WO2019070035A1 - Aerogel composite powder and water repellent material - Google Patents

Aerogel composite powder and water repellent material Download PDF

Info

Publication number
WO2019070035A1
WO2019070035A1 PCT/JP2018/037244 JP2018037244W WO2019070035A1 WO 2019070035 A1 WO2019070035 A1 WO 2019070035A1 JP 2018037244 W JP2018037244 W JP 2018037244W WO 2019070035 A1 WO2019070035 A1 WO 2019070035A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
airgel
water repellent
silica particles
mass
Prior art date
Application number
PCT/JP2018/037244
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 赤須
竜也 牧野
智彦 小竹
抗太 岩永
知里 吉川
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2019070035A1 publication Critical patent/WO2019070035A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/44Block-or graft-polymers containing polysiloxane sequences containing only polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present disclosure relates to an airgel composite powder and a water repellent.
  • water repellency is obtained by forming a film (hereinafter referred to as "water repellent film") on the surface of a substrate with a coating material excellent in water repellency.
  • the water repellent film generally means a film having a contact angle of water of 90 ° or more.
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the application site and substrate are limited.
  • Patent Documents 1 and 2 disclose that a water repellent film is formed using a fluoroalkylsilane.
  • Patent Documents 3 and 4 disclose that water repellency is imparted using a dispersion of fluorine-containing nanoparticles.
  • JP 2002-105661 A JP 2000-81214 A JP, 2016-44092, A Patent No. 5996056 gazette
  • the water-repellent film formed from fluoroalkylsilane does not have sufficient adhesion to the substrate, it is difficult to apply the fluoroalkylsilane to the substrate to form a water-repellent film excellent in flexibility.
  • it is possible to impart water repellency by using a powder having water repellency since dispersion in water is difficult, it is necessary to use an organic solvent, and the environmental load is large.
  • powders that can be dispersed in water generally have poor water repellency. Therefore, a water repellent material which has both water repellency and dispersibility in water and is excellent in adhesion and flexibility is required.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a water repellent powder which has both water repellency and dispersibility in water and is excellent in adhesion and flexibility.
  • the present disclosure contains an airgel component and silica particles, and the airgel component has at least one polar group selected from the group consisting of an epoxy group, a mercapto group, an acryloyl group, a methacryloyl group and an amino group.
  • the airgel composite powder according to the present disclosure can be dispersed in water and has excellent adhesion, flexibility, and water repellency.
  • the airgel composite powder can have a three-dimensional network structure formed of an airgel component and silica particles, and pores. This makes it easier to further improve the flexibility and the water repellency.
  • the airgel composite powder is selected from the group consisting of silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a silicon compound having a hydrolyzable functional group. It may be a dry product of a wet gel which is a condensate of a sol containing at least one of Such airgel composite powder is likely to further improve the flexibility and water repellency.
  • the average primary particle size of the silica particles can be 1 to 500 nm.
  • the silica particles may be amorphous silica particles.
  • the amorphous silica particles may be at least one selected from the group consisting of fused silica particles, fumed silica particles and colloidal silica particles.
  • the airgel composite powder comprises, from the group consisting of silane particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a polysiloxane compound having a hydrolyzable functional group. It may be a dry product of a wet gel which is a condensate of a sol containing at least one selected.
  • the airgel component may have a structure represented by the general formula (1).
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • the airgel component may have a ladder structure having a support portion and a bridging portion, and the bridging portion may have a structure represented by the following general formula (2).
  • R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • the airgel component may have a ladder-type structure represented by the following general formula (3).
  • R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group
  • a and c each independently represent an integer of 1 to 3000
  • b is 1 to 50. Indicates an integer.
  • the average particle size D50 of the airgel composite powder can be 1 to 1000 ⁇ m. Thereby, the formability and adhesion of the water repellent film to the surface to be treated of the adherend are further improved.
  • the present disclosure also provides a water repellent material including the above-described airgel composite powder.
  • the present invention it is possible to provide an airgel composite powder excellent in water repellency and flexibility and a water repellent using the same. Since the airgel composite powder of the present invention can impart water repellency to the surface to be treated at low temperature, it can impart excellent water repellency even to adherends that do not have heat resistance. Moreover, this airgel composite powder is excellent in flexibility and adhesion to an adherend, and can maintain a water repellant function for a long time. Furthermore, since it is also dispersed in water, the environmental load can be reduced without using an organic solvent.
  • ⁇ Aerogel complex powder> dry gel obtained by supercritical drying method for wet gel is aerogel, dry gel obtained by drying under atmospheric pressure is xerogel, and dry gel obtained by lyophilization is cryogel
  • the resulting low density dried gel is referred to as "aerogel” regardless of these drying techniques of the wet gel. That is, in the present embodiment, the term “aerogel” means "gel composed of a microporous solid in which the dispersed phase is gas (a gel composed of a microporous solid in which the dispersed phase is gas)", which is an airgel in a broad sense. It is a thing.
  • the inside of the airgel has a network-like microstructure, and has a cluster structure in which airgel particles (particles constituting the airgel) of about 2 to 20 nm are bonded. Between the frameworks formed by the clusters, there are pores less than 100 nm. Thus, the airgel has a three-dimensionally fine porous structure.
  • the airgel in this embodiment is a silica airgel which has a silica as a main component, for example.
  • the silica aerogels include so-called organic-inorganic hybridised silica aerogels into which organic groups (such as methyl groups) or organic chains have been introduced.
  • the airgel composite powder (also referred to as powder (powdery) aerogel) according to the present embodiment has a cluster structure which is a feature of the above-mentioned airgel, and has a three-dimensionally fine porosity. It is a powder having a structure.
  • the airgel composite powder of the present embodiment includes at least one polar group selected from the group consisting of an epoxy group (for example, glycidoxy group), a mercapto group, an acryloyl group, a methacryloyl group and an amino group (hereinafter referred to as “specific Containing an airgel component having a polar group).
  • an epoxy group for example, glycidoxy group
  • a mercapto group an acryloyl group
  • methacryloyl group a methacryloyl group
  • an amino group hereinafter referred to as “specific Containing an airgel component having a polar group.
  • the airgel complex powder according to the present embodiment may be an airgel complex containing an airgel component and silica particles.
  • the airgel composite powder according to the present embodiment can be expressed as containing silica particles as a component constituting a three-dimensional network structure. It is.
  • the airgel composite powder according to the present embodiment is excellent in water repellency and flexibility as described later. In particular, it can be suitably used as a water repellent powder having excellent adhesion due to its excellent flexibility.
  • Such an airgel composite powder is obtained by the presence of silica particles in the airgel manufacturing environment.
  • the merit of the presence of the silica particles is not only that the water repellency, flexibility, etc.
  • the airgel component may be indeterminate form such as a film or the like, or may be particulate (aerogel particles).
  • the airgel component since the airgel component is in various forms and is present between the silica particles, it is presumed that the flexibility of the airgel skeleton is imparted.
  • an amorphous airgel component intervenes between the silica particles.
  • silica particles are coated with a film-like airgel component (silicone component) (aspect in which the airgel component incorporates silica particles), the airgel component serves as a binder, and silica particles
  • the embodiment of the combination of these embodiments the embodiment in which the silica particles arranged in a cluster form are coated with the airgel component, etc.
  • the three-dimensional network structure can be composed of the silica particles and the airgel component (silicone component), and the specific aspect (form) thereof is not particularly limited.
  • the airgel component may not be indeterminate form, but may be in the form of clear particles as shown in FIG. 1 and be complexed with the silica particles.
  • the present inventor infers that the production
  • the formation rate of the airgel component tends to vary.
  • the production rate of the airgel component tends to fluctuate also by changing the pH of the system.
  • the aspect (size, shape, chemical structure, etc. of the three-dimensional network structure) of the airgel composite powder can be controlled by adjusting the size, shape, number of silanol groups, pH of the system, etc. of the silica particles. . Therefore, it is possible to control the density, the porosity, and the like of the airgel, and to control the heat insulation property, the flexibility, the penetration resistance of the resin, and the like of the airgel.
  • the three-dimensional network structure of the airgel complex powder may be comprised from only one type of the various aspect mentioned above, and may be comprised from two or more types of aspects.
  • FIG. 1 is a view schematically showing the microstructure of an airgel composite powder according to an embodiment of the present disclosure.
  • the airgel complex 10 has a three-dimensional network structure formed by the airgel particles 1 constituting the airgel component being partially and randomly connected three-dimensionally via the silica particles 2, And a pore 3 surrounded by the skeleton.
  • the silica particle 2 intervenes between the airgel particle 1, and functions as a frame
  • the airgel complex powder may have a three-dimensional network structure formed by the silica particles being randomly connected three-dimensionally through the airgel particles.
  • the silica particles may also be coated with airgel particles.
  • grains (airgel component) are comprised from a silicon compound, it is guessed that the affinity to a silica particle is high. Therefore, in the present embodiment, it is considered that silica particles were successfully introduced into the three-dimensional network of the airgel. In this respect, the silanol groups of the silica particles are also considered to contribute to the affinity of the two.
  • the airgel particles 1 are considered to be in the form of secondary particles composed of a plurality of primary particles, and are generally spherical.
  • the average particle size (ie, secondary particle size) of the airgel particles 1 can be 2 nm to 50 ⁇ m, but may be 5 nm to 2 ⁇ m, or 10 nm to 200 nm.
  • the average particle diameter of the airgel particle 1 is 2 nm or more, an airgel composite powder excellent in flexibility is easily obtained, while when the average particle diameter is 50 ⁇ m or less, an airgel composite powder excellent in heat insulation is obtained. It will be easier.
  • the average particle diameter of the primary particles constituting the airgel particle 1 can be 0.1 nm to 5 ⁇ m from the viewpoint of easily forming a secondary particle having a low density porous structure, but 0.5 nm to It may be 200 nm or 1 nm to 20 nm.
  • the silica particles 2 can be used without particular limitation, and examples thereof include amorphous silica particles.
  • the amorphous silica particles include at least one selected from the group consisting of fused silica particles, fumed silica particles and colloidal silica particles. Among these, colloidal silica particles have high monodispersity, and easily suppress aggregation in the sol.
  • the silica particles 2 may be silica particles having a hollow structure, a porous structure or the like.
  • the shape of the silica particles 2 is not particularly limited, and examples thereof include spheres, bowls, and association types. Among these, use of spherical particles as the silica particles 2 makes it easy to suppress aggregation in the sol.
  • the average primary particle diameter of the silica particles 2 can be 1 to 500 nm, but may be 5 to 300 nm, or 20 to 100 nm. When the average primary particle diameter of the silica particles 2 is 1 nm or more, appropriate strength can be easily imparted to the airgel, and an airgel composite powder excellent in shrinkage resistance at the time of drying can be easily obtained. On the other hand, when the average primary particle diameter is 500 nm or less, an airgel composite powder excellent in water repellency can be easily obtained.
  • the airgel particles 1 (airgel component) and the silica particles 2 are bonded in the form of hydrogen bonding or chemical bonding.
  • a hydrogen bond or a chemical bond is formed by the silanol group or polar group of the airgel particle 1 (airgel component) and the silanol group of the silica particle 2. Therefore, it is considered that when the bonding mode is a chemical bond, it is easy to impart appropriate strength to the airgel. From this point of view, it is possible to use not only silica particles but also inorganic particles or organic particles having silanol groups on the particle surface as particles to be complexed with the airgel component.
  • the number of silanol groups per 1 g of the silica particles 2 can be 10 ⁇ 10 18 to 1000 ⁇ 10 18 pieces / g, but may be 50 ⁇ 10 18 to 800 ⁇ 10 18 pieces / g, or 100 It may be ⁇ 10 18 to 700 ⁇ 10 18 pieces / g.
  • the number of silanol groups per 1 g of the silica particle 2 is 10 ⁇ 10 18 pieces / g or more, it is possible to have better reactivity with the airgel particle 1 (airgel component), and an airgel composite excellent in shrinkage resistance It becomes easy to obtain body powder.
  • the number of silanol groups is 1000 ⁇ 10 18 pieces / g or less, sudden gelation at the time of sol preparation can be easily suppressed, and homogeneous airgel composite powder can be easily obtained.
  • the average particle diameter of the particles is an airgel composite using a scanning electron microscope (hereinafter abbreviated as “SEM”).
  • SEM scanning electron microscope
  • the particle size of airgel particles or individual silica particles can be obtained based on the diameter of the cross section.
  • the term "diameter” as used herein means the diameter when the cross section of the skeleton forming the three-dimensional network structure is regarded as a circle.
  • the diameter when the cross section is regarded as a circle is the diameter of the circle when the area of the cross section is replaced with a circle of the same area.
  • yen is calculated
  • the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, for example, when colloidal silica particles having a solid content concentration of 5 to 40% by mass dispersed in water are taken as an example, a chip obtained by cutting a wafer with pattern wiring into 2 cm square is dipped for about 30 seconds in the dispersion liquid of colloidal silica particles. After that, the chip is rinsed with pure water for about 30 seconds and dried by nitrogen blow.
  • the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, silica particles are observed at a magnification of 100,000 times, and an image is photographed. Twenty silica particles are arbitrarily selected from the obtained image, and the average of the particle sizes of those particles is taken as the average particle size.
  • the selected silica particle is a shape as shown in FIG. 2, the rectangle (outside rectangle L) which circumscribeds the silica particle 2 and arrange
  • the biaxial average primary particle diameter is calculated with (X + Y) / 2 as the particle diameter of the particles.
  • the shape of the airgel complex powder according to the present embodiment is not particularly limited, and may be various shapes. Since the airgel composite powder in the present embodiment is pulverized to be powdered as described later, the powder usually has an irregular shape with irregularities on the surface. Of course, spherical powder and the like may be used. In addition, it may be in the form of panel, flake or fiber. The powder shape can be obtained by directly observing the airgel composite powder using an SEM.
  • the average particle diameter D50 of the airgel complex powder according to the present embodiment can be 1 to 1000 ⁇ m, but may be 3 to 700 ⁇ m, or 5 to 500 ⁇ m.
  • the average particle diameter D50 of the airgel complex powder is 1 ⁇ m or more, the airgel complex powder having excellent dispersibility and handling property can be easily obtained.
  • the average particle diameter D50 is 1000 ⁇ m or less, an airgel composite powder excellent in dispersibility is easily obtained.
  • the average particle size of the powder can be appropriately adjusted according to the method of grinding and conditions of grinding, the manner of sieving or classification.
  • the average particle size D50 of the powder can be measured by a laser diffraction / scattering method.
  • airgel complex powder is added to a solvent (ethanol) at a concentration of 0.05 to 5% by mass, and the powder is dispersed by vibrating for 15 to 30 minutes with a 50 W ultrasonic homogenizer. Thereafter, about 10 mL of the dispersion is injected into a laser diffraction / scattering particle size distribution measuring apparatus, and the particle size is measured at 25 ° C. with a refractive index of 1.3 and an absorption of 0. Then, the particle diameter at an integrated value of 50% (volume basis) in this particle diameter distribution is taken as an average particle diameter D50.
  • Microtrac MT3000 product name, manufactured by Nikkiso Co., Ltd.
  • the size of the pores 3, that is, the average pore diameter can be 5 to 1000 nm, but may be 25 to 500 nm.
  • the average pore diameter is 5 nm or more, the airgel composite powder having excellent flexibility is easily obtained, and when the average pore diameter is 1000 nm or less, the airgel composite powder having excellent water repellency is easily obtained.
  • the average pore size, density and porosity of the three-dimensional network-like continuous pores (through pores) of the airgel composite powder can be measured by mercury porosimetry according to DIN 66133.
  • Autopore IV9520 manufactured by Shimadzu Corporation, product name
  • Shimadzu Corporation product name
  • the compressive elastic modulus at 25 ° C. of the airgel composite powder of the present embodiment can be 2.0 MPa or less, and may be 1.5 MPa or less, or 1.3 MPa or less, 1.0 MPa It may be the following.
  • the lower limit value of the compression elastic modulus is not particularly limited, but may be, for example, 0.05 MPa.
  • the compressive elastic modulus can be measured using a micro compression tester "MCT-510" (product name, manufactured by Shimadzu Corporation).
  • the airgel composite powder of the present embodiment can contain a polysiloxane having a main chain containing a siloxane bond (Si-O-Si).
  • the airgel can have the following M units, D units, T units or Q units as structural units.
  • R represents an atom (such as a hydrogen atom) or an atomic group (such as an alkyl group) bonded to a silicon atom.
  • the M unit is a unit consisting of a monovalent group in which a silicon atom is bonded to one oxygen atom.
  • the D unit is a unit consisting of a divalent group in which a silicon atom is bonded to two oxygen atoms.
  • the T unit is a unit consisting of a trivalent group in which a silicon atom is bonded to three oxygen atoms.
  • the Q unit is a unit consisting of a tetravalent group in which a silicon atom is bonded to four oxygen atoms. Information on the content of these units can be obtained by Si-NMR.
  • Examples of the airgel component in the airgel complex powder according to the present embodiment include the following modes. By adopting these aspects, it becomes easy to control the thermal insulation and flexibility of the airgel composite powder to a desired level.
  • the airgel component of the airgel complex powder according to the present embodiment can have a structure represented by the following general formula (1).
  • the airgel component of the airgel complex powder according to the present embodiment can have a structure represented by the following general formula (1a) as a structure including the structure represented by the formula (1).
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • an aryl group a phenyl group, a substituted phenyl group, etc. are mentioned.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned.
  • p represents an integer of 1 to 50.
  • two or more R 1 s may be the same as or different from each other, and similarly, two or more R 2 s may be the same as or different from each other.
  • two R 3 s may be the same or different, and similarly, two R 4 s may be the same or different.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like. A methyl group etc. are mentioned.
  • R 3 and R 4 each independently represent an alkylene group having 1 to 6 carbon atoms, and the alkylene group is, for example, an ethylene group or a propylene group. Can be mentioned.
  • p may be 2 to 30, and may be 5 to 20.
  • the airgel component of the airgel complex powder according to the present embodiment can have a ladder structure having a support portion and a crosslinking portion, and the crosslinking portion can have a structure represented by the following general formula (2) .
  • Heat resistance and mechanical strength can be improved by introducing such a ladder-type structure as the airgel component into the skeleton of the airgel complex powder.
  • the term “ladder type structure” refers to one having two struts (struts) and bridges connecting the struts (so-called “ladder”). It is.
  • the skeleton of the airgel may have a ladder structure, but the airgel component may partially have a ladder structure.
  • R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • a aryl group a phenyl group and a substituted phenyl group are mentioned, for example.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group are mentioned, for example.
  • b is an integer of 2 or more
  • two or more R 5 s may be the same as or different from each other, and similarly, two or more R 6 s may be the same as each other May also be different.
  • silsesquioxane is a polysiloxane having a compositional formula: (RSiO 1.5 ) n and can have various skeleton structures such as a cage type, a ladder type, and a random type.
  • the structure of the cross-linked portion of the airgel component is -O- (having the above-mentioned T unit as a structural unit)
  • the structure of the crosslinked portion of the airgel component may be a structure (polysiloxane structure) represented by the above general formula (2).
  • the airgel component in the airgel complex powder of the present embodiment may have a structure derived from silsesquioxane in addition to the structure represented by the general formula (2).
  • R represents a hydroxy group, an alkyl group or an aryl group.
  • the ladder type structure It may have a ladder type structure represented by 3).
  • R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group
  • a and c each independently represent an integer of 1 to 3000
  • b is 1 to 50.
  • an aryl group a phenyl group and a substituted phenyl group are mentioned, for example.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group are mentioned, for example.
  • R 5 , R 6 , R 7 and R 8 (wherein R 7 and R 8 are only in the formula (3)) And each independently represent an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like, and examples of the alkyl group include a methyl group.
  • a and c can be independently 6 to 2000, but may be 10 to 1000.
  • b can be 2 to 30, but may be 5 to 20.
  • the airgel composite powder according to the present embodiment comprises silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a silicon compound having a hydrolyzable functional group.
  • a dried product of a wet gel which is a condensation product of a sol containing at least one member selected from the group consisting of (a dried product of a wet gel formed from the sol and obtained by drying the dry product of a wet gel derived from a sol) It may be.
  • the airgel composite powder described above may also be obtained by drying the wet gel produced from the sol containing the silica particles and the silicon compound and the like.
  • silicon compounds (silicon compounds) other than the below-mentioned polysiloxane compound can be used. That is, the sol is a group consisting of a silicon compound having hydrolyzable functional groups or condensable functional groups (excluding polysiloxane compounds), and a hydrolysis product of a silicon compound having hydrolyzable functional groups. It may contain at least one compound selected from the group below (hereinafter sometimes referred to as “silicon compound group”). The number of silicon in the molecule in the silicon compound can be 1 or 2.
  • the silicon compound having a hydrolyzable functional group is not particularly limited, and examples thereof include alkyl silicon alkoxides.
  • the alkyl silicon alkoxide can have three or less hydrolyzable functional groups from the viewpoint of improving water resistance.
  • Examples of the alkylsilicon alkoxide include monoalkyltrialkoxysilanes, monoalkyldialkoxysilanes, dialkyldialkoxysilanes, monoalkylmonoalkoxysilanes, dialkylmonoalkoxysilanes, trialkylmonoalkoxysilanes, etc.
  • methyl Examples include trimethoxysilane, methyldimethoxysilane, dimethyldimethoxysilane and ethyltrimethoxysilane.
  • alkoxy groups such as a methoxy group and an ethoxy group, etc. are mentioned.
  • the silicon compound having a condensable functional group is not particularly limited.
  • silanetetraol methylsilanetriol, dimethylsilanediol, phenylsilanetriol, phenylmethylsilanediol, diphenylsilanediol, n-propylsilanetriol, Hexylsilanetriol, octylsilanetriol, decylsilanetriol and trifluoropropylsilanetriol.
  • a silicon compound having a hydrolyzable functional group or a condensable functional group is a polar group (hydrolyzable functional group and a condensable functional group) different from the hydrolyzable functional group and the condensable functional group.
  • Functional groups may be further included.
  • a polar group an epoxy group, a mercapto group, a vinyl group, an acryloyl group, a methacryloyl group, and an amino group are mentioned, for example.
  • the epoxy group may be contained in an epoxy group-containing group such as a glycidoxy group. From the viewpoint of dispersibility in water, as a polar group, an epoxy group, a mercapto group, a glycidoxy group, an acryloyl group, a methacryloyl group and an amino group are preferable.
  • silicon compounds having a condensable functional group and having a polar group vinylsilanetriol, 3-glycidoxypropylsilanetriol, 3-glycidoxypropylmethylsilanediol, 3-methacryloxypropylsilanetriol, 3 -Methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl) -3-aminopropylmethylsilanediol and the like can also be used.
  • bistrimethoxysilylmethane, bistrimethoxysilylethane, bistrimethoxysilylhexane, ethyltrimethoxysilane, vinyltrimethoxysilane, etc. which are silicon compounds having three or less hydrolyzable functional groups at the molecular end, can also be used.
  • Silicon compounds having hydrolyzable functional groups or condensable functional groups (excluding polysiloxane compounds) and hydrolysis products of silicon compounds having hydrolyzable functional groups may be used alone or in combination of two or more. You may mix and use.
  • the silicon compound can include a polysiloxane compound having a hydrolyzable functional group or a condensable functional group. That is, the sol containing the above silicon compound is composed of a hydrolysis product of a polysiloxane compound having a hydrolyzable functional group or a condensation functional group, and a polysiloxane compound having a hydrolyzable functional group. It may be a sol containing at least one selected from the group (hereinafter sometimes referred to as “polysiloxane compound group”).
  • the functional groups in the polysiloxane compound and the like are not particularly limited, but can be groups that react with each other or react with other functional groups.
  • a hydrolyzable functional group an alkoxy group is mentioned, for example.
  • the condensation functional group include a hydroxyl group, a silanol group, a carboxyl group and a phenolic hydroxyl group.
  • the hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group.
  • the polysiloxane compound having a hydrolyzable functional group or a condensable functional group is different from the hydrolyzable functional group and the condensable functional group in the aforementioned polar group (hydrolyzable functional group and condensable) Functional groups which do not correspond to the functional groups of You may use the polysiloxane compound which has these functional groups and polar groups individually or in mixture of 2 or more types.
  • these functional groups and polar groups for example, as a group improving the flexibility of the airgel composite powder, alkoxy group, silanol group, hydroxyalkyl group and the like can be mentioned, and among these, alkoxy group and hydroxyalkyl group Can further improve the compatibility of the sol.
  • the carbon number of the alkoxy group and the hydroxyalkyl group can be 1 to 6, but from the viewpoint of further improving the flexibility of the airgel composite powder, 2 to 4 It may be
  • the compound which has a structure represented by the following general formula (A) is mentioned, for example.
  • Introducing the structures represented by the general formula (1) and the formula (1a) into the skeleton of the airgel composite powder by using a polysiloxane compound having a structure represented by the following general formula (A) Can.
  • R 1a represents a hydroxyalkyl group
  • R 2a represents an alkylene group
  • R 3a and R 4a each independently represent an alkyl group or an aryl group
  • n represents an integer of 1 to 50.
  • an aryl group a phenyl group and a substituted phenyl group are mentioned, for example.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group are mentioned, for example.
  • two R 1a 's may be the same as or different from each other, and similarly, two R 2a' s may be the same as or different from each other.
  • two or more R 3a s may be the same as or different from each other.
  • two or more R 4a s may be the same as or different from each other.
  • R 1a includes a hydroxyalkyl group having 1 to 6 carbon atoms, and the like, and examples of the hydroxyalkyl group include a hydroxyethyl group, a hydroxypropyl group and the like.
  • examples of R 2a include an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include an ethylene group and a propylene group.
  • R 3a and R 4a each independently represent an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like, and examples of the alkyl group include a methyl group.
  • n can be 2 to 30, but may be 5 to 20.
  • a commercial item can be used as a polysiloxane compound which has a structure represented by the said General formula (A), Compounds, such as X-22-160AS, KF-6001, KF-6002, KF-6003 (all are mentioned And Shin-Etsu Chemical Co., Ltd., XF42-B0970, Fluid OFOH 702-4%, etc. (all are manufactured by Momentive, Inc.) and the like.
  • polysiloxane compound which has an alkoxy group what has a structure represented by the following general formula (B) is mentioned, for example.
  • a ladder type structure having a crosslinked part represented by the above general formula (2) is introduced into the skeleton of the airgel composite powder can do.
  • R 1b represents an alkyl group, an alkoxy group or an aryl group
  • R 2b and R 3b each independently represent an alkoxy group
  • R 4b and R 5b each independently represent an alkyl group or an aryl group.
  • m represent an integer of 1 to 50.
  • an aryl group a phenyl group and a substituted phenyl group are mentioned, for example.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group are mentioned, for example.
  • two R 1b 's may be the same as or different from each other, and two R 2b' s may be the same as or different from one another, 3b may be the same or different.
  • m is an integer of 2 or more
  • two or more R 4b may be the same or different
  • two or more R 5b are also the same May also be different.
  • R 1b an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and the like can be mentioned, and as the alkyl group or alkoxy group, A methyl group, a methoxy group, an ethoxy group etc. are mentioned.
  • examples of R 2b and R 3b each independently include an alkoxy group having 1 to 6 carbon atoms, and the alkoxy group includes a methoxy group and an ethoxy group.
  • examples of R 4b and R 5b each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and examples of the alkyl group include a methyl group and the like.
  • m can be 2 to 30, but may be 5 to 20.
  • the polysiloxane compound having a structure represented by the above general formula (B) can be obtained by appropriately referring to the production method reported in, for example, JP-A-2000-26609, JP-A-2012-233110, etc. Can.
  • the polysiloxane compound having the alkoxy group may be present as a hydrolysis product in the sol, and the polysiloxane compound having the alkoxy group and the hydrolysis product thereof are mixed It may be done. Further, in the polysiloxane compound having an alkoxy group, all of the alkoxy groups in the molecule may be hydrolyzed or may be partially hydrolyzed.
  • hydrolyzable functional groups or the polysiloxane compound having a condensable functional group, and the hydrolysis product of the hydrolyzable functional group-containing polysiloxane compound may be used alone or in combination of two or more. You may use.
  • Content of silicon compounds contained in the above sol (content of silicon compound having hydrolyzable functional group or condensable functional group, and hydrolysis product of silicon compound having hydrolyzable functional group
  • the total sum of the contents can be 5 to 50 parts by mass with respect to 100 parts by mass of the total amount of the sol, but may be 10 to 30 parts by mass.
  • the amount is 5 parts by mass or more, good reactivity can be easily obtained, and when the amount is 50 parts by mass or less, good compatibility can be easily obtained.
  • the content of the silicon compound group and the content of the polysiloxane compound group (the content of the polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and
  • the total sum of the content of the hydrolysis products of the hydrolyzable functional group-containing polysiloxane compound can be 5 to 50 parts by mass with respect to 100 parts by mass of the total amount of the sol, but It may be 30 parts by mass.
  • the ratio of the content of the silicon compound group to the content of the polysiloxane compound group can be 0.5: 1 to 4: 1, but may be 1: 1 to 2: 1. .
  • the ratio of the content of these compounds can be 0.5: 1 or more, good compatibility can be further easily obtained, and by setting the ratio to 4: 1 or less, gel contraction can be further easily suppressed.
  • the content of the silica particles contained in the sol can be 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of sol, but may be 4 to 15 parts by mass.
  • the content of the silica particles By setting the content of the silica particles to 1 part by mass or more, it becomes easy to impart appropriate strength to the airgel, and it becomes easy to obtain an airgel composite powder excellent in shrinkage resistance during drying, and the content is 20 parts by mass or less By doing this, it becomes easy to suppress the solid heat conduction of the silica particles, and it becomes easy to obtain the airgel composite powder which is excellent in heat insulation.
  • the airgel component of the airgel complex powder according to the present embodiment can have a structure represented by the following general formula (4).
  • the airgel composite powder according to the present embodiment may contain silica particles and may have a structure represented by the following general formula (4) as an airgel component.
  • R 9 represents an alkyl group.
  • the alkyl group an alkyl group having 1 to 6 carbon atoms and the like can be mentioned, and as the alkyl group, a methyl group and the like can be mentioned.
  • the airgel component of the airgel complex powder according to the present embodiment can have a structure represented by the following general formula (5).
  • the airgel composite powder according to the present embodiment may contain silica particles and may have a structure represented by the following general formula (5) as an airgel component.
  • R 10 and R 11 each independently represent an alkyl group.
  • the alkyl group an alkyl group having 1 to 6 carbon atoms and the like can be mentioned, and as the alkyl group, a methyl group and the like can be mentioned.
  • the airgel component of the airgel complex powder according to the present embodiment can have a structure represented by the following general formula (6).
  • the airgel composite powder of the present embodiment may contain silica particles and may have a structure represented by the following general formula (6) as an airgel component.
  • R 12 represents an alkylene group.
  • examples of the alkylene group include alkylene groups having 1 to 10 carbon atoms, and examples of the alkylene group include ethylene group and hexylene group.
  • the airgel complex powder according to the present embodiment is obtained by the sol forming step, the wet gel forming step of gelling the sol obtained in the sol forming step, and then maturing to obtain a wet gel, and the wet gel forming step. Washing and solvent replacement steps of the wet gel obtained (if necessary), a drying step of drying the washed and solvent substituted wet gel, and block grinding of the airgel composite block obtained by drying It can manufacture by the manufacturing method mainly equipped with a process.
  • the method mainly includes a sol forming step, the wet gel forming step, a wet gel grinding step of grinding the wet gel obtained in the wet gel forming step, the washing and solvent substitution steps, and the drying step. It may be manufactured by a method.
  • the obtained airgel composite powder can be further aligned in size by sieving, classification and the like.
  • "sol” is a state before the gelation reaction occurs, and in the present embodiment, the silicon compound group, and optionally, the polysiloxane compound group and the silica particles are dissolved or dispersed in a solvent.
  • wet gel refers to a gel solid in a wet state having no flowability while containing a liquid medium.
  • the sol formation step is a step of mixing the above-mentioned silicon compound, optionally a polysiloxane compound, and a silica particle or a solvent containing a silica particle, and hydrolyzing to form a sol.
  • an acid catalyst may be further added to the solvent to accelerate the hydrolysis reaction.
  • a surfactant, a thermally hydrolysable compound and the like can also be added to the solvent.
  • components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound may be added to the solvent.
  • the solvent for example, water or a mixed solution of water and alcohols can be used.
  • the alcohol include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, t-butanol and the like.
  • the alcohol having a low surface tension and a low boiling point methanol, ethanol, 2-propanol and the like can be mentioned in that the interfacial tension with the gel wall is reduced. You may use these individually or in mixture of 2 or more types.
  • the amount of the alcohols can be 4 to 8 moles with respect to 1 mole in total of the silicon compound group and the polysiloxane compound group, but it is 4 to 6.5 Or may be 4.5 to 6 moles.
  • the amount of the alcohol 4 mol or more it becomes easier to obtain good compatibility, and by making it 8 mol or less, it becomes easier to suppress the shrinkage of the gel.
  • inorganic acids such as hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid, etc .
  • Acidic phosphates such as aluminum, acidic magnesium phosphate, acidic zinc phosphate, etc .
  • Organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid, azelaic acid Etc.
  • organic carboxylic acids are mentioned as an acid catalyst which improves the water resistance of the airgel complex powder obtained more.
  • the organic carboxylic acids include acetic acid, but formic acid, propionic acid, oxalic acid, malonic acid and the like may be used. You may use these individually or in mixture of 2 or more types.
  • the hydrolysis reaction of the silicon compound group and the polysiloxane compound group can be promoted to obtain a sol in a shorter time.
  • the addition amount of the acid catalyst can be 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total of the silicon compound group and the polysiloxane compound group.
  • nonionic surfactants nonionic surfactants, ionic surfactants and the like can be used. You may use these individually or in mixture of 2 or more types.
  • nonionic surfactant for example, a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group, a compound containing a hydrophilic part such as polyoxypropylene and the like can be used.
  • a compound containing a hydrophilic moiety such as polyoxyethylene and a hydrophobic moiety mainly composed of an alkyl group include polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether and the like.
  • the compound containing a hydrophilic portion such as polyoxypropylene include polyoxypropylene alkyl ether and block copolymers of polyoxyethylene and polyoxypropylene.
  • Examples of the ionic surfactant include cationic surfactants, anionic surfactants and amphoteric surfactants.
  • Examples of the cationic surfactant include cetyltrimethylammonium bromide, cetyltrimethylammonium chloride and the like, and examples of the anionic surfactant include sodium dodecyl sulfonate and the like.
  • an amphoteric surfactant an amino acid surfactant, a betaine surfactant, an amine oxide surfactant, etc. are mentioned.
  • Examples of amino acid surfactants include, for example, acyl glutamic acid.
  • Examples of betaine surfactants include lauryl dimethylaminoacetic acid betaine and stearyl dimethylaminoacetic acid betaine.
  • Examples of amine oxide surfactants include lauryldimethylamine oxide.
  • surfactants have the function of reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer and suppressing the phase separation in the wet gel formation step described later. It is believed that.
  • the amount of surfactant added depends on the type of surfactant or the type and amount of silicon compound group and polysiloxane compound group.
  • the total amount of silicon compound group and polysiloxane compound group is 100 parts by mass.
  • it can be 1 to 100 parts by mass.
  • the addition amount may be 5 to 60 parts by mass.
  • thermohydrolyzable compound is considered to generate a base catalyst by thermal hydrolysis to make the reaction solution basic and to promote the sol-gel reaction in the wet gel formation step described later. Therefore, the thermohydrolyzable compound is not particularly limited as long as it is a compound that can make the reaction solution basic after hydrolysis, and urea; formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N And acid amides such as methylacetamide and N, N-dimethylacetamide; and cyclic nitrogen compounds such as hexamethylenetetramine. Among these, urea is particularly easy to obtain the above promoting effect.
  • the addition amount of the thermally hydrolysable compound is not particularly limited as long as it is an amount capable of sufficiently promoting the sol-gel reaction in the wet gel formation step described later.
  • the addition amount thereof can be 1 to 200 parts by mass with respect to 100 parts by mass in total of the silicon compound group and the polysiloxane compound group.
  • the addition amount may be 2 to 150 parts by mass.
  • the hydrolysis in the sol formation step depends on the type and amount of silicon compound, polysiloxane compound, silica particles, acid catalyst, surfactant, etc. in the mixed solution, for example, under a temperature environment of 20 to 60 ° C. It may be performed for 10 minutes to 24 hours, or may be performed for 5 minutes to 8 hours in a temperature environment of 50 to 60 ° C.
  • the hydrolyzable functional groups in the silicon compound and the polysiloxane compound are sufficiently hydrolyzed, and the hydrolysis product of the silicon compound and the hydrolysis product of the polysiloxane compound can be obtained more reliably.
  • the temperature environment of the sol formation step may be adjusted to a temperature at which the hydrolysis of the thermally hydrolysable compound is suppressed to suppress the gelation of the sol. .
  • the temperature at this time may be any temperature that can suppress the hydrolysis of the thermally hydrolysable compound.
  • the temperature environment of the sol formation step can be 0 to 40 ° C., but may be 10 to 30 ° C.
  • the wet gel formation step is a step of gelling the sol obtained in the sol formation step and then ripening to obtain a wet gel.
  • a base catalyst can be used to promote gelation.
  • alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide
  • alkali carbonates such as sodium carbonate and potassium carbonate
  • alkali carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate Hydrogen salts
  • Ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride and ammonium bromide
  • Basic sodium phosphates such as sodium metaphosphate, sodium pyrophosphate and sodium polyphosphate
  • ammonium hydroxide (ammonia water) is high in volatility and less likely to remain in the airgel composite powder after drying, so that the water resistance is less likely to be impaired, and further, it is excellent in economic point.
  • the dehydration condensation reaction or the dealcoholization condensation reaction of the silicon compound, the polysiloxane compound and the silica particles in the sol can be promoted, and the gelation of the sol can be performed in a shorter time. Also, this makes it possible to obtain a wet gel with higher strength (rigidity).
  • ammonia has high volatility and is unlikely to remain in the airgel complex powder, and therefore, by using ammonia as a base catalyst, an airgel complex powder having more excellent water resistance can be obtained.
  • the addition amount of the base catalyst can be 0.5 to 5 parts by mass with respect to 100 parts by mass in total of the silicon compound group and the polysiloxane compound group, but may be 1 to 4 parts by mass. By setting it as 0.5 mass part or more, gelation can be performed in a short time, and the fall of water resistance can be suppressed more by setting it as 5 mass parts or less.
  • the base catalyst is not always necessary, and 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2
  • a silane compound or the like in which the aqueous solution such as-(aminoethyl) -3-aminopropylmethyldimethoxysilane exhibits basicity is used, a wet gel can also be produced without using a base catalyst.
  • the gelation of the sol in the wet gel formation step may be performed in a closed vessel so that the solvent and the base catalyst do not evaporate.
  • the gelling temperature may be 30-90 ° C., but may be 40-80 ° C.
  • the gelation temperature may be set to 30 ° C. or more, gelation can be performed in a shorter time, and a wet gel with higher strength (rigidity) can be obtained.
  • the gelation temperature to 90 ° C. or less, volatilization of the solvent (particularly, alcohols) can be easily suppressed, and therefore, gelation can be performed while suppressing volume contraction.
  • Aging in the wet gel formation step may be performed in a closed vessel so that the solvent and the base catalyst do not evaporate. Aging strengthens the bonding of the components constituting the wet gel, and as a result, it is possible to obtain a wet gel having a high strength (rigidity) sufficient to suppress shrinkage upon drying.
  • the ripening temperature may be 30 to 90 ° C., but may be 40 to 80 ° C. By setting the aging temperature to 30 ° C. or higher, a wet gel with higher strength (rigidity) can be obtained, and by setting the aging temperature to 90 ° C. or lower, volatilization of the solvent (particularly alcohols) can be easily suppressed. Therefore, it can be gelled while suppressing volume contraction.
  • the gelation of the sol and the subsequent aging may be performed in a series of continuous operations.
  • the gelation time and the ripening time differ depending on the gelation temperature and the ripening temperature, in the present embodiment, since the sol contains silica particles, especially the gelation time as compared with the conventional airgel manufacturing method. Can be shortened. The reason is presumed to be that the silicon compound group in the sol, the silanol group or the reactive group possessed by the polysiloxane compound group form a hydrogen bond or a chemical bond with the silanol group of the silica particle.
  • the gelling time may be 10 to 120 minutes, but may be 20 to 90 minutes.
  • the total time of the gelation time and the aging time can be 4 to 480 hours as the whole of the gelation and the aging process, but it may be 6 to 120 hours.
  • the total of the gelation time and the ripening time can be 4 hours or more, a wet gel with higher strength (rigidity) can be obtained, and by making it 480 hours or less, the effect of ripening can be more easily maintained.
  • the gelling temperature and the aging temperature are increased within the above range, or the total time of the gelling time and the aging time is long within the above range You may In addition, in order to increase the density of the obtained airgel composite powder and to reduce the average pore diameter, the gelling temperature and the aging temperature are lowered within the above range, or the total time of the gelling time and the aging time is the above range You may shorten it within.
  • the wet gel obtained in the wet gel formation process is ground.
  • the grinding can be carried out, for example, by placing the wet gel in a Henshall-type mixer or performing a wet gel formation step in the mixer and operating the mixer under appropriate conditions (rotation speed and time). Also, more simply, the wet gel is placed in a sealable container, or the wet gel formation step is performed in the sealable container, and shaking is performed using a shaking device such as a shaker for a suitable period of time. Can. If necessary, the particle size of the wet gel can also be adjusted using a jet mill, a roller mill, a bead mill or the like.
  • washing and solvent substitution steps are suitable for the step of washing the wet gel obtained by the wet gel formation step or the wet gel grinding step (washing step) and the washing solution in the wet gel for drying conditions (drying step described later) It is a process which has the process (solvent substitution process) of substituting with the said solvent.
  • the washing and solvent replacement steps can be carried out without washing the wet gel but with only the solvent replacement step, impurities such as unreacted substances and by-products in the wet gel can be reduced.
  • the wet gel may be washed from the viewpoint of enabling the production of highly pure airgel composite powder.
  • the solvent replacement step after the washing step is not necessarily essential as described later.
  • the wet gel obtained by the wet gel formation step or the wet gel grinding step is washed.
  • the washing can be repeated, for example, using water or an organic solvent. At this time, the washing efficiency can be improved by heating.
  • organic solvent methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride
  • organic solvents such as N, N-dimethylformamide, dimethylsulfoxide, acetic acid, formic acid and the like can be used.
  • the organic solvents may be used alone or in combination of two or more.
  • examples of the organic solvent used in the washing step include hydrophilic organic solvents having high mutual solubility in both water and a solvent having low surface tension.
  • the hydrophilic organic solvent used in the washing step can play a role of pre-substitution for the solvent substitution step.
  • examples of the hydrophilic organic solvent include methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone and the like. Methanol, ethanol, methyl ethyl ketone and the like are excellent in economical point.
  • the amount of water or organic solvent used in the washing step may be such that the solvent in the wet gel is sufficiently replaced to be washable.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the washing can be repeated until the water content in the wet gel after washing becomes 10% by mass or less with respect to the mass of silica.
  • the temperature environment in the washing step can be set to a temperature equal to or lower than the boiling point of the solvent used for washing.
  • heating can be performed at about 30 to 60.degree.
  • the solvent of the washed wet gel is replaced with a predetermined replacement solvent in order to suppress shrinkage in the drying step described later.
  • the substitution efficiency can be improved by heating.
  • Specific examples of the substitution solvent include, in the drying step, a solvent having a low surface tension described later when drying under atmospheric pressure at a temperature less than the critical point of the solvent used for drying.
  • examples of the substitution solvent include ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide and the like, or solvents in which two or more of these are mixed.
  • solvents having a surface tension of 30 mN / m or less at 20 ° C. As a low surface tension solvent, solvents having a surface tension of 30 mN / m or less at 20 ° C. can be mentioned.
  • the surface tension may be 25 mN / m or less, or 20 mN / m or less.
  • low surface tension solvents examples include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3- Aliphatic hydrocarbons such as methyl pentane (18.1), 2-methyl hexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1-pentene (16.0); benzene Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) Halogenated hydrocarbons such as carbon tetrachloride (26.9), 1-chloropropane (21.8), 2-chloropropane (18.1), etc .; ethyl ether (17.1), propyl ether (20.5) ), Isop Ethers such as pill ether (17.7), buty
  • aliphatic hydrocarbons (hexane, heptane, etc.) have low surface tension and are excellent in working environment.
  • a hydrophilic organic solvent such as acetone, methyl ethyl ketone, 1,2-dimethoxyethane, etc.
  • a solvent having a boiling point of 100 ° C. or less at normal pressure may be used at the point of easy drying in the drying step described later.
  • the above solvents may be used alone or in combination of two or more.
  • the amount of solvent used in the solvent replacement step can be an amount that can sufficiently replace the solvent in the wet gel after washing.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the temperature environment in the solvent replacement step can be a temperature equal to or lower than the boiling point of the solvent used for the replacement, and, for example, in the case of using heptane, heating can be about 30 to 60 ° C.
  • the solvent substitution step is not necessarily essential as described above.
  • the presumed mechanism is as follows. That is, conventionally, the solvent of the wet gel has been replaced with a predetermined solvent for substitution (solvent of low surface tension) in order to suppress shrinkage in the drying step, but in the present embodiment, the silica particles have a three-dimensional network shape By acting as a scaffold support, the scaffold is supported, and the shrinkage of the gel in the drying step is suppressed. Therefore, it is considered that the gel can be directly subjected to the drying step without replacing the solvent used for the washing.
  • simplification of the drying process from the washing and solvent replacement process is possible.
  • this embodiment does not exclude at all from performing the solvent replacement step.
  • the drying method is not particularly limited, and known atmospheric pressure drying, supercritical drying or lyophilization can be used. Among these, atmospheric pressure drying or supercritical drying can be used from the viewpoint of easily producing a low density airgel composite block or powder. In addition, normal pressure drying can be used from the viewpoint of low cost production. In the present embodiment, normal pressure means 0.1 MPa (atmospheric pressure).
  • An airgel complex block or powder can be obtained by drying the washed and solvent-substituted wet gel at atmospheric pressure at a temperature below the critical point of the solvent used for drying.
  • the drying temperature varies depending on the type of the solvent which has been substituted (or the solvent used for washing if solvent substitution is not performed), particularly when drying at high temperature accelerates the evaporation rate of the solvent and causes the gel to greatly crack.
  • the temperature can be set to 20 to 150 ° C. in view of the following.
  • the drying temperature may be 60 to 120 ° C.
  • the drying time may vary depending on the wet gel volume and the drying temperature, but may be 4 to 120 hours. In the present embodiment, it is also included in normal-pressure drying to accelerate drying by applying a pressure less than the critical point within a range that does not impair productivity.
  • the airgel composite block or powder can also be obtained by supercritical drying of the washed and solvent-substituted wet gel (if necessary).
  • Supercritical drying can be performed by a known method.
  • a method of performing supercritical drying for example, a method of removing the solvent at a temperature and pressure higher than the critical point of the solvent contained in the wet gel can be mentioned.
  • the whole or a part of the solvent contained in the wet gel is immersed in liquefied carbon dioxide, for example, under the conditions of about 20 to 25 ° C., about 5 to 20 MPa.
  • a method of removing carbon dioxide alone or a mixture of carbon dioxide and a solvent after replacing the solvent with carbon dioxide having a lower critical point than the solvent for example, under the conditions of about 20 to 25 ° C., about 5 to 20 MPa.
  • the airgel composite block or powder obtained by such normal pressure drying or supercritical drying may be additionally dried at 105 to 200 ° C. for about 0.5 to 2 hours under normal pressure. This further facilitates obtaining an airgel having low density and small pores.
  • the additional drying may be performed at 150 to 200 ° C. under normal pressure.
  • Airgel composite powder is obtained by grinding the airgel complex block obtained by drying.
  • the airgel composite block can be placed in a jet mill, a roller mill, a bead mill, a hammer mill, etc., and the operation can be carried out by operating at an appropriate rotation speed and time.
  • the airgel composite powder obtained by the above steps can be applied to various uses by taking advantage of the dispersibility in water, flexibility, adhesion and water repellency.
  • airgel has excellent physical properties because of its high porosity, and it is a heat insulator in the fields of construction, automobiles, home appliances, semiconductors, industrial equipment, etc., acoustic control materials, luminous solar light collectors, gas It can also be used as a filter, catalyst and support material.
  • a dispersion of airgel complex powder it can be used as a water repellent powder.
  • the water repellent treatment method using the water repellent powder is not particularly limited.
  • the adherend can be subjected to water repellent treatment by the following method.
  • the water repellent powder may be brought into direct contact with the surface to be treated of the adherend, or the water repellent treatment liquid containing the water repellent powder may be brought into contact with the surface to be treated of the adherend. Since the water repellent powder of this embodiment has flexibility, the water repellent powder can be disposed on the surface to be treated of the adherend to form the water repellent portion on the surface to be treated.
  • the water repellent treatment of the adherend used as the water repellent treatment liquid containing the water repellent powder of the present embodiment is mainly performed by a process of preparing the water repellent treatment liquid, an application step, a washing step, and a drying step. You may go.
  • a process of preparing the water repellent treatment liquid an application step, a washing step, and a drying step. You may go.
  • each process of the water repellent treatment method using the water repellent treatment liquid according to the present embodiment will be described.
  • the water repellent treatment liquid according to the present embodiment can be prepared by dispersing water repellent powder in a solvent.
  • the water repellent portion can be uniformly formed on the surface to be treated of the target adherend.
  • the water repellent portion may be in a form including at least one of a water repellent film and water repellent particles formed of water repellent powder.
  • solvent water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, heptane, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran
  • organic solvents such as methylene chloride, N, N-dimethylformamide, dimethylsulfoxide, acetic acid, formic acid and the like can be used. You may use an organic solvent individually or in mixture of 2 or more types.
  • the application step is a step of applying a water repellent treatment solution to the surface to be treated.
  • the surface to be treated may be dried after application to evaporate the solvent.
  • a water repellent portion can be formed on the surface to be treated by this step.
  • the water repellent treatment liquid may be applied to the entire surface to be treated or may be selectively applied to a part of the surface to be treated.
  • the thickness of the water repellent portion may be 1 to 500 nm, but may be 20 to 200 nm. By setting the thickness to 1 nm or more, more excellent water repellency can be achieved, and by setting the thickness to 500 nm or less, more excellent flexibility can be achieved.
  • the coating method is not particularly limited, and examples thereof include spin coating, dip coating, spray coating, flow coating, bar coating and gravure coating.
  • the spray coating method is preferable because a water repellent portion can be formed with a uniform thickness even on a surface to be treated having irregularities, the productivity is high, and the use efficiency of the water repellent powder is high.
  • the coating method may be used alone or in combination of two or more.
  • the water repellent portion may be formed on the surface to be treated by applying or immersing the water repellent treatment solution to another substrate (film, cloth, etc.) in advance and then bringing it into contact with the surface to be treated and transferring.
  • the application method can be freely selected according to the amount of use of the water repellent treatment liquid, the area of the surface to be treated, the characteristics and the like.
  • the material which comprises a to-be-processed surface is not specifically limited, For example, metal, ceramics, glass, plastics, and the material (composite material, laminated material etc.) which combined these are mentioned.
  • the water repellent treatment liquid can also be applied to paper, fiber, cloth, non-woven fabric, rubber, leather and the like.
  • the material constituting the surface to be treated may be a water soluble organic compound, a water soluble inorganic compound or the like.
  • the material which comprises a to-be-processed surface is transparent materials, such as glass and plastics.
  • Examples of the metal include stainless steel, aluminum, copper, galvanized steel sheet and iron.
  • Examples of the ceramic include alumina, barium titanate, boron nitride and silicon nitride.
  • Examples of the glass include ordinary soda lime glass, borosilicate glass, alkali-free glass, quartz glass and aluminosilicate glass.
  • plastics include acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as polyphenylene carbonate, and aromatic polyester resins such as polyethylene terephthalate (PET).
  • water-soluble organic compounds include glucose, sucrose, starch, polyacrylamide, polyvinyl alcohol and methyl cellulose.
  • water-soluble inorganic compounds include water glass, sodium chloride, sodium phosphate, sodium carbonate, sodium vanadate, sodium borate, potassium chloride, potassium carbonate and sulfuric acid compounds.
  • the adhesion of the water repellent portion can be further improved by drying the surface to be treated to evaporate the solvent.
  • the drying temperature at this time is not particularly limited, and varies depending on the heat resistant temperature of the surface to be treated, but may be 60 to 250 ° C. or 120 to 180 ° C., for example. By setting the temperature to 60 ° C. or more, more excellent adhesion can be achieved, and by setting the temperature to 250 ° C. or less, deterioration due to heat can be suppressed.
  • the washing step is a step of washing the surface to be treated on which the water repellent portion obtained in the coating step is formed. By performing this step, impurities such as unreacted substances and byproducts in the water repellent portion can be reduced, and a water repellent film portion with higher purity can be obtained.
  • the washing step can be repeated, for example, using water and / or an organic solvent. At this time, the washing efficiency can be improved by heating.
  • organic solvent methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, heptane, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran,
  • organic solvents such as methylene chloride, N, N-dimethylformamide, dimethylsulfoxide, acetic acid, formic acid and the like can be used.
  • the above organic solvents may be used alone or in combination of two or more.
  • Organic solvents generally have very low mutual solubility with water. Therefore, in the case of washing with an organic solvent after washing with water, a hydrophilic organic solvent having high mutual solubility in water is preferable.
  • examples of the hydrophilic organic solvent include methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane and the like. Methanol, ethanol, methyl ethyl ketone and the like are excellent in economic point.
  • the amount of water and / or organic solvent used in the washing step can be an amount sufficient to wash the water repellent part, for example, with respect to the total mass of the water repellent part.
  • the amount may be 3 to 10 times.
  • the washing can be repeated until the water content of the surface to be treated becomes 10% by mass or less.
  • the washing temperature may be a temperature equal to or lower than the boiling point of the solvent used for washing, and may be, for example, about 30 to 60 ° C. when using methanol.
  • the heating efficiency can also be improved by heating.
  • a drying process is a process of drying the to-be-processed surface in which the water repellent part wash
  • the drying temperature varies depending on the heat resistant temperature of the surface to be treated and the type of the cleaning solvent.
  • the drying temperature may be, for example, 20 to 250 ° C., or 60 to 180 ° C. from the viewpoint of sufficiently fast evaporation of the solvent and easy to prevent deterioration of the water repellent part.
  • the drying time varies depending on the mass of the water repellent part and the drying temperature, but may be, for example, 1 to 24 hours.
  • the adhesion amount of the water repellent powder on the surface to be treated is preferably one or more per 1 mm square. By using one or more, more excellent water repellency can be achieved.
  • the adhesion amount of the water repellent powder can be calculated using a scanning electron microscope (SEM). For example, in the case of a water repellent powder having an average particle diameter of 100 nm, the area A (1.0 ⁇ 10 ⁇ 4 mm) of a square having a length (1.0 ⁇ 10 ⁇ 2 mm) 100 times the average particle diameter as one side. 2 ) Set. The number B of particles in the square is measured to calculate B / A. This is repeated 10 times, and the average value of B / A obtained is taken as the adhesion amount of particles.
  • SEM scanning electron microscope
  • the water repellent portion formed on the surface to be treated by the water repellent powder can be made into an airgel because it can achieve more excellent water repellency.
  • the airgel formed here is a porous body having nanometer-sized micropores.
  • the airgel is considered to exhibit excellent water repellency because it has few hydroxyl groups on its surface and water hardly enters the fine pores.
  • the airgel has a large porosity, it is considered that a water repellent portion having high transparency can be obtained because the refractive index of the water repellent portion which is the airgel is small.
  • a water repellent portion having excellent water repellency and flexibility can be formed on the surface to be treated by the above-described water repellent treatment method using the water repellent powder of the present embodiment.
  • the water repellent structure in which such a water repellent part is formed can exhibit excellent water repellency and durability.
  • one aspect of the present invention may be a water repellent including airgel composite powder.
  • the form of the water repellent material is not particularly limited, and may be, for example, the above-described water repellent powder, water repellent treatment liquid, or water repellent film.
  • Example 1 [Preparation of water repellent powder 1] 40.0 parts by mass of a carbinol-modified siloxane "X-22-160AS" (product name, manufactured by Shin-Etsu Chemical Co., Ltd.) as a polysiloxane compound, methyltrimethoxysilane "LS-530" as a silicon compound (Shin-Etsu Chemical Co., Ltd. stock Product name: Product name: 30.0 parts by mass of “MTMS” hereinafter; and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane “KBM-303” (manufactured by Shin-Etsu Chemical Co., Ltd.) 30.
  • the wet gel 1 was transferred to a plastic bottle, sealed, and then pulverized for 10 minutes at 27000 rpm using an Extreme mill (MX-1000XTS manufactured by As One Corporation) to obtain particulate wet gel 1.
  • the resulting particulate wet gel 1 was immersed in 2500 parts by mass of methanol and washed at 60 ° C. for 12 hours. This washing operation was performed a total of three times while changing to fresh methanol.
  • the washed particulate wet gel was immersed in 2500 parts by mass of a low surface tension solvent heptane, and solvent substitution was performed at 40 ° C. for 12 hours. This solvent displacement operation was performed a total of three times while exchanging for fresh heptane.
  • the washed, solvent-replaced particulate wet gel was dried at 40 ° C. under normal pressure for 96 hours and further dried at 150 ° C. for 2 hours.
  • the dried gel is sieved (manufactured by Tokyo Screen Co., Ltd., mesh 45 ⁇ m, wire diameter 32 ⁇ m) to obtain a water repellent powder 1 containing an airgel component having a structure represented by the above general formula (1) and an epoxy group.
  • Example 2 [Preparation of water repellent powder 2] 143.0 parts by mass of ST-OZL-35 (manufactured by Nissan Chemical Industries, Ltd., spherical colloidal silica, average primary particle diameter: 100 nm), 57.0 parts by mass of water, 0.10 parts by mass of acetic acid, CTAB 20.0 parts by mass and 120.0 parts by mass of urea, to which 40.0 parts by mass of the polysiloxane compound A and 30.0 parts by mass of MTMS are added, 3-mercaptopropyltrimethoxysilane "KBM-803" 30.0 mass parts (made by Shin-Etsu Chemical Co., Ltd.) was added, and it was made to react at 25 degreeC for 2 hours, and the sol was obtained.
  • ST-OZL-35 manufactured by Nissan Chemical Industries, Ltd., spherical colloidal silica, average primary particle diameter: 100 nm
  • CTAB 20.0 parts by mass and 120.0 parts by mass of urea to which 40.0
  • the obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 2 containing an airgel component having a ladder type structure including the structures represented by the general formulas (2) and (3) and a mercapto group was obtained.
  • the "polysiloxane compound A” was synthesized as follows. First, in a 1-liter three-necked flask equipped with a stirrer, a thermometer and a Dimroth condenser, 100.0 parts by mass of methyl hydroxy-terminated dimethylpolysiloxane "XC 96-723" (manufactured by Momentive, product name), methyl 181.3 parts by mass of trimethoxysilane and 0.50 parts by mass of t-butylamine were mixed and reacted at 30 ° C. for 5 hours. Thereafter, the reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, to thereby obtain a bifunctional alkoxy-modified polysiloxane compound (polysiloxane compound A) at both ends.
  • the water repellent liquid 2 was obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the water repellent powder 2 with respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol. .
  • Example 3 [Preparation of water repellent powder 3] 100.0 parts by mass of PL-5L (Sakai Chemical Industry Co., Ltd., coral-shaped colloidal silica, average primary particle diameter: 50 nm), 70.0 parts by mass of water, 0.10 parts by mass of acetic acid, CTAB Mix 20.0 parts by mass, add 20.0 parts by mass of X-22-160AS, 30.0 parts by mass of MTMS, and 20.0 parts by mass of bistrimethoxysilylhexane, and react for 2 hours at 25 ° C. I obtained Sol 3-1.
  • the water repellent liquid 3 was obtained by stirring at 300 rpm for 1 hour using 5.0 g of the water repellent powder 3 and the general-purpose stirrer BL-600 with respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol. .
  • Example 4 [Preparation of water repellent powder 4] 100.0 parts by mass of PL-2L, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB, 20.0 parts by mass of polysiloxane compound A, and MTMS 30.0 parts by mass and 20.0 parts by mass of bistrimethoxysilylhexane were added, and reacted at 25 ° C. for 2 hours to obtain a sol 4-1.
  • the water repellent solution 4 was obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the water repellent powder 4 with respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol. .
  • Example 5 [Preparation of water repellent powder 5] 100.0 parts by mass of PL-5L, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB and 120.0 parts by mass of urea are mixed, and this is mixed with X-22- 20.0 parts by mass of 160 AS, 20.0 parts by mass of polysiloxane compound A, 30.0 parts by mass of MTMS, and 30.0 parts by mass of KBM-803 were reacted at 25 ° C. for 2 hours to obtain a sol . The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, an airgel component having a structure represented by the above general formula (1), a ladder type structure represented by the above general formulas (2) and (3), and a mercapto group Water-repellent powder 5 contained was obtained.
  • the water repellent treatment liquid 5 was obtained by stirring at 300 rpm for 1 hour using 5.0 g of the water repellent powder 5 and the general-purpose stirrer BL-600 with respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol. .
  • Example 2 a water repellent powder 6 containing an airgel component having a ladder type structure represented by the above general formulas (2) and (3) and an amino group was obtained.
  • Example 7 [Preparation of water repellent powder 7] 100.0 parts by mass of PL-2L, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB, 40.0 parts by mass of polysiloxane compound B, and MTMS The reaction mixture was added with 30.0 parts by mass and allowed to react at 25 ° C. for 2 hours to obtain sol 7-1. 30.0 parts by mass of KBM-603 and 30 parts by mass of water were mixed and reacted at 25 ° C. for 2 hours to obtain a sol 4-2. The sol 4-2 was added to the obtained sol 7-1, gelled at 60 ° C., and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 7 containing an airgel component having a ladder type structure represented by the above general formulas (2) and (3) and an amino group was obtained.
  • polysiloxane compound B was synthesized as follows. First, 100.0 parts by mass of XC 96-723, 202.6 parts by mass of tetramethoxysilane, and 0.2 parts by mass of t-butylamine in a 1-liter three-necked flask equipped with a stirrer, a thermometer and a Dimroth condenser. 50 parts by mass were mixed and reacted at 30 ° C. for 5 hours. Thereafter, the reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, thereby obtaining a both-end trifunctional alkoxy-modified polysiloxane compound (polysiloxane compound B).
  • Example 8 [Preparation of water repellent powder 8] 143.0 parts by mass of ST-OZL-35, 57.0 parts by mass of water, 20.0 parts by mass of CTAB and 120.0 parts by mass of urea are mixed with 20.0 parts by mass of the polysiloxane compound A , 20.0 parts by mass of DMDMS and 30.0 parts by mass of MTMS, 30.0 parts by mass of 3-acryloxypropyltrimethoxysilane "KBM-5103" (manufactured by Shin-Etsu Chemical Co., Ltd.), and adding at 25 ° C The reaction was carried out for 2 hours to obtain a sol. The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 8 containing an airgel component having a ladder type structure represented by the general formulas (2) and (3) and an acryloyl group was obtained.
  • Example 9 [Preparation of water repellent powder 9] 100.0 parts by mass of PL-5L, 100.0 parts by mass of water, 20.0 parts by mass of CTAB and 120.0 parts by mass of urea are mixed with 20.0 parts by mass of polysiloxane compound A, DMDMS 20.0 parts by mass, 30.0 parts by mass of MTMS, 30.0 parts by mass of 3-methacryloxypropyltrimethoxysilane “KBM-503” (manufactured by Shin-Etsu Chemical Co., Ltd.), and reaction at 25 ° C. for 2 hours
  • the sol was obtained.
  • the obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel.
  • a water repellent powder 9 containing an airgel component having a ladder type structure represented by the above general formulas (2) and (3) and a methacryloyl group was obtained.
  • Example 10 [Preparation of water repellent powder 10] 143.0 parts by mass of ST-OZL-35, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid, and 20.0 parts by mass of CTAB mixed with 20.0 parts by mass of DMDMS, and polysiloxane 20.0 parts by mass of compound A and 50.0 parts by mass of MTMS were added, and reacted at 25 ° C. for 2 hours to obtain sol 10-1. 10.0 parts by mass of KBM-903 and 30 parts by mass of water were mixed and reacted at 25 ° C. for 2 hours to obtain a sol 3-2. The sol 3-2 was added to the obtained sol 10-1, gelled at 60 ° C., and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 10 containing an airgel component having a ladder type structure represented by the above general formulas (2) and (3) and an amino group was obtained.
  • the water repellent treatment liquid 10 was obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the water repellent powder 10 with respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol. .
  • Comparative example 1 [Preparation of comparative water repellent powder 1] 200.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB and 120.0 parts by mass of urea are mixed, 100.0 parts by mass of MTMS are added thereto, and the mixture is stirred at 25.degree. The reaction was carried out to obtain a sol. The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a comparative water repellent powder 1 was obtained.
  • Comparative water repellent treatment liquid 1 is obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the comparative water repellent powder 1 against a mixed solvent of 400.0 g of water and 200.0 g of methanol. Although obtained, since the below-mentioned dispersibility evaluation was C, preparation of a water-repellent structure was not completed.
  • Comparative example 2 [Production of comparative water repellent powder 2] 200.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB and 120.0 parts by mass of urea are mixed, and 100.0 parts by mass of tetraethoxysilane (TEOS) is added thereto The reaction was carried out at 25 ° C. for 2 hours to obtain a sol. The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. After that, in the same manner as in Example 1, a comparative water repellent powder 2 was obtained.
  • TEOS tetraethoxysilane
  • Comparative water repellent solution 2 is obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the comparative water repellent powder 2 against a mixed solvent of 400.0 g of water and 200.0 g of methanol. Although obtained, since the below-mentioned dispersibility evaluation was C, preparation of a water-repellent structure was not completed.
  • Comparative example 3 [Preparation of comparative water repellent powder 3] 143.0 parts by mass of ST-OZL-35, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB, and 120.0 parts by mass of urea are mixed, and 20 .0 parts by mass, 20.0 parts by mass of the polysiloxane compound A and 60.0 parts by mass of MTMS were added, and reacted at 25 ° C. for 2 hours to obtain a sol. The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. After that, in the same manner as in Example 1, a comparative water repellent powder 3 was obtained.
  • Comparative water repellent treatment liquid 3 is obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the comparative water repellent powder 3 against a mixed solvent of 400.0 g of water and 200.0 g of methanol. Although obtained, since the below-mentioned dispersibility evaluation was C, preparation of a water-repellent structure was not completed.
  • Comparative water repellent treatment liquid 4 was obtained by stirring for 1 hour at 300 rpm using 5.0 g of the above comparative water repellent powder 1 with 600.0 g of methyl ethyl ketone (MEK) and a general-purpose stirrer BL-600.
  • MEK methyl ethyl ketone
  • Comparative water repellent structure 4 The slide glass S7213 was dipped in the comparative water repellent treatment liquid 5 for 5 minutes, and then the dip treated slide glass was dried at 120 ° C. under normal pressure for 1 hour to obtain a comparative water repellent structure 4.
  • Comparative example 5 [Preparation of Comparative Water Repellent Treatment Solution 5]
  • a comparative water repellent treatment liquid 5 was obtained by stirring at 300 rpm for 1 hour using 5.0 g of the comparative water repellent powder 2 and 60 g of MEK using a general-purpose stirrer BL-600.
  • Comparative water repellent structure 5 After dipping the slide glass S7213 for 5 minutes in the comparative water repellent treatment solution 5, the dip treated slide glass was dried at 120 ° C. for 1 hour under normal pressure to obtain a comparative water repellent structure 5.
  • Comparative example 6 [Preparation of comparative water repellent treatment solution 6]
  • the comparative water repellent treatment liquid 6 was obtained by stirring at 300 rpm for 1 hour using 5.0 g of the comparative water repellent powder 3 and 60 g of MEK using a general-purpose stirrer BL-600.
  • Comparative water repellent structure 6 The slide glass S7213 was dipped in the comparative water repellent treatment liquid 5 for 5 minutes, and then the dip treated slide glass was dried at 120 ° C. for 1 hour under normal pressure to obtain a comparative water repellent structure 6.
  • Table 1 summarizes the types and addition amounts of Si raw materials in each of the examples and the comparative examples.
  • Compressive Elastic Modulus As a measuring device, a micro compression tester "MCT-510" (product name, manufactured by Shimadzu Corporation) was used. The water repellent powder was set between the upper platen and the lower platen arranged in parallel, and compression was performed at a loading rate of 0.0892 mN / sec. The measurement was terminated when a load of over 4.9 mN was applied or when the measurement sample was destroyed.
  • the compressive elastic modulus was calculated from compressive strain and compressive stress as follows.
  • the compressive strain ⁇ can be obtained by the following equation.
  • ⁇ d the displacement (mm) of the thickness of the measurement sample due to the load
  • d1 the thickness (mm) of the measurement sample before applying the load.
  • the compressive stress ⁇ (MPa) can be determined by the following equation.
  • F indicates a compressive force (N)
  • A indicates a cross-sectional area (mm 2 ) of the measurement sample before loading.
  • F / A
  • the compressive elastic modulus E (MPa) can be determined, for example, by the following equation in a compressive force range of 0.1 to 0.2 N.
  • ⁇ 1 represents compressive stress (MPa) measured at a compressive force of 0.1 N
  • ⁇ 2 represents compressive stress (MPa) measured at a compressive force of 0.2 N
  • ⁇ 1 is compressive stress
  • the compressive strain measured at ⁇ 1 is shown
  • ⁇ 2 is the compressive strain measured at compressive stress ⁇ 2 .
  • E ( ⁇ 2 - ⁇ 1 ) / ( ⁇ 2 - ⁇ 1 )
  • abrasion resistance test In the abrasion resistance test, a Kim towel manufactured by Cresia Co., Ltd. was rubbed on the surface of the water repellent structure a plurality of times, and then dried at 105 ° C. for 1 hour to prepare a measurement sample.
  • the contact area of the Kim towel here was 20 mm ⁇ 50 mm, with a weight of 0.1 kg / cm 2 .
  • 2 ⁇ L of ultrapure water droplets were dropped using a contact angle meter DMs-401 manufactured by Kyowa Interface Science Co., Ltd., and the contact angle after 5 seconds was measured at room temperature. The measurement was performed five times, and the average value was taken as the water contact angle.
  • the water repellent powder of the example has high dispersibility in an aqueous solvent as compared to the comparative water repellent powder of the comparative example.
  • the water repellent structure having a water repellent portion formed from the water repellent powder of the example has a large water contact angle and exhibits good water repellency as compared with the water repellent structure of Comparative Examples 4 and 5. It can be confirmed that it has excellent flexibility. Further, as is clear from the results of the abrasion resistance test, the water repellent structure of the example is superior in durability and can maintain good water repellency as compared with the water repellent structure of the comparative example.
  • Example 6 and Comparative Example 6 are compared, by introducing the amino group which is a reactive group, the dispersibility in the aqueous solvent and the water repellency are compatible, and the adhesion is also improved by the abrasion resistance test. Can be confirmed.

Abstract

An aerogel composite powder containing an aerogel component and silica particles, wherein the aerogel component has at least one polar group selected from the group consisting of the epoxy group, mercapto group, acryloyl group, methacryloyl group, and amino group.

Description

エアロゲル複合体パウダー及び撥水材Aerogel complex powder and water repellent
 本開示は、エアロゲル複合体パウダー及び撥水材に関する。 The present disclosure relates to an airgel composite powder and a water repellent.
 従来、ガラス、プラスチックス製品などの透明性を有する基材に撥水性能を付与することは、水滴の付着を最小限に抑え視界を確保する目的から、多くの製品に要求されている。通常、撥水性能は、基材の表面に撥水性に優れたコーティング材により被膜(以下、「撥水膜」という)を形成することにより得られるものである。撥水膜とは、一般的に、水の接触角が90°以上になる被膜のことをいう。 Conventionally, to impart water repellency to a substrate having transparency such as glass and plastic products is required for many products in order to minimize adhesion of water droplets and secure visibility. Usually, water repellency is obtained by forming a film (hereinafter referred to as "water repellent film") on the surface of a substrate with a coating material excellent in water repellency. The water repellent film generally means a film having a contact angle of water of 90 ° or more.
 撥水膜を形成する材料としては、ポリテトラフルオロエチレン(PTFE)及びその誘導体が知られている。しかしながら、PTFEは、硬化させるための温度が数百度以上であるため、適用する箇所及び基材が限定されている。 As materials for forming a water repellent film, polytetrafluoroethylene (PTFE) and derivatives thereof are known. However, since PTFE has a temperature for curing of several hundred degrees or more, the application site and substrate are limited.
 また、特許文献1及び2には、フルオロアルキルシランを用いて撥水膜を形成することが記載されている。 Further, Patent Documents 1 and 2 disclose that a water repellent film is formed using a fluoroalkylsilane.
 また、特許文献3及び4には、含フッ素ナノ粒子の分散液を用いて撥水性を付与することが記載されている。 Patent Documents 3 and 4 disclose that water repellency is imparted using a dispersion of fluorine-containing nanoparticles.
特開2002-105661号公報JP 2002-105661 A 特開2000-81214号公報JP 2000-81214 A 特開2016-44092号公報JP, 2016-44092, A 特許第5996056号公報Patent No. 5996056 gazette
 フルオロアルキルシランから形成される撥水膜は、基材への密着性が充分ではないため、フルオロアルキルシランを基材に塗布して、柔軟性に優れる撥水膜を形成することは難しい。撥水性を有するパウダーを用いて撥水性を付与することもできるが、水への分散に難があるため、有機溶剤を使用する必要があり、環境負荷が大きい。また、水に分散できるパウダーは、撥水性に乏しいことが一般的である。そのため、撥水性と水への分散性とを両立し、密着性及び柔軟性に優れる撥水材料が求められている。 Since the water-repellent film formed from fluoroalkylsilane does not have sufficient adhesion to the substrate, it is difficult to apply the fluoroalkylsilane to the substrate to form a water-repellent film excellent in flexibility. Although it is possible to impart water repellency by using a powder having water repellency, since dispersion in water is difficult, it is necessary to use an organic solvent, and the environmental load is large. In addition, powders that can be dispersed in water generally have poor water repellency. Therefore, a water repellent material which has both water repellency and dispersibility in water and is excellent in adhesion and flexibility is required.
 本発明は上記の事情に鑑みてなされたものであり、撥水性と水への分散性を両立し、密着性及び柔軟性に優れる撥水パウダーを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a water repellent powder which has both water repellency and dispersibility in water and is excellent in adhesion and flexibility.
 本発明者は、上記目的を達成するために鋭意研究を重ねた結果、特定のエアロゲル複合体パウダーが、水への分散が可能で、優れた密着性、柔軟性及び撥水性を発現できることを見出し、本発明の完成に至った。 As a result of intensive studies to achieve the above object, the present inventors have found that a specific airgel complex powder can be dispersed in water and can exhibit excellent adhesion, flexibility and water repellency. The present invention has been completed.
 本開示は、エアロゲル成分とシリカ粒子とを含有し、エアロゲル成分が、エポキシ基、メルカプト基、アクリロイル基、メタクリロイル基及びアミノ基からなる群より選択される少なくとも一種の極性基を有する、エアロゲル複合体パウダーを提供する。本開示に係るエアロゲル複合体パウダーは、水への分散が可能で、優れた密着性、柔軟性、及び撥水性を有する。 The present disclosure contains an airgel component and silica particles, and the airgel component has at least one polar group selected from the group consisting of an epoxy group, a mercapto group, an acryloyl group, a methacryloyl group and an amino group. Provide powder. The airgel composite powder according to the present disclosure can be dispersed in water and has excellent adhesion, flexibility, and water repellency.
 エアロゲル複合体パウダーは、エアロゲル成分及びシリカ粒子より形成された三次元網目骨格と、細孔とを有することができる。これにより、柔軟性や撥水性を更に向上し易くなる。 The airgel composite powder can have a three-dimensional network structure formed of an airgel component and silica particles, and pores. This makes it easier to further improve the flexibility and the water repellency.
 エアロゲル複合体パウダーは、シリカ粒子と、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。このようなエアロゲル複合体パウダーは、柔軟性や撥水性を更に向上し易くなる。 The airgel composite powder is selected from the group consisting of silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a silicon compound having a hydrolyzable functional group. It may be a dry product of a wet gel which is a condensate of a sol containing at least one of Such airgel composite powder is likely to further improve the flexibility and water repellency.
 シリカ粒子の平均一次粒子径は1~500nmとすることができる。また、シリカ粒子は、非晶質シリカ粒子であってもよい。さらに、非晶質シリカ粒子は、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子からなる群より選択される少なくとも一種であってもよい。 The average primary particle size of the silica particles can be 1 to 500 nm. The silica particles may be amorphous silica particles. Furthermore, the amorphous silica particles may be at least one selected from the group consisting of fused silica particles, fumed silica particles and colloidal silica particles.
 エアロゲル複合体パウダーは、シラン粒子と、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。 The airgel composite powder comprises, from the group consisting of silane particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a polysiloxane compound having a hydrolyzable functional group. It may be a dry product of a wet gel which is a condensate of a sol containing at least one selected.
 エアロゲル成分は、一般式(1)で表される構造を有していてもよい。式(1)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。
Figure JPOXMLDOC01-appb-C000004
The airgel component may have a structure represented by the general formula (1). In formula (1), R 1 and R 2 each independently represent an alkyl group or an aryl group, and R 3 and R 4 each independently represent an alkylene group.
Figure JPOXMLDOC01-appb-C000004
 また、エアロゲル成分は、支柱部及び橋かけ部を備えるラダー型構造を有し、橋かけ部は下記一般式(2)で表される構造を有していてもよい。式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。
Figure JPOXMLDOC01-appb-C000005
In addition, the airgel component may have a ladder structure having a support portion and a bridging portion, and the bridging portion may have a structure represented by the following general formula (2). In formula (2), R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50.
Figure JPOXMLDOC01-appb-C000005
 さらに、エアロゲル成分は、下記一般式(3)で表されるラダー型構造を有していてもよい。式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。
Figure JPOXMLDOC01-appb-C000006
Furthermore, the airgel component may have a ladder-type structure represented by the following general formula (3). In formula (3), R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group, a and c each independently represent an integer of 1 to 3000, and b is 1 to 50. Indicates an integer.
Figure JPOXMLDOC01-appb-C000006
 本開示において、エアロゲル複合体パウダーの平均粒子径D50は1~1000μmとすることができる。これにより、被着体の被処理面への撥水膜の形成性及び密着性が更に向上する。 In the present disclosure, the average particle size D50 of the airgel composite powder can be 1 to 1000 μm. Thereby, the formability and adhesion of the water repellent film to the surface to be treated of the adherend are further improved.
 本開示はまた、上記エアロゲル複合体パウダーを含む、撥水材を提供する。 The present disclosure also provides a water repellent material including the above-described airgel composite powder.
 本発明によれば、撥水性及び柔軟性に優れたエアロゲル複合体パウダー及びそれを用いた撥水材を提供することができる。本発明のエアロゲル複合体パウダーは、低温で被処理面に撥水性を付与することができるので、耐熱性を有しない被着体にも優れた撥水性を付与することができる。また、このエアロゲル複合体パウダーは柔軟性や被着体への密着性に優れ、撥水性の機能を長期間維持することができる。さらに、水にも分散することから、有機溶剤を使わずに環境負荷の低減が可能となる。 According to the present invention, it is possible to provide an airgel composite powder excellent in water repellency and flexibility and a water repellent using the same. Since the airgel composite powder of the present invention can impart water repellency to the surface to be treated at low temperature, it can impart excellent water repellency even to adherends that do not have heat resistance. Moreover, this airgel composite powder is excellent in flexibility and adhesion to an adherend, and can maintain a water repellant function for a long time. Furthermore, since it is also dispersed in water, the environmental load can be reduced without using an organic solvent.
本実施形態に係るエアロゲル複合体パウダーの微細構造を模式的に表す図である。It is a figure which represents typically the microstructure of the airgel complex powder which concerns on this embodiment. 粒子の二軸平均一次粒子径の算出方法を示す図である。It is a figure which shows the calculation method of the biaxial average primary particle diameter of particle | grains.
 以下、場合により図面を参照しつつ本開示の好適な実施形態について詳細に説明する。
ただし、本開示は以下の実施形態に限定されるものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのいずれか一方を含んでいればよく、両方を含んでいてもよい。本実施形態で例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。
Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings as needed.
However, the present disclosure is not limited to the following embodiments. In the present specification, a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively. "A or B" may contain any one of A and B, and may contain both. The materials exemplified in this embodiment can be used singly or in combination of two or more unless otherwise specified.
<エアロゲル複合体パウダー>
 狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルを「エアロゲル」と称する。すなわち、本実施形態においてエアロゲルとは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味するものである。一般的にエアロゲルの内部は網目状の微細構造となっており、2~20nm程度のエアロゲル粒子(エアロゲルを構成する粒子)が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、100nmに満たない細孔がある。これにより、エアロゲルは、三次元的に微細な多孔性の構造をしている。なお、本実施形態におけるエアロゲルは、例えば、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、例えば、有機基(メチル基等)又は有機鎖を導入した、いわゆる有機-無機ハイブリッド化されたシリカエアロゲルが挙げられる。なお、本実施形態に係るエアロゲル複合体パウダー(粉末状(パウダー状)エアロゲル、ということもできる)は、上記エアロゲルの特徴であるクラスター構造を有しており、三次元的に微細な多孔性の構造を有するパウダーである。
<Aerogel complex powder>
In a narrow sense, dry gel obtained by supercritical drying method for wet gel is aerogel, dry gel obtained by drying under atmospheric pressure is xerogel, and dry gel obtained by lyophilization is cryogel Although referred to, in the present embodiment, the resulting low density dried gel is referred to as "aerogel" regardless of these drying techniques of the wet gel. That is, in the present embodiment, the term "aerogel" means "gel composed of a microporous solid in which the dispersed phase is gas (a gel composed of a microporous solid in which the dispersed phase is gas)", which is an airgel in a broad sense. It is a thing. Generally, the inside of the airgel has a network-like microstructure, and has a cluster structure in which airgel particles (particles constituting the airgel) of about 2 to 20 nm are bonded. Between the frameworks formed by the clusters, there are pores less than 100 nm. Thus, the airgel has a three-dimensionally fine porous structure. In addition, the airgel in this embodiment is a silica airgel which has a silica as a main component, for example. Examples of the silica aerogels include so-called organic-inorganic hybridised silica aerogels into which organic groups (such as methyl groups) or organic chains have been introduced. The airgel composite powder (also referred to as powder (powdery) aerogel) according to the present embodiment has a cluster structure which is a feature of the above-mentioned airgel, and has a three-dimensionally fine porosity. It is a powder having a structure.
 本実施形態のエアロゲル複合体パウダーは、エポキシ基(例えば、グリシドキシ基)、メルカプト基、アクリロイル基、メタクリロイル基及びアミノ基からなる群より選択される少なくとも一種の極性基(以下、場合により「特定の極性基」という。)を有するエアロゲル成分を含有する。エアロゲルに特定の極性基を導入することで、水への分散が可能で、優れた密着性、柔軟性、及び撥水性を発現できる。 The airgel composite powder of the present embodiment includes at least one polar group selected from the group consisting of an epoxy group (for example, glycidoxy group), a mercapto group, an acryloyl group, a methacryloyl group and an amino group (hereinafter referred to as “specific Containing an airgel component having a polar group). By introducing a specific polar group into the airgel, it can be dispersed in water and can exhibit excellent adhesion, flexibility, and water repellency.
 本実施形態に係るエアロゲル複合体パウダーは、エアロゲル成分及びシリカ粒子を含有するエアロゲル複合体であってもよい。なお、必ずしもこれと同じ概念を意味するものではないが、本実施形態に係るエアロゲル複合体パウダーは、三次元網目骨格を構成する成分としてシリカ粒子を含有するものである、と表現することも可能である。本実施形態に係るエアロゲル複合体パウダーは、後述するとおり撥水性と柔軟性とに優れている。特に、柔軟性が優れていることにより密着性が優れる撥水パウダーとして好適に用いることができる。なお、このようなエアロゲル複合体パウダーは、エアロゲルの製造環境中にシリカ粒子を存在させることにより得られるものである。そしてシリカ粒子を存在させることによるメリットは、エアロゲル複合体パウダー自体の撥水性、柔軟性等を向上できることのみならず、後述する湿潤ゲル生成工程の時間短縮、あるいは洗浄及び溶媒置換工程から乾燥工程の簡略化が可能であることにもある。なお、この工程の時間短縮及び工程の簡略化は、柔軟性が優れるエアロゲル複合体パウダーを作製する上で必ずしも求められることではない。 The airgel complex powder according to the present embodiment may be an airgel complex containing an airgel component and silica particles. Although the same concept as this is not necessarily meant, the airgel composite powder according to the present embodiment can be expressed as containing silica particles as a component constituting a three-dimensional network structure. It is. The airgel composite powder according to the present embodiment is excellent in water repellency and flexibility as described later. In particular, it can be suitably used as a water repellent powder having excellent adhesion due to its excellent flexibility. Such an airgel composite powder is obtained by the presence of silica particles in the airgel manufacturing environment. The merit of the presence of the silica particles is not only that the water repellency, flexibility, etc. of the airgel composite powder itself can be improved, but also the time reduction of the wet gel formation process described later, or the washing and solvent substitution process to the drying process Some simplifications are possible. In addition, time reduction of this process and simplification of a process are not necessarily calculated | required, when producing the airgel composite powder which is excellent in flexibility.
 本実施形態において、エアロゲル成分とシリカ粒子との複合化態様は様々である。例えば、エアロゲル成分は膜状等の不定形であってもよく、粒子状(エアロゲル粒子)であってもよい。いずれの態様においても、エアロゲル成分が様々な形態になりシリカ粒子間に存在しているため、エアロゲルの骨格に柔軟性が付与されていると推察される。 In the present embodiment, there are various modes of combining the airgel component with the silica particles. For example, the airgel component may be indeterminate form such as a film or the like, or may be particulate (aerogel particles). In any of the embodiments, since the airgel component is in various forms and is present between the silica particles, it is presumed that the flexibility of the airgel skeleton is imparted.
 まず、エアロゲル成分とシリカ粒子の複合化態様としては、不定形のエアロゲル成分がシリカ粒子間に介在する態様が挙げられる。このような態様としては、具体的には、例えばシリカ粒子が膜状のエアロゲル成分(シリコーン成分)により被覆された態様(エアロゲル成分がシリカ粒子を内包する態様)、エアロゲル成分がバインダーとなりシリカ粒子同士が連結された態様、エアロゲル成分が複数のシリカ粒子間隙を充填している態様、これらの態様の組み合わせの態様(クラスター状に並んだシリカ粒子がエアロゲル成分により被覆された態様等)、など様々な態様が挙げられる。このように、本実施形態においてエアロゲル複合体パウダーは、三次元網目骨格がシリカ粒子とエアロゲル成分(シリコーン成分)から構成されることができ、その具体的態様(形態)に特に制限はない。 First, as a composite aspect of the airgel component and the silica particle, there is an aspect in which an amorphous airgel component intervenes between the silica particles. As such an embodiment, specifically, for example, an embodiment in which silica particles are coated with a film-like airgel component (silicone component) (aspect in which the airgel component incorporates silica particles), the airgel component serves as a binder, and silica particles In which the airgel component is filled with a plurality of silica particle gaps, the embodiment of the combination of these embodiments (the embodiment in which the silica particles arranged in a cluster form are coated with the airgel component, etc.) Aspects can be mentioned. As described above, in the airgel composite powder in the present embodiment, the three-dimensional network structure can be composed of the silica particles and the airgel component (silicone component), and the specific aspect (form) thereof is not particularly limited.
 一方、後述するように、本実施形態においてエアロゲル成分は、不定形ではなく図1のように明確な粒子状となってシリカ粒子と複合化していてもよい。 On the other hand, as described later, in the present embodiment, the airgel component may not be indeterminate form, but may be in the form of clear particles as shown in FIG. 1 and be complexed with the silica particles.
 本実施形態に係るエアロゲル複合体パウダーにおいてこのような様々な態様が生じるメカニズムは必ずしも定かではないが、本発明者は、ゲル化工程におけるエアロゲル成分の生成速度が関与していると推察している。例えば、シリカ粒子のシラノール基数を変動させることによってエアロゲル成分の生成速度が変動する傾向がある。また、系のpHを変動させることによってもエアロゲル成分の生成速度が変動する傾向がある。 Although the mechanism which such various aspects produce in the airgel composite powder which concerns on this embodiment is not necessarily clear, the present inventor infers that the production | generation rate of the airgel component in a gelatinization process is concerned . For example, by varying the number of silanol groups of the silica particles, the formation rate of the airgel component tends to vary. In addition, the production rate of the airgel component tends to fluctuate also by changing the pH of the system.
 このことは、シリカ粒子のサイズ、形状、シラノール基数、系のpH等を調整することにより、エアロゲル複合体パウダーの態様(三次元網目骨格のサイズ、形状、化学構造等)を制御できることを示唆する。したがって、エアロゲルの密度、気孔率等の制御が可能となり、エアロゲルの断熱性、柔軟性、樹脂の耐浸透性等を制御することができると考えられる。なお、エアロゲル複合体パウダーの三次元網目骨格は、上述した様々な態様の一種類のみから構成されていてもよいし、二種以上の態様から構成されていてもよい。 This suggests that the aspect (size, shape, chemical structure, etc. of the three-dimensional network structure) of the airgel composite powder can be controlled by adjusting the size, shape, number of silanol groups, pH of the system, etc. of the silica particles. . Therefore, it is possible to control the density, the porosity, and the like of the airgel, and to control the heat insulation property, the flexibility, the penetration resistance of the resin, and the like of the airgel. In addition, the three-dimensional network structure of the airgel complex powder may be comprised from only one type of the various aspect mentioned above, and may be comprised from two or more types of aspects.
 以下、図1を例にとり、本実施形態に係るエアロゲル複合体パウダーについて説明するが、上述のとおり本開示は図1の態様に限定されるものではない。ただし、上記いずれの態様にも共通する事項(シリカ粒子の種類、サイズ、含有量等)については、以下の記載を適宜参照することができる。 Hereinafter, although the airgel composite powder which concerns on this embodiment is demonstrated taking FIG. 1 as an example, as above-mentioned, this indication is not limited to the aspect of FIG. However, the following description can be appropriately referred to for matters (type, size, content, etc. of silica particles) common to any of the above embodiments.
 図1は、本開示の一実施形態に係るエアロゲル複合体パウダーの微細構造を模式的に表す図である。図1に示されるように、エアロゲル複合体10は、エアロゲル成分を構成するエアロゲル粒子1が部分的にシリカ粒子2を介して三次元的にランダムに連なることにより形成される三次元網目骨格と、当該骨格に囲まれた細孔3とを有する。この際、シリカ粒子2はエアロゲル粒子1間に介在し、三次元網目骨格を支持する骨格支持体として機能していると推察される。したがって、このような構造を有することにより、エアロゲルとしての断熱性及び柔軟性を維持しつつ、適度な強度がエアロゲルに付与されることになると考えられる。すなわち、本実施形態において、エアロゲル複合体パウダーは、シリカ粒子がエアロゲル粒子を介して三次元的にランダムに連なることにより形成される三次元網目骨格を有していてもよい。また、シリカ粒子はエアロゲル粒子により被覆されていてもよい。なお、上記エアロゲル粒子(エアロゲル成分)はケイ素化合物から構成されるため、シリカ粒子への親和性が高いと推察される。そのため、本実施形態においてはエアロゲルの三次元網目骨格中にシリカ粒子を導入することに成功したと考えられる。この点においては、シリカ粒子のシラノール基も、両者の親和性に寄与していると考えられる。 FIG. 1 is a view schematically showing the microstructure of an airgel composite powder according to an embodiment of the present disclosure. As shown in FIG. 1, the airgel complex 10 has a three-dimensional network structure formed by the airgel particles 1 constituting the airgel component being partially and randomly connected three-dimensionally via the silica particles 2, And a pore 3 surrounded by the skeleton. Under the present circumstances, it is guessed that the silica particle 2 intervenes between the airgel particle 1, and functions as a frame | skeleton support which supports a three-dimensional network frame. Therefore, it is considered that, by having such a structure, appropriate strength is imparted to the airgel while maintaining the heat insulation and flexibility as the airgel. That is, in the present embodiment, the airgel complex powder may have a three-dimensional network structure formed by the silica particles being randomly connected three-dimensionally through the airgel particles. The silica particles may also be coated with airgel particles. In addition, since the said airgel particle | grains (airgel component) are comprised from a silicon compound, it is guessed that the affinity to a silica particle is high. Therefore, in the present embodiment, it is considered that silica particles were successfully introduced into the three-dimensional network of the airgel. In this respect, the silanol groups of the silica particles are also considered to contribute to the affinity of the two.
 エアロゲル粒子1は、複数の一次粒子から構成される二次粒子の態様を取っていると考えられており、概ね球状である。エアロゲル粒子1の平均粒子径(すなわち二次粒子径)は2nm~50μmとすることができるが、5nm~2μmであってもよく、又は10nm~200nmであってもよい。エアロゲル粒子1の平均粒子径が2nm以上であることにより、柔軟性に優れるエアロゲル複合体パウダーが得易くなり、一方平均粒子径が50μm以下であることにより、断熱性に優れるエアロゲル複合体パウダーが得易くなる。なお、エアロゲル粒子1を構成する一次粒子の平均粒子径は、低密度の多孔質構造の2次粒子を形成し易いという観点から、0.1nm~5μmとすることができるが、0.5nm~200nmであってもよく、又は1nm~20nmであってもよい。 The airgel particles 1 are considered to be in the form of secondary particles composed of a plurality of primary particles, and are generally spherical. The average particle size (ie, secondary particle size) of the airgel particles 1 can be 2 nm to 50 μm, but may be 5 nm to 2 μm, or 10 nm to 200 nm. When the average particle diameter of the airgel particle 1 is 2 nm or more, an airgel composite powder excellent in flexibility is easily obtained, while when the average particle diameter is 50 μm or less, an airgel composite powder excellent in heat insulation is obtained. It will be easier. The average particle diameter of the primary particles constituting the airgel particle 1 can be 0.1 nm to 5 μm from the viewpoint of easily forming a secondary particle having a low density porous structure, but 0.5 nm to It may be 200 nm or 1 nm to 20 nm.
 シリカ粒子2としては特に制限なく用いることができ、例えば、非晶質シリカ粒子が挙げられる。非晶質シリカ粒子としては、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子からなる群より選択される少なくとも一種が挙げられる。これらのうち、コロイダルシリカ粒子は単分散性が高く、ゾル中での凝集を抑制し易い。なお、シリカ粒子2としては、中空構造、多孔質構造等を有するシリカ粒子であってもよい。 The silica particles 2 can be used without particular limitation, and examples thereof include amorphous silica particles. The amorphous silica particles include at least one selected from the group consisting of fused silica particles, fumed silica particles and colloidal silica particles. Among these, colloidal silica particles have high monodispersity, and easily suppress aggregation in the sol. The silica particles 2 may be silica particles having a hollow structure, a porous structure or the like.
 シリカ粒子2の形状は特に制限されず、球状、繭型、会合型等が挙げられる。これらのうち、シリカ粒子2として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子2の平均一次粒子径は1~500nmとすることができるが、5~300nmであってもよく、又は20~100nmであってもよい。シリカ粒子2の平均一次粒子径が1nm以上であることにより、適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲル複合体パウダーが得易くなる。一方、平均一次粒子径が500nm以下であることにより、撥水性に優れるエアロゲル複合体パウダーが得易くなる。 The shape of the silica particles 2 is not particularly limited, and examples thereof include spheres, bowls, and association types. Among these, use of spherical particles as the silica particles 2 makes it easy to suppress aggregation in the sol. The average primary particle diameter of the silica particles 2 can be 1 to 500 nm, but may be 5 to 300 nm, or 20 to 100 nm. When the average primary particle diameter of the silica particles 2 is 1 nm or more, appropriate strength can be easily imparted to the airgel, and an airgel composite powder excellent in shrinkage resistance at the time of drying can be easily obtained. On the other hand, when the average primary particle diameter is 500 nm or less, an airgel composite powder excellent in water repellency can be easily obtained.
 エアロゲル粒子1(エアロゲル成分)とシリカ粒子2とは、水素結合又は化学結合の態様を取って結合していると推測される。この際、水素結合又は化学結合は、エアロゲル粒子1(エアロゲル成分)のシラノール基又は極性基と、シリカ粒子2のシラノール基により形成されると考えられる。そのため、結合の態様が化学結合であると、適度な強度をエアロゲルに付与し易いと考えられる。このことから考えると、エアロゲル成分と複合化させる粒子として、シリカ粒子に限らず、粒子表面にシラノール基を有する無機粒子又は有機粒子も用いることができる。 It is speculated that the airgel particles 1 (airgel component) and the silica particles 2 are bonded in the form of hydrogen bonding or chemical bonding. At this time, it is considered that a hydrogen bond or a chemical bond is formed by the silanol group or polar group of the airgel particle 1 (airgel component) and the silanol group of the silica particle 2. Therefore, it is considered that when the bonding mode is a chemical bond, it is easy to impart appropriate strength to the airgel. From this point of view, it is possible to use not only silica particles but also inorganic particles or organic particles having silanol groups on the particle surface as particles to be complexed with the airgel component.
 シリカ粒子2の1g当りのシラノール基数は、10×1018~1000×1018個/gとすることができるが、50×1018~800×1018個/gであってもよく、又は100×1018~700×1018個/gであってもよい。シリカ粒子2の1g当りのシラノール基数が10×1018個/g以上であることにより、エアロゲル粒子1(エアロゲル成分)とのより良好な反応性を有することができ、耐収縮性に優れるエアロゲル複合体パウダーを得易くなる。一方、シラノール基数が1000×1018個/g以下であることにより、ゾル作製時における急なゲル化を抑制し易くなり、均質なエアロゲル複合体パウダーが得易くなる。 The number of silanol groups per 1 g of the silica particles 2 can be 10 × 10 18 to 1000 × 10 18 pieces / g, but may be 50 × 10 18 to 800 × 10 18 pieces / g, or 100 It may be × 10 18 to 700 × 10 18 pieces / g. When the number of silanol groups per 1 g of the silica particle 2 is 10 × 10 18 pieces / g or more, it is possible to have better reactivity with the airgel particle 1 (airgel component), and an airgel composite excellent in shrinkage resistance It becomes easy to obtain body powder. On the other hand, when the number of silanol groups is 1000 × 10 18 pieces / g or less, sudden gelation at the time of sol preparation can be easily suppressed, and homogeneous airgel composite powder can be easily obtained.
 本実施形態において、粒子の平均粒子径(エアロゲル粒子の平均二次粒子径及びシリカ粒子の平均一次粒子径)は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いてエアロゲル複合体の断面を直接観察することにより得ることができる。例えば、三次元網目骨格からは、その断面の直径に基づきエアロゲル粒子又はシリカ粒子個々の粒子径を得ることができる。ここでいう直径とは、三次元網目骨格を形成する骨格の断面を円とみなした場合の直径を意味する。また、断面を円とみなした場合の直径とは、断面の面積を同じ面積の円に置き換えたときの当該円の直径のことである。なお、平均粒子径の算出に当たっては、100個の粒子について円の直径を求め、その平均を取るものとする。 In the present embodiment, the average particle diameter of the particles (the average secondary particle diameter of the airgel particles and the average primary particle diameter of the silica particles) is an airgel composite using a scanning electron microscope (hereinafter abbreviated as “SEM”). Can be obtained by directly observing the cross section of For example, from the three-dimensional network, the particle size of airgel particles or individual silica particles can be obtained based on the diameter of the cross section. The term "diameter" as used herein means the diameter when the cross section of the skeleton forming the three-dimensional network structure is regarded as a circle. Moreover, the diameter when the cross section is regarded as a circle is the diameter of the circle when the area of the cross section is replaced with a circle of the same area. In addition, in calculation of an average particle diameter, the diameter of a circle | round | yen is calculated | required about 100 particle | grains, and the average shall be taken.
 なお、シリカ粒子については原料から平均粒子径を測定することが可能である。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常水に分散している固形分濃度が5~40質量%のコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液にパターン配線付きウエハを2cm角に切ったチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブロー乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にてシリカ粒子を観察し、画像を撮影する。得られた画像から20個のシリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。この際、選択したシリカ粒子が図2に示すような形状であった場合、シリカ粒子2に外接し、その長辺が最も長くなるように配置した長方形(外接長方形L)を導く。そして、その外接長方形Lの長辺をX、短辺をYとして、(X+Y)/2として二軸平均一次粒子径を算出し、その粒子の粒子径とする。 In addition, about a silica particle, it is possible to measure an average particle diameter from a raw material. For example, the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, for example, when colloidal silica particles having a solid content concentration of 5 to 40% by mass dispersed in water are taken as an example, a chip obtained by cutting a wafer with pattern wiring into 2 cm square is dipped for about 30 seconds in the dispersion liquid of colloidal silica particles. After that, the chip is rinsed with pure water for about 30 seconds and dried by nitrogen blow. Thereafter, the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, silica particles are observed at a magnification of 100,000 times, and an image is photographed. Twenty silica particles are arbitrarily selected from the obtained image, and the average of the particle sizes of those particles is taken as the average particle size. Under the present circumstances, when the selected silica particle is a shape as shown in FIG. 2, the rectangle (outside rectangle L) which circumscribeds the silica particle 2 and arrange | positioned so that the long side may become the longest is derived. Then, assuming that the long side of the circumscribed rectangle L is X and the short side is Y, the biaxial average primary particle diameter is calculated with (X + Y) / 2 as the particle diameter of the particles.
(パウダーの形状)
 本実施形態に係るエアロゲル複合体パウダーの形状は、特に限定されるものではなく、種々の形状であってよい。本実施形態におけるエアロゲル複合体パウダーは、後述の通りパウダー化するために粉砕を行っているため、通常、パウダーの形状は表面に凹凸のある不定形の形状となる。もちろん、球状等のパウダーでもよい。また、パネル状、フレーク状、繊維状であってもよい。パウダー形状は、SEMを用いてエアロゲル複合体パウダーを直接観察することにより得ることができる。
(Shape of powder)
The shape of the airgel complex powder according to the present embodiment is not particularly limited, and may be various shapes. Since the airgel composite powder in the present embodiment is pulverized to be powdered as described later, the powder usually has an irregular shape with irregularities on the surface. Of course, spherical powder and the like may be used. In addition, it may be in the form of panel, flake or fiber. The powder shape can be obtained by directly observing the airgel composite powder using an SEM.
(パウダーの平均粒子径)
 本実施形態に係るエアロゲル複合体パウダーの平均粒子径D50は、1~1000μmとすることができるが、3~700μmであってもよく、又は5~500μmであってもよい。エアロゲル複合体パウダーの平均粒子径D50が1μm以上であることにより、分散性及び取り扱い性に優れるエアロゲル複合体パウダーが得易くなる。一方、平均粒子径D50が1000μm以下であることにより、分散性に優れるエアロゲル複合体パウダーが得易くなる。パウダーの平均粒子径は、粉砕方法及び粉砕条件、ふるい又は分級の仕方により適宜調整することができる。
(Average particle size of powder)
The average particle diameter D50 of the airgel complex powder according to the present embodiment can be 1 to 1000 μm, but may be 3 to 700 μm, or 5 to 500 μm. When the average particle diameter D50 of the airgel complex powder is 1 μm or more, the airgel complex powder having excellent dispersibility and handling property can be easily obtained. On the other hand, when the average particle diameter D50 is 1000 μm or less, an airgel composite powder excellent in dispersibility is easily obtained. The average particle size of the powder can be appropriately adjusted according to the method of grinding and conditions of grinding, the manner of sieving or classification.
 パウダーの平均粒子径D50は、レーザー回折・散乱法により測定することができる。例えば、溶媒(エタノール)に、エアロゲル複合体パウダーを濃度0.05~5質量%の範囲内で添加し、50Wの超音波ホモジナイザーで15~30分振動することによって、パウダーを分散する。その後、分散液の約10mL程度をレーザー回折・散乱式粒子径分布測定装置に注入して、25℃で、屈折率1.3、吸収0として粒子径を測定する。そして、この粒子径分布における積算値50%(体積基準)での粒径を平均粒子径D50とする。測定装置としては、例えばMicrotrac MT3000(日機装株式会社製、製品名)を用いることができる。 The average particle size D50 of the powder can be measured by a laser diffraction / scattering method. For example, airgel complex powder is added to a solvent (ethanol) at a concentration of 0.05 to 5% by mass, and the powder is dispersed by vibrating for 15 to 30 minutes with a 50 W ultrasonic homogenizer. Thereafter, about 10 mL of the dispersion is injected into a laser diffraction / scattering particle size distribution measuring apparatus, and the particle size is measured at 25 ° C. with a refractive index of 1.3 and an absorption of 0. Then, the particle diameter at an integrated value of 50% (volume basis) in this particle diameter distribution is taken as an average particle diameter D50. As a measuring device, Microtrac MT3000 (product name, manufactured by Nikkiso Co., Ltd.) can be used, for example.
 本実施形態に係るエアロゲル複合体パウダーにおいて、細孔3のサイズ、すなわち平均細孔径は5~1000nmとすることができるが、25~500nmであってもよい。平均細孔径が5nm以上であることにより、柔軟性に優れるエアロゲル複合体パウダーが得易くなり、また、1000nm以下であることにより、撥水性に優れるエアロゲル複合体パウダーが得易くなる。 In the airgel composite powder according to the present embodiment, the size of the pores 3, that is, the average pore diameter can be 5 to 1000 nm, but may be 25 to 500 nm. When the average pore diameter is 5 nm or more, the airgel composite powder having excellent flexibility is easily obtained, and when the average pore diameter is 1000 nm or less, the airgel composite powder having excellent water repellency is easily obtained.
 エアロゲル複合体パウダーについての、3次元網目状に連続した細孔(通孔)の平均細孔径、密度及び気孔率は、DIN66133に準じて水銀圧入法により測定することができる。測定装置としては、例えば、オートポアIV9520(株式会社島津製作所製、製品名)を用いることができる。 The average pore size, density and porosity of the three-dimensional network-like continuous pores (through pores) of the airgel composite powder can be measured by mercury porosimetry according to DIN 66133. For example, Autopore IV9520 (manufactured by Shimadzu Corporation, product name) can be used as the measuring device.
[圧縮弾性率]
 本実施形態のエアロゲル複合体パウダーの25℃における圧縮弾性率は、2.0MPa以下とすることができ、1.5MPa以下であってもよく、1.3MPa以下であってもよく、1.0MPa以下であってもよい。圧縮弾性率が2MPa以下であることにより、撥水パウダーを被処理体に定着させる際、充分な密着性を確保することができる。なお、圧縮弾性率の下限値は特に限定されないが、例えば、0.05MPaとすることができる。圧縮弾性率は、微小圧縮試験機「MCT-510」(株式会社島津製作所製、製品名)を用いて測定することができる。
[Compression modulus]
The compressive elastic modulus at 25 ° C. of the airgel composite powder of the present embodiment can be 2.0 MPa or less, and may be 1.5 MPa or less, or 1.3 MPa or less, 1.0 MPa It may be the following. When the compression elastic modulus is 2 MPa or less, sufficient adhesion can be ensured when the water repellent powder is fixed to the object to be treated. The lower limit value of the compression elastic modulus is not particularly limited, but may be, for example, 0.05 MPa. The compressive elastic modulus can be measured using a micro compression tester "MCT-510" (product name, manufactured by Shimadzu Corporation).
<エアロゲル成分の具体的態様>
 本実施形態のエアロゲル複合体パウダーは、シロキサン結合(Si-O-Si)を含む主鎖を有するポリシロキサンを含有することができる。エアロゲルは、構造単位として、下記M単位、D単位、T単位又はQ単位を有することができる。
Figure JPOXMLDOC01-appb-C000007
<Specific embodiment of airgel component>
The airgel composite powder of the present embodiment can contain a polysiloxane having a main chain containing a siloxane bond (Si-O-Si). The airgel can have the following M units, D units, T units or Q units as structural units.
Figure JPOXMLDOC01-appb-C000007
 上記式中、Rは、ケイ素原子に結合している原子(水素原子等)又は原子団(アルキル基等)を示す。M単位は、ケイ素原子が1個の酸素原子と結合した一価の基からなる単位である。D単位は、ケイ素原子が2個の酸素原子と結合した二価の基からなる単位である。T単位は、ケイ素原子が3個の酸素原子と結合した三価の基からなる単位である。Q単位は、ケイ素原子が4個の酸素原子と結合した四価の基からなる単位である。これらの単位の含有量に関する情報は、Si-NMRにより得ることができる。 In the above formula, R represents an atom (such as a hydrogen atom) or an atomic group (such as an alkyl group) bonded to a silicon atom. The M unit is a unit consisting of a monovalent group in which a silicon atom is bonded to one oxygen atom. The D unit is a unit consisting of a divalent group in which a silicon atom is bonded to two oxygen atoms. The T unit is a unit consisting of a trivalent group in which a silicon atom is bonded to three oxygen atoms. The Q unit is a unit consisting of a tetravalent group in which a silicon atom is bonded to four oxygen atoms. Information on the content of these units can be obtained by Si-NMR.
 本実施形態に係るエアロゲル複合体パウダーにおけるエアロゲル成分としては、以下の態様が挙げられる。これらの態様を採用することにより、エアロゲル複合体パウダーの断熱性及び柔軟性を所望の水準に制御することが容易となる。 Examples of the airgel component in the airgel complex powder according to the present embodiment include the following modes. By adopting these aspects, it becomes easy to control the thermal insulation and flexibility of the airgel composite powder to a desired level.
(第一の態様)
 本実施形態に係るエアロゲル複合体パウダーのエアロゲル成分は、下記一般式(1)で表される構造を有することができる。本実施形態に係るエアロゲル複合体パウダーのエアロゲル成分は、式(1)で表される構造を含む構造として、下記一般式(1a)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(First aspect)
The airgel component of the airgel complex powder according to the present embodiment can have a structure represented by the following general formula (1). The airgel component of the airgel complex powder according to the present embodiment can have a structure represented by the following general formula (1a) as a structure including the structure represented by the formula (1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 式(1)及び式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。なお、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。pは1~50の整数を示す。式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。 In Formula (1) and Formula (1a), R 1 and R 2 each independently represent an alkyl group or an aryl group, and R 3 and R 4 each independently represent an alkylene group. Here, as an aryl group, a phenyl group, a substituted phenyl group, etc. are mentioned. In addition, as a substituent of a substituted phenyl group, an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned. p represents an integer of 1 to 50. In formula (1a), two or more R 1 s may be the same as or different from each other, and similarly, two or more R 2 s may be the same as or different from each other. In Formula (1a), two R 3 s may be the same or different, and similarly, two R 4 s may be the same or different.
 上記式(1)又は式(1a)で表される構造をエアロゲル成分としてエアロゲル複合体パウダーの骨格中に導入することにより、柔軟なエアロゲル複合体パウダーとなる。このような観点から、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。また、式(1)及び式(1a)中、R及びRとしては、それぞれ独立に炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としては、エチレン基、プロピレン基等が挙げられる。式(1a)中、pは2~30とすることができ、5~20であってもよい。 By introducing the structure represented by the above-mentioned formula (1) or formula (1a) as the airgel component into the skeleton of the airgel complex powder, a flexible airgel complex powder is obtained. From such a point of view, in the formulas (1) and (1a), R 1 and R 2 each independently represent an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like. A methyl group etc. are mentioned. In the formulas (1) and (1a), R 3 and R 4 each independently represent an alkylene group having 1 to 6 carbon atoms, and the alkylene group is, for example, an ethylene group or a propylene group. Can be mentioned. In the formula (1a), p may be 2 to 30, and may be 5 to 20.
(第二の態様)
 本実施形態に係るエアロゲル複合体パウダーのエアロゲル成分は、支柱部及び橋かけ部を備えるラダー型構造を有し、かつ橋かけ部が下記一般式(2)で表される構造を有することができる。このようなラダー型構造をエアロゲル成分としてエアロゲル複合体パウダーの骨格中に導入することにより、耐熱性と機械的強度を向上させることができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、エアロゲルの骨格がラダー型構造からなっていてもよいが、エアロゲル成分が部分的にラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000010
(Second aspect)
The airgel component of the airgel complex powder according to the present embodiment can have a ladder structure having a support portion and a crosslinking portion, and the crosslinking portion can have a structure represented by the following general formula (2) . Heat resistance and mechanical strength can be improved by introducing such a ladder-type structure as the airgel component into the skeleton of the airgel complex powder. In the present embodiment, the term “ladder type structure” refers to one having two struts (struts) and bridges connecting the struts (so-called “ladder”). It is. In this embodiment, the skeleton of the airgel may have a ladder structure, but the airgel component may partially have a ladder structure.
Figure JPOXMLDOC01-appb-C000010
 式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としては、例えば、フェニル基及び置換フェニル基が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。 In formula (2), R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50. Here, as an aryl group, a phenyl group and a substituted phenyl group are mentioned, for example. Moreover, as a substituent of a substituted phenyl group, an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group are mentioned, for example. In the formula (2), when b is an integer of 2 or more, two or more R 5 s may be the same as or different from each other, and similarly, two or more R 6 s may be the same as each other May also be different.
 上記の構造をエアロゲル成分としてエアロゲル複合体パウダーの骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性が得られる。シルセスキオキサンは、組成式:(RSiO1.5を有するポリシロキサンであり、カゴ型、ラダー型、ランダム型等の種々の骨格構造を有することができる。下記一般式(X)にて示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が-O-(構造単位として上記T単位を有する)であるが、本態様に係るエアロゲル複合体パウダーでは、エアロゲル成分の橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)であってよい。ただし、本態様のエアロゲル複合体パウダーにおけるエアロゲル成分は、一般式(2)で表される構造に加え、さらにシルセスキオキサンに由来する構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000011
By introducing the above structure into the skeleton of the airgel complex powder as an airgel component, for example, it has a structure derived from conventional ladder-type silsesquioxane (ie, a structure represented by the following general formula (X) Provides better flexibility than aerogels). Silsesquioxane is a polysiloxane having a compositional formula: (RSiO 1.5 ) n and can have various skeleton structures such as a cage type, a ladder type, and a random type. As shown in the following general formula (X), in the conventional airgel having a structure derived from ladder-type silsesquioxane, the structure of the cross-linked portion is -O- (having the above-mentioned T unit as a structural unit) However, in the airgel composite powder according to the present embodiment, the structure of the crosslinked portion of the airgel component may be a structure (polysiloxane structure) represented by the above general formula (2). However, the airgel component in the airgel complex powder of the present embodiment may have a structure derived from silsesquioxane in addition to the structure represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000011
 式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。 In formula (X), R represents a hydroxy group, an alkyl group or an aryl group.
 支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とをより向上させるという観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000012
There are no particular limitations on the spacing between the structure serving as the support and its chain length, and the structure serving as the bridge, but from the viewpoint of further improving heat resistance and mechanical strength, the ladder type structure It may have a ladder type structure represented by 3).
Figure JPOXMLDOC01-appb-C000012
 式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としては、例えば、フェニル基及び置換フェニル基が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。なお、式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。また、式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様にcが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。 In formula (3), R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group, a and c each independently represent an integer of 1 to 3000, and b is 1 to 50. Indicates an integer. Here, as an aryl group, a phenyl group and a substituted phenyl group are mentioned, for example. Moreover, as a substituent of a substituted phenyl group, an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group are mentioned, for example. In formula (3), when b is an integer of 2 or more, two or more R 5 s may be the same as or different from each other, and similarly, two or more R 6 s may be the same as each other May also be different. In the formula (3), when a is an integer of 2 or more, two or more R 7 s may be the same or different, and similarly, when c is an integer of 2 or more, two or more R 8 s may be identical to or different from each other.
 なお、より優れた柔軟性を得る観点から、式(2)及び(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)としては、それぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(3)中、a及びcは、それぞれ独立に6~2000とすることができるが、10~1000であってもよい。また、式(2)及び(3)中、bは、2~30とすることができるが、5~20であってもよい。 From the viewpoint of obtaining more excellent flexibility, in the formulas (2) and (3), R 5 , R 6 , R 7 and R 8 (wherein R 7 and R 8 are only in the formula (3)) And each independently represent an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like, and examples of the alkyl group include a methyl group. Furthermore, in the formula (3), a and c can be independently 6 to 2000, but may be 10 to 1000. In the formulas (2) and (3), b can be 2 to 30, but may be 5 to 20.
(第三の態様)
 本実施形態に係るエアロゲル複合体パウダーは、シリカ粒子と、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルの縮合物である湿潤ゲルの乾燥物(ゾルから生成された湿潤ゲルを乾燥して得られるもの:ゾル由来の湿潤ゲルの乾燥物)であってもよい。なお、これまで述べてきたエアロゲル複合体パウダーも、このように、シリカ粒子と、ケイ素化合物等を含有するゾルから生成された湿潤ゲルを乾燥することで得られるものであってもよい。
(Third aspect)
The airgel composite powder according to the present embodiment comprises silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a silicon compound having a hydrolyzable functional group. A dried product of a wet gel which is a condensation product of a sol containing at least one member selected from the group consisting of (a dried product of a wet gel formed from the sol and obtained by drying the dry product of a wet gel derived from a sol) It may be. The airgel composite powder described above may also be obtained by drying the wet gel produced from the sol containing the silica particles and the silicon compound and the like.
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、後述のポリシロキサン化合物以外のケイ素化合物(シリコン化合物)を用いることができる。すなわち、上記ゾルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種の化合物(以下、場合により「ケイ素化合物群」という)を含有することができる。ケイ素化合物における分子内のケイ素数は1又は2とすることができる。 As a silicon compound which has a hydrolysable functional group or a condensable functional group, silicon compounds (silicon compounds) other than the below-mentioned polysiloxane compound can be used. That is, the sol is a group consisting of a silicon compound having hydrolyzable functional groups or condensable functional groups (excluding polysiloxane compounds), and a hydrolysis product of a silicon compound having hydrolyzable functional groups. It may contain at least one compound selected from the group below (hereinafter sometimes referred to as “silicon compound group”). The number of silicon in the molecule in the silicon compound can be 1 or 2.
 加水分解性の官能基を有するケイ素化合物としては、特に限定されないが、例えば、アルキルケイ素アルコキシドが挙げられる。アルキルケイ素アルコキシドは、耐水性を向上する観点から、加水分解性の官能基の数を3個以下とすることができる。アルキルケイ素アルコキシドとしては、モノアルキルトリアルコキシシラン、モノアルキルジアルコキシシラン、ジアルキルジアルコキシシラン、モノアルキルモノアルコキシシラン、ジアルキルモノアルコキシシラン、トリアルキルモノアルコキシシラン等が挙げられ、具体的には、メチルトリメトキシシラン、メチルジメトキシシラン、ジメチルジメトキシシラン及びエチルトリメトキシシランが挙げられる。加水分解性の官能基としては、メトキシ基、エトキシ基等のアルコキシ基などが挙げられる。 The silicon compound having a hydrolyzable functional group is not particularly limited, and examples thereof include alkyl silicon alkoxides. The alkyl silicon alkoxide can have three or less hydrolyzable functional groups from the viewpoint of improving water resistance. Examples of the alkylsilicon alkoxide include monoalkyltrialkoxysilanes, monoalkyldialkoxysilanes, dialkyldialkoxysilanes, monoalkylmonoalkoxysilanes, dialkylmonoalkoxysilanes, trialkylmonoalkoxysilanes, etc. Specifically, methyl Examples include trimethoxysilane, methyldimethoxysilane, dimethyldimethoxysilane and ethyltrimethoxysilane. As a hydrolyzable functional group, alkoxy groups, such as a methoxy group and an ethoxy group, etc. are mentioned.
 縮合性の官能基を有するケイ素化合物としては、特に限定されないが、例えば、シランテトラオール、メチルシラントリオール、ジメチルシランジオール、フェニルシラントリオール、フェニルメチルシランジオール、ジフェニルシランジオール、n-プロピルシラントリオール、ヘキシルシラントリオール、オクチルシラントリオール、デシルシラントリオール及びトリフルオロプロピルシラントリオールが挙げられる。 The silicon compound having a condensable functional group is not particularly limited. For example, silanetetraol, methylsilanetriol, dimethylsilanediol, phenylsilanetriol, phenylmethylsilanediol, diphenylsilanediol, n-propylsilanetriol, Hexylsilanetriol, octylsilanetriol, decylsilanetriol and trifluoropropylsilanetriol.
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物は、加水分解性の官能基及び縮合性の官能基とは異なる極性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)を更に有していてもよい。極性基としては、例えば、エポキシ基、メルカプト基、ビニル基、アクリロイル基、メタクリロイル基及びアミノ基が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。水への分散性の点から、極性基としては、エポキシ基、メルカプト基、グリシドキシ基、アクリロイル基、メタクリロイル基及びアミノ基が好ましい。 A silicon compound having a hydrolyzable functional group or a condensable functional group is a polar group (hydrolyzable functional group and a condensable functional group) different from the hydrolyzable functional group and the condensable functional group. Functional groups) may be further included. As a polar group, an epoxy group, a mercapto group, a vinyl group, an acryloyl group, a methacryloyl group, and an amino group are mentioned, for example. The epoxy group may be contained in an epoxy group-containing group such as a glycidoxy group. From the viewpoint of dispersibility in water, as a polar group, an epoxy group, a mercapto group, a glycidoxy group, an acryloyl group, a methacryloyl group and an amino group are preferable.
 加水分解性の官能基の数が3個以下であり、極性基を有するケイ素化合物として、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等も用いることができる。 Vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2-hydroxytrimethylsilane as a silicon compound having a number of hydrolyzable functional groups of 3 or less and having a polar group (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- Mercaptopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) )- - it can also be used aminopropyl methyl dimethoxy silane.
 また、縮合性の官能基を有し、極性基を有するケイ素化合物として、ビニルシラントリオール、3-グリシドキシプロピルシラントリオール、3-グリシドキシプロピルメチルシランジオール、3-メタクリロキシプロピルシラントリオール、3-メタクリロキシプロピルメチルシランジオール、3-アクリロキシプロピルシラントリオール、3-メルカプトプロピルシラントリオール、3-メルカプトプロピルメチルシランジオール、N-フェニル-3-アミノプロピルシラントリオール、N-2-(アミノエチル)-3-アミノプロピルメチルシランジオール等も用いることができる。 In addition, as silicon compounds having a condensable functional group and having a polar group, vinylsilanetriol, 3-glycidoxypropylsilanetriol, 3-glycidoxypropylmethylsilanediol, 3-methacryloxypropylsilanetriol, 3 -Methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl) -3-aminopropylmethylsilanediol and the like can also be used.
 さらに、分子末端の加水分解性の官能基が3個以下のケイ素化合物であるビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン、エチルトリメトキシシラン、ビニルトリメトキシシラン等も用いることができる。 Furthermore, bistrimethoxysilylmethane, bistrimethoxysilylethane, bistrimethoxysilylhexane, ethyltrimethoxysilane, vinyltrimethoxysilane, etc., which are silicon compounds having three or less hydrolyzable functional groups at the molecular end, can also be used. .
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物は、単独で又は2種類以上を混合して用いてもよい。 Silicon compounds having hydrolyzable functional groups or condensable functional groups (excluding polysiloxane compounds) and hydrolysis products of silicon compounds having hydrolyzable functional groups may be used alone or in combination of two or more. You may mix and use.
 本実施形態に係るエアロゲル複合体パウダーを作製するにあたり、ケイ素化合物は、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物を含むことができる。すなわち、上記のケイ素化合物を含有するゾルは、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、場合により「ポリシロキサン化合物群」という)を含有するゾルであってよい。 In producing the airgel composite powder according to the present embodiment, the silicon compound can include a polysiloxane compound having a hydrolyzable functional group or a condensable functional group. That is, the sol containing the above silicon compound is composed of a hydrolysis product of a polysiloxane compound having a hydrolyzable functional group or a condensation functional group, and a polysiloxane compound having a hydrolyzable functional group. It may be a sol containing at least one selected from the group (hereinafter sometimes referred to as “polysiloxane compound group”).
 ポリシロキサン化合物等における官能基は、特に限定されないが、同じ官能基同士で反応するか、又は、他の官能基と反応する基とすることができる。加水分解性の官能基としては、例えば、アルコキシ基が挙げられる。縮合性の官能基としては、水酸基、シラノール基、カルボキシル基、フェノール性水酸基等が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。なお、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる前述の極性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)を更に有していてもよい。これらの官能基及び極性基を有するポリシロキサン化合物は、単独で又は2種類以上を混合して用いてもよい。これらの官能基及び極性基のうち、例えば、エアロゲル複合体パウダーの柔軟性を向上する基としては、アルコキシ基、シラノール基、ヒドロキシアルキル基等が挙げられ、これらのうち、アルコキシ基及びヒドロキシアルキル基はゾルの相溶性をより向上することができる。また、ポリシロキサン化合物の反応性の向上の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は1~6とすることができるが、エアロゲル複合体パウダーの柔軟性をより向上する観点から2~4であってもよい。 The functional groups in the polysiloxane compound and the like are not particularly limited, but can be groups that react with each other or react with other functional groups. As a hydrolyzable functional group, an alkoxy group is mentioned, for example. Examples of the condensation functional group include a hydroxyl group, a silanol group, a carboxyl group and a phenolic hydroxyl group. The hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group. In addition, the polysiloxane compound having a hydrolyzable functional group or a condensable functional group is different from the hydrolyzable functional group and the condensable functional group in the aforementioned polar group (hydrolyzable functional group and condensable) Functional groups which do not correspond to the functional groups of You may use the polysiloxane compound which has these functional groups and polar groups individually or in mixture of 2 or more types. Among these functional groups and polar groups, for example, as a group improving the flexibility of the airgel composite powder, alkoxy group, silanol group, hydroxyalkyl group and the like can be mentioned, and among these, alkoxy group and hydroxyalkyl group Can further improve the compatibility of the sol. In addition, from the viewpoint of improving the reactivity of the polysiloxane compound, the carbon number of the alkoxy group and the hydroxyalkyl group can be 1 to 6, but from the viewpoint of further improving the flexibility of the airgel composite powder, 2 to 4 It may be
 ヒドロキシアルキル基を有するポリシロキサン化合物としては、例えば、下記一般式(A)で表される構造を有する化合物が挙げられる。下記一般式(A)で表される構造を有するポリシロキサン化合物を使用することにより、上記一般式(1)及び式(1a)で表される構造をエアロゲル複合体パウダーの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000013
As a polysiloxane compound which has a hydroxyalkyl group, the compound which has a structure represented by the following general formula (A) is mentioned, for example. Introducing the structures represented by the general formula (1) and the formula (1a) into the skeleton of the airgel composite powder by using a polysiloxane compound having a structure represented by the following general formula (A) Can.
Figure JPOXMLDOC01-appb-C000013
 式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1~50の整数を示す。ここで、アリール基としては、例えば、フェニル基及び置換フェニル基が挙げられる。また、置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。なお、式(A)中、2個のR1aは各々同一であっても異なっていてもよく、同様に2個のR2aは各々同一であっても異なっていてもよい。また、式(A)中、2個以上のR3aは各々同一であっても異なっていてもよく、同様に2個以上のR4aは各々同一であっても異なっていてもよい。 In formula (A), R 1a represents a hydroxyalkyl group, R 2a represents an alkylene group, R 3a and R 4a each independently represent an alkyl group or an aryl group, and n represents an integer of 1 to 50. Here, as an aryl group, a phenyl group and a substituted phenyl group are mentioned, for example. Moreover, as a substituent of a substituted phenyl group, an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group are mentioned, for example. In the formula (A), two R 1a 's may be the same as or different from each other, and similarly, two R 2a' s may be the same as or different from each other. In formula (A), two or more R 3a s may be the same as or different from each other. Similarly, two or more R 4a s may be the same as or different from each other.
 上記構造のポリシロキサン化合物を含有するゾルの縮合物である湿潤ゲルを用いることにより、柔軟なエアロゲル複合体パウダーをさらに得易くなる。このような観点から、式(A)中、R1aとしては炭素数が1~6のヒドロキシアルキル基等が挙げられ、当該ヒドロキシアルキル基としては、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。また、式(A)中、R2aとしては炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としては、エチレン基、プロピレン基等が挙げられる。また、式(A)中、R3a及びR4aとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。また、式(A)中、nは2~30とすることができるが、5~20であってもよい。 By using a wet gel which is a condensation product of a sol containing the polysiloxane compound having the above structure, it becomes easier to obtain a flexible airgel composite powder. From such a point of view, in formula (A), R 1a includes a hydroxyalkyl group having 1 to 6 carbon atoms, and the like, and examples of the hydroxyalkyl group include a hydroxyethyl group, a hydroxypropyl group and the like. In the formula (A), examples of R 2a include an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include an ethylene group and a propylene group. In the formula (A), R 3a and R 4a each independently represent an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like, and examples of the alkyl group include a methyl group. In the formula (A), n can be 2 to 30, but may be 5 to 20.
 上記一般式(A)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、X-22-160AS、KF-6001、KF-6002、KF-6003等の化合物(いずれも、信越化学工業株式会社製)、XF42-B0970、Fluid OFOH 702-4%等の化合物(いずれも、モメンティブ社製)などが挙げられる。 A commercial item can be used as a polysiloxane compound which has a structure represented by the said General formula (A), Compounds, such as X-22-160AS, KF-6001, KF-6002, KF-6003 (all are mentioned And Shin-Etsu Chemical Co., Ltd., XF42-B0970, Fluid OFOH 702-4%, etc. (all are manufactured by Momentive, Inc.) and the like.
 アルコキシ基を有するポリシロキサン化合物としては、例えば、下記一般式(B)で表される構造を有するものが挙げられる。下記一般式(B)で表される構造を有するポリシロキサン化合物を使用することにより、上記一般式(2)で表される橋かけ部を有するラダー型構造をエアロゲル複合体パウダーの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000014
As a polysiloxane compound which has an alkoxy group, what has a structure represented by the following general formula (B) is mentioned, for example. By using a polysiloxane compound having a structure represented by the following general formula (B), a ladder type structure having a crosslinked part represented by the above general formula (2) is introduced into the skeleton of the airgel composite powder can do.
Figure JPOXMLDOC01-appb-C000014
 式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。なお、式(B)中、2個のR1bは各々同一であっても異なっていてもよく、2個のR2bは各々同一であっても異なっていてもよく、同様に2個のR3bは各々同一であっても異なっていてもよい。また、式(B)中、mが2以上の整数の場合、2個以上のR4bは各々同一であっても異なっていてもよく、同様に2個以上のR5bも各々同一であっても異なっていてもよい。 In formula (B), R 1b represents an alkyl group, an alkoxy group or an aryl group, R 2b and R 3b each independently represent an alkoxy group, and R 4b and R 5b each independently represent an alkyl group or an aryl group. And m represent an integer of 1 to 50. Here, as an aryl group, a phenyl group and a substituted phenyl group are mentioned, for example. Moreover, as a substituent of a substituted phenyl group, an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group are mentioned, for example. In the formula (B), two R 1b 's may be the same as or different from each other, and two R 2b' s may be the same as or different from one another, 3b may be the same or different. In the formula (B), when m is an integer of 2 or more, two or more R 4b may be the same or different, and similarly, two or more R 5b are also the same May also be different.
 上記構造のポリシロキサン化合物又はその加水分解生成物を含有するゾルの縮合物である湿潤ゲルを用いることにより、柔軟なエアロゲル複合体パウダーをさらに得易くなる。このような観点から、式(B)中、R1bとしては、炭素数が1~6のアルキル基、炭素数が1~6のアルコキシ基等が挙げられ、当該アルキル基又はアルコキシ基としては、メチル基、メトキシ基、エトキシ基等が挙げられる。また、式(B)中、R2b及びR3bとしては、それぞれ独立に炭素数が1~6のアルコキシ基等が挙げられ、当該アルコキシ基としては、メトキシ基、エトキシ基等が挙げられる。また、式(B)中、R4b及びR5bとしては、それぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。また、式(B)中、mは2~30とすることができるが、5~20であってもよい。 By using a wet gel which is a condensation product of a sol containing a polysiloxane compound having the above structure or a hydrolysis product thereof, it becomes easier to obtain a flexible airgel composite powder. From such viewpoints, in the formula (B), as R 1b , an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and the like can be mentioned, and as the alkyl group or alkoxy group, A methyl group, a methoxy group, an ethoxy group etc. are mentioned. In the formula (B), examples of R 2b and R 3b each independently include an alkoxy group having 1 to 6 carbon atoms, and the alkoxy group includes a methoxy group and an ethoxy group. In the formula (B), examples of R 4b and R 5b each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and examples of the alkyl group include a methyl group and the like. In the formula (B), m can be 2 to 30, but may be 5 to 20.
 上記一般式(B)で表される構造を有するポリシロキサン化合物は、例えば、特開2000-26609号公報、特開2012-233110号公報等にて報告される製造方法を適宜参照して得ることができる。 The polysiloxane compound having a structure represented by the above general formula (B) can be obtained by appropriately referring to the production method reported in, for example, JP-A-2000-26609, JP-A-2012-233110, etc. Can.
 なお、アルコキシ基は加水分解するため、アルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、アルコキシ基を有するポリシロキサン化合物とその加水分解生成物とは混在していてもよい。また、アルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。 In addition, since the alkoxy group is hydrolyzed, the polysiloxane compound having the alkoxy group may be present as a hydrolysis product in the sol, and the polysiloxane compound having the alkoxy group and the hydrolysis product thereof are mixed It may be done. Further, in the polysiloxane compound having an alkoxy group, all of the alkoxy groups in the molecule may be hydrolyzed or may be partially hydrolyzed.
 これらの加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物は、単独で又は2種類以上を混合して用いてもよい。 These hydrolyzable functional groups or the polysiloxane compound having a condensable functional group, and the hydrolysis product of the hydrolyzable functional group-containing polysiloxane compound may be used alone or in combination of two or more. You may use.
 上記ゾルに含まれるケイ素化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するケイ素化合物の含有量、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物の含有量の総和)は、ゾルの総量100質量部に対し、5~50質量部とすることができるが、10~30質量部であってもよい。5質量部以上にすることにより良好な反応性を得易くなり、また、50質量部以下にすることにより良好な相溶性を得易くなる。 Content of silicon compounds contained in the above sol (content of silicon compound having hydrolyzable functional group or condensable functional group, and hydrolysis product of silicon compound having hydrolyzable functional group The total sum of the contents can be 5 to 50 parts by mass with respect to 100 parts by mass of the total amount of the sol, but may be 10 to 30 parts by mass. When the amount is 5 parts by mass or more, good reactivity can be easily obtained, and when the amount is 50 parts by mass or less, good compatibility can be easily obtained.
 上記ゾルが、ポリシロキサン化合物を更に含有する場合、ケイ素化合物群の含有量及びポリシロキサン化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物の含有量、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物の含有量の総和)の総和は、ゾルの総量100質量部に対し、5~50質量部とすることができるが、10~30質量部であってもよい。含有量の総和を5質量部以上にすることにより良好な反応性をさらに得易くなり、また、50質量部以下にすることにより良好な相溶性をさらに得易くなる。この際、ケイ素化合物群の含有量とポリシロキサン化合物群の含有量との比は、0.5:1~4:1とすることができるが、1:1~2:1であってもよい。これらの化合物の含有量の比を0.5:1以上とすることにより良好な相溶性をさらに得易くなり、また、4:1以下とすることによりゲルの収縮をさらに抑制し易くなる。 When the sol further contains a polysiloxane compound, the content of the silicon compound group and the content of the polysiloxane compound group (the content of the polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and The total sum of the content of the hydrolysis products of the hydrolyzable functional group-containing polysiloxane compound can be 5 to 50 parts by mass with respect to 100 parts by mass of the total amount of the sol, but It may be 30 parts by mass. By setting the total content to 5 parts by mass or more, good reactivity can be further easily obtained, and by setting the total content to 50 parts by mass or less, good compatibility can be further easily obtained. At this time, the ratio of the content of the silicon compound group to the content of the polysiloxane compound group can be 0.5: 1 to 4: 1, but may be 1: 1 to 2: 1. . By setting the ratio of the content of these compounds to 0.5: 1 or more, good compatibility can be further easily obtained, and by setting the ratio to 4: 1 or less, gel contraction can be further easily suppressed.
 上記ゾルに含まれるシリカ粒子の含有量は、ゾルの総量100質量部に対し、1~20質量部とすることができるが、4~15質量部であってもよい。シリカ粒子の含有量を1質量部以上にすることにより適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲル複合体パウダーが得易くなり、含有量を20質量部以下にすることによりシリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲル複合体パウダーが得易くなる。 The content of the silica particles contained in the sol can be 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of sol, but may be 4 to 15 parts by mass. By setting the content of the silica particles to 1 part by mass or more, it becomes easy to impart appropriate strength to the airgel, and it becomes easy to obtain an airgel composite powder excellent in shrinkage resistance during drying, and the content is 20 parts by mass or less By doing this, it becomes easy to suppress the solid heat conduction of the silica particles, and it becomes easy to obtain the airgel composite powder which is excellent in heat insulation.
(その他の態様)
 本実施形態に係るエアロゲル複合体パウダーのエアロゲル成分は、下記一般式(4)で表される構造を有することができる。本実施形態に係るエアロゲル複合体パウダーは、シリカ粒子を含有すると共に、エアロゲル成分として下記一般式(4)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000015
(Other modes)
The airgel component of the airgel complex powder according to the present embodiment can have a structure represented by the following general formula (4). The airgel composite powder according to the present embodiment may contain silica particles and may have a structure represented by the following general formula (4) as an airgel component.
Figure JPOXMLDOC01-appb-C000015
 式(4)中、Rはアルキル基を示す。ここで、アルキル基としては、炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。 In Formula (4), R 9 represents an alkyl group. Here, as the alkyl group, an alkyl group having 1 to 6 carbon atoms and the like can be mentioned, and as the alkyl group, a methyl group and the like can be mentioned.
 本実施形態に係るエアロゲル複合体パウダーのエアロゲル成分は、下記一般式(5)で表される構造を有することができる。本実施形態に係るエアロゲル複合体パウダーは、シリカ粒子を含有すると共に、エアロゲル成分として下記一般式(5)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000016
The airgel component of the airgel complex powder according to the present embodiment can have a structure represented by the following general formula (5). The airgel composite powder according to the present embodiment may contain silica particles and may have a structure represented by the following general formula (5) as an airgel component.
Figure JPOXMLDOC01-appb-C000016
 式(5)中、R10及びR11はそれぞれ独立にアルキル基を示す。ここで、アルキル基としては、炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としては、メチル基等が挙げられる。 In formula (5), R 10 and R 11 each independently represent an alkyl group. Here, as the alkyl group, an alkyl group having 1 to 6 carbon atoms and the like can be mentioned, and as the alkyl group, a methyl group and the like can be mentioned.
 本実施形態に係るエアロゲル複合体パウダーのエアロゲル成分は、下記一般式(6)で表される構造を有することができる。本実施形態のエアロゲル複合体パウダーは、シリカ粒子を含有すると共に、エアロゲル成分として下記一般式(6)で表される構造を有しいてもよい。
Figure JPOXMLDOC01-appb-C000017
The airgel component of the airgel complex powder according to the present embodiment can have a structure represented by the following general formula (6). The airgel composite powder of the present embodiment may contain silica particles and may have a structure represented by the following general formula (6) as an airgel component.
Figure JPOXMLDOC01-appb-C000017
 式(6)中、R12はアルキレン基を示す。ここで、アルキレン基としては、炭素数が1~10のアルキレン基等が挙げられ、当該アルキレン基としては、エチレン基、ヘキシレン基等が挙げられる。 Wherein (6), R 12 represents an alkylene group. Here, examples of the alkylene group include alkylene groups having 1 to 10 carbon atoms, and examples of the alkylene group include ethylene group and hexylene group.
<エアロゲル複合体パウダーの製造方法>
 次に、エアロゲル複合体パウダーの製造方法について説明する。エアロゲル複合体パウダーの製造方法は、特に限定されないが、例えば、以下の方法により製造することができる。
<Method of producing airgel complex powder>
Next, a method of producing the airgel composite powder will be described. Although the manufacturing method of airgel complex powder is not specifically limited, For example, it can manufacture by the following method.
 すなわち、本実施形態に係るエアロゲル複合体パウダーは、ゾル生成工程と、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを洗浄及び(必要に応じ)溶媒置換する洗浄及び溶媒置換工程と、洗浄及び溶媒置換した湿潤ゲルを乾燥する乾燥工程と、乾燥により得られたエアロゲル複合体ブロックを粉砕するブロック粉砕工程とを主に備える製造方法により製造することができる。 That is, the airgel complex powder according to the present embodiment is obtained by the sol forming step, the wet gel forming step of gelling the sol obtained in the sol forming step, and then maturing to obtain a wet gel, and the wet gel forming step. Washing and solvent replacement steps of the wet gel obtained (if necessary), a drying step of drying the washed and solvent substituted wet gel, and block grinding of the airgel composite block obtained by drying It can manufacture by the manufacturing method mainly equipped with a process.
 また、ゾル生成工程と、前記湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する湿潤ゲル粉砕工程と、前記洗浄及び溶媒置換工程と、前記乾燥工程とを主に備える製造方法により製造してもよい。 Also, the method mainly includes a sol forming step, the wet gel forming step, a wet gel grinding step of grinding the wet gel obtained in the wet gel forming step, the washing and solvent substitution steps, and the drying step. It may be manufactured by a method.
 得られたエアロゲル複合体パウダーは、ふるい、分級等によって大きさを更に揃えることができる。パウダーの大きさが整うと、取り扱い性を高めることができる。なお、「ゾル」とは、ゲル化反応が生じる前の状態であって、本実施形態においては上記ケイ素化合物群と、場合によりポリシロキサン化合物群と、シリカ粒子とが溶媒中に溶解又は分散している状態を意味する。また、湿潤ゲルとは、液体媒体を含んでいながらも、流動性を有しない湿潤状態のゲル固形物を意味する。 The obtained airgel composite powder can be further aligned in size by sieving, classification and the like. When the size of the powder is adjusted, the handleability can be enhanced. In addition, "sol" is a state before the gelation reaction occurs, and in the present embodiment, the silicon compound group, and optionally, the polysiloxane compound group and the silica particles are dissolved or dispersed in a solvent. Means that you In addition, wet gel refers to a gel solid in a wet state having no flowability while containing a liquid medium.
 以下、本実施形態に係るエアロゲル複合体パウダーの製造方法の各工程について説明する。 Hereinafter, each process of the manufacturing method of the airgel complex powder which concerns on this embodiment is demonstrated.
(ゾル生成工程)
 ゾル生成工程は、上述のケイ素化合物と、場合によりポリシロキサン化合物と、シリカ粒子又はシリカ粒子を含む溶媒とを混合し、加水分解させてゾルを生成する工程である。本工程においては、加水分解反応を促進させるため、溶媒中にさらに酸触媒を添加してもよい。また、特許第5250900号公報に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、熱線輻射抑制等を目的として、溶媒中にカーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等の成分を添加してもよい。
(Sol formation process)
The sol formation step is a step of mixing the above-mentioned silicon compound, optionally a polysiloxane compound, and a silica particle or a solvent containing a silica particle, and hydrolyzing to form a sol. In this step, an acid catalyst may be further added to the solvent to accelerate the hydrolysis reaction. Further, as shown in Japanese Patent No. 5250900, a surfactant, a thermally hydrolysable compound and the like can also be added to the solvent. Furthermore, for the purpose of suppressing heat radiation and the like, components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound may be added to the solvent.
 溶媒としては、例えば、水、又は、水及びアルコール類の混合液を用いることができる。アルコール類としては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。これらの中でも、ゲル壁との界面張力を低減させる点で、表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2-プロパノール等が挙げられる。これらは単独で又は2種類以上を混合して用いてもよい。 As the solvent, for example, water or a mixed solution of water and alcohols can be used. Examples of the alcohol include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, t-butanol and the like. Among these, as the alcohol having a low surface tension and a low boiling point, methanol, ethanol, 2-propanol and the like can be mentioned in that the interfacial tension with the gel wall is reduced. You may use these individually or in mixture of 2 or more types.
 例えば溶媒としてアルコール類を用いる場合、アルコール類の量は、ケイ素化合物群及びポリシロキサン化合物群の総量1モルに対し、4~8モルとすることができるが、4~6.5であってもよく、又は4.5~6モルであってもよい。アルコール類の量を4モル以上にすることにより良好な相溶性をさらに得易くなり、また、8モル以下にすることによりゲルの収縮をさらに抑制し易くなる。 For example, when alcohols are used as the solvent, the amount of the alcohols can be 4 to 8 moles with respect to 1 mole in total of the silicon compound group and the polysiloxane compound group, but it is 4 to 6.5 Or may be 4.5 to 6 moles. By making the amount of the alcohol 4 mol or more, it becomes easier to obtain good compatibility, and by making it 8 mol or less, it becomes easier to suppress the shrinkage of the gel.
 酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸類;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩類;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸類などが挙げられる。これらの中でも、得られるエアロゲル複合体パウダーの耐水性をより向上する酸触媒としては有機カルボン酸類が挙げられる。当該有機カルボン酸類としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは単独で又は2種類以上を混合して用いてもよい。 As the acid catalyst, inorganic acids such as hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid, etc .; Acidic phosphates such as aluminum, acidic magnesium phosphate, acidic zinc phosphate, etc .; Organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid, azelaic acid Etc. Among these, organic carboxylic acids are mentioned as an acid catalyst which improves the water resistance of the airgel complex powder obtained more. Examples of the organic carboxylic acids include acetic acid, but formic acid, propionic acid, oxalic acid, malonic acid and the like may be used. You may use these individually or in mixture of 2 or more types.
 酸触媒を用いることで、ケイ素化合物群及びポリシロキサン化合物群の加水分解反応を促進させて、より短時間でゾルを得ることができる。 By using an acid catalyst, the hydrolysis reaction of the silicon compound group and the polysiloxane compound group can be promoted to obtain a sol in a shorter time.
 酸触媒の添加量は、ケイ素化合物群及びポリシロキサン化合物群の総量100質量部に対し、0.001~0.1質量部とすることができる。 The addition amount of the acid catalyst can be 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total of the silicon compound group and the polysiloxane compound group.
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。 As the surfactant, nonionic surfactants, ionic surfactants and the like can be used. You may use these individually or in mixture of 2 or more types.
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物、ポリオキシプロピレン等の親水部を含む化合物などを使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含む化合物としては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体等が挙げられる。 As the nonionic surfactant, for example, a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group, a compound containing a hydrophilic part such as polyoxypropylene and the like can be used. Examples of the compound containing a hydrophilic moiety such as polyoxyethylene and a hydrophobic moiety mainly composed of an alkyl group include polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether and the like. Examples of the compound containing a hydrophilic portion such as polyoxypropylene include polyoxypropylene alkyl ether and block copolymers of polyoxyethylene and polyoxypropylene.
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等が挙げられる。カチオン性界面活性剤としては、臭化セチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム等が挙げられ、アニオン性界面活性剤としては、ドデシルスルホン酸ナトリウム等が挙げられる。また、両イオン性界面活性剤としては、アミノ酸系界面活性剤、ベタイン系界面活性剤、アミンオキシド系界面活性剤等が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸等が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等が挙げられる。アミンオキシド系界面活性剤としては、例えばラウリルジメチルアミンオキシドが挙げられる。 Examples of the ionic surfactant include cationic surfactants, anionic surfactants and amphoteric surfactants. Examples of the cationic surfactant include cetyltrimethylammonium bromide, cetyltrimethylammonium chloride and the like, and examples of the anionic surfactant include sodium dodecyl sulfonate and the like. Moreover, as an amphoteric surfactant, an amino acid surfactant, a betaine surfactant, an amine oxide surfactant, etc. are mentioned. Examples of amino acid surfactants include, for example, acyl glutamic acid. Examples of betaine surfactants include lauryl dimethylaminoacetic acid betaine and stearyl dimethylaminoacetic acid betaine. Examples of amine oxide surfactants include lauryldimethylamine oxide.
 これらの界面活性剤は、後述する湿潤ゲル生成工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用をすると考えられている。 These surfactants have the function of reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer and suppressing the phase separation in the wet gel formation step described later. It is believed that.
 界面活性剤の添加量は、界面活性剤の種類、あるいはケイ素化合物群及びポリシロキサン化合物群の種類並びに量にも左右されるが、例えば、ケイ素化合物群及びポリシロキサン化合物群の総量100質量部に対し、1~100質量部とすることができる。なお、同添加量は5~60質量部であってもよい。 The amount of surfactant added depends on the type of surfactant or the type and amount of silicon compound group and polysiloxane compound group. For example, the total amount of silicon compound group and polysiloxane compound group is 100 parts by mass. On the other hand, it can be 1 to 100 parts by mass. The addition amount may be 5 to 60 parts by mass.
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、後述する湿潤ゲル生成工程でのゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物などを挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。 The thermally hydrolysable compound is considered to generate a base catalyst by thermal hydrolysis to make the reaction solution basic and to promote the sol-gel reaction in the wet gel formation step described later. Therefore, the thermohydrolyzable compound is not particularly limited as long as it is a compound that can make the reaction solution basic after hydrolysis, and urea; formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N And acid amides such as methylacetamide and N, N-dimethylacetamide; and cyclic nitrogen compounds such as hexamethylenetetramine. Among these, urea is particularly easy to obtain the above promoting effect.
 熱加水分解性化合物の添加量は、後述する湿潤ゲル生成工程でのゾルゲル反応を十分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、ケイ素化合物群及びポリシロキサン化合物群の総量100質量部に対して、1~200質量部とすることができる。なお、同添加量は2~150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性をさらに得易くなり、また、200質量部以下とすることにより、結晶の析出及びゲル密度の低下をさらに抑制し易くなる。 The addition amount of the thermally hydrolysable compound is not particularly limited as long as it is an amount capable of sufficiently promoting the sol-gel reaction in the wet gel formation step described later. For example, when urea is used as the thermally hydrolysable compound, the addition amount thereof can be 1 to 200 parts by mass with respect to 100 parts by mass in total of the silicon compound group and the polysiloxane compound group. The addition amount may be 2 to 150 parts by mass. By setting the addition amount to 1 part by mass or more, favorable reactivity is further easily obtained, and by setting the addition amount to 200 parts by mass or less, precipitation of crystals and reduction of gel density can be further easily suppressed.
 ゾル生成工程の加水分解は、混合液中のケイ素化合物、ポリシロキサン化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、ケイ素化合物及びポリシロキサン化合物中の加水分解性官能基が十分に加水分解され、ケイ素化合物の加水分解生成物及びポリシロキサン化合物の加水分解生成物をより確実に得ることができる。 The hydrolysis in the sol formation step depends on the type and amount of silicon compound, polysiloxane compound, silica particles, acid catalyst, surfactant, etc. in the mixed solution, for example, under a temperature environment of 20 to 60 ° C. It may be performed for 10 minutes to 24 hours, or may be performed for 5 minutes to 8 hours in a temperature environment of 50 to 60 ° C. Thus, the hydrolyzable functional groups in the silicon compound and the polysiloxane compound are sufficiently hydrolyzed, and the hydrolysis product of the silicon compound and the hydrolysis product of the polysiloxane compound can be obtained more reliably.
 ただし、溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は0~40℃とすることができるが、10~30℃であってもよい。 However, when the thermally hydrolysable compound is added to the solvent, the temperature environment of the sol formation step may be adjusted to a temperature at which the hydrolysis of the thermally hydrolysable compound is suppressed to suppress the gelation of the sol. . The temperature at this time may be any temperature that can suppress the hydrolysis of the thermally hydrolysable compound. For example, when urea is used as the thermally hydrolysable compound, the temperature environment of the sol formation step can be 0 to 40 ° C., but may be 10 to 30 ° C.
(湿潤ゲル生成工程)
 湿潤ゲル生成工程は、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る工程である。本工程では、ゲル化を促進させるため塩基触媒を用いることができる。
(Wet gel formation process)
The wet gel formation step is a step of gelling the sol obtained in the sol formation step and then ripening to obtain a wet gel. In this step, a base catalyst can be used to promote gelation.
 塩基触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ炭酸水素塩;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル複合体パウダー中に残存し難いため耐水性を損ない難いという点、さらには経済性の点で優れている。塩基触媒は単独で又は2種類以上を混合して用いてもよい。 As a base catalyst, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; alkali carbonates such as sodium carbonate and potassium carbonate; alkali carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate Hydrogen salts; Ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride and ammonium bromide; Basic sodium phosphates such as sodium metaphosphate, sodium pyrophosphate and sodium polyphosphate; Allylamine, diallylamine, triallylamine, isopropylamine , Diisopropylamine, ethylamine, diethylamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diisobutylamine, 3- (diethylamino) propylamine, di-2-ethyl ester Xylamine, 3- (dibutylamino) propylamine, tetramethylethylenediamine, t-butylamine, sec-butylamine, propylamine, 3- (methylamino) propylamine, 3- (dimethylamino) propylamine, 3-methoxyamine, dimethyl Aliphatic amines such as ethanolamine, methyldiethanolamine, diethanolamine and triethanolamine; morpholine, N-methylmorpholine, 2-methylmorpholine, piperazine and derivatives thereof, piperidine and derivatives thereof, imidazole and derivatives thereof and the like Compounds and the like can be mentioned. Among these, ammonium hydroxide (ammonia water) is high in volatility and less likely to remain in the airgel composite powder after drying, so that the water resistance is less likely to be impaired, and further, it is excellent in economic point. You may use a base catalyst individually or in mixture of 2 or more types.
 塩基触媒を用いることで、ゾル中のケイ素化合物、ポリシロキサン化合物及びシリカ粒子の脱水縮合反応又は脱アルコール縮合反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。また、これにより、強度(剛性)のより高い湿潤ゲルを得ることができる。特に、アンモニアは揮発性が高く、エアロゲル複合体パウダー中に残留し難いので、塩基触媒としてアンモニアを用いることで、より耐水性の優れたエアロゲル複合体パウダーを得ることができる。 By using a base catalyst, the dehydration condensation reaction or the dealcoholization condensation reaction of the silicon compound, the polysiloxane compound and the silica particles in the sol can be promoted, and the gelation of the sol can be performed in a shorter time. Also, this makes it possible to obtain a wet gel with higher strength (rigidity). In particular, ammonia has high volatility and is unlikely to remain in the airgel complex powder, and therefore, by using ammonia as a base catalyst, an airgel complex powder having more excellent water resistance can be obtained.
 塩基触媒の添加量は、ケイ素化合物群及びポリシロキサン化合物群の総量100質量部に対し、0.5~5質量部とすることができるが、1~4質量部であってもよい。0.5質量部以上とすることにより、ゲル化をより短時間で行うことができ、5質量部以下とすることにより、耐水性の低下をより抑制することができる。 The addition amount of the base catalyst can be 0.5 to 5 parts by mass with respect to 100 parts by mass in total of the silicon compound group and the polysiloxane compound group, but may be 1 to 4 parts by mass. By setting it as 0.5 mass part or more, gelation can be performed in a short time, and the fall of water resistance can be suppressed more by setting it as 5 mass parts or less.
 塩基触媒は必ずしも必要というわけではなく、3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等の水溶液が塩基性を示すシラン化合物等を用いる場合は、塩基触媒を用いずに湿潤ゲルを作製することもできる。 The base catalyst is not always necessary, and 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2 When a silane compound or the like in which the aqueous solution such as-(aminoethyl) -3-aminopropylmethyldimethoxysilane exhibits basicity is used, a wet gel can also be produced without using a base catalyst.
 湿潤ゲル生成工程におけるゾルのゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。ゲル化温度は、30~90℃とすることができるが、40~80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができ、強度(剛性)のより高い湿潤ゲルを得ることができる。また、ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。 The gelation of the sol in the wet gel formation step may be performed in a closed vessel so that the solvent and the base catalyst do not evaporate. The gelling temperature may be 30-90 ° C., but may be 40-80 ° C. By setting the gelation temperature to 30 ° C. or more, gelation can be performed in a shorter time, and a wet gel with higher strength (rigidity) can be obtained. In addition, by setting the gelation temperature to 90 ° C. or less, volatilization of the solvent (particularly, alcohols) can be easily suppressed, and therefore, gelation can be performed while suppressing volume contraction.
 湿潤ゲル生成工程における熟成は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。熟成により、湿潤ゲルを構成する成分の結合が強くなり、その結果、乾燥時の収縮を抑制するのに十分な強度(剛性)の高い湿潤ゲルを得ることができる。熟成温度は、30~90℃とすることができるが、40~80℃であってもよい。熟成温度を30℃以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、熟成温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。 Aging in the wet gel formation step may be performed in a closed vessel so that the solvent and the base catalyst do not evaporate. Aging strengthens the bonding of the components constituting the wet gel, and as a result, it is possible to obtain a wet gel having a high strength (rigidity) sufficient to suppress shrinkage upon drying. The ripening temperature may be 30 to 90 ° C., but may be 40 to 80 ° C. By setting the aging temperature to 30 ° C. or higher, a wet gel with higher strength (rigidity) can be obtained, and by setting the aging temperature to 90 ° C. or lower, volatilization of the solvent (particularly alcohols) can be easily suppressed. Therefore, it can be gelled while suppressing volume contraction.
 なお、ゾルのゲル化終了時点を判別することは困難な場合が多いため、ゾルのゲル化とその後の熟成とは、連続して一連の操作で行ってもよい。 In addition, since it is often difficult to determine the end point of gelation of the sol, the gelation of the sol and the subsequent aging may be performed in a series of continuous operations.
 ゲル化時間と熟成時間は、ゲル化温度及び熟成温度により異なるが、本実施形態においてはゾル中にシリカ粒子が含まれていることから、従来のエアロゲルの製造方法と比較して特にゲル化時間を短縮することができる。この理由は、ゾル中のケイ素化合物群、ポリシロキサン化合物群が有するシラノール基又は反応性基が、シリカ粒子のシラノール基と水素結合又は化学結合を形成するためであると推察する。なお、ゲル化時間は10~120分間とすることができるが、20~90分間であってもよい。ゲル化時間を10分間以上とすることにより均質な湿潤ゲルを得易くなり、120分間以下とすることにより後述する洗浄及び溶媒置換工程から乾燥工程の簡略化が可能となる。なお、ゲル化及び熟成の工程全体として、ゲル化時間と熟成時間との合計時間は、4~480時間とすることができるが、6~120時間であってもよい。ゲル化時間と熟成時間の合計を4時間以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、480時間以下にすることにより熟成の効果をより維持し易くなる。 Although the gelation time and the ripening time differ depending on the gelation temperature and the ripening temperature, in the present embodiment, since the sol contains silica particles, especially the gelation time as compared with the conventional airgel manufacturing method. Can be shortened. The reason is presumed to be that the silicon compound group in the sol, the silanol group or the reactive group possessed by the polysiloxane compound group form a hydrogen bond or a chemical bond with the silanol group of the silica particle. The gelling time may be 10 to 120 minutes, but may be 20 to 90 minutes. By setting the gelation time to 10 minutes or more, it becomes easy to obtain a homogeneous wet gel, and by setting the gelation time to 120 minutes or less, it is possible to simplify the drying step from the washing and solvent substitution steps described later. The total time of the gelation time and the aging time can be 4 to 480 hours as the whole of the gelation and the aging process, but it may be 6 to 120 hours. By setting the total of the gelation time and the ripening time to 4 hours or more, a wet gel with higher strength (rigidity) can be obtained, and by making it 480 hours or less, the effect of ripening can be more easily maintained.
 得られるエアロゲル複合体パウダーの密度を下げたり、平均細孔径を大きくするために、ゲル化温度及び熟成温度を上記範囲内で高めたり、ゲル化時間と熟成時間の合計時間を上記範囲内で長くしてもよい。また、得られるエアロゲル複合体パウダーの密度を上げたり、平均細孔径を小さくするために、ゲル化温度及び熟成温度を上記範囲内で低くしたり、ゲル化時間と熟成時間の合計時間を上記範囲内で短くしてもよい。 In order to lower the density of the obtained airgel composite powder or to increase the average pore diameter, the gelling temperature and the aging temperature are increased within the above range, or the total time of the gelling time and the aging time is long within the above range You may In addition, in order to increase the density of the obtained airgel composite powder and to reduce the average pore diameter, the gelling temperature and the aging temperature are lowered within the above range, or the total time of the gelling time and the aging time is the above range You may shorten it within.
(湿潤ゲル粉砕工程)
 湿潤ゲル粉砕工程を行う場合、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する。粉砕は、例えば、ヘンシャル型ミキサーに湿潤ゲルを入れるか、又はミキサー内で湿潤ゲル生成工程を行い、ミキサーを適度な条件(回転数及び時間)で運転することにより行うことができる。また、より簡易的には密閉可能な容器に湿潤ゲルを入れるか、又は密閉可能な容器内で湿潤ゲル生成工程を行い、シェイカー等の振盪装置を用いて、適度な時間振盪することにより行うことができる。なお、必要に応じて、ジェットミル、ローラーミル、ビーズミル等を用いて、湿潤ゲルの粒子径を調整することもできる。
(Wet gel grinding process)
When performing a wet gel grinding process, the wet gel obtained in the wet gel formation process is ground. The grinding can be carried out, for example, by placing the wet gel in a Henshall-type mixer or performing a wet gel formation step in the mixer and operating the mixer under appropriate conditions (rotation speed and time). Also, more simply, the wet gel is placed in a sealable container, or the wet gel formation step is performed in the sealable container, and shaking is performed using a shaking device such as a shaker for a suitable period of time. Can. If necessary, the particle size of the wet gel can also be adjusted using a jet mill, a roller mill, a bead mill or the like.
(洗浄及び溶媒置換工程)
 洗浄及び溶媒置換工程は、前記湿潤ゲル生成工程又は前記湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する工程(洗浄工程)と、湿潤ゲル中の洗浄液を乾燥条件(後述の乾燥工程)に適した溶媒に置換する工程(溶媒置換工程)を有する工程である。洗浄及び溶媒置換工程は、湿潤ゲルを洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、湿潤ゲル中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲル複合体パウダーの製造を可能にする観点からは、湿潤ゲルを洗浄してもよい。なお、本実施形態においては、ゲル中にシリカ粒子が含まれている場合、後述するように洗浄工程後の溶媒置換工程は必ずしも必須ではない。
(Washing and solvent substitution process)
The washing and solvent substitution steps are suitable for the step of washing the wet gel obtained by the wet gel formation step or the wet gel grinding step (washing step) and the washing solution in the wet gel for drying conditions (drying step described later) It is a process which has the process (solvent substitution process) of substituting with the said solvent. Although the washing and solvent replacement steps can be carried out without washing the wet gel but with only the solvent replacement step, impurities such as unreacted substances and by-products in the wet gel can be reduced. The wet gel may be washed from the viewpoint of enabling the production of highly pure airgel composite powder. In the present embodiment, when silica particles are contained in the gel, the solvent replacement step after the washing step is not necessarily essential as described later.
 洗浄工程では、前記湿潤ゲル生成工程又は前記湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する。当該洗浄は、例えば水又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。 In the washing step, the wet gel obtained by the wet gel formation step or the wet gel grinding step is washed. The washing can be repeated, for example, using water or an organic solvent. At this time, the washing efficiency can be improved by heating.
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。有機溶媒は単独で又は2種類以上を混合して用いてもよい。 As an organic solvent, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride Various organic solvents such as N, N-dimethylformamide, dimethylsulfoxide, acetic acid, formic acid and the like can be used. The organic solvents may be used alone or in combination of two or more.
 後述する溶媒置換工程では、乾燥によるゲルの収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒が挙げられる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は経済性の点で優れている。 In the solvent replacement step described later, a solvent having a low surface tension can be used in order to suppress shrinkage of the gel due to drying. However, low surface tension solvents generally have very low mutual solubility with water. Therefore, when using a solvent having a low surface tension in the solvent substitution step, examples of the organic solvent used in the washing step include hydrophilic organic solvents having high mutual solubility in both water and a solvent having low surface tension. The hydrophilic organic solvent used in the washing step can play a role of pre-substitution for the solvent substitution step. Among the above organic solvents, examples of the hydrophilic organic solvent include methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone and the like. Methanol, ethanol, methyl ethyl ketone and the like are excellent in economical point.
 洗浄工程に使用される水又は有機溶媒の量としては、湿潤ゲル中の溶媒を十分に置換し、洗浄できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。洗浄は、洗浄後の湿潤ゲル中の含水率が、シリカ質量に対し、10質量%以下となるまで繰り返すことができる。 The amount of water or organic solvent used in the washing step may be such that the solvent in the wet gel is sufficiently replaced to be washable. The amount can be 3 to 10 times the volume of the wet gel. The washing can be repeated until the water content in the wet gel after washing becomes 10% by mass or less with respect to the mass of silica.
 洗浄工程における温度環境は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30~60℃程度の加温とすることができる。 The temperature environment in the washing step can be set to a temperature equal to or lower than the boiling point of the solvent used for washing. For example, in the case of using methanol, heating can be performed at about 30 to 60.degree.
 溶媒置換工程では、後述する乾燥工程における収縮を抑制するため、洗浄した湿潤ゲルの溶媒を所定の置換用溶媒に置き換える。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合は、置換用溶媒としては、例えば、エタノール、メタノール、2-プロパノール、ジクロロジフルオロメタン、二酸化炭素等、又はこれらを2種以上混合した溶媒が挙げられる。 In the solvent replacement step, the solvent of the washed wet gel is replaced with a predetermined replacement solvent in order to suppress shrinkage in the drying step described later. At this time, the substitution efficiency can be improved by heating. Specific examples of the substitution solvent include, in the drying step, a solvent having a low surface tension described later when drying under atmospheric pressure at a temperature less than the critical point of the solvent used for drying. On the other hand, in the case of supercritical drying, examples of the substitution solvent include ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide and the like, or solvents in which two or more of these are mixed.
 低表面張力の溶媒としては、20℃における表面張力が30mN/m以下の溶媒が挙げられる。なお、当該表面張力は25mN/m以下であっても、又は20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2-メチルペンタン(17.4)、3-メチルペンタン(18.1)、2-メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1-ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m-キシレン(28.7)、p-キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1-クロロプロパン(21.8)、2-クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2-ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類が挙げられる(かっこ内は20℃での表面張力を示し、単位は[mN/m]である)。これらの中で、脂肪族炭化水素類(ヘキサン、ヘプタン等)は、低表面張力でありかつ作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、さらに後述する乾燥工程における乾燥が容易な点で、常圧での沸点が100℃以下の溶媒を用いてもよい。上記の溶媒は単独で又は2種類以上を混合して用いてもよい。 As a low surface tension solvent, solvents having a surface tension of 30 mN / m or less at 20 ° C. can be mentioned. The surface tension may be 25 mN / m or less, or 20 mN / m or less. Examples of low surface tension solvents include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3- Aliphatic hydrocarbons such as methyl pentane (18.1), 2-methyl hexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1-pentene (16.0); benzene Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) Halogenated hydrocarbons such as carbon tetrachloride (26.9), 1-chloropropane (21.8), 2-chloropropane (18.1), etc .; ethyl ether (17.1), propyl ether (20.5) ), Isop Ethers such as pill ether (17.7), butyl ethyl ether (20.8), 1,2-dimethoxyethane (24.6); acetone (23.3), methyl ethyl ketone (24.6), methyl propyl ketone (25.1), ketones such as diethyl ketone (25.3); methyl acetate (24.8), ethyl acetate (23.8), propyl acetate (24.3), isopropyl acetate (21.2), Esters such as isobutyl acetate (23.7), ethyl butyrate (24.6) and the like can be mentioned (The parentheses show the surface tension at 20 ° C., and the unit is [mN / m]). Among these, aliphatic hydrocarbons (hexane, heptane, etc.) have low surface tension and are excellent in working environment. Further, among these, by using a hydrophilic organic solvent such as acetone, methyl ethyl ketone, 1,2-dimethoxyethane, etc., it can also be used as the organic solvent of the above-mentioned washing step. Among these, a solvent having a boiling point of 100 ° C. or less at normal pressure may be used at the point of easy drying in the drying step described later. The above solvents may be used alone or in combination of two or more.
 溶媒置換工程に使用される溶媒の量としては、洗浄後の湿潤ゲル中の溶媒を十分に置換できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。 The amount of solvent used in the solvent replacement step can be an amount that can sufficiently replace the solvent in the wet gel after washing. The amount can be 3 to 10 times the volume of the wet gel.
 溶媒置換工程における温度環境は、置換に用いる溶媒の沸点以下の温度とすることができ、例えば、ヘプタンを用いる場合は、30~60℃程度の加温とすることができる。 The temperature environment in the solvent replacement step can be a temperature equal to or lower than the boiling point of the solvent used for the replacement, and, for example, in the case of using heptane, heating can be about 30 to 60 ° C.
 なお、本実施形態においては、ゲル中にシリカ粒子が含まれている場合、上述のとおり溶媒置換工程は必ずしも必須ではない。推察されるメカニズムとしては次のとおりである。すなわち、従来であれば乾燥工程における収縮を抑制するため、湿潤ゲルの溶媒を所定の置換用溶媒(低表面張力の溶媒)に置き換えていたが、本実施形態においてはシリカ粒子が三次元網目状の骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。このように、本実施形態においては、洗浄及び溶媒置換工程から乾燥工程の簡略化が可能である。ただし、本実施形態は溶媒置換工程を行うことを何ら排除するものではない。 In the present embodiment, when silica particles are contained in the gel, the solvent substitution step is not necessarily essential as described above. The presumed mechanism is as follows. That is, conventionally, the solvent of the wet gel has been replaced with a predetermined solvent for substitution (solvent of low surface tension) in order to suppress shrinkage in the drying step, but in the present embodiment, the silica particles have a three-dimensional network shape By acting as a scaffold support, the scaffold is supported, and the shrinkage of the gel in the drying step is suppressed. Therefore, it is considered that the gel can be directly subjected to the drying step without replacing the solvent used for the washing. Thus, in the present embodiment, simplification of the drying process from the washing and solvent replacement process is possible. However, this embodiment does not exclude at all from performing the solvent replacement step.
(乾燥工程)
 乾燥工程では、上記のとおり洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを乾燥させる。これにより、エアロゲル複合体ブロック又はパウダーを得ることができる。すなわち、上記ゾルから生成された湿潤ゲルを乾燥してなるエアロゲルを得ることができる。
(Drying process)
In the drying step, the washed and solvent-replaced wet gel is dried as described above. Thereby, an airgel complex block or powder can be obtained. That is, an airgel can be obtained by drying the wet gel produced from the above sol.
 乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲル複合体ブロック又はパウダーを製造し易いという観点からは、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能という観点からは、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。 The drying method is not particularly limited, and known atmospheric pressure drying, supercritical drying or lyophilization can be used. Among these, atmospheric pressure drying or supercritical drying can be used from the viewpoint of easily producing a low density airgel composite block or powder. In addition, normal pressure drying can be used from the viewpoint of low cost production. In the present embodiment, normal pressure means 0.1 MPa (atmospheric pressure).
 エアロゲル複合体ブロック又はパウダーは、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類により異なるが、特に高温での乾燥が溶媒の蒸発速度を速め、ゲルに大きな亀裂を生じさせる場合があるという点に鑑み、20~150℃とすることができる。なお、当該乾燥温度は60~120℃であってもよい。また、乾燥時間は、湿潤ゲルの容量及び乾燥温度により異なるが、4~120時間とすることができる。なお、本実施形態において、生産性を阻害しない範囲内において臨界点未満の圧力をかけて乾燥を早めることも、常圧乾燥に包含されるものとする。 An airgel complex block or powder can be obtained by drying the washed and solvent-substituted wet gel at atmospheric pressure at a temperature below the critical point of the solvent used for drying. Although the drying temperature varies depending on the type of the solvent which has been substituted (or the solvent used for washing if solvent substitution is not performed), particularly when drying at high temperature accelerates the evaporation rate of the solvent and causes the gel to greatly crack. The temperature can be set to 20 to 150 ° C. in view of the following. The drying temperature may be 60 to 120 ° C. Also, the drying time may vary depending on the wet gel volume and the drying temperature, but may be 4 to 120 hours. In the present embodiment, it is also included in normal-pressure drying to accelerate drying by applying a pressure less than the critical point within a range that does not impair productivity.
 エアロゲル複合体ブロック又はパウダーは、また、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、超臨界乾燥することによっても得ることができる。超臨界乾燥は、公知の手法にて行うことができる。超臨界乾燥する方法としては、例えば、湿潤ゲルに含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、湿潤ゲルを、液化二酸化炭素中に、例えば、20~25℃、5~20MPa程度の条件で浸漬することで、湿潤ゲルに含まれる溶媒の全部又は一部を当該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。 The airgel composite block or powder can also be obtained by supercritical drying of the washed and solvent-substituted wet gel (if necessary). Supercritical drying can be performed by a known method. As a method of performing supercritical drying, for example, a method of removing the solvent at a temperature and pressure higher than the critical point of the solvent contained in the wet gel can be mentioned. Alternatively, as a method of supercritical drying, the whole or a part of the solvent contained in the wet gel is immersed in liquefied carbon dioxide, for example, under the conditions of about 20 to 25 ° C., about 5 to 20 MPa. And a method of removing carbon dioxide alone or a mixture of carbon dioxide and a solvent after replacing the solvent with carbon dioxide having a lower critical point than the solvent.
 このような常圧乾燥又は超臨界乾燥により得られたエアロゲル複合体ブロック又はパウダーは、さらに常圧下にて、105~200℃で0.5~2時間程度追加乾燥してもよい。これにより、密度が低く、小さな細孔を有するエアロゲルを更に得易くなる。追加乾燥は、常圧下にて、150~200℃で行ってもよい。 The airgel composite block or powder obtained by such normal pressure drying or supercritical drying may be additionally dried at 105 to 200 ° C. for about 0.5 to 2 hours under normal pressure. This further facilitates obtaining an airgel having low density and small pores. The additional drying may be performed at 150 to 200 ° C. under normal pressure.
(ブロック粉砕工程)
 ブロック粉砕工程を行う場合、乾燥により得られたエアロゲル複合体ブロックを粉砕することによりエアロゲル複合体パウダーを得る。例えば、ジェットミル、ローラーミル、ビーズミル、ハンマーミル等にエアロゲル複合体ブロックを入れ、適度な回転数と時間で運転することにより行うことができる。
(Block grinding process)
When performing a block grinding process, airgel composite powder is obtained by grinding the airgel complex block obtained by drying. For example, the airgel composite block can be placed in a jet mill, a roller mill, a bead mill, a hammer mill, etc., and the operation can be carried out by operating at an appropriate rotation speed and time.
 以上の工程により得られるエアロゲル複合体パウダーは、水への分散性、柔軟性、密着性及び撥水性を活かし、様々な用途に適用することができる。また、エアロゲルは気孔率が高いために、優れた物理特性を有し、建築、自動車、家電製品、半導体、産業用設備等の分野における断熱材、音響調節材料、発光太陽光集光器、ガスフィルター、触媒及び支持体材料として利用することもできる。例えば、エアロゲル複合体パウダーの分散液を塗布することで、撥水パウダーとして利用することができる。 The airgel composite powder obtained by the above steps can be applied to various uses by taking advantage of the dispersibility in water, flexibility, adhesion and water repellency. In addition, airgel has excellent physical properties because of its high porosity, and it is a heat insulator in the fields of construction, automobiles, home appliances, semiconductors, industrial equipment, etc., acoustic control materials, luminous solar light collectors, gas It can also be used as a filter, catalyst and support material. For example, by applying a dispersion of airgel complex powder, it can be used as a water repellent powder.
<エアロゲル複合体パウダーを用いた撥水処理方法>
 次に、本実施形態のエアロゲル複合体パウダーを、撥水パウダーとして用いた撥水処理方法について説明する。撥水パウダーを用いた撥水処理方法は、特に限定されず、例えば、以下の方法により被着体に撥水処理を施すことができる。
<Water Repellent Treatment Method Using Aerogel Complex Powder>
Next, a water repellent treatment method using the airgel composite powder of the present embodiment as a water repellent powder will be described. The water repellent treatment method using the water repellent powder is not particularly limited. For example, the adherend can be subjected to water repellent treatment by the following method.
 撥水処理は、撥水パウダーを被着体の被処理面に直接、接触させてもよいし、撥水パウダーを含む撥水処理液を被着体の被処理面に接触させてもよい。本実施形態の撥水パウダーは、柔軟性を有しているため、撥水パウダーを被着体の被処理面に配置して、撥水部を被処理面に形成することができる。 In the water repellent treatment, the water repellent powder may be brought into direct contact with the surface to be treated of the adherend, or the water repellent treatment liquid containing the water repellent powder may be brought into contact with the surface to be treated of the adherend. Since the water repellent powder of this embodiment has flexibility, the water repellent powder can be disposed on the surface to be treated of the adherend to form the water repellent portion on the surface to be treated.
 本実施形態の撥水パウダーを含む撥水処理液として用いた被着体の撥水処理は、撥水処理液の作製工程、塗布工程と、洗浄工程と、乾燥工程とを主に備える方法により行ってもよい。以下、本実施形態に係る撥水処理液を用いた撥水処理方法の各工程について説明する。 The water repellent treatment of the adherend used as the water repellent treatment liquid containing the water repellent powder of the present embodiment is mainly performed by a process of preparing the water repellent treatment liquid, an application step, a washing step, and a drying step. You may go. Hereinafter, each process of the water repellent treatment method using the water repellent treatment liquid according to the present embodiment will be described.
(撥水処理液の作製工程)
 本実施形態に係る撥水処理液は、撥水パウダーを溶媒中に分散させて作製することができる。当該撥水処理液を用いることで、目的とする被着体の被処理面へ均一に撥水部を形成することができる。撥水部は、撥水パウダーから形成された撥水膜及び撥水粒子の少なくとも一方を含む形態であってもよい。
(Production process of water repellent treatment liquid)
The water repellent treatment liquid according to the present embodiment can be prepared by dispersing water repellent powder in a solvent. By using the water repellent treatment liquid, the water repellent portion can be uniformly formed on the surface to be treated of the target adherend. The water repellent portion may be in a form including at least one of a water repellent film and water repellent particles formed of water repellent powder.
 溶媒としては、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘプタン、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。有機溶媒は、単独で又は2種類以上を混合して用いてもよい。 As the solvent, water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, heptane, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran Various organic solvents such as methylene chloride, N, N-dimethylformamide, dimethylsulfoxide, acetic acid, formic acid and the like can be used. You may use an organic solvent individually or in mixture of 2 or more types.
(塗布工程)
 塗布工程とは、撥水処理液を被処理面に塗布する工程である。また、場合により、塗布後に被処理面を乾燥して溶媒を揮発させてもよい。本工程によって、被処理面に撥水部を形成することができる。撥水処理液は、被処理面の全体に塗布してもよく、被処理面の一部に選択的に塗布してもよい。
(Coating process)
The application step is a step of applying a water repellent treatment solution to the surface to be treated. In some cases, the surface to be treated may be dried after application to evaporate the solvent. A water repellent portion can be formed on the surface to be treated by this step. The water repellent treatment liquid may be applied to the entire surface to be treated or may be selectively applied to a part of the surface to be treated.
 撥水部の厚さは、1~500nmとすることができるが、20~200nmであってもよい。1nm以上とすることにより、より優れた撥水性を達成することができ、500nm以下とすることにより、より優れた柔軟性を達成することができる。 The thickness of the water repellent portion may be 1 to 500 nm, but may be 20 to 200 nm. By setting the thickness to 1 nm or more, more excellent water repellency can be achieved, and by setting the thickness to 500 nm or less, more excellent flexibility can be achieved.
 塗布方法としては、特に限定されるものではないが、例えば、スピンコート法、ディップコート法、スプレーコート法、フローコート法、バーコート法及びグラビアコート法が挙げられる。特に、スプレーコート法は、凹凸のある被処理面にも、均一な厚さで撥水部を形成でき、生産性が高く、撥水パウダーの使用効率が良いので好ましい。塗布方法は、単独で又は2種類以上を併用してもよい。 The coating method is not particularly limited, and examples thereof include spin coating, dip coating, spray coating, flow coating, bar coating and gravure coating. In particular, the spray coating method is preferable because a water repellent portion can be formed with a uniform thickness even on a surface to be treated having irregularities, the productivity is high, and the use efficiency of the water repellent powder is high. The coating method may be used alone or in combination of two or more.
 撥水処理液をあらかじめ他の基材(フィルム、布等)に塗布又は含浸させてから被処理面に接触させて転写することにより、被処理面に撥水部を形成してもよい。塗布方法は、撥水処理液の使用量、被処理面の面積、特性等に応じて自由に選択することができる。 The water repellent portion may be formed on the surface to be treated by applying or immersing the water repellent treatment solution to another substrate (film, cloth, etc.) in advance and then bringing it into contact with the surface to be treated and transferring. The application method can be freely selected according to the amount of use of the water repellent treatment liquid, the area of the surface to be treated, the characteristics and the like.
 被処理面を構成する材料は、特に限定されるものではないが、例えば、金属、セラミックス、ガラス、プラスチックス、及び、これらを組合せた材料(複合材料、積層材料等)が挙げられる。撥水処理液は、紙、繊維、布、不織布、ゴム、皮等にも適用できる。撥水処理液を塗布した後に被処理面を乾燥して溶媒を揮発させる場合、被処理面を構成する材料は、水溶性有機化合物、水溶性無機化合物等であってもよい。これらのうちでも、被処理面を構成する材料は、ガラス、プラスチックス等の透明な材料であることが好ましい。 Although the material which comprises a to-be-processed surface is not specifically limited, For example, metal, ceramics, glass, plastics, and the material (composite material, laminated material etc.) which combined these are mentioned. The water repellent treatment liquid can also be applied to paper, fiber, cloth, non-woven fabric, rubber, leather and the like. In the case where the surface to be treated is dried to evaporate the solvent after applying the water repellent treatment liquid, the material constituting the surface to be treated may be a water soluble organic compound, a water soluble inorganic compound or the like. Among these, it is preferable that the material which comprises a to-be-processed surface is transparent materials, such as glass and plastics.
 金属としては、例えば、ステンレス、アルミ、銅、亜鉛めっき鋼板及び鉄が挙げられる。セラミックスとしては、例えば、アルミナ、チタン酸バリウム、窒化ホウ素及び窒化珪が挙げられる。ガラスとしては、例えば、通常のソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス及びアルミノシリケートガラス等が挙げられる。プラスチックスとしては、例えば、ポリメチルメタクリレート等のアクリル系樹脂、ポリフェニレンカーボネート等の芳香族ポリカーボネート系樹脂、及び、ポリエチレンテレフタレート(PET)等の芳香族ポリエステル系樹脂が挙げられる。 Examples of the metal include stainless steel, aluminum, copper, galvanized steel sheet and iron. Examples of the ceramic include alumina, barium titanate, boron nitride and silicon nitride. Examples of the glass include ordinary soda lime glass, borosilicate glass, alkali-free glass, quartz glass and aluminosilicate glass. Examples of plastics include acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as polyphenylene carbonate, and aromatic polyester resins such as polyethylene terephthalate (PET).
 水溶性有機化合物としては、例えば、グルコース、スクロース、でんぷん、ポリアクリルアミド、ポリビニルアルコール及びメチルセルロース等が挙られる。水溶性無機化合物としては、例えば、水ガラス、塩化ナトリウム、リン酸ナトリウム、炭酸ナトリウム、バナジン酸ナトリウム、ホウ酸ナトリウム、塩化カリウム、炭酸カリウム及び硫酸化合物が挙げられる。 Examples of water-soluble organic compounds include glucose, sucrose, starch, polyacrylamide, polyvinyl alcohol and methyl cellulose. Examples of water-soluble inorganic compounds include water glass, sodium chloride, sodium phosphate, sodium carbonate, sodium vanadate, sodium borate, potassium chloride, potassium carbonate and sulfuric acid compounds.
 撥水処理液を塗布した後、被処理面を乾燥して溶媒を揮発させることによって、撥水部の密着性を更に向上させることができる。この際の乾燥温度は、特に制限されず、被処理面の耐熱温度により異なるが、例えば、60~250℃であってもよく、120~180℃であってもよい。上記温度を60℃以上とすることにより、より優れた密着性を達成することができ、250℃以下とすることにより、熱による劣化を抑制することができる。 After the water repellent treatment liquid is applied, the adhesion of the water repellent portion can be further improved by drying the surface to be treated to evaporate the solvent. The drying temperature at this time is not particularly limited, and varies depending on the heat resistant temperature of the surface to be treated, but may be 60 to 250 ° C. or 120 to 180 ° C., for example. By setting the temperature to 60 ° C. or more, more excellent adhesion can be achieved, and by setting the temperature to 250 ° C. or less, deterioration due to heat can be suppressed.
(洗浄工程)
 洗浄工程は、塗布工程で得られた撥水部が形成された被処理面を洗浄する工程である。本工程を施すことにより、撥水部中の未反応物、副生成物等の不純物を低減し、より純度の高い撥水膜部を得ることができる。
(Washing process)
The washing step is a step of washing the surface to be treated on which the water repellent portion obtained in the coating step is formed. By performing this step, impurities such as unreacted substances and byproducts in the water repellent portion can be reduced, and a water repellent film portion with higher purity can be obtained.
 洗浄工程は、例えば、水及び/又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。 The washing step can be repeated, for example, using water and / or an organic solvent. At this time, the washing efficiency can be improved by heating.
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘプタン、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は、単独で又は2種類以上を混合して用いてもよい。 As an organic solvent, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, heptane, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, Various organic solvents such as methylene chloride, N, N-dimethylformamide, dimethylsulfoxide, acetic acid, formic acid and the like can be used. The above organic solvents may be used alone or in combination of two or more.
 有機溶媒は、一般的に水との相互溶解度が極めて低い。そのため、水で洗浄した後に、有機溶媒を用いて洗浄する場合は、水に対して高い相互溶解性を有する親水性有機溶媒が好ましい。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は、経済性の点で優れている。 Organic solvents generally have very low mutual solubility with water. Therefore, in the case of washing with an organic solvent after washing with water, a hydrophilic organic solvent having high mutual solubility in water is preferable. Among the above-mentioned organic solvents, examples of the hydrophilic organic solvent include methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane and the like. Methanol, ethanol, methyl ethyl ketone and the like are excellent in economic point.
 洗浄工程に使用される水及び/又は有機溶媒の量は、撥水部を十分に洗浄できる量とすることができ、例えば、撥水部の総質量に対して。3~10倍の量であってもよい。洗浄は、被処理面の含水率が、10質量%以下となるまで繰り返すことができる。 The amount of water and / or organic solvent used in the washing step can be an amount sufficient to wash the water repellent part, for example, with respect to the total mass of the water repellent part. The amount may be 3 to 10 times. The washing can be repeated until the water content of the surface to be treated becomes 10% by mass or less.
 洗浄温度は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30~60℃程度であってもよい。加温することにより洗浄効率を向上させることもできる。 The washing temperature may be a temperature equal to or lower than the boiling point of the solvent used for washing, and may be, for example, about 30 to 60 ° C. when using methanol. The heating efficiency can also be improved by heating.
(乾燥工程)
 乾燥工程とは、洗浄工程により洗浄された撥水部が形成された被処理面を乾燥させる工程である。
(Drying process)
A drying process is a process of drying the to-be-processed surface in which the water repellent part wash | cleaned by the washing | cleaning process was formed.
 乾燥の手法としては、特に制限されないが、例えば、大気圧下における公知の乾燥方法を用いることができる。乾燥温度は、被処理面の耐熱温度及び洗浄溶媒の種類により異なる。溶媒の蒸発速度が充分に速く、撥水部の劣化を防止し易い観点から、乾燥温度は、例えば、20~250℃であってもよく、60~180℃であってもよい。乾燥時間は、撥水部の質量及び乾燥温度により異なるが、例えば、1~24時間であってもよい。 Although it does not restrict | limit especially as the method of drying, For example, the well-known drying method under atmospheric pressure can be used. The drying temperature varies depending on the heat resistant temperature of the surface to be treated and the type of the cleaning solvent. The drying temperature may be, for example, 20 to 250 ° C., or 60 to 180 ° C. from the viewpoint of sufficiently fast evaporation of the solvent and easy to prevent deterioration of the water repellent part. The drying time varies depending on the mass of the water repellent part and the drying temperature, but may be, for example, 1 to 24 hours.
 被処理面における撥水パウダーの付着量は、1mm四方あたり1個以上であることが好ましい。1個以上とすることにより、より優れた撥水性を達成できる。なお、撥水パウダーの付着量は走査型電子顕微鏡(SEM)を用いて算出することができる。例えば、平均粒径100nmの撥水パウダーの場合、平均粒径の100倍の長さ(1.0×10-2mm)を1辺とする正方形の面積A(1.0×10-4mm)を設定する。その正方形の中にある粒子の数B(個)を測定し、B/Aを算出する。これを10回繰り返し、得られたB/Aの平均値を粒子の付着量とする。 The adhesion amount of the water repellent powder on the surface to be treated is preferably one or more per 1 mm square. By using one or more, more excellent water repellency can be achieved. The adhesion amount of the water repellent powder can be calculated using a scanning electron microscope (SEM). For example, in the case of a water repellent powder having an average particle diameter of 100 nm, the area A (1.0 × 10 −4 mm) of a square having a length (1.0 × 10 −2 mm) 100 times the average particle diameter as one side. 2 ) Set. The number B of particles in the square is measured to calculate B / A. This is repeated 10 times, and the average value of B / A obtained is taken as the adhesion amount of particles.
 撥水パウダーにより被処理面に形成される撥水部は、より優れた撥水性を達成できることから、エアロゲルとすることができる。ここで形成されるエアロゲルは、ナノメートルサイズの微細孔を有する多孔質体である。エアロゲルは、その表面に水酸基が少ないこと、微細孔に水が入り込み難いことから、優れた撥水性を示すと考えられる。また、エアロゲルは、空隙率が大きいため、エアロゲルである撥水部の屈折率が小さく、透明性が高い撥水部を得ることができると考えられる。 The water repellent portion formed on the surface to be treated by the water repellent powder can be made into an airgel because it can achieve more excellent water repellency. The airgel formed here is a porous body having nanometer-sized micropores. The airgel is considered to exhibit excellent water repellency because it has few hydroxyl groups on its surface and water hardly enters the fine pores. In addition, since the airgel has a large porosity, it is considered that a water repellent portion having high transparency can be obtained because the refractive index of the water repellent portion which is the airgel is small.
 本実施形態の撥水パウダーを用いた上述の撥水処理方法によって、優れた撥水性と柔軟性とを有する撥水部を被処理面に形成することができる。このような撥水部が形成された撥水構造体は、優れた撥水性と耐久性とを発現することができる。 A water repellent portion having excellent water repellency and flexibility can be formed on the surface to be treated by the above-described water repellent treatment method using the water repellent powder of the present embodiment. The water repellent structure in which such a water repellent part is formed can exhibit excellent water repellency and durability.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、本発明の一側面は、エアロゲル複合体パウダーを含む、撥水材であってよい。撥水材の形態は特に限定されず、例えば、上述の撥水パウダー、撥水処理液、又は撥水膜であってよい。 As mentioned above, although the suitable embodiment of the present invention was described, the present invention is not limited to the above-mentioned embodiment. For example, one aspect of the present invention may be a water repellent including airgel composite powder. The form of the water repellent material is not particularly limited, and may be, for example, the above-described water repellent powder, water repellent treatment liquid, or water repellent film.
 次に、下記の実施例により本開示をさらに詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。 The invention will now be described in more detail by way of the following examples, which do not limit the invention in any way.
(実施例1)
[撥水パウダー1の作製]
 ポリシロキサン化合物としてカルビノール変性シロキサン「X-22-160AS」(信越化学工業株式会社製、製品名)を40.0質量部、ケイ素化合物としてメチルトリメトキシシラン「LS-530」(信越化学工業株式会社製、製品名:以下『MTMS』と略記)を30.0質量部、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン「KBM-303」(信越化学工業株式会社製)を30.0質量部、PL-2L(扶桑化学工業(株)製、球状のコロイダルシリカ、平均一次粒子径:20nm)を100.0質量部、水を40.0質量部及びメタノールを80.0質量部混合し、これに酸触媒として酢酸を0.10質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルに、塩基触媒として5質量%濃度のアンモニア水を40.0質量部加え、60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル1を得た。
Example 1
[Preparation of water repellent powder 1]
40.0 parts by mass of a carbinol-modified siloxane "X-22-160AS" (product name, manufactured by Shin-Etsu Chemical Co., Ltd.) as a polysiloxane compound, methyltrimethoxysilane "LS-530" as a silicon compound (Shin-Etsu Chemical Co., Ltd. stock Product name: Product name: 30.0 parts by mass of “MTMS” hereinafter; and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane “KBM-303” (manufactured by Shin-Etsu Chemical Co., Ltd.) 30. 00.0 parts by mass, 100.0 parts by mass of PL-2L (manufactured by Sakai Chemical Industry Co., Ltd., spherical colloidal silica, average primary particle diameter: 20 nm), 40.0 parts by mass of water, and 80.0 parts by mass of methanol The mixture was mixed, 0.10 parts by mass of acetic acid as an acid catalyst was added thereto, and reacted at 25 ° C. for 2 hours to obtain a sol. To the obtained sol, 40.0 parts by mass of 5% by mass aqueous ammonia as a base catalyst was added, gelation was carried out at 60 ° C., and then aging was carried out at 80 ° C. for 24 hours to obtain Wet Gel 1.
 湿潤ゲル1をプラスチックス製ボトルに移し、密閉後、エクストリームミル(アズワン株式会社製、MX-1000XTS)を用いて、27000rpmで10分間粉砕し、粒子状の湿潤ゲル1を得た。得られた粒子状の湿潤ゲル1をメタノール2500質量部に浸漬し、60℃で12時間かけて洗浄を行った。この洗浄操作を、新しいメタノールに交換しながら合計3回行った。次に、洗浄した粒子状の湿潤ゲルを、低表面張力溶媒であるヘプタン2500質量部に浸漬し、40℃で12時間かけて溶媒置換を行った。この溶媒置換操作を、新しいヘプタンに交換しながら合計3回行った。洗浄及び溶媒置換された粒子状の湿潤ゲルを、常圧下にて、40℃で96時間乾燥し、150℃で2時間更に乾燥した。乾燥したゲルを、ふるい(東京スクリーン株式会社製、目開き45μm、線径32μm)にかけ、上記一般式(1)で表される構造及びエポキシ基を有するエアロゲル成分を含有する撥水パウダー1を得た。 The wet gel 1 was transferred to a plastic bottle, sealed, and then pulverized for 10 minutes at 27000 rpm using an Extreme mill (MX-1000XTS manufactured by As One Corporation) to obtain particulate wet gel 1. The resulting particulate wet gel 1 was immersed in 2500 parts by mass of methanol and washed at 60 ° C. for 12 hours. This washing operation was performed a total of three times while changing to fresh methanol. Next, the washed particulate wet gel was immersed in 2500 parts by mass of a low surface tension solvent heptane, and solvent substitution was performed at 40 ° C. for 12 hours. This solvent displacement operation was performed a total of three times while exchanging for fresh heptane. The washed, solvent-replaced particulate wet gel was dried at 40 ° C. under normal pressure for 96 hours and further dried at 150 ° C. for 2 hours. The dried gel is sieved (manufactured by Tokyo Screen Co., Ltd., mesh 45 μm, wire diameter 32 μm) to obtain a water repellent powder 1 containing an airgel component having a structure represented by the above general formula (1) and an epoxy group. The
[撥水処理液1の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記撥水パウダー1を5.0g、汎用撹拌機BL-600(新東科学株式会社製、製品名)を用いて300rpmで1時間攪拌することで撥水処理液1を得た。
[Preparation of water repellent treatment liquid 1]
With respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol, the water repellent powder 1 is 5.0 g and stirred at 300 rpm for 1 hour using a general-purpose stirrer BL-600 (product name of Shinto Scientific Co., Ltd.) Thus, a water repellent solution 1 was obtained.
[撥水構造体1]
 撥水処理液1に、スライドグラスS7213(松浪硝子工業株式会社製、製品名)を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、撥水構造体1を得た。
[Water repellent structure 1]
After dipping slide glass S7213 (manufactured by Matsunami Glass Industry Co., Ltd., product name) for 5 minutes in the water repellent solution 1, the dip treated slide glass is dried at 120 ° C. under normal pressure for 1 hour to obtain water repellency Structure 1 was obtained.
(実施例2)
[撥水パウダー2の作製]
 ST-OZL-35(日産化学工業(株)製、球状のコロイダルシリカ、平均一次粒子径:100nm)を143.0質量部、水を57.0質量部、酢酸を0.10質量部、CTABを20.0質量部及び尿素を120.0質量部混合し、これにポリシロキサン化合物Aを40.0質量部及びMTMSを30.0質量部、3-メルカプトプロピルトリメトキシシラン「KBM-803」(信越化学工業株式会社製)を30.0質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃で8時間ゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、上記一般式(2)及び(3)で表される構造を含むラダー型構造並びにメルカプト基を有するエアロゲル成分を含有する撥水パウダー2を得た。
(Example 2)
[Preparation of water repellent powder 2]
143.0 parts by mass of ST-OZL-35 (manufactured by Nissan Chemical Industries, Ltd., spherical colloidal silica, average primary particle diameter: 100 nm), 57.0 parts by mass of water, 0.10 parts by mass of acetic acid, CTAB 20.0 parts by mass and 120.0 parts by mass of urea, to which 40.0 parts by mass of the polysiloxane compound A and 30.0 parts by mass of MTMS are added, 3-mercaptopropyltrimethoxysilane "KBM-803" 30.0 mass parts (made by Shin-Etsu Chemical Co., Ltd.) was added, and it was made to react at 25 degreeC for 2 hours, and the sol was obtained. The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 2 containing an airgel component having a ladder type structure including the structures represented by the general formulas (2) and (3) and a mercapto group was obtained.
 なお、上記「ポリシロキサン化合物A」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、ヒドロキシ末端ジメチルポリシロキサン「XC96-723」(モメンティブ社製、製品名)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。 The "polysiloxane compound A" was synthesized as follows. First, in a 1-liter three-necked flask equipped with a stirrer, a thermometer and a Dimroth condenser, 100.0 parts by mass of methyl hydroxy-terminated dimethylpolysiloxane "XC 96-723" (manufactured by Momentive, product name), methyl 181.3 parts by mass of trimethoxysilane and 0.50 parts by mass of t-butylamine were mixed and reacted at 30 ° C. for 5 hours. Thereafter, the reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, to thereby obtain a bifunctional alkoxy-modified polysiloxane compound (polysiloxane compound A) at both ends.
[撥水処理液2の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記撥水パウダー2を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで撥水処理液2を得た。
[Preparation of water repellent solution 2]
The water repellent liquid 2 was obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the water repellent powder 2 with respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol. .
[撥水構造体2]
 撥水処理液2に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、撥水構造体2を得た。
[Water repellent structure 2]
After dipping the slide glass S7213 for 5 minutes in the water repellent solution 2, the dip treated slide glass was dried at 120 ° C. for 1 hour under normal pressure to obtain a water repellent structure 2.
(実施例3)
[撥水パウダー3の作製]
 PL-5L(扶桑化学工業(株)製、繭型のコロイダルシリカ、平均一次粒子径:50nm)を100.0質量部、水を70.0質量部、酢酸を0.10質量部、CTABを20.0質量部混合し、これにX-22-160ASを20.0質量部、MTMSを30.0質量部、ビストリメトキシシリルヘキサンを20.0質量部加え、25℃で2時間反応させてゾル3-1を得た。3-アミノプロピルトリメトキシシラン「KBM-903」(信越化学工業株式会社製)を30.0質量部、水を30質量部混合し、25℃で2時間反応させてゾル3-2を得た。得られたゾル3-1にゾル3-2を加え、60℃でゲル化した後、80℃で24時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、上記一般式(1)で表される構造、及びアミノ基を有するエアロゲル成分を含有する撥水パウダー3を得た。
(Example 3)
[Preparation of water repellent powder 3]
100.0 parts by mass of PL-5L (Sakai Chemical Industry Co., Ltd., coral-shaped colloidal silica, average primary particle diameter: 50 nm), 70.0 parts by mass of water, 0.10 parts by mass of acetic acid, CTAB Mix 20.0 parts by mass, add 20.0 parts by mass of X-22-160AS, 30.0 parts by mass of MTMS, and 20.0 parts by mass of bistrimethoxysilylhexane, and react for 2 hours at 25 ° C. I obtained Sol 3-1. 30.0 parts by mass of 3-aminopropyltrimethoxysilane “KBM-903” (manufactured by Shin-Etsu Chemical Co., Ltd.) and 30 parts by mass of water were mixed and reacted at 25 ° C. for 2 hours to obtain Sol 3-2 . The sol 3-2 was added to the obtained sol 3-1, gelled at 60 ° C., and then aged at 80 ° C. for 24 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 3 containing an airgel component having a structure represented by the above general formula (1) and an amino group was obtained.
[撥水処理液3の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記撥水パウダー3を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで撥水処理液3を得た。
[Preparation of Water Repellent Treatment Solution 3]
The water repellent liquid 3 was obtained by stirring at 300 rpm for 1 hour using 5.0 g of the water repellent powder 3 and the general-purpose stirrer BL-600 with respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol. .
[撥水構造体3]
 撥水処理液3に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、撥水構造体3を得た。
[Water repellent structure 3]
After dipping the slide glass S7213 for 5 minutes in the water repellent treatment liquid 3, the dip treated slide glass was dried at 120 ° C. under normal pressure for 1 hour to obtain a water repellent structure 3.
(実施例4)
[撥水パウダー4の作製]
 PL-2Lを100.0質量部、水を100.0質量部、酢酸を0.10質量部、CTABを20.0質量部混合し、これにポリシロキサン化合物Aを20.0質量部、MTMSを30.0質量部及びビストリメトキシシリルヘキサンを20.0質量部加え、25℃で2時間反応させてゾル4-1を得た。N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン「KBM-603」(信越化学工業株式会社製)を30.0質量部、水を30質量部混合し、25℃で2時間反応させてゾル4-2を得た。得られたゾル4-1にゾル4-2を加え、60℃でゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、上記一般式(2)及び(3)で表されるラダー型構造、及びアミノ基を有するエアロゲル成分を含有する撥水パウダー4を得た。
(Example 4)
[Preparation of water repellent powder 4]
100.0 parts by mass of PL-2L, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB, 20.0 parts by mass of polysiloxane compound A, and MTMS 30.0 parts by mass and 20.0 parts by mass of bistrimethoxysilylhexane were added, and reacted at 25 ° C. for 2 hours to obtain a sol 4-1. 30.0 parts by mass of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane “KBM-603” (manufactured by Shin-Etsu Chemical Co., Ltd.) and 30 parts by mass of water are mixed and reacted at 25 ° C. for 2 hours Then, sol 4-2 was obtained. The sol 4-2 was added to the obtained sol 4-1, gelled at 60 ° C., and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 4 containing an airgel component having a ladder type structure represented by the above general formulas (2) and (3) and an amino group was obtained.
[撥水処理液4の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記撥水パウダー4を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで撥水処理液4を得た。
[Preparation of Water Repellent Treatment Solution 4]
The water repellent solution 4 was obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the water repellent powder 4 with respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol. .
[撥水構造体4]
 撥水処理液4に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、撥水構造体4を得た。
[Water repellent structure 4]
After dipping the slide glass S7213 for 5 minutes in the water repellent solution 4, the dip treated slide glass was dried at 120 ° C. for 1 hour under normal pressure to obtain a water repellent structure 4.
(実施例5)
[撥水パウダー5の作製]
 PL-5Lを100.0質量部、水を100.0質量部、酢酸を0.10質量部、CTABを20.0質量部及び尿素を120.0質量部混合し、これにX-22-160ASを20.0質量部、ポリシロキサン化合物Aを20.0質量部及びMTMSを30.0質量部、KBM-803を30.0質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃で8時間ゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、上記一般式(1)で表される構造と上記一般式(2)及び(3)で表されるラダー型構造、及びメルカプト基とを有するエアロゲル成分を含有する撥水パウダー5を得た。
(Example 5)
[Preparation of water repellent powder 5]
100.0 parts by mass of PL-5L, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB and 120.0 parts by mass of urea are mixed, and this is mixed with X-22- 20.0 parts by mass of 160 AS, 20.0 parts by mass of polysiloxane compound A, 30.0 parts by mass of MTMS, and 30.0 parts by mass of KBM-803 were reacted at 25 ° C. for 2 hours to obtain a sol . The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, an airgel component having a structure represented by the above general formula (1), a ladder type structure represented by the above general formulas (2) and (3), and a mercapto group Water-repellent powder 5 contained was obtained.
[撥水処理液5の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記撥水パウダー5を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで撥水処理液5を得た。
[Preparation of Water Repellent Treatment Solution 5]
The water repellent treatment liquid 5 was obtained by stirring at 300 rpm for 1 hour using 5.0 g of the water repellent powder 5 and the general-purpose stirrer BL-600 with respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol. .
[撥水構造体5]
 撥水処理液5に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、撥水構造体5を得た。
[Water repellent structure 5]
After the slide glass S7213 was dipped in the water repellent treatment liquid 5 for 5 minutes, the dip treated slide glass was dried at 120 ° C. for 1 hour under normal pressure to obtain a water repellent structure 5.
(実施例6)
[撥水パウダー6の作製]
 ST-OZL-35を143.0質量部、水を57.0質量部、酢酸を0.10質量部、CTABを20.0質量部混合し、これにジメチルジメトキシシランKBM-22(信越化学工業株式会社製、製品名:以下『DMDMS』と略記)を20.0質量部、ポリシロキサン化合物Aを20.0質量部及びMTMSを30.0質量部加え、25℃で2時間反応させてゾル6-1を得た。KBM-903を30.0質量部、水を30質量部混合し、25℃で2時間反応させてゾル3-2を得た。得られたゾル6-1にゾル3-2を加え、60℃でゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、上記一般式(2)及び(3)で表されるラダー型構造並びにアミノ基を有するエアロゲル成分を含有する撥水パウダー6を得た。
(Example 6)
[Preparation of water repellent powder 6]
143.0 parts by mass of ST-OZL-35, 57.0 parts by mass of water, 0.10 parts by mass of acetic acid, and 20.0 parts by mass of CTAB are mixed with dimethyldimethoxysilane KBM-22 (Shin-Etsu Chemical Co., Ltd.) Product name: product name: 20.0 parts by mass of the following “DMDMS”, 20.0 parts by mass of polysiloxane compound A and 30.0 parts by mass of MTMS, and reacted at 25 ° C. for 2 hours I got 6-1. 30.0 parts by mass of KBM-903 and 30 parts by mass of water were mixed and reacted at 25 ° C. for 2 hours to obtain a sol 3-2. The sol 3-2 was added to the obtained sol 6-1, gelled at 60 ° C., and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 6 containing an airgel component having a ladder type structure represented by the above general formulas (2) and (3) and an amino group was obtained.
[撥水処理液6の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記撥水パウダー6を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで撥水処理液6を得た。
[Preparation of Water Repellent Treatment Solution 6]
The mixed solution of 400.0 g of water and 200.0 g of methanol was stirred at 300 rpm for 1 hour using 5.0 g of the water repellent powder 6 and the general-purpose stirrer BL-600 to obtain a water repellent solution 6 .
[撥水構造体6]
 撥水処理液6に、スライドグラスS7213を5分間ディップした。その後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥し撥水構造体6を得た。
[Water repellent structure 6]
Slide glass S7213 was dipped in the water repellent solution 6 for 5 minutes. Thereafter, the dip-treated slide glass was dried at 120 ° C. for 1 hour under normal pressure to obtain a water repellent structure 6.
(実施例7)
[撥水パウダー7の作製]
 PL-2Lを100.0質量部、水を100.0質量部、酢酸を0.10質量部、CTABを20.0質量部混合し、これにポリシロキサン化合物Bを40.0質量部及びMTMSを30.0質量部加え、25℃で2時間反応させてゾル7-1を得た。KBM-603を30.0質量部、水を30質量部混合し、25℃で2時間反応させてゾル4-2を得た。得られたゾル7-1にゾル4-2を加え、60℃でゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、上記一般式(2)及び(3)で表されるラダー型構造並びにアミノ基を有するエアロゲル成分を含有する撥水パウダー7を得た。
(Example 7)
[Preparation of water repellent powder 7]
100.0 parts by mass of PL-2L, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB, 40.0 parts by mass of polysiloxane compound B, and MTMS The reaction mixture was added with 30.0 parts by mass and allowed to react at 25 ° C. for 2 hours to obtain sol 7-1. 30.0 parts by mass of KBM-603 and 30 parts by mass of water were mixed and reacted at 25 ° C. for 2 hours to obtain a sol 4-2. The sol 4-2 was added to the obtained sol 7-1, gelled at 60 ° C., and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 7 containing an airgel component having a ladder type structure represented by the above general formulas (2) and (3) and an amino group was obtained.
 なお、上記「ポリシロキサン化合物B」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、XC96-723を100.0質量部、テトラメトキシシランを202.6質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端3官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物B)を得た。 The above "polysiloxane compound B" was synthesized as follows. First, 100.0 parts by mass of XC 96-723, 202.6 parts by mass of tetramethoxysilane, and 0.2 parts by mass of t-butylamine in a 1-liter three-necked flask equipped with a stirrer, a thermometer and a Dimroth condenser. 50 parts by mass were mixed and reacted at 30 ° C. for 5 hours. Thereafter, the reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, thereby obtaining a both-end trifunctional alkoxy-modified polysiloxane compound (polysiloxane compound B).
[撥水処理液7の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記撥水パウダー7を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで撥水処理液7を得た。
[Preparation of Water Repellent Treatment Liquid 7]
The mixed solution of 400.0 g of water and 200.0 g of methanol was stirred at 300 rpm for 1 hour with 5.0 g of the above-mentioned water repellent powder 7 using a general-purpose stirrer BL-600 to obtain a water repellent solution 7 .
[撥水構造体7]
 撥水処理液7に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、撥水構造体7を得た。
[Water repellant structure 7]
After dipping the slide glass S7213 for 5 minutes in the water repellent treatment liquid 7, the dip treated slide glass was dried at 120 ° C. under normal pressure for 1 hour to obtain a water repellent structure 7.
(実施例8)
[撥水パウダー8の作製]
 ST-OZL-35を143.0質量部、水を57.0質量部、CTABを20.0質量部及び尿素を120.0質量部混合し、これにポリシロキサン化合物Aを20.0質量部、DMDMSを20.0質量部及びMTMSを30.0質量部、3-アクリロキシプロピルトリメトキシシラン「KBM-5103」(信越化学工業株式会社製)を30.0質量部、加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃で8時間ゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、上記一般式(2)及び(3)で表されるラダー型構造並びにアクリロイル基を有するエアロゲル成分を含有する撥水パウダー8を得た。
(Example 8)
[Preparation of water repellent powder 8]
143.0 parts by mass of ST-OZL-35, 57.0 parts by mass of water, 20.0 parts by mass of CTAB and 120.0 parts by mass of urea are mixed with 20.0 parts by mass of the polysiloxane compound A , 20.0 parts by mass of DMDMS and 30.0 parts by mass of MTMS, 30.0 parts by mass of 3-acryloxypropyltrimethoxysilane "KBM-5103" (manufactured by Shin-Etsu Chemical Co., Ltd.), and adding at 25 ° C The reaction was carried out for 2 hours to obtain a sol. The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 8 containing an airgel component having a ladder type structure represented by the general formulas (2) and (3) and an acryloyl group was obtained.
[撥水処理液8の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記撥水パウダー8を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで撥水処理液8を得た。
[Preparation of Water Repellent Treatment Solution 8]
The mixed solution of 400.0 g of water and 200.0 g of methanol was stirred at 300 rpm for 1 hour using 5.0 g of the water repellent powder 8 and the general-purpose stirrer BL-600 to obtain a water repellent solution 8 .
[撥水構造体8]
 撥水処理液8に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、撥水構造体8を得た。
[Water repellent structure 8]
After dipping the slide glass S7213 for 5 minutes in the water repellent treatment liquid 8, the dip treated slide glass was dried at 120 ° C. for 1 hour under normal pressure to obtain a water repellent structure 8.
(実施例9)
[撥水パウダー9の作製]
 PL-5Lを100.0質量部、水を100.0質量部、CTABを20.0質量部及び尿素を120.0質量部混合し、これにポリシロキサン化合物Aを20.0質量部、DMDMSを20.0質量部及びMTMSを30.0質量部、3-メタクリロキシプロピルトリメトキシシラン「KBM-503」(信越化学工業株式会社製)を30.0質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃で8時間ゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、上記一般式(2)及び(3)で表されるラダー型構造並びにメタクリロイル基を有するエアロゲル成分を含有する撥水パウダー9を得た。
(Example 9)
[Preparation of water repellent powder 9]
100.0 parts by mass of PL-5L, 100.0 parts by mass of water, 20.0 parts by mass of CTAB and 120.0 parts by mass of urea are mixed with 20.0 parts by mass of polysiloxane compound A, DMDMS 20.0 parts by mass, 30.0 parts by mass of MTMS, 30.0 parts by mass of 3-methacryloxypropyltrimethoxysilane “KBM-503” (manufactured by Shin-Etsu Chemical Co., Ltd.), and reaction at 25 ° C. for 2 hours The sol was obtained. The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 9 containing an airgel component having a ladder type structure represented by the above general formulas (2) and (3) and a methacryloyl group was obtained.
[撥水処理液9の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記撥水パウダー9を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで撥水処理液9を得た。
[Preparation of water repellent treatment liquid 9]
The mixed solution of 400.0 g of water and 200.0 g of methanol was stirred at 300 rpm for 1 hour with 5.0 g of the above-mentioned water repellent powder 9 using a general-purpose stirrer BL-600 to obtain a water repellent solution 9 .
[撥水構造体9]
 撥水処理液9に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、撥水構造体9を得た。
[Water repellent structure 9]
After dipping the slide glass S7213 for 5 minutes in the water repellent treatment liquid 9, the dip treated slide glass was dried at 120 ° C. for 1 hour under normal pressure to obtain a water repellent structure 9.
(実施例10)
[撥水パウダー10の作製]
 ST-OZL-35を143.0質量部、水を100.0質量部、酢酸を0.10質量部、CTABを20.0質量部混合し、これにDMDMSを20.0質量部、ポリシロキサン化合物Aを20.0質量部及びMTMSを50.0質量部加え、25℃で2時間反応させてゾル10-1を得た。KBM-903を10.0質量部、水を30質量部混合し、25℃で2時間反応させてゾル3-2を得た。得られたゾル10-1にゾル3-2を加え、60℃でゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、上記一般式(2)及び(3)で表されるラダー型構造並びにアミノ基を有するエアロゲル成分を含有する撥水パウダー10を得た。
(Example 10)
[Preparation of water repellent powder 10]
143.0 parts by mass of ST-OZL-35, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid, and 20.0 parts by mass of CTAB mixed with 20.0 parts by mass of DMDMS, and polysiloxane 20.0 parts by mass of compound A and 50.0 parts by mass of MTMS were added, and reacted at 25 ° C. for 2 hours to obtain sol 10-1. 10.0 parts by mass of KBM-903 and 30 parts by mass of water were mixed and reacted at 25 ° C. for 2 hours to obtain a sol 3-2. The sol 3-2 was added to the obtained sol 10-1, gelled at 60 ° C., and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a water repellent powder 10 containing an airgel component having a ladder type structure represented by the above general formulas (2) and (3) and an amino group was obtained.
[撥水処理液10の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記撥水パウダー10を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで撥水処理液10を得た。
[Preparation of Water Repellent Treatment Solution 10]
The water repellent treatment liquid 10 was obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the water repellent powder 10 with respect to a mixed solvent of 400.0 g of water and 200.0 g of methanol. .
[撥水構造体10]
 撥水処理液10に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、撥水構造体10を得た。
[Water repellent structure 10]
After dipping the slide glass S7213 for 5 minutes in the water repellent treatment liquid 10, the dip treated slide glass was dried at 120 ° C. under normal pressure for 1 hour to obtain a water repellent structure 10.
(比較例1)
[比較撥水パウダー1の作製]
 水を200.0質量部、酢酸を0.10質量部、CTABを20.0質量部及び尿素を120.0質量部混合し、これにMTMSを100.0質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃で8時間ゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、比較撥水パウダー1を得た。
(Comparative example 1)
[Preparation of comparative water repellent powder 1]
200.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB and 120.0 parts by mass of urea are mixed, 100.0 parts by mass of MTMS are added thereto, and the mixture is stirred at 25.degree. The reaction was carried out to obtain a sol. The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. Thereafter, in the same manner as in Example 1, a comparative water repellent powder 1 was obtained.
[比較撥水処理液1の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記比較撥水パウダー1を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで比較撥水処理液1を得たが、後述の分散性評価がCであったため、撥水構造体の作製はできなかった。
[Preparation of Comparative Water-repellent Treatment Solution 1]
Comparative water repellent treatment liquid 1 is obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the comparative water repellent powder 1 against a mixed solvent of 400.0 g of water and 200.0 g of methanol. Although obtained, since the below-mentioned dispersibility evaluation was C, preparation of a water-repellent structure was not completed.
(比較例2)
[比較撥水パウダー2の作製]
 水を200.0質量部、酢酸を0.10質量部、CTABを20.0質量部及び尿素を120.0質量部混合し、これにテトラエトキシシラン(TEOS)を100.0質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃で8時間ゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、比較撥水パウダー2を得た。
(Comparative example 2)
[Production of comparative water repellent powder 2]
200.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB and 120.0 parts by mass of urea are mixed, and 100.0 parts by mass of tetraethoxysilane (TEOS) is added thereto The reaction was carried out at 25 ° C. for 2 hours to obtain a sol. The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. After that, in the same manner as in Example 1, a comparative water repellent powder 2 was obtained.
[比較撥水処理液2の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記比較撥水パウダー2を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで比較撥水処理液2を得たが、後述の分散性評価がCであったため、撥水構造体の作製はできなかった。
[Preparation of Comparative Water-repellent Treatment Solution 2]
Comparative water repellent solution 2 is obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the comparative water repellent powder 2 against a mixed solvent of 400.0 g of water and 200.0 g of methanol. Although obtained, since the below-mentioned dispersibility evaluation was C, preparation of a water-repellent structure was not completed.
(比較例3)
[比較撥水パウダー3の作製]
 ST-OZL-35を143.0質量部、水を100.0質量部、酢酸を0.10質量部、CTABを20.0質量部、尿素120.0質量部混合し、これにDMDMSを20.0質量部、ポリシロキサン化合物Aを20.0質量部及びMTMSを60.0質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃で8時間ゲル化した後、80℃で48時間熟成して湿潤ゲルを得た。その後は、実施例1と同様にして、比較撥水パウダー3を得た。
(Comparative example 3)
[Preparation of comparative water repellent powder 3]
143.0 parts by mass of ST-OZL-35, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid, 20.0 parts by mass of CTAB, and 120.0 parts by mass of urea are mixed, and 20 .0 parts by mass, 20.0 parts by mass of the polysiloxane compound A and 60.0 parts by mass of MTMS were added, and reacted at 25 ° C. for 2 hours to obtain a sol. The obtained sol was gelled at 60 ° C. for 8 hours and then aged at 80 ° C. for 48 hours to obtain a wet gel. After that, in the same manner as in Example 1, a comparative water repellent powder 3 was obtained.
[比較撥水処理液3の作製]
 水400.0g及びメタノール200.0gの混合溶媒に対し、上記比較撥水パウダー3を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで比較撥水処理液3を得たが、後述の分散性評価がCであったため、撥水構造体の作製はできなかった。
[Preparation of Comparative Water-repellent Treatment Solution 3]
Comparative water repellent treatment liquid 3 is obtained by stirring at 300 rpm for 1 hour using a general-purpose stirrer BL-600 and 5.0 g of the comparative water repellent powder 3 against a mixed solvent of 400.0 g of water and 200.0 g of methanol. Although obtained, since the below-mentioned dispersibility evaluation was C, preparation of a water-repellent structure was not completed.
(比較例4)
[比較撥水処理液4の作製]
 メチルエチルケトン(MEK)600.0gに対し、上記比較撥水パウダー1を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで比較撥水処理液4を得た。
(Comparative example 4)
[Preparation of Comparative Water Repellent Treatment Solution 4]
Comparative water repellent treatment liquid 4 was obtained by stirring for 1 hour at 300 rpm using 5.0 g of the above comparative water repellent powder 1 with 600.0 g of methyl ethyl ketone (MEK) and a general-purpose stirrer BL-600.
[比較撥水構造体4]
 比較撥水処理液4に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、比較撥水構造体4を得た。
[Comparative water repellent structure 4]
The slide glass S7213 was dipped in the comparative water repellent treatment liquid 5 for 5 minutes, and then the dip treated slide glass was dried at 120 ° C. under normal pressure for 1 hour to obtain a comparative water repellent structure 4.
(比較例5)
[比較撥水処理液5の作製]
  MEK600.0gに対し、上記比較撥水パウダー2を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで比較撥水処理液5を得た。
(Comparative example 5)
[Preparation of Comparative Water Repellent Treatment Solution 5]
A comparative water repellent treatment liquid 5 was obtained by stirring at 300 rpm for 1 hour using 5.0 g of the comparative water repellent powder 2 and 60 g of MEK using a general-purpose stirrer BL-600.
[比較撥水構造体5]
 比較撥水処理液5に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、比較撥水構造体5を得た。
[Comparative water repellent structure 5]
After dipping the slide glass S7213 for 5 minutes in the comparative water repellent treatment solution 5, the dip treated slide glass was dried at 120 ° C. for 1 hour under normal pressure to obtain a comparative water repellent structure 5.
(比較例6)
[比較撥水処理液6の作製]
  MEK600.0gに対し、上記比較撥水パウダー3を5.0g、汎用撹拌機BL-600を用いて300rpmで1時間攪拌することで比較撥水処理液6を得た。
(Comparative example 6)
[Preparation of comparative water repellent treatment solution 6]
The comparative water repellent treatment liquid 6 was obtained by stirring at 300 rpm for 1 hour using 5.0 g of the comparative water repellent powder 3 and 60 g of MEK using a general-purpose stirrer BL-600.
[比較撥水構造体6]
 比較撥水処理液6に、スライドグラスS7213を5分間ディップした後、ディップ処理したスライドグラスを常圧下にて、120℃で1時間乾燥して、比較撥水構造体6を得た。
[Comparative water repellent structure 6]
The slide glass S7213 was dipped in the comparative water repellent treatment liquid 5 for 5 minutes, and then the dip treated slide glass was dried at 120 ° C. for 1 hour under normal pressure to obtain a comparative water repellent structure 6.
 各実施例及び比較例における、Si原料の種類及び添加量を表1にまとめて示す。 Table 1 summarizes the types and addition amounts of Si raw materials in each of the examples and the comparative examples.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
[各種評価]
 各実施例及び比較例で得られた撥水パウダーについて、以下の条件に従って評価した。評価結果を表2に示す。
[Various evaluations]
The water repellent powder obtained in each Example and Comparative Example was evaluated according to the following conditions. The evaluation results are shown in Table 2.
(1)圧縮弾性率
 測定装置として、微小圧縮試験機「MCT-510」(株式会社島津製作所製、製品名)を用いた。平行に配置した上圧盤及び下圧盤の間に、撥水パウダーをセットし、負荷速度0.0892mN/秒で圧縮を行った。測定は、4.9mN超の負荷をかけた時点又は測定サンプルが破壊した時点で終了とした。圧縮弾性率は、圧縮ひずみ及び圧縮応力から以下のようにして算出した。
(1) Compressive Elastic Modulus As a measuring device, a micro compression tester "MCT-510" (product name, manufactured by Shimadzu Corporation) was used. The water repellent powder was set between the upper platen and the lower platen arranged in parallel, and compression was performed at a loading rate of 0.0892 mN / sec. The measurement was terminated when a load of over 4.9 mN was applied or when the measurement sample was destroyed. The compressive elastic modulus was calculated from compressive strain and compressive stress as follows.
 ここで、圧縮ひずみεは、次式より求めることができる。式中、Δdは負荷による測定サンプルの厚みの変位(mm)を示し、d1は負荷をかける前の測定サンプルの厚み(mm)を示す。
  ε=Δd/d1
Here, the compressive strain ε can be obtained by the following equation. In the equation, Δd represents the displacement (mm) of the thickness of the measurement sample due to the load, and d1 represents the thickness (mm) of the measurement sample before applying the load.
ε = Δd / d1
 また、圧縮応力σ(MPa)は、次式より求めることができる。式中、Fは圧縮力(N)を示し、Aは負荷をかける前の測定サンプルの断面積(mm)を示す。
  σ=F/A
The compressive stress σ (MPa) can be determined by the following equation. In the formula, F indicates a compressive force (N), and A indicates a cross-sectional area (mm 2 ) of the measurement sample before loading.
σ = F / A
 圧縮弾性率E(MPa)は、例えば、圧縮力が0.1~0.2Nの範囲において、次式より求めることができる。式中、σは圧縮力が0.1Nにおいて測定される圧縮応力(MPa)を示し、σは圧縮力が0.2Nにおいて測定される圧縮応力(MPa)を示し、εは圧縮応力σにおいて測定される圧縮ひずみを示し、εは圧縮応力σにおいて測定される圧縮ひずみを示す。
  E=(σ-σ)/(ε-ε
The compressive elastic modulus E (MPa) can be determined, for example, by the following equation in a compressive force range of 0.1 to 0.2 N. In the formula, σ 1 represents compressive stress (MPa) measured at a compressive force of 0.1 N, σ 2 represents compressive stress (MPa) measured at a compressive force of 0.2 N, and ε 1 is compressive stress The compressive strain measured at σ 1 is shown, and ε 2 is the compressive strain measured at compressive stress σ 2 .
E = (σ 21 ) / (ε 21 )
 (2)撥水処理液の分散性評価
 撥水処理液中の撥水パウダーが液面に浮遊しているかを目視で判断し、粒子の大部分が溶媒で濡れた場合を「A」、溶媒に濡れずに浮遊している粒子が少量ある場合を「B」、大部分の粒子が溶媒に濡れずに浮遊している場合を「C」とした。
(2) Evaluation of the dispersibility of the water repellent solution It is judged visually whether the water repellent powder in the water repellent solution is floating on the liquid surface, and when the majority of the particles are wet with the solvent, "A", solvent When there were a small amount of floating particles without being wetted by "B", it was called "C" when the majority of the particles were floating without being wetted by the solvent.
(3)接触角の測定
 各実施例及び比較例で得られた撥水構造体を、105℃で1時間乾燥し、測定サンプルとした。次に、協和界面科学(株)製の接触角計DMs-401を使用して、超純水の液滴2μLを滴下し、5秒後の接触角を測定した。測定は5回行い、平均値を水接触角とした。
(3) Measurement of Contact Angle The water repellent structure obtained in each Example and Comparative Example was dried at 105 ° C. for 1 hour to obtain a measurement sample. Next, 2 μL of ultrapure water droplets were dropped using a contact angle meter DMs-401 manufactured by Kyowa Interface Science Co., Ltd., and the contact angle after 5 seconds was measured. The measurement was performed five times, and the average value was taken as the water contact angle.
(4)耐摩耗性試験
 耐磨耗試験は、クレシア(株)製キムタオルを撥水構造体表面に複数回擦りつけ、その後、105℃で1時間乾燥し、測定サンプルとした。ここでのキムタオルの接触面積は、20mm×50mm、加重0.1Kg/cmとした。次に、協和界面科学(株)製の接触角計DMs-401を使用して、超純水の液滴2μLを滴下し、5秒後の接触角を室温で測定した。測定は5回行い、平均値を水接触角とした。
(4) Abrasion Resistance Test In the abrasion resistance test, a Kim towel manufactured by Cresia Co., Ltd. was rubbed on the surface of the water repellent structure a plurality of times, and then dried at 105 ° C. for 1 hour to prepare a measurement sample. The contact area of the Kim towel here was 20 mm × 50 mm, with a weight of 0.1 kg / cm 2 . Next, 2 μL of ultrapure water droplets were dropped using a contact angle meter DMs-401 manufactured by Kyowa Interface Science Co., Ltd., and the contact angle after 5 seconds was measured at room temperature. The measurement was performed five times, and the average value was taken as the water contact angle.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表2から、実施例の撥水パウダーは、比較例の比較撥水パウダーと比較し、水系溶媒への分散性が高いこと確認できる。また、実施例の撥水パウダーから形成された撥水部を有する撥水構造体は、比較例4,5の撥水構造体と比較し、水接触角が大きく、良好な撥水性を示すと共に、優れた柔軟性を有することが確認できる。また、耐摩耗性試験の結果から明らかなように、実施例の撥水構造体は、比較例の撥水構造体と比較し、耐久性に優れ、良好な撥水性を維持することができる。さらに、実施例6と比較例6を比較すると、反応性基であるアミノ基の導入により、水系溶媒への分散性と撥水性が両立し、耐磨耗試験により密着性も向上していることが確認できる。 From Table 2, it can be confirmed that the water repellent powder of the example has high dispersibility in an aqueous solvent as compared to the comparative water repellent powder of the comparative example. In addition, the water repellent structure having a water repellent portion formed from the water repellent powder of the example has a large water contact angle and exhibits good water repellency as compared with the water repellent structure of Comparative Examples 4 and 5. It can be confirmed that it has excellent flexibility. Further, as is clear from the results of the abrasion resistance test, the water repellent structure of the example is superior in durability and can maintain good water repellency as compared with the water repellent structure of the comparative example. Furthermore, when Example 6 and Comparative Example 6 are compared, by introducing the amino group which is a reactive group, the dispersibility in the aqueous solvent and the water repellency are compatible, and the adhesion is also improved by the abrasion resistance test. Can be confirmed.
 1…エアロゲル粒子、2…シリカ粒子、3…細孔、10…エアロゲル複合体、L…外接長方形。

 
1 ... airgel particles, 2 ... silica particles, 3 ... pores, 10 ... airgel complex, L ... circumscribed rectangle.

Claims (12)

  1.  エアロゲル成分とシリカ粒子とを含有し、
     前記エアロゲル成分が、エポキシ基、メルカプト基、アクリロイル基、メタクリロイル基及びアミノ基からなる群より選択される少なくとも一種の極性基を有する、エアロゲル複合体パウダー。
    Contains an airgel component and silica particles,
    An airgel composite powder, wherein the airgel component has at least one polar group selected from the group consisting of an epoxy group, a mercapto group, an acryloyl group, a methacryloyl group and an amino group.
  2.  前記エアロゲル成分及び前記シリカ粒子より形成された三次元網目骨格と、細孔とを有する、請求項1に記載のエアロゲル複合体パウダー。 The airgel composite powder according to claim 1, having a three-dimensional network structure formed of the airgel component and the silica particles, and pores.
  3.  シリカ粒子と、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルの縮合物である湿潤ゲルの乾燥物である、請求項1又は2に記載のエアロゲル複合体パウダー。 At least one selected from the group consisting of silica particles, a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silicon compound having a hydrolyzable functional group; The airgel composite powder according to claim 1 or 2, which is a dry product of a wet gel which is a condensation product of a sol containing.
  4.  前記シリカ粒子の平均一次粒子径が1~500nmである、請求項1~3のいずれか一項に記載のエアロゲル複合体パウダー。 The airgel composite powder according to any one of claims 1 to 3, wherein the average primary particle diameter of the silica particles is 1 to 500 nm.
  5.  前記シリカ粒子が非晶質シリカ粒子である、請求項1~4のいずれか一項に記載のエアロゲル複合体パウダー。 The airgel composite powder according to any one of claims 1 to 4, wherein the silica particles are amorphous silica particles.
  6.  前記非晶質シリカ粒子が溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子からなる群より選択される少なくとも一種である、請求項5に記載のエアロゲル複合体パウダー。 The airgel composite powder according to claim 5, wherein the amorphous silica particles are at least one selected from the group consisting of fused silica particles, fumed silica particles and colloidal silica particles.
  7.  シリカ粒子と、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルの縮合物である湿潤ゲルの乾燥物である、請求項1~6のいずれか一項に記載のエアロゲル複合体パウダー。 At least one member selected from the group consisting of silica particles, a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the aforementioned polysiloxane compound having a hydrolyzable functional group The airgel composite powder according to any one of claims 1 to 6, which is a dry product of a wet gel which is a condensation product of a sol containing and.
  8.  前記エアロゲル成分が、一般式(1)で表される構造を有する、請求項1~7のいずれか一項に記載のエアロゲル複合体パウダー。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。]
    The airgel composite powder according to any one of claims 1 to 7, wherein the airgel component has a structure represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (1), R 1 and R 2 each independently represent an alkyl group or an aryl group, and R 3 and R 4 each independently represent an alkylene group. ]
  9.  前記エアロゲル成分が、支柱部及び橋かけ部を備えるラダー型構造を有し、前記橋かけ部が下記一般式(2)で表される、請求項1~8のいずれか一項に記載のエアロゲル複合体パウダー。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。]
    The airgel according to any one of claims 1 to 8, wherein the airgel component has a ladder-type structure including a support portion and a crosslinking portion, and the crosslinking portion is represented by the following general formula (2). Complex powder.
    Figure JPOXMLDOC01-appb-C000002
    [In formula (2), R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50]. ]
  10.  前記エアロゲル成分が、下記一般式(3)で表されるラダー型構造を有する、請求項9に記載のエアロゲル複合体パウダー。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。]
    The airgel composite powder according to claim 9, wherein the airgel component has a ladder-type structure represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    [In formula (3), R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group, a and c each independently represent an integer of 1 to 3000, and b is 1 to 50] Indicates an integer of ]
  11.  平均粒子径D50が1~1000μmである、請求項1~10のいずれか一項に記載のエアロゲル複合体パウダー。 The airgel composite powder according to any one of claims 1 to 10, wherein the average particle diameter D50 is 1 to 1000 μm.
  12.  請求項1~11のいずれか一項に記載のエアロゲル複合体パウダーを含む、撥水材。 A water repellent material comprising the airgel composite powder according to any one of claims 1 to 11.
PCT/JP2018/037244 2017-10-04 2018-10-04 Aerogel composite powder and water repellent material WO2019070035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017194481A JP2019064892A (en) 2017-10-04 2017-10-04 Aerogel complex powder and water repellent material
JP2017-194481 2017-10-04

Publications (1)

Publication Number Publication Date
WO2019070035A1 true WO2019070035A1 (en) 2019-04-11

Family

ID=65994959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037244 WO2019070035A1 (en) 2017-10-04 2018-10-04 Aerogel composite powder and water repellent material

Country Status (2)

Country Link
JP (1) JP2019064892A (en)
WO (1) WO2019070035A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110787745A (en) * 2019-11-29 2020-02-14 福建六树网络科技有限公司 Preparation method of silicon dioxide aerogel composite material and silicon dioxide aerogel composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023173662A (en) * 2022-05-26 2023-12-07 宇部エクシモ株式会社 Porous-particle dispersion, method for producing porous-particle dispersion, water repellent, porous structure, and method for producing porous structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196311A (en) * 1993-11-04 1995-08-01 Eniricerche Spa Preparation of porous spherical silica particle
JP2014167078A (en) * 2013-02-28 2014-09-11 Panasonic Corp Composition for molding heat insulating material, molded body, and manufacturing method of molded body
WO2016121798A1 (en) * 2015-01-27 2016-08-04 日立化成株式会社 Production method for aerogel laminate, and aerogel laminate roll
JP2016216283A (en) * 2015-05-18 2016-12-22 日立化成株式会社 Aerogel, method for producing aerogel and aerogel film
WO2017002342A1 (en) * 2015-07-01 2017-01-05 パナソニックIpマネジメント株式会社 Aerogel, member including same, and process for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196311A (en) * 1993-11-04 1995-08-01 Eniricerche Spa Preparation of porous spherical silica particle
JP2014167078A (en) * 2013-02-28 2014-09-11 Panasonic Corp Composition for molding heat insulating material, molded body, and manufacturing method of molded body
WO2016121798A1 (en) * 2015-01-27 2016-08-04 日立化成株式会社 Production method for aerogel laminate, and aerogel laminate roll
JP2016216283A (en) * 2015-05-18 2016-12-22 日立化成株式会社 Aerogel, method for producing aerogel and aerogel film
WO2017002342A1 (en) * 2015-07-01 2017-01-05 パナソニックIpマネジメント株式会社 Aerogel, member including same, and process for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110787745A (en) * 2019-11-29 2020-02-14 福建六树网络科技有限公司 Preparation method of silicon dioxide aerogel composite material and silicon dioxide aerogel composite material
CN110787745B (en) * 2019-11-29 2021-11-05 安徽信义光伏玻璃有限公司 Preparation method of silicon dioxide aerogel composite material and silicon dioxide aerogel composite material

Also Published As

Publication number Publication date
JP2019064892A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2016047740A1 (en) Aerogel composite, and supporting member and heat insulation material provided with aerogel composite
JP7196854B2 (en) Coating liquid, method for producing coating film, and coating film
WO2017164184A1 (en) Sol composition, aerogel composite, support member provided with aerogel composite, and heat insulator
TWI787318B (en) Coating liquid, manufacturing method of coating film, and coating film
WO2017170534A1 (en) Aerogel composite powder
TWI829911B (en) Coating fluids, composite materials and coating films
JPWO2019069494A1 (en) Coating liquid, coating film manufacturing method and coating film
WO2017168847A1 (en) Member with aerogel layer
JP7156037B2 (en) Water-repellent agent, water-repellent structure and method for producing the same
WO2017038777A1 (en) Aerogel composite, support material with aerogel composite, and heat-insulating material
WO2019070035A1 (en) Aerogel composite powder and water repellent material
JPWO2020012553A1 (en) Coating liquid and coating film
JPWO2020012554A1 (en) Coating liquid manufacturing method, coating liquid and coating film
WO2017170498A1 (en) Aerogel composite, and support member and adiabatic material provided with aerogel composite
JP7156038B2 (en) Treatment agent for particle treatment, water-repellent particles and method for producing the same, water-repellent layer and permeation-preventing structure
JP7196907B2 (en) Method for suppressing corrosion under insulation and paste for suppressing corrosion under insulation
WO2017038781A1 (en) Aerogel complex
JP7196853B2 (en) Coating liquid, method for producing coating film, and coating film
JP7160106B2 (en) Airgel particles, dispersions and coatings
WO2018143361A1 (en) Water-repellant powder
WO2019069405A1 (en) Dispersion liquid and aerogel particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863882

Country of ref document: EP

Kind code of ref document: A1