WO2019080862A1 - 一种信号传输方法及其相关设备 - Google Patents

一种信号传输方法及其相关设备

Info

Publication number
WO2019080862A1
WO2019080862A1 PCT/CN2018/111604 CN2018111604W WO2019080862A1 WO 2019080862 A1 WO2019080862 A1 WO 2019080862A1 CN 2018111604 W CN2018111604 W CN 2018111604W WO 2019080862 A1 WO2019080862 A1 WO 2019080862A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
antenna device
radio frequency
antenna
Prior art date
Application number
PCT/CN2018/111604
Other languages
English (en)
French (fr)
Inventor
聂广材
孟祥涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019080862A1 publication Critical patent/WO2019080862A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of antennas, and in particular, to a signal transmission method and related equipment.
  • the radio waves are distributed between 3 Hz and 3000 GHz, and are divided into 12 bands in this spectrum.
  • the low-band propagation loss is small and the coverage distance is long, but the low-band system has limited capacity, and the data information that can be transmitted is limited, and the energy of the high-band system is limited. Large, can spread more data information, but the propagation loss is large, resulting in limited coverage.
  • the capacity of the required frequency resources is also increasing, and the effective use of resources in the high frequency band becomes inevitable.
  • a distributed antenna system is a signal relay and signal amplification system.
  • a network array is formed by multiple sets of antenna devices, which can improve network coverage without increasing the number of base stations, in a DAS system.
  • the remote unit DRH receives the data information transmitted by the base station, converts it into a radio frequency signal and transmits it to the head end of the antenna device, and transmits the signal from the head end of the antenna device, and the head end of the antenna device adopts an omnidirectional or directional antenna device, so the signal is transmitted.
  • the coverage direction is deterministic.
  • Beamforming (BF) technology is to concentrate the antenna device energy into a certain area by forming a narrow beam.
  • beamforming allows wireless signals to travel only in specific directions, with the benefit of achieving better wireless signal quality in the desired direction, thereby improving coverage and performance.
  • the transmission energy may be aggregated, and a narrow beam that is aligned with the user equipment may be formed, and then the data information is transformed and then transmitted and transmitted to the user equipment by using the narrow beam.
  • the beamforming technique is to form a beam with a pointing by controlling the wireless transmitting signals of the plurality of antenna heads to enable wireless transmission.
  • the signals all point in the same direction to achieve energy accumulation of multiple antenna devices. Therefore, in the DAS system, due to the certainty of the direction of the signal transmitted by the antenna device, the beamforming technique cannot be used to change the transmission direction of the wireless signal, that is, the RF signal transmitted by the antenna. For signals transmitting the same power, the coverage of the signal without beamforming is significantly less than the coverage of the beam-formed signal.
  • the embodiment of the present application discloses a signal transmission method and related equipment, which are configured to form at least two target beam transmitting target radio frequency signals in the same direction according to the second signal.
  • the first aspect of the present application provides a signal transmission method, where the signal transmission method is applied to an antenna device, and the antenna device may include at least two antenna heads, and the signal transmission method may include:
  • the base station After receiving the user data, the base station generates a first signal carrying the user data, and generates a second signal for controlling the beam directivity of the antenna device, and then the base station sends the first signal and the second signal to the DRH, and the DRH converts the first signal into The target radio frequency signal is then relayed to the antenna device, and the antenna device receives the target radio frequency signal and the second signal sent by the DRH, and the frequency of the target radio frequency signal and the second signal are different;
  • the antenna device adjusts the tilt angle of the target beam according to the second signal to form at least two target beams that point in the same direction;
  • the antenna device transmits the target radio frequency signal to the target beam along with the target beam.
  • the antenna device after receiving the target radio frequency signal carrying the user data and the second signal for controlling the beam directivity, the antenna device forms at least two target beams pointing in the same direction according to the second signal, and then uses the target beam to transmit the target.
  • the radio frequency signal realizes the beam energy superposition by controlling the beam directivity in the DAS system, and then uses the superimposed beam energy to transmit the target radio frequency signal.
  • the second signal may include:
  • Beamforming BF control signals Beamforming BF control signals.
  • the implementation of the scheme is increased by defining the second signal as a beamforming BF control signal.
  • the antenna device is configured to form at least two target beams that are directed in the same direction according to the second signal.
  • the antenna device can determine a weighting coefficient of the antenna device according to the BF control signal
  • the antenna device controls the directivity of the beam according to the weighting coefficient to form at least two target beams pointing in the same direction.
  • the BF control signal is used to control the weighting coefficient of the antenna device to control the directivity of the beam to achieve the aggregation of the beam energy, thereby realizing the purpose of applying the beamforming technique in the DAS system.
  • the weighting coefficient of the antenna device may be a parameter of the antenna device according to the BF control signal. owned.
  • the practicality of the scheme is increased by describing in detail the parameters in the BF control signal as necessary factors for obtaining the weighting coefficients.
  • the antenna device is configured to form at least the weighting coefficient
  • Two target beams pointing in the same direction may include:
  • the antenna device can adjust the amplitude of the beam according to the coefficient of the target beam amplitude, realize superposition of the beams, and form at least two target beams pointing in the same direction;
  • the antenna device can adjust the phase of the beam according to the coefficient of the target beam phase, and realize superposition of the beams to form at least two target beams pointing in the same direction;
  • the antenna device can adjust the amplitude of the beam according to the coefficient of the target beam amplitude, and adjust the phase of the beam according to the coefficient of the target beam phase to realize superposition of the beams to form at least two target beams pointing in the same direction.
  • the flexibility and diversity of the implementation of the scheme are increased by embodying how to form at least two target beams pointing in the same direction according to the weighting coefficients.
  • a second aspect of the embodiments of the present application provides a data transmission method, which may include:
  • the DRH receives a signal set, and includes a first signal and a second signal in the signal set, and then the DRH determines the first signal from the first signal and the second signal, where the first signal is used to carry user data;
  • the DRH needs to generate the target radio frequency signal according to the first signal, and the target radio frequency signal is different from the second signal frequency, so that the antenna device distinguishes the two types of signals;
  • the DRH transmits the target radio frequency signal and the second signal to the antenna device, wherein the antenna device controls the directivity of the self-transmitted beam according to the second signal to form at least two target beams pointing in the same direction, and the antenna device may include at least two Antenna head end.
  • the DRH receives the two types of signals from the perspective of the DRH
  • the first signal is processed, and the processed first signal and the second signal are sent to the antenna device, thereby implementing control in the DAS system.
  • the inclination of the target beam transmitted by the antenna device achieves the purpose of superposition of beam energy.
  • the determining, by the DRH, the first signal from the first signal and the second signal may include:
  • the DRH may determine the first signal from the first signal and the second signal according to a frequency.
  • a third aspect of the embodiments of the present application provides an antenna device, where the antenna device can include at least two antenna heads, wherein the antenna device can include:
  • the receiving unit may be configured to receive the target radio frequency signal and the second signal sent by the remote antenna unit DRH of the distributed antenna system, where the target radio frequency signal is generated by the DRH according to the first signal sent by the base station, where the first signal is used to carry the user Data, the target radio frequency signal and the second signal have different frequencies;
  • a forming unit configured to form at least two target beams pointing in the same direction according to the second signal
  • a sending unit configured to send the target radio frequency signal by using the target beam.
  • the forming unit forms at least two target beams pointing in the same direction according to the second signal, and the sending unit uses the target beam to transmit the target radio frequency signal, and implements the sending The two signals control the target beam to emit the tilt angle, thereby concentrating the antenna energy, and using the aggregated antenna energy to transmit the target RF signal.
  • the forming unit may include:
  • a determining module configured to determine a weighting coefficient of the antenna device according to the BF control signal
  • the BF control signal is used to control the weighting coefficient of the antenna device to control the directivity of the beam to achieve the aggregation of the beam energy, thereby realizing the purpose of applying the beamforming technique in the DAS system.
  • the forming module may include:
  • the first adjusting submodule may be configured to adjust the amplitude of the beam according to the coefficient of the target beam amplitude to form at least two target beams that point in the same direction;
  • a second adjustment submodule configured to adjust a phase of the beam according to a coefficient of a target beam phase to form at least two target beams that point in the same direction;
  • the third adjustment submodule is configured to adjust a beam amplitude according to a coefficient of the target beam amplitude, and adjust a phase of the beam according to a coefficient of the target beam phase to form at least two target beams that point in the same direction.
  • the flexibility and diversity of the implementation of the scheme are increased by embodying how to form at least two target beams pointing in the same direction according to the weighting coefficients.
  • a fourth aspect of the embodiments of the present disclosure provides a remote antenna unit of a distributed antenna system, which may include:
  • a determining unit configured to determine the first signal from the first signal and the second signal, where the first signal is used to carry user data
  • a generating unit configured to generate a target radio frequency signal according to the first signal, where the target radio frequency signal is different from the second signal frequency;
  • a transmitting unit configured to send the target radio frequency signal and the second signal to the antenna device, where the second signal is used by the antenna device to form at least two target beams pointing in the same direction to transmit the target radio frequency signal, where the antenna device can Includes at least two antenna heads.
  • the DRH receives the two types of signals from the perspective of the DRH
  • the first signal is processed, and the processed first signal and the second signal are sent to the antenna device, thereby implementing control in the DAS system.
  • the inclination of the target beam transmitted by the antenna device achieves the purpose of superposition of beam energy.
  • the determining unit may include:
  • a determining module configured to determine the first signal from the first signal and the second signal according to a frequency.
  • the fifth aspect of the present application provides an antenna apparatus, which may include: a receiver, a transmitter, and an antenna array;
  • the receiver is configured to receive a signal sent by the base station
  • the antenna array may include an antenna head end for performing the method of any of the first to fourth implementations of the first aspect and the first aspect thereof.
  • a sixth aspect of the present application provides a distributed antenna system remote unit, which may include: a memory, a transceiver, a processor, and a bus system;
  • the memory is used to store programs and instructions
  • the transceiver is configured to receive or transmit information under the control of the processor
  • the processor is configured to execute a program in the memory
  • the bus system is configured to connect the memory, the transceiver, and the processor to cause the memory, the transceiver, and the processor to communicate;
  • the processor is configured to invoke program instructions in the memory to perform the method of the first implementation of the second aspect and the second aspect thereof.
  • a seventh aspect of the present application provides a computer readable storage medium, which may include instructions that, when executed on a computer, cause the computer to perform the first to fourth implementations of the first aspect and the first aspect, The second aspect and the first implementation of the second aspect, the third aspect, and the first to second implementations of the third aspect, and the fourth aspect, any of the first implementations of the fourth aspect A method of implementation.
  • the eighth aspect of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to perform the first to fourth implementations, the second aspect of the first aspect and the first aspect And the first implementation manner of the second aspect, the third aspect, and the first to second implementation manners of the third aspect, and any implementation manner of the first implementation manner of the fourth aspect Methods.
  • the embodiment of the present application has the following advantages: in an antenna device including at least two antenna head ends, the antenna device receives a target radio frequency signal in addition to receiving the second signal, wherein the target radio frequency signal is derived from a carrying user.
  • the first signal of the data the antenna device generates at least two target beams pointing in the same direction according to the second signal, and uses the target beam to transmit the target radio frequency signal.
  • the second signal control may be sent to the antenna device to form a target beam pointing in the same direction, and the target beam is utilized.
  • the target RF signal is transmitted, so that when the signal of a certain power is transmitted in the DAS system, the beamforming technology can be used to change the transmission direction of the target RF signal and improve the coverage of the signal.
  • FIG. 2 is a schematic diagram of a signal transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another signal transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another signal transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an embodiment of an antenna apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another embodiment of an antenna device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another embodiment of an antenna apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an embodiment of a remote antenna unit DRH of a distributed antenna system according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another embodiment of a remote antenna unit DRH of a distributed antenna system according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of an antenna apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another embodiment of a remote antenna unit DRH of a distributed antenna system according to an embodiment of the present application.
  • the base station 101 sends the user data and the control signal to the DAS, and after processing, transmits the radio frequency signal to the user equipment (UE) 103 through the antenna head of the DAS 102, thereby completing the transmission of the user data.
  • the DAS includes a distributed antenna system control unit (DCU) 1021, a distributed antenna system remote unit (DRH) 1022, an antenna device 1023, and the like, and the antenna device 1023 is configured.
  • the antenna system includes a plurality of antennas arranged in a certain regularity, and each of the single antennas includes an antenna head end 10231.
  • the user data sent by the base station is converted into a radio frequency signal and then sent to the antenna head end 10231, and then The antenna head end is sent to the user equipment 103, and the BF control signal sent by the base station is also sent to the antenna head end 10231, thereby controlling the transmission tilt angle of the antenna head end, so that the beams transmitted by the at least two antenna head ends point in the same direction.
  • the DRH can be used for remote radio frequency.
  • the DRH is a unit that can distinguish the control signal and the user data according to the frequency, and converts the user data into a target radio frequency signal, and the DRH pair controls.
  • the signal can be forwarded to the head of the antenna for a certain period of time.
  • the method is not limited.
  • the method for processing the control signal of the DRH may be frequency modulation or other methods, which is not limited herein.
  • the antenna device may include a processing system, and the received control signal may be processed to form at least two target beams pointing in the same direction according to the control signal.
  • a signal transmission method is provided.
  • the signal transmission method is applied to an antenna device, and the antenna device includes at least two antenna head ends. Please refer to FIG. 2, which will be described below.
  • the antenna device receives the target radio frequency signal and the second signal sent by the distributed antenna system remote unit DRH.
  • the base station sends the first signal and the second signal to the DAS system
  • the DCU unit in the DAS system receives the two types of numbers and transits to the DRH unit, and after receiving the first signal and the second signal, the DRH according to the signal frequency
  • the first signal and the second signal are distinguished, wherein the first signal carries user data.
  • the second signal is used to control the antenna device to form at least two target beams that are directed in the same direction.
  • a beamforming technology is introduced to achieve the purpose, so the second signal may be a BF control signal.
  • Other control signals may also be used in actual applications, which are not limited herein.
  • the DRH modulates the first control signal to form a radio frequency signal of a certain frequency, the frequency of the radio frequency signal being different from the second signal, so that the antenna device distinguishes different signals, and then the DRH sends the radio frequency signal and the second signal to the antenna.
  • the DRH modulates the first control signal to form a radio frequency signal of a certain frequency, the frequency of the radio frequency signal being different from the second signal, so that the antenna device distinguishes different signals, and then the DRH sends the radio frequency signal and the second signal to the antenna. Device.
  • the DRH sends the signal to the antenna device through the RF feed cable, or can also be sent through a wireless transmission, etc., which is not limited herein.
  • the antenna device forms at least two target beams that point in the same direction according to the second signal.
  • the antenna device may parse the second signal to obtain a control command, and the antenna device forms at least two target beams that point in the same direction according to the control command.
  • the manner in which the antenna device forms a target beam pointing in the same direction may be that the antenna device adjusts its own transmit tilt angle to control the direction of the transmit beam to form a directional beam.
  • the manner of adjusting the tilt angle is also different.
  • the inclination angle of the straight line can be adjusted.
  • the cone structure is tapered.
  • the tilt angle is adjusted based on the mid-perpendicular line, and the specific shape of the antenna head end is not limited herein, so the manner of adjusting the tilt angle is not limited.
  • the specific beam direction may be, for example, that the beam A and the beam B are directed at a 30-degree angle, and the beam C is pointed.
  • the beams A, B, and C can be directed at a 30-degree angular direction
  • the beams D and E can be directed at a 60-degree angular direction.
  • all beams can be uniformly controlled, such as beam A. , B, C all point to the same direction.
  • the specific orientation of the beam is not limited herein, and only needs to satisfy at least two target beams pointing in the same direction.
  • the antenna device sends the target radio frequency signal through the target beam.
  • the manner in which the antenna device transmits the target radio frequency signal through the target beam may be that the antenna device carries the target radio frequency signal through the target beam.
  • the target beam is a beam directed to the UE.
  • the antenna device forming at least two target beams pointing in the same direction can be implemented by controlling the weighting coefficients. Please refer to FIG. 3, which will be described below.
  • the target radio frequency signal and the BF control signal sent by the DRH are sent to the antenna device;
  • the DRH after receiving the first signal and the BF control signal, the DRH converts the first signal into a target radio frequency signal, and then transmits the target radio frequency signal and the BF control signal to the antenna device.
  • the first signal carries user data
  • the target radio frequency signal also carries user data
  • the target radio frequency signal is used for transmitting the antenna to the user equipment or the server
  • the BF control signal is used to control the antenna device to form a directivity target beam.
  • the antenna device determines a weighting coefficient of the antenna device according to the BF control signal.
  • the antenna device can obtain the weighting coefficients of the antenna device according to the parameters in the control signal.
  • the weighting coefficient of the antenna device may be an amplitude weighting coefficient of the antenna array, or may be a phase weighting coefficient of the antenna array, which is not limited herein.
  • the amplitude weighting is to apply different weights to the radiation amplitude of the antenna elements in the antenna device, thereby controlling the directivity of the beam.
  • the phase weighting is to apply different weights to the radiation phases of the antenna elements in the antenna device, and the amplitude information formed by the plurality of phase superpositions is converted into signal phase information, thereby controlling the directivity of the beams.
  • the manner in which the antenna device obtains the weighting coefficient according to the BF control coefficient may be that the antenna device determines the parameter according to the BF control signal in the frequency corresponding frequency band, and then the antenna device determines the optimization criterion according to the system performance index requirement of the antenna, and The parameter is used as the independent variable of the optimization criterion to obtain the weighting coefficient.
  • the weighting coefficient includes but is not limited to the horizontal and vertical wave width, the azimuth angle, etc., and supports multiple preset modes for the operator to flexibly adopt, for example, A dense urban high-rise building is equipped with a beam pattern, a suburban coverage, and the like, and a beam pattern pattern is provided.
  • the antenna device forms at least two target beams that point in the same direction according to the weighting coefficient.
  • the antenna device may adjust the amplitude of the beam according to the coefficient of the target beam to form at least two target beams pointing in the same direction, or adjust the phase of the beam according to the coefficient of the target beam phase to form at least two directions pointing in the same direction.
  • the target beam may also adjust the amplitude of the beam according to the coefficient of the target beam amplitude, and adjust the phase of the beam according to the coefficient of the target beam phase to form at least two target beams pointing in the same direction. The details are not limited herein.
  • the weighting coefficient may be a coefficient of the target beam amplitude, or may be a coefficient of the target beam phase, and may also include a coefficient of the target beam amplitude and a coefficient of the target beam phase.
  • the antenna device may adjust the amplitude of the beam according to the coefficient of the target beam amplitude to form at least two target beams pointing in the same direction.
  • the antenna device may change the amplitude value of the antenna element radiation by the amplitude weighting (such as the level). And vertical wave width, azimuth, etc.), to achieve the superposition of the target beam amplitude, thereby achieving the directionality of beam pointing.
  • the antenna device adjusts the phase of the beam according to the coefficient of the target beam phase to form at least two target beams pointing in the same direction.
  • the antenna device may change the phase of the phase shifter by the phase weighting method to change the beam phase. (such as horizontal and vertical wave width, azimuth, etc.), the target beams are approximately coincident, thus achieving the directionality of beam pointing.
  • the beam A and the beam B may be directed at a 30-degree angle
  • the beam C points to the 60-degree angle direction
  • the beams D and E point to the 60-degree angle direction.
  • all beams can be uniformly controlled, for example, Beams A, B, and C all point in the same direction.
  • the specific orientation of the beam is not limited herein, and only needs to satisfy at least two target beams pointing in the same direction.
  • the structure of the antenna head end is similar to the step 202 of the embodiment, and the structure is different, and the manner of adjusting the tilt angle is also different.
  • the antenna device transmits the target radio frequency signal by using the target beam.
  • the manner in which the antenna device transmits the target radio frequency signal through the target beam is similar to the step 203 in the embodiment shown in FIG. 2, and details are not described herein again.
  • FIG. 2 and FIG. 3 illustrate an embodiment of the present application from the perspective of an antenna device. Referring to FIG. 4, an embodiment of the present application will be described below from the perspective of DRH.
  • user A first sends target data to the base station, and the base station generates a first signal to carry the user data, and generates a BF control signal for controlling the antenna head end, and the base station sets the first signal.
  • the BF control signal is sent to the DCU, and then the DCU transfers to the DRH.
  • the DRH receives the two types of signals and then distinguishes them.
  • the first signal is frequency-modulated to generate a target RF signal, and then the target RF signal and the control signal are sent to the antenna device.
  • the antenna head also needs to distinguish between two types of signals.
  • the control signal is used to adjust the weighting coefficients of the antenna device to form at least two target beams pointing in the same direction, and then the target beam is used to transmit the target RF signal to achieve the aggregate beam energy to transmit the user data. purpose.
  • the DRH determines a first signal from the first signal and the second signal.
  • the DRH receives the first signal and the second signal sent by the base station.
  • the base station first sends the first signal and the second signal to the DCU, and then the DCU transfers to the DRH, and then the DRH is based on the first signal. Different from the second signal frequency, the first signal is determined. It should be noted that, besides determining the first signal from the first signal and the second signal according to the frequency, it may be determined according to other manners. For example, the first signal and the second signal respectively carry a signal identifier, and the signal identifier is used to distinguish different signals. The specific manner in which the DRH determines the first signal from the first signal and the second signal is not limited herein.
  • the first signal is a signal carrying user data.
  • the DRH generates a target radio frequency signal according to the first signal, where the target radio frequency signal is different from the second signal frequency;
  • the DRH After the DRH determines the first signal, before the first signal is transmitted through the antenna head end, since the antenna head end can only transmit the radio frequency signal, the DRH needs to first convert the first signal into the target radio frequency signal, and the specific conversion manner may be the frequency. modulation.
  • the frequencies of the target radio frequency signal and the second signal are different, and the antenna device can distinguish the two types of signals received according to the frequency.
  • the DRH sends the target radio frequency signal and the second signal to the antenna device.
  • the DRH can transmit the target radio frequency signal and the second signal to the antenna device through the radio frequency feeder.
  • the target radio frequency signal is a high frequency signal
  • the second signal may be a high frequency signal or a low frequency signal, which is not limited herein.
  • the antenna device generates at least two target beam transmitting target radio frequency signals that are directed in the same direction according to the second signal.
  • the manner in which the antenna device forms at least two target beams in the same direction according to the second signal is similar to the step 202 in the embodiment shown in FIG. 2, and details are not described herein.
  • the embodiment of the present application has been described above from the perspective of a signal transmission method. Referring to FIG. 5, the embodiment of the present application will be described from the perspective of an antenna device.
  • the receiving unit 501 is configured to receive the target radio frequency signal and the second signal sent by the distributed antenna system remote unit DRH, where the target radio frequency signal is generated by the DRH according to the first signal sent by the base station, where the first signal is used to carry the user. Data, the target radio frequency signal and the second signal have different frequencies;
  • Forming unit 502 configured to form at least two target beams pointing in the same direction according to the second signal
  • the sending unit 503 is configured to send the target radio frequency signal by using the target beam.
  • the forming unit 502 forms at least two target beams pointing in the same direction according to the second signal, and the sending unit 503 sends the target radio frequency signal through the target beam.
  • the receiving unit 601 is configured to receive the target radio frequency signal and the second signal sent by the distributed antenna system remote unit DRH, where the target radio frequency signal is generated by the DRH according to the first signal sent by the base station, where the first signal is used to carry the user. Data, the target radio frequency signal and the second signal have different frequencies;
  • Forming unit 602 configured to form at least two target beams pointing in the same direction according to the second signal
  • the sending unit 603 is configured to send the target radio frequency signal by using the target beam.
  • the forming unit comprises:
  • a determining module 6021 configured to determine a weighting coefficient of the antenna device according to the BF control signal
  • the forming module 6022 is configured to form at least two target beams pointing in the same direction according to the weighting coefficient.
  • the forming module 6022 forms at least two target beams pointing in the same direction according to the weighting coefficient, and achieves the focusing antenna by controlling the weighting coefficient of the antenna device.
  • the purpose of energy increases the feasibility of the program.
  • the receiving unit 701 is configured to receive the target radio frequency signal and the second signal sent by the distributed antenna system remote unit DRH, where the target radio frequency signal is generated by the DRH according to the first signal sent by the base station, where the first signal is used to carry the user. Data, the target radio frequency signal and the second signal have different frequencies;
  • Forming unit 702 configured to form at least two target beams pointing in the same direction according to the second signal
  • the sending unit 703 is configured to send the target radio frequency signal by using the target beam.
  • the forming unit comprises:
  • a determining module 7021 configured to determine a weighting coefficient of the antenna device according to the BF control signal
  • the forming module 7022 is configured to form at least two target beams pointing in the same direction according to the weighting coefficient.
  • the forming module comprises:
  • the first adjustment sub-module 70221 is configured to adjust the amplitude of the beam according to the coefficient of the target beam amplitude to form at least two target beams that point in the same direction;
  • a second adjustment sub-module 70222 configured to adjust a phase of the beam according to a coefficient of a target beam phase to form at least two target beams that point in the same direction;
  • the third adjustment sub-module 70223 is configured to adjust the amplitude of the beam according to the coefficient of the target beam amplitude, and adjust the phase of the beam according to the coefficient of the target beam phase to form at least two target beams that point in the same direction.
  • the flexibility of the scheme is increased by enumerating a plurality of manners of forming at least two target beams pointing in the same direction according to weighting coefficients.
  • the embodiment of the present application has been described above from the perspective of the antenna device. Referring to FIG. 8, the embodiment of the present application will be described from the perspective of the remote antenna unit of the distributed antenna system.
  • a determining unit 801 configured to determine a first signal from the first signal and the second signal, where the first signal is used to carry user data;
  • the generating unit 802 is configured to generate a target radio frequency signal according to the first signal, where the target radio frequency signal is different from the second signal frequency;
  • the transmitting unit 803 is configured to use the target radio frequency signal and the second signal to the antenna device, where the second signal is used by the antenna device to form at least two target beam transmitting target radio frequency signals that are directed in the same direction, and the antenna device includes at least two antenna head ends. .
  • the determining unit 801 determines that the first signal post generating unit 802 generates a target radio frequency signal according to the first signal, and the transmitting unit 803 transmits the target radio frequency signal and the second signal to the antenna device, so that the antenna device can be based on the second signal. At least two target beams pointing in the same direction are formed and the target RF signal is transmitted using the beam.
  • the manner of determining the first signal from the first signal and the second signal may be determined according to a frequency. Please refer to FIG. 9, which will be described below.
  • a determining unit 901 configured to determine a first signal from the first signal and the second signal, where the first signal is used to carry user data;
  • the generating unit 902 is configured to generate a target radio frequency signal according to the first signal, where the target radio frequency signal is different from the second signal frequency;
  • the transmitting unit 903 is configured to use the target radio frequency signal and the second signal to the antenna device, where the second signal is used by the antenna device to form at least two target beam transmitting target radio frequency signals pointing in the same direction, and the antenna device includes at least two antenna head ends .
  • the determining unit comprises:
  • the determining module 9011 is configured to determine the first signal from the first signal and the second signal according to a frequency.
  • the determining module 9011 determines the first signal by frequency, which increases the diversity of the scheme.
  • the embodiment of the present application provides a schematic diagram of another antenna structure, as shown in FIG.
  • the antenna device provided by the embodiment of the present application includes a plurality of receivers 1001, a transmitter 1002, an antenna array 1003, and an antenna head end 1005.
  • the antenna array 1003 shown in this embodiment includes at least one antenna unit 1004.
  • the specific number of the antenna unit 1004 included in the antenna array 1003 is not limited in this embodiment.
  • the antenna array 1003 includes four antenna units 1004 as an example. Description.
  • the first antenna head end 1005 is connected to the receiver 1001, and the different first head line end 1005 is connected to different receivers 1001.
  • the second antenna head end 1006 is coupled to the receiver 1002, and the different second antenna head end 1006 is coupled to a different one of the receivers 1002.
  • the number of the transmitter and the receiver is not limited, and the number of the transmitter and the receiver does not need to be equal, so that the antenna device in this embodiment can be applied to different scenarios, and In the embodiment, the antenna device is simplified, thereby effectively improving the yield of the antenna device and reducing the loss of the antenna. Volume and weight for the user to install and use.
  • the embodiment of the present application further provides a distributed antenna system remote unit, including:
  • FIG. 11 is a schematic diagram of a DRH structure according to an embodiment of the present application.
  • the DRH 1100 may have a large difference due to different configurations or performances, and may include one or more central processing units (CPUs) 1122 (for example, One or more processors) and memory 1132, one or more storage media 1130 that store application 1142 or data 1144 (eg, one or one storage device in Shanghai).
  • the memory 1132 and the storage medium 1130 may be short-term storage or persistent storage.
  • the program stored on storage medium 1130 may include one or more modules (not shown), each of which may include a series of instruction operations in the DRH.
  • the central processor 1122 can be configured to communicate with the storage medium 1130 to perform a series of instruction operations in the storage medium 1130 on the DRH 1100.
  • the DRH 1100 may also include one or more power supplies 1126, one or more wired or wireless network interfaces 1150, one or more input and output interfaces 1158, and/or one or more operating systems 1141, such as Windows ServerTM, Mac OS XTM , UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 1141 such as Windows ServerTM, Mac OS XTM , UnixTM, LinuxTM, FreeBSDTM and more.
  • the steps performed by the DRH in the above embodiment may be based on the DRH structure shown in FIG.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a local client, or a network device, etc.) to perform all or part of the steps of the various embodiments of Figures 2 through 4 of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信号传输方法及其相关设备,用于根据第二信号形成至少两条指向相同方向的目标波束发送目标射频信号。本申请实施例方法包括:所述天线装置接收分布式天线***拉远单元DRH发送的目标射频信号和第二信号,所述目标射频信号为所述DRH根据基站发送的第一信号生成的,所述第一信号用于携带用户数据,所述目标射频信号和所述第二信号的频率不同;所述天线装置根据所述第二信号形成至少两条指向相同方向的目标波束;所述天线装置通过所述目标波束发送所述目标射频信号。

Description

一种信号传输方法及其相关设备
本申请要求于2017年10月26号提交中国专利局,申请号为201711018925.9、发明名称为“一种信号传输方法及其相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线领域,尤其涉及一种信号传输方法及其相关设备。
背景技术
无线电波分布在3Hz到3000GHz之间,在这个频谱内划分为12个带,其中,低频段传播损耗小,覆盖距离远,但是低频段***容量有限,能传播的数据信息有限,高频段***能量大,能传播更多的数据信息,但是传播损耗较大,导致覆盖距离有限。随着人们对移动通信的需求越累越高,需要的频率资源的容量也越来越大,有效利用高频段的资源成为必然。
如何在利用高频段资源进行数据传输时,还能有效避免其覆盖距离有限的缺陷呢?分布式天线装置***(distributed antenna system,DAS)是一种信号中继和信号放大***,由多组天线装置形成一个网络阵列,能够在不增加基站数量的情况下提高网络覆盖,DAS***中的拉远单元DRH接收基站传送的数据信息后将其转换为射频信号传送给天线装置头端,由天线装置头端进行信号发射,天线装置头端采用全向或者定向天线装置,因此所发射信号的覆盖方向是确定的。波束成形(beamforming,BF)技术是一种通过形成窄波束将天线装置能量集中到一定区域,其主要任务是补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,同时降低同信道用户间的干扰,波束成形可以使将无线信号只按特定方向传播,好处是可以在期望方向上获得更好的无线信号质量,从而提高覆盖和性能。例如对用户设备进行数据传输时,可以将发射能量聚集,可以形成对准用户设备的窄波束,然后将该数据信息进行变换后发送利用该窄波束发送至用户设备。
在DAS***中,由于天线装置发射信号的方向是确定的,其信号覆盖的方向也是确定的,而波束成形技术是通过控制多个天线头端的无线发射信号,形成具有指向的波束,使无线发射信号都指向同一方向从而实现多个天线装置能量的聚集,因此在DAS***中,由于天线装置发射信号方向的确定性,无法使用波束成型技术改变无线信号即天线所发射的射频信号的发射方向,发射相同功率的信号,没有经过波束赋型的信号的覆盖范围明显比经过波束赋型的信号的覆盖范围少。
发明内容
本申请实施例公开了一种信号传输方法及其相关设备,用于根据第二信号形成至少两条指向相同方向的目标波束发送目标射频信号。
本申请实施例第一方面提供了一种信号传输方法,该信号传输方法应用于天线装置,该天线装置可以包括至少两个天线头端,其特征在于,该信号传输方法可以包括:
基站接收用户数据后,生成第一信号携带用户数据,同时生成用于控制天线装置发射 波束指向性的第二信号,随后基站发送第一信号和第二信号至DRH,DRH将第一信号转变为目标射频信号,随后中转至天线装置,天线装置接收DRH发送的目标射频信号和第二信号,目标射频信号和该第二信号的频率不同;
天线装置根据该第二信号调整目标波束的倾角形成至少两条指向相同方向的目标波束;
天线装置通过将目标射频信号加载在目标波束上,随目标波束一起发送至用户设备。
在本实施例中,天线装置通过接收携带用户数据的目标射频信号和控制波束指向性的第二信号后,根据第二信号形成至少两条指向相同方向的目标波束,随后利用该目标波束发送目标射频信号,实现在DAS***中是通过控制波束指向性实现波束能量叠加,再利用叠加后的波束能量发送目标射频信号的目的。
基于第一方面,在本申请实施例第一方面的第一种实施方式中,其特征在于,该第二信号,可以包括:
波束成形BF控制信号。
在本实施例中,通过限定第二信号为波束成形BF控制信号,增加了方案的可实施性。
基于第一方面的第一种实施方式,在本申请实施例第一方面的第二种实施方式中,其特征在于,该天线装置根据该第二信号形成至少两条指向相同方向的目标波束可以包括:
天线装置根据该BF控制信号可以确定该天线装置的加权系数;
该天线装置根据该加权系数控制波束的指向性,形成至少两条指向相同方向的目标波束。
在本实施例中,通过BF控制信号控制天线装置的加权系数从而控制波束的指向性,达到波束能量的聚集,从而实现在DAS***中运用波束成形技术的目的。
基于第一方面的第二种实施方式,在本申请实施例第一方面的第三种实施方式中,其特征在于,该天线装置的加权系数可以是该天线装置根据该BF控制信号中的参数得到的。
在本实施例中,通过详细描述BF控制信号中的参数是得到加权系数的必要因素,增加了方案的实用性。
基于第一方面的第二种实施方式或第一方面的第三种实施方式,在本申请实施例第一方面的第四种实施方式中,其特征在于,该天线装置根据该加权系数形成至少两条指向相同方向的目标波束可以包括:
该天线装置可以根据目标波束幅度的系数调整波束的幅度,实现波束的叠加,形成至少两条指向相同方向的目标波束;
或,
该天线装置可以根据目标波束相位的系数调整波束的相位,实现波束的叠加,形成至少两条指向相同方向的该目标波束;
或,
该天线装置可以根据该目标波束幅度的系数调整波束的幅度,且根据该目标波束相位 的系数调整波束的相位,实现波束的叠加,形成至少两条指向相同方向的该目标波束。
在本实施例中,通过具体化如何根据加权系数形成至少两条指向相同方向的目标波束,增加了方案实施的灵活性和多样性。
本申请实施例第二方面提供了一种数据传输方法,其特征在于,可以包括:
DRH接收到一个信号集合,在信号集合中包括第一信号和第二信号,随后DRH从第一信号和第二信号中确定该第一信号,该第一信号用于携带用户数据;
由于天线装置只能发送射频信号,因此该DRH需要根据第一信号生成目标射频信号,该目标射频信号与该第二信号频率不同,以便天线装置对两类信号进行区分;
DRH发送该目标射频信号和该第二信号至天线装置,其中,天线装置根据第二信号控制自身发射波束的指向性,形成至少两条指向相同方向的目标波束,该天线装置可以包括至少两个天线头端。
在本实施例中,通过从DRH的角度详细描述DRH接收两类信号后对第一信号进行处理,并将处理后的第一信号和第二信号发送至天线装置,实现了在DAS***中控制天线装置发射的目标波束的倾角达到波束能量的叠加的目的。
基于第二方面,在本申请实施例第二方面的第一种实施方式中,其特征在于,该DRH从第一信号和第二信号中确定该第一信号可以包括:
DRH接收第一信号和第二信号的信号集合后,可以根据频率从该第一信号和该第二信号中确定第一信号。
在本实施例中,详细介绍DRH如何从第一信号和第二信号的信号集合中确定第一信号,增加了方案的多样性。
本申请实施例第三方面提供了一种天线装置,该天线装置可以包括至少两个天线头端,其特征在于,该天线装置可以包括:
接收单元,可以用于接收分布式天线***拉远单元DRH发送的目标射频信号和第二信号,该目标射频信号为该DRH根据基站发送的第一信号生成的,该第一信号用于携带用户数据,该目标射频信号和该第二信号的频率不同;
形成单元,可以用于根据该第二信号形成至少两条指向相同方向的目标波束;
发送单元,可以用于通过该目标波束发送该目标射频信号。
在本实施例中,接收单元接收目标射频信号和第二信号后,形成单元根据第二信号形成至少两条指向相同方向的目标波束,发送单元利用该目标波束发送目标射频信号,实现通过发送第二信号控制目标波束发射倾角,从而天线能量的聚集,并利用聚集的天线能量发送目标射频信号的目的。
基于第三方面,在本申请实施例第三方面的第一种实施方式中,其特征在于,该形成单元可以包括:
确定模块,可以用于根据BF控制信号确定该天线装置的加权系数;
形成模块,可以用于根据该加权系数形成至少两条指向相同方向的目标波束。
在本实施例中,通过BF控制信号控制天线装置的加权系数从而控制波束的指向性,达到波束能量的聚集,从而实现在DAS***中运用波束成形技术的目的。
基于第三方面的第一种实施方式,在本申请实施例第三方面的第二种实施方式中,其特征在于,该形成模块可以包括:
第一调整子模块,可以用于根据目标波束幅度的系数调整波束的幅度形成至少两条指向相同方向的该目标波束;
或,
第二调整子模块,可以用于根据目标波束相位的系数调整波束的相位形成至少两条指向相同方向的该目标波束;
或,
第三调整子模块,可以用于根据该目标波束幅度的系数调整波束的幅度,且根据该目标波束相位的系数调整波束的相位,形成至少两条指向相同方向的该目标波束。
在本实施例中,通过具体化如何根据加权系数形成至少两条指向相同方向的目标波束,增加了方案实施的灵活性和多样性。
本申请实施例第四方面提供了一种分布式天线***拉远单元,其特征在于,可以包括:
确定单元,用于从第一信号和第二信号中确定该第一信号,该第一信号用于携带用户数据;
生成单元,用于根据该第一信号生成目标射频信号,该目标射频信号与该第二信号频率不同;
发送单元,用于发送该目标射频信号和该第二信号至天线装置,其中,该第二信号用于该天线装置形成至少两条指向相同方向的目标波束发送该目标射频信号,该天线装置可以包括至少两个天线头端。
在本实施例中,通过从DRH的角度详细描述DRH接收两类信号后对第一信号进行处理,并将处理后的第一信号和第二信号发送至天线装置,实现了在DAS***中控制天线装置发射的目标波束的倾角达到波束能量的叠加的目的。
基于第四方面,在本申请实施例第四方面的第一种实施方式中,其特征在于,该确定单元可以包括:
确定模块,用于根据频率从该第一信号和该第二信号中确定该第一信号。
在本实施例中,详细介绍DRH如何从第一信号和第二信号的信号集合中确定第一信号,增加了方案的多样性。
本申请第五方面提供了一种天线装置,可以包括:接收机、发送机、天线阵列;
其中,该接收机用于接收基站发送的信号;
其中,该天线阵列可以包括天线头端,用于执行如第一方面及其第一方面的第一种至第四种实现方式中任一项实现方式的方法。
本申请第六方面提供一种分布式天线***拉远单元,可以包括:存储器、收发器、处理器以及总线***;
其中,该存储器用于存储程序和指令;
该收发器用于在该处理器的控制下接收或发送信息;
该处理器用于执行该存储器中的程序;
该总线***用于连接该存储器、该收发器以及该处理器,以使该存储器、该收发器以及该处理器进行通信;
其中,该处理器用于调用该存储器中的程序指令,执行如第二方面及其第二方面的第一种实现方式的方法。
本申请实施例七方面提供了一种计算机可读存储介质,可以包括指令,当指令在计算机上运行时,使得计算机执行如第一方面以及第一方面的第一种至第四种实现方式、第二方面及其第二方面的第一种实现方式、第三方面以及第三方面的第一种至第二种实现方式、第四方面其第四方面的第一种实现方式中的任一种实现方式的方法。
本申请实施例八方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如第一方面以及第一方面的第一种至第四种实现方式、第二方面及其第二方面的第一种实现方式、第三方面以及第三方面的第一种至第二种实现方式、第四方面其第四方面的第一种实现方式中的任一种实现方式的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:在包括至少两个天线头端的天线装置中,天线装置除了接收第二信号外还接收目标射频信号,其中目标射频信号来源于携带用户数据的第一信号,天线装置根据第二信号生成至少两条指向相同方向的目标波束,并利用此目标波束发送目标射频信号。在本实施例中,在包括至少两个天线头端的天线装置中,利用DRH***进行目标数据传输的同时,可以发送第二信号控制至天线装置形成指向相同方向的目标波束,并利用此目标波束发送目标射频信号,从而实现在DAS***中,发射一定功率的信号时,可以通过波束赋型技术改变目标射频信号发射方向,提高信号覆盖范围的目的。
附图说明
图1为本申请典型的DAS***解决方案图;
图2为本申请实施例的一种信号传输方法的示意图;
图3为本申请实施例的另一种信号传输方法的示意图;
图4为本申请实施例的另一种信号传输方法的示意图;
图5为本申请实施例天线装置的一个实施例示意图;
图6为本申请实施例天线装置的另一个实施例示意图;
图7为本申请实施例天线装置的另一个实施例示意图;
图8为本申请实施例分布式天线***拉远单元DRH的一个实施例示意图;
图9为本申请实施例分布式天线***拉远单元DRH的另一个实施例示意图;
图10为本申请实施例天线装置的另一个实施例示意图;
图11为本申请实施例分布式天线***拉远单元DRH的另一个实施例示意图。
具体实施方式
在本申请实施例中,基站101发送用户数据和控制信号给DAS,经过处理后通过 DAS102的天线头端发射射频信号至用户设备(user equipment,UE)103,从而完成用户数据的传输。其中,如图1所示,DAS包括分布式天线***控制单元(DAS control unit,DCU)1021、分布式天线***拉远单元(DAS remote head,DRH)1022、天线装置1023等组成,天线装置1023可以是包括多单根天线按一定的规律排列而成的天线***,每个单根天线包括一个天线头端10231,基站发送的用户数据转变为射频信号后发送至该天线头端10231,随后该天线头端发送给用户设备103,同时基站发送的BF控制信号也发给至该天线头端10231,从而控制天线头端的发射倾角,使得至少两个天线头端发射的波束指向同一方向。
需要说明的是,在本申请实施例中DRH可以用于射频拉远,具体的,DRH是一个可以根据频率区分控制信号和用户数据的单元,并将用户数据转变为目标射频信号,DRH对控制信号可以进行一定的处理也可以直接转发给天线头端,具体此处不作限定,需要说明的是,DRH对控制信号处理的方式可以是进行调频,也可以是其他方式,具体此处不作限定。
在本申请实施例中,天线装置可以包括处理***,能对接收到的控制信号进行处理后根据该控制信号形成至少两条指向相同的方向的目标波束。
在本申请实施例中,提供了一种信号传输方法,该信号传输方法应用于天线装置,该天线装置包括至少两个天线头端,请参照图2,下面将对进行说明。
201、天线装置接收分布式天线***拉远单元DRH发送的目标射频信号和第二信号;
在本实施例中,基站发送第一信号和第二信号至DAS***,DAS***中的DCU单元接收两类型号并中转至DRH单元,DRH接收到第一信号和第二信号后,根据信号频率对第一信号和第二信号进行区分,其中,第一信号携带用户数据。
需要说明的是,第二信号用于控制天线装置形成至少两条指向相同方向的目标波束,在本申请实施例中引入波束成形技术用以达到此目的,因此第二信号可以为BF控制信号,在实际应用中也可以为其他控制信号,具体此处不作限定。
随后,DRH将第一控制信号进行调制形成一定频率的射频信号,该射频信号的频率与第二信号不同,以便天线装置进行区分不同的信号,随后DRH将该射频信号和第二信号发送至天线装置。
需要说明的是,DRH发送信号至天线装置可以通过射频馈缆,或者也可以通过无线传输等方式发送,具体此处不做限定。
202、天线装置根据第二信号形成至少两条指向相同方向的目标波束;
在本实施例中,天线装置接收第二信号后,可以对该第二信号进行解析得到控制指令,天线装置根据该控制指令形成至少两条指向相同方向的目标波束。
在本实施例中,天线装置形成指向相同方向的目标波束的方式可以是天线装置调整自身发射倾角从而控制发射波束的方向形成定向波束。
在本实施例中,根据天线头端的结构不同,调整倾角的方式也不同,例如天线头端为细条状结构时,可以调整直线的倾角,当天线头端为锥形结构时,以锥型结构的中垂线为基础调整倾角角度,天线头端的具体形状此处不作限定,因此调整倾角的方式也不做限 定。
在本实施例中,天线装置所形成的至少两条指向相同方向的波束,当有多条波束存在时,具体波束指向的形式例如可以是波束A和波束B指向30度角方向,波束C指向60度角方向,也可以为波束A、B、C指向30度角方向,波束D、E指向60度角方向,除了对波束进行分别控制外,还可以对所有波束进行统一控制,例如波束A、B、C都指向同一方向。波束的具体指向形成此处不作限定,只需满足存在至少两条指向相同方向的目标波束即可。
203、天线装置通过目标波束发送目标射频信号。
在本实施例中,天线装置通过目标波束发送目标射频信号的方式可以是天线装置通过目标波束携带目标射频信号。
在本实施例中,目标波束为指向UE的波束。
在本申请实施例中,天线装置形成至少两条指向相同方向的目标波束可以通过对加权系数的控制来实现的,请参照图3,下面将进行说明。
301、DRH发送的目标射频信号和BF控制信号至天线装置;
在本实施例中,DRH接收第一信号和BF控制信号后,将第一信号转换为目标射频信号,随后将目标射频信号和BF控制信号发送至天线装置。该第一信号携带有用户数据,因此该目标射频信号中也携带有用户数据,目标射频信号用于天线发送至用户设备或服务器,BF控制信号用于控制天线装置形成指向性的目标波束。
302、天线装置根据BF控制信号确定天线装置的加权系数;
在本实施例中,天线装置可以根据控制信号中的参数得到天线装置的加权系数。
在本实施例中,天线装置的加权系数可以为天线阵列的幅度加权系数,也可以为天线阵列的相位加权系数,具体此处不作限定。
在本实施例中,幅度加权就是对天线装置中天线阵元的辐射幅度加以不同的权值,从而控制波束的指向性。相位加权就是对天线装置中天线阵元的辐射相位加以不同的权值,通过多个相位叠加形成的幅度信息变换成信号相位信息,从而控制波束的指向性。
在本实施例中,天线装置根据BF控制系数得到加权系数的方式可以是天线装置在频率对应的频段上根据BF控制信号确定参数,随后天线装置根据自身的***性能指标要求确定优化准则,并将该参数作为该优化准则的自变量得到加权系数,在本实施例中,加权系数包括但不限于水平和垂直波宽、方位角等,还支持多种预设模式,供运营商灵活采用,例如密集城区高楼覆盖配套一种波束模式pattern、郊区覆盖等多个场景配套一种波束模式pattern等。
303、天线装置根据加权系数形成至少两条指向相同方向的目标波束;
在本实施例中,天线装置可以根据目标波束幅度的系数调整波束的幅度形成至少两条指向相同方向的目标波束,也可以根据目标波束相位的系数调整波束的相位形成至少两条指向相同方向的目标波束,还可以为同时根据目标波束幅度的系数调整波束的幅度,且根据目标波束相位的系数调整波束的相位,形成至少两条指向相同方向的目标波束。具体此处不作限定。
可以理解的是,在本实施例中,加权系数可以为目标波束幅度的系数,也可以为目标波束相位的系数,还可以既包括目标波束幅度的系数也包括目标波束相位的系数。
在本实施例中,天线装置可以根据目标波束幅度的系数调整波束的幅度形成至少两条指向相同方向的目标波束的方式可以是,天线装置通过幅度加权改变天线阵元辐射的幅度值(如水平和垂直波宽、方位角等),实现目标波束幅度的叠加,从而实现波束指向的定向性。
在本实施例中,天线装置根据目标波束相位的系数调整波束的相位形成至少两条指向相同方向的目标波束的方式可以是,天线装置可以通过相位加权方法改变移相器的值从而改变波束相位(如水平和垂直波宽、方位角等),使目标波束近似重合,从而实现波束指向的定向性。
在本实施例中,当有多条波束存在时,天线装置所形成的至少两条指向相同方向目标波束的形式与实施例步骤202类似,可以是波束A和波束B指向30度角方向,波束C指向60度角方向,也可以为波束A、B、C指向30度角方向,波束D、E指向60度角方向,除了对波束进行分别控制外,还可以对所有波束进行统一控制,例如波束A、B、C都指向同一方向。波束的具体指向形成此处不作限定,只需满足存在至少两条指向相同方向的目标波束即可。
在本实施例中,天线头端的结构与与实施例步骤202类似,结构不同,调整倾角的方式也不同。
304、该天线装置通过该目标波束发送该目标射频信号。
在本实施例中,天线装置通过该目标波束发送该目标射频信号的方式与图2所示实施例中的步骤203类似,具体此处不再赘述。
图2和图3从天线装置的角度对本申请实施例进行了描述,请参照图4,下面将从DRH的角度对本申请实施例进行说明。
下面将结合具体的应用场景对本实施例进行说明。
用户A与用户B在进行通信的过程中,首先用户A发送目标数据至基站,基站生成第一信号携带该用户数据,同时生成BF控制信号用于对天线头端进行控制,基站将第一信号和BF控制信号发送至DCU,随后DCU中转至DRH,DRH接收到两类信号后进行区分,首先对第一信号进行频率调制生成目标射频信号,随后将目标射频信号和控制信号发送至天线装置,天线头端也需要对两类信号进行区分,利用控制信号调整天线装置的加权系数形成至少两条指向相同方向的目标波束,随后利用该目标波束发送目标射频信号,达到聚集波束能量发送用户数据的目的。
401、DRH从第一信号和第二信号中确定第一信号;
DRH接收基站发送的第一信号和第二信号,当DAS***中包括有DCU时,基站先将第一信号和第二信号发送至DCU后,DCU再中转至DRH,随后,DRH根据第一信号和第二信号频率的不同,确定第一信号,需要说明的是,除了根据频率不同从第一信号和第二信号中确定第一信号外,还可以根据其他方式确定。例如,第一信号和第二信号分别携带有信号标识,该信号标识用以区分不同信号,DRH从第一信号和第二信号中确定第一信号的具体 方式此处不作限定。
在本实施例中,第一信号为携带有用户数据的信号。
402、DRH根据第一信号生成目标射频信号,目标射频信号与第二信号频率不同;
DRH确定第一信号后,在通过天线头端发射第一信号之前,由于天线头端只能发射射频信号,所以DRH需要先将第一信号转变为目标射频信号,具体转变的方式可以是通过频率调制。
在本实施例中,目标射频信号和第二信号的频率是不同的,天线装置可根据频率对收到的这两类信号进行区分。
403、DRH发送目标射频信号和第二信号至天线装置;
在本实施例中,DRH可以通过射频馈缆发送目标射频信号和第二信号至天线装置。
在本实施例中,目标射频信号为一个高频信号,第二信号可以为高频信号,也可以为低频信号,具体此处不作限定。
404、天线装置根据第二信号形成至少两条指向相同方向的目标波束发送目标射频信号。
天线装置根据第二信号形成至少两条指向相同方向的目标波束的方式与图2所示实施例步骤202类似,具体此处不在赘述。
上面从信号传输方法的角度对本申请实施例进行了描述,请参照图5,下面将从天线装置的角度对本申请实施例进行说明。
接收单元501,用于接收分布式天线***拉远单元DRH发送的目标射频信号和第二信号,该目标射频信号为该DRH根据基站发送的第一信号生成的,该第一信号用于携带用户数据,该目标射频信号和该第二信号的频率不同;
形成单元502,用于根据该第二信号形成至少两条指向相同方向的目标波束;
发送单元503,用于通过该目标波束发送该目标射频信号。
在本实施例中,接收单元501接收目标射频信号和第二信号后,形成单元502根据该第二信号形成至少两条指向相同方向的目标波束,发送单元503再通过目标波束发送目标射频信号,从而达到聚集波束能量发送用户数据的目的。
在本实施例中,根据第二信号形成至少两条指向相同方向的目标波束的方式有多种,请参照图6,下面对其中一种进行叙述。
接收单元601,用于接收分布式天线***拉远单元DRH发送的目标射频信号和第二信号,该目标射频信号为该DRH根据基站发送的第一信号生成的,该第一信号用于携带用户数据,该目标射频信号和该第二信号的频率不同;
形成单元602,用于根据该第二信号形成至少两条指向相同方向的目标波束;
发送单元603,用于通过该目标波束发送该目标射频信号。
其中,形成单元包括:
确定模块6021,用于根据BF控制信号确定该天线装置的加权系数;
形成模块6022,用于根据该加权系数形成至少两条指向相同方向的目标波束。
在本实施例中,通过确定模块6021根据BF控制信号确定天线装置的加权系数后形成 模块6022根据该加权系数形成至少两条指向相同方向的目标波束,通过对天线装置加权系数的控制达到聚集天线能量的目的,增加了方案的可实施性。
在本实施例中,根据加权系数形成至少两条指向相同方向的目标波束的方式有多种,请参照图7,下面将进行说明。
接收单元701,用于接收分布式天线***拉远单元DRH发送的目标射频信号和第二信号,该目标射频信号为该DRH根据基站发送的第一信号生成的,该第一信号用于携带用户数据,该目标射频信号和该第二信号的频率不同;
形成单元702,用于根据该第二信号形成至少两条指向相同方向的目标波束;
发送单元703,用于通过该目标波束发送该目标射频信号。
其中,形成单元包括:
确定模块7021,用于根据BF控制信号确定该天线装置的加权系数;
形成模块7022,用于根据该加权系数形成至少两条指向相同方向的目标波束。
其中,形成模块包括:
第一调整子模块70221,用于根据目标波束幅度的系数调整波束的幅度形成至少两条指向相同方向的目标波束;
或,
第二调整子模块70222,用于根据目标波束相位的系数调整波束的相位形成至少两条指向相同方向的目标波束;
或,
第三调整子模块70223,用于根据目标波束幅度的系数调整波束的幅度,且根据目标波束相位的系数调整波束的相位,形成至少两条指向相同方向的目标波束。
在本实施例中,通过列举多种根据加权系数形成至少两条指向相同方向的目标波束的方式,增加了方案的灵活性。
上面从天线装置的角度对本申请实施例进行了描述,请参照图8,下面将从分布式天线***拉远单元的角度对本申请实施例进行描述。
确定单元801,用于从第一信号和第二信号中确定第一信号,第一信号用于携带用户数据;
生成单元802,用于根据第一信号生成目标射频信号,目标射频信号与第二信号频率不同;
发送单元803,用于目标射频信号和第二信号至天线装置,其中,第二信号用于天线装置形成至少两条指向相同方向的目标波束发送目标射频信号,天线装置包括至少两个天线头端。
在本实施例中,确定单元801确定第一信号后生成单元802根据第一信号生成目标射频信号,发送单元803发送目标射频信号和第二信号至天线装置,从而使天线装置能根据第二信号形成至少两条指向相同方向的目标波束并利用该波束发送目标射频信号。
在本实施例中,从第一信号和第二信号中确定第一信号的方式可以是根据频率确定。请参照图9,下面将进行说明。
确定单元901,用于从第一信号和第二信号中确定第一信号,第一信号用于携带用户数据;
生成单元902,用于根据第一信号生成目标射频信号,目标射频信号与第二信号频率不同;
发送单元903,用于目标射频信号和第二信号至天线装置,其中,第二信号用于天线装置形成至少两条指向相同方向的目标波束发送目标射频信号,天线装置包括至少两个天线头端。
其中,确定单元包括:
确定模块9011,用于根据频率从该第一信号和该第二信号中确定该第一信号。
在本实施例中,确定模块9011通过频率确定第一信号,增加了方案的多样性。
本申请实施例提供了另一种天线结构的示意图,如图10所示。
本申请实施例提供的天线装置包括多个接收机1001、发射机1002及天线阵列1003、天线头端1005。
本实施例所示的天线阵列1003包括至少一个天线单元1004。
本实施例对该天线阵列1003所包括的该天线单元1004的具体数目不做限定,如图10所示为例,本实施例以该天线阵列1003包括有四个天线单元1004为例进行示例性说明。
具体的,该第一天线头端1005与接收机1001连接,且不同的该第一头线头端1005与不同的该接收机1001连接。
该第二天线头端1006与接收机1002连接,且不同的该第二天线头端1006与不同的该接收机1002连接。
本实施例该的天线装置,发射机和接收机在数量上没有限制,且该发射机和该接收的数量不需要对等,从而使得本实施例中的天线装置可以应用于不同的场景,且本实施例中天线装置进行简化,从而有效的提升了制作天线装置的成品率,降低了天线的损耗。体积及重量,以便用户安装及使用。
本申请实施例还提供了一种分布式天线***拉远单元,包括:
图11是本申请实施例提供的一种DRH结构示意图,该DRH1100可因配置或性能不同而产生比较大的差异,可以包括一个或一个以***处理器(central processing units,CPU)1122(例如,一个或一个以上处理器)和存储器1132,一个或一个以上存储应用程序1142或数据1144的存储介质1130(例如一个或一个以上海量存储设备)。其中,存储器1132和存储介质1130可以是短暂存储或持久存储。存储在存储介质1130的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对DRH中的一系列指令操作。更进一步地,中央处理器1122可以设置为与存储介质1130通信,在DRH1100上执行存储介质1130中的一系列指令操作。
DRH1100还可以包括一个或一个以上电源1126,一个或一个以上有线或无线网络接口1150,一个或一个以上输入输出接口1158,和/或,一个或一个以上操作***1141,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述实施例中由DRH所执行的步骤可以基于该图11所示的DRH结构。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,本地客户端,或者网络设备等)执行本申请图2至图4各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (12)

  1. 一种信号传输方法,所述信号传输方法应用于天线装置,所述天线装置包括至少两个天线头端,其特征在于,所述信号传输方法包括:
    所述天线装置接收分布式天线***拉远单元DRH发送的目标射频信号和第二信号,所述目标射频信号为所述DRH根据基站发送的第一信号生成的,所述第一信号用于携带用户数据,所述目标射频信号和所述第二信号的频率不同;
    所述天线装置根据所述第二信号形成至少两条指向相同方向的目标波束;
    所述天线装置通过所述目标波束发送所述目标射频信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第二信号包括:
    波束成形BF控制信号。
  3. 根据权利要求2所述的方法,其特征在于,所述天线装置根据所述第二信号形成至少两条指向相同方向的目标波束包括:
    所述天线装置根据所述BF控制信号确定所述天线装置的加权系数;
    所述天线装置根据所述加权系数形成至少两条指向相同方向的目标波束。
  4. 根据权利要求3所述的方法,其特征在于,所述天线装置的加权系数是所述天线装置根据所述BF控制信号中的参数得到的。
  5. 根据权利要求3或4所述的方法,其特征在于,所述天线装置根据所述加权系数形成至少两条指向相同方向的目标波束包括:
    所述天线装置根据目标波束幅度的系数调整波束的幅度形成至少两条指向相同方向的所述目标波束;
    或,
    所述天线装置根据目标波束相位的系数调整波束的相位形成至少两条指向相同方向的所述目标波束;
    或,
    所述天线装置根据所述目标波束幅度的系数调整波束的幅度,且根据所述目标波束相位的系数调整波束的相位,形成至少两条指向相同方向的所述目标波束。
  6. 一种信号传输方法,其特征在于,包括:
    分布式天线***拉远单元DRH从第一信号和第二信号中确定所述第一信号,所述第一信号用于携带用户数据;
    所述DRH根据所述第一信号生成目标射频信号,所述目标射频信号与所述第二信号频率不同;
    所述DRH发送所述目标射频信号和所述第二信号至天线装置,其中,所述第二信号用于所述天线装置形成至少两条指向相同方向的目标波束发送所述目标射频信号,所述天线装置包括至少两个天线头端。
  7. 根据权利要求6所述的方法,其特征在于,所述DRH从第一信号和第二信号中确定所述第一信号包括:
    所述DRH根据频率从所述第一信号和所述第二信号中确定所述第一信号。
  8. 一种天线装置,所述天线装置包括至少两个天线头端,其特征在于,所述天线装置包括:
    接收单元,用于接收分布式天线***拉远单元DRH发送的目标射频信号和第二信号,所述目标射频信号为所述DRH根据基站发送的第一信号生成的,所述第一信号用于携带用户数据,所述目标射频信号和所述第二信号的频率不同;
    形成单元,用于根据所述第二信号形成至少两条指向相同方向的目标波束;
    发送单元,用于通过所述目标波束发送所述目标射频信号。
  9. 根据权利要求8所述的天线装置,其特征在于,所述形成单元包括:
    确定模块,用于根据BF控制信号确定所述天线装置的加权系数;
    形成模块,用于根据所述加权系数形成至少两条指向相同方向的目标波束。
  10. 根据权利要求9所述的天线装置,其特征在于,所述形成模块包括:
    第一调整子模块,用于根据目标波束幅度的系数调整波束的幅度形成至少两条指向相同方向的所述目标波束;
    或,
    第二调整子模块,用于根据目标波束相位的系数调整波束的相位形成至少两条指向相同方向的所述目标波束;
    或,
    第三调整子模块,用于根据所述目标波束幅度的系数调整波束的幅度,且根据所述目标波束相位的系数调整波束的相位,形成至少两条指向相同方向的所述目标波束。
  11. 一种分布式天线***拉远单元,其特征在于,包括:
    确定单元,用于从第一信号和第二信号中确定所述第一信号,所述第一信号用于携带用户数据;
    生成单元,用于根据所述第一信号生成目标射频信号,所述目标射频信号与所述第二信号频率不同;
    发送单元,用于发送所述目标射频信号和所述第二信号至天线装置,其中,所述第二信号用于所述天线装置形成至少两条指向相同方向的目标波束发送所述目标射频信号,所述天线装置包括至少两个天线头端。
  12. 根据权利要求11所述的分布式天线***拉远单元,其特征在于,所述确定单元包括:
    确定模块,用于根据频率从所述第一信号和所述第二信号中确定所述第一信号。
PCT/CN2018/111604 2017-10-26 2018-10-24 一种信号传输方法及其相关设备 WO2019080862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711018925.9A CN109714083B (zh) 2017-10-26 2017-10-26 一种信号传输方法及其相关设备
CN201711018925.9 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019080862A1 true WO2019080862A1 (zh) 2019-05-02

Family

ID=66246213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111604 WO2019080862A1 (zh) 2017-10-26 2018-10-24 一种信号传输方法及其相关设备

Country Status (2)

Country Link
CN (1) CN109714083B (zh)
WO (1) WO2019080862A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195917A (zh) * 2010-03-09 2011-09-21 华为技术有限公司 协作通信中站点共用和确定站点小区标识的方法及装置
CN102404086A (zh) * 2010-09-17 2012-04-04 株式会社Ntt都科摩 多用户调度方法和装置以及波束赋形方法和装置
CN102916732A (zh) * 2011-08-02 2013-02-06 中兴通讯股份有限公司 一种实现超级小区数据传输的方法、***及控制站
US20140307610A1 (en) * 2013-04-12 2014-10-16 Alcatel-Lucent Usa Inc. Multimedia broadcast multicast services over distributed antenna system
CN105589058A (zh) * 2016-01-29 2016-05-18 宋春丽 一种天线装置及三维雷达***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20055483A0 (fi) * 2005-09-08 2005-09-08 Nokia Corp Datasiirtojärjestelmä langattomassa tietoliikennejärjestelmässä
US9319257B2 (en) * 2013-02-16 2016-04-19 Cable Television Laboratories, Inc. Multiple-input multiple-output (MIMO) communication system
CN111246492B (zh) * 2015-07-01 2021-12-10 华为技术有限公司 一种网络架构及资源配置方法
US9967081B2 (en) * 2015-12-04 2018-05-08 Hon Hai Precision Industry Co., Ltd. System and method for beamforming wth automatic amplitude and phase error calibration
US20170194704A1 (en) * 2016-01-05 2017-07-06 John Mezzalingua Associates, LLC Antenna having a beam interrupter for increased throughput

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195917A (zh) * 2010-03-09 2011-09-21 华为技术有限公司 协作通信中站点共用和确定站点小区标识的方法及装置
CN102404086A (zh) * 2010-09-17 2012-04-04 株式会社Ntt都科摩 多用户调度方法和装置以及波束赋形方法和装置
CN102916732A (zh) * 2011-08-02 2013-02-06 中兴通讯股份有限公司 一种实现超级小区数据传输的方法、***及控制站
US20140307610A1 (en) * 2013-04-12 2014-10-16 Alcatel-Lucent Usa Inc. Multimedia broadcast multicast services over distributed antenna system
CN105589058A (zh) * 2016-01-29 2016-05-18 宋春丽 一种天线装置及三维雷达***

Also Published As

Publication number Publication date
CN109714083A (zh) 2019-05-03
CN109714083B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2021120425A1 (zh) 一种毫米波全双工无人机通信中继传输方法
WO2017193953A1 (en) Methods and apparatus for generating beam pattern with wider beam width in phased antenna array
KR101772040B1 (ko) 이동통신 시스템에서 빠른 빔 링크 형성을 위한 방법 및 장치
CN103281711B (zh) 一种短距离无线宽带通信方法和***
WO2020088100A1 (zh) 一种增强移动通信基站空天覆盖能力的***及方法
WO2017045384A1 (en) System and method for fast beamforming setup
US20190207658A1 (en) Methods and apparatus for fixed broadband communication and backhaul access with large number of antennas
JP2017528031A (ja) ワイヤレスシステムにおける適応型ビーム配置のための方法
US11800375B2 (en) Beam training method, related apparatus, and system
US20210409089A1 (en) High spatial reuse for mmwave wi-fi
WO2017145493A1 (ja) 無線通信システム、送信装置、受信装置、及び通信方法
WO2018145529A1 (zh) 一种数据传输方法及装置
WO2018103297A1 (zh) 通信波束选择方法、装置及终端
CN107836087A (zh) 一种多用户场景下波束训练方法及装置
TW201622244A (zh) 階層式波束成型方法及其基地台與使用者設備
CN105900493B (zh) 一种发射信号的方法、装置和***
CN104639220B (zh) 一种采用智能天线的信号收发装置和方法
CN109995408B (zh) 一种天线***及网络设备
KR102648240B1 (ko) 스마트 안테나 기반의 최적의 빔 선택방법 및 그를 위한 장치
WO2020258995A1 (zh) 一种基于非独立组网nsa***的波束管理方法和装置
CN107637155A (zh) 一种波束调整方法及装置
CN109495153B (zh) 用于波束训练与跟踪的异构网络、移动装置及方法
WO2019080862A1 (zh) 一种信号传输方法及其相关设备
CN105721030B (zh) 一种波束赋型方法及基站
Zhou et al. Throughput and robustness guaranteed beam tracking for mmWave wireless networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871505

Country of ref document: EP

Kind code of ref document: A1