JP2019149525A - Method for manufacturing r-t-b-based sintered magnet - Google Patents

Method for manufacturing r-t-b-based sintered magnet Download PDF

Info

Publication number
JP2019149525A
JP2019149525A JP2018035061A JP2018035061A JP2019149525A JP 2019149525 A JP2019149525 A JP 2019149525A JP 2018035061 A JP2018035061 A JP 2018035061A JP 2018035061 A JP2018035061 A JP 2018035061A JP 2019149525 A JP2019149525 A JP 2019149525A
Authority
JP
Japan
Prior art keywords
mass
less
alloy
sintered magnet
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018035061A
Other languages
Japanese (ja)
Inventor
村上 実
Minoru Murakami
実 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018035061A priority Critical patent/JP2019149525A/en
Publication of JP2019149525A publication Critical patent/JP2019149525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a method for manufacturing an R-T-B-based sintered magnet, which includes high Hand high H/H, and in which a thermal processing after sinter is unnecessary, while reducing a content amount of RH.SOLUTION: A method for manufacturing an R-T-B-based sintered magnet, including: a step of preparing an alloy made of R: 31.5 mass% or more and 32.0 mass% or less, B: 0.822 mass% or more and 0.846 mass% or less, Cu: 0.10 mass% or more and 0.20 mass% or less, Co: 0.85 mass% or more and 0.90 mass% or less, Ga: 0.35 mass% or more and 0.45 mass% or less, Al: 0.7 mass% or less (containing 0 mass%), a remaining part Fe, and an inevitable impurity material; a step of obtaining an alloy powder by smashing the alloy; a step of obtaining a compact by forming the alloy powder; and a step of obtaining a sinter body by heating the compact to a temperature of 1000°C or more and 1070°C or less. A thermal processing of 350°C or more is not performed to the sinter body.SELECTED DRAWING: None

Description

本開示はR−T−B系焼結磁石の製造方法に関する。   The present disclosure relates to a method for manufacturing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種でありNdを必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。   R-T-B sintered magnets (R is at least one of rare earth elements and always contains Nd, T is at least one kind of transition metal elements and always contains Fe), and has the highest performance among permanent magnets It is known as a magnet, and is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R−T−B系焼結磁石は主としてR14B化合物からなる主相とこの主相の粒界部分に位置する粒界相とから構成されている。主相であるR14B化合物は高い磁化を持つ強磁性材料でありR−T−B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is mainly composed of a main phase composed of an R 2 T 14 B compound and a grain boundary phase located at the grain boundary portion of the main phase. The R 2 T 14 B compound as the main phase is a ferromagnetic material having high magnetization and forms the basis of the characteristics of the R—T—B system sintered magnet.

R−T−B系焼結磁石は高温で保磁力HcJ(以下、単に「HcJ」という場合がある)が低下するため不可逆熱減磁が起こる。そのため、特に電気自動車用モータに使用される場合、高温下でも高いHcJを有することが要求されている。 The RTB -based sintered magnet has irreversible thermal demagnetization because the coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) decreases at high temperatures. Therefore, especially when used for a motor for an electric vehicle, it is required to have a high HcJ even under a high temperature.

従来、HcJ向上のために、Dy、Tb等の重希土類元素RHをR−T−B系焼結磁石に多量に添加していた。しかし、重希土類元素RHを多量に添加すると、HcJは向上するが、残留磁束密度B(以下、単に「B」という場合がある)が低下するという問題があった。そのため、近年、R−T−B系焼結磁石の表面から内部にRHを拡散させて主相結晶粒の外殻部にRHを濃化させることでBの低下を抑制しつつ、高いHcJを得る方法が提案されている。 Conventionally, in order to improve HcJ , a large amount of heavy rare earth elements RH such as Dy and Tb has been added to the RTB-based sintered magnet. However, when a large amount of the heavy rare earth element RH is added, HcJ is improved, but there is a problem that the residual magnetic flux density B r (hereinafter sometimes simply referred to as “B r ”) is lowered. Therefore, in recent years, while suppressing a decrease in B r by causing thickening of the RH in the outer shell surface from the main phase crystal grains by diffusing RH inside the R-T-B based sintered magnet, high H A method for obtaining cJ has been proposed.

しかし、Dyは、もともと資源量が少ないうえ産出地が限定されている等の理由から、供給が不安定であり、価格変動するなどの問題を有している。そのため、DyなどのRHをできるだけ使用せず(使用量をできるだけ少なくして)、Bの低下を抑制しつつ、高いHcJを得ることが求められている。 However, Dy has problems such as unstable supply and price fluctuations because it originally has a small amount of resources and its production area is limited. Therefore, (as small as possible amount) without using much as possible RH such as Dy, while suppressing a decrease in B r, it is required to obtain a high H cJ.

特許文献1には、通常のR−T−B合金よりもB量を低くするとともに、Al、Ga、Cuのうちから選ばれる1種類以上の金属元素Mを含有させることによりR17M相を生成させ、該RFe17相を原料として生成させた遷移金属リッチ相(R13M)の体積率を十分に確保することにより、Dyの含有量を抑制しつつ、保磁力の高いR−T−B系希土類焼結磁石が得られることが記載されている。 In Patent Document 1, R 2 F 17 M is obtained by lowering the amount of B than a normal R-T-B alloy and containing one or more metal elements M selected from Al, Ga, and Cu. A coercive force is generated while suppressing the content of Dy by ensuring a sufficient volume fraction of the transition metal rich phase (R 6 T 13 M) generated by generating a phase and using the R 2 Fe 17 phase as a raw material. It is described that an R-T-B rare earth sintered magnet having a high C can be obtained.

また、上述の通りR−T−B系焼結磁石が最も利用される用途はモータであり、特に電気自動車用モータなどの用途で高温安定性を確保するためにHcJの向上は大変有効であるが、それらの特性とともに角形比H/HcJ(以下、単にH/HcJという場合がある)も高くなければならない。H/HcJが低いと減磁しやすくなるという問題を引き起こす。そのため。高いHcJを有するとともに、高いH/HcJを有するR−T−B系焼結磁石が求められている。なお、R−T−B系焼結磁石の分野においては、一般に、H/HcJを求めるために測定するパラメータであるHは、J(磁化の強さ)−H(磁界の強さ)曲線の第2象限において、Jが0.9×J(Jは残留磁化、J=B)の値になる位置のH軸の読み値が用いられている。このHを減磁曲線のHcJで除した値(H/HcJ)が角形比として定義される。 In addition, as described above, the use of the RTB -based sintered magnet is most often a motor. In particular, the improvement of HcJ is very effective to ensure high-temperature stability in applications such as electric vehicle motors. However, along with these characteristics, the squareness ratio H k / H cJ (hereinafter sometimes simply referred to as H k / H cJ ) must also be high. If H k / H cJ is low, it causes a problem that demagnetization tends to occur. for that reason. There is a need for RTB -based sintered magnets having high H cJ and high H k / H cJ . In the field of R-T-B based sintered magnet, typically, H k is a parameter to be measured to determine the H k / H cJ is, J (intensity of magnetization) -H (field intensity ) In the second quadrant of the curve, the H-axis reading at a position where J is 0.9 × J r (J r is the residual magnetization, J r = B r ) is used. A value (H k / H cJ ) obtained by dividing H k by H cJ of the demagnetization curve is defined as the squareness ratio.

国際公開第2013/008756号International Publication No. 2013/008756

特許文献1に記載されているR−T−B系希土類磁石では、Dyの含有量を低減しつつ高いHcJが得られるものの、一般的なR−T−B系焼結磁石 (R14B型化合物の化学量論比よりもB量が多い)と比べてH/HcJが低下するという問題点があった。また、一般的なR−T−B系焼結磁石よりもB量を少なく(R14B型化合物の化学量論組成比のB量よりも少なく)し、Ga等を添加した組成の焼結磁石で高いHcJを得るためには、焼結工程を行った後に比較的低い温度(400℃以上600℃以下)のみでの熱処理(一段熱処理)、あるいは比較的高い温度(700℃以上焼結温度以下(例えば1050℃以下))で熱処理を行った後、比較的低い温度(400℃以上600℃以下)で熱処理をする(二段熱処理)必要がある。 In the R-T-B type rare earth magnet described in Patent Document 1, although a high H cJ can be obtained while reducing the Dy content, a general R-T-B type sintered magnet (R 2 T There was a problem that H k / H cJ was lower than that of 14 B type compound having a B amount higher than the stoichiometric ratio. Further, the amount of B is smaller than that of a general RTB-based sintered magnet (less than the amount of B in the stoichiometric composition ratio of the R 2 T 14 B type compound), and a composition in which Ga or the like is added is used. In order to obtain high HcJ with a sintered magnet, heat treatment (single-stage heat treatment) only at a relatively low temperature (400 ° C. or more and 600 ° C. or less) after the sintering process, or relatively high temperature (700 ° C. or more) After performing the heat treatment at a sintering temperature or lower (for example, 1050 ° C. or lower), it is necessary to perform a heat treatment at a relatively low temperature (400 ° C. or higher and 600 ° C. or lower) (two-stage heat treatment).

本開示の実施形態は、RHの含有量を低減しつつ、高いHcJと高いH/HcJを有し、かつ、焼結後の熱処理が不要なR−T−B系焼結磁石の製造方法を提供する。 The embodiment of the present disclosure is an R-T-B based sintered magnet that has a high H cJ and a high H k / H cJ while reducing the RH content and does not require a heat treatment after sintering. A manufacturing method is provided.

本開示の限定的ではない例示的なR−T−B系焼結磁石の製造方法は、
R:31.5質量%以上32.0質量%以下(Rは希土類元素の少なくとも一種であり、Nd又はPrを必ず含む)、
B:0.822質量%以上0.846質量%以下、
Cu:0.10質量%以上0.20質量%以下、
Co:0.85質量%以上0.90質量%以下、
Ga:0.35質量%以上0.45質量%以下、
Al:0.7質量%以下(0質量%を含む)、
残部Feおよび不可避的不純物からなる合金を準備する工程と、
前記合金を粉砕して合金粉末を得る工程と、
前記合金粉末を成形して成形体を得る工程と、
前記成形体を1000℃以上1070℃以下に加熱して焼結体を得る工程を含み、
前記焼結体に対して350℃以上の熱処理を行わない。
ある実施形態において、焼結体を得る工程において、1000℃以上1070℃以下に加熱後、200℃までの平均冷却速度を20℃/分以上30℃/分以下で冷却する。
A non-limiting exemplary RTB-based sintered magnet manufacturing method of the present disclosure includes:
R: 31.5% by mass or more and 32.0% by mass or less (R is at least one kind of rare earth element and necessarily contains Nd or Pr),
B: 0.822 mass% or more and 0.846 mass% or less,
Cu: 0.10% by mass to 0.20% by mass,
Co: 0.85 mass% or more and 0.90 mass% or less,
Ga: 0.35 mass% or more and 0.45 mass% or less,
Al: 0.7% by mass or less (including 0% by mass),
Preparing an alloy comprising the balance Fe and inevitable impurities;
Crushing the alloy to obtain an alloy powder;
Forming the alloy powder to obtain a molded body;
Heating the molded body to 1000 ° C. or higher and 1070 ° C. or lower to obtain a sintered body,
No heat treatment at 350 ° C. or higher is performed on the sintered body.
In a certain embodiment, in the process of obtaining a sintered compact, after heating at 1000 degreeC or more and 1070 degrees C or less, the average cooling rate to 200 degreeC is cooled at 20 degreeC / min or more and 30 degrees C / min or less.

本開示の実施形態によれば、RHの含有量を低減しつつ、高いHcJと高いH/HcJを有し、かつ、焼結後の熱処理が不要なR−T−B系焼結磁石の製造方法を提供することができる。 According to the embodiment of the present disclosure, RTB- based sintering has a high H cJ and a high H k / H cJ while reducing the content of RH, and does not require a heat treatment after sintering. A method for manufacturing a magnet can be provided.

発明者は検討の結果、B量がR14B型化合物の化学量論比のB量よりも少なく、かつ極めて狭い特定の範囲内であり、さらに、R、Cu、Co、Ga、Alが特定の範囲である合金を用いることで、RHの使用量を少なくしつつ、高いHcJと高いH/HcJを有し、かつ、焼結後の熱処理が不要なR−T−B系焼結磁石が得られることを見出したものである。
上述したように、通常、R−T−B系焼結磁石は高いHcJと高いH/HcJを得るために熱処理を行っている。これに対し、本開示の実施形態においては熱処理が不要となるため、量産効率を大幅に改善することができる。
上記組成により、一般的なR−T−B系焼結磁石よりもB量が少なくするとともにGa等を含有させているので、粒界にR−T−Ga相が生成して高いHcJが得ることができる。ここで、R−T−Ga相とは、代表的にはNdFe13Ga化合物である。R13Ga化合物はその状態によってはRFe13−δGa1+δ化合物(δは典型的には2以下)になっている場合がある。例えば、R−T−B系焼結磁石中にCu、Alが含有される場合、R13−δ(Ga1−x−yCuAl1+δになっている場合がある。
As a result of the study, the inventor found that the amount of B is less than the amount of B in the stoichiometric ratio of the R 2 T 14 B type compound and is in a very narrow specific range, and further, R, Cu, Co, Ga, Al By using an alloy having a specific range, R-T-B has a high H cJ and a high H k / H cJ while reducing the amount of RH used, and does not require heat treatment after sintering. It has been found that a sintered system magnet can be obtained.
As described above, the RTB -based sintered magnet is usually heat-treated in order to obtain high H cJ and high H k / H cJ . On the other hand, in the embodiment of the present disclosure, heat treatment is not necessary, so that mass production efficiency can be greatly improved.
With the above composition, the amount of B is smaller than that of a general RTB -based sintered magnet, and Ga or the like is contained, so that an RT-Ga phase is generated at the grain boundary and high H cJ is obtained. Can be obtained. Here, the R—T—Ga phase is typically an Nd 6 Fe 13 Ga compound. The R 6 T 13 Ga compound may be an R 6 Fe 13-δ Ga 1 + δ compound (δ is typically 2 or less) depending on the state. For example, when Cu and Al are contained in an R-T-B sintered magnet, R 6 T 13-δ (Ga 1-xy Cu x Al y ) 1 + δ may be obtained.

R(Rは希土類元素の少なくとも一種であり、Nd又はPrを必ず含む)の含有量は31.5質量%以上32.0質量%以下、Bの含有量は0.822質量%以上0.846質量%以下、Cuの含有量は0.10質量%以上0.20質量%以下、Coの含有量は0.85質量%以上0.90質量%以下、Gaの含有量は0.35質量%以上0.45質量%以下である。R、B、Cu、Co、Gaのすべてを狭い範囲に特定することにより、熱処理を行わなくても、高いHcJと高いH/HcJを有するR−T−B系焼結磁石を得ることができる。R、B、Cu、Co、Gaのうちのいずれかが本開示の実施形態の組成範囲から外れると、熱処理を行わないで高いHcJおよびH/HcJを得ることができない可能性がある。Bの一部はCと置換することができる。 The content of R (R is at least one kind of rare earth element and necessarily contains Nd or Pr) is 31.5 mass% or more and 32.0 mass% or less, and the B content is 0.822 mass% or more and 0.846 mass%. % By mass or less, Cu content is 0.10% by mass or more and 0.20% by mass or less, Co content is 0.85% by mass or more and 0.90% by mass or less, and Ga content is 0.35% by mass. It is 0.45 mass% or less. By specifying all of R, B, Cu, Co, and Ga within a narrow range, an RTB -based sintered magnet having high H cJ and high H k / H cJ can be obtained without performing heat treatment. be able to. If any of R, B, Cu, Co, and Ga is out of the composition range of the embodiment of the present disclosure, high H cJ and H k / H cJ may not be obtained without performing heat treatment. . A part of B can be replaced with C.

前記元素に加えてAlを含有してもよい。Alの含有量は0.7質量%以下である。Alを含有することによりHcJを向上させることができる。Alは製造工程で不可避的不純物として0.02質量%以上含有される場合がある。不可避的不純物で含有される量と意図的に添加した量の合計で0.7質量%以下含有してもよい。Alが0.7質量%を超えるとBが低下する可能性がある。 In addition to the above elements, Al may be contained. The Al content is 0.7% by mass or less. By containing Al, HcJ can be improved. Al may be contained 0.02% by mass or more as an inevitable impurity in the production process. You may contain 0.7 mass% or less in the sum total of the quantity contained with an unavoidable impurity, and the quantity added intentionally. When Al exceeds 0.7 mass%, Br may fall.

本開示の実施形態のR−T−B系焼結磁石は、ジジム合金(Nd−Pr)、電解鉄、フェロボロンなどに通常含有される不可避的不純物としてCr、Mn、Si,La、Ce、Sm、Ca、Mgなどを含有することができる。さらに、製造工程中の不可避的不純物として、O(酸素)、N(窒素)、C(炭素)などを例示できる。また少量のV、Ni、Mo、Hf,Ta、Wなどを含有してもよい。   The RTB-based sintered magnet of the embodiment of the present disclosure includes Cr, Mn, Si, La, Ce, and Sm as unavoidable impurities that are normally contained in didymium alloy (Nd-Pr), electrolytic iron, ferroboron, and the like. , Ca, Mg and the like can be contained. Furthermore, O (oxygen), N (nitrogen), C (carbon) and the like can be exemplified as inevitable impurities during the manufacturing process. A small amount of V, Ni, Mo, Hf, Ta, W, or the like may be contained.

上述した本開示の実施形態に係る組成を有する合金を用いて作製したR−T−B系焼結磁石は、前記合金を準備する工程と、前記合金を粉砕して合金粉末を得る工程と、前記合金粉末を成形して成形体を得る工程と、前記成形体を1000℃以上1070℃以下に加熱して焼結体を得る工程を経て製造される。以下、その製造方法について説明する。   The RTB-based sintered magnet produced using the alloy having the composition according to the embodiment of the present disclosure described above includes a step of preparing the alloy, a step of pulverizing the alloy to obtain an alloy powder, It is manufactured through a process of obtaining the compact by molding the alloy powder and a process of obtaining a sintered body by heating the compact to 1000 ° C. or more and 1070 ° C. or less. Hereinafter, the manufacturing method will be described.

[合金を準備する工程]
上述した本開示の実施形態の組成となるようにそれぞれの元素の金属または合金を準備し、これらを公知の方法を用いて溶解し合金を準備する。例えば、本開示の実施形態の組成となるようにそれぞれの元素の金属または合金を準備し、ストリップキャスティング法を用いて、フレーク状の合金を準備する。
[合金粉末を得る工程]
得られた合金を粉砕して合金粉末を得る。合金の粉砕は公知の方法で行えばよい。例えば、まず合金を水素粉砕することで粗粉砕粉を得る。粗粉砕粉のサイズは例えば1.0mm以下である。次に粗粉砕粉をジェットミル等により微粉砕することで、例えば粒径D50(気流分作法によるレーザー回折法で得られた体積基準メジアン径)が3μm以上7μm以下の微粉砕粉(合金粉末)を得る。なお、ジェットミル粉砕前の粗粉砕粉、ジェットミル粉砕中およびジェットミル粉砕後の合金粉末に助剤として公知の潤滑剤を使用してもよい。
[Process for preparing alloys]
A metal or alloy of each element is prepared so as to have the composition of the embodiment of the present disclosure described above, and these are melted using a known method to prepare an alloy. For example, a metal or an alloy of each element is prepared so as to have the composition of the embodiment of the present disclosure, and a flaky alloy is prepared using a strip casting method.
[Step of obtaining alloy powder]
The obtained alloy is pulverized to obtain an alloy powder. The alloy may be pulverized by a known method. For example, a coarsely pulverized powder is obtained by first hydrogen pulverizing the alloy. The size of the coarsely pulverized powder is, for example, 1.0 mm or less. Next, the coarsely pulverized powder is finely pulverized by a jet mill or the like, so that, for example, finely pulverized powder (alloy powder) having a particle size D 50 (volume-based median diameter obtained by laser diffraction by airflow fractionation) of 3 μm or more and 7 μm or less. ) A known lubricant may be used as an auxiliary agent for the coarsely pulverized powder before jet mill pulverization and the alloy powder during and after jet mill pulverization.

[成形体を得る工程]
得られた合金粉末を用いて磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内にスラリー(分散媒中に合金粉末が分散している)を注入し、スラリーの分散媒を排出しながら成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてもよい。
[Step of obtaining molded body]
Using the obtained alloy powder, molding is performed in a magnetic field to obtain a compact. Molding in a magnetic field is a dry molding method in which a dry alloy powder is inserted into a mold cavity and molding is performed while a magnetic field is applied. Any known molding method in a magnetic field may be used, including a wet molding method in which the slurry is molded while the slurry dispersion medium is discharged.

[焼結体を得る工程]
成形体を焼結することにより焼結体を得る。成形体の焼結は公知の方法を用いて1000℃以上1070℃以下の温度で焼結する。また、焼結した後の焼結温度から200℃までの平均冷却速度は20℃/分以上30℃以下/分が好ましい。なお、焼結時の雰囲気による酸化を防止するために、焼結は真空雰囲気中または雰囲気ガス中で行うことが好ましい。雰囲気ガスは、アルゴンなどの不活性ガスを用いることが好ましい。
また、本開示の実施形態においては、焼結後の焼結体に対して350℃以上の熱処理を行わない。350℃以上の熱処理を行うと、かえって高いHcJと高いH/HcJが得られない可能性がある。
得られた焼結体(焼結磁石)に磁石寸法調整のため、研削などの機械加工を実施してもよい。さらに、得られた焼結磁石に、表面処理を施してもよい。表面処理は、公知の手法でよく、例えばAl蒸着や電気Niめっきや樹脂塗装などを採用することができる。
[Step of obtaining sintered body]
A sintered body is obtained by sintering the compact. The compact is sintered at a temperature of 1000 ° C. or higher and 1070 ° C. or lower using a known method. The average cooling rate from the sintering temperature after sintering to 200 ° C. is preferably 20 ° C./min to 30 ° C./min. In addition, in order to prevent the oxidation by the atmosphere at the time of sintering, it is preferable to perform sintering in a vacuum atmosphere or atmospheric gas. The atmosphere gas is preferably an inert gas such as argon.
In the embodiment of the present disclosure, heat treatment at 350 ° C. or higher is not performed on the sintered body after sintering. When heat treatment at 350 ° C. or higher is performed, high H cJ and high H k / H cJ may not be obtained.
The obtained sintered body (sintered magnet) may be subjected to machining such as grinding for magnet size adjustment. Furthermore, you may surface-treat to the obtained sintered magnet. The surface treatment may be performed by a known method, for example, Al deposition, electric Ni plating, resin coating, or the like can be employed.

本開示の実施形態を実施例によりさらに詳細に説明するが、本開示の実施形態はそれらに限定されるものではない。   The embodiments of the present disclosure will be described in more detail by way of examples, but the embodiments of the present disclosure are not limited thereto.

実験例1
電解鉄、Ndメタル、Prメタル、フェロボロン合金、電解Co、CuメタルおよびGaメタルを用いて(メタルはいずれも純度99%以上)、組成が表1の試料No.1〜6に示すR−T−B系焼結磁石の組成となるように配合し、それらの原料を溶解しストリップキャスト法により鋳造し、厚み0.2mm以上0.4mm以下のフレーク状の原料合金を得た。得られた合金の成分分析結果を表1に示す。なお、表1におけるNd、Pr、B、Co、Cu、Gaは高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。このうち、B濃度については、測定を3回行い、その平均の値とした。また、表1において、TREは全てのRの量(Nd、Pr)を合計した値である。得られたフレーク状の原料合金を水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素雰囲気中で乾式粉砕し、粒径D50が4.3μmの微粉砕粉(合金粉末)を得た。なお、本実験例では、粉砕時の窒素ガス中の酸素濃度を4000ppm以上、6000ppm以下とすることにより、最終的に得られる焼結磁石の酸素量を0.6質量%前後となるようにした。また、粒径D50は気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
前記微粉砕粉に、液体潤滑剤を微粉砕粉100質量%に対して、0.3質量%添加、混合した後、磁界中成形し、成形体を得た。なお、成形装置は、磁場印加方向と加圧法方向とが直行する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。
得られた成形体を、10℃/分で昇温し、1060℃で4時間保持して焼結し、焼結温度(1060℃)から200℃までの平均冷却速度を27℃/分で冷却してR−T−B系焼結磁石を得た。R−T−B系焼結磁石の密度はいずれも7.5Mg/m以上であった。なお、焼結温度および冷却速度は、成形体に熱電対を取り付けて測定した。
Experimental example 1
Electrolytic iron, Nd metal, Pr metal, ferroboron alloy, electrolytic Co, Cu metal, and Ga metal were used (all metals had a purity of 99% or more). The composition of the R-T-B system sintered magnet shown in 1-6 is blended, these raw materials are melted and cast by the strip casting method, and the flake-shaped raw material having a thickness of 0.2 mm or more and 0.4 mm or less An alloy was obtained. The component analysis results of the obtained alloy are shown in Table 1. Note that Nd, Pr, B, Co, Cu, and Ga in Table 1 were measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). Among these, about B density | concentration, the measurement was performed 3 times and it was set as the average value. In Table 1, TRE is a total value of all R amounts (Nd, Pr). The obtained flaky raw material alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere and then subjected to dehydrogenation treatment by heating and cooling to 550 ° C. in a vacuum to obtain coarsely pulverized powder. Next, after adding and mixing 0.04% by mass of zinc stearate as a lubricant with respect to 100% by mass of the coarsely pulverized powder, the resulting coarsely pulverized powder was mixed with an airflow pulverizer (jet mill device). was dry milled in a nitrogen atmosphere, the particle diameter D 50 was obtained finely pulverized powder of 4.3μm (the alloy powder). In this experimental example, the oxygen concentration in the nitrogen gas at the time of pulverization was set to 4000 ppm or more and 6000 ppm or less, so that the oxygen amount of the finally obtained sintered magnet was about 0.6 mass%. . The particle size D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).
A liquid lubricant was added to and mixed with the finely pulverized powder in an amount of 0.3% by mass with respect to 100% by mass of the finely pulverized powder, and then molded in a magnetic field to obtain a molded body. The forming apparatus used was a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing method direction were orthogonal.
The obtained molded body was heated at 10 ° C./min, held at 1060 ° C. for 4 hours and sintered, and the average cooling rate from the sintering temperature (1060 ° C.) to 200 ° C. was cooled at 27 ° C./min. Thus, an RTB-based sintered magnet was obtained. The density of the RTB-based sintered magnets was 7.5 Mg / m 3 or more. The sintering temperature and the cooling rate were measured by attaching a thermocouple to the compact.

Figure 2019149525
Figure 2019149525

焼結後の焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B−Hトレーサによって磁気特性を測定した。その結果を表2に示す。なお、HはJ(磁化の大きさ)−H(磁界の強さ)曲線の第2象限において、Jが0.9×J(Jは残留磁化、J=B)の値になる位置のHの値である。 The sintered magnet after sintering was machined to prepare a sample having a length of 7 mm, a width of 7 mm, and a thickness of 7 mm, and the magnetic properties were measured with a BH tracer. The results are shown in Table 2. Incidentally, H k is J value of (the magnetization magnitude) -H in the second quadrant of the (magnetic field strength) curve, J is 0.9 × J r (J r residual magnetization, J r = B r) Is the value of H at the position.

Figure 2019149525
Figure 2019149525

表2の試料No.3が実施例である。表2に示すように試料No.3では、熱処理を行わずに1400kA/m近い高いHcJが得られ、かつH/HcJも0.90以上の高い値が得られている。 Sample No. 3 in Table 2 is an example. As shown in Table 2, in sample No. 3, high H cJ close to 1400 kA / m was obtained without performing heat treatment, and H k / H cJ was also high, 0.90 or higher.

表2の試料No.3に対して、800℃で2時間保持した後室温まで冷却する熱処理(試料No.3−2)と、800℃で2時間保持した後室温まで冷却を行い、さらに450℃で3時間保持した後室温まで冷却する熱処理(試料No.3−3)を施した。熱処理後の焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作成しB−Hトレーサによって各試料の磁気特性を測定した。測定結果を表3に示す。 Sample No. in Table 2 3 was held at 800 ° C. for 2 hours and then cooled to room temperature (Sample No. 3-2), held at 800 ° C. for 2 hours, cooled to room temperature, and further held at 450 ° C. for 3 hours. Thereafter, heat treatment (sample No. 3-3) for cooling to room temperature was performed. The sintered magnet after heat treatment was machined to prepare samples having a length of 7 mm, a width of 7 mm, and a thickness of 7 mm, and the magnetic properties of each sample were measured with a BH tracer. Table 3 shows the measurement results.

Figure 2019149525
Figure 2019149525

表3の試料No.3が実施例である。表3に示すように試料No.3に対して、熱処理を行うと、HcJが低下(No.3−2)したり、H/HcJが低下(No.3−3)している。
Sample No. 3 in Table 3 is an example. As shown in Table 3, when heat treatment is performed on sample No. 3, H cJ decreases (No. 3-2) or H k / H cJ decreases (No. 3-3). .

Claims (2)

R:31.5質量%以上32.0質量%以下(Rは希土類元素の少なくとも一種であり、Nd又はPrを必ず含む)、
B:0.822質量%以上0.846質量%以下、
Cu:0.10質量%以上0.20質量%以下、
Co:0.85質量%以上0.90質量%以下、
Ga:0.35質量%以上0.45質量%以下、
Al:0.7質量%以下(0質量%を含む)、
残部Feおよび不可避的不純物からなる合金を準備する工程と、
前記合金を粉砕して合金粉末を得る工程と、
前記合金粉末を成形して成形体を得る工程と、
前記成形体を1000℃以上1070℃以下に加熱して焼結体を得る工程と、
を含み、
前記焼結体に対して350℃以上の熱処理を行わない、
R−T−B系焼結磁石の製造方法。
R: 31.5% by mass or more and 32.0% by mass or less (R is at least one kind of rare earth element and necessarily contains Nd or Pr),
B: 0.822 mass% or more and 0.846 mass% or less,
Cu: 0.10% by mass to 0.20% by mass,
Co: 0.85 mass% or more and 0.90 mass% or less,
Ga: 0.35 mass% or more and 0.45 mass% or less,
Al: 0.7% by mass or less (including 0% by mass),
Preparing an alloy comprising the balance Fe and inevitable impurities;
Crushing the alloy to obtain an alloy powder;
Forming the alloy powder to obtain a molded body;
Heating the molded body to 1000 ° C. or higher and 1070 ° C. or lower to obtain a sintered body;
Including
No heat treatment at 350 ° C. or higher is performed on the sintered body.
Manufacturing method of RTB-based sintered magnet.
前記焼結体を得る工程において、1000℃以上1070℃以下に加熱後、200℃までの平均冷却速度を20℃/分以上30℃/分以下で冷却する、
請求項1に記載のR−T−B系焼結磁石の製造方法。
In the step of obtaining the sintered body, after heating at 1000 ° C. or more and 1070 ° C. or less, the average cooling rate to 200 ° C. is cooled at 20 ° C./min or more and 30 ° C./min or less,
The manufacturing method of the RTB type | system | group sintered magnet of Claim 1.
JP2018035061A 2018-02-28 2018-02-28 Method for manufacturing r-t-b-based sintered magnet Pending JP2019149525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018035061A JP2019149525A (en) 2018-02-28 2018-02-28 Method for manufacturing r-t-b-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018035061A JP2019149525A (en) 2018-02-28 2018-02-28 Method for manufacturing r-t-b-based sintered magnet

Publications (1)

Publication Number Publication Date
JP2019149525A true JP2019149525A (en) 2019-09-05

Family

ID=67849493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018035061A Pending JP2019149525A (en) 2018-02-28 2018-02-28 Method for manufacturing r-t-b-based sintered magnet

Country Status (1)

Country Link
JP (1) JP2019149525A (en)

Similar Documents

Publication Publication Date Title
JP6288076B2 (en) R-T-B sintered magnet
JP6090550B1 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6489201B2 (en) Method for producing RTB-based sintered magnet
WO2016133071A1 (en) Method for producing r-t-b system sintered magnet
WO2019181249A1 (en) Method for producing r-t-b system sintered magnet
JP6798546B2 (en) Manufacturing method of RTB-based sintered magnet
JP6541038B2 (en) RTB based sintered magnet
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP6213697B1 (en) Method for producing RTB-based sintered magnet
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP6474043B2 (en) R-T-B sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP6702215B2 (en) R-T-B system sintered magnet
JP7215044B2 (en) Method for producing RTB based sintered magnet
JP7021577B2 (en) Manufacturing method of RTB-based sintered magnet
JP2022008212A (en) R-t-b based permanent magnet and motor
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP2019149525A (en) Method for manufacturing r-t-b-based sintered magnet
JP7435134B2 (en) Manufacturing method of RTB based sintered magnet
JP7228097B2 (en) Method for producing RTB based sintered magnet
JP2020161788A (en) R-t-b based sintered magnet
JP2021155783A (en) Method of producing r-t-b-based sintered magnet
JP2021057564A (en) Method for manufacturing r-t-b based sintered magnet
JP2016192542A (en) R-t-b-based sintered magnet