WO2019064874A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2019064874A1
WO2019064874A1 PCT/JP2018/028189 JP2018028189W WO2019064874A1 WO 2019064874 A1 WO2019064874 A1 WO 2019064874A1 JP 2018028189 W JP2018028189 W JP 2018028189W WO 2019064874 A1 WO2019064874 A1 WO 2019064874A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
wiring
emitter
power semiconductor
terminal
Prior art date
Application number
PCT/JP2018/028189
Other languages
English (en)
French (fr)
Inventor
明博 難波
高志 平尾
大西 正己
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112018003628.6T priority Critical patent/DE112018003628T5/de
Priority to US16/648,102 priority patent/US11127695B2/en
Priority to CN201880058561.3A priority patent/CN111095760B/zh
Publication of WO2019064874A1 publication Critical patent/WO2019064874A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1207Resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1425Converter
    • H01L2924/14252Voltage converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present invention relates to a power converter used to convert direct current power to alternating current power or to convert alternating current power to direct current power, and more particularly to a power converter used for hybrid vehicles and electric vehicles.
  • Power converters for use in hybrid vehicles and electric vehicles are required to increase output power as the drive torque of hybrid vehicles and electric vehicles increases.
  • a plurality of power semiconductors are connected in parallel.
  • control signal lines are formed in layers for the purpose of current suppression of the emitter loop which is formed on the emitters of a plurality of power semiconductors and causes current imbalance.
  • the subject of this invention is suppressing the enlargement of a control signal board
  • a power conversion device includes a first power semiconductor device, a second power semiconductor device, and a circuit board having a circuit for transmitting drive signals of the first power semiconductor device and the second power semiconductor device.
  • the circuit board may include a first emitter wiring formed along an arrangement direction of the first power semiconductor device and the second power semiconductor device, and a space between the first power semiconductor device and the first emitter wiring.
  • a first gate line disposed, a second gate line disposed between the second power semiconductor element and the emitter line, and the first gate line and the second gate line sandwiching the emitter line
  • a third gate wiring disposed opposite to each other, and having a first gate resistor connecting the first gate wiring and the third gate wiring across the first emitter wiring.
  • the difference in inductance between control signal lines of the power semiconductor can be reduced, and the increase in size of the control signal substrate can be suppressed while suppressing the current unbalance of the control signal.
  • FIG. 7 is an external perspective view of a power semiconductor module 100.
  • FIG. 18 is an exploded perspective view showing a process of assembling the module sealing body 191 in the case 103 of the power semiconductor module 100.
  • FIG. 6 is an exploded perspective view of circuit components that constitute a series circuit of upper and lower arms of the power semiconductor module 100. It is an example of the block diagram which arrange
  • FIG. 1 is an electric circuit diagram of a power conversion device 500 of the present embodiment. The operation principle of the power conversion device 500 of this embodiment will be described with reference to FIG.
  • Power converter 500 is formed of power semiconductor module 100, capacitor module 200, positive electrode conductor 310, and negative electrode conductor 320.
  • the power conversion device 500 of this embodiment is a power conversion device that converts direct current into three-phase alternating current, or converts three-phase alternating current into direct current, and includes three power semiconductor modules 100U, 100V, and 100W. Configured
  • Each of power semiconductor modules 100U to 100W is provided with an AC terminal. That is, power semiconductor module 100U has module AC terminal 150U.
  • the power semiconductor module 100V has a module AC terminal 150V.
  • the power semiconductor module 100W has a module AC terminal 150W.
  • the module AC terminals 150U, 150V, and 150W are connected to three-phase terminals of the motor.
  • the DC input / output positive terminal 319 of the positive electrode conductor 310 is connected to the positive terminal of the high voltage battery.
  • the DC input / output negative terminal 329 of the negative electrode conductor plate 320 is connected to the negative terminal of the high voltage battery.
  • Capacitor module 200 is provided with a positive electrode terminal electrically connected to positive electrode conductor 310 and a negative electrode terminal electrically connected to negative electrode conductor 320.
  • the power semiconductor module 100 is composed of an upper arm and a lower arm.
  • an insulated gate bipolar transistor is used as an example of the semiconductor element, and hereinafter abbreviated as IGBT.
  • the upper arm of the power semiconductor module 100 is composed of an IGBT 161 and a diode 162. Further, a control terminal 171 for turning on / off the IGBT 161 is provided on the upper arm.
  • the lower arm of the power semiconductor module 100 is comprised of an IGBT 163 and a diode 164. Further, the lower arm is provided with a control terminal 172 for turning on and off the IGBT 163.
  • the collector of the upper arm IGBT 161 is provided with a first module positive electrode terminal 111 for connection to the positive electrode conductor 310.
  • the emitter of the lower arm IGBT 163 is provided with a first module negative terminal 121 for connection to the negative electrode conductor 320.
  • a module AC terminal 150 is provided between the emitter of the upper arm IGBT 161 and the collector of the lower arm IGBT 163.
  • the power conversion device 500 can convert DC current into AC current or AC current into DC current by switching control signals applied to the control terminal 171 of the upper arm and the control terminal 172 of the lower arm. For example, in the steady state in which the upper arm IGBT 161 of the power semiconductor module 100 is turned on and the lower arm IGBT 163 is turned off, current flows from the positive conductor plate 310 to the module AC terminal 150 through the module positive terminal 111. Conversely, when the upper arm IGBT 161 of the power semiconductor module 100 is turned off and the lower arm IGBT 163 is turned on, a current flows from the module AC terminal 150 toward the module negative terminal 121.
  • FIG. 2 is a conceptual exploded perspective view of the power conversion device 500 of the present embodiment.
  • the power conversion device 500 includes a positive electrode conductor 310, a negative electrode conductor 320, a power semiconductor module 100, and a capacitor module 200.
  • Capacitor module 200 is provided with a positive electrode terminal electrically connected to positive electrode conductor 310 and a negative electrode terminal electrically connected to negative electrode conductor 320.
  • the first module positive electrode terminal 111 of the power semiconductor module 100 is electrically connected to the first positive electrode terminal 311 of the positive electrode conductor 310.
  • the first module negative terminal 121 of the power semiconductor module 100 is electrically connected to the first negative terminal 321 of the negative electrode conductor 320.
  • FIG. 3 is an example of a power module 100 in which IGBTs and diodes are respectively configured using four power semiconductors in the circuit configuration of FIG.
  • IGBTs 161 and four diodes 162 are connected in parallel.
  • the source terminals of the four IGBTs 161 and the cathode terminal of the diode 162 are connected to the module positive terminal 111.
  • the emitter terminals of the four IGBTs 161 and the anode terminals of the diode 162 are connected to the module AC terminal 150.
  • IGBTs 163 and four diodes 164 are connected in parallel.
  • the source terminals of the four IGBTs 163 and the cathode terminal of the diode 164 are connected to the module AC terminal 150.
  • the emitter terminals of the four IGBTs 163 and the anode terminals of the diode 164 are connected to the module negative terminal 121.
  • the gate terminals 166 of the IGBTs 162 and 163 are connected to the gate wiring formed on the control signal substrate 400, and the emitter terminals 167 of the IGBTs 162 and 163 are connected to the emitter wiring formed on the control signal substrate 400.
  • the gate signals input from the control terminals 171 and 172 are input to the gate terminal 410 and the emitter terminal 420 of the control signal substrate 400. These signals are branched into four by the wiring on the control signal substrate 400 and input to the gate terminal 166 and the emitter terminal 167 of each of the IGBTs 162 and 163.
  • FIG. 4 is a top view of the power module when four IGBTs 165 are connected in parallel.
  • Two IGBTs 165 are arranged on both sides of the control signal substrate 400.
  • a first gate wiring 411, a second gate wiring 412, a third gate wiring 413, a fourth gate wiring 414, and a fifth gate wiring 415 are disposed on the control signal substrate 400.
  • a first emitter wiring 421 is disposed between the first gate wiring 411 and the third gate wiring 413 and between the second gate wiring 412 and the third gate wiring 413.
  • a second emitter wiring 422 is disposed between the fourth gate wiring 414 and the third gate wiring 413 and between the fifth gate wiring 415 and the third gate wiring 413.
  • the first gate resistor 431 is connected to the first gate wiring 411 and the third gate wiring 413 across the first emitter wiring 421.
  • the second gate resistor 432 is connected to the second gate wiring 412 and the third gate wiring 413 across the first emitter wiring 421.
  • the third gate resistor 433 is connected to the fourth gate wiring 414 and the third gate wiring 413 across the second emitter wiring 422, and the fourth gate resistor 434 extends across the second emitter wiring 422. It is connected to the fifth gate wiring 415 and the third gate wiring 413.
  • the gate terminal 166 of the IGBT 165 is connected to the gate wiring of the control signal substrate 400 by wire bonding 440.
  • Emitter terminal 167 of IGBT 165 is connected to the emitter wiring of control signal substrate 400 by wire bonding 440.
  • the gate signal input between the gate terminal 410 and the emitter terminal 420 of the control signal substrate 400 can be branched at equal distance by the gate wiring on the control signal substrate 400 and transmitted to each IGBT .
  • FIG. 5 shows a connection structure of the gate wiring, the emitter wiring, and the IGBT of this embodiment.
  • the connection configuration of two IGBTs will be described.
  • the gate current 2 Ig input to the gate terminal 410 of the control signal substrate 400 is shunted to the first gate resistor 431 and the second gate resistor 432 through the third gate wiring 413.
  • the gate current Ig that has passed through the first gate resistor 431 is applied to the first gate wiring 411 and is applied to the gate terminal 183 of the first IGBT 181.
  • the gate current Ig flowing to the emitter wiring passes from the emitter terminal 184 of the first IGBT 181 to the first emitter wiring 421 and returns to the emitter terminal 420 of the control signal substrate.
  • the gate current Ig is applied to the gate terminal 185 of the second IGBT 182 through the second gate resistor 432 and the second gate wiring 412.
  • the gate current Ig returns from the emitter terminal 186 of the second IGBT 182 to the emitter terminal 420 of the control signal substrate through the first emitter wiring 421.
  • the self inductance of the first gate wiring 411 is Lg1
  • the self inductance of the second gate wiring 412 is Lg2
  • the self inductance of the third gate wiring 413 is Lg3
  • the self inductance of the emitter wiring 421 opposed to the first gate wiring is Le1.
  • the self inductance of the emitter wire 421 opposed to the second gate wire 412 is set to Le2.
  • the mutual inductance between the first gate wiring 411 and the first emitter wiring 421 is M1
  • the mutual inductance between the second gate wiring 412 and the first emitter wiring 421 is M2
  • the third gate wiring 413 and the first Assuming that the mutual inductance with the emitter wire 421 is M3 it can be expressed by an electric circuit diagram shown in FIG.
  • a voltage Vge1 between the gate terminal 183 and the emitter terminal 184 of the first IGBT 181 has a voltage Vge applied between the gate terminal 410 and the emitter terminal 420 of the control signal substrate 400 as Vge. Become.
  • the difference between the gate voltages applied to the first IGBT and the second IGBT is the following equation 3 from the equations 1 and 2.
  • the voltage difference is expressed by the product of the inductance and the gate current Ig.
  • the gate current applied to the gate terminal of the control signal substrate is branched by the four gate resistors 431 to 434 after passing through the third gate wiring, and transmitted to the four IGBTs 165.
  • the gate current 2 Ig input to the gate terminal 410 of the control signal substrate is shunted to the first gate resistor 431 and the second gate resistor 432 through the third gate wiring 413.
  • the gate current Ig that has passed through the first gate resistor 431 is applied to the first gate wiring 411 and is applied to the gate terminal 183 of the first IGBT 181.
  • the gate current Ig flowing to the emitter wiring passes from the emitter terminal 184 of the first IGBT 181 to the first emitter wiring 421 and returns to the emitter terminal 420 of the control signal substrate.
  • the gate current Ig applied to the gate terminal 185 of the second IGBT 182 passes through the second gate resistor 432 and the second gate wiring 412.
  • the gate current Ig returns from the emitter terminal 186 of the second IGBT 182 to the emitter terminal 420 of the control signal substrate through the first emitter wiring 421.
  • the self inductance of the first gate wiring 411 is L′ g 1
  • the self inductance of the second gate wiring 412 is L′ g 2
  • the self inductance of the third gate wiring 413 is L′ g 3
  • the self inductance of the wiring 421 is L'e1
  • the self inductance of the emitter wiring 421 opposed to the second gate wiring 412 is L'e2.
  • the mutual inductance between the first gate wiring 411 and the first emitter wiring 421 is M'1
  • the mutual inductance between the second gate wiring 412 and the first emitter wiring 421 is M'2
  • the first gate wiring Assuming that the mutual inductance between 411 and the third gate wiring 413 is M'4 it can be expressed by an equivalent circuit diagram shown in FIG.
  • the resistance of each wiring was ignored.
  • the mutual inductance between the third gate wiring 413 and the first emitter wiring 421 was ignored because the distance is long.
  • the voltage V'ge1 between the gate terminal 183 and the emitter terminal 184 of the first IGBT 181 is Vge when the voltage applied between the gate terminal 410 of the control signal substrate 400 and the emitter terminal 420 is Vge, and the flowing current is Ig It becomes a formula.
  • the voltage difference is expressed by the product of the inductance and the gate current I g .
  • 2 M′4
  • the difference between the gate voltages applied to the first IGBT 181 and the second IGBT 182, that is, the gate interconnection inductance difference ⁇ L is given by the following equation 8.
  • FIG. 10 is an example of the block diagram of the power semiconductor module 100 used for the power converter device of a present Example.
  • the power semiconductor module 100 is configured of the IGBT 161 and the diode 162 in the upper arm, and the IGBT 163 and the diode 164 in the lower arm.
  • the power semiconductor module 100 of this embodiment is molded with resin in order to protect the internal IGBTs and diodes.
  • a module positive electrode terminal 111, a module negative electrode terminal 121, and a module AC terminal 150 for connecting to the positive electrode terminal 311 or the negative electrode terminal 321 are provided on the mold terminal surface 190 of the power semiconductor module 100.
  • these terminals (positive electrode terminal 111, negative electrode terminal 121, and alternating current terminal 150) are arranged such that their main surfaces overlap with one virtual surface. Therefore, in the molding process of the power semiconductor module 100, since the shape of the molding jig of the terminal portion can be simplified, the molding process can be facilitated.
  • FIG. 10 is an external perspective view of the power semiconductor module 100.
  • the power semiconductor module 100 has a case 103 which is completely closed except for an opening for outputting a terminal.
  • the case 103 is constituted by a frame body 104 which forms a side wall and a bottom surface, a radiation fin 105 which cools the power semiconductor element, and a flange portion 106.
  • the radiation fin 105 is formed on the widest longitudinal surface orthogonal to the side wall and the bottom surface of the case 103.
  • the radiation fin 105 is formed in the same shape also on the opposite surface opposite to it.
  • the flange portion 106 plays a role of positioning at the time of assembling the power semiconductor module 100 into the power converter.
  • the power semiconductor module 100 of the present embodiment assumes a power conversion device in which the heat radiating portion in which the heat radiating fins 105 are formed is in direct contact with the refrigerant, and the flange portion 106 comprises a heat radiating portion in contact with the refrigerant and a terminal portion. It also plays a role in ensuring the air tightness between In the groove portion 106A provided in the flange portion 106, for example, a member such as an O-ring that ensures air tightness is disposed.
  • the power conversion device of the direct cooling system as described above is illustrated and described here, the power semiconductor module of the present embodiment is not particularly limited to these applications, and power conversion devices of other systems are described. You may use it for
  • the insulating mold terminal 193 is configured of a module positive terminal 111, a module negative terminal 121, a module AC terminal 150, module control terminals 171 and 172, and a molding member 194.
  • the mold member 194 is formed with a plurality of through holes for penetrating these terminals (module positive terminal 111, module negative terminal 121, module AC terminal 150, module control terminals 171 and 172).
  • the mold members 194 electrically insulate these terminals from one another.
  • insulating plate members may be assembled between the terminals to ensure insulation.
  • FIG. 11 is an exploded perspective view showing a process of assembling the module sealing body 191 in the case 103 of the power semiconductor module 100.
  • a module sealing body 191 in which a power semiconductor element (the IGBT 161 and the diode 162 in the upper arm and the IGBT 163 and the diode 164 in the lower arm) is sealed is inserted into the insertion port 107 of the case 103.
  • the insulating members 108 are disposed to face the respective surfaces of the module sealing body 191.
  • FIG. 12 is an exploded perspective view of circuit components constituting a series circuit of upper and lower arms of the power semiconductor module 100. As shown in FIG. In FIG. 12, the sealing material of the module sealing body 191 is not shown.
  • the four IGBTs 161 connected in parallel constituting the upper arm circuit are arranged such that the collector electrodes of the IGBTs 161 are joined to the conductor plate 199.
  • the four diodes 162 connected in parallel constituting the upper arm circuit are arranged such that the cathode electrode of the diode 162 is joined to the conductor plate 199.
  • the electrode plate 196 is disposed to face the electrode plate 199 with the IGBT 161 and the diode 162 interposed therebetween.
  • the electrode plate 196 is joined to the emitter electrode of the IGBT 161 and the anode electrode of the diode 162.
  • the power semiconductor elements (IGBTs 161 and diodes 162) of the upper arm circuit are connected in parallel so as to be sandwiched between the electrode plate 199 and the electrode plate 196 in parallel.
  • a control signal substrate 400 is disposed on the conductor plate 199 in order to branch and transmit the control signal to the IGBTs 161 connected in parallel.
  • the four IGBTs 163 connected in parallel constituting the lower arm circuit are arranged such that the collector electrodes of the IGBTs 163 are joined to the conductor plate 195.
  • the four diodes 164 connected in parallel constituting the lower arm circuit are arranged such that the cathode electrode of the diode 164 is joined to the conductor plate 195.
  • the electrode plate 197 is disposed to face the electrode plate 195 with the IGBT 163 and the diode 164 interposed therebetween.
  • the electrode plate 197 is joined to the emitter electrode of the IGBT 163 and the anode electrode of the diode 164.
  • the power semiconductor elements (IGBTs 163 and diodes 164) of the lower arm circuit are connected in parallel so as to be sandwiched between the electrode plate 195 and the electrode plate 197 in parallel.
  • a control signal substrate 400 is disposed on the conductor plate 195 in order to branch and transmit the control signal to the IGBTs 161 connected in parallel.
  • the conductor plate 196 and the conductor plate 195 are connected by metal-joining the intermediate electrode 198A formed on the conductor plate 196 and the intermediate electrode 198B formed on the conductor plate 195. That is, the power semiconductor elements (IGBT 161 and diode 162) of the upper arm circuit and the power semiconductor elements (IGBT 163 and diode 164) of the lower arm circuit constitute a circuit connected in series.
  • the signal terminals 171 and 172 are connected to the gate terminal 410 or the emitter terminal 420 of the control signal substrate by bonding wires or the like.
  • the conductor plate 196 and the conductor plate 197 are disposed on the same plane. Further, as shown in FIG. 11, these conductor plates 196 and 197 are arranged such that the surface opposite to the surface where the IGBT and the diode are joined is exposed from the sealing material of the module sealing body 191 .
  • the conductor plate 195 and the conductor plate 199 are disposed on the same plane. Further, although not shown in FIG. 11, these conductor plates 195 and 199 are arranged such that the surface opposite to the surface where the IGBT and the diode are joined is exposed from the sealing material of the module sealing body 191 .
  • the exposed surfaces of the conductor plates 195, 196, 197, and 199 are disposed to face the heat dissipating fins 105 of the case 103.
  • module positive terminal 111, the module negative terminal 121, and the module AC terminal 150 are disposed so as to protrude from the module terminal surface 190 of the module sealing body 191. As described above, these terminals are arranged such that the respective main surfaces overlap one virtual surface.
  • the case 103 is a member having electrical conductivity, for example, Cu, a Cu alloy, a composite material such as Cu—C, Cu—CuO, or Al, an Al alloy, AlSiC, Al— It is formed of a composite material such as C.
  • the case 103 is formed by a highly waterproof bonding method such as welding, or by forging, casting or the like.
  • a sealing material of the module sealing body 191 for example, a resin based on a novolak type, polyfunctional type or biphenyl type epoxy resin type can be used, and ceramics or gel such as SiO2, Al2O3, AlN, BN, A rubber or the like is contained, and the thermal expansion coefficient approaches the conductor plates 195, 196, 197, 199.
  • ceramics or gel such as SiO2, Al2O3, AlN, BN, A rubber or the like is contained, and the thermal expansion coefficient approaches the conductor plates 195, 196, 197, 199.
  • the metal bonding agent used to join the conductive plate and the power semiconductor element is, for example, a Sn alloy soft solder (solder), a hard solder such as Al alloy or Cu alloy, or metal nanoparticles or microparticles.
  • a metal sintered material can be used.
  • FIG. 13 is an example of the block diagram of the power converter device of a present Example.
  • the control signal substrate 400 has gate wirings 411 to 419 for branching the gate signal applied to the gate terminal 410 of the control signal substrate to eight IGBTs 165.
  • the third gate wiring 413 and the first gate wiring 411, the second gate wiring 412, the sixth gate wiring 416, and the seventh gate wiring 417 are connected by the gate resistance 430 across the first emitter wiring 421.
  • the inductance shown in the first embodiment is inductance-eliminated by the cancellation of the inductance by the current flowing through the gate line and the current flowing through the emitter line. It is possible to reduce the difference.
  • the third gate wiring 413 and the fourth gate wiring 414, the fifth gate wiring 415, the eighth gate wiring 418, and the ninth gate wiring 419 are connected by the gate resistance 430 across the second emitter wiring 422. . Since these gate lines are disposed adjacent to the second emitter line 422, the inductance difference can be reduced by canceling out the inductance due to the current flowing through the gate line and the current flowing through the emitter line.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • the IGBT made of Si has been described as an example of the power semiconductor, but the same effect can be obtained even when a power semiconductor such as SiC or GaN is used.
  • part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • DESCRIPTION OF SYMBOLS 100 Power semiconductor module, 103 ... Case, 104 ... Frame, 105 ... Heat dissipation fin, 106 ... Flange, 106A ... Groove part, 107 ... Insertion port, 108 ... Insulating member, 111 ... Module positive terminal, 121 ...
  • Module negative terminal, 150 module AC terminal 161: upper arm IGBT 162: upper arm diode 163: lower arm IGBT 164: lower arm diode 165: IGBT 166: IGBT gate terminal 167: IGBT emitter Terminals 171: control terminal of upper arm 172: control terminal of lower arm 190: molded terminal surface 191: module sealing body 193: insulating molded terminal 194: molded member 195: conductor plate 196 conductor Plate, 197: conductor plate, 198: intermediate electrode, 199: conductor plate, 00: capacitor module 310: positive electrode conductor 311: positive electrode terminal 319: DC input / output positive electrode terminal 320: negative electrode conductor 321: negative electrode terminal 329: DC input / output negative electrode terminal 400: control signal board 410: gate Terminal 411: first gate wiring 412: second gate wiring 413: third gate wiring 414: fourth gate wiring 415: fifth gate wiring 416: sixth gate wiring 417: seventh gate wiring , 418: eighth gate wiring,

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

各パワー半導体に伝送する制御信号の電流アンバランスを抑制しながら制御信号基板の大型化を抑制することである。 本発明に係る電力変換装置は、第1パワー半導体素子と、第2パワー半導体素子と、前記第1パワー半導体素子及び前記第2パワー半導体素子の駆動信号を伝達する回路を有する回路基板とを備え、前記回路基板は、前記第1パワー半導体素子と前記第2パワー半導体素子の配列方向に沿って形成される第1エミッタ配線と、前記第1パワー半導体素子と前記第1エミッタ配線との間に配置される第1ゲート配線と、前記第2パワー半導体素子と前記エミッタ配線との間に配置される第2ゲート配線と、前記エミッタ配線を挟んで前記第1ゲート配線及び前記第2ゲート配線と対抗して配置される第3ゲート配線と、を備え、前記第1エミッタ配線を跨いで前記第1ゲート配線と前記第3ゲート配線を接続する第1ゲート抵抗と、を有する。

Description

電力変換装置
 本発明は、直流電力を交流電力に変換しあるいは交流電力を直流電力に変換するために使用する電力変換装置に関し、特にハイブリッド自動車や電気自動車に用いられる電力変換装置に関する。
 ハイブリッド自動車や電気自動車に用いられる電力変換装置は、ハイブリッド自動車や電気自動車の駆動トルクの増大に伴い出力電力の増大が求められている。このような出力電力の増大に対応するために、パワー半導体を複数並列に接続することが行われる。
 しかし、複数並列に接続したパワー半導体の性能を引き出すためには、これら並列接続したパワー半導体を同時にスイッチングさせることが必要であり、各パワー半導体に制御信号を伝送する制御信号線のインピーダンスにアンバランスが生じないようにする必要がある。
 このような課題に対し、特許文献1では複数のパワー半導体のエミッタに形成され、電流アンバランスを引き起こすエミッタループの電流抑制を目的として、制御信号線を積層して構成している。
 しかしながら、制御信号線を積層した多層基板で構成する必要があり、制御信号基板の大型化を引き起こすことが課題であった。
特開2016-46842号公報
 そこで本発明の課題は、各パワー半導体に伝送する制御信号の電流アンバランスを抑制しながら制御信号基板の大型化を抑制することである。
 本発明に係る電力変換装置は、第1パワー半導体素子と、第2パワー半導体素子と、前記第1パワー半導体素子及び前記第2パワー半導体素子の駆動信号を伝達する回路を有する回路基板とを備え、前記回路基板は、前記第1パワー半導体素子と前記第2パワー半導体素子の配列方向に沿って形成される第1エミッタ配線と、前記第1パワー半導体素子と前記第1エミッタ配線との間に配置される第1ゲート配線と、前記第2パワー半導体素子と前記エミッタ配線との間に配置される第2ゲート配線と、前記エミッタ配線を挟んで前記第1ゲート配線及び前記第2ゲート配線と対抗して配置される第3ゲート配線と、を備え、前記第1エミッタ配線を跨いで前記第1ゲート配線と前記第3ゲート配線を接続する第1ゲート抵抗と、を有する。
 本発明によれば、パワー半導体の制御信号配線間のインダクタンス差を低減でき、制御信号の電流アンバランスを抑制しながら制御信号基板の大型化を抑制することができる。
本実施例の電力変換装置の電気回路図である。 本実施例の電力変換装置500の概念分解斜視図である。 図1の回路構成においてIGBTとダイオードをそれぞれ4つのパワー半導体を用いて構成したパワーモジュール100の例である。 4つのIGBT素子165を並列に接続したときのパワーモジュールの上面図である。 実施例1のゲート配線と、エミッタ配線と、IGBTの接続を示した図である。 実施例1のゲート配線と、エミッタ配線の電気回路図を示した図である。 通常の4つのIGBTと制御信号基板を配置した構成図の例である。 図7の構成におけるゲート配線と、エミッタ配線と、IGBTの接続を示した図である。 図7の構成におけるゲート配線と、エミッタ配線の電気回路図を示した図である。 パワー半導体モジュール100の外観斜視図である。 パワー半導体モジュール100のケース103にモジュール封止体191を組み立てる工程を示す分解斜視図である。 パワー半導体モジュール100の上下アームの直列回路を構成する回路部品の分解斜視図である。 実施例1の8つのIGBTと制御信号基板を配置した構成図の例である。
 以下、実施例について図面を用いて説明する。
 本実施例では、パワー半導体の制御信号配線間のインダクタンス差を低減でき、制御信号の電流アンバランスを抑制できる電力変換装置の例を説明する。
 図1は、本実施例の電力変換装置500の電気回路図である。本実施例の電力変換装置500の動作原理について図1を用いて説明する。
 電力変換装置500は、パワー半導体モジュール100と、コンデンサモジュール200と、正極導体310と、負極導体320と、から構成される。本実施例の電力変換装置500は、直流電流を3相の交流電流に変換、又は3相の交流電流を直流電流に変換する電力変換装置であり、3つのパワー半導体モジュール100U、100V、100Wから構成される。
 パワー半導体モジュール100Uないし100Wのそれぞれは、交流端子が設けられる。すなわち、パワー半導体モジュール100Uは、モジュール交流端子150Uを有する。パワー半導体モジュール100Vは、モジュール交流端子150Vを有する。パワー半導体モジュール100Wは、モジュール交流端子150Wを有する。モジュール交流端子150U、150V、150Wは、モータの3相端子と接続される。
 正極導体310の直流入出力正極端子319は、高電圧バッテリーの正極端子と接続される。負極導体板320の直流入出力負極端子329は、高電圧バッテリーの負極端子に接続される。
 コンデンサモジュール200は、正極導体310と電気的に接続される正極端子と、負極導体320と電気的に接続される負極端子が設けられる。
 パワー半導体モジュール100は、上アームと下アームから構成されている。なお、以下で半導体素子として絶縁ゲート型バイポーラトランジスタを例に使用しており、以下略してIGBTと記す。パワー半導体モジュール100の上アームは、IGBT161とダイオード162から構成される。また、上アームには、IGBT161をオン・オフするための制御端子171が設けられている。パワー半導体モジュール100の下アームは、IGBT163とダイオード164から構成される。また、下アームには、IGBT163をオン・オフするための制御端子172が設けられている。
 上アームのIGBT161のコレクタには、正極導体310と接続するための第1モジュール正極端子111が設けられている。下アームのIGBT163のエミッタは、負極導体320と接続するための第1モジュール負極端子121が設けられている。また上アームIGBT161のエミッタと下アームIGBT163のコレクタとの間には、モジュール交流端子150が設けられている。
 電力変換装置500は、上アームの制御端子171および下アームの制御端子172に印加する制御信号を切り換えることで、直流電流から交流電流、又は交流電流から直流電流に変換できる。例えば、パワー半導体モジュール100の上アームIGBT161をオンにし、下アームIGBT163をオフの定常状態では、正極導体板310からモジュール正極端子111を通ってモジュール交流端子150に向かって電流が流れる。逆にパワー半導体モジュール100の上アームIGBT161をオフにし、下アームIGBT163をオンの定常状態では、モジュール交流端子150からモジュール負極端子121に向かって電流が流れる。
 図2は、本実施例の電力変換装置500の概念分解斜視図である。
 電力変換装置500は、正極導体310と、負極導体320と、パワー半導体モジュール100と、コンデンサモジュール200と、から構成される。コンデンサモジュール200は、正極導体310と電気的に接続される正極端子と、負極導体320と電気的に接続される負極端子が設けられる。
 パワー半導体モジュール100の第1モジュール正極端子111は、正極導体310の第1正極端子311と電気的に接続される。パワー半導体モジュール100の第1モジュール負極端子121は、負極導体320の第1負極端子321と電気的に接続される。
 次に、出力電力向上のためにパワー半導体を複数並列に接続した場合の構成例を示す。図3は、図1の回路構成においてIGBTとダイオードをそれぞれ4つのパワー半導体を用いて構成したパワーモジュール100の例である。
 上アーム側は、4つのIGBT161と4つのダイオード162が並列に接続されている。4つのIGBT161のソース端子とダイオード162のカソード端子は、モジュール正極端子111に接続されている。また4つのIGBT161のエミッタ端子とダイオード162のアノード端子はモジュール交流端子150に接続されている。
 下アーム側は、4つのIGBT163と4つのダイオード164が並列に接続されている。4つのIGBT163のソース端子とダイオード164のカソード端子は、モジュール交流端子150に接続されている。また4つのIGBT163のエミッタ端子とダイオード164のアノード端子はモジュール負極端子121に接続されている。
 IGBT162及び163のゲート端子166は制御信号基板400に構成されたゲート配線に接続され、IGBT162及び163のエミッタ端子167は制御信号基板400に構成されたエミッタ配線に接続される。
 2つの制御信号基板400のゲート配線のそれぞれには並列接続されたIGBT162及び163のゲート間共振を抑制するためのゲート抵抗430が4つ挿入されている。
 制御端子171及び172から入力されたゲート信号は、制御信号基板400のゲート端子410およびエミッタ端子420に入力される。これらの信号は制御信号基板400上の配線により4つに分岐されて各IGBT162及び163のゲート端子166およびエミッタ端子167に入力される。
 図4は、4つのIGBT165を並列に接続したときのパワーモジュールの上面図である。
 制御信号基板400を挟んでIGBT165が2つずつ配置される。制御信号基板400には第1ゲート配線411と、第2ゲート配線412と、第3ゲート配線413と、第4ゲート配線414と、第5ゲート配線415と、が配置されている。
 また、第1ゲート配線411と第3ゲート配線413の間と、第2ゲート配線412と第3ゲート配線413の間には、第1エミッタ配線421が配置されている。
 第4ゲート配線414と第3ゲート配線413の間と、第5ゲート配線415と第3ゲート配線413の間には第2エミッタ配線422が配置されている。
 第1ゲート抵抗431は、第1エミッタ配線421を跨いで第1ゲート配線411と第3ゲート配線413に接続されている。
 第2ゲート抵抗432は、第1エミッタ配線421を跨いで第2ゲート配線412と第3ゲート配線413に接続されている。
 同様に、第3ゲート抵抗433は、第2エミッタ配線422を跨いで第4ゲート配線414と第3ゲート配線413に接続されており、第4ゲート抵抗434は、第2エミッタ配線422を跨いで第5ゲート配線415と第3ゲート配線413に接続されている。
 IGBT165のゲート端子166はワイヤボンディング440により制御信号基板400のゲート配線と接続される。IGBT165のエミッタ端子167はワイヤボンディング440により制御信号基板400のエミッタ配線と接続される。
 このような構成にすることで、制御信号基板400のゲート端子410とエミッタ端子420間に入力されたゲート信号は、制御信号基板400上のゲート配線により等距離で分岐されて各IGBTまで伝達できる。
 また別の効果として、2つのゲート配線の間にエミッタ配線を設置することで、ゲート配線に流れるゲート信号による磁束と、エミッタ配線に流れるゲート電流による磁束が打消し合うため、ゲート配線のインダクタンスを低減できる。さらに、エミッタ配線を跨いでゲート抵抗を設置することで、信号配線基板の実装面積を縮小できる。
 以下、ゲート配線のインダクタンス低減の原理について説明する。
 図5は、本実施例のゲート配線と、エミッタ配線と、IGBTの接続構造を示す。ここでは、説明の簡略化のため、2つのIGBTの接続構成で説明する。
 制御信号基板400のゲート端子410に入力されたゲート電流2Igは第3ゲート配線413を通って第1ゲート抵抗431と第2ゲート抵抗432に分流される。
 第1ゲート抵抗431を通ったゲート電流Igは、第1ゲート配線411に印加され、第1IGBT181のゲート端子183に印加される。一方、エミッタ配線に流れるゲート電流Igは、第1IGBT181のエミッタ端子184から第1エミッタ配線421と通って制御信号基板のエミッタ端子420に戻る。
 同様に、第2ゲート抵抗432、第2ゲート配線412を通って第2IGBT182のゲート端子185にゲート電流Igが印加される。またゲート電流Igは、第2IGBT182のエミッタ端子186から、第1エミッタ配線421を通って、制御信号基板のエミッタ端子420に戻る。
 このとき第1ゲート配線411の自己インダクタンスをLg1、第2ゲート配線412の自己インダクタンスをLg2、第3ゲート配線413の自己インダクタンスをLg3、第1ゲート配線と対抗するエミッタ配線421の自己インダクタンスをLe1、第2ゲート配線412と対抗するエミッタ配線421の自己インダクタンスをLe2とする。
 また、第1ゲート配線411と第1エミッタ配線421との間の相互インダクタンスをM1、第2ゲート配線412と第1エミッタ配線421との間の相互インダクタンスをM2、第3ゲート配線413と第1エミッタ配線421との間の相互インダクタンスをM3とすると、図6に示す電気回路図で表現できる。
 ここで、各ゲート配線及びエミッタ配線のインダクタンスの影響を着目するために、各配線が持つ抵抗は無視した。また、第1ゲート配線411と第3ゲート配線413との間の相互インダクタンスは距離が離れているため無視した。第1IGBT181のゲート端子183とエミッタ端子184間の電圧Vge1は、制御信号基板400のゲート端子410とエミッタ端子420の間に印加された電圧をVgeとし、流れる電流をIgで表現すると以下の式となる。
Figure JPOXMLDOC01-appb-M000001
ここで、第1ゲート配線411と第2ゲート配線412に等しいゲート電流Igが流れると仮定した。一方、第2IGBT182のゲート端子185とエミッタ端子186間の電圧Vge2は以下の式となる。
Figure JPOXMLDOC01-appb-M000002
 第1IGBTと第2IGBTに印加されるゲート電圧の差は、数1および数2より、以下の数3となる。
Figure JPOXMLDOC01-appb-M000003
 つまり電圧差はインダクタンスとゲート電流Igの積で表現される。ここで簡単化のために、配線が対称であると仮定し、Lg=Lg1=Lg2、Le=Le1=Le2、M=M1=M2=M3とすると、第1IGBT181と第2IGBT182に印加されるゲート電圧の差、つまりゲート配線インダクタンス差ΔLは数4となる。
Figure JPOXMLDOC01-appb-M000004
 次に、エミッタ配線をゲート抵抗で跨がない通常の制御信号基板について考察する。ここでは図7に示す制御信号基板について考える。制御信号基板のゲート端子に印加されたゲート電流は、第3ゲート配線を通った後に4つのゲート抵抗431~434により分岐され、4つのIGBT165に伝達される。
 ここでは、説明の簡略化のため、図8に示すように、2つのIGBTの接続構成で説明する。制御信号基板のゲート端子410に入力されたゲート電流2Igは第3ゲート配線413を通って第1ゲート抵抗431と第2ゲート抵抗432に分流される。
 第1ゲート抵抗431を通ったゲート電流Igは、第1ゲート配線411に印加され、第1IGBT181のゲート端子183に印加される。一方、エミッタ配線に流れるゲート電流Igは、第1IGBT181のエミッタ端子184から第1エミッタ配線421と通って制御信号基板のエミッタ端子420に戻る。
 同様に、第2IGBT182のゲート端子185に印加されるゲート電流Igは、第2ゲート抵抗432、第2ゲート配線412を通る。またゲート電流Igは、第2IGBT182のエミッタ端子186から、第1エミッタ配線421を通って、制御信号基板のエミッタ端子420に戻る。このとき第1ゲート配線411の自己インダクタンスをL’g、第2ゲート配線412の自己インダクタンスをL’g2、第3ゲート配線413の自己インダクタンスをL’g3、第1ゲート配線と対抗するエミッタ配線421の自己インダクタンスをL’e1、第2ゲート配線412と対抗するエミッタ配線421の自己インダクタンスをL’e2とする。また、第1ゲート配線411と第1エミッタ配線421との間の相互インダクタンスをM’1、第2ゲート配線412と第1エミッタ配線421との間の相互インダクタンスをM’2、第1ゲート配線411と第3ゲート配線413との間の相互インダクタンスをM’4とすると、図9に示す等価回路図で表現できる。ここで、各ゲート配線及びエミッタ配線のインダクタンスの影響を着目するために、各配線が持つ抵抗は無視した。また、第3ゲート配線413と第1エミッタ配線421との間の相互インダクタンスは距離が離れているため無視した。第1IGBT181のゲート端子183とエミッタ端子184間の電圧V’ge1は、制御信号基板400のゲート端子410とエミッタ端子420の間に印加された電圧をVgeとし、流れる電流をIgで表現すると以下の式となる。
Figure JPOXMLDOC01-appb-M000005
 ここで、第1ゲート配線411と第2ゲート配線412に等しいゲート電流Igが流れると仮定した。一方、第2IGBT182のゲート端子185とエミッタ端子186間の電圧V’ge2は以下の式となる。
Figure JPOXMLDOC01-appb-M000006
 第1IGBTと第2IGBTに印加されるゲート電圧の差は、数5および数6より、以下の数7となる。
Figure JPOXMLDOC01-appb-M000007
 つまり電圧差はインダクタンスとゲート電流Iの積で表現される。ここで簡単化のために、配線が対称であると仮定し、L’g=L’g1=L’g2、L’e=L’e1=L’e2、M’=M’1=M’2=M’4とすると、第1IGBT181と第2IGBT182に印加されるゲート電圧の差、つまりゲート配線インダクタンス差ΔLは、以下の数8となる。
Figure JPOXMLDOC01-appb-M000008
 次に、図4に示す本実施例のレイアウトにおける制御信号のインダクタンス差(数4)と、図7に示す通常のレイアウトにおけるインダクタンス差(数8)を比較する。両レイアウトにおいて、配線幅や配線間隔が等しい場合には、エミッタ配線の自己インダクタンスと、配線間の相互インダクタンスは両レイアウトにおいて等しくなる。つまり、Le=L’e、M=M’である。このとき、インダクタンス差は本実施例(数4)の方が小さくなり、IGBTに印加される制御信号の電流アンバランスを抑制できることが分かる。
 続いて、上記の実施例1の電力変換装置に用いられるパワー半導体モジュール100の構成例について説明する。図10は、本実施例の電力変換装置に用いられるパワー半導体モジュール100の構成図の例である。図3に示したように、パワー半導体モジュール100は、上アームのIGBT161とダイオード162と、下アームのIGBT163とダイオード164とで構成される。
 本実施例のパワー半導体モジュール100は、内部のIGBTやダイオードを保護するために、樹脂でモールドされている。パワー半導体モジュール100のモールド端子面190には、正極端子311あるいは負極端子321と接続するための、モジュール正極端子111と、モジュール負極端子121と、モジュール交流端子150と、が設置されている。また、これらの端子(正極端子111、負極端子121、交流端子150)は、それぞれの主面が一つの仮想面上と重なるように配置されている。そのため、パワー半導体モジュール100のモールド工程において、端子部分のモールド治具の形状を簡単化できるため、モールド工程を容易化できる。
 上記のパワー半導体モジュールのより詳細な実施形態の一例について図10ないし図12を用いて説明する。図10は、パワー半導体モジュール100の外観斜視図である。パワー半導体モジュール100は、端子を出力する開口部以外は全閉な構造となっているケース103を有する。ケース103は、側壁及び底面を形成する枠体104と、パワー半導体素子を冷却する放熱フィン105と、フランジ部106と、により構成される。
 放熱フィン105は、ケース103の側壁及び底面と直交する最も広い長手の面に形成される。放熱フィン105は、対向する反対の面にも同様の形状で形成されている。
 フランジ部106は、パワー半導体モジュール100を電力変換装置に組み付ける際の位置決めの役割を果たす。本実施例のパワー半導体モジュール100は、放熱フィン105が形成される放熱部が直接冷媒と接する形式の電力変換装置を想定しており、前記フランジ部106は、冷媒と接する放熱部と、端子部との間の気密性を確保する役割も果たす。フランジ部106に設けられた溝部106Aには、例えばOリングのような気密性を確保する部材が配置される。なお、ここでは前記のような直冷方式の電力変換装置について例示し説明したが、本実施形態のパワー半導体モジュールは、特にこれらの用途に限定されるわけではなく、他の方式の電力変換装置に利用しても良い。
 絶縁モールド端子193は、モジュール正極端子111と、モジュール負極端子121と、モジュール交流端子150と、モジュール制御端子171、172と、モールド部材194と、により構成される。
 モールド部材194には、これらの端子(モジュール正極端子111、モジュール負極端子121、モジュール交流端子150、モジュール制御端子171、172)を貫通させるための複数の貫通孔が形成される。当該モールド部材194により、これらの端子は互いに電気的に絶縁される。
 また、別体の絶縁板材を各端子間に組み付けて絶縁を確保する構成としても良い。
 図11は、パワー半導体モジュール100のケース103にモジュール封止体191を組み立てる工程を示す分解斜視図である。パワー半導体素子(上アームのIGBT161とダイオード162、下アームのIGBT163とダイオード164)を封止して内蔵するモジュール封止体191は、前記ケース103の挿入口107に挿入される。その際、絶縁部材108が、モジュール封止体191のそれぞれの面と対向して配置される。
 図12は、パワー半導体モジュール100の上下アームの直列回路を構成する回路部品の分解斜視図である。図12においては、モジュール封止体191の封止材は図示していない。
 上アーム回路を構成する並列に接続された4つのIGBT161は、当該IGBT161のコレクタ電極が導体板199に接合されるように配置される。上アーム回路を構成する並列接続された4つのダイオード162は、当該ダイオード162のカソード電極が導体板199に接合されるように配置される。電極板196は、IGBT161及びダイオード162を挟んで、電極板199と対向して配置される。電極板196は、IGBT161のエミッタ電極と、ダイオード162のアノード電極と接合される。上アーム回路のパワー半導体素子(IGBT161、ダイオード162)は、電極板199と電極板196に平行に挟まれるようにして、並列に接続される。また並列接続されたIGBT161に制御信号を分岐して伝達するために、制御信号基板400が導体板199上に配置されている。
 下アーム回路を構成する並列接続された4つのIGBT163は、当該IGBT163のコレクタ電極が導体板195に接合されるように配置される。下アーム回路を構成する並列接続された4つのダイオード164は、当該ダイオード164のカソード電極が導体板195に接合されるように配置される。電極板197は、IGBT163及びダイオード164を挟んで、電極板195と対向して配置される。電極板197は、IGBT163のエミッタ電極と、ダイオード164のアノード電極と接合される。下アーム回路のパワー半導体素子(IGBT163、ダイオード164)は、電極板195と電極板197に平行に挟まれるようにして、並列に接続される。また並列接続されたIGBT161に制御信号を分岐して伝達するために、制御信号基板400が導体板195上に配置されている。
 導体板196と導体板195は、導体板196に形成された中間電極198Aと、導体板195に形成された中間電極198Bとが金属接合されることにより、接続される。すなわち、上アーム回路のパワー半導体素子(IGBT161、ダイオード162)と下アーム回路のパワー半導体素子(IGBT163、ダイオード164)は、直列に接続される回路を構成する。
 また、信号端子171、172は、ボンディングワイヤなどにより制御信号基板のゲート端子410あるいはエミッタ端子420と接続される。
 導体板196と導体板197は、同一平面上に配置される。また、図11に示すように、これらの導体板196、197は、IGBTとダイオードが接合される面とは反対側の面がモジュール封止体191の封止材から露出するように配置される。
 導体板195と導体板199は、同一平面上に配置される。また、図11に図示されないが、これらの導体板195、199は、IGBTとダイオードが接合される面とは反対側の面がモジュール封止体191の封止材から露出するように配置される。
 上記の導体板195、196、197、199の露出面は、ケース103の放熱フィン105と対向して配置される。
 また、モジュール封止体191のモジュール端子面190からは、モジュール正極端子111、モジュール負極端子121、モジュール交流端子150が突出して配置される。前述のように、これらの端子は、それぞれの主面が一つの仮想面上と重なるように配置される。
 本実施例のパワー半導体モジュール100においては、ケース103は、電気伝導性を有する部材、例えばCu、Cu合金、Cu-C、Cu-CuOなどの複合材、あるいはAl、Al合金、AlSiC、Al-Cなどの複合材などから形成されている。また、ケース103は、溶接など防水性の高い接合法で、あるいは鍛造、鋳造法などにより成形されている。
 モジュール封止体191の封止材としては、例えばノボラック系、多官能系、ビフェニル系のエポキシ樹脂系を基とした樹脂を用いることができ、SiO2,Al2O3,AlN,BNなどのセラミックスやゲル、ゴムなどを含有させ、熱膨張係数を導体板195,196,197,199に近づける。これにより、部材間の熱膨張係数差を低減でき、使用環境時の温度上昇にともない発生する熱応力が大幅に低下するため、パワー半導体モジュールの寿命をのばすことが可能となる。
 導体板とパワー半導体素子との接合などに用いる金属接合剤は、例えばSn合金系の軟ろう材(はんだ)やAl合金・Cu合金等の硬ろう材や金属のナノ粒子・マイクロ粒子を用いた金属焼結材を用いることができる。
 本実施例では、8つのIGBTを並列に接続したときの構成例を説明する。
 本実施例の電力変換装置の構成を、図13を用いて説明する。ただし、実施例1で既に説明した同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。
 図13は、本実施例の電力変換装置の構成図の例である。本実施例では、8つのIGBT165を並列に接続したときの、IGBT間の電流アンバランスを低減できる構造について説明する。制御信号基板400は、制御信号基板のゲート端子410に印加されたゲート信号を8つのIGBT165に分岐するゲート配線411~419を有している。第3ゲート配線413と、第1ゲート配線411、第2ゲート配線412、第6ゲート配線416、第7ゲート配線417とは、第1エミッタ配線421を跨ぐゲート抵抗430により接続される。これらのゲート配線は、第1エミッタ配線421と隣接して配置されているため、ゲート配線に流れる電流と、エミッタ配線に流れる電流と、によるインダクタンスの打ち消しにより、実施例1に示した原理でインダクタンス差の低減が可能である。同様に、第3ゲート配線413と、第4ゲート配線414、第5ゲート配線415、第8ゲート配線418、第9ゲート配線419とは、第2エミッタ配線422を跨ぐゲート抵抗430により接続される。これらのゲート配線は、第2エミッタ配線422と隣接して配置されているため、ゲート配線に流れる電流と、エミッタ配線に流れる電流と、によるインダクタンスの打ち消しにより、インダクタンス差の低減が可能である。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記実施例ではパワー半導体としてSi製のIGBTを例として説明したが、SiCあるいはGaNなどのパワー半導体を使用した場合でも同様の効果が得られる。さらに実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 
100…パワー半導体モジュール、103…ケース、104…枠体、105…放熱フィン、106…フランジ、106A…溝部、107…挿入口、108…絶縁部材、111…モジュール正極端子、121…モジュール負極端子、150…モジュール交流端子、161…上アームのIGBT、162…上アームのダイオード、163…下アームのIGBT、164…下アームのダイオード、165…IGBT、166…IGBTのゲート端子、167…IGBTのエミッタ端子、171…上アームの制御端子、172…下アームの制御端子、190…モールド端子面、191…モジュール封止体、193…絶縁モールド端子、194…モールド部材、195…導体板、196…導体板、197…導体板、198…中間電極、199…導体板、200…コンデンサモジュール、310…正極導体、311…正極端子、319…直流入出力正極端子、320…負極導体、321…負極端子、329…直流入出力負極端子、400…制御信号基板、410…ゲート端子、411…第1ゲート配線、412…第2ゲート配線、413…第3ゲート配線、414…第4ゲート配線、415…第5ゲート配線、416…第6ゲート配線、417…第7ゲート配線、418…第8ゲート配線、419…第9ゲート配線、420…エミッタ端子、421…第1エミッタ配線、422…第2エミッタ配線、430…制御信号基板のゲート抵抗、431…第1ゲート抵抗、432…第2ゲート抵抗、433…第3ゲート抵抗、434…第4ゲート抵抗、440…ワイヤボンディング、500…電力変換装置

Claims (4)

  1.  第1パワー半導体素子と、
     第2パワー半導体素子と、
     前記第1パワー半導体素子及び前記第2パワー半導体素子の駆動信号を伝達する回路を有する回路基板と、を備え、
     前記回路基板は、
     前記第1パワー半導体素子と前記第2パワー半導体素子の配列方向に沿って形成される第1エミッタ配線と、
     前記第1パワー半導体素子と前記第1エミッタ配線との間に配置される第1ゲート配線と、
     前記第2パワー半導体素子と前記エミッタ配線との間に配置される第2ゲート配線と、
     前記エミッタ配線を挟んで前記第1ゲート配線及び前記第2ゲート配線と対向して配置される第3ゲート配線と、
     前記第1エミッタ配線を跨いで前記第1ゲート配線と前記第3ゲート配線を接続する第1ゲート抵抗と、を有する電力変換装置。
  2.  請求項1に記載された電力変換装置であって、
     前記回路基板は、前記第1エミッタ配線を跨いで前記第2ゲート配線と前記第3ゲート配線を接続する第2ゲート抵抗と、を有する電力変換装置。
  3.  第1パワー半導体素子と、
     第2パワー半導体素子と、
     前記第1パワー半導体素子及び前記第2パワー半導体素子の駆動信号を伝達する回路を有する回路基板と、を備え、
     前記回路基板は、
     前記第1パワー半導体素子と前記第2パワー半導体素子の配列方向に対して横切る方向で形成される第1エミッタ配線および第2エミッタ配線と、
     前記第1パワー半導体素子と前記第1エミッタ配線との間に配置される第1ゲート配線と、
     前記第3パワー半導体素子と前記第2エミッタ配線との間に配置される第4ゲート配線と、
     前記第1エミッタ配線と前記第2エミッタ配線の間に配置される第3ゲート配線と、
     前記第1エミッタ配線を跨いで前記第1ゲート配線と前記第3ゲート配線を接続する第1ゲート抵抗と、を有する電力変換装置。
  4.  請求項3に記載された電力変換装置であって、
     前記回路基板は、前記第2エミッタ配線を跨いで前記第4ゲート配線と前記第3ゲート配線を接続する第2ゲート抵抗と、を有する電力変換装置。
PCT/JP2018/028189 2017-09-29 2018-07-27 電力変換装置 WO2019064874A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018003628.6T DE112018003628T5 (de) 2017-09-29 2018-07-27 Leistungsumsetzungsvorrichtung
US16/648,102 US11127695B2 (en) 2017-09-29 2018-07-27 Power conversion device for reducing an inductance difference between control signal wires of a power semiconductor and suppressing a current unbalancing of the control signals
CN201880058561.3A CN111095760B (zh) 2017-09-29 2018-07-27 电力转换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-189404 2017-09-29
JP2017189404A JP6838243B2 (ja) 2017-09-29 2017-09-29 電力変換装置

Publications (1)

Publication Number Publication Date
WO2019064874A1 true WO2019064874A1 (ja) 2019-04-04

Family

ID=65901202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028189 WO2019064874A1 (ja) 2017-09-29 2018-07-27 電力変換装置

Country Status (5)

Country Link
US (1) US11127695B2 (ja)
JP (1) JP6838243B2 (ja)
CN (1) CN111095760B (ja)
DE (1) DE112018003628T5 (ja)
WO (1) WO2019064874A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309276B2 (en) 2020-03-06 2022-04-19 Fuji Electric Co., Ltd. Semiconductor module
US11398450B2 (en) 2020-03-06 2022-07-26 Fuji Electric Co., Ltd. Semiconductor module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023081051A (ja) 2021-11-30 2023-06-09 日立Astemo株式会社 半導体モジュール、電力変換装置、および半導体モジュールの製造方法
CN115411018B (zh) * 2022-04-08 2023-07-14 安世半导体科技(上海)有限公司 优化寄生参数的功率半导体器件封装结构
DE102022134658A1 (de) 2022-12-22 2024-06-27 Valeo Eautomotive Germany Gmbh Leistungsmodul, elektrischer Leistungswandler und elektrischer Antrieb für ein Transportmittel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185679A (ja) * 1999-12-27 2001-07-06 Mitsubishi Electric Corp 半導体スイッチ装置
JP2002141465A (ja) * 2000-10-31 2002-05-17 Toshiba Corp 電力用半導体モジュール
JP2005101256A (ja) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp 電力用半導体装置
JP2017034053A (ja) * 2015-07-31 2017-02-09 ルネサスエレクトロニクス株式会社 半導体装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907068A (en) 1987-01-21 1990-03-06 Siemens Aktiengesellschaft Semiconductor arrangement having at least one semiconductor body
USRE35807E (en) 1991-04-16 1998-05-26 Iversen Arthur H Power semiconductor packaging
JP3508670B2 (ja) 1999-02-05 2004-03-22 株式会社豊田自動織機 半導体モジュール
JP2002270710A (ja) * 2001-03-12 2002-09-20 Toshiba Corp 半導体パッケージおよびそのドライブ装置
CN100380661C (zh) 2002-01-29 2008-04-09 美高森美公司 分栅式功率模块以及用于抑制其中振荡的方法
JP2006094557A (ja) 2005-11-21 2006-04-06 Renesas Technology Corp 半導体素子及び高周波電力増幅装置並びに無線通信機
JP4491434B2 (ja) * 2006-05-29 2010-06-30 トヨタ自動車株式会社 電力制御装置およびそれを備えた車両
JP5125269B2 (ja) 2007-07-11 2013-01-23 三菱電機株式会社 パワー半導体モジュール
JP5207862B2 (ja) 2008-07-16 2013-06-12 三菱電機株式会社 半導体モジュール
JP5637944B2 (ja) 2011-06-29 2014-12-10 株式会社 日立パワーデバイス パワー半導体モジュール
WO2013136415A1 (ja) * 2012-03-12 2013-09-19 三菱電機株式会社 電力変換装置
JP5991045B2 (ja) 2012-06-28 2016-09-14 住友電気工業株式会社 半導体装置
JP5879233B2 (ja) * 2012-08-31 2016-03-08 日立オートモティブシステムズ株式会社 パワー半導体モジュール
WO2014049808A1 (ja) * 2012-09-28 2014-04-03 株式会社日立製作所 電力変換装置
JP2016046842A (ja) * 2014-08-20 2016-04-04 株式会社日立製作所 電力変換装置およびそれを用いたエレベータ
JP6382097B2 (ja) * 2014-12-24 2018-08-29 株式会社 日立パワーデバイス 半導体パワーモジュールおよびそれを用いた電力変換装置
JP2017050488A (ja) 2015-09-04 2017-03-09 株式会社東芝 半導体パッケージ
US9994110B2 (en) * 2016-08-30 2018-06-12 Ford Global Technologies, Llc Dual gate solid state devices to reduce switching loss

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185679A (ja) * 1999-12-27 2001-07-06 Mitsubishi Electric Corp 半導体スイッチ装置
JP2002141465A (ja) * 2000-10-31 2002-05-17 Toshiba Corp 電力用半導体モジュール
JP2005101256A (ja) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp 電力用半導体装置
JP2017034053A (ja) * 2015-07-31 2017-02-09 ルネサスエレクトロニクス株式会社 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309276B2 (en) 2020-03-06 2022-04-19 Fuji Electric Co., Ltd. Semiconductor module
US11398450B2 (en) 2020-03-06 2022-07-26 Fuji Electric Co., Ltd. Semiconductor module

Also Published As

Publication number Publication date
CN111095760B (zh) 2022-12-20
JP6838243B2 (ja) 2021-03-03
US20200258853A1 (en) 2020-08-13
US11127695B2 (en) 2021-09-21
DE112018003628T5 (de) 2020-05-28
JP2019068534A (ja) 2019-04-25
CN111095760A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
CN111095760B (zh) 电力转换装置
JP5830480B2 (ja) 配線板およびそれを用いた電力変換装置
WO2011145219A1 (ja) パワー半導体モジュール
WO2013018343A1 (ja) 半導体モジュール及びそれを搭載したインバータ
JP6591556B2 (ja) 電力変換装置
JP2000164800A (ja) 半導体モジュール
JP2007012721A (ja) パワー半導体モジュール
JP7183594B2 (ja) 半導体装置
US11489457B2 (en) Semiconductor module and power converter using the same
WO2015005181A1 (ja) 電力変換部品
JP2010045399A (ja) パワー半導体装置
JP6123722B2 (ja) 半導体装置
TW201721830A (zh) 電動馬達用的功率模組
JP7077893B2 (ja) 半導体装置
KR20190065768A (ko) 적층 구조를 이용한 파워모듈 및 이를 이용한 전기자동차용 3상 구동 모듈
JP7088094B2 (ja) 半導体装置
JP7159609B2 (ja) 半導体装置
JP7069885B2 (ja) 半導体装置
JP2005276968A (ja) パワー半導体装置
JP7331497B2 (ja) 電力変換装置
US20230282567A1 (en) Power Semiconductor Module with Two Opposite Half-Bridges
JP2022130754A (ja) 半導体装置
JPWO2020144907A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861969

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18861969

Country of ref document: EP

Kind code of ref document: A1