WO2020258995A1 - 一种基于非独立组网nsa***的波束管理方法和装置 - Google Patents

一种基于非独立组网nsa***的波束管理方法和装置 Download PDF

Info

Publication number
WO2020258995A1
WO2020258995A1 PCT/CN2020/084326 CN2020084326W WO2020258995A1 WO 2020258995 A1 WO2020258995 A1 WO 2020258995A1 CN 2020084326 W CN2020084326 W CN 2020084326W WO 2020258995 A1 WO2020258995 A1 WO 2020258995A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
target user
beams
measurement information
angle range
Prior art date
Application number
PCT/CN2020/084326
Other languages
English (en)
French (fr)
Inventor
陶勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020258995A1 publication Critical patent/WO2020258995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, in particular to a beam management method and device based on a non-independent networking NSA system.
  • Beamforming technology is one of the core technologies of 5G communication.
  • the beamforming technology focuses the energy of the wireless signal to form a precise directional beam (Beam), which generates stronger signal gain to overcome the path loss, thereby providing a strong guarantee for the transmission quality of 5G wireless signals.
  • the base station After the beamforming technology is adopted, usually the narrower the beam, the larger the signal gain, but the smaller the corresponding coverage area. Once the beam direction deviates from the user, the user cannot receive high-quality wireless signals. Therefore, 5G base stations must use more Only a beam of different directions can fully cover the cell. In the downlink process, the base station sequentially uses beams of different directions to transmit wireless signals, and determines the best transmit beam (Beam determination) aimed at the user according to user feedback. To make things more complicated, users also have antenna arrays. This means that in the process of beam alignment, both the transmitting beam and the receiving beam must be considered.
  • the 5G standard allows users to transform different receive beams on the transmit beam and select the best receive beam from them, thereby generating a pair of best transmit-receive beams.
  • the best transmit-receive beam pairs corresponding to user 1 and user 2 are (t4, r3) and (t6, r2), respectively.
  • This scanning process of beam alignment and matching is called beam management technology.
  • the beam generated by a large-scale antenna array usually needs to be very narrow.
  • the price paid is that the base station needs to use a large number of narrow beams to ensure that users in any direction in the cell can be effectively covered.
  • the strategy of traversing and scanning all narrow beams to find the best transmit-receive beam appears to be time-consuming and laborious, which is inconsistent with the user experience expected by 5G.
  • the best transmit-receive beam will change with the user's location.
  • the embodiments of the present application provide a beam management method and device based on a non-independent networking NSA system.
  • the embodiment of the present application provides a beam management method based on a non-independent networking NSA system.
  • the method includes: scanning a target user in an area covered by the first base station in the NSA system to determine the location of the target user Angle range: the second base station in the NSA system scans the azimuth angle range where the target user is located to determine the matching beam between the second base station and the target user.
  • the embodiments of the present application also provide a beam management method based on a non-independent networking NSA system.
  • the method includes: a terminal receives M first beams transmitted by a first base station, and performs processing on the M first beams.
  • the beam performs intensity measurement, and M is an integer greater than or equal to 1; the first beam measurement information is fed back to the first base station, and the first beam measurement information is performed by the terminal according to the M first beams transmitted by the first base station Obtained by intensity measurement; the terminal receives the N second beams transmitted by the second base station, and performs intensity measurement on the N second beams, where N is an integer greater than 1, and feeds back the second beam measurement information to the second base station
  • the second beam measurement information is obtained by the terminal through intensity measurement according to the N second beams transmitted by the first base station.
  • an embodiment of the present application also provides a beam management device based on a non-independent networking NSA system, including: a first scanning module configured to scan targets in the coverage area through the first base station in the NSA system The user determines the azimuth angle range where the target user is located; the second scanning module is configured to scan the azimuth angle range where the target user is located through the second base station in the NSA system to determine the matching beam between the second base station and the target user.
  • an embodiment of the present application also provides a beam management device based on a non-independent networking NSA system, including: a first measurement module configured to receive M first beams transmitted by a first base station, and to respond to the M Perform intensity measurement on the first beams, and M is an integer greater than or equal to 1.
  • the first feedback module is configured to feed back first beam measurement information to the first base station, where the first beam measurement information indicates that the terminal is M first beams transmitted by a base station are obtained by intensity measurement;
  • the second measurement module is configured to receive N second beams transmitted by a second base station, and perform intensity measurement on the N second beams, where N is greater than An integer of 1;
  • the second feedback module is configured to feed back second beam measurement information to the second base station, where the second beam measurement information is obtained by the terminal according to the intensity measurement of the N second beams transmitted by the first base station of.
  • an embodiment of the present application also provides a beam management device based on a non-independent networking NSA system, including a memory and a processor, the memory stores a program, and the program is read and executed by the processor.
  • a beam management device based on a non-independent networking NSA system, including a memory and a processor, the memory stores a program, and the program is read and executed by the processor.
  • embodiments of the present application further provide a computer-readable storage medium, wherein the computer-readable storage medium stores one or more programs, and the one or more programs can be used by one or more processors Is executed to implement the beam management method based on the non-independent networking NSA system as described in the first aspect or the second aspect.
  • Figure 1 is a schematic diagram of the principle of the best transmitting-receiving beam in the related technology
  • FIG. 2 is a flowchart of a beam management method based on a non-independent networking NSA system according to an embodiment of the application;
  • FIG. 3 is a flowchart of a beam management method based on a non-independent networking NSA system according to an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a beam management device based on a non-independent networking NSA system according to an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of a first scanning module according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a second scanning module according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a beam management device based on a non-independent networking NSA system according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of a beam management process based on a non-independent networking NSA system according to an embodiment of the application;
  • FIG. 9 is a flowchart of a beam management device based on a non-independent networking NSA system provided by an embodiment of the present application.
  • Fig. 10 is a block diagram of a computer-readable storage medium according to an embodiment of the present application.
  • the embodiment of the application provides a beam management method based on a non-independent networking NSA system. As shown in FIG. 2, the method includes:
  • the first base station in the NSA system scans the target user in the covered area in an all-round way to determine the azimuth angle range where the target user is located;
  • S102 Scan the azimuth angle range where the target user is located by the second base station in the NSA system, and determine a matching beam between the second base station and the target user.
  • Non-Standalone, independent networking There are currently two ways to build and deploy 5G networks: SA (Standalone, independent networking) and NSA (Non-Standalone, non-independent networking). Among them, non-independent networking refers to the use of existing 4G infrastructure. Carry out 5G network deployment.
  • the coverage of 4G base stations is larger than that of 5G base stations.
  • the coverage of 5G base stations is smaller than that of 4G base stations, areas with 4G coverage and no 5G coverage will not provide 5G services and will not switch to 5G base stations;
  • the coverage of 5G base stations can be increased by increasing the transmission power, so that the coverage of 5G base stations is consistent with that of 4G base stations.
  • the 5G base station cell handover is actually the handover of different matched beams, and the specific cell handover method is consistent with the 4G base station cell handover method.
  • the step S101 to scan the target users in the covered area by the first base station in the NSA system in an all-round way includes:
  • M is an integer greater than or equal to 1;
  • the 4G base station performs beam scanning on the covered area based on the M first beams.
  • scanning the azimuth angle range where the target user is located by the second base station in the NSA system in step S102 includes:
  • N second beams to the azimuth angle range where the target user is located through the beam antenna of the 5G base station, where N is an integer greater than 1;
  • the 5G base station scans the azimuth angle range where the target user is located based on the N second beam traversal.
  • beam scanning matching management is performed in two stages:
  • the 4G base station in the NSA architecture is used to cover 5G users in an all-round and large range in real time.
  • 5G users in the coverage area can be tracked in real time, and the user's azimuth and angle range is obtained and fed back to the 5G base station;
  • the 5G base station uses multiple narrow beams to scan the user azimuth angle range covered by the 4G base station in the first stage one by one. For a single user, although the scanning beam is narrowed at this time, the required scanning range has been reduced, and the number of scanning will be reduced accordingly. At this time, the 5G base station has improved the accuracy of the beam direction aimed at each user, and the quality of the established wireless communication connection has been improved. As a result, fine scanning of the best matching beam is achieved.
  • This embodiment provides a solution for determining the azimuth angle range where the target user is located on the basis of the first embodiment.
  • step S101 to determine the azimuth angle range where the target user is located includes:
  • the first beam measurement information is obtained by the target user through intensity measurement according to the M first beams transmitted by the first base station;
  • 4G base stations use beams with different directions to transmit wireless signals in turn. This process is called beam sweeping.
  • users measure the wireless signals emitted by different beams (Beam measurement) and report relevant information to the 4G base station ( Beam reporting); the base station determines the azimuth angle range aimed at the user according to the user report.
  • Beam measurement the wireless signals emitted by different beams
  • Beam reporting the base station determines the azimuth angle range aimed at the user according to the user report.
  • step S102 determining the matching beam between the second base station and the target user includes:
  • the second beam measurement information is obtained by the target user through intensity measurement according to the N second beams transmitted by the second base station;
  • the number of second beams corresponding to each first beam may be the same or different.
  • the first beam A may correspond to three second beams
  • the first beam B may correspond to four second beams
  • the first beam may correspond to four second beams.
  • One beam C corresponds to four second beams
  • the first beam D also corresponds to four second beams.
  • the specific correspondence relationship depends on the deployment of the NSA system.
  • an embodiment of the present application also provides 6.
  • a beam management method based on a non-independent networking NSA system wherein the method includes:
  • S201 The terminal receives M first beams transmitted by the first base station, and performs intensity measurement on the M first beams, where M is an integer greater than or equal to 1.
  • S202 Feed back first beam measurement information to the first base station, where the first beam measurement information is obtained by the terminal according to the intensity measurement of the M first beams transmitted by the first base station;
  • S203 The terminal receives N second beams transmitted by the second base station, and performs intensity measurement on the N second beams, where N is an integer greater than 1.
  • S204 Feed back second beam measurement information to the second base station, where the second beam measurement information is obtained by the terminal through intensity measurement according to the N second beams transmitted by the first base station.
  • the terminal will receive the first beam transmitted by the first base station, and record its own reception quality of each first beam. After the transmission of the first beam of the first base station is completed, the terminal can compare its own reception quality of each first beam, and then use the first beam with the best quality from the M first beams as the selected beam. It is understandable that there may be more than one selected beam in this embodiment. For example, in addition to the beam with the best reception quality, the beam with the second best reception quality can also be selected.
  • the terminal receiving the second beam measures its own reception quality for each second beam, and then compares the N second beams The second beam with the best quality is used as the matching beam.
  • an embodiment of the present application also provides a beam management device based on a non-independent networking NSA system, including:
  • the first scanning module 100 is configured to scan the target user in the covered area through the first base station in the NSA system to determine the azimuth angle range where the target user is located;
  • the second scanning module 200 is configured to scan the azimuth angle range where the target user is located through the second base station in the NSA system to determine the matching beam between the second base station and the target user.
  • the first base station is a 4G base station
  • the second base station is a 5G base station.
  • the first scanning module scans the target users in the area covered by the first base station in the NSA system including:
  • M is an integer greater than or equal to 1;
  • the 4G base station performs beam scanning on the covered area based on the M first beams.
  • the first scanning module includes: a first communication unit 10 and a second analysis unit 20:
  • the first communication unit is configured to receive first beam measurement information sent by a target user; the first beam measurement information is obtained by the target user through intensity measurement according to the M first beams transmitted by the first base station;
  • the first analysis unit is configured to determine the azimuth angle range where the target user is located according to the first beam measurement information of the target user.
  • the azimuth angle range where the second scanning module scans the target user through the second base station in the NSA system includes:
  • N second beams to the azimuth angle range where the target user is located through the beam antenna of the 5G base station, where N is an integer greater than 1;
  • the 5G base station scans the azimuth angle range where the target user is located based on the N second beam traversal.
  • the second scanning module 200 includes: a second communication unit 30 and a second analysis unit 40:
  • the second communication unit 30 is configured to receive second beam measurement information sent by a target user; the second beam measurement information is obtained by the target user through intensity measurement according to the N second beams transmitted by the second base station;
  • the second analysis unit 40 is configured to determine the best transmit-receive beam corresponding to the target user according to the second beam measurement information of the target user.
  • an embodiment of the present application also provides a beam management device based on a non-independent networking NSA system, including:
  • the first measurement module 300 is configured to receive M first beams transmitted by the first base station and perform intensity measurement on the M first beams, where M is an integer greater than or equal to 1;
  • the first feedback module 400 is configured to feed back first beam measurement information to the first base station, where the first beam measurement information is obtained by the terminal through intensity measurement according to the M first beams transmitted by the first base station;
  • the second measurement module 500 is configured to receive N second beams transmitted by the second base station, and perform intensity measurement on the N second beams, where N is an integer greater than 1;
  • the second feedback module 600 is configured to feed back second beam measurement information to the second base station, where the second beam measurement information is obtained by the terminal according to the intensity measurement of the N second beams transmitted by the first base station.
  • the 5G base station based on the 4G base station covering a wide range of tracking, the 5G base station only needs to continue to scan the 4 narrow beams related to each user, for example, scan beams t1-t4 for user 1. Therefore, in the NSA-based beam management process shown in FIG. 8, the base station only needs to scan 4 times for each user, instead of scanning all 12 beams.
  • the beam management method based on the NSA system utilizes the characteristics of large-scale omnidirectional real-time coverage of 4G base stations under 5G NSA (non-independent networking), which effectively reduces the range and frequency of 5G beam matching traversal scanning, reduces resource waste, and affects base stations and users.
  • 5G NSA non-independent networking
  • the gradual increase in the number of array antennas is particularly obvious, while providing seamless coverage for users to ensure that communication is not interrupted or dropped, and communication quality is improved.
  • the process of the 5G array antenna beam management party based on the NSA system is as follows:
  • the NSA base station analysis and control system analyzes and processes the above-mentioned user information, controls the corresponding 5G beam to perform fine scans for users in this direction, and determines the best matching beam between the 5G base station and the user;
  • an embodiment of the present application provides a beam management device 90 based on a non-independent networking NSA system, including a memory 910 and a processor 920.
  • the memory 910 stores a program, and the program is When the processor 920 reads and executes, it implements the beam management method based on the non-independent networking NSA system described in any of the embodiments.
  • an embodiment of the present application provides a computer-readable storage medium 1000.
  • the computer-readable storage medium 1000 stores one or more programs 1010, and the one or more programs 1010 can be used by one or
  • the multiple processors are executed to implement the beam management method based on the non-independent networking NSA system described in any embodiment.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Sexual, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了一种基于非独立组网NSA***的波束管理方法和装置,所述方法包括:通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户,确定目标用户所在的方位角度范围;通过NSA***中的第二基站扫描目标用户所在的方位角度范围,确定第二基站与所述目标用户之间的匹配波束。

Description

一种基于非独立组网NSA***的波束管理方法和装置
相关申请的交叉引用
本申请基于申请号为201910553389.5、申请日为2019年6月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及移动通信技术领域,尤指一种基于非独立组网NSA***的波束管理方法和装置。
背景技术
波束成形技术是5G通信的核心技术之一。波束成形技术会对无线信号的能量产生聚焦,形成一个精确指向性波束(Beam),产生更强的信号增益来克服路损,从而为5G无线信号的传输质量提供了强有力的保障。
采用波束成形技术之后,通常波束越窄,信号增益越大,但相应的覆盖区域就越小,一旦波束的指向偏离用户,用户反而接收不到高质量的无线信号,所以,5G基站须使用多个不同指向的波束才能完全覆盖小区。在下行过程中,基站依次使用不同指向的波束发射无线信号,根据用户反馈确定对准该用户的最佳发射波束(Beam determination)。更为复杂的是,用户也有天线阵列。这意味着,在波束对准的过程中既要考虑发射波束,也要考虑接收波束。为此,5G标准允许用户对发射波束变换不同的接收波束,并从中选择最佳接收波束,由此产生一对最佳发射—接收波束。如图1所示,用户1和用户2所对应的最佳发射—接收波束对分别为(t4,r3)和(t6,r2)。这个波束对准匹配的扫描过程称为波束管理技术。
实际上,为保证最终得到足够的信号增益,大规模天线阵列所产生的波 束通常需要变得很窄。付出的代价是,基站需要使用大量的窄波束才能保证小区内任意方向上的用户都能得到有效覆盖。在此情况下,遍历扫描全部窄波束来寻找最佳发射—接收波束的策略显得费时费力,与5G所期望的用户体验不符。同时,考虑到用户可能处于移动状态,最佳发射—接收波束会随着用户的位置而发生变化,为了更好地跟踪用户(Beam tracking),寻找最佳发射—接收波束,需要反复进行遍历扫描过程,不断切换最佳发射—接收波束,为用户提供无缝覆盖,保证通信不中断、不掉线,这无疑增加了波束管理***的复杂程度及通信的实时效果。
发明内容
本申请实施例提供了一种基于非独立组网NSA***的波束管理方法和装置。
本申请实施例提供了一种基于非独立组网NSA***的波束管理方法,所述方法包括:通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户,确定目标用户所在的方位角度范围;通过NSA***中的第二基站扫描目标用户所在的方位角度范围,确定第二基站与所述目标用户之间的匹配波束。
第二方面,本申请实施例还提供一种基于非独立组网NSA***的波束管理方法,所述方法包括:终端接收第一基站发射的M个第一波束,并对所述M个第一波束进行强度测量,M为大于或者等于1的整数;向所述第一基站反馈第一波束测量信息,所述第一波束测量信息为所述终端根据第一基站发射的M个第一波束进行强度测量获得的;终端接收第二基站发射的N个第二波束,并对所述N个第二波束进行强度测量,N为大于1的整数;向所述第二基站反馈第二波束测量信息,所述第二波束测量信息为所述终端根据第一基站发射的N个第二波束进行强度测量获得的。
第三方面,本申请实施例还提供一种基于非独立组网NSA***的波束管理装置,包括:第一扫描模块,设置为通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户,确定目标用户所在的方位角度范围;第二扫描模块,设置为通过NSA***中的第二基站扫描目标用户所在的方位角度范围,确定第二基站与所述目标用户之间的匹配波束。
第四方面,本申请实施例还提供一种基于非独立组网NSA***的波束管理装置,包括:第一测量模块,设置为接收第一基站发射的M个第一波束,并对所述M个第一波束进行强度测量,M为大于或者等于1的整数;第一反馈模块,设置为向所述第一基站反馈第一波束测量信息,所述第一波束测量信息为所述终端根据第一基站发射的M个第一波束进行强度测量获得的;第二测量模块,设置为接收第二基站发射的N个第二波束,并对所述N个第二波束进行强度测量,N为大于1的整数;第二反馈模块,设置为向所述第二基站反馈第二波束测量信息,所述第二波束测量信息为所述终端根据第一基站发射的N个第二波束进行强度测量获得的。
第五方面,本申请实施例还提供一种基于非独立组网NSA***的波束管理设备,包括:存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现如第一方面或第二方面所述的基于非独立组网NSA***的波束管理方法。
第六方面,本申请实施例还提供一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如第一方面或第二方面所述的基于非独立组网NSA***的波束管理方法。
本申请实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请实施例技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请实施例的技术方案,并不构成对本申请实施例技术方案的限制。
图1为相关技术中的最佳发射—接收波束的原理示意图;
图2为本申请实施例的基于非独立组网NSA***的波束管理方法的流程图;
图3为本申请实施例的基于非独立组网NSA***的波束管理方法的流程图;
图4为本申请实施例的基于非独立组网NSA***的波束管理装置的结构示意图;
图5为本申请实施例的第一扫描模块的结构示意图;
图6为本申请实施例的第二扫描模块的结构示意图;
图7为本申请实施例的基于非独立组网NSA***的波束管理装置的结构示意图;
图8为本申请实施例的基于非独立组网NSA***的波束管理过程的示意图;
图9是本申请一实施例提供的基于非独立组网NSA***的波束管理设备流程图;
图10是本申请一实施例提供的计算机可读存储介质框图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一
本申请实施例提供了一种基于非独立组网NSA***的波束管理方法,如图2所示,所述方法包括:
S101、通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户,确定目标用户所在的方位角度范围;
S102、通过NSA***中的第二基站扫描目标用户所在的方位角度范围,确定第二基站与所述目标用户之间的匹配波束。
目前建设和部署5G网络分为两种方式:SA(Standalone,独立组网)和NSA(Non-Standalone,非独立组网),其中,非独立组网指的是使用现有的4G基础设施,进行5G网络部署。
NSA***中,相同发射功率下,4G基站覆盖范围比5G基站大,当5G基站覆盖范围比4G基站覆盖范围小时,有4G覆盖没有5G覆盖的区域不提供5G服务,不切换到5G基站;实际部署中可以通过增加发射功率增加5G基站覆盖范围,从而使得5G基站覆盖范围与4G基站覆盖范围一致。
在本申请的示例性实施例中,NSA***中,5G基站小区切换实际就是不同匹配波束的切换,具体小区切换方法与4G基站小区切换方法一致。
在本申请的示例性实施例中,步骤S101通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户包括:
利用4G基站中全向天线或定向天线发射M个第一波束,M为大于或者等于1的整数;
所述4G基站基于M个第一波束对所覆盖区域进行波束扫描。
在本申请的示例性实施例中,步骤S102通过NSA***中的第二基站扫描目标用户所在的方位角度范围包括:
通过5G基站的波束天线向目标用户所在的方位角度范围发射N个第二波束,N为大于1的整数;
所述5G基站基于N个第二波束遍历扫描目标用户所在的方位角度范围。
在本申请的示例性实施例中,波束扫描匹配管理分两个阶段进行:
第一阶段、利用NSA架构中的4G基站进行全方位大范围实时覆盖5G用户,通过该4G基站可以实时跟踪覆盖范围内的5G用户,得到用户所在的方位角度范围并反馈给5G基站;
第二阶段、5G基站利用多个窄波束逐一扫描已在第一阶段中被4G基站覆盖的用户方位角度范围。对单个用户而言,尽管此时的扫描波束变窄,但 所需扫描的范围却已缩小,扫描次数便相应减少。此时,5G基站改善了对准每个用户的波束方向的精度,所建立的无线通信连接质量得到提高。由此,实现最佳匹配波束的细扫描。
实施例二
该实施例在实施例一的基础上给出了确定目标用户所在的方位角度范围的方案。
在本申请的示例性实施例中,步骤S101确定目标用户所在的方位角度范围包括:
接收目标用户发送的第一波束测量信息;所述第一波束测量信息为目标用户根据第一基站发射的M个第一波束进行强度测量获得的;
根据所述目标用户的第一波束测量信息,确定所述目标用户所在的方位角度范围。
4G基站依次使用不同指向的波束发射无线信号,该过程被称作波束扫描(Beam sweeping);与此同时,用户测量不同波束发射出的无线信号(Beam measurement),并向4G基站报告相关信息(Beam reporting);基站根据用户报告确定对准该用户的方位角度范围。
在本申请的示例性实施例中,与步骤S101相应的,步骤S102确定第二基站与所述目标用户之间的匹配波束包括:
接收目标用户发送的第二波束测量信息;所述第二波束测量信息为目标用户根据第二基站发射的N个第二波束进行强度测量获得的;
根据所述目标用户的第二波束测量信息,确定所述目标用户对应的最佳发射—接收波束。
本申请实施例中,每个第一波束对应的第二波束的数量可以相同或者不同,例如,可以第一波束A对应3个第二波束,第一波束B对应4个第二波束,或者第一波束C对应4个第二波束,第一波束D也对应4个第二波束,具体的对应关系,依据NSA***的部署。
实施例三
如图3所示,本申请实施例还提供6.一种基于非独立组网NSA***的波束管理方法,其中,所述方法包括:
S201、终端接收第一基站发射的M个第一波束,并对所述M个第一波束进行强度测量,M为大于或者等于1的整数;
S202、向所述第一基站反馈第一波束测量信息,所述第一波束测量信息为所述终端根据第一基站发射的M个第一波束进行强度测量获得的;
S203、终端接收第二基站发射的N个第二波束,并对所述N个第二波束进行强度测量,N为大于1的整数;
S204、向所述第二基站反馈第二波束测量信息,所述第二波束测量信息为所述终端根据第一基站发射的N个第二波束进行强度测量获得的。
在本申请的示例性实施例中,终端都会接收第一基站发射的第一波束,并记录自身对各个第一波束的接收质量。当第一基站第一波束发射完成之后,终端可以比较自身对各第一波束的接收质量,进而从M个第一波束中将质量最好的第一波束作为选择波束。可以理解的是,本实施例中的选择波束可以不只一个,例如除了接收质量最好的波束,还包括还可以选择接收质量次佳的波束等。
在本申请的示例性实施例中,与终端接收第一基站发射的第一波束相似地,接收第二波束的终端测量自身对各个第二波束的接收质量,进而从N个第二波束中将质量最好的第二波束作为匹配波束。
实施例四
如图4所示,本申请实施例还提供一种基于非独立组网NSA***的波束管理装置,包括:
第一扫描模块100,设置为通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户,确定目标用户所在的方位角度范围;
第二扫描模块200,设置为通过NSA***中的第二基站扫描目标用户所在的方位角度范围,确定第二基站与所述目标用户之间的匹配波束。
在本申请的示例性实施例中,所述第一基站为4G基站,所述第二基站为5G基站。
在本申请的示例性实施例中,所述第一扫描模块通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户包括:
利用4G基站中全向天线或定向天线发射M个第一波束,M为大于或者等于1的整数;
所述4G基站基于M个第一波束对所覆盖区域进行波束扫描。
在本申请的示例性实施例中,如图5所示,所述第一扫描模块包括:第一通信单元10和第二分析单元20:
所述第一通信单元,设置为接收目标用户发送的第一波束测量信息;所述第一波束测量信息为目标用户根据第一基站发射的M个第一波束进行强度测量获得的;
所述第一分析单元,设置为根据所述目标用户的第一波束测量信息,确定所述目标用户所在的方位角度范围。
在本申请的示例性实施例中,所述第二扫描模块通过NSA***中的第二基站扫描目标用户所在的方位角度范围包括:
通过5G基站的波束天线向目标用户所在的方位角度范围发射N个第二波束,N为大于1的整数;
所述5G基站基于N个第二波束遍历扫描目标用户所在的方位角度范围。
在本申请的示例性实施例中,如图6所示,所述第二扫描模块200包括:第二通信单元30和第二分析单元40:
所述第二通信单元30,设置为接收目标用户发送的第二波束测量信息;所述第二波束测量信息为目标用户根据第二基站发射的N个第二波束进行强度测量获得的;
所述第二分析单元40,设置为根据所述目标用户的第二波束测量信息, 确定所述目标用户对应的最佳发射—接收波束。
实施例五
如图7所示,本申请实施例还提供一种基于非独立组网NSA***的波束管理装置,包括:
第一测量模块300,设置为接收第一基站发射的M个第一波束,并对所述M个第一波束进行强度测量,M为大于或者等于1的整数;
第一反馈模块400,设置为向所述第一基站反馈第一波束测量信息,所述第一波束测量信息为所述终端根据第一基站发射的M个第一波束进行强度测量获得的;
第二测量模块500,设置为接收第二基站发射的N个第二波束,并对所述N个第二波束进行强度测量,N为大于1的整数;
第二反馈模块600,设置为向所述第二基站反馈第二波束测量信息,所述第二波束测量信息为所述终端根据第一基站发射的N个第二波束进行强度测量获得的。
实施例六
如图8所示,以4G基站使用120度定向天线为例,则只需3个天线即可完成S1、S2、S3全方位覆盖,所以通过该4G基站可以实时跟踪覆盖范围内的5G用户,得到用户位置信息(位于S3方向上)并反馈给5G基站控制***。
在图8中,在4G基站覆盖大范围跟踪的基础上,5G基站只需继续细化扫描与各用户有关的4个窄波束,比如为用户1扫描波束t1-t4。因此,在图8所示的基于NSA的波束管理过程中,基站只需为每位用户扫描4次,而无需对全部12个波束都进行扫描。
基于NSA***的波束管理方法利用了5G NSA(非独立组网)下4G基站大范围全方向实时覆盖的特性,有效减少5G波束匹配遍历扫描的范围、次数, 减少资源浪费,而且对基站和用户阵列天线数逐渐增多尤为明显,同时为用户提供无缝覆盖,保证通信不中断、不掉线,提高通信质量。
实施例七
在本申请的示例性实施例中,基于NSA***的5G阵列天线波束管理方的过程如下:
(1)通过NSA***中的4G基站全方位扫描所覆盖区域内的所有5G用户,将得到的用户位置等信息传递到基站分析控制***;
(2)NSA基站分析控制***对上述用户信息分析处理,控制相应的5G波束对该方向上的用户进行精细扫描,确定5G基站和用户之间的最佳匹配波束;
(3)重复操作1)和2),实时匹配切换最佳波束,为用户提供无缝覆盖,保证通信不中断、不掉线,提高通信质量。
如图9所示,本申请一实施例提供一种基于非独立组网NSA***的波束管理设备90,包括存储器910和处理器920,所述存储器910存储有程序,所述程序在被所述处理器920读取执行时,实现任一实施例所述的基于非独立组网NSA***的波束管理方法。
如图10所示,本申请一实施例提供一种计算机可读存储介质1000,所述计算机可读存储介质1000存储有一个或者多个程序1010,所述一个或者多个程序1010可被一个或者多个处理器执行,以实现任一实施例所述的基于非独立组网NSA***的波束管理方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一 个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (15)

  1. 一种基于非独立组网NSA***的波束管理方法,包括:
    通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户,确定目标用户所在的方位角度范围;
    通过NSA***中的第二基站扫描目标用户所在的方位角度范围,确定第二基站与所述目标用户之间的匹配波束。
  2. 根据权利要求1所述的方法,其中,通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户包括:
    利用4G基站中全向天线或定向天线发射M个第一波束,M为大于或者等于1的整数;
    所述4G基站基于M个第一波束对所覆盖区域进行波束扫描。
  3. 根据权利要求2所述的方法,其中,确定目标用户所在的方位角度范围包括:
    接收目标用户发送的第一波束测量信息;所述第一波束测量信息为目标用户根据第一基站发射的M个第一波束进行强度测量获得的;
    根据所述目标用户的第一波束测量信息,确定所述目标用户所在的方位角度范围。
  4. 根据权利要求1或2所述的方法,其中,通过NSA***中的第二基站扫描目标用户所在的方位角度范围包括:
    通过5G基站的波束天线向目标用户所在的方位角度范围发射N个第二波束,N为大于1的整数;
    所述5G基站基于N个第二波束遍历扫描目标用户所在的方位角度范围。
  5. 根据权利要求4所述的方法,其中,确定第二基站与所述目标用户之间的匹配波束包括:
    接收目标用户发送的第二波束测量信息;所述第二波束测量信息为目标用户根据第二基站发射的N个第二波束进行强度测量获得的;
    根据所述目标用户的第二波束测量信息,确定所述目标用户对应的最佳发射—接收波束。
  6. 一种基于非独立组网NSA***的波束管理方法,包括:
    终端接收第一基站发射的M个第一波束,并对所述M个第一波束进行强度测量,M为大于或者等于1的整数;
    向所述第一基站反馈第一波束测量信息,所述第一波束测量信息为所述终端根据第一基站发射的M个第一波束进行强度测量获得的;
    终端接收第二基站发射的N个第二波束,并对所述N个第二波束进行强度测量,N为大于1的整数;
    向所述第二基站反馈第二波束测量信息,所述第二波束测量信息为所述终端根据第一基站发射的N个第二波束进行强度测量获得的。
  7. 一种基于非独立组网NSA***的波束管理装置,包括:
    第一扫描模块,设置为通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户,确定目标用户所在的方位角度范围;
    第二扫描模块,设置为通过NSA***中的第二基站扫描目标用户所在的方位角度范围,确定第二基站与所述目标用户之间的匹配波束。
  8. 根据权利要求7所述的装置,其中,
    所述第一基站为4G基站,所述第二基站为5G基站。
  9. 根据权利要求8所述的装置,其中,所述第一扫描模块通过NSA***中的第一基站全方位扫描所覆盖区域内的目标用户包括:
    利用4G基站中全向天线或定向天线发射M个第一波束,M为大于或者等于1的整数;
    所述4G基站基于M个第一波束对所覆盖区域进行波束扫描。
  10. 根据权利要求8所述的装置,其中,所述第一扫描模块包括:第一通信单元和第一分析单元:
    所述第一通信单元,设置为接收目标用户发送的第一波束测量信息;所 述第一波束测量信息为目标用户根据第一基站发射的M个第一波束进行强度测量获得的;
    所述第一分析单元,设置为根据所述目标用户的第一波束测量信息,确定所述目标用户所在的方位角度范围。
  11. 根据权利要求8所述的装置,其中,所述第二扫描模块通过NSA***中的第二基站扫描目标用户所在的方位角度范围包括:
    通过5G基站的波束天线向目标用户所在的方位角度范围发射N个第二波束,N为大于1的整数;
    所述5G基站基于N个第二波束遍历扫描目标用户所在的方位角度范围。
  12. 根据权利要求11所述的装置,其中,所述第二扫描模块包括:第二通信单元和第二分析单元:
    所述第二通信单元,设置为接收目标用户发送的第二波束测量信息;所述第二波束测量信息为目标用户根据第二基站发射的N个第二波束进行强度测量获得的;
    所述第二分析单元,设置为根据所述目标用户的第二波束测量信息,确定所述目标用户对应的最佳发射—接收波束。
  13. 一种基于非独立组网NSA***的波束管理装置,包括:
    第一测量模块,设置为接收第一基站发射的M个第一波束,并对所述M个第一波束进行强度测量,M为大于或者等于1的整数;
    第一反馈模块,设置为向所述第一基站反馈第一波束测量信息,所述第一波束测量信息为所述终端根据第一基站发射的M个第一波束进行强度测量获得的;
    第二测量模块,设置为接收第二基站发射的N个第二波束,并对所述N个第二波束进行强度测量,N为大于1的整数;
    第二反馈模块,设置为向所述第二基站反馈第二波束测量信息,所述第二波束测量信息为所述终端根据第一基站发射的N个第二波束进行强度测量获得的。
  14. 一种基于非独立组网NSA***的波束管理设备,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现如权利要求1至6任一所述的基于非独立组网NSA***的波束管理方法。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至6任一所述的基于非独立组网NSA***的波束管理方法。
PCT/CN2020/084326 2019-06-25 2020-04-10 一种基于非独立组网nsa***的波束管理方法和装置 WO2020258995A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910553389.5 2019-06-25
CN201910553389.5A CN112135304A (zh) 2019-06-25 2019-06-25 一种基于非独立组网nsa***的波束管理方法和装置

Publications (1)

Publication Number Publication Date
WO2020258995A1 true WO2020258995A1 (zh) 2020-12-30

Family

ID=73850046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084326 WO2020258995A1 (zh) 2019-06-25 2020-04-10 一种基于非独立组网nsa***的波束管理方法和装置

Country Status (2)

Country Link
CN (1) CN112135304A (zh)
WO (1) WO2020258995A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11516809B2 (en) * 2018-11-07 2022-11-29 Sony Group Corporation Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115378472A (zh) * 2021-05-19 2022-11-22 北京小米移动软件有限公司 通信方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868477A (zh) * 2011-07-05 2013-01-09 中兴通讯股份有限公司 一种基于分组波束的多用户预编码方法和装置
CN108476513A (zh) * 2016-01-19 2018-08-31 英特尔Ip公司 用于提供5g上行链路请求的设备和方法
EP3448114A1 (en) * 2016-05-24 2019-02-27 Samsung Electronics Co., Ltd. Method and apparatus for low-power operations of terminal and base station in mobile communication system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079411B (zh) * 2014-12-29 2020-04-14 华为技术有限公司 用于高低频共站网络的天线的波束对准的方法与装置
WO2016129744A1 (ko) * 2015-02-13 2016-08-18 엘지전자 주식회사 밀리미터 웨이브를 지원하는 무선 접속 시스템에서 단말의 위치 정보를 이용한 스캐닝 방법 및 이를 지원하는 장치
JP2017022581A (ja) * 2015-07-10 2017-01-26 富士通株式会社 ビーム制御方法、無線通信装置および無線通信システム
CN106685504B (zh) * 2015-11-09 2020-08-07 华为技术有限公司 设备间协作方法及装置
CN106817762B (zh) * 2015-11-30 2020-01-31 华为技术有限公司 一种随机接入方法和基站以及用户设备
GB2546099B (en) * 2016-01-08 2019-05-29 Samsung Electronics Co Ltd Initial access method
CN108023628B (zh) * 2016-11-04 2021-08-20 华为技术有限公司 终端设备移动性的处理方法、终端设备和基站
CN108540176B (zh) * 2017-03-01 2022-04-05 中兴通讯股份有限公司 波束扫描方法、***、基站及终端
CN109429235B (zh) * 2017-08-30 2022-04-01 ***通信有限公司研究院 一种波束扫描方法、网络侧设备及移动通信终端
CN108600944A (zh) * 2018-04-23 2018-09-28 电子科技大学 基于地理位置信息的小区切换参量的测量方法
CN108540254B (zh) * 2018-04-23 2019-06-04 电子科技大学 基于高低频混合组网的小区搜索方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868477A (zh) * 2011-07-05 2013-01-09 中兴通讯股份有限公司 一种基于分组波束的多用户预编码方法和装置
CN108476513A (zh) * 2016-01-19 2018-08-31 英特尔Ip公司 用于提供5g上行链路请求的设备和方法
EP3448114A1 (en) * 2016-05-24 2019-02-27 Samsung Electronics Co., Ltd. Method and apparatus for low-power operations of terminal and base station in mobile communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GIORDANI MARCO; MEZZAVILLA MARCO; RANGAN SUNDEEP; ZORZI MICHELE: "Multi-connectivity in 5G mmWave cellular networks", 2016 MEDITERRANEAN AD HOC NETWORKING WORKSHOP (MED-HOC-NET), IEEE, 20 June 2016 (2016-06-20), pages 1 - 7, XP032935714, DOI: 10.1109/MedHocNet.2016.7528494 *
GIORDANI MARCO; MEZZAVILLA MARCO; ZORZI MICHELE: "Initial Access in 5G mmWave Cellular Networks", IEEE COMMUNICATIONS MAGAZINE., IEEE SERVICE CENTER, PISCATAWAY., US, vol. 54, no. 11, 15 November 2016 (2016-11-15), US, pages 40 - 47, XP011634340, ISSN: 0163-6804, DOI: 10.1109/MCOM.2016.1600193CM *
ZTE, ZTE MICROELECTRONICS: "Beam grouping evaluation for beam management", 3GPP TSG RAN WG1 NR AD-HOC MEETING R1-1701188, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 17 January 2017 (2017-01-17), Spokane, USA; 20170116 - 20170120, XP051222227 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11516809B2 (en) * 2018-11-07 2022-11-29 Sony Group Corporation Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations
US11785622B2 (en) 2018-11-07 2023-10-10 Sony Group Corporation Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations

Also Published As

Publication number Publication date
CN112135304A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
US9531446B2 (en) Use of location information in multi-radio devices for mmWave beamforming
JP2020080574A (ja) レスポンダ及び通信方法
US20160204507A1 (en) System and method for selecting a beamforming configuration
US20100214169A1 (en) Beamforming training for functionally-limited apparatuses
US20100056062A1 (en) Beamforming by Sector Sweeping
US9178593B1 (en) Directional channel measurement and interference avoidance
TW201041416A (en) Arrangements for beam refinement in a wireless network
WO2017045384A1 (en) System and method for fast beamforming setup
WO2020258995A1 (zh) 一种基于非独立组网nsa***的波束管理方法和装置
CN113873651B (zh) 通信方法和通信装置
JP6852164B2 (ja) 高速システム取得およびチャネル推定のためのシステムおよび方法
TWI574456B (zh) 階層式波束成型方法及其基地台與使用者設備
WO2019105302A1 (zh) 信号测量方法、相关装置及***
WO2018103297A1 (zh) 通信波束选择方法、装置及终端
CN115209383A (zh) 协作感知的方法、电子设备和可读存储介质
WO2017020172A1 (zh) 一种多用户场景下波束训练方法及装置
US10568101B2 (en) Base-station control apparatus, base-station apparatus, and control method that determine a number of training packets to be transmitted by a wireless terminal
JP2017092522A (ja) 通信装置及び通信方法、コンピュータプログラム
US8437333B2 (en) Contention based period beamforming
CN107637155B (zh) 一种波束调整方法及装置
EP4329213A1 (en) Apparatus, method, program products for maximizing desired multi-transmission point signal to inter-layer-group-interference via ue beam control
CN114531187B (zh) 自动天线波束对准
Chen et al. A beamforming method based on image tracking and positioning in the LOS scenario
CN108810917A (zh) 信号处理方法、计算机设备及计算机可读存储介质
US20200137590A1 (en) Considerations in wireless networks that support beam steering mobile devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831489

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20831489

Country of ref document: EP

Kind code of ref document: A1