WO2019065481A1 - Method for manufacturing r-t-b-based sintered magnet - Google Patents

Method for manufacturing r-t-b-based sintered magnet Download PDF

Info

Publication number
WO2019065481A1
WO2019065481A1 PCT/JP2018/034973 JP2018034973W WO2019065481A1 WO 2019065481 A1 WO2019065481 A1 WO 2019065481A1 JP 2018034973 W JP2018034973 W JP 2018034973W WO 2019065481 A1 WO2019065481 A1 WO 2019065481A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
alloy
content
less
sintered body
Prior art date
Application number
PCT/JP2018/034973
Other languages
French (fr)
Japanese (ja)
Inventor
宣介 野澤
恭孝 重本
西内 武司
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2019500604A priority Critical patent/JP6508447B1/en
Priority to CN201880053770.9A priority patent/CN111052276B/en
Publication of WO2019065481A1 publication Critical patent/WO2019065481A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a method for producing an RTB-based sintered magnet.
  • RTB-based sintered magnet (R is at least one of rare earth elements. T is at least one of transition metal elements and necessarily contains Fe. B is boron.) Is a permanent magnet. It is known as the most powerful magnet, and is used for voice coil motor (VCM) of hard disk drive, electric motor (EV, HV, PHV etc.) motor for electric car, various motors such as motor for industrial equipment, home electric appliance etc. There is.
  • VCM voice coil motor
  • EV, HV, PHV etc. electric motor for electric car
  • various motors such as motor for industrial equipment, home electric appliance etc. There is.
  • the RTB-based sintered magnet is mainly composed of a main phase consisting of an R 2 T 14 B compound and a grain boundary phase located at grain boundaries of the main phase (hereinafter sometimes referred to simply as “grain boundaries”). It is configured.
  • the R 2 T 14 B compound is a ferromagnetic phase with high magnetization, and forms the basis of the characteristics of the RTB-based sintered magnet.
  • the RTB -based sintered magnet has a problem that irreversible thermal demagnetization occurs because the coercivity H cJ (hereinafter, sometimes simply referred to as "coercivity" or "H cJ ”) decreases at high temperature. Therefore, in the RTB -based sintered magnet used particularly for a motor for an electric vehicle, it is required to have high H cJ even under high temperature, that is, to have higher H cJ at room temperature.
  • part of the light rare earth elements (mainly Nd and / or Pr) contained in R in the R 2 T 14 B compound is a heavy rare earth element (mainly Dy and / or Tb) It is known that substitution improves H cJ . H cJ improves as the substitution amount of heavy rare earth elements increases.
  • Patent Document 1 discloses an RTB-based rare earth sintered magnet in which the coercive force is increased while reducing the content of Dy.
  • the composition of this sintered magnet is limited to a specific range in which the amount of B is relatively small compared to a commonly used RTB-based alloy, and is selected from Al, Ga, and Cu 1 It contains metal element M of a species or more.
  • R 2 T 17 phase is produced in the grain boundary, by the volume ratio of the R 2 T 17 transition metal-rich phase formed in the grain boundary from phase (R 6 T 13 M) increases, H cJ Improve.
  • Patent Document 1 The method described in Patent Document 1 is noteworthy in that the coercive force of the RTB-based sintered magnet can be increased while suppressing the content of heavy rare earth elements. However, there is a problem that B r is greatly reduced. Further, in recent years, RTB -based sintered magnets having higher H cJ have been required in applications such as motors for electric vehicles.
  • Embodiments of the present disclosure while reducing the content of heavy rare earth elements, to provide a method of manufacturing a R-T-B based sintered magnet having a high B r and a high H cJ.
  • the method of producing the RTB-based sintered magnet of the present disclosure is, in a non-limiting exemplary embodiment, preparing an R1-T1-B-based sintered body, R2-Ga-Cu-Co, and And preparing at least a part of the R2-Ga-Cu-Co alloy on at least a part of the surface of the R1-T1-B sintered body, in a vacuum or inert gas atmosphere. And a step of performing the first heat treatment at a temperature of 700 ° C. or more and 1100 ° C. or less, and a vacuum or inert gas atmosphere for the R1-T1-B-based sintered body subjected to the first heat treatment. And performing a second heat treatment at a temperature of 450 ° C.
  • R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is the entire R1-T1-B-based sintered body.
  • T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T1 always contains Fe, and the Fe content relative to the entire T1 is It is 80 mass% or more, and the molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.
  • R2 is at least one of rare earth elements and necessarily contains at least one of Nd and Pr, and the content of R2 is that of the entire R2-Ga-Cu-Co-based alloy
  • the content of Ga is 35 mass% to less than 85 mass%
  • the content of Ga is 2.5 mass% to 30 mass% of the entire R2-Ga-Cu-Co alloy
  • the content of Cu is R2-Ga-Cu-Co.
  • the content of Co is more than 10 mass% and less than 45 mass% of the whole R2-Ga-Cu-Co alloy, and the content of R> the content of Co. > Ga content> Cu content inequality is satisfied.
  • the molar ratio of T to B ([T1] / [B]) is 14.5 or more and 15.0 or less.
  • 50 mass% or more of R2 in the R2-Ga-Cu-Co based alloy is Pr.
  • 70 mass% or more of R2 in the R2-Ga-Cu-Co based alloy is Pr.
  • the total content of R 2 -Ga-Cu-Co in the R 2 -Ga-Cu-Co-based alloy is 80 mass% or more.
  • the temperature in the first heat treatment is 800 ° C. or more and 1000 ° C. or less.
  • the temperature in the second heat treatment is 480 ° C. or more and 560 ° C. or less.
  • Preparing the R1-T1-B based sintered body comprises performing after the material alloy particle size D 50 was pulverized to 3 ⁇ m or 10 ⁇ m or less, the sintering being oriented in a magnetic field.
  • the manufacturing method of the RTB-based sintered magnet of the present disclosure is, in another exemplary embodiment not limiting, preparing an R1-T1-Cu-B-based sintered body; And preparing at least a part of the R2-Ga-Co alloy on at least a part of the surface of the R1-T1-Cu-B sintered body, in a vacuum or inactive state.
  • the step of performing the first heat treatment at a temperature of 700 ° C. or more and 1100 ° C. or less in a gas atmosphere, and vacuum or failure for the R1-T1-Cu-B-based sintered body for which the first heat treatment is performed.
  • Carrying out the second heat treatment at a temperature of 450 ° C. to 600 ° C.
  • R1 in an active gas atmosphere, and in the R1-T1-Cu-B-based sintered body, R1 is at least one of rare earth elements Yes, including at least one of Nd and Pr
  • the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-Cu-B-based sintered body, and T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si.
  • T1 always contains Fe, the content of Fe with respect to the whole T1 is 80 mass% or more, and the molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less
  • the content of Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-Cu-B-based sintered body, and in the R2-Ga-Co-based alloy, R2 is a rare earth element.
  • the content of R2 is at least 35 mass% and less than 87 mass% of the whole R2-Ga-Co alloy, and the content of Ga is R2-G.
  • the content of Co is more than 10 mass% and 45 mass% or less of the whole R2-Ga-Co alloy, the content of R2> the content of Co
  • the inequality of the content of Ga is established.
  • the molar ratio of T1 to B ([T1] / [B]) is 14.3 or more and 15.0 or less.
  • 50 mass% or more of R2 in the R2-Ga-Co-based alloy is Pr.
  • 70 mass% or more of R2 in the R2-Ga-Co-based alloy is Pr.
  • the total content of R2, Ga, and Co in the R2-Ga-Co-based alloy is 80 mass% or more.
  • the temperature in the first heat treatment is 800 ° C. or more and 1000 ° C. or less.
  • the temperature in the second heat treatment is 480 ° C. or more and 560 ° C. or less.
  • the step of preparing the R1-T1-Cu-B based sintered body, after the material alloy particle size D 50 was pulverized to 3 ⁇ m or 10 ⁇ m or less, sintering is performed by orienting in a magnetic field Including.
  • FIG. 2 is a schematic view showing a main phase and a grain boundary phase of an RTB-based sintered magnet. It is the schematic diagram which further expanded the inside of the broken-line rectangular area
  • rare earth elements may be collectively referred to as “R”.
  • R When referring to a specific element or group of elements among the rare earth elements R, for example, the sign of “R1” or “R2” is used to distinguish from other rare earth elements.
  • the entire transition metal element including Fe is denoted as “T”.
  • T When the transition metal element T includes both a specific element or element group and a specific element or element group other than the transition metal element which is easily substituted with the Fe site of the main phase, using the symbol of “T1” Distinguish from other transition metal elements.
  • a method of manufacturing an RTB-based sintered magnet according to the first embodiment of the present disclosure includes, as shown in FIG. 1, a step S10 of preparing an R1-T1-B-based sintered body, and R2-Ga- And S20 of preparing a Cu--Co alloy.
  • the order of the step S10 of preparing the R1-T1-B-based sintered body and the step S20 of preparing the R2-Ga-Cu-Co-based alloy is arbitrary, and each of the R1-T1-B manufactured in different places.
  • a B-based sintered body and an R2-Ga-Cu-Co-based alloy may be used.
  • the RTB-based sintered magnet before the second heat treatment and during the second heat treatment is referred to as an R1-T1-B-based sintered body, and the R1-T1-B system after the second heat treatment
  • the sintered body is simply referred to as an RTB-based sintered magnet.
  • (A1) to (A3) hold.
  • (A1) R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-based sintered body.
  • (A2) T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si. T1 necessarily contains Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more.
  • the molar ratio of T1 to (A3) B ([T1] / [B]) is more than 14.0 and 15.0 or less.
  • the molar ratio of T1 to B ([T1] / [B]) in the present disclosure is the analysis value (mass%) of each element (Fe or at least one of Fe, Co, Al, Mn, Si and Fe) constituting T1. Calculate the ratio of the atomic weight of each element divided by the atomic weight of each element (a) and the ratio (a /) of the analytical value (mass%) of B divided by the atomic weight of B (b) b).
  • R2 is at least one of rare earth elements and necessarily contains at least one of Nd and Pr, and the content of R2 is 35 mass% or more and less than 85 mass% of the entire R2-Ga-Cu-Co alloy.
  • the content of (A5) Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Cu-Co alloy.
  • the content of (A6) Cu is 2.5 mass% or more and 20 mass% or less of the entire R2-Ga-Cu-Co alloy.
  • the content of (A7) Co is more than 10% by weight and 45% by weight or less of the entire R2-Ga-Cu-Co based alloy.
  • R1 having a relatively small amount of B in a stoichiometric ratio relative to the amount of T used to form the main phase (R 2 T 14 B compound)
  • An R2-Ga-Cu-Co alloy is brought into contact with at least a part of the surface of the -T1-B sintered body, and as shown in FIG. 1, in a vacuum or inert gas atmosphere, at 700.degree. C. or more and 1100.degree. Temperature of 450 ° C. or more and 600 ° C.
  • step S40 the second heat treatment is performed.
  • the R-T-B based sintered magnet having a high B r and a high H cJ.
  • Another step such as a cooling step, may be performed between the step S30 of performing the first heat treatment and the step S40 of performing the second heat treatment.
  • the RTB-based sintered magnet has a structure in which powder particles of a raw material alloy are bonded by sintering, and a main phase mainly composed of an R 2 T 14 B compound and a grain boundary portion of this main phase It is composed of the located grain boundary phase.
  • FIG. 2A is a schematic view showing the main phase and the grain boundary phase of the RTB-based sintered magnet
  • FIG. 2B is a schematic view further enlarging the inside of the dashed rectangular area of FIG. 2A.
  • an arrow of 5 ⁇ m in length as an example is described for reference as a reference length indicating the size.
  • the RTB-based sintered magnet includes a main phase 12 mainly composed of an R 2 T 14 B compound, and a grain boundary phase 14 located in the grain boundary portion of the main phase 12.
  • the grain boundary phase 14 is a two-grain grain boundary phase 14a in which two R 2 T 14 B compound particles (grains) are adjacent, and three or more R 2 T 14 B compound particles. And the adjacent grain boundary triple point 14b.
  • the R 2 T 14 B compound which is the main phase 12 is a ferromagnetic phase having high saturation magnetization and anisotropic magnetic field. Therefore, in the R-T-B based sintered magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12.
  • the amount of B or R for forming the R 2 T 14 B compound is less than the stoichiometric ratio, generally, a ferromagnetic substance such as an Fe phase or an R 2 T 17 phase is formed in the grain boundary phase 14 , H cJ falls sharply.
  • the amount of B is less than the stoichiometric ratio of the R 2 T 14 B compound, and at least one selected from Al, Ga, and Cu.
  • a transition metal rich phase for example, RT-Ga phase
  • Br is significantly reduced.
  • the manufacturing method of the RTB-based sintered magnet according to the present disclosure is to introduce R2, Ga, Cu and Co into the interior from the magnet surface by the R2-Ga-Cu-Co-based alloy of the specific composition of the present disclosure. , it is possible to achieve high B r and high H cJ.
  • Step of preparing R1-T1-B sintered body First, the composition of the sintered body in the step of preparing an R1-T1-B-based sintered body (hereinafter sometimes simply referred to as “sintered body”) will be described.
  • R1 is at least one of rare earth elements and always contains at least one of Nd and Pr.
  • a small amount of heavy rare earth elements such as Dy, Tb, Gd, and Ho generally used may be contained.
  • the content of the heavy rare earth element is preferably 1 mass% or less of the R1-T1-B-based sintered body, more preferably 0.5 mass% or less, and it is not contained (substantially 0 mass%) Is more preferred.
  • the content of R1 is 27 mass% or more and 35 mass% or less of the whole of the R1-T1-B-based sintered body. If the content of R1 is less than 27 mass%, a liquid phase is not sufficiently generated in the sintering process, and it becomes difficult to fully densify the R1-T1-B-based sintered body. On the other hand, although the effect of the present disclosure can be obtained even if the content of R1 exceeds 35 mass%, the alloy powder in the manufacturing process of the R1-T1-B-based sintered body becomes very active. As a result, significant oxidation or ignition of the alloy powder may occur, so 35 mass% or less is preferable.
  • the content of R1 is more preferably 27.5 mass% or more and 33 mass% or less, and still more preferably 28 mass% or more and 32 mass% or less.
  • T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and T1 always contains Fe. That is, T1 may be Fe alone, or may be Fe and at least one of Co, Al, Mn, and Si. However, the content of Fe with respect to the whole T1 is 80 mass% or more. When the content of Fe is less than 80 mass%, B r and H cJ may be reduced. Here, "the content of Fe with respect to the whole T1 is 80 mass% or more" means, for example, when the content of T1 in the R1-T1-B-based sintered body is 70 mass%, the R1-T1-B-based sintering It says that 56 mass% or more of the body is Fe.
  • the content of Fe with respect to the whole of T1 is 90 mass% or more. This is because it is possible to obtain a higher B r and a high H cJ.
  • the preferable content in the case of containing Co, Al, Mn, and Si is 5.0 mass% or less of Co in the entire R1-T1-Cu-B sintered body, 1.5 mass% or less of Al, and Mn and Si Each is 0.2 mass% or less.
  • the molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.
  • the molar ratio of T1 to B ([T1] / [B]) in the present disclosure is the analysis value (mass%) of each element (Fe or at least one of Fe, Co, Al, Mn, Si and Fe) constituting T1. Calculate the ratio of the atomic weight of each element divided by the atomic weight of each element (a) and the ratio (a /) of the analytical value (mass%) of B divided by the atomic weight of B (b) b).
  • the condition that the molar ratio of T1 to B ([T1] / [B]) exceeds 14.0 means that the amount of B is relatively to the amount of T1 used to form the main phase (R 2 T 14 B compound) It shows that there are few. If the molar ratio of T1 to B ([T1] / [B]) is 14.0 or less, high H cJ can not be obtained. On the other hand, mol ratio of T1 for B ([T1] / [B ]) is likely to decrease B r exceeds 15.0.
  • the molar ratio of T1 to B ([T1] / [B]) is preferably 14.5 or more and 15.0 or less. It is possible to obtain a higher B r and a high H cJ. Further, the content of B is preferably 0.9 mass% or more and less than 1.0 mass% of the entire R1-T1-B-based sintered body.
  • the R1-T1-B-based sintered body may contain Ga, Cu, Ag, Zn, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.
  • each of Ga, Cu, Ag, Zn, In, Sn, Zr, Nb and Ti is 0.5 mass% or less, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, It is preferable that Sm, Ca, Mg and Cr each be 0.2 mass% or less, H, F, P, S and Cl be 500 ppm or less, O be 6000 ppm or less, N be 1000 ppm or less and C be 1500 ppm or less.
  • the total content of these elements is preferably 5% by mass or less of the entire R1-T1-B-based sintered body. The total content of these elements may not be able to obtain the high B r and high H cJ exceeds 5 mass% of the total R1-T1-B based sintered body.
  • the step of preparing the R1-T1-B based sintered body can be prepared using a general manufacturing method typified by the RTB based sintered magnet.
  • a material alloy that has been prepared in such a strip casting method after the particle size D 50 by using a jet mill is ground to 3 ⁇ m over 10 ⁇ m or less, and molded in a magnetic field, 900 ° C. or higher 1100 ° C. or less It can be prepared by sintering at a temperature of
  • the size less than D 50 of the material alloy is 3 ⁇ m is very difficult to prepare a pulverized powder is not preferable because production efficiency is greatly reduced.
  • particle diameter D 50 is eventually only the crystal grain size of the resulting R1-T1-B based sintered body increases exceeds 10 [mu] m, it becomes difficult to obtain a high H cJ.
  • the particle size D 50 is preferably 3 ⁇ m or more and 5 ⁇ m or less.
  • the R1-T1-B based sintered body may be produced from one kind of raw material alloy (single raw material alloy) as long as the above-mentioned respective conditions are satisfied, or two or more kinds of raw material alloys may be used to produce them. It may be produced by the method of mixing (blending method).
  • the obtained R1-T1-B-based sintered body may be subjected to known machining such as cutting or cutting if necessary, and then may be subjected to the first heat treatment and the second heat treatment described later. .
  • Step of preparing R2-Ga-Cu-Co alloy First, the composition of the R2-Ga-Cu-Co alloy in the step of preparing the R2-Ga-Cu-Co alloy will be described. By including all of R, Ga, Cu, and Co within the specific range described below, R2, Ga, Cu, and R2 in the R2-Ga-Cu-Co alloy in the step of performing the first heat treatment described later Co can be introduced into the interior of the R1-T1-B sintered body.
  • R2 is at least one of rare earth elements and always contains at least one of Nd and Pr. It is preferable that 50 mass% or more of R2 is Pr. It is because higher H cJ can be obtained.
  • “50 mass% or more of R2 is Pr” means, for example, 25 mass of R2-Ga-Cu-Co alloy when the content of R2 in R2-Ga-Cu-Co alloy is 50 mass%. It says that% or more is Pr. More preferably, 70 mass% or more of R2 is Pr, and most preferably, R2 is only Pr (including unavoidable impurities). Thereby, a further higher HcJ can be obtained.
  • a small amount of heavy rare earth elements such as Dy, Tb, Gd and Ho may be contained as R2.
  • the content of the heavy rare earth element is preferably 10 mass% or less of the entire R2-Ga-Cu-Co alloy (the heavy rare earth element in the R2-Ga-Cu-Co alloy is 10 mass% or less), It is more preferable that it is 5 mass% or less, and it is still more preferable that it does not contain (substantially 0 mass%).
  • R2 of the R2-Ga-Cu-Co alloy contains a heavy rare earth element, it is preferable that 50% or more of R2 is Pr, and R2 excluding the heavy rare earth element is only Pr (including unavoidable impurities) It is more preferred that
  • the content of R2 is 35 mass% or more and less than 85 mass% of the entire R2-Ga-Cu-Co alloy. If the content of R2 is less than 35 mass%, diffusion may not sufficiently proceed in the first heat treatment described later. On the other hand, although the effect of the present disclosure can be obtained even if the content of R2 is 85 mass% or more, the alloy powder in the manufacturing process of the R2-Ga-Cu-Co based alloy becomes very active. As a result, significant oxidation, ignition and the like of the alloy powder may occur, so the content of R2 is preferably less than 85 mass% of the entire R2-Ga-Cu-Co alloy.
  • the content of R2 is more preferably 50 mass% or more and less than 85 mass%, and still more preferably 60 mass% or more and less than 85 mass%. It is because higher H cJ can be obtained.
  • Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Cu-Co alloy. If Ga is less than 2.5 mass%, it is difficult to introduce Co in the R2-Ga-Cu-Co alloy into the interior of the R1-T1-B sintered body in the step of performing the first heat treatment described later, which is high. I can not get B r . Furthermore, the amount of RT-Ga phase formed is too small to obtain high HcJ . On the other hand, if Ga is more than 30 mass%, B r may be lowered significantly. Ga is more preferably 4 mass% or more and 20 mass% or less, and still more preferably 4 mass% or more and 10 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.
  • Cu is 2.5 mass% or more and 20 mass% or less of the entire R2-Ga-Cu-Co alloy. If Cu is less than 2.5 mass%, Ga, Cu and Co in the R2-Ga-Cu-Co alloy are introduced into the interior of the R1-T1-B sintered body in the step of performing the first heat treatment described later hardly be, it is impossible to obtain a high B r. On the other hand, if Cu exceeds 20 mass%, the abundance ratio of Ga at the grain boundaries decreases, so the amount of RT-Ga phase generated may be too small to obtain high HcJ . Cu is more preferably 4 mass% or more and 15 mass% or less, and still more preferably 4 mass% or more and 10 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.
  • Co is more than 10% by mass and 45% by mass or less of the entire R2-Ga-Cu-Co alloy. Co is in the following 10 mass%, it is impossible to sufficiently enhance the finally obtained R-T-B based sintered magnet of B r. On the other hand, when Co exceeds 45Mass%, it may not be able to spread with a first heat treatment to be described later does not proceed sufficiently to obtain a high B r and high H cJ. As for Co, it is more preferable that they are 15 mass% or more and 30 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.
  • the inequality of R2 content> Co content> Ga content> Cu content is satisfied. Therefore, it is possible to obtain a high B r and a high H cJ. It is considered that this is because a phase containing appropriate amounts of R, Co, Ga and Cu is generated at two grain boundaries by satisfying the inequality of the present disclosure.
  • the R2-Ga-Cu-Co alloy may contain Al, Ag, Zn, Si, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.
  • the content of Al is 1.0 mass% or less
  • Ag, Zn, Si, In, Sn, Zr, Nb, and Ti are 0.5 mass% or less, respectively, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr each 0.2 mass% or less, H, F, P, S, Cl 500 ppm or less, O 6000 ppm or less, N 1000 ppm or less, C 1500 ppm or less is preferable.
  • the total content of these elements is more than 20mass%, R2-Ga-Cu -Co -based then the amount of R2-Ga-Cu-Co in the alloy, to obtain a high B r and high H cJ It may not be possible. Therefore, the total content of R2-Ga-Cu-Co in the R2-Ga-Cu-Co alloy is preferably 80 mass% or more, and more preferably 90 mass% or more.
  • the R2-Ga-Cu-Co alloy is a method of preparing a raw material alloy employed in a general manufacturing method represented by a Nd-Fe-B sintered magnet, for example, a die casting method and a strip casting method And single roll ultra-quenching method (melt spinning method) or atomization method.
  • the R2-Ga-Cu-Co based alloy may be one obtained by pulverizing the alloy obtained as described above by a known pulverizing means such as a pin mill.
  • heat treatment at 700 ° C. or less in a hydrogen atmosphere may be performed to contain hydrogen and then grinding.
  • Step of carrying out the first heat treatment At least a portion of the R2-Ga-Cu-Co alloy is brought into contact with at least a portion of the surface of the R1-T1-B sintered body prepared as described above, and the temperature is 700 ° C. or higher in a vacuum or inert gas atmosphere. Heat treatment is performed at a temperature of 1100 ° C. or less. In the present disclosure, this heat treatment is referred to as a first heat treatment. As a result, a liquid phase containing Cu, Ga and Co is generated from the R2-Ga-Cu-Co alloy, and the liquid phase passes through the grain boundaries of the R1-T1-B sintered body, and the surface of the sintered body is produced. It is diffused from inside to inside.
  • the first heat treatment temperature is lower than 700 ° C., Cu, and amount of liquid phase containing Ga and Co is too small, it may not be able to obtain a high B r and high H cJ.
  • the first heat treatment temperature is preferably 800 ° C. or more and 1000 ° C. or less. This is because it is possible to obtain a higher B r and a high H cJ.
  • the heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-B sintered body and R2-Ga-Cu-Co alloy, the heat treatment temperature, etc., but 5 minutes or more and 20 hours or less is preferable, 10 More preferably, minutes to 15 hours and still more preferably 30 minutes to 10 hours. Further, it is preferable to prepare the R2-Ga-Cu-Co-based alloy in an amount of 2 mass% or more and 30 mass% or less with respect to the weight of the R1-T1-B-based sintered body. If the R2-Ga-Cu-Co alloy is less than 2 mass% with respect to the weight of the R1-T1-B sintered body, there is a possibility that HcJ may be reduced. On the other hand, there is a possibility that the B r decreases exceeds 30 mass%.
  • the first heat treatment can be performed by disposing an R2-Ga-Cu-Co alloy having an arbitrary shape on the surface of the R1-T1-B-based sintered body and using a known heat treatment apparatus.
  • the first heat treatment can be performed by covering the surface of the R1-T1-B-based sintered body with a powder layer of an R2-Ga-Cu-Co-based alloy.
  • the dispersion medium is evaporated to form an R2-Ga-Cu-Co system.
  • the alloy and the R1-T1-B sintered body may be in contact with each other.
  • the R2-Ga-Cu-Co alloy may be arranged to be in contact with the surface perpendicular to the orientation direction of at least the R1-T1-B sintered body.
  • the dispersion medium include alcohols (ethanol etc.), NMP (N-methylpyrrolidone), aldehydes and ketones.
  • known machining such as cutting or cutting may be performed on the R1-T1-B-based sintered body subjected to the first heat treatment.
  • Step of carrying out the second heat treatment The R1-T1-B-based sintered body subjected to the first heat treatment is heat-treated at a temperature of 450 ° C. to 600 ° C. in a vacuum or an inert gas atmosphere.
  • this heat treatment is referred to as a second heat treatment.
  • the second heat treatment it is possible to obtain a high B r and high H cJ.
  • the temperature of the second heat treatment is less than 450 ° C. and more than 600 ° C.
  • the amount of RT-Ga phase typically, R 6 T 13 Z phase (Z is at least one of Cu and Ga)
  • high B r and high H cJ can not be obtained due to too little.
  • the second heat treatment temperature is preferably 480 ° C. or more and 560 ° C. or less. Higher H cJ can be obtained.
  • the heat treatment time is appropriately set depending on the composition and dimensions of the R1-T1-B sintered body, the heat treatment temperature, etc., but it is preferably 5 minutes to 20 hours, more preferably 10 minutes to 15 hours, and 30 More preferably, minutes to 10 hours.
  • R is at least one rare earth element and necessarily includes at least one of Pr and Nd
  • T is at least one transition metal element. Yes Fe must be included.
  • the R 6 T 13 Z compound is typically an Nd 6 Fe 13 Ga compound. Further, the R 6 T 13 Z compound has a La 6 Co 11 Ga 3 type crystal structure.
  • the R 6 T 13 Z compound may be an R 6 T 13 ⁇ ⁇ Z 1+ ⁇ compound depending on the state. When relatively large amounts of Cu, Al, and Si are contained in the RTB-based sintered magnet, the R 6 T 13- ⁇ (Ga 1 -abc Cu a Al b Si c ) 1+ ⁇ It may have been.
  • the RTB-based sintered magnet obtained by the step of carrying out the second heat treatment described above is subjected to known surface treatment such as plating for imparting corrosion resistance or performing known machining such as cutting or cutting. It can be performed.
  • the RTB-based sintered magnet obtained by the production method of the present disclosure is characterized in that at least one of Fe or Co, Al, Mn, Si and Fe in the RTB-based sintered magnet is T2 ( The molar ratio of T2 to B ([T2] / [B]) is more than 14.0, and R, Fe, B, Cu, and Ga are equivalent to T1 in the R1-T1-B-based sintered body.
  • the method of manufacturing the RTB-based sintered magnet according to the second embodiment of the present disclosure includes a step S110 of preparing an R1-T1-Cu-B-based sintered body; And S120 of preparing a Ga—Co alloy.
  • the order of the step S110 of preparing the R1-T1-Cu-B-based sintered body and the step S120 of preparing the R2-Ga-Co-based alloy is arbitrary, and each of the R1-T1-made in different places is manufactured.
  • a Cu-B based sintered body and an R2-Ga-Co based alloy may be used.
  • R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the whole R1-T1-Cu-B sintered body .
  • T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si. T1 necessarily contains Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more.
  • the molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.
  • the content of (B4) Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-Cu-B-based sintered body.
  • the molar ratio of T1 to B ([T1] / [B]) in the present disclosure is the analysis value (mass%) of each element (Fe or at least one of Fe, Co, Al, Mn, Si and Fe) constituting T1. Calculate the ratio of the atomic weight of each element divided by the atomic weight of each element (a) and the ratio (a /) of the analytical value (mass%) of B divided by the atomic weight of B (b) b).
  • R2 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R2 is 35 mass% or more and less than 87 mass% of the entire R2-Ga-Co alloy.
  • the content of (B6) Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Co alloy.
  • the content of (B7) Co is more than 10% by mass and 45% by mass or less of the entire R2-Ga-Co-based alloy.
  • the relative stoichiometric ratio to the amount of T used to form the main phase (R 2 T 14 B compound)
  • the R2-Ga-Co alloy is brought into contact with at least a part of the surface of the R1-T1-Cu-B sintered body having a small amount of B, as shown in FIG. 4, in a vacuum or inert gas atmosphere, Step S130 of performing the first heat treatment at a temperature of 700 ° C. or more and 1100 ° C.
  • Step S140 of performing the second heat treatment at a temperature of 450 ° C. or more and 600 ° C. or less is performed.
  • the R-T-B based sintered magnet having a high B r and a high H cJ.
  • Another step such as a cooling step, may be performed between step S130 of performing the first heat treatment and step S140 of performing the second heat treatment.
  • the method for producing an RTB-based sintered magnet according to the present disclosure introduces R2, Ga, and Co into the interior from the magnet surface with the R2-Ga-Co-based alloy of the specific composition of the present disclosure. by, it is possible to realize a high B r and high H cJ.
  • Step of preparing R1-T1-Cu-B sintered body First, the composition of the sintered body in the step of preparing the R1-T1-Cu-B-based sintered body will be described.
  • R1 is at least one of rare earth elements and always contains at least one of Nd and Pr.
  • a small amount of heavy rare earth elements such as Dy, Tb, Gd, and Ho generally used may be contained.
  • the content of the heavy rare earth element is preferably 1 mass% or less of the R1-T1-Cu-B-based sintered body, more preferably 0.5 mass% or less, and it is not contained (substantially) More preferably, 0 mass%).
  • the content of R1 is 27 mass% or more and 35 mass% or less of the whole of the R1-T1-Cu-B-based sintered body. If the content of R1 is less than 27 mass%, a liquid phase is not sufficiently generated in the sintering process, and it becomes difficult to fully densify the R1-T1-Cu-B-based sintered body. On the other hand, although the effect of the present disclosure can be obtained even if the content of R1 exceeds 35 mass%, the alloy powder in the manufacturing process of the R1-T1-Cu-B-based sintered body becomes very active. As a result, significant oxidation or ignition of the alloy powder may occur, so 35 mass% or less is preferable.
  • the content of R1 is more preferably 27.5 mass% or more and 33 mass% or less, and still more preferably 28 mass% or more and 32 mass% or less.
  • T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and T1 always contains Fe. That is, T1 may be Fe alone, or may be Fe and at least one of Co, Al, Mn, and Si. However, the content of Fe with respect to the whole T1 is 80 mass% or more. When the content of Fe is less than 80 mass%, B r and H cJ may be reduced. Here, "the content of Fe with respect to the whole T1 is 80 mass% or more" means, for example, when the content of T1 in the R1-T1-Cu-B-based sintered body is 70 mass%, R1-T1-Cu- It says that 56 mass% or more of B-type sintered compact is Fe.
  • the content of Fe with respect to the whole of T1 is 90 mass% or more. This is because it is possible to obtain a higher B r and a high H cJ.
  • the preferable content in the case of containing Co, Al, Mn, and Si is 5.0 mass% or less of Co in the entire R1-T1-Cu-B sintered body, 1.5 mass% or less of Al, and Mn and Si Each is 0.2 mass% or less.
  • the molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.
  • the molar ratio of T1 to B ([T1] / [B]) in the present disclosure is an analysis of each element (Fe or at least one of Co, Al, Mn, Si, and Fe) constituting T1.
  • the value (mass%) divided by the atomic weight of each element is determined, and the sum of the values (a) and the analytical value of B (mass%) divided by the atomic weight of B (b) Ratio (a / b).
  • the condition that the molar ratio of T1 to B ([T1] / [B]) exceeds 14.0 means that the amount of B is relatively to the amount of T1 used to form the main phase (R 2 T 14 B compound) It shows that there are few. If [T1] / [B] is 14.0 or less, high H cJ can not be obtained. On the other hand, there is a possibility to lower the B r exceeds the 15.0 [T1] / [B] . [T1] / [B] is preferably 14.3 or more and 15.0 or less. It is possible to obtain a higher B r and a high H cJ.
  • the content of B is preferably 0.9 mass% or more and less than 1.0 mass% of the entire R1-T1-Cu-B-based sintered body.
  • the content of Cu is 0.1 mass% or more and 1.5 mass% or less of the whole of the R1-T1-Cu-B-based sintered body. If Cu is less than 0.1 mass%, diffusion may not sufficiently proceed in the first heat treatment described later, and high H cJ may not be obtained. On the other hand, Cu is the exceeding 1.5 mass% B r may be reduced.
  • the R1-T1-Cu-B-based sintered body contains Ga, Ag, Zn, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, in addition to the above elements.
  • Mo, V, Y, La, Ce, Sm, Ca, Mg, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.
  • each of Ga, Ag, Zn, In, Sn, Zr, Nb and Ti is 0.5 mass% or less, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, It is preferable that Ca, Mg and Cr each be 0.2 mass% or less, H, F, P, S and Cl be 500 ppm or less, O be 6000 ppm or less, N be 1000 ppm or less and C be 1500 ppm or less.
  • the total content of these elements is preferably 5% by mass or less of the entire R1-T1-Cu-B-based sintered body. The total content of these elements may not be able to obtain more than the high B r and high H cJ of 5 mass% of the total R1-T1-Cu-B-based sintered body.
  • the step of preparing the R1-T1-Cu-B based sintered body can be prepared using a general manufacturing method typified by an RTB based sintered magnet.
  • a material alloy that has been prepared in such a strip casting method after the particle size D 50 by using a jet mill is ground to 3 ⁇ m over 10 ⁇ m or less, and molded in a magnetic field, 900 ° C. or higher 1100 ° C. or less It can be prepared by sintering at a temperature of
  • the size less than D 50 of the material alloy is 3 ⁇ m is very difficult to prepare a pulverized powder is not preferable because production efficiency is greatly reduced.
  • particle diameter D 50 is eventually only the crystal grain size of the R1-T1-Cu-B based sintered body obtained becomes large exceeding 10 [mu] m, it becomes difficult to obtain a high H cJ.
  • the particle size D 50 is preferably 3 ⁇ m or more and 5 ⁇ m or less.
  • the R1-T1-Cu-B sintered body may be produced from one kind of raw material alloy (single raw material alloy) as long as the above-mentioned respective conditions are satisfied, or two or more kinds of raw material alloys are used. It may be produced by a method of mixing them (blending method). In addition, the obtained R1-T1-Cu-B-based sintered body is subjected to known machining such as cutting and cutting, if necessary, and is then subjected to the first heat treatment and the second heat treatment described later. It is also good.
  • Step of preparing R2-Ga-Co alloy First, the composition of the R2-Ga-Co based alloy in the step of preparing the R2-Ga-Co based alloy will be described. By including all of R, Ga, and Co within the specific range described below, in the step of performing the first heat treatment described later, R1, Ga, and Co in the R2-Ga-Co alloy are R1-T1- It can be introduced into the inside of a Cu-B-based sintered body.
  • R2 is at least one of rare earth elements and always contains at least one of Nd and Pr. It is preferable that 50 mass% or more of R2 is Pr. It is because higher H cJ can be obtained.
  • “50 mass% or more of R2 is Pr” means that, for example, when the content of R2 in the R2-Ga-Co alloy is 50 mass%, 25 mass% or more of the R2-Ga-Co alloy is Pr Say that. More preferably, 70 mass% or more of R2 is Pr, and most preferably, R2 is only Pr (including unavoidable impurities). Thereby, a further higher HcJ can be obtained.
  • a small amount of heavy rare earth elements such as Dy, Tb, Gd and Ho may be contained as R2.
  • the content of the heavy rare earth element is preferably 10 mass% or less of the entire R2-Ga-Co alloy (heavy rare earth element in the R2-Ga-Co alloy is 10 mass% or less), and is 5 mass% or less Some are more preferable, and it is more preferable not to contain (substantially 0 mass%). Even when R2 of the R2-Ga-Co alloy contains a heavy rare earth element, it is preferable that 50% or more of R2 is Pr, and R2 excluding the heavy rare earth element is only Pr (including unavoidable impurities). It is more preferable that
  • the content of R2 is 35 mass% or more and less than 87 mass% of the entire R2-Ga-Co alloy. If the content of R2 is less than 35 mass%, diffusion may not sufficiently proceed in the first heat treatment described later. On the other hand, although the effect of the present disclosure can be obtained even if the content of R2 is 87 mass% or more, the alloy powder in the manufacturing process of the R2-Ga-Co based alloy becomes very active. As a result, significant oxidation or ignition of the alloy powder may occur, so the content of R2 is preferably less than 85 mass% of the entire R2-Ga-Co based alloy. The content of R2 is more preferably 50 mass% or more and less than 85 mass%, and still more preferably 60 mass% or more and less than 85 mass%. It is because higher H cJ can be obtained.
  • Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Co alloy. If Ga is less than 2.5 mass%, it is difficult to introduce Co in the R2-Ga-Co-based alloy into the inside of the R1-T1-Cu-B-based sintered body in the step of performing the first heat treatment described later, which is high. I can not get B r . Furthermore, the amount of RT-Ga phase formed is too small to obtain high HcJ . On the other hand, if Ga is more than 30 mass%, B r may be lowered significantly. Ga is more preferably 4 mass% or more and 20 mass% or less, and still more preferably 4 mass% or more and 10 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.
  • Co is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Co alloy. Co is in the following 10 mass%, it is impossible to sufficiently enhance the finally obtained R-T-B based sintered magnet of B r. On the other hand, when Co exceeds 45Mass%, it may not be able to spread with a first heat treatment to be described later does not proceed sufficiently to obtain a high B r and high H cJ. As for Co, it is more preferable that they are 15 mass% or more and 30 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.
  • the inequality of R2 content> Co content> Ga content is satisfied. Therefore, it is possible to obtain a high B r and a high H cJ. It is considered that this is because a phase containing appropriate amounts of R, Co and Ga is generated at two grain boundaries by satisfying the inequality of the present disclosure.
  • the R2-Ga-Co alloy includes Cu, Al, Ag, Zn, Si, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.
  • the content of Cu, Al is 1.0 mass% or less, Ag, Zn, Si, In, Sn, Zr, Nb, and Ti is 0.5 mass% or less, respectively, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr each 0.2 mass% or less, H, F, P, S, Cl 500 ppm or less, O 6000 ppm or less, N 1000 ppm or less, As for C, 1500 ppm or less is preferable.
  • the total content of these elements exceeds 20mass%, R2-Ga-Co-based R2 in the alloy, Ga, then the amount of Co, can not be obtained a high B r and high H cJ There is sex. Therefore, the total content of R2, Ga and Co in the R2-Ga-Co alloy is preferably 80 mass% or more, and more preferably 90 mass% or more.
  • the R2-Ga-Co alloy is a method of preparing a raw material alloy employed in a general manufacturing method represented by a Nd-Fe-B sintered magnet, for example, a die casting method, a strip casting method or a single It can be prepared using a roll ultra-quenching method (melt spinning method) or an atomizing method.
  • the R2-Ga-Co based alloy may be one obtained by pulverizing the alloy obtained as described above by a known pulverizing means such as a pin mill. Further, in order to improve the grindability of the alloy obtained as described above, heat treatment at 700 ° C. or less in a hydrogen atmosphere may be performed to contain hydrogen and then grinding.
  • Step of carrying out the first heat treatment At least a portion of the R2-Ga-Co alloy is brought into contact with at least a portion of the surface of the R1-T1-Cu-B-based sintered body prepared as described above, and the temperature is 700 ° C. or higher in a vacuum or inert gas atmosphere. Heat treatment is performed at a temperature of 1100 ° C. or less. In the present disclosure, this heat treatment is referred to as a first heat treatment. As a result, a liquid phase containing Ga and Co is generated from the R2-Ga-Co alloy, and the liquid phase passes from the surface of the sintered body via the grain boundary of the R1-T1-Cu-B sintered body. Diffusion is introduced.
  • the first heat treatment temperature is lower than 700 ° C., and too small amount of liquid phase containing Ga and Co, there is a possibility that it is impossible to obtain a high B r and high H cJ.
  • the first heat treatment temperature is preferably 800 ° C. or more and 1000 ° C. or less. This is because it is possible to obtain a higher B r and a high H cJ.
  • the heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-Cu-B sintered body and R2-Ga-Co alloy, the heat treatment temperature, etc., but 5 minutes or more and 20 hours or less is preferable, 10 More preferably, minutes to 15 hours and still more preferably 30 minutes to 10 hours.
  • the R2-Ga-Co alloy is preferably prepared in an amount of 2 mass% or more and 30 mass% or less based on the weight of the R1-T1-Cu-B sintered body. If the R2-Ga-Co based alloy is less than 2 mass% with respect to the weight of the R1-T1-Cu-B based sintered body, there is a possibility that HcJ may be reduced. On the other hand, there is a possibility that the B r decreases exceeds 30 mass%.
  • the first heat treatment can be performed by disposing an R2-Ga-Co-based alloy having an arbitrary shape on the surface of the R1-T1-Cu-B-based sintered body and using a known heat treatment apparatus.
  • the first heat treatment can be performed by covering the surface of the R1-T1-Cu-B-based sintered body with a powder layer of an R2-Ga-Co-based alloy.
  • a slurry in which an R2-Ga-Co alloy is dispersed in a dispersion medium is applied to the surface of an R1-T1-Cu-B sintered body, and then the dispersion medium is evaporated to form an R2-Ga-Co alloy.
  • the sintered body of R1-T1-Cu-B may be brought into contact.
  • the R2-Ga-Co based alloy may be arranged to be in contact with the surface perpendicular to the orientation direction of at least the R1-T1-Cu-B based sintered body.
  • the dispersion medium include alcohols (ethanol etc.), NMP (N-methylpyrrolidone), aldehydes and ketones.
  • known machining such as cutting or cutting may be performed on the R1-T1-Cu-B-based sintered body subjected to the first heat treatment.
  • Step of carrying out the second heat treatment The R1-T1-Cu-B-based sintered body subjected to the first heat treatment is heat-treated at a temperature of 450 ° C. to 600 ° C. in a vacuum or an inert gas atmosphere.
  • this heat treatment is referred to as a second heat treatment.
  • the second heat treatment it is possible to obtain a high B r and high H cJ.
  • the temperature of the second heat treatment is less than 450 ° C.
  • the second heat treatment temperature is preferably 480 ° C. or more and 560 ° C. or less. Higher H cJ can be obtained.
  • the heat treatment time is set appropriately depending on the composition and dimensions of the R1-T1-Cu-B sintered body, the heat treatment temperature, etc., but it is preferably 5 minutes to 20 hours and more preferably 10 minutes to 15 hours. More preferably, 30 minutes or more and 10 hours or less.
  • R is at least one rare earth element and necessarily includes at least one of Pr and Nd
  • T is at least one transition metal element. Yes Fe must be included.
  • the R 6 T 13 Z compound is typically an Nd 6 Fe 13 Ga compound. Further, the R 6 T 13 Z compound has a La 6 Co 11 Ga 3 type crystal structure.
  • the R 6 T 13 Z compound may be an R 6 T 13 ⁇ ⁇ Z 1+ ⁇ compound depending on the state. When relatively large amounts of Cu, Al, and Si are contained in the RTB-based sintered magnet, the R 6 T 13- ⁇ (Ga 1 -abc Cu a Al b Si c ) 1+ ⁇ It may have been.
  • the RTB-based sintered magnet obtained by the step of carrying out the second heat treatment described above is subjected to known surface treatment such as plating for imparting corrosion resistance or performing known machining such as cutting or cutting. It can be performed.
  • the RTB-based sintered magnet obtained by the production method of the present disclosure is characterized in that at least one of Fe or Co, Al, Mn, Si and Fe in the RTB-based sintered magnet is T2 ( The molar ratio of T2 to B ([T2] / [B]) is more than 14.0, and R, Fe, B, and Cu are equivalent to T1 in the R1-T1-Cu-B sintered body. And Ga are contained.
  • R Fe, B, Cu, Ga, Co, Al, Ag, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.
  • the particle diameter D 50 is the volume center value obtained by the laser diffraction method by air flow dispersion method (volume-based median diameter).
  • the mixture After adding and mixing 0.05 mass% of zinc stearate as a lubricant with respect to 100 mass% of the finely pulverized powder to the finely pulverized powder, the mixture is molded in a magnetic field to obtain a compact.
  • a so-called perpendicular magnetic field forming apparatus transverse magnetic field forming apparatus in which the magnetic field application direction and the pressing direction are orthogonal to each other was used.
  • the obtained compact was sintered for 4 hours in vacuum at 1030 ° C. (the temperature at which sufficient densification by sintering occurs is selected) and then quenched to obtain an R1-T1-B-based sintered body.
  • the density of the obtained sintered body was 7.5 Mg / m 3 or more.
  • the results of the components of the obtained sintered body are shown in Table 1. Each component in Table 1 was measured using high frequency inductively coupled plasma emission spectrometry (ICP-OES). In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%.
  • the C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%.
  • “[T1] / [B]” in Table 1 is obtained by dividing the analysis value (mass%) by the atomic weight of each element with respect to each element (here, Fe, Al, Si, Mn) constituting T1.
  • the same is true for all the following tables.
  • the amount of oxygen, and the amount of carbon it does not become 100 mass%. This is because, as described above, the analysis method differs depending on each component. The same applies to the other tables.
  • Step of preparing R2-Ga-Cu-Co based alloy Each element is weighed so that R2-Ga-Cu-Co alloy has a composition of code 1-a to 1-g of Table 2 approximately, and those raw materials are melted to perform single roll super-quenching method (melt spinning method) ) Gave a ribbon or flake-like alloy.
  • the obtained alloy was ground in an argon atmosphere using a mortar, and then passed through a sieve having an opening of 425 ⁇ m to prepare an R2-Ga-Cu-Co based alloy.
  • the composition of the obtained R2-Ga-Cu-Co based alloy is shown in Table 2. Each component in Table 2 was measured using high frequency inductively coupled plasma emission spectrometry (ICP-OES).
  • a total of 20 mass% of 10 mass% of the R1-T1-B based sintered body was arranged above and below the body.
  • R2-Ga-Cu-Co alloys and R1-T1-B alloys were fired at the temperature and time shown in the first heat treatment of Table 3 in vacuum argon controlled at 200 Pa using a tubular flow air furnace. The body was heated to carry out the first heat treatment and then cooled.
  • the heating temperature of the R2-Ga-Cu-Co alloy and the R1-T1-B sintered body in the step of performing the first heat treatment, and R1-T1-B in the step of performing the second heat treatment was measured by attaching a thermocouple.
  • sample test The obtained samples were measured for B r and H cJ of the obtained samples by B-H tracer. The measurement results are shown in Table 3.
  • Table 3 the present invention examples of the Co content is less than 10 mass% ultra 45Mass% of R2-Cu-Ga-Fe-based alloy it can be seen that the high B r and a high H cJ are achieved.
  • the sample No. 1 in which the amount of Co in the R2-Ga-Cu-Co alloy is 10 mass% or less, and the content of Co ⁇ the content of Ga. 1-1 and 1-2 do not have high Br .
  • the amount of Co of the R2-Cu-Ga-Co alloy exceeds 45 mass%, and the sample No. 2 in which the content of Pr ⁇ the content of Co is satisfied. 1-7, high H cJ is not obtained.
  • Experimental Example 2 [Step of preparing R1-T1-B based sintered body] A sintered body was produced in the same manner as in Experimental Example 1 except that each element was weighed so that the R1-T1-B-based sintered body had a composition approximately as indicated by symbol 2-A in Table 4. Sintering was performed in the range of 1000 ° C. or more and 1050 ° C. or less (selecting the temperature at which densification by sintering sufficiently occurs for each sample). The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 4. Each component in Table 4 was measured by the same method as Experimental Example 1.
  • R2-Ga-Cu-Co based alloy [Step of preparing R2-Ga-Cu-Co based alloy]
  • R2-Ga-Cu- was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the R2-Ga-Cu-Co alloy had a composition as shown by symbols 2-a to 2-m in Table 5.
  • a Co-based alloy was prepared.
  • the composition of the R2-Ga-Cu-Co based alloy is shown in Table 5. Each component in Table 5 was measured by the same method as Experimental Example 1.
  • the first heat treatment was carried out in the same manner as in Experimental Example 1 except that the R2-Ga-Cu-Co based alloy and the R1-T1-B based sintered body were heated at the temperature and time shown in the first heat treatment of Table 6. Carried out.
  • Example test The obtained sample of B r and H cJ was measured by B-H tracer.
  • the measurement results are shown in Table 6.
  • the R2 content of the R2-Ga-Cu-Co alloy is 35 mass% to less than 85 mass%
  • the Ga content is 2.5 mass% to 30 mass%
  • the Cu content is 2.5 mass% to 20 mass%
  • the present invention examples in a composition satisfying the inequality of content> content of Co> content of Ga> content of Cu of R2 it is found that a high B r and a high H cJ are achieved.
  • any one of R, Cu and Ga in the R2-Ga-Cu-Co based alloy is out of the range of the present disclosure (for sample Nos.
  • R2 and Co are out of the range; 2-4, 2-6, and 2-12 are out of the range of Ga, sample Nos. 2-7 and 2-9 are out of the range of Cu, sample No. 2-13 is out of the range of Cu and Ga) Or the content of R2> the content of Co> the content of Ga> the composition not satisfying the inequality of the content of Cu (the sample No.2-8 is the content of Ga ⁇ content of Cu, sample No.2 If -10 is the content of Co ⁇ the content of Ga), high H cJ can not be obtained.
  • the content of R, Cu, Ga (and Co as shown in Experimental Example 1) of the R2-Ga-Cu-Co alloy is within the range of the present disclosure, and the content of R2> the content of Co by having a composition satisfying the formula of the content of an amount> the content of Ga> Cu, it is possible to obtain a high B r and a high H cJ.
  • Experimental Example 3 [Step of preparing R1-T1-B based sintered body] A sintered body was produced in the same manner as in Experimental Example 1 except that each element was weighed so that the R1-T1-B-based sintered body had a composition approximately as shown by symbol 3-A in Table 7. Sintering was performed in the range of 1000 ° C. or more and 1050 ° C. or less (selecting the temperature at which densification by sintering sufficiently occurs for each sample). The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 7. Each component in Table 7 was measured by the same method as Experimental example 1.
  • Step of preparing R2-Ga-Cu-Co based alloy The R2-Ga-Cu-Co alloy was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the R2-Ga-Cu-Co alloy had a composition as shown by the symbol 3-a in Table 8. Got ready. The composition of the R2-Ga-Cu-Co alloy is shown in Table 8. Each component in Table 8 was measured by the same method as Experimental Example 1.
  • the first heat treatment was conducted in the same manner as in Experimental Example 1 except that the R2-Ga-Cu-Co alloy and the R1-T1-B sintered body were heated at the temperature and time shown in the first heat treatment of Table 9. Carried out.
  • Example test The obtained sample of B r and H cJ was measured by B-H tracer.
  • the measurement results are shown in Table 9.
  • the first heat treatment temperature (700 ° C. or higher 1100 ° C. or less) and the present invention embodiment is a second heat treatment temperature (450 ° C. or higher 600 ° C. or less) of the present disclosure is higher B r and a high H cJ is obtained It is understood that it is being done.
  • Table 9 a further higher HcJ is obtained when the temperature in the first heat treatment is 800 ° C. or more and 1000 ° C. or less and the temperature in the second heat treatment is 480 ° C. or more and 560 ° C. or less.
  • any of the first heat treatment temperature and the second heat treatment temperature is out of the range of the present disclosure (the sample No. 3-1 is out of the range of the first heat treatment, sample Nos. 3-4 and 3-9 are If the second heat treatment is out of the range, high H cJ can not be obtained.
  • the particle size D 50 is the volume center value obtained by the laser diffraction method by air flow dispersion method (volume-based median diameter).
  • the mixture After adding and mixing 0.05 mass% of zinc stearate as a lubricant with respect to 100 mass% of the finely pulverized powder to the finely pulverized powder, the mixture is molded in a magnetic field to obtain a compact.
  • a so-called perpendicular magnetic field forming apparatus transverse magnetic field forming apparatus in which the magnetic field application direction and the pressing direction are orthogonal to each other was used.
  • the resulting compact is sintered for 4 hours in vacuum at 1000 ° C. or more and 1050 ° C. or less (select the temperature at which densification by sintering sufficiently occurs for each sample), and then quench it, R1-T1-B based sintering I got a body.
  • the density of the obtained sintered body was 7.5 Mg / m 3 or more.
  • the results of the components of the obtained sintered body are shown in Table 10. Each component in Table 10 was measured using high frequency inductively coupled plasma emission spectrometry (ICP-OES). In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%.
  • the C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%.
  • “[T1] / [B]” in Table 10 is obtained by dividing the analysis value (mass%) by the atomic weight of each element with respect to each element (here, Fe, Al, Si, Mn) constituting T1.
  • the same is true for all the following tables.
  • the amount of oxygen, and the amount of carbon it does not become 100 mass%. This is because, as described above, the analysis method differs depending on each component. The same applies to the other tables.
  • Step of preparing R2-Ga-Co based alloy Each element is weighed so that the R2-Ga-Co alloy has a composition as shown by symbol 4-a in Table 11, and the raw materials are melted to obtain ribbons or flakes by a single roll super-quenching method (melt spinning method). An alloy of the shape of a circle is obtained. The obtained alloy was ground in an argon atmosphere using a mortar, and then passed through a sieve having an opening of 425 ⁇ m to prepare an R 2 -Ga-Co based alloy. The composition of the obtained R2-Ga-Co alloy is shown in Table 11. Each component in Table 11 was measured using high frequency inductively coupled plasma emission spectrometry (ICP-OES).
  • ICP-OES inductively coupled plasma emission spectrometry
  • a plane perpendicular to the orientation direction (the direction of the arrow in the figure) of the R1-T1-Cu-B sintered body 1 is mainly
  • the R2-Ga-Co alloy of the code 4-a shown in Table 11 can be sintered with the R1-T1-Cu-B alloy of the code 4-A to 4-E.
  • a total of 20 mass% of 10 mass% of the R1-T1-Cu-B based sintered body was disposed above and below the body.
  • R2-Ga-Co alloys and R1-T1-Cu-B alloys are fired at the temperature and time shown in the first heat treatment of Table 12 in vacuum argon controlled at 200 Pa using a tubular flow air furnace. The body was heated to carry out the first heat treatment and then cooled.
  • Step of carrying out second heat treatment R1-T1-B system in which the first heat treatment was carried out at the temperature and time shown in the second heat treatment of Table 12 in a reduced pressure argon atmosphere where the second heat treatment was controlled to 200 Pa using a tubular flow air furnace It cooled after implementing with respect to the sintered compact.
  • the entire surface of each sample is cut using a surface grinder, and 4.0 mm ⁇ 4.0 mm ⁇ A 4.0 mm cube-shaped sample (R-T-B sintered magnet) was obtained.
  • the heating temperature of the B-based sintered body was measured by attaching a thermocouple.
  • sample test Each sample of B r and H cJ obtained was measured by B-H tracer. The measurement results are shown in Table 12. As shown in Table 12, sample No. 1 in which the Cu content of the R1-T1-Cu-B-based sintered body is less than 0.1 mass%. In 4-1, high H cJ is not obtained. In addition, sample No. 1 in which the content of Cu exceeds 1.5 mass%. 4-5 does not obtain a high B r and H cJ.
  • Experimental Example 5 [Step of preparing R1-T1-Cu-B based sintered body] A sintered body was produced in the same manner as in Experimental Example 4 except that each element was weighed so that the R1-T1-Cu-B-based sintered body had a composition as indicated by the symbol 5-A in Table 13. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 13. Each component in Table 13 was measured by the same method as Experimental Example 4. In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%. The C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%.
  • Step of preparing R2-Ga-Co based alloy The R2-Ga-Co alloy is prepared in the same manner as in Experimental Example 4 except that each element is weighed so that the R2-Ga-Co alloy has a composition as indicated by symbols 5-a to 5-g in Table 14. Got ready. The composition of the R2-Ga-Co based alloy is shown in Table 14. Each component in Table 14 was measured by the same method as Experimental Example 4.
  • the first heat treatment is performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body are heated at the temperature and time shown in the first heat treatment of Table 15. did.
  • Example test Each sample of B r and H cJ obtained was measured by B-H tracer. The measurement results are shown in Table 15.
  • Table 15 the present invention example Co amount of R-Ga-Co-based alloy is at most 10 mass% ultra 45Mass% It can be seen that the high B r and a high H cJ are achieved.
  • the sample No. 1 in which the amount of Co in the R-Ga-Co alloy exceeds 45 mass% the content of Pr ⁇ the content of Co. In 5-7, high H cJ is not obtained.
  • Experimental Example 6 [Step of preparing R1-T1-Cu-B based sintered body] A sintered body was produced in the same manner as in Experimental Example 4 except that each element was weighed so that the R1-T1-Cu-B-based sintered body had a composition shown in the code 6-A in Table 16. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 16. Each component in Table 16 was measured by the same method as Experimental Example 4. In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%. The C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%.
  • Step of preparing R2-Ga-Co based alloy The R2-Ga-Co alloy is prepared in the same manner as in Experimental Example 4 except that each element is weighed so that the R2-Ga-Co alloy has a composition as shown by symbols 6-a to 6-i in Table 17. Got ready. The composition of the R2-Ga-Co based alloy is shown in Table 17. Each component in Table 17 was measured by the same method as Experimental Example 4.
  • the first heat treatment is performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body are heated at the temperature and time shown in the first heat treatment of Table 18 did.
  • Example test Each sample of B r and H cJ obtained was measured by B-H tracer. The measurement results are shown in Table 18. As shown in Table 18, R2 content of R2-Ga-Co alloy is 35 mass% or more and 87 mass% or less, Ga content is 2.5 mass% or more and 30 mass% or less, and R2 content> Co content> Ga content the present invention examples in a composition satisfying the inequality is seen that a high B r and a high H cJ are achieved. On the other hand, any one of R and Ga in the R2-Ga-Co alloy is out of the range of the present disclosure (sample No. 6-1 has R2 out of the range, sample No. 6-3 has R2 and Co out of the range Sample Nos.
  • Experimental Example 7 [Step of preparing R1-T1-B based sintered body] A sintered body was produced in the same manner as in Experimental Example 4 except that each element was weighed so that the R1-T1-B-based sintered body had a composition approximately as shown by symbol 7-A in Table 19. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 19. Each component in Table 19 was measured by the same method as Experimental Example 4. In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%. The C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%.
  • the first heat treatment is performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body are heated at the temperature and time shown in the first heat treatment of Table 21. did.
  • sample test The obtained samples were subjected to B-H tracer to measure B r and H c J of each sample.
  • the measurement results are shown in Table 21.
  • the first heat treatment temperature (700 ° C. or higher 1100 ° C. or less) and the present invention embodiment is a second heat treatment temperature (450 ° C. or higher 600 ° C. or less) of the present disclosure is higher B r and a high H cJ is obtained It is understood that it is being done.
  • a further higher HcJ is obtained when the temperature in the first heat treatment is 800 ° C. or more and 1000 ° C. or less and the temperature in the second heat treatment is 480 ° C. or more and 560 ° C. or less.
  • the first heat treatment temperature or the second heat treatment temperature is out of the range of the present disclosure (the sample No. 7-1 is out of the range of the first heat treatment, the sample Nos. 7-4 and 7-9 are If the second heat treatment is out of the range, high H cJ can not be obtained.
  • the RTB-based sintered magnet obtained by the present disclosure includes various motors such as a voice coil motor (VCM) of a hard disk drive, a motor for electric vehicles (EV, HV, PHV, etc.), a motor for industrial equipment, It can be suitably used for home appliances and the like.
  • VCM voice coil motor
  • EV electric vehicles
  • HV PHV
  • industrial equipment a motor for industrial equipment
  • R1-T1-B based sintered body (R1-T1-Cu-B based sintered body) 2 R2-Ga-Cu-Co alloy (R2-Ga-Co alloy) 3 treatment vessel 12 main phase 14 grain boundary phase 14a double grain grain boundary phase 14b grain boundary triple point

Abstract

The present invention discloses a method for manufacturing an R-T-B-based sintered magnet, including: a step for preparing an R1-T1-B-based sintered body; a step for preparing an R2-Ga-Cu-Co-based alloy; a step for executing, by bringing at least a section of the alloy into contact with at least a section of a surface of the sintered body, a first heat treatment in a vacuum or inert-gas atmosphere at a temperature of 700ºC to 1100ºC; and a step for executing, on the R1-T1-B-based sintered body that has been subjected to the first heat treatment, a second heat treatment in the vacuum or inert-gas atmosphere at a temperature of 450ºC to 600ºC. R1 and R2 are at least one type of rare-earth element, and at least one of Nd and Pr is always included. The molar ratio of T1 with respect to B ([T1]/[B]) is greater than 14.0 and equal to or less than 15.0.

Description

R-T-B系焼結磁石の製造方法Method of manufacturing RTB-based sintered magnet
 本発明は、R-T-B系焼結磁石の製造方法に関する。 The present invention relates to a method for producing an RTB-based sintered magnet.
 R-T-B系焼結磁石(Rは希土類元素のうちの少なくとも一種である。Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 RTB-based sintered magnet (R is at least one of rare earth elements. T is at least one of transition metal elements and necessarily contains Fe. B is boron.) Is a permanent magnet. It is known as the most powerful magnet, and is used for voice coil motor (VCM) of hard disk drive, electric motor (EV, HV, PHV etc.) motor for electric car, various motors such as motor for industrial equipment, home electric appliance etc. There is.
 R-T-B系焼結磁石は主としてR214B化合物からなる主相とこの主相の粒界部分に位置する粒界相(以下、単に「粒界」という場合がある)とから構成されている。R214B化合物は高い磁化を持つ強磁性相でありR-T-B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is mainly composed of a main phase consisting of an R 2 T 14 B compound and a grain boundary phase located at grain boundaries of the main phase (hereinafter sometimes referred to simply as “grain boundaries”). It is configured. The R 2 T 14 B compound is a ferromagnetic phase with high magnetization, and forms the basis of the characteristics of the RTB-based sintered magnet.
 R-T-B系焼結磁石は、高温で保磁力HcJ(以下、単に「保磁力」又は「HcJ」という場合がある)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR-T-B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 The RTB -based sintered magnet has a problem that irreversible thermal demagnetization occurs because the coercivity H cJ (hereinafter, sometimes simply referred to as "coercivity" or "H cJ ") decreases at high temperature. Therefore, in the RTB -based sintered magnet used particularly for a motor for an electric vehicle, it is required to have high H cJ even under high temperature, that is, to have higher H cJ at room temperature.
 R-T-B系焼結磁石において、R214B化合物中のRに含まれる軽希土類元素(主としてNd及び/又はPr)の一部を重希土類元素(主としてDy及び/又はTb)で置換すると、HcJが向上することが知られている。重希土類元素の置換量の増加に伴いHcJは向上する。 In the RTB-based sintered magnet, part of the light rare earth elements (mainly Nd and / or Pr) contained in R in the R 2 T 14 B compound is a heavy rare earth element (mainly Dy and / or Tb) It is known that substitution improves H cJ . H cJ improves as the substitution amount of heavy rare earth elements increases.
 しかし、R214B化合物中の軽希土類元素を重希土類元素で置換するとR-T-B系焼結磁石のHcJが向上する一方、残留磁束密度Br(以下、単に「Br」という場合がある)が低下する。また、重希土類元素、特にDyなどは資源存在量が少ないうえ産出地が限定されているなどの理由から供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、ユーザーから重希土類元素をできるだけ使用することなくHcJを向上させることが求められている。 However, replacing the light rare earth element in the R 2 T 14 B compound with a heavy rare earth element improves H cJ of the RTB -based sintered magnet, while the residual magnetic flux density B r (hereinafter simply referred to as “B r ” May fall down). In addition, heavy rare earth elements, in particular Dy, etc., have a problem that supply is not stable due to a small amount of resources and limited production areas, and the price fluctuates significantly. Therefore, in recent years, the user is required to improve H cJ without using heavy rare earth elements as much as possible.
 特許文献1には、Dyの含有量を低減しつつ保磁力を高めたR-T-B系希土類焼結磁石が開示されている。この焼結磁石の組成は、一般に用いられてきたR-T-B系合金に比べてB量が相対的に少ない特定の範囲に限定され、かつ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有している。その結果、粒界にR217相が生成され、このR217相から粒界に形成される遷移金属リッチ相(R613M)の体積比率が増加することにより、HcJが向上する。 Patent Document 1 discloses an RTB-based rare earth sintered magnet in which the coercive force is increased while reducing the content of Dy. The composition of this sintered magnet is limited to a specific range in which the amount of B is relatively small compared to a commonly used RTB-based alloy, and is selected from Al, Ga, and Cu 1 It contains metal element M of a species or more. As a result, R 2 T 17 phase is produced in the grain boundary, by the volume ratio of the R 2 T 17 transition metal-rich phase formed in the grain boundary from phase (R 6 T 13 M) increases, H cJ Improve.
国際公開第2013/008756号International Publication No. 2013/008756
 特許文献1に記載されている方法は、重希土類元素の含有量を抑制しつつR-T-B系焼結磁石を高保磁力化できる点で注目に値する。しかし、Brが大幅に低下するという問題があった。また、近年、電気自動車用モータ等の用途において更に高いHcJを有するR-T-B系焼結磁石が求められている。 The method described in Patent Document 1 is noteworthy in that the coercive force of the RTB-based sintered magnet can be increased while suppressing the content of heavy rare earth elements. However, there is a problem that B r is greatly reduced. Further, in recent years, RTB -based sintered magnets having higher H cJ have been required in applications such as motors for electric vehicles.
 本開示の実施形態は、重希土類元素の含有量を低減しつつ、高いBr及び高いHcJを有するR-T-B系焼結磁石の製造方法を提供する。 Embodiments of the present disclosure, while reducing the content of heavy rare earth elements, to provide a method of manufacturing a R-T-B based sintered magnet having a high B r and a high H cJ.
 本開示のR-T-B系焼結磁石の製造方法は、限定的ではない例示的な実施形態において、R1-T1-B系焼結体を準備する工程と、R2-Ga-Cu-Co系合金を準備する工程と、前記R1-T1-B系焼結体の表面の少なくとも一部に、前記R2-Ga-Cu-Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程と、前記第一の熱処理が実施されたR1-T1-B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程とを含む。前記R1-T1-B系焼結体において、R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1-T1-B系焼結体全体の27mass%以上35mass%以下であり、T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上であり、Bに対するT1のmol比([T1]/[B])が14.0超15.0以下である。前記R2-Ga-Cu-Co系合金において、R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2-Ga-Cu-Co系合金全体の35mass%以上85mass%未満であり、Gaの含有量は、R2-Ga-Cu-Co系合金全体の2.5mass%以上30mass%以下であり、Cuの含有量は、R2-Ga-Cu-Co系合金全体の2.5mass%以上20mass%以下であり、Coの含有量は、R2-Ga-Cu-Co系合金全体の10mass%超45mass%以下であり、R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式が成立する。 The method of producing the RTB-based sintered magnet of the present disclosure is, in a non-limiting exemplary embodiment, preparing an R1-T1-B-based sintered body, R2-Ga-Cu-Co, and And preparing at least a part of the R2-Ga-Cu-Co alloy on at least a part of the surface of the R1-T1-B sintered body, in a vacuum or inert gas atmosphere. And a step of performing the first heat treatment at a temperature of 700 ° C. or more and 1100 ° C. or less, and a vacuum or inert gas atmosphere for the R1-T1-B-based sintered body subjected to the first heat treatment. And performing a second heat treatment at a temperature of 450 ° C. or more and 600 ° C. or less. In the R1-T1-B-based sintered body, R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is the entire R1-T1-B-based sintered body. 27 mass% or more and 35 mass% or less, T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T1 always contains Fe, and the Fe content relative to the entire T1 is It is 80 mass% or more, and the molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less. In the R2-Ga-Cu-Co-based alloy, R2 is at least one of rare earth elements and necessarily contains at least one of Nd and Pr, and the content of R2 is that of the entire R2-Ga-Cu-Co-based alloy The content of Ga is 35 mass% to less than 85 mass%, the content of Ga is 2.5 mass% to 30 mass% of the entire R2-Ga-Cu-Co alloy, and the content of Cu is R2-Ga-Cu-Co. The content of Co is more than 10 mass% and less than 45 mass% of the whole R2-Ga-Cu-Co alloy, and the content of R> the content of Co. > Ga content> Cu content inequality is satisfied.
 ある実施形態において、前記Bに対するTのmol比([T1]/[B])が14.5以上15.0以下である。 In one embodiment, the molar ratio of T to B ([T1] / [B]) is 14.5 or more and 15.0 or less.
 ある実施形態において、前記R2-Ga-Cu-Co系合金中のR2の50mass%以上がPrである。 In one embodiment, 50 mass% or more of R2 in the R2-Ga-Cu-Co based alloy is Pr.
 ある実施形態において、前記R2-Ga-Cu-Co系合金中のR2の70mass%以上がPrである。 In one embodiment, 70 mass% or more of R2 in the R2-Ga-Cu-Co based alloy is Pr.
 ある実施形態では、R2-Ga-Cu-Co系合金におけるR2-Ga-Cu-Coの合計の含有量が80mass%以上である。 In one embodiment, the total content of R 2 -Ga-Cu-Co in the R 2 -Ga-Cu-Co-based alloy is 80 mass% or more.
 ある実施形態では、前記第一の熱処理における温度が800℃以上1000℃以下である。 In one embodiment, the temperature in the first heat treatment is 800 ° C. or more and 1000 ° C. or less.
 ある実施形態では、前記第二の熱処理における温度が480℃以上560℃以下である。 In one embodiment, the temperature in the second heat treatment is 480 ° C. or more and 560 ° C. or less.
 前記R1-T1-B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことを含む。 Preparing the R1-T1-B based sintered body comprises performing after the material alloy particle size D 50 was pulverized to 3μm or 10μm or less, the sintering being oriented in a magnetic field.
 本開示のR-T-B系焼結磁石の製造方法は、限定的ではない例示的な他の実施形態において、R1-T1-Cu-B系焼結体を準備する工程と、R2-Ga-Co系合金を準備する工程と、前記R1-T1-Cu-B系焼結体の表面の少なくとも一部に、前記R2-Ga-Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程と、前記第一の熱処理が実施されたR1-T1-Cu-B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程と、を含み、前記R1-T1-Cu-B系焼結体において、R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1-T1-Cu-B系焼結体全体の27mass%以上35mass%以下であり、T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上であり、Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、Cuの含有量は、R1-T1-Cu-B系焼結体全体の0.1mass%以上1.5mass%以下であり、前記R2-Ga-Co系合金において、R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2-Ga-Co系合金全体の35mass%以上87mass%未満であり、Gaの含有量は、R2-Ga-Co系合金全体の2.5mass%以上30mass%以下であり、Coの含有量は、R2-Ga-Co系合金全体の10mass%超45mass%以下であり、R2の含有量>Coの含有量>Gaの含有量の不等式が成立する。 The manufacturing method of the RTB-based sintered magnet of the present disclosure is, in another exemplary embodiment not limiting, preparing an R1-T1-Cu-B-based sintered body; And preparing at least a part of the R2-Ga-Co alloy on at least a part of the surface of the R1-T1-Cu-B sintered body, in a vacuum or inactive state. The step of performing the first heat treatment at a temperature of 700 ° C. or more and 1100 ° C. or less in a gas atmosphere, and vacuum or failure for the R1-T1-Cu-B-based sintered body for which the first heat treatment is performed. Carrying out the second heat treatment at a temperature of 450 ° C. to 600 ° C. in an active gas atmosphere, and in the R1-T1-Cu-B-based sintered body, R1 is at least one of rare earth elements Yes, including at least one of Nd and Pr The content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-Cu-B-based sintered body, and T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si. T1 always contains Fe, the content of Fe with respect to the whole T1 is 80 mass% or more, and the molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less The content of Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-Cu-B-based sintered body, and in the R2-Ga-Co-based alloy, R2 is a rare earth element. The content of R2 is at least 35 mass% and less than 87 mass% of the whole R2-Ga-Co alloy, and the content of Ga is R2-G. 2.5 mass% or more and 30 mass% or less of the whole -Co alloy, the content of Co is more than 10 mass% and 45 mass% or less of the whole R2-Ga-Co alloy, the content of R2> the content of Co The inequality of the content of Ga is established.
 ある実施形態において、前記Bに対するT1のmol比([T1]/[B])が14.3以上15.0以下である。 In one embodiment, the molar ratio of T1 to B ([T1] / [B]) is 14.3 or more and 15.0 or less.
 ある実施形態において、前記R2-Ga-Co系合金中のR2の50mass%以上がPrである。 In one embodiment, 50 mass% or more of R2 in the R2-Ga-Co-based alloy is Pr.
 ある実施形態において、前記R2-Ga-Co系合金中のR2の70mass%以上がPrである。 In one embodiment, 70 mass% or more of R2 in the R2-Ga-Co-based alloy is Pr.
 ある実施形態において、R2-Ga-Co系合金におけるR2、Ga、Coの合計の含有量が80mass%以上である。 In one embodiment, the total content of R2, Ga, and Co in the R2-Ga-Co-based alloy is 80 mass% or more.
 ある実施形態において、前記第一の熱処理における温度が800℃以上1000℃以下である。 In one embodiment, the temperature in the first heat treatment is 800 ° C. or more and 1000 ° C. or less.
 ある実施形態において、前記第二の熱処理における温度が480℃以上560℃以下である。 In one embodiment, the temperature in the second heat treatment is 480 ° C. or more and 560 ° C. or less.
 ある実施形態において、前記R1-T1-Cu-B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことを含む。 In certain embodiments, the step of preparing the R1-T1-Cu-B based sintered body, after the material alloy particle size D 50 was pulverized to 3μm or 10μm or less, sintering is performed by orienting in a magnetic field Including.
 本開示の実施形態によると、重希土類元素の含有量を低減しつつ、高いBr及び高いHcJを有するR-T-B系焼結磁石の製造方法を提供することができる。 According to embodiments of the present disclosure, while reducing the content of heavy rare earth elements, it is possible to provide a manufacturing method of the R-T-B based sintered magnet having a high B r and a high H cJ.
本開示によるR-T-B系焼結磁石の製造方法(第1の実施形態)における工程の例を示すフローチャートである。It is a flowchart which shows the example of the process in the manufacturing method (1st Embodiment) of the RTB type | system | group sintered magnet by this indication. R-T-B系焼結磁石の主相と粒界相を示す模式図である。FIG. 2 is a schematic view showing a main phase and a grain boundary phase of an RTB-based sintered magnet. 図2Aの破線矩形領域内を更に拡大した模式図である。It is the schematic diagram which further expanded the inside of the broken-line rectangular area | region of FIG. 2A. 熱処理工程におけるR1-T1-B系合金焼結体(またはR1-T1-Cu-B系焼結体)とR2-Ga-Cu-Co系合金(またはR2-Ga-Co系合金)との配置形態を模式的に示す説明図である。Arrangement of R1-T1-B based alloy sintered body (or R1-T1-Cu-B based sintered body) and R2-Ga-Cu-Co based alloy (or R2-Ga-Co based alloy) in heat treatment process It is explanatory drawing which shows a form typically. 本開示によるR-T-B系焼結磁石の製造方法(第2の実施形態)における工程の例を示すフローチャートである。It is a flowchart which shows the example of the process in the manufacturing method (2nd Embodiment) of the RTB type | system | group sintered magnet by this indication.
 本開示において、希土類元素を総称して「R」と表記する場合がある。希土類元素Rのうちの特定の元素又は元素群を指すとき、例えば「R1」又は「R2」の符号を用いて他の希土類元素から区別する。また、本開示において、Feを含む遷移金属元素の全体を「T」と表記する。遷移金属元素Tのうちの特定の元素または元素群及び主相のFeサイトと容易に置換される遷移金属元素以外の特定の元素又は元素群の両方を含むとき、「T1」の符号を用いて他の遷移金属元素から区別する。 In the present disclosure, rare earth elements may be collectively referred to as “R”. When referring to a specific element or group of elements among the rare earth elements R, for example, the sign of “R1” or “R2” is used to distinguish from other rare earth elements. Further, in the present disclosure, the entire transition metal element including Fe is denoted as “T”. When the transition metal element T includes both a specific element or element group and a specific element or element group other than the transition metal element which is easily substituted with the Fe site of the main phase, using the symbol of “T1” Distinguish from other transition metal elements.
<第1の実施形態>
 本開示による第1の実施形態におけるR-T-B系焼結磁石の製造方法は、図1に示すように、R1-T1-B系焼結体を準備する工程S10と、R2-Ga-Cu-Co系合金を準備する工程S20とを含む。R1-T1-B系焼結体を準備する工程S10と、R2-Ga-Cu-Co系合金を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR1-T1-B系焼結体及びR2-Ga-Cu-Co系合金を用いてもよい。
First Embodiment
A method of manufacturing an RTB-based sintered magnet according to the first embodiment of the present disclosure includes, as shown in FIG. 1, a step S10 of preparing an R1-T1-B-based sintered body, and R2-Ga- And S20 of preparing a Cu--Co alloy. The order of the step S10 of preparing the R1-T1-B-based sintered body and the step S20 of preparing the R2-Ga-Cu-Co-based alloy is arbitrary, and each of the R1-T1-B manufactured in different places. A B-based sintered body and an R2-Ga-Cu-Co-based alloy may be used.
 本開示において、第二の熱処理前及び第二の熱処理中のR-T-B系焼結磁石をR1-T1-B系焼結体と称し、第二の熱処理後のR1-T1-B系焼結体を単にR-T-B系焼結磁石と称する。 In the present disclosure, the RTB-based sintered magnet before the second heat treatment and during the second heat treatment is referred to as an R1-T1-B-based sintered body, and the R1-T1-B system after the second heat treatment The sintered body is simply referred to as an RTB-based sintered magnet.
 R1-T1-B系焼結体においては、下記(A1)~(A3)が成立している。
(A1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1-T1-B系焼結体全体の27mass%以上35mass%以下である。
(A2)T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上である。
(A3)Bに対するT1のmol比([T1]/[B])が14.0超15.0以下である。
In the R1-T1-B based sintered body, the following (A1) to (A3) hold.
(A1) R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-based sintered body.
(A2) T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si. T1 necessarily contains Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more.
The molar ratio of T1 to (A3) B ([T1] / [B]) is more than 14.0 and 15.0 or less.
 本開示におけるBに対するT1のmol比([T1]/[B])とは、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。 The molar ratio of T1 to B ([T1] / [B]) in the present disclosure is the analysis value (mass%) of each element (Fe or at least one of Fe, Co, Al, Mn, Si and Fe) constituting T1. Calculate the ratio of the atomic weight of each element divided by the atomic weight of each element (a) and the ratio (a /) of the analytical value (mass%) of B divided by the atomic weight of B (b) b).
 Bに対するT1のmol比([T1]/[B])が14.0を超えるということは、Bの含有比率がR214B化合物の化学量論組成比よりも低いことを意味している。言い換えると、R1-T1-B系焼結体において、主相(R214B化合物)の形成に使われるT1の量に対して相対的にB量が少ない。 The fact that the molar ratio of T1 to B ([T1] / [B]) exceeds 14.0 means that the content ratio of B is lower than the stoichiometric composition ratio of the R 2 T 14 B compound. There is. In other words, in the R1-T1-B based sintered body, the amount of B is relatively smaller than the amount of T1 used for forming the main phase (R 2 T 14 B compound).
 R2-Ga-Cu-Co系合金においては、以下の(A4)~(A8)が成立している。
(A4)R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2-Ga-Cu-Co系合金全体の35mass%以上85mass%未満である。
(A5)Gaの含有量は、R2-Ga-Cu-Co系合金全体の2.5mass%以上30mass%以下である。
(A6)Cuの含有量は、R2-Ga-Cu-Co系合金全体の2.5mass%以上20mass%以下である。
(A7)Coの含有量は、R2-Ga-Cu-Co系合金全体の10mass%超45mass%以下である。
(A8)R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式が成立する。
In the R2-Ga-Cu-Co based alloy, the following (A4) to (A8) hold true.
(A4) R2 is at least one of rare earth elements and necessarily contains at least one of Nd and Pr, and the content of R2 is 35 mass% or more and less than 85 mass% of the entire R2-Ga-Cu-Co alloy.
The content of (A5) Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Cu-Co alloy.
The content of (A6) Cu is 2.5 mass% or more and 20 mass% or less of the entire R2-Ga-Cu-Co alloy.
The content of (A7) Co is more than 10% by weight and 45% by weight or less of the entire R2-Ga-Cu-Co based alloy.
(A8) Content of R2> Content of Co> Content of Ga> Inequalities of Content of Cu are satisfied.
 本開示によるR-T-B系焼結磁石の製造方法では、主相(R214B化合物)形成に使われるTの量に対して化学量論比で相対的にB量が少ないR1-T1-B系焼結体の表面の少なくとも一部にR2-Ga-Cu-Co系合金を接触させ、図1に示すように、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程S30と、この第一の熱処理が実施されたR1-T1-B系焼結体に対して真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程S40を行う。これにより、高いBr及び高いHcJを有するR-T-B系焼結磁石を得ることができる。 In the method of producing an RTB-based sintered magnet according to the present disclosure, R1 having a relatively small amount of B in a stoichiometric ratio relative to the amount of T used to form the main phase (R 2 T 14 B compound) An R2-Ga-Cu-Co alloy is brought into contact with at least a part of the surface of the -T1-B sintered body, and as shown in FIG. 1, in a vacuum or inert gas atmosphere, at 700.degree. C. or more and 1100.degree. Temperature of 450 ° C. or more and 600 ° C. or less in a vacuum or inert gas atmosphere with respect to the step S30 of performing the first heat treatment at a temperature and the R1-T1-B-based sintered body subjected to the first heat treatment In step S40, the second heat treatment is performed. Thus, it is possible to obtain the R-T-B based sintered magnet having a high B r and a high H cJ.
 第一の熱処理を実施する工程S30と、第二の熱処理を実施する工程S40との間に他の工程、例えば冷却工程などが実行され得る。 Another step, such as a cooling step, may be performed between the step S30 of performing the first heat treatment and the step S40 of performing the second heat treatment.
 まず、R-T-B系焼結磁石の基本構造を説明する。 First, the basic structure of the RTB-based sintered magnet will be described.
 R-T-B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR214B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 The RTB-based sintered magnet has a structure in which powder particles of a raw material alloy are bonded by sintering, and a main phase mainly composed of an R 2 T 14 B compound and a grain boundary portion of this main phase It is composed of the located grain boundary phase.
 図2Aは、R-T-B系焼結磁石の主相と粒界相を示す模式図であり、図2Bは図2Aの破線矩形領域内を更に拡大した模式図である。図2Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図2A及び図2Bに示されるように、R-T-B系焼結磁石は、主としてR214B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図2Bに示されるように、2つのR214B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つ以上のR214B化合物粒子が隣接する粒界三重点14bとを含む。 FIG. 2A is a schematic view showing the main phase and the grain boundary phase of the RTB-based sintered magnet, and FIG. 2B is a schematic view further enlarging the inside of the dashed rectangular area of FIG. 2A. In FIG. 2A, an arrow of 5 μm in length as an example is described for reference as a reference length indicating the size. As shown in FIGS. 2A and 2B, the RTB-based sintered magnet includes a main phase 12 mainly composed of an R 2 T 14 B compound, and a grain boundary phase 14 located in the grain boundary portion of the main phase 12. And consists of In addition, as shown in FIG. 2B, the grain boundary phase 14 is a two-grain grain boundary phase 14a in which two R 2 T 14 B compound particles (grains) are adjacent, and three or more R 2 T 14 B compound particles. And the adjacent grain boundary triple point 14b.
 主相12であるR214B化合物は高い飽和磁化と異方性磁界を持つ強磁性相である。したがって、R-T-B系焼結磁石では、主相12であるR214B化合物の存在比率を高めることによってBrを向上させることができる。R214B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R214B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。R214B化合物を形成するためのB量又はR量が化学量論比を下回ると、一般的には、粒界相14にFe相又はR217相等の強磁性体が生成し、HcJが急激に低下する。しかし、特許文献1に記載されている方法のように、B量をR214B化合物の化学量論比よりも少なくし、且つ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させると、R217相から粒界に遷移金属リッチ相(例えばR-T-Ga相)が生成されて高いHcJを得ることができる。しかし、特許文献1に記載されている方法では、Brが大幅に低下してしまう。 The R 2 T 14 B compound which is the main phase 12 is a ferromagnetic phase having high saturation magnetization and anisotropic magnetic field. Therefore, in the R-T-B based sintered magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12. In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, B amount in the raw material alloy and the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount = It should be close to 2: 14: 1). When the amount of B or R for forming the R 2 T 14 B compound is less than the stoichiometric ratio, generally, a ferromagnetic substance such as an Fe phase or an R 2 T 17 phase is formed in the grain boundary phase 14 , H cJ falls sharply. However, as in the method described in Patent Document 1, the amount of B is less than the stoichiometric ratio of the R 2 T 14 B compound, and at least one selected from Al, Ga, and Cu. When the metal element M is contained, a transition metal rich phase (for example, RT-Ga phase) is generated at grain boundaries from the R 2 T 17 phase, and high H cJ can be obtained. However, in the method described in Patent Document 1, Br is significantly reduced.
 本発明者らは検討の結果、低B組成である特定の組成を有するR1-T1-B系焼結体の表面の少なくとも一部に、Coの含有量が比較的多いR2-Ga-Cu-Co系合金を接触させて特定の熱処理を実施すると、意外にも、最終的に得られる焼結磁石は、高いBrと高いHcJを実現できることがわかった。 As a result of investigations, the present inventors have found that R2-Ga-Cu- containing a relatively large amount of Co on at least a part of the surface of the R1-T1-B-based sintered body having a specific composition having a low B composition. When contacting the Co-based alloy that perform particular heat treatment, surprisingly, finally sintered magnet obtained has been found to be achieved a high B r and high H cJ.
 本開示によるR-T-B系焼結磁石の製造方法は、本開示の特定組成のR2-Ga-Cu-Co系合金によりR2、Ga、Cu及びCoを磁石表面から内部に導入することで、高いBrと高いHcJを実現することができる。 The manufacturing method of the RTB-based sintered magnet according to the present disclosure is to introduce R2, Ga, Cu and Co into the interior from the magnet surface by the R2-Ga-Cu-Co-based alloy of the specific composition of the present disclosure. , it is possible to achieve high B r and high H cJ.
 (R1-T1-B系焼結体を準備する工程)
 まず、R1-T1-B系焼結体(以下、単に「焼結体」という場合がある)を準備する工程における焼結体の組成を説明する。
(Step of preparing R1-T1-B sintered body)
First, the composition of the sintered body in the step of preparing an R1-T1-B-based sintered body (hereinafter sometimes simply referred to as “sintered body”) will be described.
 R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R1-T1-B系焼結体のHcJを向上させるために、一般的に用いられるDy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示による製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量は、R1-T1-B系焼結体の1mass%以下であることが好ましく、0.5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことが更に好ましい。 R1 is at least one of rare earth elements and always contains at least one of Nd and Pr. In order to improve HcJ of the R1-T1-B-based sintered body, a small amount of heavy rare earth elements such as Dy, Tb, Gd, and Ho generally used may be contained. However, according to the manufacturing method according to the present disclosure, sufficiently high HcJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 1 mass% or less of the R1-T1-B-based sintered body, more preferably 0.5 mass% or less, and it is not contained (substantially 0 mass%) Is more preferred.
 R1の含有量は、R1-T1-B系焼結体全体の27mass%以上35mass%以下である。R1の含有量が27mass%未満では焼結過程で液相が十分に生成せず、R1-T1-B系焼結体を十分に緻密化することが困難になる。一方、R1の含有量が35mass%を超えても本開示の効果を得ることはできるが、R1-T1-B系焼結体の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、35mass%以下が好ましい。R1の含有量は、27.5mass%以上33mass%以下であることがより好ましく、28mass%以上32mass%以下であることが更に好ましい。 The content of R1 is 27 mass% or more and 35 mass% or less of the whole of the R1-T1-B-based sintered body. If the content of R1 is less than 27 mass%, a liquid phase is not sufficiently generated in the sintering process, and it becomes difficult to fully densify the R1-T1-B-based sintered body. On the other hand, although the effect of the present disclosure can be obtained even if the content of R1 exceeds 35 mass%, the alloy powder in the manufacturing process of the R1-T1-B-based sintered body becomes very active. As a result, significant oxidation or ignition of the alloy powder may occur, so 35 mass% or less is preferable. The content of R1 is more preferably 27.5 mass% or more and 33 mass% or less, and still more preferably 28 mass% or more and 32 mass% or less.
 T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有する。すなわち、T1はFeのみであってもよいし、Co、Al、Mn、Siの少なくとも1つとFeからなってもよい。ただし、T1全体に対するFeの含有量は80mass%以上である。Feの含有量が80mass%未満であると、Br及びHcJが低下する可能性がある。ここで、「T1全体に対するFeの含有量は80mass%以上」とは、例えばR1-T1-B系焼結体中におけるT1の含有量が70mass%である場合、R1-T1-B系焼結体の56mass%以上がFeであることを言う。好ましくはT1全体に対するFeの含有量は90mass%以上である。より高いBrと高いHcJを得ることができるからである。Co、Al、Mn、Siを含有する場合の好ましい含有量は、R1-T1-Cu-B系焼結体全体のCoは5.0mass%以下、Alは1.5mass%以下、Mn及びSiはそれぞれ0.2mass%以下である。 T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and T1 always contains Fe. That is, T1 may be Fe alone, or may be Fe and at least one of Co, Al, Mn, and Si. However, the content of Fe with respect to the whole T1 is 80 mass% or more. When the content of Fe is less than 80 mass%, B r and H cJ may be reduced. Here, "the content of Fe with respect to the whole T1 is 80 mass% or more" means, for example, when the content of T1 in the R1-T1-B-based sintered body is 70 mass%, the R1-T1-B-based sintering It says that 56 mass% or more of the body is Fe. Preferably, the content of Fe with respect to the whole of T1 is 90 mass% or more. This is because it is possible to obtain a higher B r and a high H cJ. The preferable content in the case of containing Co, Al, Mn, and Si is 5.0 mass% or less of Co in the entire R1-T1-Cu-B sintered body, 1.5 mass% or less of Al, and Mn and Si Each is 0.2 mass% or less.
 Bに対するT1のmol比([T1]/[B])は14.0超15.0以下である。 The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.
 本開示におけるBに対するT1のmol比([T1]/[B])とは、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。 The molar ratio of T1 to B ([T1] / [B]) in the present disclosure is the analysis value (mass%) of each element (Fe or at least one of Fe, Co, Al, Mn, Si and Fe) constituting T1. Calculate the ratio of the atomic weight of each element divided by the atomic weight of each element (a) and the ratio (a /) of the analytical value (mass%) of B divided by the atomic weight of B (b) b).
 Bに対するT1のmol比([T1]/[B])が14.0を超えるという条件は、主相(R214B化合物)形成に使われるT1量に対して相対的にB量が少ないことを示している。Bに対するT1のmol比([T1]/[B])が14.0以下であると高いHcJを得ることができない。一方、Bに対するT1のmol比([T1]/[B])が15.0を超えるとBrが低下する可能性がある。Bに対するT1のmol比([T1]/[B])は14.5以上15.0以下であることが好ましい。更に高いBrと高いHcJを得ることができる。また、Bの含有量はR1-T1-B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。 The condition that the molar ratio of T1 to B ([T1] / [B]) exceeds 14.0 means that the amount of B is relatively to the amount of T1 used to form the main phase (R 2 T 14 B compound) It shows that there are few. If the molar ratio of T1 to B ([T1] / [B]) is 14.0 or less, high H cJ can not be obtained. On the other hand, mol ratio of T1 for B ([T1] / [B ]) is likely to decrease B r exceeds 15.0. The molar ratio of T1 to B ([T1] / [B]) is preferably 14.5 or more and 15.0 or less. It is possible to obtain a higher B r and a high H cJ. Further, the content of B is preferably 0.9 mass% or more and less than 1.0 mass% of the entire R1-T1-B-based sintered body.
 R1-T1-B系焼結体は、上記元素の他にGa、Cu、Ag、Zn、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。含有量は、Ga、Cu、Ag、Zn、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。これらの元素の合計の含有量は、R1-T1-B系焼結体全体の5mass%以下が好ましい。これらの元素の合計の含有量がR1-T1-B系焼結体全体の5mass%を超えると高いBrと高いHcJを得ることができない可能性がある。 In addition to the above elements, the R1-T1-B-based sintered body may contain Ga, Cu, Ag, Zn, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Cr, H, F, P, S, Cl, O, N, C and the like may be contained. The content of each of Ga, Cu, Ag, Zn, In, Sn, Zr, Nb and Ti is 0.5 mass% or less, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, It is preferable that Sm, Ca, Mg and Cr each be 0.2 mass% or less, H, F, P, S and Cl be 500 ppm or less, O be 6000 ppm or less, N be 1000 ppm or less and C be 1500 ppm or less. The total content of these elements is preferably 5% by mass or less of the entire R1-T1-B-based sintered body. The total content of these elements may not be able to obtain the high B r and high H cJ exceeds 5 mass% of the total R1-T1-B based sintered body.
 次にR1-T1-B系焼結体を準備する工程について説明する。R1-T1-B系焼結体を準備する工程は、R-T-B系焼結磁石に代表される一般的な製造方法を用いて準備することができる。R1-T1-B系焼結体は、原料合金を粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値=D50)が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことが好ましい。一例を挙げると、ストリップキャスト法などで作製された原料合金を、ジェットミル装置などを用いて粒径D50が3μm以上10μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。原料合金の粒径D50が3μm未満では粉砕粉を作製するのが非常に困難であり、生産効率が大幅に低下するため好ましくない。一方、粒径D50が10μmを超えると最終的に得られるR1-T1-B系焼結体の結晶粒径が大きくなり過ぎ、高いHcJを得ることが困難となるため好ましくない。粒径D50は好ましくは、3μm以上5μm以下である。 Next, the process of preparing the R1-T1-B based sintered body will be described. The step of preparing the R1-T1-B based sintered body can be prepared using a general manufacturing method typified by the RTB based sintered magnet. The R1-T1-B-based sintered body is crushed in a magnetic field after the raw material alloy is pulverized to a particle size D 50 (volume center value obtained by measurement by air flow dispersion type laser diffraction = D 50 ) of 3 μm to 10 μm. It is preferable to perform orientation and sintering. As an example, a material alloy that has been prepared in such a strip casting method, after the particle size D 50 by using a jet mill is ground to 3μm over 10μm or less, and molded in a magnetic field, 900 ° C. or higher 1100 ° C. or less It can be prepared by sintering at a temperature of The size less than D 50 of the material alloy is 3μm is very difficult to prepare a pulverized powder is not preferable because production efficiency is greatly reduced. Meanwhile, undesirably particle diameter D 50 is eventually only the crystal grain size of the resulting R1-T1-B based sintered body increases exceeds 10 [mu] m, it becomes difficult to obtain a high H cJ. The particle size D 50 is preferably 3 μm or more and 5 μm or less.
 R1-T1-B系焼結体は、前記の各条件を満たしていれば、一種類の原料合金(単一原料合金)から作製してもよいし、二種類以上の原料合金を用いてそれらを混合する方法(ブレンド法)によって作製してもよい。また、得られたR1-T1-B系焼結体は、必要に応じて切断や切削など公知の機械加工を行った後、後述する第一の熱処理及び第二の熱処理を実施してもよい。 The R1-T1-B based sintered body may be produced from one kind of raw material alloy (single raw material alloy) as long as the above-mentioned respective conditions are satisfied, or two or more kinds of raw material alloys may be used to produce them. It may be produced by the method of mixing (blending method). The obtained R1-T1-B-based sintered body may be subjected to known machining such as cutting or cutting if necessary, and then may be subjected to the first heat treatment and the second heat treatment described later. .
 (R2-Ga-Cu-Co系合金を準備する工程)
 まず、R2-Ga-Cu-Co系合金を準備する工程におけるR2-Ga-Cu-Co系合金の組成を説明する。以下に説明する特定の範囲でR、Ga、Cu、Coを全て含有することにより、後述する第一の熱処理を実施する工程においてR2-Ga-Cu-Co系合金中のR2、Ga、Cu及びCoをR1-T1-B系焼結体内部に導入することができる。
(Step of preparing R2-Ga-Cu-Co alloy)
First, the composition of the R2-Ga-Cu-Co alloy in the step of preparing the R2-Ga-Cu-Co alloy will be described. By including all of R, Ga, Cu, and Co within the specific range described below, R2, Ga, Cu, and R2 in the R2-Ga-Cu-Co alloy in the step of performing the first heat treatment described later Co can be introduced into the interior of the R1-T1-B sintered body.
 R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R2の50mass%以上がPrであることが好ましい。より高いHcJを得ることができるからである。ここで「R2の50mass%以上がPrである」とは、例えばR2-Ga-Cu-Co系合金中におけるR2の含有量が50mass%である場合、R2-Ga-Cu-Co系合金の25mass%以上がPrであることを言う。更に好ましくは、R2の70mass%以上がPrであり、最も好ましくはR2がPrのみ(不可避的不純物は含む)である。これにより、更に高いHcJを得ることができる。また、R2として、Dy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示の製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量はR2-Ga-Cu-Co系合金全体の10mass%以下(R2-Ga-Cu-Co系合金中の重希土類元素が10mass%以下)であることが好ましく、5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことが更に好ましい。R2-Ga-Cu-Co系合金のR2が重希土類元素を含有する場合も、R2の50%以上がPrであることが好ましく、重希土類元素を除いたR2がPrのみ(不可避的不純物は含む)であることがより好ましい。 R2 is at least one of rare earth elements and always contains at least one of Nd and Pr. It is preferable that 50 mass% or more of R2 is Pr. It is because higher H cJ can be obtained. Here, "50 mass% or more of R2 is Pr" means, for example, 25 mass of R2-Ga-Cu-Co alloy when the content of R2 in R2-Ga-Cu-Co alloy is 50 mass%. It says that% or more is Pr. More preferably, 70 mass% or more of R2 is Pr, and most preferably, R2 is only Pr (including unavoidable impurities). Thereby, a further higher HcJ can be obtained. In addition, a small amount of heavy rare earth elements such as Dy, Tb, Gd and Ho may be contained as R2. However, according to the manufacturing method of the present disclosure, sufficiently high HcJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 10 mass% or less of the entire R2-Ga-Cu-Co alloy (the heavy rare earth element in the R2-Ga-Cu-Co alloy is 10 mass% or less), It is more preferable that it is 5 mass% or less, and it is still more preferable that it does not contain (substantially 0 mass%). Even when R2 of the R2-Ga-Cu-Co alloy contains a heavy rare earth element, it is preferable that 50% or more of R2 is Pr, and R2 excluding the heavy rare earth element is only Pr (including unavoidable impurities) It is more preferred that
 R2の含有量はR2-Ga-Cu-Co系合金全体の35mass%以上85mass%未満である。R2の含有量が35mass%未満では後述する第一の熱処理で拡散が十分に進行しない可能性がある。一方、R2の含有量が85mass%以上でも本開示の効果を得ることはできるが、R2-Ga-Cu-Co系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、R2の含有量はR2-Ga-Cu-Co系合金全体の85mass%未満が好ましい。R2の含有量は50mass%以上85mass%未満であることがより好ましく、60mass%以上85mass%未満であることが更に好ましい。より高いHcJを得ることができるからである。 The content of R2 is 35 mass% or more and less than 85 mass% of the entire R2-Ga-Cu-Co alloy. If the content of R2 is less than 35 mass%, diffusion may not sufficiently proceed in the first heat treatment described later. On the other hand, although the effect of the present disclosure can be obtained even if the content of R2 is 85 mass% or more, the alloy powder in the manufacturing process of the R2-Ga-Cu-Co based alloy becomes very active. As a result, significant oxidation, ignition and the like of the alloy powder may occur, so the content of R2 is preferably less than 85 mass% of the entire R2-Ga-Cu-Co alloy. The content of R2 is more preferably 50 mass% or more and less than 85 mass%, and still more preferably 60 mass% or more and less than 85 mass%. It is because higher H cJ can be obtained.
 Gaは、R2-Ga-Cu-Co系合金全体の2.5mass%以上30mass%以下である。Gaが2.5mass%未満では、後述する第一の熱処理を実施する工程においてR2-Ga-Cu-Co系合金中のCoがR1-T1-B系焼結体の内部に導入され難くなり高いBrを得ることができない。更に、R-T-Ga相の生成量が少なすぎて、高いHcJを得ることができない。一方、Gaが30mass%を超えると、Brが大幅に低下する可能性がある。Gaは4mass%以上20mass%以下であることがより好ましく、4mass%以上10mass%以下であることが更に好ましい。より高いBrと高いHcJを得ることができるからである。 Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Cu-Co alloy. If Ga is less than 2.5 mass%, it is difficult to introduce Co in the R2-Ga-Cu-Co alloy into the interior of the R1-T1-B sintered body in the step of performing the first heat treatment described later, which is high. I can not get B r . Furthermore, the amount of RT-Ga phase formed is too small to obtain high HcJ . On the other hand, if Ga is more than 30 mass%, B r may be lowered significantly. Ga is more preferably 4 mass% or more and 20 mass% or less, and still more preferably 4 mass% or more and 10 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.
 Cuは、R2-Ga-Cu-Co系合金全体の2.5mass%以上20mass%以下である。Cuが2.5mass%未満では、後述する第一の熱処理を実施する工程においてR2-Ga-Cu-Co系合金中のGa、Cu及びCoがR1-T1-B系焼結体の内部に導入され難くなり、高いBrを得ることができない。一方、Cuが20mass%を超えると、粒界におけるGaの存在比率が低下するため、R-T-Ga相の生成量が少なすぎて、高いHcJを得ることができない可能性がある。Cuは4mass%以上15mass%以下であることがより好ましく、4mass%以上10mass%以下であることが更に好ましい。より高いBrと高いHcJを得ることができるからである。 Cu is 2.5 mass% or more and 20 mass% or less of the entire R2-Ga-Cu-Co alloy. If Cu is less than 2.5 mass%, Ga, Cu and Co in the R2-Ga-Cu-Co alloy are introduced into the interior of the R1-T1-B sintered body in the step of performing the first heat treatment described later hardly be, it is impossible to obtain a high B r. On the other hand, if Cu exceeds 20 mass%, the abundance ratio of Ga at the grain boundaries decreases, so the amount of RT-Ga phase generated may be too small to obtain high HcJ . Cu is more preferably 4 mass% or more and 15 mass% or less, and still more preferably 4 mass% or more and 10 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.
 Coは、R2-Ga-Cu-Co系合金全体の10mass%超45mass%以下である。Coが10mass%以下では、最終的に得られるR-T-B系焼結磁石のBrを充分に高めることができない。一方、Coが45mass%を超えると、後述する第一の熱処理で拡散が十分に進行せず、高いBrと高いHcJを得ることができない可能性がある。Coは15mass%以上30mass%以下であることがより好ましい。より高いBrと高いHcJを得ることができるからである。 Co is more than 10% by mass and 45% by mass or less of the entire R2-Ga-Cu-Co alloy. Co is in the following 10 mass%, it is impossible to sufficiently enhance the finally obtained R-T-B based sintered magnet of B r. On the other hand, when Co exceeds 45Mass%, it may not be able to spread with a first heat treatment to be described later does not proceed sufficiently to obtain a high B r and high H cJ. As for Co, it is more preferable that they are 15 mass% or more and 30 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.
 また、本開示におけるR2-Ga-Cu-Co系合金では、R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式が成立している。このため、高いBr及び高いHcJを得ることができる。これは本開示の不等式を満足することにより、適切な量のR、Co、Ga及びCuを含む相が二粒子粒界に生成されるからだと考えられる。 Further, in the R2-Ga-Cu-Co-based alloy in the present disclosure, the inequality of R2 content> Co content> Ga content> Cu content is satisfied. Therefore, it is possible to obtain a high B r and a high H cJ. It is considered that this is because a phase containing appropriate amounts of R, Co, Ga and Cu is generated at two grain boundaries by satisfying the inequality of the present disclosure.
 R2-Ga-Cu-Co系合金は、上記元素の他にAl、Ag、Zn、Si、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。 In addition to the above elements, the R2-Ga-Cu-Co alloy may contain Al, Ag, Zn, Si, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.
 含有量は、Alは1.0mass%以下、Ag、Zn、Si、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。ただし、これらの元素の合計の含有量が20mass%を超えると、R2-Ga-Cu-Co系合金におけるR2-Ga-Cu-Coの含有量が少なくなり、高いBrと高いHcJを得ることができない可能性がある。そのため、R2-Ga-Cu-Co系合金におけるR2-Ga-Cu-Coの合計の含有量は80mass%以上が好ましく、90mass%以上が更に好ましい。 The content of Al is 1.0 mass% or less, Ag, Zn, Si, In, Sn, Zr, Nb, and Ti are 0.5 mass% or less, respectively, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr each 0.2 mass% or less, H, F, P, S, Cl 500 ppm or less, O 6000 ppm or less, N 1000 ppm or less, C 1500 ppm or less is preferable. However, the total content of these elements is more than 20mass%, R2-Ga-Cu -Co -based then the amount of R2-Ga-Cu-Co in the alloy, to obtain a high B r and high H cJ It may not be possible. Therefore, the total content of R2-Ga-Cu-Co in the R2-Ga-Cu-Co alloy is preferably 80 mass% or more, and more preferably 90 mass% or more.
 次にR2-Ga-Cu-Co系合金を準備する工程について説明する。R2-Ga-Cu-Co系合金は、Nd-Fe-B系焼結磁石に代表される一般的な製造方法において採用されている原料合金の作製方法、例えば、金型鋳造法やストリップキャスト法や単ロール超急冷法(メルトスピニング法)やアトマイズ法などを用いて準備することができる。また、R2-Ga-Cu-Co系合金は、前記によって得られた合金をピンミルなどの公知の粉砕手段によって粉砕されたものであってもよい。また、前記によって得られた合金の粉砕性を向上させるために、水素雰囲気中で700℃以下の熱処理を行って水素を含有させてから粉砕を行っても良い。 Next, a process of preparing an R2-Ga-Cu-Co based alloy will be described. The R2-Ga-Cu-Co alloy is a method of preparing a raw material alloy employed in a general manufacturing method represented by a Nd-Fe-B sintered magnet, for example, a die casting method and a strip casting method And single roll ultra-quenching method (melt spinning method) or atomization method. Further, the R2-Ga-Cu-Co based alloy may be one obtained by pulverizing the alloy obtained as described above by a known pulverizing means such as a pin mill. Further, in order to improve the grindability of the alloy obtained as described above, heat treatment at 700 ° C. or less in a hydrogen atmosphere may be performed to contain hydrogen and then grinding.
 (第一の熱処理を実施する工程)
 前記によって準備したR1-T1-B系焼結体の表面の少なくとも一部に、前記R2-Ga-Cu-Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で熱処理をする。本開示において、この熱処理を第一の熱処理という。これにより、R2-Ga-Cu-Co系合金からCu、Ga及びCoを含む液相が生成し、その液相がR1-T1-B系焼結体の粒界を経由して焼結体表面から内部に拡散導入される。第一の熱処理温度が700℃未満であると、Cu、Ga及びCoを含む液相量が少なすぎて、高いBrと高いHcJを得ることができない可能性がある。一方、1100℃を超えると主相の異常粒成長が起こり、HcJが低下する可能性がある。第一の熱処理温度は、800℃以上1000℃以下が好ましい。より高いBrと高いHcJを得ることができるからである。なお、熱処理時間はR1-T1-B系焼結体やR2-Ga-Cu-Co系合金の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下が更に好ましい。また、R2-Ga-Cu-Co系合金は、R1-T1-B系焼結体の重量に対し2mass%以上30mass%以下準備した方が好ましい。R2-Ga-Cu-Co系合金がR1-T1-B系焼結体の重量に対し2mass%未満であるとHcJが低下する可能性がある。一方、30mass%を超えるとBrが低下する可能性がある。
(Step of carrying out the first heat treatment)
At least a portion of the R2-Ga-Cu-Co alloy is brought into contact with at least a portion of the surface of the R1-T1-B sintered body prepared as described above, and the temperature is 700 ° C. or higher in a vacuum or inert gas atmosphere. Heat treatment is performed at a temperature of 1100 ° C. or less. In the present disclosure, this heat treatment is referred to as a first heat treatment. As a result, a liquid phase containing Cu, Ga and Co is generated from the R2-Ga-Cu-Co alloy, and the liquid phase passes through the grain boundaries of the R1-T1-B sintered body, and the surface of the sintered body is produced. It is diffused from inside to inside. When the first heat treatment temperature is lower than 700 ° C., Cu, and amount of liquid phase containing Ga and Co is too small, it may not be able to obtain a high B r and high H cJ. On the other hand, when the temperature exceeds 1100 ° C., abnormal grain growth of the main phase occurs and H cJ may decrease. The first heat treatment temperature is preferably 800 ° C. or more and 1000 ° C. or less. This is because it is possible to obtain a higher B r and a high H cJ. The heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-B sintered body and R2-Ga-Cu-Co alloy, the heat treatment temperature, etc., but 5 minutes or more and 20 hours or less is preferable, 10 More preferably, minutes to 15 hours and still more preferably 30 minutes to 10 hours. Further, it is preferable to prepare the R2-Ga-Cu-Co-based alloy in an amount of 2 mass% or more and 30 mass% or less with respect to the weight of the R1-T1-B-based sintered body. If the R2-Ga-Cu-Co alloy is less than 2 mass% with respect to the weight of the R1-T1-B sintered body, there is a possibility that HcJ may be reduced. On the other hand, there is a possibility that the B r decreases exceeds 30 mass%.
 第一の熱処理は、R1-T1-B系焼結体表面に、任意形状のR2-Ga-Cu-Co系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R1-T1-B系焼結体表面をR2-Ga-Cu-Co系合金の粉末層で覆い、第一の熱処理を行うことができる。例えば、R2-Ga-Cu-Co系合金を分散媒中に分散させたスラリーをR1-T1-B系焼結体表面に塗布した後、分散媒を蒸発させてR2-Ga-Cu-Co系合金とR1-T1-B系焼結体とを接触させてもよい。また、後述する実験例に示すように、R2-Ga-Cu-Co系合金は、少なくともR1-T1-B系焼結体の配向方向に対して垂直な表面に接触させるように配置することが好ましい。なお、分散媒として、アルコール(エタノール等)、NMP(N-メチルピロリドン)、アルデヒド及びケトンを例示できる。また、第一の熱処理が実施されたR1-T1-B系焼結体に対して切断や切削など公知の機械加工を行ってもよい。 The first heat treatment can be performed by disposing an R2-Ga-Cu-Co alloy having an arbitrary shape on the surface of the R1-T1-B-based sintered body and using a known heat treatment apparatus. For example, the first heat treatment can be performed by covering the surface of the R1-T1-B-based sintered body with a powder layer of an R2-Ga-Cu-Co-based alloy. For example, after a slurry in which an R2-Ga-Cu-Co alloy is dispersed in a dispersion medium is applied to the surface of an R1-T1-B sintered body, the dispersion medium is evaporated to form an R2-Ga-Cu-Co system. The alloy and the R1-T1-B sintered body may be in contact with each other. In addition, as shown in the experimental example described later, the R2-Ga-Cu-Co alloy may be arranged to be in contact with the surface perpendicular to the orientation direction of at least the R1-T1-B sintered body. preferable. Examples of the dispersion medium include alcohols (ethanol etc.), NMP (N-methylpyrrolidone), aldehydes and ketones. Also, known machining such as cutting or cutting may be performed on the R1-T1-B-based sintered body subjected to the first heat treatment.
 (第二の熱処理を実施する工程)
 第一の熱処理が実施されたR1-T1-B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で熱処理を行う。本開示においてこの熱処理を第二の熱処理という。第二の熱処理を行うことにより、高いBrと高いHcJを得ることができる。第二の熱処理の温度が450℃未満及び600℃超の場合は、R-T-Ga相(典型的にはR613Z相(ZはCu及びGaの少なくとも1つ))の生成量が少なすぎて、高いBrと高いHcJを得ることができない可能性がある。第二の熱処理温度は、480℃以上560℃以下が好ましい。より高いHcJを得ることができる。なお、熱処理時間はR1-T1-B系焼結体の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下が更に好ましい。
(Step of carrying out the second heat treatment)
The R1-T1-B-based sintered body subjected to the first heat treatment is heat-treated at a temperature of 450 ° C. to 600 ° C. in a vacuum or an inert gas atmosphere. In the present disclosure, this heat treatment is referred to as a second heat treatment. By performing the second heat treatment, it is possible to obtain a high B r and high H cJ. When the temperature of the second heat treatment is less than 450 ° C. and more than 600 ° C., the amount of RT-Ga phase (typically, R 6 T 13 Z phase (Z is at least one of Cu and Ga)) There is a possibility that high B r and high H cJ can not be obtained due to too little. The second heat treatment temperature is preferably 480 ° C. or more and 560 ° C. or less. Higher H cJ can be obtained. The heat treatment time is appropriately set depending on the composition and dimensions of the R1-T1-B sintered body, the heat treatment temperature, etc., but it is preferably 5 minutes to 20 hours, more preferably 10 minutes to 15 hours, and 30 More preferably, minutes to 10 hours.
 なお、前記のR613Z相(R613Z化合物)において、Rは希土類元素のうち少なくとも一種でありPr及びNdの少なくとも一方を必ず含み、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。R613Z化合物は代表的にはNd6Fe13Ga化合物である。また、R613Z化合物はLa6Co11Ga3型結晶構造を有する。R613Z化合物はその状態によってはR613-δZ1+δ化合物になっている場合がある。なお、R-T-B系焼結磁石中に比較的多くのCu、Al及びSiが含有される場合、R613-δ(Ga1-a-b-cCuaAlbSic1+δになっている場合がある。 In the above R 6 T 13 Z phase (R 6 T 13 Z compound), R is at least one rare earth element and necessarily includes at least one of Pr and Nd, and T is at least one transition metal element. Yes Fe must be included. The R 6 T 13 Z compound is typically an Nd 6 Fe 13 Ga compound. Further, the R 6 T 13 Z compound has a La 6 Co 11 Ga 3 type crystal structure. The R 6 T 13 Z compound may be an R 6 T 13 − δZ 1+ δ compound depending on the state. When relatively large amounts of Cu, Al, and Si are contained in the RTB-based sintered magnet, the R 6 T 13- δ (Ga 1 -abc Cu a Al b Si c ) 1+ δ It may have been.
 前記の第二の熱処理を実施する工程によって得られたR-T-B系焼結磁石は、切断や切削など公知の機械加工を行ったり、耐食性を付与するためのめっきなど、公知の表面処理を行うことができる。また、本開示の製造方法により得られたR-T-B系焼結磁石は、前記R-T-B系焼結磁石におけるFe又はCo、Al、Mn、Siの少なくとも1つとFeをT2(R1-T1-B系焼結体におけるT1に相当)としたとき、Bに対するT2のmol比([T2]/[B])が14.0超であり、R、Fe、B、Cu、Gaを含有している。更に、R、Fe、B、Cu、Ga以外にもCo、Al、Ag、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。 The RTB-based sintered magnet obtained by the step of carrying out the second heat treatment described above is subjected to known surface treatment such as plating for imparting corrosion resistance or performing known machining such as cutting or cutting. It can be performed. In addition, the RTB-based sintered magnet obtained by the production method of the present disclosure is characterized in that at least one of Fe or Co, Al, Mn, Si and Fe in the RTB-based sintered magnet is T2 ( The molar ratio of T2 to B ([T2] / [B]) is more than 14.0, and R, Fe, B, Cu, and Ga are equivalent to T1 in the R1-T1-B-based sintered body. Contains In addition to R, Fe, B, Cu, Ga, Co, Al, Ag, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.
<第2の実施形態>
 次に、本開示による第2の実施形態におけるR-T-B系焼結磁石の製造方法を説明する。
Second Embodiment
Next, a method of manufacturing the RTB-based sintered magnet according to the second embodiment of the present disclosure will be described.
 本開示による第2の実施形態におけるR-T-B系焼結磁石の製造方法は、図4に示すように、R1-T1-Cu-B系焼結体を準備する工程S110と、R2-Ga-Co系合金を準備する工程S120とを含む。R1-T1-Cu-B系焼結体を準備する工程S110と、R2-Ga-Co系合金を準備する工程S120との順序は任意であり、それぞれ、異なる場所で製造されたR1-T1-Cu-B系焼結体及びR2-Ga-Co系合金を用いてもよい。 As shown in FIG. 4, the method of manufacturing the RTB-based sintered magnet according to the second embodiment of the present disclosure includes a step S110 of preparing an R1-T1-Cu-B-based sintered body; And S120 of preparing a Ga—Co alloy. The order of the step S110 of preparing the R1-T1-Cu-B-based sintered body and the step S120 of preparing the R2-Ga-Co-based alloy is arbitrary, and each of the R1-T1-made in different places is manufactured. A Cu-B based sintered body and an R2-Ga-Co based alloy may be used.
 R1-T1-Cu-B系焼結体においては、下記(B1)~(B4)が成立している。
(B1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1-T1-Cu-B系焼結体全体の27mass%以上35mass%以下である。
(B2)T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上である。
(B3)Bに対するT1のmol比([T1]/[B])が14.0超15.0以下である。
(B4)Cuの含有量は、R1-T1-Cu-B系焼結体全体の0.1mass%以上1.5mass%以下である。
In the R1-T1-Cu-B based sintered body, the following (B1) to (B4) hold.
(B1) R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the whole R1-T1-Cu-B sintered body .
(B2) T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si. T1 necessarily contains Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more.
(B3) The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.
The content of (B4) Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-Cu-B-based sintered body.
 本開示におけるBに対するT1のmol比([T1]/[B])とは、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。 The molar ratio of T1 to B ([T1] / [B]) in the present disclosure is the analysis value (mass%) of each element (Fe or at least one of Fe, Co, Al, Mn, Si and Fe) constituting T1. Calculate the ratio of the atomic weight of each element divided by the atomic weight of each element (a) and the ratio (a /) of the analytical value (mass%) of B divided by the atomic weight of B (b) b).
 Bに対するT1のmol比([T1]/[B])が14.0を超えるということは、Bの含有比率がR214B化合物の化学量論組成比よりも低いことを意味している。言い換えると、R1-T1-Cu-B系焼結体において、主相(R214B化合物)の形成に使われるT1の量に対して相対的にB量が少ない。 The fact that the molar ratio of T1 to B ([T1] / [B]) exceeds 14.0 means that the content ratio of B is lower than the stoichiometric composition ratio of the R 2 T 14 B compound. There is. In other words, in the R1-T1-Cu-B-based sintered body, the amount of B is relatively smaller than the amount of T1 used to form the main phase (R 2 T 14 B compound).
 R2-Ga-Co系合金においては、以下の(B5)~(B8)が成立している。
(B5)R2は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2-Ga-Co系合金全体の35mass%以上87mass%未満である。
(B6)Gaの含有量は、R2-Ga-Co系合金全体の2.5mass%以上30mass%以下である。
(B7)Coの含有量は、R2-Ga-Co系合金全体の10mass%超45mass%以下である。
(B8)R2の含有量>Coの含有量>Gaの含有量の不等式が成立する。
The following (B5) to (B8) hold true for the R2-Ga-Co based alloy.
(B5) R2 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R2 is 35 mass% or more and less than 87 mass% of the entire R2-Ga-Co alloy.
The content of (B6) Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Co alloy.
The content of (B7) Co is more than 10% by mass and 45% by mass or less of the entire R2-Ga-Co-based alloy.
(B8) R2 content> Co content> Ga content inequality holds.
 本開示によるR-T-B系焼結磁石の製造方法(第2の実施形態)では、主相(R214B化合物)形成に使われるTの量に対して化学量論比で相対的にB量が少ないR1-T1-Cu-B系焼結体の表面の少なくとも一部にR2-Ga-Co系合金を接触させ、図4に示すように、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程S130と、この第一の熱処理が実施されたR1-T1-Cu-B系焼結体に対して真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程S140を行う。これにより、高いBr及び高いHcJを有するR-T-B系焼結磁石を得ることができる。 In the method of producing an RTB-based sintered magnet according to the present disclosure (the second embodiment), the relative stoichiometric ratio to the amount of T used to form the main phase (R 2 T 14 B compound) The R2-Ga-Co alloy is brought into contact with at least a part of the surface of the R1-T1-Cu-B sintered body having a small amount of B, as shown in FIG. 4, in a vacuum or inert gas atmosphere, Step S130 of performing the first heat treatment at a temperature of 700 ° C. or more and 1100 ° C. or less, and in a vacuum or inert gas atmosphere for the R1-T1-Cu-B-based sintered body subjected to the first heat treatment Step S140 of performing the second heat treatment at a temperature of 450 ° C. or more and 600 ° C. or less is performed. Thus, it is possible to obtain the R-T-B based sintered magnet having a high B r and a high H cJ.
 第一の熱処理を実施する工程S130と、第二の熱処理を実施する工程S140との間に他の工程、例えば冷却工程などが実行され得る。 Another step, such as a cooling step, may be performed between step S130 of performing the first heat treatment and step S140 of performing the second heat treatment.
 本発明者らは検討の結果、低B組成である特定の組成を有するR1-T1-Cu-B系焼結体の表面の少なくとも一部に、Co含有量が比較的多いR2-Ga-Co系合金を接触させて特定の熱処理を実施した場合でも、最終的に得られる焼結磁石は、高いBrと高いHcJを実現できることがわかった。 As a result of investigations, the present inventors have found that R2-Ga-Co having a relatively high Co content on at least a part of the surface of the R1-T1-Cu-B-based sintered body having a specific composition having a low B composition. even if after specific heat treatment by contacting the system alloy, finally sintered magnet obtained has been found to be achieved a high B r and high H cJ.
 本開示によるR-T-B系焼結磁石の製造方法(第2の実施形態)は、本開示の特定組成のR2-Ga-Co系合金によりR2、Ga、Coを磁石表面から内部に導入することで、高いBrと高いHcJを実現することができる。 The method for producing an RTB-based sintered magnet according to the present disclosure (the second embodiment) introduces R2, Ga, and Co into the interior from the magnet surface with the R2-Ga-Co-based alloy of the specific composition of the present disclosure. by, it is possible to realize a high B r and high H cJ.
 (R1-T1-Cu-B系焼結体を準備する工程)
 まず、R1-T1-Cu-B系焼結体を準備する工程における焼結体の組成を説明する。
(Step of preparing R1-T1-Cu-B sintered body)
First, the composition of the sintered body in the step of preparing the R1-T1-Cu-B-based sintered body will be described.
 R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R1-T1-Cu-B系焼結体のHcJを向上させるために、一般的に用いられるDy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示による製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量は、R1-T1-Cu-B系焼結体の1mass%以下であることが好ましく、0.5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことが更に好ましい。 R1 is at least one of rare earth elements and always contains at least one of Nd and Pr. In order to improve HcJ of the R1-T1-Cu-B-based sintered body, a small amount of heavy rare earth elements such as Dy, Tb, Gd, and Ho generally used may be contained. However, according to the manufacturing method according to the present disclosure, sufficiently high HcJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 1 mass% or less of the R1-T1-Cu-B-based sintered body, more preferably 0.5 mass% or less, and it is not contained (substantially) More preferably, 0 mass%).
 R1の含有量は、R1-T1-Cu-B系焼結体全体の27mass%以上35mass%以下である。R1の含有量が27mass%未満では焼結過程で液相が十分に生成せず、R1-T1-Cu-B系焼結体を十分に緻密化することが困難になる。一方、R1の含有量が35mass%を超えても本開示の効果を得ることはできるが、R1-T1-Cu-B系焼結体の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、35mass%以下が好ましい。R1の含有量は、27.5mass%以上33mass%以下であることがより好ましく、28mass%以上32mass%以下であることが更に好ましい。 The content of R1 is 27 mass% or more and 35 mass% or less of the whole of the R1-T1-Cu-B-based sintered body. If the content of R1 is less than 27 mass%, a liquid phase is not sufficiently generated in the sintering process, and it becomes difficult to fully densify the R1-T1-Cu-B-based sintered body. On the other hand, although the effect of the present disclosure can be obtained even if the content of R1 exceeds 35 mass%, the alloy powder in the manufacturing process of the R1-T1-Cu-B-based sintered body becomes very active. As a result, significant oxidation or ignition of the alloy powder may occur, so 35 mass% or less is preferable. The content of R1 is more preferably 27.5 mass% or more and 33 mass% or less, and still more preferably 28 mass% or more and 32 mass% or less.
 T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有する。すなわち、T1はFeのみであってもよいし、Co、Al、Mn、Siの少なくとも1つとFeからなってもよい。ただし、T1全体に対するFeの含有量は80mass%以上である。Feの含有量が80mass%未満であると、Br及びHcJが低下する可能性がある。ここで、「T1全体に対するFeの含有量は80mass%以上」とは、例えばR1-T1-Cu-B系焼結体中におけるT1の含有量が70mass%である場合、R1-T1-Cu-B系焼結体の56mass%以上がFeであることを言う。好ましくはT1全体に対するFeの含有量は90mass%以上である。より高いBrと高いHcJを得ることができるからである。Co、Al、Mn、Siを含有する場合の好ましい含有量は、R1-T1-Cu-B系焼結体全体のCoは5.0mass%以下、Alは1.5mass%以下、Mn及びSiはそれぞれ0.2mass%以下である。 T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and T1 always contains Fe. That is, T1 may be Fe alone, or may be Fe and at least one of Co, Al, Mn, and Si. However, the content of Fe with respect to the whole T1 is 80 mass% or more. When the content of Fe is less than 80 mass%, B r and H cJ may be reduced. Here, "the content of Fe with respect to the whole T1 is 80 mass% or more" means, for example, when the content of T1 in the R1-T1-Cu-B-based sintered body is 70 mass%, R1-T1-Cu- It says that 56 mass% or more of B-type sintered compact is Fe. Preferably, the content of Fe with respect to the whole of T1 is 90 mass% or more. This is because it is possible to obtain a higher B r and a high H cJ. The preferable content in the case of containing Co, Al, Mn, and Si is 5.0 mass% or less of Co in the entire R1-T1-Cu-B sintered body, 1.5 mass% or less of Al, and Mn and Si Each is 0.2 mass% or less.
 Bに対するT1のmol比([T1]/[B])は14.0超15.0以下である。 The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.
 本開示におけるBに対するT1のmol比([T1]/[B])とは、前述したように、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。 As described above, the molar ratio of T1 to B ([T1] / [B]) in the present disclosure is an analysis of each element (Fe or at least one of Co, Al, Mn, Si, and Fe) constituting T1. The value (mass%) divided by the atomic weight of each element is determined, and the sum of the values (a) and the analytical value of B (mass%) divided by the atomic weight of B (b) Ratio (a / b).
 Bに対するT1のmol比([T1]/[B])が14.0を超えるという条件は、主相(R214B化合物)形成に使われるT1量に対して相対的にB量が少ないことを示している。[T1]/[B]が14.0以下であると高いHcJを得ることができない。一方、[T1]/[B]が15.0を超えるとBrが低下する可能性がある。[T1]/[B]は14.3以上15.0以下であることが好ましい。更に高いBrと高いHcJを得ることができる。また、Bの含有量はR1-T1-Cu-B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。 The condition that the molar ratio of T1 to B ([T1] / [B]) exceeds 14.0 means that the amount of B is relatively to the amount of T1 used to form the main phase (R 2 T 14 B compound) It shows that there are few. If [T1] / [B] is 14.0 or less, high H cJ can not be obtained. On the other hand, there is a possibility to lower the B r exceeds the 15.0 [T1] / [B] . [T1] / [B] is preferably 14.3 or more and 15.0 or less. It is possible to obtain a higher B r and a high H cJ. The content of B is preferably 0.9 mass% or more and less than 1.0 mass% of the entire R1-T1-Cu-B-based sintered body.
 Cuの含有量は、R1-T1-Cu-B系焼結体全体の0.1mass%以上1.5mass%以下である。Cuが0.1mass%未満であると、後述する第一の熱処理で拡散が十分に進行せず、高いHcJを得ることができない可能性がある。一方、Cuが1.5mass%を超えるとBrが低下する可能性がある。 The content of Cu is 0.1 mass% or more and 1.5 mass% or less of the whole of the R1-T1-Cu-B-based sintered body. If Cu is less than 0.1 mass%, diffusion may not sufficiently proceed in the first heat treatment described later, and high H cJ may not be obtained. On the other hand, Cu is the exceeding 1.5 mass% B r may be reduced.
 本実施形態においても、R1-T1-Cu-B系焼結体は、上記元素の他にGa、Ag、Zn、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。含有量は、Ga、Ag、Zn、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。これらの元素の合計の含有量は、R1-T1-Cu-B系焼結体全体の5mass%以下が好ましい。これらの元素の合計の含有量がR1-T1-Cu-B系焼結体全体の5mass%を超えると高いBrと高いHcJを得ることができない可能性がある。 Also in this embodiment, the R1-T1-Cu-B-based sintered body contains Ga, Ag, Zn, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, in addition to the above elements. Mo, V, Y, La, Ce, Sm, Ca, Mg, Cr, H, F, P, S, Cl, O, N, C and the like may be contained. The content of each of Ga, Ag, Zn, In, Sn, Zr, Nb and Ti is 0.5 mass% or less, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, It is preferable that Ca, Mg and Cr each be 0.2 mass% or less, H, F, P, S and Cl be 500 ppm or less, O be 6000 ppm or less, N be 1000 ppm or less and C be 1500 ppm or less. The total content of these elements is preferably 5% by mass or less of the entire R1-T1-Cu-B-based sintered body. The total content of these elements may not be able to obtain more than the high B r and high H cJ of 5 mass% of the total R1-T1-Cu-B-based sintered body.
 次にR1-T1-Cu-B系焼結体を準備する工程について説明する。R1-T1-Cu-B系焼結体を準備する工程は、R-T-B系焼結磁石に代表される一般的な製造方法を用いて準備することができる。R1-T1-Cu-B系焼結体は、原料合金を粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値=D50)が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことが好ましい。一例を挙げると、ストリップキャスト法などで作製された原料合金を、ジェットミル装置などを用いて粒径D50が3μm以上10μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。原料合金の粒径D50が3μm未満では粉砕粉を作製するのが非常に困難であり、生産効率が大幅に低下するため好ましくない。一方、粒径D50が10μmを超えると最終的に得られるR1-T1-Cu-B系焼結体の結晶粒径が大きくなり過ぎ、高いHcJを得ることが困難となるため好ましくない。粒径D50は好ましくは、3μm以上5μm以下である。 Next, the process of preparing the R1-T1-Cu-B based sintered body will be described. The step of preparing the R1-T1-Cu-B based sintered body can be prepared using a general manufacturing method typified by an RTB based sintered magnet. The R1-T1-Cu-B sintered body is a magnetic field after the raw material alloy is crushed to a particle size D 50 (volume center value obtained by measurement by air flow distribution laser diffraction = D 50 ) of 3 μm to 10 μm. It is preferable to carry out sintering by orientating in the inside. As an example, a material alloy that has been prepared in such a strip casting method, after the particle size D 50 by using a jet mill is ground to 3μm over 10μm or less, and molded in a magnetic field, 900 ° C. or higher 1100 ° C. or less It can be prepared by sintering at a temperature of The size less than D 50 of the material alloy is 3μm is very difficult to prepare a pulverized powder is not preferable because production efficiency is greatly reduced. Meanwhile, undesirably particle diameter D 50 is eventually only the crystal grain size of the R1-T1-Cu-B based sintered body obtained becomes large exceeding 10 [mu] m, it becomes difficult to obtain a high H cJ. The particle size D 50 is preferably 3 μm or more and 5 μm or less.
 R1-T1-Cu-B系焼結体は、前記の各条件を満たしていれば、一種類の原料合金(単一原料合金)から作製してもよいし、二種類以上の原料合金を用いてそれらを混合する方法(ブレンド法)によって作製してもよい。また、得られたR1-T1-Cu-B系焼結体は、必要に応じて切断や切削など公知の機械加工を行った後、後述する第一の熱処理及び第二の熱処理を実施してもよい。 The R1-T1-Cu-B sintered body may be produced from one kind of raw material alloy (single raw material alloy) as long as the above-mentioned respective conditions are satisfied, or two or more kinds of raw material alloys are used. It may be produced by a method of mixing them (blending method). In addition, the obtained R1-T1-Cu-B-based sintered body is subjected to known machining such as cutting and cutting, if necessary, and is then subjected to the first heat treatment and the second heat treatment described later. It is also good.
 (R2-Ga-Co系合金を準備する工程)
 まず、R2-Ga-Co系合金を準備する工程におけるR2-Ga-Co系合金の組成を説明する。以下に説明する特定の範囲でR、Ga、Coを全て含有することにより、後述する第一の熱処理を実施する工程においてR2-Ga-Co系合金中のR2、Ga、CoをR1-T1-Cu-B系焼結体内部に導入することができる。
(Step of preparing R2-Ga-Co alloy)
First, the composition of the R2-Ga-Co based alloy in the step of preparing the R2-Ga-Co based alloy will be described. By including all of R, Ga, and Co within the specific range described below, in the step of performing the first heat treatment described later, R1, Ga, and Co in the R2-Ga-Co alloy are R1-T1- It can be introduced into the inside of a Cu-B-based sintered body.
 R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R2の50mass%以上がPrであることが好ましい。より高いHcJを得ることができるからである。ここで「R2の50mass%以上がPrである」とは、例えばR2-Ga-Co系合金中におけるR2の含有量が50mass%である場合、R2-Ga-Co系合金の25mass%以上がPrであることを言う。更に好ましくは、R2の70mass%以上がPrであり、最も好ましくはR2がPrのみ(不可避的不純物は含む)である。これにより、更に高いHcJを得ることができる。また、R2として、Dy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示の製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量はR2-Ga-Co系合金全体の10mass%以下(R2-Ga-Co系合金中の重希土類元素が10mass%以下)であることが好ましく、5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことが更に好ましい。R2-Ga-Co系合金のR2が重希土類元素を含有する場合も、R2の50%以上がPrであることが好ましく、重希土類元素を除いたR2がPrのみ(不可避的不純物は含む)であることがより好ましい。 R2 is at least one of rare earth elements and always contains at least one of Nd and Pr. It is preferable that 50 mass% or more of R2 is Pr. It is because higher H cJ can be obtained. Here, "50 mass% or more of R2 is Pr" means that, for example, when the content of R2 in the R2-Ga-Co alloy is 50 mass%, 25 mass% or more of the R2-Ga-Co alloy is Pr Say that. More preferably, 70 mass% or more of R2 is Pr, and most preferably, R2 is only Pr (including unavoidable impurities). Thereby, a further higher HcJ can be obtained. In addition, a small amount of heavy rare earth elements such as Dy, Tb, Gd and Ho may be contained as R2. However, according to the manufacturing method of the present disclosure, sufficiently high HcJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 10 mass% or less of the entire R2-Ga-Co alloy (heavy rare earth element in the R2-Ga-Co alloy is 10 mass% or less), and is 5 mass% or less Some are more preferable, and it is more preferable not to contain (substantially 0 mass%). Even when R2 of the R2-Ga-Co alloy contains a heavy rare earth element, it is preferable that 50% or more of R2 is Pr, and R2 excluding the heavy rare earth element is only Pr (including unavoidable impurities). It is more preferable that
 R2の含有量はR2-Ga-Co系合金全体の35mass%以上87mass%未満である。R2の含有量が35mass%未満では後述する第一の熱処理で拡散が十分に進行しない可能性がある。一方、R2の含有量が87mass%以上でも本開示の効果を得ることはできるが、R2-Ga-Co系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、R2の含有量はR2-Ga-Co系合金全体の85mass%未満が好ましい。R2の含有量は50mass%以上85mass%未満であることがより好ましく、60mass%以上85mass%未満であることが更に好ましい。より高いHcJを得ることができるからである。 The content of R2 is 35 mass% or more and less than 87 mass% of the entire R2-Ga-Co alloy. If the content of R2 is less than 35 mass%, diffusion may not sufficiently proceed in the first heat treatment described later. On the other hand, although the effect of the present disclosure can be obtained even if the content of R2 is 87 mass% or more, the alloy powder in the manufacturing process of the R2-Ga-Co based alloy becomes very active. As a result, significant oxidation or ignition of the alloy powder may occur, so the content of R2 is preferably less than 85 mass% of the entire R2-Ga-Co based alloy. The content of R2 is more preferably 50 mass% or more and less than 85 mass%, and still more preferably 60 mass% or more and less than 85 mass%. It is because higher H cJ can be obtained.
 Gaは、R2-Ga-Co系合金全体の2.5mass%以上30mass%以下である。Gaが2.5mass%未満では、後述する第一の熱処理を実施する工程においてR2-Ga-Co系合金中のCoがR1-T1-Cu-B系焼結体の内部に導入され難くなり高いBrを得ることができない。更に、R-T-Ga相の生成量が少なすぎて、高いHcJを得ることができない。一方、Gaが30mass%を超えると、Brが大幅に低下する可能性がある。Gaは4mass%以上20mass%以下であることがより好ましく、4mass%以上10mass%以下であることが更に好ましい。より高いBrと高いHcJを得ることができるからである。 Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Co alloy. If Ga is less than 2.5 mass%, it is difficult to introduce Co in the R2-Ga-Co-based alloy into the inside of the R1-T1-Cu-B-based sintered body in the step of performing the first heat treatment described later, which is high. I can not get B r . Furthermore, the amount of RT-Ga phase formed is too small to obtain high HcJ . On the other hand, if Ga is more than 30 mass%, B r may be lowered significantly. Ga is more preferably 4 mass% or more and 20 mass% or less, and still more preferably 4 mass% or more and 10 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.
 Coは、R2-Ga-Co系合金全体の10mass%超45mass%以下である。Coが10mass%以下では、最終的に得られるR-T-B系焼結磁石のBrを充分に高めることができない。一方、Coが45mass%を超えると、後述する第一の熱処理で拡散が十分に進行せず、高いBrと高いHcJを得ることができない可能性がある。Coは15mass%以上30mass%以下であることがより好ましい。より高いBrと高いHcJを得ることができるからである。 Co is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Co alloy. Co is in the following 10 mass%, it is impossible to sufficiently enhance the finally obtained R-T-B based sintered magnet of B r. On the other hand, when Co exceeds 45Mass%, it may not be able to spread with a first heat treatment to be described later does not proceed sufficiently to obtain a high B r and high H cJ. As for Co, it is more preferable that they are 15 mass% or more and 30 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.
 また、本開示におけるR2-Ga-Cu-Co系合金では、R2の含有量>Coの含有量>Gaの含有量の不等式が成立している。このため、高いBr及び高いHcJを得ることができる。これは本開示の不等式を満足することにより、適切な量のR、Co及びGaを含む相が二粒子粒界に生成されるからだと考えられる。 Further, in the R2-Ga-Cu-Co based alloy in the present disclosure, the inequality of R2 content> Co content> Ga content is satisfied. Therefore, it is possible to obtain a high B r and a high H cJ. It is considered that this is because a phase containing appropriate amounts of R, Co and Ga is generated at two grain boundaries by satisfying the inequality of the present disclosure.
 R2-Ga-Co系合金は、上記元素の他にCu、Al、Ag、Zn、Si、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。 In addition to the above-mentioned elements, the R2-Ga-Co alloy includes Cu, Al, Ag, Zn, Si, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.
 含有量は、Cu、Alは1.0mass%以下、Ag、Zn、Si、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。ただし、これらの元素の合計の含有量が20mass%を超えると、R2-Ga-Co系合金におけるR2、Ga、Coの含有量が少なくなり、高いBrと高いHcJを得ることができない可能性がある。そのため、R2-Ga-Co系合金におけるR2、Ga、Coの合計の含有量は80mass%以上が好ましく、90mass%以上が更に好ましい。 The content of Cu, Al is 1.0 mass% or less, Ag, Zn, Si, In, Sn, Zr, Nb, and Ti is 0.5 mass% or less, respectively, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr each 0.2 mass% or less, H, F, P, S, Cl 500 ppm or less, O 6000 ppm or less, N 1000 ppm or less, As for C, 1500 ppm or less is preferable. However, when the total content of these elements exceeds 20mass%, R2-Ga-Co-based R2 in the alloy, Ga, then the amount of Co, can not be obtained a high B r and high H cJ There is sex. Therefore, the total content of R2, Ga and Co in the R2-Ga-Co alloy is preferably 80 mass% or more, and more preferably 90 mass% or more.
 次にR2-Ga-Co系合金を準備する工程について説明する。R2-Ga-Co系合金は、Nd-Fe-B系焼結磁石に代表される一般的な製造方法において採用されている原料合金の作製方法、例えば、金型鋳造法やストリップキャスト法や単ロール超急冷法(メルトスピニング法)やアトマイズ法などを用いて準備することができる。また、R2-Ga-Co系合金は、前記によって得られた合金をピンミルなどの公知の粉砕手段によって粉砕されたものであってもよい。また、前記によって得られた合金の粉砕性を向上させるために、水素雰囲気中で700℃以下の熱処理を行って水素を含有させてから粉砕を行っても良い。 Next, a process of preparing an R2-Ga-Co based alloy will be described. The R2-Ga-Co alloy is a method of preparing a raw material alloy employed in a general manufacturing method represented by a Nd-Fe-B sintered magnet, for example, a die casting method, a strip casting method or a single It can be prepared using a roll ultra-quenching method (melt spinning method) or an atomizing method. In addition, the R2-Ga-Co based alloy may be one obtained by pulverizing the alloy obtained as described above by a known pulverizing means such as a pin mill. Further, in order to improve the grindability of the alloy obtained as described above, heat treatment at 700 ° C. or less in a hydrogen atmosphere may be performed to contain hydrogen and then grinding.
 (第一の熱処理を実施する工程)
 前記によって準備したR1-T1-Cu-B系焼結体の表面の少なくとも一部に、前記R2-Ga-Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で熱処理をする。本開示において、この熱処理を第一の熱処理という。これにより、R2-Ga-Co系合金からGa及びCoを含む液相が生成し、その液相がR1-T1-Cu-B系焼結体の粒界を経由して焼結体表面から内部に拡散導入される。第一の熱処理温度が700℃未満であると、Ga及びCoを含む液相量が少なすぎて、高いBrと高いHcJを得ることができない可能性がある。一方、1100℃を超えると主相の異常粒成長が起こり、HcJが低下する可能性がある。第一の熱処理温度は、800℃以上1000℃以下が好ましい。より高いBrと高いHcJを得ることができるからである。なお、熱処理時間はR1-T1-Cu-B系焼結体やR2-Ga-Co系合金の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下が更に好ましい。また、R2-Ga-Co系合金は、R1-T1-Cu-B系焼結体の重量に対し2mass%以上30mass%以下準備した方が好ましい。R2-Ga-Co系合金がR1-T1-Cu-B系焼結体の重量に対し2mass%未満であるとHcJが低下する可能性がある。一方、30mass%を超えるとBrが低下する可能性がある。
(Step of carrying out the first heat treatment)
At least a portion of the R2-Ga-Co alloy is brought into contact with at least a portion of the surface of the R1-T1-Cu-B-based sintered body prepared as described above, and the temperature is 700 ° C. or higher in a vacuum or inert gas atmosphere. Heat treatment is performed at a temperature of 1100 ° C. or less. In the present disclosure, this heat treatment is referred to as a first heat treatment. As a result, a liquid phase containing Ga and Co is generated from the R2-Ga-Co alloy, and the liquid phase passes from the surface of the sintered body via the grain boundary of the R1-T1-Cu-B sintered body. Diffusion is introduced. When the first heat treatment temperature is lower than 700 ° C., and too small amount of liquid phase containing Ga and Co, there is a possibility that it is impossible to obtain a high B r and high H cJ. On the other hand, when the temperature exceeds 1100 ° C., abnormal grain growth of the main phase occurs and H cJ may decrease. The first heat treatment temperature is preferably 800 ° C. or more and 1000 ° C. or less. This is because it is possible to obtain a higher B r and a high H cJ. The heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-Cu-B sintered body and R2-Ga-Co alloy, the heat treatment temperature, etc., but 5 minutes or more and 20 hours or less is preferable, 10 More preferably, minutes to 15 hours and still more preferably 30 minutes to 10 hours. The R2-Ga-Co alloy is preferably prepared in an amount of 2 mass% or more and 30 mass% or less based on the weight of the R1-T1-Cu-B sintered body. If the R2-Ga-Co based alloy is less than 2 mass% with respect to the weight of the R1-T1-Cu-B based sintered body, there is a possibility that HcJ may be reduced. On the other hand, there is a possibility that the B r decreases exceeds 30 mass%.
 第一の熱処理は、R1-T1-Cu-B系焼結体表面に、任意形状のR2-Ga-Co系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R1-T1-Cu-B系焼結体表面をR2-Ga-Co系合金の粉末層で覆い、第一の熱処理を行うことができる。例えば、R2-Ga-Co系合金を分散媒中に分散させたスラリーをR1-T1-Cu-B系焼結体表面に塗布した後、分散媒を蒸発させてR2-Ga-Co系合金とR1-T1-Cu-B系焼結体とを接触させてもよい。また、後述する実験例に示すように、R2-Ga-Co系合金は、少なくともR1-T1-Cu-B系焼結体の配向方向に対して垂直な表面に接触させるように配置することが好ましい。なお、分散媒として、アルコール(エタノール等)、NMP(N-メチルピロリドン)、アルデヒド及びケトンを例示できる。また、第一の熱処理が実施されたR1-T1-Cu-B系焼結体に対して切断や切削など公知の機械加工を行ってもよい。 The first heat treatment can be performed by disposing an R2-Ga-Co-based alloy having an arbitrary shape on the surface of the R1-T1-Cu-B-based sintered body and using a known heat treatment apparatus. For example, the first heat treatment can be performed by covering the surface of the R1-T1-Cu-B-based sintered body with a powder layer of an R2-Ga-Co-based alloy. For example, a slurry in which an R2-Ga-Co alloy is dispersed in a dispersion medium is applied to the surface of an R1-T1-Cu-B sintered body, and then the dispersion medium is evaporated to form an R2-Ga-Co alloy. The sintered body of R1-T1-Cu-B may be brought into contact. In addition, as shown in the experimental example described later, the R2-Ga-Co based alloy may be arranged to be in contact with the surface perpendicular to the orientation direction of at least the R1-T1-Cu-B based sintered body. preferable. Examples of the dispersion medium include alcohols (ethanol etc.), NMP (N-methylpyrrolidone), aldehydes and ketones. Also, known machining such as cutting or cutting may be performed on the R1-T1-Cu-B-based sintered body subjected to the first heat treatment.
 (第二の熱処理を実施する工程)
 第一の熱処理が実施されたR1-T1-Cu-B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で熱処理を行う。本開示においてこの熱処理を第二の熱処理という。第二の熱処理を行うことにより、高いBrと高いHcJを得ることができる。第二の熱処理の温度が450℃未満及び600℃超の場合は、R-T-Ga相(典型的にはR613Z相(ZはCu及びGaの少なくとも1つ))の生成量が少なすぎて、高いBrと高いHcJを得ることができない可能性がある。第二の熱処理温度は、480℃以上560℃以下が好ましい。より高いHcJを得ることができる。なお、熱処理時間はR1-T1-Cu-B系焼結体の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下が更に好ましい。
(Step of carrying out the second heat treatment)
The R1-T1-Cu-B-based sintered body subjected to the first heat treatment is heat-treated at a temperature of 450 ° C. to 600 ° C. in a vacuum or an inert gas atmosphere. In the present disclosure, this heat treatment is referred to as a second heat treatment. By performing the second heat treatment, it is possible to obtain a high B r and high H cJ. When the temperature of the second heat treatment is less than 450 ° C. and more than 600 ° C., the amount of RT-Ga phase (typically, R 6 T 13 Z phase (Z is at least one of Cu and Ga)) There is a possibility that high B r and high H cJ can not be obtained due to too little. The second heat treatment temperature is preferably 480 ° C. or more and 560 ° C. or less. Higher H cJ can be obtained. The heat treatment time is set appropriately depending on the composition and dimensions of the R1-T1-Cu-B sintered body, the heat treatment temperature, etc., but it is preferably 5 minutes to 20 hours and more preferably 10 minutes to 15 hours. More preferably, 30 minutes or more and 10 hours or less.
 なお、前記のR613Z相(R613Z化合物)において、Rは希土類元素のうち少なくとも一種でありPr及びNdの少なくとも一方を必ず含み、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。R613Z化合物は代表的にはNd6Fe13Ga化合物である。また、R613Z化合物はLa6Co11Ga3型結晶構造を有する。R613Z化合物はその状態によってはR613-δZ1+δ化合物になっている場合がある。なお、R-T-B系焼結磁石中に比較的多くのCu、Al及びSiが含有される場合、R613-δ(Ga1-a-b-cCuaAlbSic1+δになっている場合がある。 In the above R 6 T 13 Z phase (R 6 T 13 Z compound), R is at least one rare earth element and necessarily includes at least one of Pr and Nd, and T is at least one transition metal element. Yes Fe must be included. The R 6 T 13 Z compound is typically an Nd 6 Fe 13 Ga compound. Further, the R 6 T 13 Z compound has a La 6 Co 11 Ga 3 type crystal structure. The R 6 T 13 Z compound may be an R 6 T 13 − δZ 1+ δ compound depending on the state. When relatively large amounts of Cu, Al, and Si are contained in the RTB-based sintered magnet, the R 6 T 13- δ (Ga 1 -abc Cu a Al b Si c ) 1+ δ It may have been.
 前記の第二の熱処理を実施する工程によって得られたR-T-B系焼結磁石は、切断や切削など公知の機械加工を行ったり、耐食性を付与するためのめっきなど、公知の表面処理を行うことができる。また、本開示の製造方法により得られたR-T-B系焼結磁石は、前記R-T-B系焼結磁石におけるFe又はCo、Al、Mn、Siの少なくとも1つとFeをT2(R1-T1-Cu-B系焼結体におけるT1に相当)としたとき、Bに対するT2のmol比([T2]/[B])が14.0超であり、R、Fe、B、Cu、Gaを含有している。更に、R、Fe、B、Cu、Ga以外にもCo、Al、Ag、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。 The RTB-based sintered magnet obtained by the step of carrying out the second heat treatment described above is subjected to known surface treatment such as plating for imparting corrosion resistance or performing known machining such as cutting or cutting. It can be performed. In addition, the RTB-based sintered magnet obtained by the production method of the present disclosure is characterized in that at least one of Fe or Co, Al, Mn, Si and Fe in the RTB-based sintered magnet is T2 ( The molar ratio of T2 to B ([T2] / [B]) is more than 14.0, and R, Fe, B, and Cu are equivalent to T1 in the R1-T1-Cu-B sintered body. And Ga are contained. In addition to R, Fe, B, Cu, Ga, Co, Al, Ag, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr, H, F, P, S, Cl, O, N, C and the like may be contained.
<第1の実施形態の実施例>
 本発明を実施例により更に詳細に説明するが、本発明はそれらに限定されるものではない。
<Example of First Embodiment>
The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
 実験例1
[R1-T1-B系焼結体を準備する工程]
 R1-T1-B系焼結体がおよそ表1の符号1-Aとなるよう各元素を秤量しストリップキャスト法により鋳造し、厚さ0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental Example 1
[Step of preparing R1-T1-B based sintered body]
Each element is weighed so that R1-T1-B sintered body is approximately 1-A in Table 1 and cast by a strip casting method to obtain a flake-like material alloy having a thickness of 0.2 to 0.4 mm. The After the obtained flake-like raw material alloy was subjected to hydrogen grinding, it was heated in vacuum to 550 ° C. and then dehydrogenated to cool, thereby obtaining roughly crushed powder. Next, 0.04 mass% of zinc stearate as a lubricant is added to the obtained coarsely pulverized powder with respect to 100 mass% of the roughly pulverized powder and mixed, and then nitrogen is added using an air flow crusher (jet mill apparatus) It was dry-pulverized in an air stream to obtain a finely pulverized powder (alloy powder) having a particle diameter D50 of 4 μm. The particle diameter D 50 is the volume center value obtained by the laser diffraction method by air flow dispersion method (volume-based median diameter).
 前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 After adding and mixing 0.05 mass% of zinc stearate as a lubricant with respect to 100 mass% of the finely pulverized powder to the finely pulverized powder, the mixture is molded in a magnetic field to obtain a compact. As a forming apparatus, a so-called perpendicular magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction are orthogonal to each other was used.
 得られた成形体を、真空中、1030℃(焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、R1-T1-B系焼結体を得た。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表1に示す。表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、焼結体の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表1における「[T1]/[B]」は、T1を構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表1の各組成及び酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他の表についても同様である。 The obtained compact was sintered for 4 hours in vacuum at 1030 ° C. (the temperature at which sufficient densification by sintering occurs is selected) and then quenched to obtain an R1-T1-B-based sintered body. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 1. Each component in Table 1 was measured using high frequency inductively coupled plasma emission spectrometry (ICP-OES). In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%. The C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%. “[T1] / [B]” in Table 1 is obtained by dividing the analysis value (mass%) by the atomic weight of each element with respect to each element (here, Fe, Al, Si, Mn) constituting T1. The ratio (a / b) of the sum of those values (a) and the value (mass%) of B analyzed divided by the atomic weight of B (b). The same is true for all the following tables. In addition, even if it adds each composition of Table 1, the amount of oxygen, and the amount of carbon, it does not become 100 mass%. This is because, as described above, the analysis method differs depending on each component. The same applies to the other tables.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[R2-Ga-Cu-Co系合金を準備する工程]
 R2-Ga-Cu-Co系合金がおよそ表2の符号1-aから1-gの組成になるよう各元素を秤量し、それらの原料を溶解して、単ロール超急冷法(メルトスピニング法)により、リボン又はフレーク状の合金を得た。得られた合金を、乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させ、R2-Ga-Cu-Co系合金を準備した。得られたR2-Ga-Cu-Co系合金の組成を表2に示す。なお、表2における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。
[Step of preparing R2-Ga-Cu-Co based alloy]
Each element is weighed so that R2-Ga-Cu-Co alloy has a composition of code 1-a to 1-g of Table 2 approximately, and those raw materials are melted to perform single roll super-quenching method (melt spinning method) ) Gave a ribbon or flake-like alloy. The obtained alloy was ground in an argon atmosphere using a mortar, and then passed through a sieve having an opening of 425 μm to prepare an R2-Ga-Cu-Co based alloy. The composition of the obtained R2-Ga-Cu-Co based alloy is shown in Table 2. Each component in Table 2 was measured using high frequency inductively coupled plasma emission spectrometry (ICP-OES).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[第一の熱処理を実施する工程]
 表1の符号1-AのR1-T1-B系焼結体を切断、切削加工し、4.4mm×10.0mm×11.0mmの直方体(10.0mm×11.0mmの面が配向方向と垂直な面)とした。次に、図3に示すように、ニオブ箔により作製した処理容器3中に、主にR1-T1-B系焼結体1の配向方向(図中の矢印方向)と垂直な面がR2-Ga-Cu-Co系合金2と接触するように、表2に示す符号1-aから1-gのR2-Ga-Cu-Co系合金を、符号1-AのR1-T1-B系焼結体の上下にR1-T1-B系焼結体の重量に対し10mass%ずつ計20mass%を配置した。次に、管状流気炉を用いて、200Paに制御した減圧アルゴン中で、表3の第一の熱処理に示す温度及び時間でR2-Ga-Cu-Co系合金及びR1-T1-B系焼結体を加熱して第一の熱処理を実施した後、冷却した。
[Step of carrying out first heat treatment]
The R1-T1-B sintered body of code 1-A in Table 1 is cut and cut to form a 4.4 mm × 10.0 mm × 11.0 mm rectangular solid (10.0 mm × 11.0 mm face is oriented) Perpendicular to the Next, as shown in FIG. 3, in the processing vessel 3 made of niobium foil, the plane perpendicular to the orientation direction (the direction of the arrow in the figure) of the R1-T1-B-based sintered body 1 is mainly R2-. In order to make contact with the Ga-Cu-Co alloy 2, the R2-Ga-Cu-Co alloy of the codes 1-a to 1-g shown in Table 2 is R1-T1-B baked with the code 1-A. A total of 20 mass% of 10 mass% of the R1-T1-B based sintered body was arranged above and below the body. Next, R2-Ga-Cu-Co alloys and R1-T1-B alloys were fired at the temperature and time shown in the first heat treatment of Table 3 in vacuum argon controlled at 200 Pa using a tubular flow air furnace. The body was heated to carry out the first heat treatment and then cooled.
[第二の熱処理を実施する工程]
 第二の熱処理を、管状流気炉を用いて200Paに制御した減圧アルゴン中で、表3の第二の熱処理に示す温度及び時間で、第一の熱処理が実施されたR1-T1-B系焼結体に対して実施した後、冷却した。熱処理後の各サンプルの表面近傍に存在するR2-Ga-Cu-Co系合金の濃化部を除去するため、表面研削盤を用いて各サンプルの全面を切削加工し、4.0mm×4.0mm×4.0mmの立方体状のサンプル(R-T-B系焼結磁石)を得た。なお、第一の熱処理を実施する工程におけるR2-Ga-Cu-Co系合金及びR1-T1-B系焼結体の加熱温度、並びに、第二の熱処理を実施する工程におけるR1-T1―B系焼結体の加熱温度は、それぞれ熱電対を取り付けることにより測定した。
[Step of carrying out second heat treatment]
R1-T1-B system in which the first heat treatment was carried out at a temperature and for a time indicated in the second heat treatment of Table 3 in a reduced pressure argon atmosphere where the second heat treatment was controlled to 200 Pa using a tubular flow air furnace. It cooled after implementing with respect to the sintered compact. In order to remove the concentrated part of the R2-Ga-Cu-Co based alloy existing near the surface of each sample after heat treatment, the entire surface of each sample is cut using a surface grinder, and 4.0 mm × 4. A cubic sample (R-T-B-based sintered magnet) of 0 mm × 4.0 mm was obtained. The heating temperature of the R2-Ga-Cu-Co alloy and the R1-T1-B sintered body in the step of performing the first heat treatment, and R1-T1-B in the step of performing the second heat treatment The heating temperature of the sintered body was measured by attaching a thermocouple.
[サンプル評価]
 得られたサンプルを、得られたサンプルのBr及びHcJをB-Hトレーサによって測定した。測定結果を表3に示す。表3の通り、R2-Cu-Ga-Fe系合金のCo量が10mass%超45mass%以下である本発明例は高いBr及び高いHcJが得られていることがわかる。これに対し、R2-Ga-Cu-Co系合金のCo量が10mass%以下であり、Coの含有量<Gaの含有量であるサンプルNo.1-1及び1-2は、高いBrが得られていない。また、R2-Cu-Ga-Co系合金のCo量が45mass%を超えており、Prの含有量<Coの含有量であるサンプルNo.1-7は、高いHcJが得られていない。
[sample test]
The obtained samples were measured for B r and H cJ of the obtained samples by B-H tracer. The measurement results are shown in Table 3. As Table 3, the present invention examples of the Co content is less than 10 mass% ultra 45Mass% of R2-Cu-Ga-Fe-based alloy it can be seen that the high B r and a high H cJ are achieved. On the other hand, in the sample No. 1 in which the amount of Co in the R2-Ga-Cu-Co alloy is 10 mass% or less, and the content of Co <the content of Ga. 1-1 and 1-2 do not have high Br . Moreover, the amount of Co of the R2-Cu-Ga-Co alloy exceeds 45 mass%, and the sample No. 2 in which the content of Pr <the content of Co is satisfied. 1-7, high H cJ is not obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実験例2
[R1-T1-B系焼結体を準備する工程]
 R1-T1-B系焼結体がおよそ表4の符号2-Aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法で焼結体を作製した。なお、焼結は、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)の範囲で行った。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表4に示す。表4における各成分は実験例1と同じ方法で測定した。なお、焼結体の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental Example 2
[Step of preparing R1-T1-B based sintered body]
A sintered body was produced in the same manner as in Experimental Example 1 except that each element was weighed so that the R1-T1-B-based sintered body had a composition approximately as indicated by symbol 2-A in Table 4. Sintering was performed in the range of 1000 ° C. or more and 1050 ° C. or less (selecting the temperature at which densification by sintering sufficiently occurs for each sample). The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 4. Each component in Table 4 was measured by the same method as Experimental Example 1. In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%. The C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[R2-Ga-Cu-Co系合金を準備する工程] 
 R2-Ga-Cu-Co系合金がおよそ表5の符号2-aから2-mに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2-Ga-Cu-Co系合金を準備した。R2-Ga-Cu-Co系合金の組成を表5に示す。表5における各成分は実験例1と同じ方法で測定した。
[Step of preparing R2-Ga-Cu-Co based alloy]
R2-Ga-Cu- was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the R2-Ga-Cu-Co alloy had a composition as shown by symbols 2-a to 2-m in Table 5. A Co-based alloy was prepared. The composition of the R2-Ga-Cu-Co based alloy is shown in Table 5. Each component in Table 5 was measured by the same method as Experimental Example 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[第一の熱処理を実施する工程]
 表6の第一の熱処理に示す温度及び時間でR2-Ga-Cu-Co系合金及びR1-T1-B系焼結体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of carrying out first heat treatment]
The first heat treatment was carried out in the same manner as in Experimental Example 1 except that the R2-Ga-Cu-Co based alloy and the R1-T1-B based sintered body were heated at the temperature and time shown in the first heat treatment of Table 6. Carried out.
[第二の熱処理を実施する工程]
 表6の第二の熱処理に示す温度及び時間でR2-Ga-Cu-Co系合金及びR1-T1-B系焼結体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例1と同じ方法で加工しR-T-B系焼結磁石を得た。
[Step of carrying out second heat treatment]
The second heat treatment was conducted in the same manner as in Experimental Example 1 except that the R2-Ga-Cu-Co alloy and the R1-T1-B sintered body were heated at the temperature and time shown in the second heat treatment of Table 6. Carried out. Each sample after the heat treatment was processed in the same manner as in Experimental Example 1 to obtain a sintered RTB-based magnet.
[サンプル評価]
 得られたサンプルのBr及びHcJをB-Hトレーサによって測定した。測定結果を表6に示す。表6の通り、R2-Ga-Cu-Co系合金のR2量が35mass%以上85mass%未満、Ga量が2.5mass%以上30mass%以下、Cu量が2.5mass%以上20mass%以下、及びR2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式を満たす組成である本発明例は高いBr及び高いHcJが得られていることがわかる。これに対し、R2-Ga-Cu-Co系合金におけるR、Cu、Gaのいずれかが本開示の範囲外(サンプルNo.2-1及び2-3はR2及びCoが範囲外、サンプルNo.2-4、2-6、及び2-12はGaが範囲外、サンプルNo.2-7及び2-9はCuが範囲外、サンプルNo.2-13は、Cu及びGaが範囲外)であったり、R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式を満たさない組成(サンプルNo.2-8はGaの含有量<Cuの含有量、サンプルNo.2-10はCoの含有量<Gaの含有量)であると高いHcJを得ることができない。このように、R2-Ga-Cu-Co系合金のR、Cu、Ga(及び実験例1に示すようにCo)の含有量が本開示の範囲内にあり、R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の式を満たす組成であることにより、高いBr及び高いHcJを得ることができる。
[sample test]
The obtained sample of B r and H cJ was measured by B-H tracer. The measurement results are shown in Table 6. As shown in Table 6, the R2 content of the R2-Ga-Cu-Co alloy is 35 mass% to less than 85 mass%, the Ga content is 2.5 mass% to 30 mass%, the Cu content is 2.5 mass% to 20 mass%, and the present invention examples in a composition satisfying the inequality of content> content of Co> content of Ga> content of Cu of R2 it is found that a high B r and a high H cJ are achieved. On the other hand, any one of R, Cu and Ga in the R2-Ga-Cu-Co based alloy is out of the range of the present disclosure (for sample Nos. 2-1 and 2-3, R2 and Co are out of the range; 2-4, 2-6, and 2-12 are out of the range of Ga, sample Nos. 2-7 and 2-9 are out of the range of Cu, sample No. 2-13 is out of the range of Cu and Ga) Or the content of R2> the content of Co> the content of Ga> the composition not satisfying the inequality of the content of Cu (the sample No.2-8 is the content of Ga <content of Cu, sample No.2 If -10 is the content of Co <the content of Ga), high H cJ can not be obtained. Thus, the content of R, Cu, Ga (and Co as shown in Experimental Example 1) of the R2-Ga-Cu-Co alloy is within the range of the present disclosure, and the content of R2> the content of Co by having a composition satisfying the formula of the content of an amount> the content of Ga> Cu, it is possible to obtain a high B r and a high H cJ.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実験例3
[R1-T1-B系焼結体を準備する工程]
 R1-T1-B系焼結体がおよそ表7の符号3-Aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法で焼結体を作製した。なお、焼結は、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)の範囲で行った。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表7に示す。表7における各成分は実験例1と同じ方法で測定した。なお、焼結体の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental Example 3
[Step of preparing R1-T1-B based sintered body]
A sintered body was produced in the same manner as in Experimental Example 1 except that each element was weighed so that the R1-T1-B-based sintered body had a composition approximately as shown by symbol 3-A in Table 7. Sintering was performed in the range of 1000 ° C. or more and 1050 ° C. or less (selecting the temperature at which densification by sintering sufficiently occurs for each sample). The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 7. Each component in Table 7 was measured by the same method as Experimental example 1. In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%. The C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[R2-Ga-Cu-Co系合金を準備する工程]
 R2-Ga-Cu-Co系合金がおよそ表8の符号3-aに示す組成となるように、各元素を秤量する以外は実験例1と同じ方法でR2-Ga-Cu-Co系合金を準備した。R2-Ga-Cu-Co系合金の組成を表8に示す。表8における各成分は実験例1と同じ方法で測定した。
[Step of preparing R2-Ga-Cu-Co based alloy]
The R2-Ga-Cu-Co alloy was prepared in the same manner as in Experimental Example 1 except that each element was weighed so that the R2-Ga-Cu-Co alloy had a composition as shown by the symbol 3-a in Table 8. Got ready. The composition of the R2-Ga-Cu-Co alloy is shown in Table 8. Each component in Table 8 was measured by the same method as Experimental Example 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[第一の熱処理を実施する工程]
 表9の第一の熱処理に示す温度及び時間でR2-Ga-Cu-Co系合金及びR1-T1-B系焼結体を加熱すること以外は実験例1と同じ方法で第一の熱処理を実施した。
[Step of carrying out first heat treatment]
The first heat treatment was conducted in the same manner as in Experimental Example 1 except that the R2-Ga-Cu-Co alloy and the R1-T1-B sintered body were heated at the temperature and time shown in the first heat treatment of Table 9. Carried out.
[第二の熱処理を実施する工程]
 表9の第二の熱処理に示す温度及び時間でR2-Ga-Cu-Co系合金及びR1-T1-B系焼結体を加熱すること以外は実験例1と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例1と同じ方法で加工しR-T-B系焼結磁石を得た。
[Step of carrying out second heat treatment]
The second heat treatment was conducted in the same manner as in Experimental Example 1 except that the R2-Ga-Cu-Co alloy and the R1-T1-B sintered body were heated at the temperature and time shown in the second heat treatment of Table 9. Carried out. Each sample after the heat treatment was processed in the same manner as in Experimental Example 1 to obtain a sintered RTB-based magnet.
[サンプル評価]
 得られたサンプルのBr及びHcJをB-Hトレーサによって測定した。測定結果を表9に示す。表9の通り、本開示の第一の熱処理温度(700℃以上1100℃以下)及び第二の熱処理温度(450℃以上600℃以下)である本発明例は高いBr及び高いHcJが得られていることがわかる。また、表9の通り、第一の熱処理における温度が800℃以上1000℃以下及び第二の熱処理における温度が480℃以上560℃以下であると、更に高いHcJが得られている。これに対し、第一の熱処理温度及び第二の熱処理温度のいずれか本開示の範囲外(サンプルNo.3-1は第一の熱処理が範囲外、サンプルNo.3-4及び3-9は第二の熱処理が範囲外)であると高いHcJを得ることができない。
[sample test]
The obtained sample of B r and H cJ was measured by B-H tracer. The measurement results are shown in Table 9. As shown in Table 9, the first heat treatment temperature (700 ° C. or higher 1100 ° C. or less) and the present invention embodiment is a second heat treatment temperature (450 ° C. or higher 600 ° C. or less) of the present disclosure is higher B r and a high H cJ is obtained It is understood that it is being done. Further, as shown in Table 9, a further higher HcJ is obtained when the temperature in the first heat treatment is 800 ° C. or more and 1000 ° C. or less and the temperature in the second heat treatment is 480 ° C. or more and 560 ° C. or less. On the other hand, any of the first heat treatment temperature and the second heat treatment temperature is out of the range of the present disclosure (the sample No. 3-1 is out of the range of the first heat treatment, sample Nos. 3-4 and 3-9 are If the second heat treatment is out of the range, high H cJ can not be obtained.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<第2の実施形態の実施例>
 実験例4
[R1-T1-Cu-B系焼結体を準備する工程]
 R1-T1-Cu-B系焼結体がおよそ表10の符号4-Aから4-Eとなるよう各元素を秤量しストリップキャスト法により鋳造し、厚さ0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
<Example of Second Embodiment>
Experimental Example 4
[Step of preparing R1-T1-Cu-B based sintered body]
Each element is weighed so that the R1-T1-Cu-B sintered body is approximately 4-A to 4-E in Table 10 and cast by a strip casting method, and flakes having a thickness of 0.2 to 0.4 mm The raw material alloy was obtained. After the obtained flake-like raw material alloy was subjected to hydrogen grinding, it was heated in vacuum to 550 ° C. and then dehydrogenated to cool, thereby obtaining roughly crushed powder. Next, 0.04 mass% of zinc stearate as a lubricant is added to the obtained coarsely pulverized powder with respect to 100 mass% of the roughly pulverized powder and mixed, and then nitrogen is added using an air flow crusher (jet mill apparatus) dry milled in an air stream, the particle size D 50 was obtained finely pulverized powder of 4μm (the alloy powder). The particle diameter D 50 is the volume center value obtained by the laser diffraction method by air flow dispersion method (volume-based median diameter).
 前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 After adding and mixing 0.05 mass% of zinc stearate as a lubricant with respect to 100 mass% of the finely pulverized powder to the finely pulverized powder, the mixture is molded in a magnetic field to obtain a compact. As a forming apparatus, a so-called perpendicular magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction are orthogonal to each other was used.
 得られた成形体を、真空中、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、R1-T1-B系焼結体を得た。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表10に示す。表10における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、焼結体の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表10における「[T1]/[B]」は、T1を構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表10の各組成及び酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他の表についても同様である。 The resulting compact is sintered for 4 hours in vacuum at 1000 ° C. or more and 1050 ° C. or less (select the temperature at which densification by sintering sufficiently occurs for each sample), and then quench it, R1-T1-B based sintering I got a body. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 10. Each component in Table 10 was measured using high frequency inductively coupled plasma emission spectrometry (ICP-OES). In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%. The C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%. “[T1] / [B]” in Table 10 is obtained by dividing the analysis value (mass%) by the atomic weight of each element with respect to each element (here, Fe, Al, Si, Mn) constituting T1. The ratio (a / b) of the sum of those values (a) and the value (mass%) of B analyzed divided by the atomic weight of B (b). The same is true for all the following tables. In addition, even if it adds each composition of Table 10, the amount of oxygen, and the amount of carbon, it does not become 100 mass%. This is because, as described above, the analysis method differs depending on each component. The same applies to the other tables.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[R2-Ga-Co系合金を準備する工程]
 R2-Ga-Co系合金がおよそ表11の符号4-aの組成になるよう各元素を秤量し、それらの原料を溶解して、単ロール超急冷法(メルトスピニング法)により、リボン又はフレーク状の合金を得た。得られた合金を、乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させ、R2-Ga-Co系合金を準備した。得られたR2-Ga-Co系合金の組成を表11に示す。なお、表11における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。
[Step of preparing R2-Ga-Co based alloy]
Each element is weighed so that the R2-Ga-Co alloy has a composition as shown by symbol 4-a in Table 11, and the raw materials are melted to obtain ribbons or flakes by a single roll super-quenching method (melt spinning method). An alloy of the shape of a circle is obtained. The obtained alloy was ground in an argon atmosphere using a mortar, and then passed through a sieve having an opening of 425 μm to prepare an R 2 -Ga-Co based alloy. The composition of the obtained R2-Ga-Co alloy is shown in Table 11. Each component in Table 11 was measured using high frequency inductively coupled plasma emission spectrometry (ICP-OES).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[第一の熱処理を実施する工程]
 表10の符号4-Aから4-EのR1-T1-Cu-B系焼結体を切断、切削加工し、4.4mm×10.0mm×11.0mmの直方体(10.0mm×11.0mmの面が配向方向と垂直な面)とした。次に、図3に示すように、ニオブ箔により作製した処理容器3中に、主にR1-T1-Cu-B系焼結体1の配向方向(図中の矢印方向)と垂直な面がR2-Ga-Co系合金2と接触するように、表11に示す符号4-aのR2-Ga-Co系合金を、符号4-Aから4-EのR1-T1-Cu-B系焼結体の上下にR1-T1-Cu-B系焼結体の重量に対し10mass%ずつ計20mass%を配置した。次に、管状流気炉を用いて、200Paに制御した減圧アルゴン中で、表12の第一の熱処理に示す温度及び時間でR2-Ga-Co系合金及びR1-T1-Cu-B系焼結体を加熱して第一の熱処理を実施した後、冷却した。
[Step of carrying out first heat treatment]
The R1-T1-Cu-B-based sintered body having a symbol 4-A to 4-E in Table 10 is cut and cut to form a rectangular solid (10.0 mm × 11.4) having a size of 4.4 mm × 10.0 mm × 11.0 mm. A plane of 0 mm was a plane perpendicular to the orientation direction). Next, as shown in FIG. 3, in the processing vessel 3 made of niobium foil, a plane perpendicular to the orientation direction (the direction of the arrow in the figure) of the R1-T1-Cu-B sintered body 1 is mainly In order to make contact with the R2-Ga-Co alloy 2, the R2-Ga-Co alloy of the code 4-a shown in Table 11 can be sintered with the R1-T1-Cu-B alloy of the code 4-A to 4-E. A total of 20 mass% of 10 mass% of the R1-T1-Cu-B based sintered body was disposed above and below the body. Next, R2-Ga-Co alloys and R1-T1-Cu-B alloys are fired at the temperature and time shown in the first heat treatment of Table 12 in vacuum argon controlled at 200 Pa using a tubular flow air furnace. The body was heated to carry out the first heat treatment and then cooled.
[第二の熱処理を実施する工程]
 第二の熱処理を、管状流気炉を用いて200Paに制御した減圧アルゴン中で、表12の第二の熱処理に示す温度及び時間で、第一の熱処理が実施されたR1-T1-B系焼結体に対して実施した後、冷却した。熱処理後の各サンプルの表面近傍に存在するR2-Ga-Co系合金の濃化部を除去するため、表面研削盤を用いて各サンプルの全面を切削加工し、4.0mm×4.0mm×4.0mmの立方体状のサンプル(R-T-B系焼結磁石)を得た。なお、第一の熱処理を実施する工程におけるR2-Ga-Co合金及びR1-T1-Cu-B系焼結体の加熱温度、並びに、第二の熱処理を実施する工程におけるR1-T1―Cu-B系焼結体の加熱温度は、それぞれ熱電対を取り付けることにより測定した。
[Step of carrying out second heat treatment]
R1-T1-B system in which the first heat treatment was carried out at the temperature and time shown in the second heat treatment of Table 12 in a reduced pressure argon atmosphere where the second heat treatment was controlled to 200 Pa using a tubular flow air furnace It cooled after implementing with respect to the sintered compact. In order to remove the concentrated part of R2-Ga-Co based alloy existing near the surface of each sample after heat treatment, the entire surface of each sample is cut using a surface grinder, and 4.0 mm × 4.0 mm × A 4.0 mm cube-shaped sample (R-T-B sintered magnet) was obtained. The heating temperature of the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body in the step of performing the first heat treatment, and R1-T1-Cu- in the step of performing the second heat treatment. The heating temperature of the B-based sintered body was measured by attaching a thermocouple.
[サンプル評価]
 得られた各サンプルのBr及びHcJをB-Hトレーサによって測定した。測定結果を表12に示す。表12の通り、R1-T1―Cu-B系焼結体のCu含有量が0.1mass%未満であるサンプルNo.4-1は、高いHcJが得られていない。また、Cuの含有量が1.5mass%を超えているサンプルNo.4-5は、高いBr及びHcJが得られていない。
[sample test]
Each sample of B r and H cJ obtained was measured by B-H tracer. The measurement results are shown in Table 12. As shown in Table 12, sample No. 1 in which the Cu content of the R1-T1-Cu-B-based sintered body is less than 0.1 mass%. In 4-1, high H cJ is not obtained. In addition, sample No. 1 in which the content of Cu exceeds 1.5 mass%. 4-5 does not obtain a high B r and H cJ.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実験例5
[R1-T1-Cu-B系焼結体を準備する工程]
 R1-T1-Cu-B系焼結体がおよそ表13の符号5-Aに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法で焼結体を作製した。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表13に示す。表13における各成分は実験例4と同じ方法で測定した。なお、焼結体の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental Example 5
[Step of preparing R1-T1-Cu-B based sintered body]
A sintered body was produced in the same manner as in Experimental Example 4 except that each element was weighed so that the R1-T1-Cu-B-based sintered body had a composition as indicated by the symbol 5-A in Table 13. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 13. Each component in Table 13 was measured by the same method as Experimental Example 4. In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%. The C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[R2-Ga-Co系合金を準備する工程]
 R2-Ga-Co系合金がおよそ表14の符号5-aから5-gに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法でR2-Ga-Co系合金を準備した。R2-Ga-Co系合金の組成を表14に示す。表14における各成分は実験例4と同じ方法で測定した。
[Step of preparing R2-Ga-Co based alloy]
The R2-Ga-Co alloy is prepared in the same manner as in Experimental Example 4 except that each element is weighed so that the R2-Ga-Co alloy has a composition as indicated by symbols 5-a to 5-g in Table 14. Got ready. The composition of the R2-Ga-Co based alloy is shown in Table 14. Each component in Table 14 was measured by the same method as Experimental Example 4.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[第一の熱処理を実施する工程]
 表15の第一の熱処理に示す温度及び時間でR2-Ga-Co合金及びR1-T1-Cu-B系焼結体を加熱すること以外は実験例4と同じ方法で第一の熱処理を実施した。
[Step of carrying out first heat treatment]
The first heat treatment is performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body are heated at the temperature and time shown in the first heat treatment of Table 15. did.
[第二の熱処理を実施する工程]
 表15の第二の熱処理に示す温度及び時間でR2-Ga-Co合金及びR1-T1-Cu-B系焼結体を加熱すること以外は実験例4と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例4と同じ方法で加工しR-T-B系焼結磁石を得た。
[Step of carrying out second heat treatment]
The second heat treatment is performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body are heated at the temperature and time shown in the second heat treatment of Table 15. did. Each sample after heat treatment was processed in the same manner as in Experimental Example 4 to obtain an RTB-based sintered magnet.
[サンプル評価]
 得られた各サンプルのBr及びHcJをB-Hトレーサによって測定した。測定結果を表15に示す。表15の通り、R-Ga-Co系合金のCo量が10mass%超45mass%以下である本発明例は高いBr及び高いHcJが得られていることがわかる。これに対し、R-Ga-Co系合金のCo量が10mass%以下及びCoの含有量<Ga含有量であるサンプルNo.5-1及び5-2は、高いBrが得られていない。また、R-Ga-Co系合金のCo量が45mass%を超えており、Prの含有量<Co含有量であるサンプルNo.5-7は、高いHcJが得られていない。
[sample test]
Each sample of B r and H cJ obtained was measured by B-H tracer. The measurement results are shown in Table 15. As Table 15, the present invention example Co amount of R-Ga-Co-based alloy is at most 10 mass% ultra 45Mass% It can be seen that the high B r and a high H cJ are achieved. On the other hand, Sample No. 1 in which the Co content of the R-Ga-Co based alloy is 10 mass% or less and the content of Co <Ga content. 5-1 and 5-2 are not high B r is obtained. Further, in the sample No. 1 in which the amount of Co in the R-Ga-Co alloy exceeds 45 mass%, the content of Pr <the content of Co. In 5-7, high H cJ is not obtained.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実験例6
[R1-T1-Cu-B系焼結体を準備する工程]
 R1-T1-Cu-B系焼結体がおよそ表16の符号6-Aに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法で焼結体を作製した。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表16に示す。表16における各成分は実験例4と同じ方法で測定した。なお、焼結体の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental Example 6
[Step of preparing R1-T1-Cu-B based sintered body]
A sintered body was produced in the same manner as in Experimental Example 4 except that each element was weighed so that the R1-T1-Cu-B-based sintered body had a composition shown in the code 6-A in Table 16. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 16. Each component in Table 16 was measured by the same method as Experimental Example 4. In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%. The C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
[R2-Ga-Co系合金を準備する工程]
 R2-Ga-Co系合金がおよそ表17の符号6-aから6-iに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法でR2-Ga-Co系合金を準備した。R2-Ga-Co系合金の組成を表17に示す。表17における各成分は実験例4と同じ方法で測定した。
[Step of preparing R2-Ga-Co based alloy]
The R2-Ga-Co alloy is prepared in the same manner as in Experimental Example 4 except that each element is weighed so that the R2-Ga-Co alloy has a composition as shown by symbols 6-a to 6-i in Table 17. Got ready. The composition of the R2-Ga-Co based alloy is shown in Table 17. Each component in Table 17 was measured by the same method as Experimental Example 4.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
[第一の熱処理を実施する工程]
 表18の第一の熱処理に示す温度及び時間でR2-Ga-Co合金及びR1-T1-Cu-B系焼結体を加熱すること以外は実験例4と同じ方法で第一の熱処理を実施した。
[Step of carrying out first heat treatment]
The first heat treatment is performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body are heated at the temperature and time shown in the first heat treatment of Table 18 did.
[第二の熱処理を実施する工程]
 表18の第二の熱処理に示す温度及び時間でR2-Ga-Co合金及びR1-T1-Cu-B系焼結体を加熱すること以外は実験例4と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例4と同じ方法で加工しR-T-B系焼結磁石を得た。
[Step of carrying out second heat treatment]
The second heat treatment is performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body are heated at the temperature and time shown in the second heat treatment of Table 18 did. Each sample after heat treatment was processed in the same manner as in Experimental Example 4 to obtain an RTB-based sintered magnet.
[サンプル評価]
 得られた各サンプルのBr及びHcJをB-Hトレーサによって測定した。測定結果を表18に示す。表18の通り、R2-Ga-Co系合金のR2量が35mass%以上87mass%以下、Ga量が2.5mass%以上30mass%以下、及びR2の含有量>Coの含有量>Gaの含有量の不等式を満たす組成である本発明例は高いBr及び高いHcJが得られていることがわかる。これに対し、R2-Ga-Co系合金におけるR、Gaのいずれかが本開示の範囲外(サンプルNo.6-1はR2が範囲外、サンプルNo.6-3はR2及びCoが範囲外、サンプルNo.6-4、6-6及び6-9はGaが範囲外)であったり、R2の含有量>Coの含有量>Gaの含有量の不等式を満たさない組成(サンプルNo.6-7はCoの含有量<Gaの含有量)であったりすると、高いHcJを得ることができない。このように、R2-Ga-Cu-Co系合金のR、Ga(及び実験例5に示すようにCo)の含有量が本開示の範囲内にあり、R2の含有量>Coの含有量>Gaの含有量の不等式を満たす組成であることにより、高いBr及び高いHcJを得ることができる。
[sample test]
Each sample of B r and H cJ obtained was measured by B-H tracer. The measurement results are shown in Table 18. As shown in Table 18, R2 content of R2-Ga-Co alloy is 35 mass% or more and 87 mass% or less, Ga content is 2.5 mass% or more and 30 mass% or less, and R2 content> Co content> Ga content the present invention examples in a composition satisfying the inequality is seen that a high B r and a high H cJ are achieved. On the other hand, any one of R and Ga in the R2-Ga-Co alloy is out of the range of the present disclosure (sample No. 6-1 has R2 out of the range, sample No. 6-3 has R2 and Co out of the range Sample Nos. 6-4, 6-6, and 6-9 have a composition that does not satisfy the inequality of “Ga out of range” or R2 content> Co content> Ga content inequality (Sample No. 6) If -7 is the content of Co <the content of Ga), high H cJ can not be obtained. Thus, the content of R and Ga (and Co as shown in Experimental Example 5) of the R2-Ga-Cu-Co alloy is within the range of the present disclosure, and the content of R2> the content of Co> by a composition satisfying the inequality of the content of Ga, it is possible to obtain a high B r and a high H cJ.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実験例7
[R1-T1-B系焼結体を準備する工程]
 R1-T1-B系焼結体がおよそ表19の符号7-Aに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法で焼結体を作製した。得られた焼結体の密度は7.5Mg/m3以上であった。得られた焼結体の成分の結果を表19に示す。表19における各成分は実験例4と同じ方法で測定した。なお、焼結体の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。
Experimental Example 7
[Step of preparing R1-T1-B based sintered body]
A sintered body was produced in the same manner as in Experimental Example 4 except that each element was weighed so that the R1-T1-B-based sintered body had a composition approximately as shown by symbol 7-A in Table 19. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The results of the components of the obtained sintered body are shown in Table 19. Each component in Table 19 was measured by the same method as Experimental Example 4. In addition, as a result of measuring the oxygen amount of the sintered compact by the gas melting-infrared absorption method, it was confirmed that it was all around 0.2 mass%. The C (carbon content) was measured using a gas analyzer by a combustion-infrared absorption method, and as a result, it was confirmed to be around 0.1 mass%.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
[R2-Ga-Co系合金を準備する工程]
 R2-Ga-Co系合金がおよそ表20の符号7-aに示す組成となるように、各元素を秤量する以外は実験例4と同じ方法でR2-Ga-Co系合金を準備した。R2-Ga-Co系合金の組成を表20に示す。表20における各成分は実験例4と同じ方法で測定した。
[Step of preparing R2-Ga-Co based alloy]
An R2-Ga-Co-based alloy was prepared in the same manner as in Experimental Example 4 except that each element was weighed so that the R2-Ga-Co-based alloy had a composition as shown by symbol 7-a in Table 20. Table 20 shows the composition of the R2-Ga-Co based alloy. Each component in Table 20 was measured by the same method as Experimental Example 4.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
[第一の熱処理を実施する工程]
 表21の第一の熱処理に示す温度及び時間でR2-Ga-Co合金及びR1-T1-Cu-B系焼結体を加熱すること以外は実験例4と同じ方法で第一の熱処理を実施した。
[Step of carrying out first heat treatment]
The first heat treatment is performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body are heated at the temperature and time shown in the first heat treatment of Table 21. did.
[第二の熱処理を実施する工程]
 表21の第二の熱処理に示す温度及び時間でR2-Ga-Co合金及びR1-T1-Cu-B系焼結体を加熱すること以外は実験例4と同じ方法で第二の熱処理を実施した。熱処理後の各サンプルを実験例4と同じ方法で加工しR-T-B系焼結磁石を得た。
[Step of carrying out second heat treatment]
The second heat treatment is performed in the same manner as in Experimental Example 4 except that the R2-Ga-Co alloy and the R1-T1-Cu-B sintered body are heated at the temperature and time shown in the second heat treatment of Table 21. did. Each sample after heat treatment was processed in the same manner as in Experimental Example 4 to obtain an RTB-based sintered magnet.
[サンプル評価]
 得られたサンプルを、B-Hトレーサによって各試料のBr及びHcJを測定した。測定結果を表21に示す。表21の通り、本開示の第一の熱処理温度(700℃以上1100℃以下)及び第二の熱処理温度(450℃以上600℃以下)である本発明例は高いBr及び高いHcJが得られていることがわかる。また、表21の通り、第一の熱処理における温度が800℃以上1000℃以下及び第二の熱処理における温度が480℃以上560℃以下であると、更に高いHcJが得られている。これに対し、第一の熱処理温度及び第二の熱処理温度のいずれか本開示の範囲外(サンプルNo.7-1は第一の熱処理が範囲外、サンプルNo.7-4及び7-9は第二の熱処理が範囲外)であると高いHcJを得ることができない。
[sample test]
The obtained samples were subjected to B-H tracer to measure B r and H c J of each sample. The measurement results are shown in Table 21. As Table 21, the first heat treatment temperature (700 ° C. or higher 1100 ° C. or less) and the present invention embodiment is a second heat treatment temperature (450 ° C. or higher 600 ° C. or less) of the present disclosure is higher B r and a high H cJ is obtained It is understood that it is being done. Further, as shown in Table 21, a further higher HcJ is obtained when the temperature in the first heat treatment is 800 ° C. or more and 1000 ° C. or less and the temperature in the second heat treatment is 480 ° C. or more and 560 ° C. or less. On the other hand, either the first heat treatment temperature or the second heat treatment temperature is out of the range of the present disclosure (the sample No. 7-1 is out of the range of the first heat treatment, the sample Nos. 7-4 and 7-9 are If the second heat treatment is out of the range, high H cJ can not be obtained.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 本開示により得られたR-T-B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに好適に利用することができる。 The RTB-based sintered magnet obtained by the present disclosure includes various motors such as a voice coil motor (VCM) of a hard disk drive, a motor for electric vehicles (EV, HV, PHV, etc.), a motor for industrial equipment, It can be suitably used for home appliances and the like.
 1 R1-T1-B系焼結体(R1-T1-Cu-B系焼結体)
 2 R2-Ga-Cu-Co系合金(R2-Ga-Co系合金)
 3 処理容器
 12 主相
 14 粒界相
 14a 二粒子粒界相
 14b 粒界三重点
1 R1-T1-B based sintered body (R1-T1-Cu-B based sintered body)
2 R2-Ga-Cu-Co alloy (R2-Ga-Co alloy)
3 treatment vessel 12 main phase 14 grain boundary phase 14a double grain grain boundary phase 14b grain boundary triple point

Claims (16)

  1.  R1-T1-B系焼結体を準備する工程と、
     R2-Ga-Cu-Co系合金を準備する工程と、
     前記R1-T1-B系焼結体の表面の少なくとも一部に、前記R2-Ga-Cu-Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程と、
     前記第一の熱処理が実施されたR1-T1-B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程と、
    を含み、
     前記R1-T1-B系焼結体において、
     R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1-T1-B系焼結体全体の27mass%以上35mass%以下であり、
     T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上であり、
     Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、
     前記R2-Ga-Cu-Co系合金において、
     R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2-Ga-Cu-Co系合金全体の35mass%以上85mass%未満であり、
     Gaの含有量は、R2-Ga-Cu-Co系合金全体の2.5mass%以上30mass%以下であり、
     Cuの含有量は、R2-Ga-Cu-Co系合金全体の2.5mass%以上20mass%以下であり、
     Coの含有量は、R2-Ga-Cu-Co系合金全体の10mass%超45mass%以下であり、
     R2の含有量>Coの含有量>Gaの含有量>Cuの含有量の不等式が成立する、R-T-B系焼結磁石の製造方法。
    Preparing a R1-T1-B sintered body;
    Preparing an R2-Ga-Cu-Co alloy;
    At least a portion of the R2-Ga-Cu-Co alloy is brought into contact with at least a portion of the surface of the R1-T1-B sintered body, and the temperature is 700 ° C. or more and 1100 ° C. or less in a vacuum or inert gas atmosphere. Carrying out a first heat treatment at a temperature of
    Performing a second heat treatment on the R1-T1-B-based sintered body subjected to the first heat treatment in a vacuum or an inert gas atmosphere at a temperature of 450 ° C. to 600 ° C .;
    Including
    In the R1-T1-B based sintered body,
    R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-based sintered body,
    T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T1 necessarily contains Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more,
    The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0,
    In the R2-Ga-Cu-Co alloy,
    R2 is at least one of rare earth elements and necessarily contains at least one of Nd and Pr, and the content of R2 is 35 mass% or more and less than 85 mass% of the entire R2-Ga-Cu-Co alloy,
    The content of Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Cu-Co alloy,
    The content of Cu is 2.5 mass% or more and 20 mass% or less of the entire R2-Ga-Cu-Co alloy,
    The content of Co is more than 10 mass% and 45 mass% or less of the whole R2-Ga-Cu-Co alloy,
    R2 content> Co content> Ga content> Cu content The manufacturing method of an RTB-based sintered magnet in which the inequality of the content is satisfied.
  2.  前記Bに対するT1のmol比([T1]/[B])が14.5以上15.0以下である、請求項1に記載のR-T-B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 1, wherein a molar ratio of T1 to B ([T1] / [B]) is 14.5 or more and 15.0 or less.
  3.  前記R2-Ga-Cu-Co系合金中のR2の50mass%以上がPrである、請求項1又は2に記載のR-T-B系焼結磁石の製造方法。 The method for producing a sintered RTB-based magnet according to claim 1 or 2, wherein 50 mass% or more of R2 in the R2-Ga-Cu-Co based alloy is Pr.
  4.  前記R2-Ga-Cu-Co系合金中のR2の70mass%以上がPrである、請求項1又は2に記載のR-T-B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 1 or 2, wherein 70 mass% or more of R2 in the R2-Ga-Cu-Co-based alloy is Pr.
  5.  R2-Ga-Cu-Co系合金におけるR2-Ga-Cu-Coの合計の含有量が80mass%以上である、請求項1から4のいずれかに記載のR-T-B系焼結磁石の製造方法。 The RTB-based sintered magnet according to any one of claims 1 to 4, wherein the total content of R2-Ga-Cu-Co in the R2-Ga-Cu-Co alloy is 80 mass% or more. Production method.
  6.  前記第一の熱処理における温度が800℃以上1000℃以下である、請求項1から5のいずれかに記載のR-T-B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to any one of claims 1 to 5, wherein a temperature in the first heat treatment is 800 ° C to 1000 ° C.
  7.  前記第二の熱処理における温度が480℃以上560℃以下である、請求項1から6のいずれかに記載のR-T-B系焼結磁石の製造方法。 The method for manufacturing an RTB-based sintered magnet according to any one of claims 1 to 6, wherein a temperature in the second heat treatment is 480 ° C or more and 560 ° C or less.
  8.  前記R1-T1-B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことを含む、請求項1から7いずれかに記載のR-T-B系焼結磁石の製造方法。 The step of preparing the R1-T1-B based sintered body includes pulverizing the raw material alloy to a particle diameter D 50 of 3 μm or more and 10 μm or less, and then performing orientation and sintering in a magnetic field. 7. The method for producing an RTB-based sintered magnet according to any one of 7) to 7).
  9.  R1-T1-Cu-B系焼結体を準備する工程と、
     R2-Ga-Co系合金を準備する工程と、
     前記R1-T1-Cu-B系焼結体の表面の少なくとも一部に、前記R2-Ga-Co系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で第一の熱処理を実施する工程と、
     前記第一の熱処理が実施されたR1-T1-Cu-B系焼結体に対して、真空又は不活性ガス雰囲気中、450℃以上600℃以下の温度で第二の熱処理を実施する工程と、
    を含み、
     前記R1-T1-Cu-B系焼結体において、
     R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1-T1-Cu-B系焼結体全体の27mass%以上35mass%以下であり、
     T1はFe、Co、Al、Mn、及びSiからなる群から選択された少なくとも1つであり、T1は必ずFeを含有し、T1全体に対するFeの含有量が80mass%以上であり、
     Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、
     Cuの含有量は、R1-T1-Cu-B系焼結体全体の0.1mass%以上1.5mass%以下であり、
     前記R2-Ga-Co系合金において、
     R2は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R2の含有量は、R2-Ga-Co系合金全体の35mass%以上87mass%未満であり、
     Gaの含有量は、R2-Ga-Co系合金全体の2.5mass%以上30mass%以下であり、
     Coの含有量は、R2-Ga-Co系合金全体の10mass%超45mass%以下であり、
     R2の含有量>Coの含有量>Gaの含有量の不等式が成立する、
    R-T-B系焼結磁石の製造方法。
    Preparing an R1-T1-Cu-B sintered body;
    Preparing an R2-Ga-Co alloy;
    At least a part of the R2-Ga-Co alloy is brought into contact with at least a part of the surface of the R1-T1-Cu-B sintered body, and the temperature is 700 ° C. or more and 1100 ° C. or less in a vacuum or inert gas atmosphere. Carrying out a first heat treatment at a temperature of
    Performing a second heat treatment on the R1-T1-Cu-B-based sintered body subjected to the first heat treatment at a temperature of 450 ° C. to 600 ° C. in a vacuum or an inert gas atmosphere; ,
    Including
    In the R1-T1-Cu-B sintered body,
    R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the whole R1-T1-Cu-B sintered body,
    T1 is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, T1 necessarily contains Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more,
    The molar ratio of T1 to B ([T1] / [B]) is more than 14.0 and not more than 15.0,
    The content of Cu is 0.1 mass% or more and 1.5 mass% or less of the entire R1-T1-Cu-B-based sintered body,
    In the R2-Ga-Co based alloy,
    R2 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R2 is 35 mass% or more and less than 87 mass% of the entire R2-Ga-Co alloy,
    The content of Ga is 2.5 mass% or more and 30 mass% or less of the entire R2-Ga-Co alloy,
    The content of Co is more than 10 mass% and 45 mass% or less of the entire R2-Ga-Co alloy,
    R2 content> Co content> Ga content inequality holds,
    The manufacturing method of RTB based sintered magnet.
  10.  前記Bに対するT1のmol比([T1]/[B])が14.3以上15.0以下である、請求項9に記載のR-T-B系焼結磁石の製造方法。 10. The method of producing an RTB-based sintered magnet according to claim 9, wherein a molar ratio of T1 to B ([T1] / [B]) is 14.3 or more and 15.0 or less.
  11.  前記R2-Ga-Co系合金中のR2の50mass%以上がPrである、請求項9又は10に記載のR-T-B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 9, wherein 50 mass% or more of R2 in the R2-Ga-Co-based alloy is Pr.
  12.  前記R2-Ga-Co系合金中のR2の70mass%以上がPrである、請求項9又は10に記載のR-T-B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 9, wherein 70 mass% or more of R2 in the R2-Ga-Co-based alloy is Pr.
  13.  R2-Ga-Co系合金におけるR2、Ga、Coの合計の含有量が80mass%以上である、請求項9から12のいずれかに記載のR-T-B系焼結磁石の製造方法。 The method of producing an RTB-based sintered magnet according to any one of claims 9 to 12, wherein a total content of R2, Ga and Co in the R2-Ga-Co-based alloy is 80 mass% or more.
  14.  前記第一の熱処理における温度が800℃以上1000℃以下である、請求項9から13のいずれかに記載のR-T-B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to any one of claims 9 to 13, wherein the temperature in the first heat treatment is 800 ° C to 1000 ° C.
  15.  前記第二の熱処理における温度が480℃以上560℃以下である、請求項9から14のいずれかに記載のR-T-B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to any one of claims 9 to 14, wherein a temperature in the second heat treatment is 480 ° C or more and 560 ° C or less.
  16.  前記R1-T1-Cu-B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことを含む、請求項9から15のいずれかに記載のR-T-B系焼結磁石の製造方法。 Preparing the R1-T1-Cu-B based sintered body comprises performing after the material alloy particle size D 50 was pulverized to 3μm or 10μm or less, the sintering being oriented in a magnetic field, wherein Item 16. A method for producing an RTB-based sintered magnet according to any one of items 9 to 15.
PCT/JP2018/034973 2017-09-26 2018-09-21 Method for manufacturing r-t-b-based sintered magnet WO2019065481A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019500604A JP6508447B1 (en) 2017-09-26 2018-09-21 Method of manufacturing RTB based sintered magnet
CN201880053770.9A CN111052276B (en) 2017-09-26 2018-09-21 Method for producing R-T-B sintered magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017184567 2017-09-26
JP2017-184567 2017-09-26
JP2017184566 2017-09-26
JP2017-184566 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019065481A1 true WO2019065481A1 (en) 2019-04-04

Family

ID=65900992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034973 WO2019065481A1 (en) 2017-09-26 2018-09-21 Method for manufacturing r-t-b-based sintered magnet

Country Status (3)

Country Link
JP (1) JP6508447B1 (en)
CN (1) CN111052276B (en)
WO (1) WO2019065481A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7044218B1 (en) * 2020-09-23 2022-03-30 日立金属株式会社 RTB-based sintered magnet
JP7396148B2 (en) 2020-03-23 2023-12-12 株式会社プロテリアル Manufacturing method of RTB based sintered magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020183A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b type sintered magnet, and motor
WO2016133071A1 (en) * 2015-02-18 2016-08-25 日立金属株式会社 Method for producing r-t-b system sintered magnet
WO2018101402A1 (en) * 2016-12-01 2018-06-07 日立金属株式会社 R-t-b sintered magnet and production method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133080A1 (en) * 2015-02-18 2016-08-25 日立金属株式会社 Method for manufacturing r-t-b sintered magnet
US10943717B2 (en) * 2016-02-26 2021-03-09 Tdk Corporation R-T-B based permanent magnet
CN106328367B (en) * 2016-08-31 2017-11-24 烟台正海磁性材料股份有限公司 A kind of preparation method of R Fe B based sintered magnets
CN106783124A (en) * 2016-12-05 2017-05-31 华南理工大学 A kind of grain boundary decision Al Cu alloys improve the corrosion proof method of neodymium iron boron magnetic body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020183A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b type sintered magnet, and motor
WO2016133071A1 (en) * 2015-02-18 2016-08-25 日立金属株式会社 Method for producing r-t-b system sintered magnet
WO2018101402A1 (en) * 2016-12-01 2018-06-07 日立金属株式会社 R-t-b sintered magnet and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396148B2 (en) 2020-03-23 2023-12-12 株式会社プロテリアル Manufacturing method of RTB based sintered magnet
JP7044218B1 (en) * 2020-09-23 2022-03-30 日立金属株式会社 RTB-based sintered magnet
WO2022065242A1 (en) * 2020-09-23 2022-03-31 日立金属株式会社 R-t-b sintered magnet
US11823824B2 (en) 2020-09-23 2023-11-21 Proterial, Ltd. R-T-B sintered magnet

Also Published As

Publication number Publication date
CN111052276B (en) 2021-08-27
CN111052276A (en) 2020-04-21
JP6508447B1 (en) 2019-05-08
JPWO2019065481A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
CN109478452B (en) R-T-B sintered magnet
JP6380652B2 (en) Method for producing RTB-based sintered magnet
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6414653B1 (en) Method for producing RTB-based sintered magnet
JP6414654B1 (en) Method for producing RTB-based sintered magnet
JP6489201B2 (en) Method for producing RTB-based sintered magnet
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
JP6972886B2 (en) RT-B-based sintered magnet and its manufacturing method
JP6380724B1 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP2023052675A (en) R-t-b system based sintered magnet
JP7059995B2 (en) RTB-based sintered magnet
JP7020224B2 (en) RTB-based sintered magnet and its manufacturing method
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP2019169560A (en) Manufacturing method of r-t-b-based sintered magnet
JP7476601B2 (en) Manufacturing method of RTB based sintered magnet
JP2021153148A (en) Method for manufacturing r-t-b based sintered magnet and alloy for diffusion
JP2021057564A (en) Method for manufacturing r-t-b based sintered magnet
JP2021153146A (en) Method for manufacturing r-t-b based sintered magnet
JP2021155783A (en) Method of producing r-t-b-based sintered magnet
JP2020120102A (en) Method for manufacturing r-t-b based sintered magnet
CN111489888A (en) Method for producing R-T-B sintered magnet
JP2019149525A (en) Method for manufacturing r-t-b-based sintered magnet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019500604

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860852

Country of ref document: EP

Kind code of ref document: A1