾値生成回路621eを用い、この閾値生成回路621eに無効化回路65eを図14に示すように接続してもよい。無効化回路65eは、図12に示した無効化回路65dと同様に、npn型のデジタルトランジスタQ653で構成される。
 図14に示した閾値生成回路621eは、閾値生成回路621の抵抗R624を、直列に接続された抵抗R624Aおよび抵抗R624Bに置き換えたものである。従って、閾値生成回路621eは、互いに直列接続された抵抗R623,R624AおよびR624Bにより分圧回路が構成されており、デジタルトランジスタQ653が、抵抗R624Bの両端を短絡するように設けられている。
 閾値生成回路621eの抵抗R624AおよびR624Bの抵抗値は、閾値生成回路621の抵抗R624との関係が式(8)を満たすように定められている。
   R624A+R624B=R624  …(8)
 図14に示した閾値生成回路621eを適用した場合、デジタルトランジスタQ653がオフのときの過電流保護回路の動作、すなわち、電動機4の固定子巻線がデルタ結線のときの過電流保護回路の動作は、図13の(b)を参照して説明した過電流保護回路60d(図12参照)の動作と同じである。
 また、図14に示した閾値生成回路621eを適用した過電流保護回路においてデジタルトランジスタQ653がオンのときの過電流保護回路の動作、すなわち、電動機4の固定子巻線がスター結線のときの過電流保護回路の動作は図15に示したものとなる。
 図14に示した閾値生成回路621eを適用した過電流保護回路においてデジタルトランジスタQ653がオン状態の場合、式(9)で表される電圧Vqが閾値生成回路621eの分圧ノードに現れ、この電圧Vqが基準値Vref1として比較器622に入力される。なお、ここでの分圧ノードは抵抗R624Aと抵抗R624Bの接続点である。式(9)において、Vonは、デジタルトランジスタQ653のオン状態の時のコレクタ-エミッタ間の電圧降下量を表す。
   Vq={(Vd-Von)×R624A/(R623+R624A)}+Von  …(9)
 図15に示したように、Vq(=Vref1)がVtY(=Vref2)よりも小さいので、電動機4の固定子巻線がスター結線の時には、比較器622で電流値信号ScがVqを超えたとの判定がなされた後に、比較器632でScがVtYを超えたとの判定がなされる。従って、電流値信号ScがVtYを超えた時点で過電流検出信号SeがHighレベルとなる。このように、過電流検出信号SeがHighレベルとなるのは、図13の(a)を参照して説明した過電流保護回路60dの動作と同様に、ScがVtYを超えた時点である。
 設計に当たっては、素子の定数のバラツキを考慮して、VqがVtYよりも十分小さくなるように素子の定数を定めるのが望ましい。すなわち、式(9)で示したVqが、VtYから余裕分を減算した値よりも小さくなるように、抵抗R623およびR624Aの抵抗値を定めるのが望ましい。
実施の形態7.
 つづいて、実施の形態7にかかる電動機駆動装置について説明する。実施の形態7にかかる電動機駆動装置の全体構成は、実施の形態1にかかる電動機駆動装置2と同様である(図1参照)。以下、説明の便宜上、実施の形態7にかかる電動機駆動装置を電動機駆動装置2fと呼ぶ。
 実施の形態1~6で説明した電動機駆動装置は、電動機4の固定子巻線の結線状態を切り替える結線切替部40を切替スイッチで実現するようにしていたが、切替スイッチの代わりに常閉スイッチと常開スイッチとを使用して実現するようにしてもよい。
 電動機駆動装置2fが備える結線切替部について、図16を参照しながら説明する。図16は、実施の形態7にかかる電動機駆動装置2fが備える結線切替部と電動機の各巻線との接続関係の一例を示す配線図である。
 図16に示した結線切替部40fは、実施の形態1で説明した結線切替部40(図2参照)の切替スイッチ41uの代わりに常閉スイッチ46uと常開スイッチ47uとの組合せが用いられ、切替スイッチ41vの代わりに常閉スイッチ46vと常開スイッチ47vとの組合せが用いられ、切替スイッチ41wの代わりに常閉スイッチ46wと常開スイッチ47wとの組合せが用いられた構成となっている。
 図16に示したように、常閉スイッチ46u、46vおよび46wが閉じ、常開スイッチ47u、47vおよび47wが開いた状態では、電動機4の固定子巻線がスター結線となる。これとは逆に、常閉スイッチ46u、46vおよび46wが開き、常開スイッチ47u、47vおよび47wが閉じた状態では、電動機4の固定子巻線がデルタ結線となる。
 図2に示した結線切替部40および図16に示した結線切替部40fといった、電動機4の固定子巻線の結線状態を切り替える手段を実現するために用いられるスイッチとしては、オン時の導通損失が小さいものが好適であり、リレー、コンタクター等の機械スイッチが好適である。
 しかしながら、図16に示したような、常閉スイッチと常開スイッチとの組合せを用いて結線状態を切り替える構成とする場合、SiC(炭化珪素)、GaN(窒化ガリウム)などのワイドバンドギャップ(WBG:Wide Band Gap)半導体を用いて常閉スイッチおよび常開スイッチを実現してもよい。WBG半導体は、オン抵抗が小さく、低損失で素子発熱も少ない。また、WBG半導体は切替え動作を高速に行うことができる。従って、電動機4の駆動中に結線状態を切り替える場合にはWBG半導体で構成した方が好適である。
 また、電動機4が空気調和機の圧縮機の駆動に用いられるものであるとき、図16に示した構成の結線切替部40fを用いる場合、圧縮機の負荷が小さいときに用いられる結線状態(例えばスター結線状態)が選択された際にオンとなるスイッチとして、ノーマリオン型の半導体スイッチを用いるのが望ましい。そのようにすることで、軽負荷時の損失を低減することができ、運転時間のうち軽負荷での運転が占める割合が高い空気調和機の圧縮機の駆動に用いられる電動機に適用した場合に、総合的な効率が高くなるからである。
 電動機駆動装置2fの結線切替部40f以外の構成は、実施の形態1~6で説明した電動機駆動装置のいずれか一つと同様である。すなわち、電動機駆動装置2fは、実施の形態1~6で説明した電動機駆動装置の結線切替部40を結線切替部40fに置き換えたものである。
実施の形態8.
 実施の形態1~7では、固定子巻線の状態がスター結線またはデルタ結線となるように切り替えることが可能な構成の電動機を駆動させる電動機駆動装置について説明したが、本発明にかかる電動機駆動装置が駆動させる電動機の構成はこれに限定されない。
 本発明にかかる電動機駆動装置は、例えば、各相の巻線が2以上の複数の巻線部分から成るものを用い、複数の巻線部分の結線を並列結線と直列結線との間で切り替えることが可能な電動機に対しても適用できる。この場合、電動機は、各相の巻線を構成する2以上の巻線部分の各々の両端部を、電動機の外部に接続可能として、電動機駆動装置が、結線状態を切り替える。本実施の形態にかかる電動機駆動装置を電動機駆動装置2gと呼ぶ。
 図17は、実施の形態8にかかる電動機駆動装置2gが備える結線切替部と電動機の各巻線との接続関係の一例を示す配線図である。図17に示したように、実施の形態8にかかる電動機駆動装置2gが備える結線切替部を結線切替部40gとする。また、電動機駆動装置2gが駆動させる電動機を電動機4gとする。
 電動機駆動装置2gの結線切替部40gは、6個の切替スイッチ48u、48v、48w、49u、49vおよび49wで構成されている。切替スイッチ48uおよび49uは、u相に対応して設けられたものである。また、切替スイッチ48vおよび49vは、v相に対応して設けられたものであり、切替スイッチ48wおよび49wは、w相に対応して設けられたものである。
 電動機4gの固定子巻線は、u相の巻線4u、v相の巻線4vおよびw相の巻線4wを含んで構成されている。巻線4uは2つの巻線部分4ueおよび4ufで構成され、巻線4vは2つの巻線部分4veおよび4vfで構成され、巻線4wは2つの巻線部分4weおよび4wfで構成されている。
 巻線部分4ue、4ve、4weの第1の端部は、それぞれ、外部端子4uc、4vc、4wcを介してインバータ30の出力線30u、30v、30wに接続されている。
 巻線部分4ue、4ve、4weの第2の端部は、それぞれ、外部端子4ug、4vg、4wgを介して切替スイッチ48u、48v、48wの共通接点に接続されている。
 巻線部分4uf、4vf、4wfの第1の端部は、それぞれ、外部端子4uh、4vh、4whを介して切替スイッチ49u、49v、49wの共通接点に接続されている。
 巻線部分4uf、4vf、4wfの第2の端部は、それぞれ、外部端子4ud、4vd、4wdを介して中性点ノード42に接続されている。
 切替スイッチ48u、48v、48wの常閉接点は、それぞれ、切替スイッチ49u、49、49wの常閉接点に接続されている。
 切替スイッチ48u、48v、48wの常開接点は、それぞれ、中性点ノード42に接続されている。
 切替スイッチ49u、49v、49wの常開接点は、それぞれ、インバータ30の出力線30u、30v、30wに接続されている。
 図17に示した結線切替部40gおよび電動機4gを適用する場合であっても、実施の形態1~7で説明した過電流保護回路を適用して、電動機4gの固定子巻線に過大な電流が流れる状態となるのを防止することができる。ただし、過電流保護回路を構成する第1の判定回路および第2の判定回路で生成する閾値の設定を以下の通りとする。
 図17に示した構成の場合、切替スイッチ48u、48v、48w、49u、49vおよび49wが、図示したような、常閉接点側に切替えられた状態では、電動機4gの固定子巻線が直列結線状態となる。一方、切替スイッチ48u、48v、48w、49u、49vおよび49wが、図示した状態とは逆の常開接点側に切替えられた状態では、電動機4gの固定子巻線が並列結線状態となる。直列結線状態と並列結線状態とでは、電動機4gの巻線に流れる電流と、インバータ電流との比が異なる。すなわち、直列結線状態では、電動機4gの巻線に流れる電流と、インバータ30の出力電流とは等しいが、並列結線状態では、電動機4gの巻線に流れる電流に対して、インバータ30の出力電流は2倍となる。
 従って、回転子を構成する磁石の減磁防止を目的として、インバータ電流の検出値が一定の閾値を超えないようにインバータ30を制御する場合、直列結線の際の閾値に対して、並列結線の際の閾値を2倍にする必要がある。すなわち、それぞれの結線状態に対応する合計2つの判定回路を設ける場合、直列結線に対応する判定回路で用いる閾値に対して、並列結態に対応する判定回路で用いる閾値が2倍となるようにする必要がある。
 なお、実施の形態7で説明したように、切替スイッチの代わりに、常閉スイッチと常開スイッチとを組合せて結線切替部40gを実現するようにしてもよい。
 本実施の形態では、固定子の巻線がスター結線となっている電動機4gにおいて、各相の2つの巻線部分を直列接続と並列接続との間で切り替える場合について説明したが、これは一例である。固定子の巻線がデルタ結線となっている電動機において、各相の2つの巻線部分を直列接続と並列接続との間で切り替える構成に対して、上述した過電流保護回路を適用することも可能である。
 このように、各相の固定子巻線の状態を、2つの巻線部分が直接接続された状態と2つの巻線部分が並列接続された状態との間で切り替えることが可能に構成された電動機を駆動する電動機駆動装置であっても、巻線に過大な電流が流れているか否かの判定を各結線状態に対応した適切な閾値を用いて行うことができる。よって、回転子を構成する永久磁石が減磁するのを防止する保護機能の高性能化を実現できる。
(変形例1)
 実施の形態1~8で説明した電動機駆動装置の過電流保護回路は、インバータ30の入力電流を検出し、検出結果に基づいて、電動機に流れる電流値が正常か否かを判定し、電流値が異常の場合にはインバータ30を停止させて電動機を保護するものであった。しかし、インバータ30の入力電流の代わりにインバータ30の出力電流を検出し、出力電流を使用して制御を行ってもよい。
 インバータ30の出力電流を検出する構成とする場合、1つの相にのみ電流検出素子、例えば変流器を設け、一つの相の電流に基づいて過電流の検出を行ってもよい。また、3つの相のそれぞれに電流検出素子を設け、3つの相のそれぞれで検出した電流の平均値、または、瞬時値を用いて過電流の検出を行ってもよい。さらにまた、任意の2つの相のそれぞれに電流検出素子を設け、2つの相のそれぞれで検出した電流の平均値、または、瞬時値を用いて過電流の検出を行ってもよい。
(変形例2)
 また、上述した各実施の形態の電動機駆動装置は、駆動させる電動機の固定子巻線が2つの結線状態のいずれかを取り得るものとしていた。すなわち、電動機駆動装置の過電流保護回路は、2つの結線状態にそれぞれ対応する2つの閾値をそれぞれ用いて判定を行う2つの判定回路を備え、結線状態に対応する閾値以外の閾値を用いた判定処理を必要に応じて無効化する。しかし、切り替え可能な結線状態を2つに限定するものではない。本発明は、電動機が取り得る結線状態が3つ以上の場合にも適用可能である。すなわち、一般化していえば、本発明は、電動機が、複数の結線状態のいずれかを選択可能なものである場合に適用可能である。例えば、電動機が取り得る結線状態が3つ以上の場合、電動機駆動装置の過電流保護回路は、3つ以上の複数の結線状態のいずれか1つと1対1で対応付けられた、複数の結線状態と同数の複数の判定回路を備え、各判定回路では、対応する結線状態に応じた閾値を使用して、電動機の固定子巻線に流れる電流が過大な状態か否かを判定する。この過電流保護回路は、さらに、複数の判定回路のそれぞれにおける判定結果を合成して出力する合成回路と、複数の判定回路のそれぞれにおける判定処理の一部を無効化し、結線状態に対応する判定回路による判定結果が合成回路から出力されるようにする無効化回路と、を備える。
 この場合、過電流保護回路は、インバータの入力電流または出力電流をインバータ電流として検出し、検出したインバータ電流が過大になったときにインバータを停止させる。過電流保護回路の複数の判定回路は、複数の結線状態にそれぞれ対応して設けられ、各判定回路は、対応付けられた結線状態に合わせて設定された閾値を基準値として用いて、基準値と検出されたインバータ電流との比較を行う。無効化回路は、複数の判定回路のそれぞれにおける比較処理のうち、選択されている結線状態に対応付けられ判定回路以外の判定回路における比較処理を必要に応じて無効化し、選択されている結線状態に対応付けられている判定回路の出力に、合成回路の出力が一致するようにする。
 上記の実施の形態1~4で示した構成(図1~図10参照)において、結線状態の数を2から複数(n個、2<n)に一般化した場合、合成回路としては、複数の判定回路の出力の論理和を取るOR回路を有するものを用いればよい。また、選択されている結線状態に対応する判定回路を第1の判定回路、第1の判定回路以外の判定回路を第2の判定回路とした場合、無効化回路としては、第2の判定回路の各々において、第1の判定回路における比較処理で使用される基準値よりも大きい値の基準値を用いて比較処理が行われるようにするものを用いればよい。
 この場合、複数の判定回路の各々は、制御電源から供給される制御電圧を分圧する分圧回路を備え、分圧回路の分圧ノードに現れる電圧を閾値として出力する閾値生成回路と、閾値生成回路から出力された閾値を基準値として、検出されたインバータ電流が基準値よりも大きいか否かを判定する比較器と、を備え、各分圧回路は、直列接続された複数の抵抗を制御電源とグランドとの間に有する構成とする。そして、無効化回路は、第2の判定回路に相当する各判定回路の分圧回路について、直列接続された複数の抵抗のうちの一つを短絡して、各判定回路が第1の判定回路となっているときに使用する閾値の代わりに、第1の判定回路に相当する判定回路で使用される閾値よりも大きい値を、分圧ノードから出力させることとする。分圧回路が有する抵抗のうち、無効化回路により短絡される抵抗は、例えば、分圧ノードと制御電源との間に接続された抵抗とする。
 実施の形態5,6で示した構成(図11~図15参照)において、結線状態の数を2から複数(n個、2<n)に一般化した場合、合成回路としては、複数の判定回路の出力の論理積を取るAND回路を有するものを用いればよい。また、選択されている結線状態に対応する判定回路を第1の判定回路、第1の判定回路以外の判定回路を第2の判定回路とした場合、無効化回路としては、第2の判定回路の各々において、第1の判定回路における比較処理で使用される基準値よりも小さい値の基準値を用いて比較処理が行われるようにするものを用いればよい。
 この場合、複数の判定回路の各々は、制御電源から供給される制御電圧を分圧する分圧回路を備え、分圧回路の分圧ノードに現れる電圧を閾値として出力する閾値生成回路と、閾値生成回路から出力された閾値を基準値として、検出されたインバータ電流が基準値よりも大きいか否かを判定する比較器と、を備え、各分圧回路は、直列接続された複数の抵抗を制御電源とグランドとの間に有する構成とする。そして、無効化回路は、第2の判定回路に相当する各判定回路の分圧回路について、直列接続された複数の抵抗のうちの一つを短絡して、各判定回路が第1の判定回路となっているときに使用する閾値の代わりに、第1の判定回路に相当する判定回路で使用される閾値よりも小さい値を、分圧ノードから出力させることとする。分圧回路が有する抵抗のうち、無効化回路により短絡される抵抗は、例えば、分圧ノードとグランドとの間に接続された抵抗とする。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 2 電動機駆動装置、4,4g 電動機、4u,4v,4w 巻線、6 交流電源、7 リアクトル、12 インテリジェントパワーモジュール(IPM)、20 コンバータ、30 インバータ、32 インバータ駆動回路、40,40f,40g 結線切替部、41u,41v,41w,48u,48v,48w,49u,49v,49w 切替スイッチ、42 中性点ノード、46u,46v,46w 常閉スイッチ、47u,47v,47w 常開スイッチ、50 制御装置、52 マイコン、60,60a,60b,60d 過電流保護回路、61 電流検出回路、62,62a 第1の判定回路、63,63a 第2の判定回路、65,65d,65e 無効化回路、66,66a,66b,66d 合成回路、612 平滑回路、621,631,631c,621e 閾値生成回路、622,632 比較器、661 ワイヤードOR回路、662 反転回路、671 ダイオードOR回路、681 OR回路、683 AND回路。

Claims (19)

  1.  固定子巻線の結線状態を切り替え可能な電動機を駆動する電動機駆動装置であって、
     前記固定子巻線の結線状態を切り替える結線切替部と、
     前記電動機に供給する電力を生成するインバータと、
     前記結線切替部および前記インバータを制御する制御装置と、
     前記電動機に予め定められた値を超える電流が流れ続けるのを防止する過電流保護回路と、
     を備え、
     前記過電流保護回路は、
     前記固定子巻線がとり得る複数の結線状態のいずれか1つと1対1で対応付けられ、前記インバータに流れる電流が異常な値か否かを判定する複数の判定回路と、
     前記複数の判定回路の各々における判定結果を合成する合成回路と、
     前記複数の判定回路の一部の判定回路による判定処理を無効化し、選択されている固定子巻線の結線状態と対応付けられている判定回路による判定結果が前記合成回路から出力されるようにする無効化回路と、
     を備え、
     前記制御装置は、前記合成回路から出力される判定結果が前記インバータに流れる電流が異常な値であることを示す場合、前記インバータを停止させる、
     ことを特徴とする電動機駆動装置。
  2.  前記インバータは、前記電動機に周波数可変の交流電力を供給して前記電動機を可変速運転させ、
     前記制御装置は、前記結線切替部を制御して前記結線状態の選択を行わせるとともに、前記インバータを制御して前記電動機に前記交流電力を供給させる、
     ことを特徴とする請求項1に記載の電動機駆動装置。
  3.  前記過電流保護回路は、
     前記インバータの入力電流または出力電流を検出し、検出結果である電流検出値を前記複数の判定回路のそれぞれに出力する電流検出回路、
     を備え、
     前記複数の判定回路の各々は、対応付けられている結線状態に基づいて決定された、判定回路ごとに異なる閾値を使用し、前記電流検出値が閾値を超えているか否かを判定し、
     前記無効化回路は、
     選択されている結線状態に対応する判定回路以外の判定回路による判定処理を必要に応じて無効化し、選択されている結線状態に対応する判定回路の出力に、前記合成回路の出力が一致するようにする、
     ことを特徴とする請求項1または2に記載の電動機駆動装置。
  4.  前記合成回路が前記複数の判定回路の出力の論理和を取るOR回路で構成され、
     前記無効化回路は、選択されている結線状態に対応する判定回路以外の判定回路において、選択されている結線状態に対応する判定回路が使用する閾値よりも大きい値の閾値を用いて判定処理を行わせる、
     ことを特徴とする請求項3に記載の電動機駆動装置。
  5.  前記判定回路は、
     制御電源から供給される制御電圧を分圧する、前記制御電源とグランドとの間に直列接続された複数の抵抗からなる分圧回路を含み、前記分圧回路の分圧ノードに現れる電圧を、対応付けられている結線状態に基づいて決定された前記閾値として出力する閾値生成回路と、
     前記閾値生成回路から出力された前記閾値と前記電流検出値とを比較する比較器と、
     を備え、
     選択されている結線状態に対応する判定回路を第1の判定回路とし、前記第1の判定回路以外の判定回路を第2の判定回路としたとき、
     前記無効化回路は、第2の判定回路の各々が備える前記分圧回路の前記直列接続された複数の抵抗のうちの一つを短絡して、前記第1の判定回路が使用する閾値よりも大きい値の電圧を、第2の判定回路の各々の前記分圧ノードから出力させる、
     ことを特徴とする請求項4に記載の電動機駆動装置。
  6.  前記無効化回路は、前記第2の判定回路の前記分圧ノードと前記制御電源との間に接続された抵抗を短絡させる、
     ことを特徴とする請求項5に記載の電動機駆動装置。
  7.  前記合成回路が前記複数の判定回路の出力の論理積を取るAND回路で構成され、
     前記無効化回路は、選択されている結線状態に対応する判定回路以外の判定回路において、選択されている結線状態に対応する判定回路が使用する閾値よりも小さい値の閾値を用いて判定処理を行わせる、
     ことを特徴とする請求項3に記載の電動機駆動装置。
  8.  前記判定回路は、
     制御電源から供給される制御電圧を分圧する、前記制御電源とグランドとの間に直列接続された複数の抵抗からなる分圧回路を含み、前記分圧回路の分圧ノードに現れる電圧を、対応付けられている結線状態に基づいて決定された前記閾値として出力する閾値生成回路と、
     前記閾値生成回路から出力された前記閾値と前記電流検出値とを比較する比較器と、
     を備え、
     選択されている結線状態に対応する判定回路を第1の判定回路とし、前記第1の判定回路以外の判定回路を第2の判定回路としたとき、
     前記無効化回路は、第2の判定回路の各々が備える前記分圧回路の前記直列接続された複数の抵抗のうちの一つを短絡して、前記第1の判定回路が使用する閾値よりも小さい値の電圧を、第2の判定回路の各々の前記分圧ノードから出力させる、
     ことを特徴とする請求項7に記載の電動機駆動装置。
  9.  前記無効化回路は、前記第2の判定回路の前記分圧ノードと前記グランドとの間に接続された抵抗を短絡させる、
     ことを特徴とする請求項8に記載の電動機駆動装置。
  10.  前記無効化回路は、前記抵抗の短絡を行うためのトランジスタを有する、
     ことを特徴とする請求項5、6、8または9に記載の電動機駆動装置。
  11.  前記トランジスタをデジタルトランジスタとする、
     ことを特徴とする請求項10に記載の電動機駆動装置。
  12.  前記複数の結線状態を、スター結線状態およびデルタ結線状態とする、
     ことを特徴とする請求項1から11のいずれか一つに記載の電動機駆動装置。
  13.  前記デルタ結線状態に対応する判定回路での判定処理で使用する閾値を、前記スター結線状態に対応する判定回路での判定処理で使用する閾値の√3倍以下とする、
     ことを特徴とする請求項12に記載の電動機駆動装置。
  14.  前記結線切替部が半導体スイッチで構成されている、
     ことを特徴とする請求項1から13のいずれか一つに記載の電動機駆動装置。
  15.  前記半導体スイッチがワイドバンドギャップ半導体で形成されている、
     ことを特徴とする請求項14に記載の電動機駆動装置。
  16.  前記インバータに駆動信号を供給するインバータ駆動回路、
     を備え、
     前記インバータと前記インバータ駆動回路とがインテリジェントパワーモジュールで実現され、
     前記合成回路の出力が、前記インテリジェントパワーモジュールの過電流遮断ポートに入力され、
     前記インバータ駆動回路は、前記過電流遮断ポートに入力された信号が前記インバータに流れる電流が異常な値であることを示す場合、前記インバータを停止させる、
     ことを特徴とする請求項1から15のいずれか1つに記載の電動機駆動装置。
  17.  前記制御装置は、
     インバータをオンオフ制御するためのオンオフ制御信号を生成して前記インバータ駆動回路に供給するマイクロコントローラ、
     を備え、
     前記合成回路の出力が前記マイクロコントローラに入力され、
     前記マイクロコントローラは、前記合成回路から入力された信号が前記インバータに流れる電流が異常な値であることを示す場合、前記オンオフ制御信号の出力を停止する、
     ことを特徴とする請求項16に記載の電動機駆動装置。
  18.  前記インバータに駆動信号を供給するインバータ駆動回路と、
     インバータをオンオフ制御するためのオンオフ制御信号を生成して前記インバータ駆動回路に供給するマイクロコントローラと、
     を備え、
     前記判定回路での判定処理で使用される閾値のうち、前記無効化回路により無効化された判定回路での判定処理で使用される閾値が前記マイクロコントローラに供給され、
     前記マイクロコントローラは、前記供給された閾値に基づいて、前記過電流保護回路が正常に動作しているか否かを判定し、前記過電流保護回路が正常に動作していない場合には前記インバータを停止させる、
     ことを特徴とする請求項1から15のいずれか一つに記載の電動機駆動装置。
  19.  前記マイクロコントローラは、前記過電流保護回路が正常に動作していない場合、前記オンオフ制御信号の出力を停止して前記インバータを停止させる、
     ことを特徴とする請求項18に記載の電動機駆動装置。
PCT/JP2017/038358 2017-10-24 2017-10-24 電動機駆動装置 WO2019082272A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019549716A JP6727455B2 (ja) 2017-10-24 2017-10-24 電動機駆動装置
PCT/JP2017/038358 WO2019082272A1 (ja) 2017-10-24 2017-10-24 電動機駆動装置
EP17929824.5A EP3703247B1 (en) 2017-10-24 2017-10-24 Electric motor driving apparatus
US16/631,229 US11431271B2 (en) 2017-10-24 2017-10-24 Electric motor drive device
CN201780096055.9A CN111247735B (zh) 2017-10-24 2017-10-24 电动机驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038358 WO2019082272A1 (ja) 2017-10-24 2017-10-24 電動機駆動装置

Publications (1)

Publication Number Publication Date
WO2019082272A1 true WO2019082272A1 (ja) 2019-05-02

Family

ID=66246280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038358 WO2019082272A1 (ja) 2017-10-24 2017-10-24 電動機駆動装置

Country Status (5)

Country Link
US (1) US11431271B2 (ja)
EP (1) EP3703247B1 (ja)
JP (1) JP6727455B2 (ja)
CN (1) CN111247735B (ja)
WO (1) WO2019082272A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210108254A (ko) * 2020-02-25 2021-09-02 엘지전자 주식회사 모터 구동 장치 및 이를 구비하는 공기조화기
KR102478881B1 (ko) * 2020-12-28 2022-12-16 엘지전자 주식회사 모터 구동 장치 및 이를 구비하는 공기조화기
KR102478880B1 (ko) * 2021-01-13 2022-12-16 엘지전자 주식회사 모터 구동 장치 및 이를 구비하는 공기조화기
CN113872774B (zh) * 2021-09-06 2023-10-24 波达通信设备(广州)有限公司 一种poe电源控制电路及供电方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184021A (ja) * 1975-01-20 1976-07-23 Matsushita Electric Ind Co Ltd
JPS63178785A (ja) * 1987-01-16 1988-07-22 Mitsubishi Electric Corp 極数変換電動機の駆動装置
JP2008228513A (ja) 2007-03-15 2008-09-25 Mitsubishi Electric Corp 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP2014124062A (ja) * 2012-12-21 2014-07-03 Tsubaki E&M Co 過負荷検知装置及び過負荷検知方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748355A (en) * 1985-12-03 1988-05-31 Marathon Electric Manufacturing Corp. Electrical connector with a releasable load-control element for multi-connectable loads
US5864458A (en) * 1995-09-14 1999-01-26 Raychem Corporation Overcurrent protection circuits comprising combinations of PTC devices and switches
US7602137B2 (en) * 2006-02-20 2009-10-13 Black & Decker Inc. Electronically commutated motor and control system
JP5318050B2 (ja) * 2010-09-02 2013-10-16 三菱電機株式会社 永久磁石型モータの駆動装置及び圧縮機
WO2014002251A1 (ja) * 2012-06-29 2014-01-03 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機
GB2549146B (en) * 2016-04-08 2021-06-09 Power Drive Efficiency Ltd Method and apparatus for controlling three-phase electric motor
CN109891737B (zh) * 2016-10-31 2022-04-01 三菱电机株式会社 电动机驱动装置
JP6636207B2 (ja) * 2017-03-09 2020-01-29 三菱電機株式会社 電動機の駆動装置および冷凍サイクル適用機器
CN110915129B (zh) * 2017-07-26 2023-03-31 三菱电机株式会社 电动机驱动装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184021A (ja) * 1975-01-20 1976-07-23 Matsushita Electric Ind Co Ltd
JPS63178785A (ja) * 1987-01-16 1988-07-22 Mitsubishi Electric Corp 極数変換電動機の駆動装置
JP2008228513A (ja) 2007-03-15 2008-09-25 Mitsubishi Electric Corp 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP2014124062A (ja) * 2012-12-21 2014-07-03 Tsubaki E&M Co 過負荷検知装置及び過負荷検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3703247A4

Also Published As

Publication number Publication date
US11431271B2 (en) 2022-08-30
EP3703247A1 (en) 2020-09-02
JP6727455B2 (ja) 2020-07-22
US20200252017A1 (en) 2020-08-06
JPWO2019082272A1 (ja) 2020-01-16
CN111247735B (zh) 2023-06-30
EP3703247A4 (en) 2020-10-14
CN111247735A (zh) 2020-06-05
EP3703247B1 (en) 2023-02-01

Similar Documents

Publication Publication Date Title
US11683001B2 (en) Motor driving apparatus
KR100202120B1 (ko) 전력변환장치 및 이를 이용한 공기조화장치
JP6727455B2 (ja) 電動機駆動装置
CN108336941B (zh) 控制电路、控制方法、永磁同步电机、压缩机与存储介质
US11031895B2 (en) Motor drive system and air conditioner
JP2009136054A (ja) 空気調和機の圧縮機用ブラシレスモータ駆動装置
JP6046446B2 (ja) ベクトル制御装置、およびそれを用いたモータ制御装置、空調機
JPWO2018078837A1 (ja) 電動機駆動装置
WO2018185878A1 (ja) 同期モータ駆動装置、送風機および空気調和装置
JP2014138526A (ja) インバータ制御装置およびインバータ制御装置を備える圧縮機
WO2022009270A1 (ja) モータ駆動装置及び空気調和装置
KR102564593B1 (ko) 모터 구동 장치 및 공기 조화기
US11239788B2 (en) Motor driving device, circuitry for controlling motor driving device, control method of motor driving device, and air conditioner
JP4736155B2 (ja) インバータ装置
WO2020129170A1 (ja) モータ駆動装置、冷凍サイクル装置、空気調和機、給湯機及び冷蔵庫
JP6877627B2 (ja) 電動機駆動装置および空気調和機
JP2001268966A (ja) インバータ装置
JP2024063335A (ja) モータ駆動装置
JP4465762B2 (ja) インバータ装置
JP2023122381A (ja) 駆動システム、制御装置
JP2022074951A (ja) 電力変換装置および空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017929824

Country of ref document: EP

Effective date: 20200525