WO2019063021A2 - 电容检测模组、方法及电子设备 - Google Patents

电容检测模组、方法及电子设备 Download PDF

Info

Publication number
WO2019063021A2
WO2019063021A2 PCT/CN2018/109204 CN2018109204W WO2019063021A2 WO 2019063021 A2 WO2019063021 A2 WO 2019063021A2 CN 2018109204 W CN2018109204 W CN 2018109204W WO 2019063021 A2 WO2019063021 A2 WO 2019063021A2
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance
sensing unit
difference
sensing
state
Prior art date
Application number
PCT/CN2018/109204
Other languages
English (en)
French (fr)
Other versions
WO2019063021A3 (zh
Inventor
程树青
杨明
李富林
郭子成
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to KR1020207033639A priority Critical patent/KR102540614B1/ko
Priority to EP18860959.8A priority patent/EP3614108B1/en
Priority to JP2019508199A priority patent/JP6732105B2/ja
Priority to PCT/CN2018/109204 priority patent/WO2019063021A2/zh
Priority to CN201880001669.9A priority patent/CN109328293B/zh
Publication of WO2019063021A2 publication Critical patent/WO2019063021A2/zh
Publication of WO2019063021A3 publication Critical patent/WO2019063021A3/zh
Priority to US16/700,967 priority patent/US11448675B2/en
Priority to US17/890,212 priority patent/US11671097B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2403Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by moving plates, not forming part of the capacitor itself, e.g. shields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0214Capacitive electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960705Safety of capacitive touch and proximity switches, e.g. increasing reliability, fail-safe
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960735Capacitive touch switches characterised by circuit details
    • H03K2217/960745Capacitive differential; e.g. comparison with reference capacitance

Definitions

  • the present application relates to the field of capacitance detection technologies, and in particular, to a capacitance detection module, method, and electronic device.
  • earphone In the market, there is a kind of earphone in the market.
  • the earphone can automatically sense, that is, when the user brings the earphone , music can be played automatically, and the music can be paused when the user removes the headset.
  • This detection principle can be implemented based on a capacitance detection module.
  • FIG. 1 is a schematic diagram of a capacitance detecting module 10 provided by the prior art.
  • the capacitance detecting module 10 includes: a sensing module 11 (which may be a flexible printed circuit board FPC) and a detecting circuit 12 .
  • the upper surface of the sensing module 11 is provided with a sensor 13.
  • the lower surface of the sensing module 11 is provided with a grounding unit (GND) 14, and a dielectric layer can be disposed between the sensor 13 and the grounding unit (GND) 14. 15.
  • GND grounding unit
  • the electric field between the sensor 13 and the grounding unit 14 changes, so that the self-capacitance between them also changes.
  • the self-capacitance refers to the capacitance between the sensor 13 and the grounding unit 14. value.
  • the change in temperature may also affect the capacitance value.
  • the temperature may cause the dielectric layer 15 on the sensing module 11 and the sensor 13 to expand and contract.
  • the effect of temperature on the capacitance value can be called temperature drift. In practical applications, the effect of temperature drift on the capacitance value even exceeds the change of the capacitance value when the human body approaches.
  • a rapid change in temperature causes the detection circuit 12 to recognize that the user is wearing a device having such a detection circuit, but in fact the user does not wear the device at this time, or the change in temperature causes the detection circuit 12 to recognize that the user has removed the above.
  • the device in fact, the user did not remove the device at this time.
  • the prior art has a problem that capacitance detection is affected by temperature.
  • the present application provides a capacitance detecting module, method and electronic device, thereby avoiding the problem that the capacitance detection is affected by temperature.
  • the present application provides a capacitance detecting module, including: a sensing module and a detecting circuit; a first surface of the sensing module is provided with a first sensing unit, and a second surface of the sensing module is provided with a second sensing unit The first sensing unit and the second sensing unit are respectively connected to the detecting circuit; the detecting circuit is configured to determine the wearing state of the device having the capacitance detecting module according to the capacitance value of the first sensing unit and the capacitance value of the second sensing unit.
  • the present application provides a capacitance detecting method, the method is applied to a capacitance detecting module, and the module includes: a sensing module and a detecting circuit; the first surface of the sensing module is provided with a first sensing unit, and the sensing module is The second surface is provided with a second sensing unit; the first sensing unit and the second sensing unit are respectively connected to the detecting circuit; and correspondingly, the method comprises: determining, according to the capacitance value of the first sensing unit and the capacitance value of the second sensing unit, The wearing state of the device of the capacitance detecting module.
  • the present invention provides a capacitance detecting module, a method, and an electronic device. Since the capacitance detecting module adds a second sensing unit, the first sensing unit and the second sensing unit are simultaneously affected by temperature, but the second sensing unit does not directly Contact with human skin, so when the user wears the electronic device with the capacitance detecting module, the capacitance value of the first sensing unit reflects the influence of temperature and the touch of human skin, and the capacitance value of the second sensing unit only reflects Based on the influence of the temperature, the device can determine the wearing state of the device having the capacitance detecting module by using the capacitance values of the first sensing unit and the second sensing unit, that is, the technical solution provided by the embodiment of the present application can avoid the capacitor. Detect problems affected by temperature.
  • FIG. 1 is a schematic diagram of a capacitance detecting module 10 provided by the prior art
  • FIG. 2 is a schematic diagram showing changes in capacitance values provided by the prior art as a function of wearing and temperature;
  • FIG. 3 is a schematic diagram of a capacitance detecting module 30 according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of changes in capacitance values provided by the present application as a function of wearing and temperature;
  • FIG. 5 is a schematic diagram of changes in R n before and after wearing the device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a capacitance detecting module 60 according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a capacitance detecting module 70 according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a capacitance detecting module 80 according to another embodiment of the present application.
  • FIG. 10 is a flowchart of a method for detecting a capacitance according to an embodiment of the present application.
  • FIG. 11 is a flowchart of a method for detecting capacitance according to still another embodiment of the present application.
  • FIG. 12 is a flowchart of a method for detecting a capacitance according to an embodiment of the present application.
  • FIG. 13 is a flowchart of a method for detecting capacitance according to still another embodiment of the present application.
  • FIG. 2 is a schematic diagram of changes in capacitance values provided by the prior art as a function of wearing and temperature.
  • the abscissa indicates the number of sampling times, for example, n indicates The nth sample, the ordinate represents the capacitance value.
  • the temperature is at 25 degrees Celsius.
  • the capacitance value is in a stable state, when the user is wearing the electronic device, due to the proximity of the human body and the temperature Change, the capacitance value drops.
  • the capacitance value When the user wears the electronic device, the capacitance value first decreases due to the change of temperature from 25 degrees Celsius to 37 degrees Celsius. When the temperature reaches 37 degrees, the capacitance value is in a stable state. It should be noted that, assuming that the electronic device is a headset, when the user is wearing the earphone, the user first presses the earphone to the ear, so the capacitance value first drops to the lowest point, and when the user releases the hand, the earphone will be away from the ear, so this When the capacitance value rises.
  • the effect of temperature drift on the capacitance value even exceeds the change in capacitance value when the human body approaches.
  • a rapid change in temperature causes the detection circuit to recognize that the user is wearing a device having such a detection circuit, but in fact the user does not wear the device at this time, or the change in temperature causes the detection circuit to recognize that the user has removed the device. In fact, the user did not remove the above device at this time.
  • the prior art has a problem that capacitance detection is affected by temperature.
  • the present application provides a capacitance detecting module, a method, and an electronic device.
  • the embodiment of the present application provides a capacitance detecting module, including: a sensing module and a detecting circuit; a first sensing unit is disposed on a first surface of the sensing module, and a second sensing unit is disposed on a second surface of the sensing module; A sensing unit and a second sensing unit are respectively connected to the detecting circuit.
  • the detecting circuit is configured to determine the wearing state of the device having the capacitance detecting module according to the capacitance value of the first sensing unit and the capacitance value of the second sensing unit.
  • the sensing module may be a Printed Circuit Board (PCB), and further, may be a flexible printed circuit board FPC.
  • PCB Printed Circuit Board
  • FPC flexible printed circuit board
  • the first sensing unit is also referred to as a sensor or sensing area
  • the second sensing unit is also referred to as a sensor or sensing area
  • the first surface of the sensing module is a surface that comes into contact with the human body
  • the second surface of the sensing module is a surface that does not contact the human body
  • the first sensing unit and the second sensing unit are not facing each other; the capacitance of the first sensing unit is a self-capacitance value of the first sensing unit to the ground, and the capacitance of the second sensing unit is a self-capacity value of the second sensing unit to the ground. .
  • the device having the capacitance detecting module is horizontally placed. Based on this, the fact that the first sensing unit and the second sensing unit are not facing each other means that the first sensing unit and the second sensing unit have a spacing in the horizontal direction.
  • the ground may be disposed on the capacitance detecting module, for example, may be disposed on the back of the FPC, or may be disposed on a system circuit board that is far away. This embodiment of the present application does not limit this.
  • the detecting circuit is specifically configured to: collect a first reference capacitance of the first sensing unit to the ground, and a second reference capacitance of the second sensing unit to the ground, where the first reference capacitor and the second reference capacitor are not worn by the user Collecting the device of the module; collecting the first capacitance of the first sensing unit to the ground, and the second capacitance of the second sensing unit to the ground, and calculating the difference between the first capacitance and the first reference capacitance to obtain the first The capacitance difference is calculated, and the difference between the second capacitance and the second reference capacitance is calculated to obtain a second capacitance difference; and the wearing state of the device having the capacitance detection module is determined according to the first capacitance difference and the second capacitance difference.
  • the detecting circuit is specifically configured to calculate a capacitance variation of the first sensing unit caused by human skin touch according to calculating a product of the second capacitance difference and the preset coefficient, and calculating a difference between the first capacitance difference and the product.
  • the preset coefficient is a ratio of the first capacitance difference to the second capacitance difference when the device is not worn based on the same temperature; and the wearing state of the device having the capacitance detection module is determined according to the capacitance change amount.
  • the detecting circuit is specifically configured to determine that the user is not wearing the device if the amount of change in the capacitance is greater than or equal to the first predetermined threshold; and determining that the user has worn the device if the amount of change in the capacitance is less than or equal to the second predetermined threshold;
  • the second preset threshold is smaller than the first preset threshold.
  • the principle of the first example is as follows: the human skin touch and the temperature increase cause the capacitance value of the sensing unit to change, and the first sensing unit and the second sensing unit are simultaneously affected by the temperature, but the human skin does not directly contact the first
  • the amount of capacitance change between the first sensing unit and the ground includes the amount of capacitance change caused by human skin touch and temperature increase, and the capacitance between the second sensing unit and the ground.
  • the amount of change includes only the amount of change in capacitance caused by an increase in temperature, and the difference between the two can indicate the amount of change in capacitance caused by human skin touch. The same is true when the user picks up the electronic device. .
  • the wearing state of the device having the capacitance detecting module can be determined by the amount of capacitance change of the first sensing unit caused by the touch. Further, the amount of change in capacitance generated by the first sensing unit and the second sensing unit under the influence of temperature may be referred to as a common mode signal, and the amount of capacitance change caused when the first sensing unit and the second sensing unit are touched by human skin It is called differential mode signal.
  • FIG. 4 is a schematic diagram showing the change of the capacitance value according to the influence of wearing and temperature according to the present application.
  • the abscissa indicates the number of sampling times, for example, n represents the nth sampling, and the ordinate represents the capacitance value.
  • the solid line indicates the change in capacitance between the first sensing unit and the ground, and the broken line indicates the change in capacitance between the second sensing unit and the ground.
  • the temperature is at 25 degrees Celsius. At this time, because the temperature is stable, and the user has not worn the electronic device, the capacitance value of the first sensing unit and the ground is in a stable state.
  • the capacitance value decreases due to the proximity of the human body and the temperature change.
  • the capacitance value first decreases due to the temperature change from 25 degrees Celsius to 37 degrees Celsius.
  • the temperature reaches 37 degrees, the capacitance value is in a stable state.
  • the capacitance value of the second sensing unit and the ground is in a stable state, when the user is wearing the electronic device, The temperature is still at 25 degrees Celsius and is not affected by human skin touch, so the capacitance value of the second sensing unit and the ground remains stable.
  • the capacitance value changes from 25 degrees Celsius to 37 degrees Celsius. Lower first, and then the temperature is at 37 degrees, the capacitance value is in a stable state.
  • R n (Sensor n -Sensor 1 )-K*(Ref n -Ref 1 )
  • Sensor 1 represents a first reference capacitor
  • Senso r represents a first capacitance between the first sensing unit and the ground
  • Ref 1 represents a second reference capacitance
  • Ref n represents a second capacitance between the second sensing means and the ground
  • K represents the preset coefficient
  • FIG. 5 is a schematic diagram of changes in R n before and after wearing the device according to an embodiment of the present invention.
  • the capacitance change amount R n If it is less than or equal to the second preset threshold, it is determined that the user has worn the device; at this time, the headset performs further operations, such as playing music and the like.
  • the capacitance change amount Rn is greater than or equal to the first preset threshold, it is determined that the user is not wearing the device; at this time, the earphone performs further operations, such as pause music.
  • the second preset threshold is smaller than the first preset threshold. If the capacitance change amount R n is between the first preset threshold and the second preset threshold, the judgment is made in conjunction with the wearing state at the previous moment, which is the same as the wearing state at the previous moment.
  • FIG. 3 is a schematic diagram of a capacitor detecting module 30 according to an embodiment of the present invention.
  • the capacitor detecting module 30 includes: a sensing module 31 and a detecting circuit 32; The first sensing unit 33 and the first grounding unit 34 are disposed on the surface. The second sensing unit 35 and the second grounding unit 36 are disposed on the second surface of the sensing module 31. The first sensing unit 33 and the second grounding unit are disposed on the second surface. The unit 36 is facing right, and the second sensing unit 35 is opposite to the first ground unit 34.
  • the capacitance value of the first sensing unit 33 is the self-capacity value of the first sensing unit 33 to the second grounding unit 36
  • the capacitance value of the second sensing unit is the self-capacity of the second sensing unit 35 to the first grounding unit 34. value.
  • the first sensing unit 33 and the second sensing unit 35 are respectively connected to the detecting circuit 32.
  • the first sensing unit 33 is also referred to as a sensor or sensing area
  • the second sensing unit 35 is also referred to as a sensor or sensing area.
  • first grounding unit 34 and the second grounding unit 36 are connected to the same ground, which can be understood as two different regions on the sensing module 31.
  • a dielectric layer 37 is disposed between the first sensing unit 33 and the second grounding unit 36.
  • the dielectric layer 37 may be a polyimide film or air.
  • the second sensing unit 35 is A dielectric layer 37 is disposed between the first grounding units 34, and the dielectric layer 37 may be a polyimide film or air.
  • the detecting circuit 32 is specifically configured to: collect the first reference capacitance of the first sensing unit 33 to the ground, and the second reference capacitance of the second sensing unit 35 to the ground, and then collect the first capacitance of the first sensing unit 33 to the ground, And a second capacitance of the second sensing unit 35 to the ground, and calculating a difference between the first capacitance and the first reference capacitance to obtain a first capacitance difference, and calculating a difference between the second capacitance and the second reference capacitance to obtain a second capacitance difference And determining, by the first capacitance difference and the second capacitance difference, a wearing state of the device with the capacitance detecting module.
  • the detecting circuit 32 is specifically configured to calculate a product of the second capacitance difference and the preset coefficient, and calculate a difference between the first capacitance difference and the product, to obtain a capacitance change amount of the first sensing unit caused by the touch,
  • the preset coefficient is a ratio of the first capacitance difference to the second capacitance difference when the device is not worn based on the same temperature; and the wearing state of the device having the capacitance detection module is determined according to the capacitance change amount.
  • the detecting circuit 32 is specifically configured to determine that the user does not wear the device if the amount of change in capacitance is greater than or equal to the first preset threshold; and determine that the user has worn the device if the amount of change in capacitance is less than or equal to the second predetermined threshold;
  • the second preset threshold is smaller than the first preset threshold. If the amount of change in capacitance is between the first preset threshold and the second preset threshold, it is determined in conjunction with the wearing state of the previous moment, which is the same as the wearing state at the previous moment.
  • FIG. 6 is a schematic diagram of a capacitance detecting module 60 according to an embodiment of the present disclosure.
  • the detecting circuit 32 includes a first amplifier 61 and a first capacitor 62, and a first capacitor 62 and a first capacitor 62.
  • An amplifier 61 is connected, and the first amplifier 61 is connected to the first sensing unit 33.
  • the capacitance detecting module further includes a second amplifier 63 and a second capacitor 64.
  • the second capacitor 64 is connected to the second amplifier 63, and the second amplifier 63 is connected to the second sensing unit 35.
  • the configuration of the detecting circuit is not limited to the configuration shown in FIG. 6.
  • the embodiment of the present application further provides a capacitance detecting module, wherein the first sensing unit and the second sensing unit are opposite each other, and the areas of the first sensing unit and the second sensing unit are equal; the capacitance value of the first sensing unit is The self-capacitance value of the sensing unit to the ground, and the capacitance value of the second sensing unit is the self-capacity value of the ground of the second sensing unit pair.
  • the ground can be set on the capacitance detecting module, for example, it can be set on the back of the FPC or on the system board with a long distance. This embodiment of the present application does not limit this.
  • the first sensing unit and the second sensing unit can be simultaneously coded, that is, the first sensing unit and the second sensing unit can maintain the same voltage (0V or coded voltage) at any time.
  • the first sensing unit is also referred to as a sensor or sensing area
  • the second sensing unit is also referred to as a sensor or sensing area
  • the detecting circuit is specifically configured to: collect a first reference capacitance of the first sensing unit to the ground, and a second reference capacitance of the second sensing unit to the ground, and then collect a first capacitance of the first sensing unit to the ground, and second a second capacitance of the sensing unit to the ground, and calculating a difference between the first capacitance and the first reference capacitance to obtain a first capacitance difference, and calculating a difference between the second capacitance and the second reference capacitance to obtain a second capacitance difference; according to the first capacitance
  • the difference and the second capacitance difference determine the wearing state of the device with the capacitance detecting module.
  • the detecting circuit is specifically configured to calculate a product of the second capacitance difference and the preset coefficient, and calculate a difference between the first capacitance difference and the product, and obtain a capacitance change amount of the first sensing unit caused by the touch, preset
  • the coefficient is a ratio of the first capacitance difference to the second capacitance difference when the device is not worn based on the same temperature; and the wearing state of the device having the capacitance detection module is determined according to the capacitance change amount.
  • the detecting circuit is specifically configured to determine that the user is not wearing the device if the amount of change in the capacitance is greater than or equal to the first predetermined threshold; and determining that the user has worn the device if the amount of change in the capacitance is less than or equal to the second predetermined threshold;
  • the second preset threshold is smaller than the first preset threshold. If the amount of capacitance change is between the first preset threshold and the second preset threshold, it is determined by combining the wearing state of the previous moment, which is the same as the wearing state of the previous moment.
  • the second sensing unit since the second sensing unit is added to the capacitance detecting module, the first sensing unit and the second sensing unit are simultaneously affected by the temperature, but the second sensing unit is not directly Contact with human skin, so when the user wears the electronic device, the amount of capacitance change between the first sensing unit and the ground reflects the influence of temperature and the touch of the human skin, and the amount of capacitance change between the second sensing unit and the ground Only the influence of the temperature is reflected.
  • the wearing state of the device having the capacitance detecting module can be determined, that is, the technical solution provided by the embodiment of the present application can be Avoid problems with capacitance sensing due to temperature.
  • FIG. 7 is a schematic diagram of a capacitance detecting module 70 according to another embodiment of the present invention.
  • the capacitor detecting module 70 includes: a sensing module 71, a switch 72, a detecting circuit 73, and a sensing module 71.
  • the first surface is provided with a first sensing unit 74
  • the second surface of the sensing module 71 is provided with a second sensing unit 75.
  • the first sensing unit 74 and the second sensing unit 75 are opposite each other, and the first sensing unit 74 and the second sensing unit 75 have the same area.
  • the capacitance value of the first sensing unit 74 is the self-capacity value of the second sensing unit 75 as the ground, and the capacitance value of the second sensing unit 75 is the second sensing unit 75.
  • the switch 72 is configured to perform an alternate switching between the first state and the second state of the state of the sensing module 71.
  • the first state is that the first sensing unit 74 is respectively connected to the coded voltage and the sensing channel output by the detecting circuit 73.
  • the second sensing unit 75 is grounded; the second state is that the second sensing unit 75 is respectively connected to the coding voltage and the sensing channel outputted by the detecting circuit 73, and the first sensing unit 74 is grounded.
  • the detecting circuit 73 is specifically configured to: collect a first reference capacitance between the first sensing unit 74 and the second sensing unit 75 in the first state, and, in the second state, the second sensing unit 75 and the first sensing unit 74. a second reference capacitance between the first sensing unit 74 and the second sensing unit 75 in the first state, and a second sensing unit 75 and the first sensing unit 74 in the second state A second capacitance is calculated, and a difference between the first capacitance and the first reference capacitance is calculated to obtain a first capacitance difference, and a difference between the second capacitance and the second reference capacitance is calculated to obtain a second capacitance difference; and the first capacitance difference is calculated The difference between the second capacitance differences is obtained by the amount of capacitance change of the first sensing unit caused by the touch; and the wearing state of the device having the capacitance detecting module is determined according to the amount of capacitance change.
  • the detecting circuit 73 is specifically configured to: if the capacitance change amount is greater than or equal to the first preset threshold, determine that the user is not wearing the device; if the capacitance change amount is less than or equal to the second preset threshold, determine that the user has worn the device; The second preset threshold is smaller than the first preset threshold. If the amount of change in capacitance is between the first preset threshold and the second preset threshold, it is determined in conjunction with the wearing state of the previous moment, which is the same as the wearing state at the previous moment.
  • the sensing module 71 may be a PCB, and further, may be a flexible printed circuit board FPC.
  • the first sensing unit 74 is also referred to as a sensor or sensing area
  • the second sensing unit 75 is also referred to as a sensor or sensing area.
  • a dielectric layer 76 is disposed between the first sensing unit 74 and the second sensing unit 75, and the dielectric layer 76 may be a polyimide film.
  • FIG. 8 is a schematic diagram of a capacitance detecting module 80 according to another embodiment of the present application.
  • the switching switch 72 is configured to differentially code the first sensing unit 74 and the second sensing unit 75 when the switch 72 is switched.
  • the S1 is turned on
  • the first sensing unit 74 is coded.
  • the second sensing unit 75 is GND.
  • the S2 in the changing switch 72 is turned on
  • the second sensing unit 75 is coded
  • the first sensing unit 74 is GND.
  • FIG. 9 is a timing chart of the first sensing unit and the second sensing unit. As shown in FIG. 9, the first sensing unit and the second sensing unit alternately code.
  • the detection circuit 73 includes an amplifier 77 and a capacitor 78.
  • the technical solution provided in the fourth embodiment is different from the technical solution provided in the first example, the second example, and the third embodiment, wherein the GND is dynamically changed, that is, when the first sensing unit is coded, the GND is on the lower surface of the sensing module, based on which It senses the change of capacitance caused by human skin touch and temperature rise when the user wears the device.
  • the second sensing unit is coded, GND is on the upper surface of the sensing module and can only sense the temperature increase caused by the user wearing. Capacitance changes.
  • the capacitance change amount R n of the first sensing unit caused by the touch is calculated by the following formula.
  • R n (Sensor n -Sensor 1 )-(Ref n -Ref 1 )
  • Sensor 1 represents a first reference capacitance
  • Sensor n represents a first capacitance between the first sensing unit and the second sensing unit in a first state
  • Ref 1 represents a second reference capacitance
  • Ref n represents a second state
  • the first sensing unit and the second sensing unit are simultaneously affected by the temperature, but the second sensing unit does not directly contact the human skin, so when the user wears the electronic device, the first state is in the first state.
  • the amount of capacitance change between the sensing unit and the second sensing unit reflects the influence of temperature and the touch of human skin, and in the second state, the amount of capacitance change between the second sensing unit and the first sensing unit reflects only the temperature. Therefore, in the embodiment of the present application, the user can be judged by the capacitance values of the first sensing unit and the second sensing unit in the first state and the capacitance values of the second sensing unit and the first sensing unit in the second state.
  • the wearing state of the device with the capacitance detecting module that is, the technical solution provided by the embodiment of the present application can avoid the problem that the capacitance detection is affected by the temperature.
  • the embodiment of the present application further provides a capacitance detecting module, wherein the first sensing unit and the second sensing unit are opposite each other, and the first sensing unit and the second sensing unit have the same area, and the capacitance of the first sensing unit is the third value.
  • the mutual value of the first sensing unit to the second sensing unit in the state, the capacitance value of the second sensing unit is the mutual capacitance value of the first sensing unit to the second sensing unit in the fourth state;
  • the third state is the first sensing unit
  • the coded voltage outputted by the detecting circuit is turned on, the second sensing unit is connected to the sensing channel of the detecting circuit, and the fourth state is that the second sensing unit is connected to the coded voltage output by the detecting circuit, and the first sensing unit and the detecting circuit are connected.
  • the sensing channel is switched on.
  • the detecting circuit further includes a switching switch, and the switching switch is configured to perform alternating switching between the third state and the fourth state of the state of the sensing module;
  • the detecting circuit is specifically configured to: collect a first reference capacitance between the first sensing unit and the second sensing unit in the third state, and a second between the second sensing unit and the first sensing unit in the second state a reference capacitance; collecting a first capacitance between the first sensing unit and the second sensing unit in the fourth state, and a second capacitance between the second sensing unit and the first sensing unit in the second state, and calculating a difference between the first capacitance and the first reference capacitance, obtaining a first capacitance difference, calculating a difference between the second capacitance and the second reference capacitance to obtain a second capacitance difference; calculating a difference between the first capacitance difference and the second capacitance difference, obtaining a touch The amount of change in capacitance of the first sensing unit caused by the collision; determining the wearing state of the device having the capacitance detecting module according to the amount of change in capacitance.
  • the detecting circuit is specifically configured to: if the capacitance change amount is greater than or equal to the first preset threshold, determine that the user is not wearing the device; if the capacitance change amount is less than or equal to the second preset threshold, determine that the user has worn the device; The second preset threshold is smaller than the first preset threshold. If the amount of change in capacitance is between the first preset threshold and the second preset threshold, it is determined in conjunction with the wearing state of the previous moment, which is the same as the wearing state at the previous moment.
  • the sensing module may be a PCB, and further, may be a flexible printed circuit board FPC.
  • the first sensing unit is also referred to as a sensor or sensing area
  • the second sensing unit is also referred to as a sensor or sensing area
  • a dielectric layer is disposed between the first sensing unit and the second sensing unit, and the dielectric layer may be a polyimide film.
  • the capacitance change amount R n of the first sensing unit caused by the touch is calculated by the following formula.
  • R n (sensor n -Sensor 1 )-(Ref n -Ref 1 )
  • Sensor 1 represents a first reference capacitance
  • Sensor n represents a first capacitance between the first sensing unit and the second sensing unit in a third state
  • Ref 1 represents a second reference capacitance
  • Ref n represents a fourth state
  • the first sensing unit and the second sensing unit are simultaneously affected by the temperature, but the second sensing unit does not directly contact the human skin, so when the user wears the electronic device, the first state is in the third state.
  • the amount of capacitance change between the sensing unit and the second sensing unit reflects the influence of temperature and the touch of human skin, and in the fourth state, the amount of capacitance change between the first sensing unit and the second sensing unit reflects only the temperature. Therefore, in the embodiment of the present application, the user can be judged by the capacitance values of the first sensing unit and the second sensing unit in the third state and the capacitance values of the second sensing unit and the first sensing unit in the fourth state.
  • the wearing state of the device with the capacitance detecting module that is, the technical solution provided by the embodiment of the present application can avoid the problem that the capacitance detection is affected by the temperature.
  • the method for detecting a capacitance is applied to a capacitance detecting module, the module includes a sensing module and a detecting circuit; the first surface of the sensing module is provided with a first sensing unit, and the second sensing module The surface is provided with a second sensing unit; the first sensing unit and the second sensing unit are respectively connected to the detecting circuit; the capacitance of the first sensing unit is a self-capacitance value of the first sensing unit to the ground, and the capacitance value of the second sensing unit is The self-contained value of the second sensing unit to the ground.
  • the method includes: the detecting circuit determines, according to the capacitance value of the first sensing unit and the capacitance value of the second sensing unit, the wearing state of the device with the capacitance detecting module.
  • FIG. 10 is a flowchart of a method for detecting a capacitance according to an embodiment of the present invention.
  • the capacitor detection module is provided based on the above-mentioned example 1, example 2 or example 3. Accordingly, as shown in FIG. 10, the detection circuit is based on the first sensing.
  • the capacitance value of the unit and the capacitance value of the second sensing unit determine the wearing state of the device with the capacitance detecting module, and the following steps are included:
  • Step S101 collecting a first reference capacitance of the first sensing unit to the ground, and a second reference capacitance of the second sensing unit to the ground.
  • Step S102 collecting a first capacitance of the first sensing unit to the ground, and a second capacitance of the second sensing unit to the ground, and calculating a difference between the first capacitance and the first reference capacitance to obtain a first capacitance difference, and calculating a second The difference between the capacitance and the second reference capacitance results in a second capacitance difference.
  • Step S103 Determine, according to the first capacitance difference and the second capacitance difference, the wearing state of the device with the capacitance detecting module by the user.
  • FIG. 11 is a flowchart of a method for detecting capacitance according to still another embodiment of the present application.
  • step S103 includes the following steps:
  • Step S111 calculating a product of the second capacitance difference and the preset coefficient, and calculating a difference between the first capacitance difference and the product, and obtaining a capacitance change amount of the first sensing unit caused by the touch, the preset coefficient being based on the same temperature, the device The ratio of the first capacitance difference to the second capacitance difference when not worn.
  • Step S112 Determine the wearing state of the device with the capacitance detecting module by the user according to the amount of capacitance change.
  • the amount of capacitance change is greater than or equal to the first preset threshold, determining that the user is not wearing the device; if the amount of change in capacitance is less than or equal to the second predetermined threshold, determining that the user has worn the device; the second preset threshold is less than the first Preset threshold. If the amount of change in capacitance is between the first preset threshold and the second preset threshold, it is determined in conjunction with the wearing state of the previous moment, which is the same as the wearing state at the previous moment.
  • the capacitor detection method provided by the embodiment of the present application can be performed by the capacitor detection module of the first example, the second example, or the third example.
  • the capacitor detection module of the first example, the second example, or the third example For the content and effect, refer to the first example, the second example, or the third example, and details are not described herein again.
  • FIG. 12 is a flowchart of a method for detecting a capacitance according to an embodiment of the present disclosure.
  • the method is applied to the capacitance detecting module provided in Example 4.
  • the detecting circuit is configured according to a capacitance value of the first sensing unit.
  • determining the wearing state of the device having the capacitance detecting module by the capacitance value of the second sensing unit including the following steps:
  • Step S121 collecting a first reference capacitance between the first sensing unit and the second sensing unit in the first state, and a second reference capacitance between the second sensing unit and the first sensing unit in the second state.
  • Step S122 collecting a first capacitance between the first sensing unit and the second sensing unit in the first state, and a second capacitance between the second sensing unit and the first sensing unit in the second state, and calculating A difference between the first capacitor and the first reference capacitor obtains a first capacitance difference, and a difference between the second capacitor and the second reference capacitor is calculated to obtain a second capacitance difference.
  • Step S123 Calculating a difference between the first capacitance difference and the second capacitance difference, and obtaining a capacitance change amount of the first sensing unit caused by the touch.
  • Step S124 Determine the wearing state of the device with the capacitance detecting module by the user according to the amount of capacitance change.
  • the amount of capacitance change is greater than or equal to the first preset threshold, determining that the user is not wearing the device; if the amount of change in capacitance is less than or equal to the second predetermined threshold, determining that the user has worn the device; the second preset threshold is less than the first Preset threshold.
  • the capacitor detection method provided by the embodiment of the present application can be performed by the capacitor detection module of the fourth example.
  • the capacitor detection module of the fourth example For the content and effect, reference may be made to the fourth example, and details are not described herein again.
  • FIG. 13 is a flowchart of a capacitor detecting method according to another embodiment of the present application. The method is applied to the capacitor detecting module provided in Example 5. Accordingly, as shown in FIG. 13, the detecting circuit is configured according to a capacitance value of the first sensing unit. And determining the wearing state of the device having the capacitance detecting module by the capacitance value of the second sensing unit, including the following steps:
  • Step S131 collecting a first reference capacitance between the first sensing unit and the second sensing unit in the third state, and a second reference capacitance between the second sensing unit and the first sensing unit in the fourth state;
  • Step S132 collecting a first capacitance between the first sensing unit and the second sensing unit in the third state, and a second capacitance between the second sensing unit and the first sensing unit in the fourth state, and calculating a difference between the first capacitance and the first reference capacitance to obtain a first capacitance difference, and calculating a difference between the second capacitance and the second reference capacitance to obtain a second capacitance difference;
  • Step S133 Calculating a difference between the first capacitance difference and the second capacitance difference, and obtaining a capacitance change amount of the first sensing unit caused by the touch.
  • Step S134 Determine the wearing state of the device with the capacitance detecting module by the user according to the amount of capacitance change.
  • the capacitor detection method provided in the embodiment of the present application can be performed by the capacitor detection module of the fifth example.
  • the example five which is not described herein.
  • the present application further provides an electronic device including: a capacitor detection module of Example 1, Example 2, Example 3, Example 4 or Example 5.
  • the electronic device can be a headset.
  • the electronic device provided by the embodiment of the present application includes example 1, example two, example three, example four or example five, and the content and effect thereof may refer to example one, example two, example three, example four or example five, which is not Let me repeat.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本申请提供一种电容检测模组、方法及电子设备,包括:传感模块和检测电路;传感模块的第一表面设置有第一感应单元,传感模块的第二表面设置有第二感应单元;第一感应单元和第二感应单元分别与检测电路连接;检测电路用于根据第一感应单元的电容值以及第二感应单元的电容值,判断用户对具有电容检测模组的设备的佩戴状态。从而可以避免电容检测受温度影响的问题。

Description

电容检测模组、方法及电子设备 技术领域
本申请涉及电容检测技术领域,尤其涉及一种电容检测模组、方法及电子设备。
背景技术
随着科技的发展,电子设备越来越智能化,比如现在市场存在一种耳机,当用户将耳机戴入耳朵或者将耳机摘下时,这种耳机能够自动感应,即在用户带上耳机时,可以自动播放音乐,在用户摘下耳机时,可以暂停音乐。而这种检测原理可以基于电容检测模组实现的。
具体地,图1为现有技术所提供的电容检测模组10的示意图,如图1所示,电容检测模组10包括:传感模块11(可以是柔性印刷电路板FPC)以及检测电路12,传感模块11的上表面设置有传感器(sensor)13,传感模块11的下表面设置有接地单元(GND)14,传感器(sensor)13和接地单元(GND)14之间可以设置介质层15,当人体靠近传感器13时,传感器13与接地单元14之间的电场发生变化,从而它们之间的自容量也发生了变化,该自电容指的是传感器13与接地单元14之间的电容值。然而,除了人体靠近可以引起上述电容值的变化之外,温度的变化也会对电容值产生影响,例如:温度会引起传感模块11上的介质层15、传感器13热胀冷缩,这种温度对电容值所产生的影响可以称之为温漂,在实际应用中,温漂对电容值的影响甚至超过人体靠近时电容值的变化。比如温度的快速改变导致检测电路12识别成用户佩戴上了具有这种检测电路的设备,而实际上这时用户并没有佩戴该设备,或者温度的改变导致检测电路12识别成用户卸下了上述设备,而实际上这时用户并没有卸下上述设备。基于此,现有技术存在电容检测受温度影响的问题。
发明内容
本申请提供一种电容检测模组、方法及电子设备,从而避免电容检测受温度影响的问题。
第一方面,本申请提供一种电容检测模组,包括:传感模块和检测电路;传感模块的第一表面设置有第一感应单元,传感模块的第二表面设置有第二感应单元;第一感应单元和第二感应单元分别与检测电路连接;检测电路用于根据第一感应单元的电容值以及第二感应单元的电容值,判断具有电容检测模组的设备的佩戴状态。
第二方面,本申请提供一种电容检测方法,方法应用于电容检测模组,模组包括:传感模块和检测电路;传感模块的第一表面设置有第一感应单元,传感模块的第二表面设置有第二感应单元;第一感应单元和第二感应单元分别与检测电路连接;相应的,方法包括:根据第一感应单元的电容值以及第二感应单元的电容值,判断具有电容检测模组的设备的佩戴状态。
本申请提供一种电容检测模组、方法及电子设备,由于该电容检测模组增加了第二感应单元,第一感应单元和第二感应单元同时受到温度影响,但第二感应单元不会直接接触到人体皮肤,因此当用户佩戴具有该电容检测模组的电子设备时,第一感应单元的电容值反映了温度的影响和人体皮肤的触碰,而第二感应单元的电容值仅反映了温度的影响,基于此,可以通过第一感应单元与第二感应单元的电容值,判断用户对具有所述电容检测模组的设备的佩戴状态,即本申请实施例提供的技术方案可以避免电容检测受温度影响的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术所提供的电容检测模组10的示意图;
图2为现有技术提供的电容值随着佩戴和温度的影响的变化示意图;
图3为本申请一实施例提供的一种电容检测模组30的示意图;
图4为本申请提供的电容值随着佩戴和温度的影响的变化示意图;
图5为本申请一实施例提供的R n在设备佩戴前后的变化示意图;
图6为本申请一实施例提供的电容检测模组60的示意图;
图7为本申请另一实施例提供的电容检测模组70的示意图;
图8为本申请另一实施例提供的电容检测模组80的示意图;
图9为第一感应单元与所述第二感应单元的打码时序图;
图10为本申请一实施例提供的电容检测方法的流程图;
图11为本申请再一实施例提供的电容检测方法的流程图;
图12为本申请一实施例提供的电容检测方法的流程图;
图13为本申请再一实施例提供的电容检测方法的流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
通常电容检测模组设置在耳机等电子设备中,图2为现有技术提供的电容值随着佩戴和温度的影响的变化示意图,如图2所示,横坐标表示采样次数,例如:n表示第n次采样,纵坐标表示电容值。当用户未佩戴上述电子设备时,温度处于25摄氏度,这时由于温度稳定,并且用户还未佩戴电子设备,其电容值处于平稳状态,当用户正在佩戴电子设备时,由于人体的靠近以及温度的变化,电容值下降,当用户佩戴好电子设备之后,由于温度从25 摄氏度到37摄氏度的变化,电容值先降低,当温度达到37度时,电容值处于平稳状态。需要说明的是,假设电子设备是耳机,在用户正在佩戴耳机时,用户首先会压紧耳机至耳朵,因此电容值首先下降至最低点,当用户松开手后,耳机会远离耳朵,因此这时电容值会发生上升的情况。
总之,如上所述,在实际应用中,温漂对电容值的影响甚至超过人体靠近时电容值的变化。比如温度的快速改变导致检测电路识别成用户佩戴上了具有这种检测电路的设备,而实际上这时用户并没有佩戴该设备,或者温度的改变导致检测电路识别成用户卸下了上述设备,而实际上这时用户并没有卸下上述设备。现有技术存在电容检测受温度影响的问题。为了解决该技术问题,本申请提供一种电容检测模组、方法及电子设备。
本申请实施例提供一种电容检测模组,包括:传感模块和检测电路;传感模块的第一表面设置有第一感应单元,传感模块的第二表面设置有第二感应单元;第一感应单元和第二感应单元分别与检测电路连接;检测电路用于根据第一感应单元的电容值以及第二感应单元的电容值,判断具有电容检测模组的设备的佩戴状态。
可选地,传感模块可以是印制电路板(Printed Circuit Board,PCB),进一步地,可以是柔性印刷电路板FPC。
可选地,第一感应单元也被称为传感器或者传感区域,第二感应单元也被称为传感器或者传感区域。
进一步地,传感模块的第一表面为与人体发生接触的表面,传感模块的第二表面为与人体不发生接触的表面。
示例一
第一感应单元和第二感应单元不是正对;第一感应单元的电容值为第一感应单元对地的自容值,第二感应单元的电容值为第二感应单元对地的自容值。
其中,假设具有电容检测模组的设备被水平放置,基于此,所谓第一感应单元和第二感应单元不是正对是指第一感应单元和第二感应单元在水平方向上存在间距。进一步地,地可以设置在电容检测模组上,例如:可以设置在FPC的背面,也可以设置在距离较远的***电路板上。本申请实施例对此不做限制。
检测电路具体用于:采集第一感应单元对地的第一基准电容,以及,第二感应单元对地的第二基准电容,第一基准电容和第二基准电容是在用户未佩戴具有该电容检测模组的设备时采集;再采集第一感应单元对地的第一电容,以及,第二感应单元对地的第二电容,并计算第一电容与第一基准电容之差,得到第一电容差,计算第二电容与第二基准电容之差,得到第二电容差;根据第一电容差和第二电容差判断用户对具有电容检测模组的设备的佩戴状态。
可选地,检测电路具体用于根据计算第二电容差与预设系数的乘积,并计算第一电容差与该乘积之差,得到人体皮肤触碰所引起的第一感应单元的电容变化量,预设系数为基于相同温度,设备未被佩戴时第一电容差与第二电容差的比值;根据电容变化量判断用户对具有电容检测模组的设备的佩戴状态。
进一步地,检测电路具体用于若电容变化量大于或等于第一预设阈值,则确定用户未佩戴设备;若电容变化量小于或等于第二预设阈值,则确定用户已佩戴设备;其中,第二预设阈值小于第一预设阈值。
具体地,示例一的原理如下:人体皮肤触碰和温度升高都会引起感应单元的电容值发生变化,第一感应单元和第二感应单元同时受到温度影响,但人体皮肤不会直接接触到第二感应单元,当用户佩戴电子设备时,第一感应单元和地之间的电容变化量包括人体皮肤触碰和温度升高所引起的电容变化量,而第二感应单元与地之间的电容变化量仅包括温度升高所引起的电容变化量,两者之差可表示由人体皮肤触碰所引起的电容变化量。当用户摘下电子设备时,同样的道理。。因此可以通过触碰所引起的第一感应单元的电容变化量判断用户对具有电容检测模组的设备的佩戴状态。进一步地,可以将第一感应单元和第二感应单元在温度影响下产生的电容变化量称为共模信号,将第一感应单元和第二感应单元在人体皮肤触碰时引起的电容变化量称为差模信号。
图4为本申请提供的电容值随着佩戴和温度的影响的变化示意图,如图4所示,横坐标表示采样次数,例如:n表示第n次采样,纵坐标表示电容值。实线表示第一感应单元和地之间的电容变化情况,虚线表示第二感应单元和地之间的电容变化情况,如图4所示,当用户未佩戴上述电子设备时,温度 处于25摄氏度,这时由于温度稳定,并且用户还未佩戴电子设备,第一感应单元和地的电容值处于平稳状态,当用户正在佩戴电子设备时,由于人体的靠近以及温度的变化,电容值下降,当用户佩戴好电子设备之后,由于温度从25摄氏度到37摄氏度的变化,电容值先降低,当温度达到37度,电容值处于平稳状态。当用户未佩戴上述电子设备时,温度处于25摄氏度,这时由于温度稳定,并且用户还未佩戴电子设备,第二感应单元和地的电容值处于平稳状态,当用户正在佩戴电子设备时,由于温度还处于25摄氏度,并且没有受到人体皮肤触碰的影响,因此第二感应单元和地的电容值保持平稳,当用户佩戴好电子设备之后,由于温度从25摄氏度到37摄氏度的变化,电容值先降低,再由于温度达到37度,电容值处于平稳状态。
下面介绍触碰所引起的第一感应单元的电容变化量R n的具体计算方式:
R n=(Sensor n-Sensor 1)-K*(Ref n-Ref 1)
其中,Sensor 1表示第一基准电容,Senso r表示第一感应单元与地之间的第一电容,Ref 1表示第二基准电容,Ref n表示第二感应单元与地之间的第二电容,K表示预设系数。
图5为本申请一实施例提供的R n在设备佩戴前后的变化示意图,如图5所示,在增加了第二感应单元之后,消除了温度对电容检测的影响,若电容变化量R n小于或等于第二预设阈值,则确定用户已佩戴设备;这时耳机做进一步的操作,例如播放音乐等。相应的,若电容变化量R n大于或等于第一预设阈值,则确定用户未佩戴设备;这时耳机将做进一步的操作,例如暂停音乐等。其中,第二预设阈值小于第一预设阈值。若电容变化量R n处于第一预设阈值和第二预设阈值之间,需结合上一时刻的佩戴状态进行判断,与上一时刻的佩戴状态相同。
示例二
图3为本申请一实施例提供的一种电容检测模组30的示意图,如图3所示,该电容检测模组30包括:传感模块31和检测电路32;传感模块31的第一表面上设置有第一感应单元33以及第一接地单元34,传感模块31的第二表面上设置有第二感应单元35以及第二接地单元36;其中,第一感应单元33与第二接地单元36正对,第二感应单元35与第一接地单元34正对。 基于此,第一感应单元33的电容值为第一感应单元33对第二接地单元36的自容值,第二感应单元的电容值为第二感应单元35对第一接地单元34的自容值。进一步地,第一感应单元33和第二感应单元35分别与检测电路32连接。可选地,第一感应单元33也被称为传感器或者传感区域,第二感应单元35也被称为传感器或者传感区域。
可选地,第一接地单元34和第二接地单元36接的是同一个地,它们可以被理解为传感模块31上的两个不同的区域。
可选地,第一感应单元33与第二接地单元36之间设置有介质层37,该介质层37可以是聚酰亚胺薄膜(Polyimide film)或者是空气,同样,第二感应单元35与第一接地单元34之间设置有介质层37,该介质层37可以是聚酰亚胺薄膜或者是空气。
检测电路32具体用于:采集第一感应单元33对地的第一基准电容,以及,第二感应单元35对地的第二基准电容,再采集第一感应单元33对地的第一电容,以及,第二感应单元35对地的第二电容,并计算第一电容与第一基准电容之差,得到第一电容差,计算第二电容与第二基准电容之差,得到第二电容差;根据第一电容差和第二电容差判断用户对具有电容检测模组的设备的佩戴状态。
可选地,检测电路32具体用于根据计算第二电容差与预设系数的乘积,并计算第一电容差与该乘积之差,得到触碰所引起的第一感应单元的电容变化量,预设系数为基于相同温度,设备未被佩戴时第一电容差与第二电容差的比值;根据电容变化量判断用户对具有电容检测模组的设备的佩戴状态。
进一步地,检测电路32具体用于若电容变化量大于或等于第一预设阈值,则确定用户未佩戴设备;若电容变化量小于或等于第二预设阈值,则确定用户已佩戴设备;其中,第二预设阈值小于第一预设阈值。若电容变化量处于第一预设阈值和第二预设阈值之间,需结合上一时刻的佩戴状态进行判断,与上一时刻的佩戴状态相同。
示例二的原理和电容变化量的计算方式与示例一相同,在此不再赘述。
可选地,图6为本申请一实施例提供的电容检测模组60的示意图,如图6所示,该检测电路32具体包括第一放大器61以及第一电容62,第一电容62与第一放大器61连接,且第一放大器61与第一感应单元33连接。该电 容检测模组还包括:第二放大器63以及第二电容64,第二电容64与第二放大器63连接,且第二放大器63与第二感应单元35连接。
需要说明的是,检测电路的结构不限于图6所示的结构。
示例三
本申请实施例还提供一种电容检测模组,其中,第一感应单元和第二感应单元正对,且第一感应单元和第二感应单元的面积相等;第一感应单元的电容值为第一感应单元对地的自容值,第二感应单元的电容值为第二感应单元对的地的自容值。地可以设置在电容检测模组上,例如:可以设置在FPC的背面,也可以设置在距离较远的***电路板上。本申请实施例对此不做限制。
这种情况下,可以对第一感应单元和第二感应单元同时打码,即可以对第一感应单元和第二感应单元在任意时刻都保持相同的电压(0V或者打码电压),这时候两者之间因为电压差ΔU=0,此时两者之间没有电荷的转移,两者都参考远处的地,但同样地,由于他们受到温度的影响都是相似的,同样能够起到温度抑制的能力。
可选地,第一感应单元也被称为传感器或者传感区域,第二感应单元也被称为传感器或者传感区域。
检测电路具体用于:采集第一感应单元对地的第一基准电容,以及,第二感应单元对地的第二基准电容,再采集第一感应单元对地的第一电容,以及,第二感应单元对地的第二电容,并计算第一电容与第一基准电容之差,得到第一电容差,计算第二电容与第二基准电容之差,得到第二电容差;根据第一电容差和第二电容差判断用户对具有电容检测模组的设备的佩戴状态。
可选地,检测电路具体用于根据计算第二电容差与预设系数的乘积,并计算第一电容差与乘积之差,得到触碰所引起的第一感应单元的电容变化量,预设系数为基于相同温度,设备未被佩戴时第一电容差与第二电容差的比值;根据电容变化量判断用户对具有电容检测模组的设备的佩戴状态。
进一步地,检测电路具体用于若电容变化量大于或等于第一预设阈值,则确定用户未佩戴设备;若电容变化量小于或等于第二预设阈值,则确定用户已佩戴设备;其中,第二预设阈值小于第一预设阈值。若电容变化量处于第一预设阈值和第二预设阈值之间,需结合上一时刻的佩戴状态进行判断, 与上一时刻的佩戴状态相同。
示例三的原理和电容变化量的计算方式与示例一和示例二相同,在此不再赘述。
综上,在示例一、示例二或示例三中,由于在电容检测模组中增加了第二感应单元,第一感应单元和第二感应单元同时受到温度影响,但第二感应单元不会直接接触到人体皮肤,因此当用户佩戴电子设备时,第一感应单元和地之间的电容变化量反映了温度的影响和人体皮肤的触碰,而第二感应单元与地之间的电容变化量仅反映了温度的影响,基于此,可以通过第一感应单元的电容值与第二感应单元的电容值判断对具有电容检测模组的设备的佩戴状态,即本申请实施例提供的技术方案可以避免电容检测受温度影响的问题。
示例四
图7为本申请另一实施例提供的电容检测模组70的示意图,如图7所示,该电容检测模组70包括:传感模块71、切换开关72、检测电路73;传感模块71的第一表面设置有第一感应单元74,传感模块71的第二表面上设置有第二感应单元75。其中,第一感应单元74和第二感应单元75正对,且第一感应单元74和第二感应单元75的面积相等。基于此,第一感应单元74的电容值为第一感应单元74对作为地的第二感应单元75的自容值,第二感应单元75的电容值为第二感应单元75对作为地的第一感应单元74的自容值。
切换开关72用于对传感模块71的状态进行第一状态和第二状态的交替切换,第一状态为第一感应单元74分别与检测电路73输出的打码电压和感应通道接通,第二感应单元75接地;第二状态为第二感应单元75分别与检测电路73输出的打码电压和感应通道接通,第一感应单元74接地。
检测电路73具体用于:采集在第一状态下第一感应单元74与第二感应单元75之间的第一基准电容,以及,在第二状态下第二感应单元75与第一感应单元74之间的第二基准电容;采集在第一状态下第一感应单元74与第二感应单元75之间的第一电容,以及,在第二状态下第二感应单元75与第一感应单元74之间的第二电容,并计算第一电容与第一基准电容之差,得到第一电容差,计算第二电容与第二基准电容之差,得到第二电容差;计算第一电容差与第二电容差之差,得到触碰所引起的第一感应单元的电容变化量; 根据电容变化量判断用户对具有电容检测模组的设备的佩戴状态。
进一步地,检测电路73具体用于:若电容变化量大于或等于第一预设阈值,则确定用户未佩戴设备;若电容变化量小于或等于第二预设阈值,则确定用户已佩戴设备;其中,第二预设阈值小于第一预设阈值。若电容变化量处于第一预设阈值和第二预设阈值之间,需结合上一时刻的佩戴状态进行判断,与上一时刻的佩戴状态相同。
可选地,传感模块71可以是PCB,进一步地,可以是柔性印刷电路板FPC。
可选地,第一感应单元74也被称为传感器或者传感区域,第二感应单元75也被称为传感器或者传感区域。
可选地,第一感应单元74与第二感应单元75之间设置有介质层76,该介质层76可以是聚酰亚胺薄膜(Polyimide film)。
图8为本申请另一实施例提供的电容检测模组80的示意图,如图8所示,切换开关72用于使得第一感应单元74与第二感应单元75差分打码,当切换开关72中的S1开启时,第一感应单元74打码,此时第二感应单元75为GND,当换开关72中的S2开启时,第二感应单元75打码,第一感应单元74为GND,图9为第一感应单元与第二感应单元的打码时序图,如图9所示,第一感应单元与第二感应单元交替打码。
进一步地,如图8所示,检测电路73包括放大器77以及电容78。
示例四提供的技术方案相对于示例一、示例二、示例三提供的技术方案,其GND是动态变化的,即第一感应单元打码时,GND在传感模块的下表面,基于此,能够感应用户佩戴设备时由于人体皮肤触碰和温度升高引起的电容变化,而当第二感应单元打码时,GND在传感模块的上表面,仅能够感应用户佩戴时由于温度升高引起的电容变化。通过如下公式计算得到触碰所引起的第一感应单元的电容变化量R n
R n=(Sensor n-Sensor 1)-(Ref n-Ref 1)
其中,Sensor 1表示第一基准电容,Sensor n表示在第一状态下,第一感应单元与第二感应单元之间的第一电容,Ref 1表示第二基准电容,Ref n表示在第二状态下,第一感应单元与第二感应单元之间的第二电容。
综上,在示例四中,第一感应单元和第二感应单元同时受到温度影响, 但第二感应单元不会直接接触到人体皮肤,因此当用户佩戴电子设备时,在第一状态下第一感应单元和第二感应单元之间的电容变化量反映了温度的影响和人体皮肤的触碰,而在第二状态下第二感应单元与第一感应单元之间的电容变化量仅反映了温度的影响,因此,在本申请实施例中可以通过在第一状态下第一感应单元和第二感应单元的电容值与在第二状态下第二感应单元和第一感应单元的电容值判断用户对具有电容检测模组的设备的佩戴状态,即本申请实施例提供的技术方案可以避免电容检测受温度影响的问题。
示例五
本申请实施例还提供一种电容检测模组,其中第一感应单元和第二感应单元正对,且第一感应单元和第二感应单元的面积相等,第一感应单元的电容值为第三状态下第一感应单元对第二感应单元的互容值,第二感应单元的电容值为第四状态下第一感应单元对第二感应单元的互容值;第三状态为第一感应单元与检测电路输出的打码电压接通,第二感应单元与检测电路的感应通道接通;第四状态为第二感应单元与检测电路输出的打码电压接通,第一感应单元与检测电路的感应通道接通。
检测电路还包括切换开关,切换开关用于对传感模块的状态进行第三状态和第四状态的交替切换;
检测电路具体用于:采集在第三状态下第一感应单元与第二感应单元之间的第一基准电容,以及,在第二状态下第二感应单元与第一感应单元之间的第二基准电容;采集在第四状态下第一感应单元与第二感应单元之间的第一电容,以及,在第二状态下第二感应单元与第一感应单元之间的第二电容,并计算第一电容与第一基准电容之差,得到第一电容差,计算第二电容与第二基准电容之差,得到第二电容差;计算第一电容差与第二电容差之差,得到触碰所引起的第一感应单元的电容变化量;根据电容变化量判断用户对具有电容检测模组的设备的佩戴状态。
可选地,检测电路具体用于:若电容变化量大于或等于第一预设阈值,则确定用户未佩戴设备;若电容变化量小于或等于第二预设阈值,则确定用户已佩戴设备;其中,第二预设阈值小于第一预设阈值。若电容变化量处于第一预设阈值和第二预设阈值之间,需结合上一时刻的佩戴状态进行判断,与上一时刻的佩戴状态相同。
可选地,传感模块可以是PCB,进一步地,可以是柔性印刷电路板FPC。
可选地,第一感应单元也被称为传感器或者传感区域,第二感应单元也被称为传感器或者传感区域。
可选地,第一感应单元与第二感应单元之间设置有介质层,该介质层可以是聚酰亚胺薄膜(Polyimide film)。
通过如下公式计算得到触碰所引起的第一感应单元的电容变化量R n
R n=(sensor n-Sensor 1)-(Ref n-Ref 1)
其中,Sensor 1表示第一基准电容,Sensor n表示在第三状态下,第一感应单元与第二感应单元之间的第一电容,Ref 1表示第二基准电容,Ref n表示在第四状态下,第一感应单元与第二感应单元之间的第二电容。
综上,在示例五中,第一感应单元和第二感应单元同时受到温度影响,但第二感应单元不会直接接触到人体皮肤,因此当用户佩戴电子设备时,在第三状态下第一感应单元和第二感应单元之间的电容变化量反映了温度的影响和人体皮肤的触碰,而在第四状态下第一感应单元与第二感应单元之间的电容变化量仅反映了温度的影响,因此,在本申请实施例中可以通过在第三状态下第一感应单元和第二感应单元的电容值与在第四状态下第二感应单元和第一感应单元的电容值判断用户对具有电容检测模组的设备的佩戴状态,即本申请实施例提供的技术方案可以避免电容检测受温度影响的问题。
本申请一实施例提供的电容检测方法,方法应用于电容检测模组,该模组包括传感模块和检测电路;传感模块的第一表面设置有第一感应单元,传感模块的第二表面设置有第二感应单元;第一感应单元和第二感应单元分别与检测电路连接;第一感应单元的电容值为第一感应单元对地的自容值,第二感应单元的电容值为第二感应单元对地的自容值。相应的,方法包括:检测电路根据第一感应单元的电容值以及第二感应单元的电容值,判断用户对具有电容检测模组的设备的佩戴状态。
可选方式一:
图10为本申请一实施例提供的电容检测方法的流程图,基于上述示例一、示例二或示例三所提供的电容检测模组;相应地,如图10所示,检测电路根据第一感应单元的电容值以及第二感应单元的电容值,判断用户对具有电容 检测模组的设备的佩戴状态,包括如下步骤:
步骤S101:采集第一感应单元对地的第一基准电容,以及,第二感应单元对地的第二基准电容。
步骤S102:采集第一感应单元对地的第一电容,以及,第二感应单元对地的第二电容,并计算第一电容与第一基准电容之差,得到第一电容差,计算第二电容与第二基准电容之差,得到第二电容差。
步骤S103:根据第一电容差和第二电容差判断用户对具有电容检测模组的设备的佩戴状态。
可选地,图11为本申请再一实施例提供的电容检测方法的流程图,如图11所示,步骤S103包括如下步骤:
步骤S111:计算第二电容差与预设系数的乘积,并计算第一电容差与乘积之差,得到触碰所引起的第一感应单元的电容变化量,预设系数为基于相同温度,设备未被佩戴时第一电容差与第二电容差的比值。
步骤S112:根据电容变化量判断用户对具有电容检测模组的设备的佩戴状态。
其中,若电容变化量大于或等于第一预设阈值,则确定用户未佩戴设备;若电容变化量小于或等于第二预设阈值,则确定用户已佩戴设备;第二预设阈值小于第一预设阈值。若电容变化量处于第一预设阈值和第二预设阈值之间,需结合上一时刻的佩戴状态进行判断,与上一时刻的佩戴状态相同。
本申请实施例提供的电容检测方法,可以由示例一、示例二或示例三的电容检测模组执行,其内容和效果可参考示例一、示例二或示例三,对此不再赘述。
图12为本申请一实施例提供的电容检测方法的流程图,方法应用于示例四所提供的电容检测模组,相应地,如图12所示,该检测电路根据第一感应单元的电容值以及第二感应单元的电容值,判断用户对具有电容检测模组的设备的佩戴状态,包括如下步骤:
步骤S121:采集在第一状态下第一感应单元与第二感应单元之间的第一基准电容,以及,在第二状态下第二感应单元与第一感应单元之间的第二基准电容。
步骤S122:采集在第一状态下第一感应单元与第二感应单元之间的第一 电容,以及,在第二状态下第二感应单元与第一感应单元之间的第二电容,并计算第一电容与第一基准电容之差,得到第一电容差,计算第二电容与第二基准电容之差,得到第二电容差。
步骤S123:计算第一电容差与第二电容差之差,得到触碰所引起的第一感应单元的电容变化量。
步骤S124:根据电容变化量判断用户对具有电容检测模组的设备的佩戴状态。
其中,若电容变化量大于或等于第一预设阈值,则确定用户未佩戴设备;若电容变化量小于或等于第二预设阈值,则确定用户已佩戴设备;第二预设阈值小于第一预设阈值。
本申请实施例提供的电容检测方法,可以由示例四的电容检测模组执行,其内容和效果可参考示例四,对此不再赘述。
图13为本申请再一实施例提供的电容检测方法的流程图,方法应用于示例五所提供的电容检测模组,相应地,如图13所示,该检测电路根据第一感应单元的电容值以及第二感应单元的电容值,判断用户对具有电容检测模组的设备的佩戴状态,包括如下步骤:
步骤S131:采集在第三状态下第一感应单元与第二感应单元之间的第一基准电容,以及,在第四状态下第二感应单元与第一感应单元之间的第二基准电容;
步骤S132:采集在第三状态下第一感应单元与第二感应单元之间的第一电容,以及,在第四状态下第二感应单元与第一感应单元之间的第二电容,并计算第一电容与第一基准电容之差,得到第一电容差,计算第二电容与第二基准电容之差,得到第二电容差;
步骤S133:计算第一电容差与第二电容差之差,得到触碰所引起的第一感应单元的电容变化量。
步骤S134:根据电容变化量判断用户对具有电容检测模组的设备的佩戴状态。
本申请实施例提供的电容检测方法,可以由示例五的电容检测模组执行,其内容和效果可参考示例五,对此不再赘述。
本申请还提供一种电子设备,该电子设备包括:示例一、示例二、示例 三、示例四或示例五的电容检测模组。可选地,该电子设备可以是耳机。
由于本申请实施例提供的电子设备,包括示例一、示例二、示例三、示例四或示例五,其内容和效果可参考示例一、示例二、示例三、示例四或示例五,对此不再赘述。

Claims (20)

  1. 一种电容检测模组,其特征在于,包括:传感模块和检测电路;所述传感模块的第一表面设置有第一感应单元,所述传感模块的第二表面设置有第二感应单元;所述第一感应单元和所述第二感应单元分别与所述检测电路连接;
    所述检测电路用于根据所述第一感应单元的电容值以及所述第二感应单元的电容值,判断具有所述电容检测模组的设备的佩戴状态。
  2. 根据权利要求1所述的模组,其特征在于,所述第一感应单元和所述第二感应单元不是正对;
    所述第一感应单元的电容值为所述第一感应单元对地的自容值,所述第二感应单元的电容值为所述第二感应单元对地的自容值。
  3. 根据权利要求1所述的模组,其特征在于,所述传感模块还包括第一接地单元和第二接地单元,所述第一接地单元设置在所述传感模组的第一表面,所述第二接地单元设置在所述传感模组的第二表面,所述第一感应单元与所述第二接地单元正对,所述第二感应单元与所述第一接地单元正对;
    所述第一感应单元的电容值为所述第一感应单元对所述第二接地单元的自容值,所述第二感应单元的电容值为所述第二感应单元对所述第一接地单元的自容值。
  4. 根据权利要求1所述的模组,其特征在于,所述第一感应单元和所述第二感应单元正对,且所述第一感应单元和所述第二感应单元的面积相等;
    所述第一感应单元的电容值为所述第一感应单元对地的自容值,所述第二感应单元的电容值为所述第二感应单元对地的自容值。
  5. 根据权利要求1所述的模组,其特征在于,所述第一感应单元和所述第二感应单元正对,且所述第一感应单元和所述第二感应单元的面积相等;
    所述第一感应单元的电容值为所述第一感应单元对作为地的所述第二感应单元的自容值,所述第二感应单元的电容值为所述第二感应单元对作为地的所述第一感应单元的自容值。
  6. 根据权利要求1所述的模组,其特征在于,所述第一感应单元和所述第二感应单元正对,且所述第一感应单元和所述第二感应单元的面积相等,
    所述第一感应单元的电容值为所述第一感应单元对所述第二感应单元的 互容值,所述第二感应单元的电容值为所述第二感应单元对所述第一感应单元的互容值。
  7. 根据权利要求2-4任一项所述的模组,其特征在于,所述检测电路具体用于:
    采集所述第一感应单元对地的第一基准电容,以及,所述第二感应单元对地的第二基准电容;
    采集所述第一感应单元对地的第一电容,以及,所述第二感应单元对地的第二电容,并计算所述第一电容与所述第一基准电容之差,得到第一电容差,计算所述第二电容与所述第二基准电容之差,得到第二电容差;
    根据所述第一电容差和所述第二电容差判断具有所述电容检测模组的设备的佩戴状态。
  8. 根据权利要求7所述的模组,其特征在于,所述检测电路具体用于:
    计算所述第二电容差与预设系数的乘积,并计算所述第一电容差与所述乘积之差,得到触碰所引起的所述第一感应单元的电容变化量,所述预设系数为基于相同温度,所述设备未被佩戴时第一电容差与第二电容差的比值;
    根据所述电容变化量判断具有所述电容检测模组的设备的佩戴状态。
  9. 根据权利要求5所述的模组,其特征在于,所述检测电路还包括切换开关,所述切换开关用于对所述传感模块的状态进行第一状态和第二状态的交替切换,所述第一状态为所述第一感应单元分别与所述检测电路输出的打码电压和感应通道接通,所述第二感应单元接地;所述第二状态为所述第二感应单元分别与所述检测电路输出的打码电压和感应通道接通,所述第一感应单元接地;
    所述检测电路具体用于:
    采集在所述第一状态下所述第一感应单元与所述第二感应单元之间的第一基准电容,以及,在所述第二状态下所述第二感应单元与所述第一感应单元之间的第二基准电容;
    采集在所述第一状态下所述第一感应单元与所述第二感应单元之间的第一电容,以及,在所述第二状态下所述第二感应单元与所述第一感应单元之间的第二电容,并计算所述第一电容与所述第一基准电容之差,得到第一电容差,计算所述第二电容与所述第二基准电容之差,得到第二电容差;
    计算所述第一电容差与所述第二电容差之差,得到触碰所引起的所述第一感应单元的电容变化量;
    根据所述电容变化量判断具有所述电容检测模组的设备的佩戴状态。
  10. 根据权利要求6所述的模组,其特征在于,所述检测电路还包括切换开关,所述切换开关用于对所述传感模块的状态进行所述第三状态和所述第四状态的交替切换;所述第三状态为所述第一感应单元与所述检测电路输出的打码电压接通,所述第二感应单元与所述检测电路的感应通道接通,所述第四状态为所述第二感应单元与所述检测电路输出的打码电压接通,所述第一感应单元与所述检测电路的感应通道接通;
    所述检测电路具体用于:
    采集在所述第三状态下所述第一感应单元与所述第二感应单元之间的第一基准电容,以及,在所述第四状态下所述第二感应单元与所述第一感应单元之间的第二基准电容;
    采集在所述第三状态下所述第一感应单元与所述第二感应单元之间的第一电容,以及,在所述第四状态下所述第二感应单元与所述第一感应单元之间的第二电容,并计算所述第一电容与所述第一基准电容之差,得到第一电容差,计算所述第二电容与所述第二基准电容之差,得到第二电容差;
    计算所述第一电容差与所述第二电容差之差,得到触碰所引起的所述第一感应单元的电容变化量;
    根据所述电容变化量判断具有所述电容检测模组的设备的佩戴状态。
  11. 根据权利要求8-10任一项所述的模组,其特征在于,所述检测电路具体用于:
    若所述电容变化量大于或等于第一预设阈值,则确定未佩戴所述设备;
    若所述电容变化量小于或等于第二预设阈值,则确定已佩戴所述设备;
    其中,所述第二预设阈值小于所述第一预设阈值。
  12. 一种电容检测方法,其特征在于,所述方法应用于电容检测模组,所述模组包括:传感模块和检测电路;所述传感模块的第一表面设置有第一感应单元,所述传感模块的第二表面设置有第二感应单元;所述第一感应单元和所述第二感应单元分别与所述检测电路连接;
    相应的,所述方法包括:
    根据所述第一感应单元的电容值以及所述第二感应单元的电容值,判断具有所述电容检测模组的设备的佩戴状态。
  13. 根据局权利要求12所述的方法,其特征在于,所述第一感应单元和所述第二感应单元不是正对;所述第一感应单元的电容值为所述第一感应单元对地的自容值,所述第二感应单元的电容值为所述第二感应单元对地的自容值;
    相应的,所述根据所述第一感应单元的电容值以及所述第二感应单元的电容值,判断具有所述电容检测模组的设备的佩戴状态,包括:
    采集所述第一感应单元对地的第一基准电容,以及,所述第二感应单元对地的第二基准电容;
    采集所述第一感应单元对地的第一电容,以及,所述第二感应单元对地的第二电容,并计算所述第一电容与所述第一基准电容之差,得到第一电容差,计算所述第二电容与所述第二基准电容之差,得到第二电容差;
    根据所述第一电容差和所述第二电容差判断具有所述电容检测模组的设备的佩戴状态。
  14. 根据权利要求12所述的方法,其特征在于,所述传感模块还包括第一接地单元和第二接地单元,所述第一接地单元设置在所述传感模组的第一表面,所述第二接地单元设置在所述传感模组的第二表面,所述第一感应单元与所述第二接地单元正对,所述第二感应单元与所述第一接地单元正对;
    所述第一感应单元的电容值为所述第一感应单元对所述第二接地单元的自容值,所述第二感应单元的电容值为所述第二感应单元对所述第一接地单元的自容值;
    相应的,所述根据所述第一感应单元的电容值以及所述第二感应单元的电容值,判断具有所述电容检测模组的设备的佩戴状态,包括:
    采集所述第一感应单元对地的第一基准电容,以及,所述第二感应单元对地的第二基准电容;
    采集所述第一感应单元对地的第一电容,以及,所述第二感应单元对地的第二电容,并计算所述第一电容与所述第一基准电容之差,得到第一电容差,计算所述第二电容与所述第二基准电容之差,得到第二电容差;
    根据所述第一电容差和所述第二电容差判断具有所述电容检测模组的设 备的佩戴状态。
  15. 根据权利要求12所述的方法,其特征在于,所述第一感应单元和所述第二感应单元正对,且所述第一感应单元和所述第二感应单元的面积相等;
    所述第一感应单元的电容值为所述第一感应单元对地的自容值,所述第二感应单元的电容值为所述第二感应单元对地的自容值;
    相应的,所述根据所述第一感应单元的电容值以及所述第二感应单元的电容值,判断具有所述电容检测模组的设备的佩戴状态,包括:
    采集所述第一感应单元对地的第一基准电容,以及,所述第二感应单元对地的第二基准电容;
    采集所述第一感应单元对地的第一电容,以及,所述第二感应单元对地的第二电容,并计算所述第一电容与所述第一基准电容之差,得到第一电容差,计算所述第二电容与所述第二基准电容之差,得到第二电容差;
    根据所述第一电容差和所述第二电容差判断具有所述电容检测模组的设备的佩戴状态。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,所述根据所述第一电容差和所述第二电容差判断具有所述电容检测模组的设备的佩戴状态,包括:
    计算所述第二电容差与预设系数的乘积,并计算所述第一电容差与所述乘积之差,得到触碰所引起的所述第一感应单元的电容变化量,所述预设系数为基于相同温度,所述设备未被佩戴时第一电容差与第二电容差的比值;
    根据所述电容变化量判断具有所述电容检测模组的设备的佩戴状态。
  17. 根据权利要求12所述的方法,其特征在于,所述第一感应单元和所述第二感应单元正对,且所述第一感应单元和所述第二感应单元的面积相等;
    所述第一感应单元的电容值为所述第一感应单元对作为地的所述第二感应单元的自容值,所述第二感应单元的电容值为所述第二感应单元对作为地的所述第一感应单元的自容值;
    所述检测电路还包括切换开关,所述切换开关用于对所述传感模块的状态进行第一状态和第二状态的交替切换,所述第一状态为所述第一感应单元分别与所述检测电路输出的打码电压和感应通道接通,所述第二感应单元接地;所述第二状态为所述第二感应单元分别与所述检测电路输出的打码电压 和感应通道接通,所述第一感应单元接地;
    相应的,所述根据所述第一感应单元的电容值以及所述第二感应单元的电容值,判断用户对具有所述电容检测模组的设备的佩戴状态,包括:
    采集在所述第一状态下所述第一感应单元与所述第二感应单元之间的第一基准电容,以及,在所述第二状态下所述第二感应单元与所述第一感应单元之间的第二基准电容;
    采集在所述第一状态下所述第一感应单元与所述第二感应单元之间的第一电容,以及,在所述第二状态下所述第二感应单元与所述第一感应单元之间的第二电容,并计算所述第一电容与所述第一基准电容之差,得到第一电容差,计算所述第二电容与所述第二基准电容之差,得到第二电容差;
    计算所述第一电容差与所述第二电容差之差,得到触碰所引起的所述第一感应单元的电容变化量;
    根据所述电容变化量判断具有所述电容检测模组的设备的佩戴状态。
  18. 根据权利要求12所述的方法,其特征在于,所述第一感应单元和所述第二感应单元正对,且所述第一感应单元和所述第二感应单元的面积相等,所述第一感应单元的电容值为所述第一感应单元对所述第二感应单元的互容值,所述第二感应单元的电容值为所述第二感应单元对所述第一感应单元的互容值;
    所述检测电路还包括切换开关,所述切换开关用于对所述传感模块的状态进行所述第三状态和所述第四状态的交替切换;所述第三状态为所述第一感应单元与所述检测电路输出的打码电压接通,所述第二感应单元与所述检测电路的感应通道接通;所述第四状态为所述第二感应单元与所述检测电路输出的打码电压接通,所述第一感应单元与所述检测电路的感应通道接通;
    相应的,所述根据所述第一感应单元的电容值以及所述第二感应单元的电容值,判断用户对具有所述电容检测模组的设备的佩戴状态,包括:
    采集在所述第三状态下所述第一感应单元与所述第二感应单元之间的第一基准电容,以及,在所述第四状态下所述第二感应单元与所述第一感应单元之间的第二基准电容;
    采集在所述第三状态下所述第一感应单元与所述第二感应单元之间的第一电容,以及,在所述第四状态下所述第二感应单元与所述第一感应单元之 间的第二电容,并计算所述第一电容与所述第一基准电容之差,得到第一电容差,计算所述第二电容与所述第二基准电容之差,得到第二电容差;
    计算所述第一电容差与所述第二电容差之差,得到触碰所引起的所述第一感应单元的电容变化量;
    根据所述电容变化量判断具有所述电容检测模组的设备的佩戴状态。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,所述根据所述电容变化量判断具有所述电容检测模组的设备的佩戴状态,包括:
    若所述电容变化量大于或等于第一预设阈值,则确定未佩戴所述设备;
    若所述电容变化量小于或等于第二预设阈值,则确定已佩戴所述设备;
    其中,所述第二预设阈值小于所述第一预设阈值。
  20. 一种电子设备,其特征在于,包括:如权利要求1-11任一项所述的电容检测模组。
PCT/CN2018/109204 2018-09-30 2018-09-30 电容检测模组、方法及电子设备 WO2019063021A2 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207033639A KR102540614B1 (ko) 2018-09-30 2018-09-30 정전용량 검출 모듈, 방법 및 전자기기
EP18860959.8A EP3614108B1 (en) 2018-09-30 2018-09-30 Capacitance detection module and method, and electronic device
JP2019508199A JP6732105B2 (ja) 2018-09-30 2018-09-30 容量検出モジュール、方法及び電子機器
PCT/CN2018/109204 WO2019063021A2 (zh) 2018-09-30 2018-09-30 电容检测模组、方法及电子设备
CN201880001669.9A CN109328293B (zh) 2018-09-30 2018-09-30 电容检测模组、方法及电子设备
US16/700,967 US11448675B2 (en) 2018-09-30 2019-12-02 Capacitance detection module, method and electronic device
US17/890,212 US11671097B2 (en) 2018-09-30 2022-08-17 Capacitance detection module and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109204 WO2019063021A2 (zh) 2018-09-30 2018-09-30 电容检测模组、方法及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/700,967 Continuation US11448675B2 (en) 2018-09-30 2019-12-02 Capacitance detection module, method and electronic device

Publications (2)

Publication Number Publication Date
WO2019063021A2 true WO2019063021A2 (zh) 2019-04-04
WO2019063021A3 WO2019063021A3 (zh) 2019-08-15

Family

ID=65257096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109204 WO2019063021A2 (zh) 2018-09-30 2018-09-30 电容检测模组、方法及电子设备

Country Status (6)

Country Link
US (2) US11448675B2 (zh)
EP (1) EP3614108B1 (zh)
JP (1) JP6732105B2 (zh)
KR (1) KR102540614B1 (zh)
CN (1) CN109328293B (zh)
WO (1) WO2019063021A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110122965A (zh) * 2019-05-27 2019-08-16 浙江大华技术股份有限公司 安全帽
CN111457955B (zh) * 2020-05-19 2022-08-02 Oppo(重庆)智能科技有限公司 一种用于可穿戴设备的检测装置
WO2022141248A1 (zh) * 2020-12-30 2022-07-07 深圳市汇顶科技股份有限公司 接近检测电路、可穿戴设备和接近检测方法
CN112305320B (zh) * 2020-12-30 2021-06-11 深圳市汇顶科技股份有限公司 接近检测电路、可穿戴设备和接近检测方法
CN112415604B (zh) * 2021-01-22 2021-06-18 深圳市汇顶科技股份有限公司 检测电路、芯片及相关电子装置
CN112911484A (zh) * 2021-01-27 2021-06-04 维沃移动通信有限公司 耳机状态检测方法及装置
EP4072157B1 (en) 2021-02-10 2024-04-03 Shenzhen Goodix Technology Co., Ltd. Method for determining capacitance reference, apparatus for determining capacitance reference, and device
US11163402B1 (en) * 2021-03-29 2021-11-02 Renesas Electronics Corporation Mutual capacitive touch sensing anomaly detection
CN113453122B (zh) * 2021-06-29 2023-04-25 歌尔科技有限公司 佩戴检测方法、装置、设备及计算机可读存储介质
CN113566852A (zh) * 2021-07-13 2021-10-29 上海艾为电子技术股份有限公司 基线更新、相对状态检测方法和***、电子设备
CN113741582B (zh) * 2021-08-27 2022-07-15 安徽创谱仪器科技有限公司 一种电容温度补偿方法及装置
CN114466300A (zh) * 2022-02-28 2022-05-10 深圳曦华科技有限公司 一种耳机状态检测方法、装置、耳机及计算机存储介质

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022356A (ja) * 2002-06-17 2004-01-22 Omron Corp タッチスイッチ
JP4710573B2 (ja) * 2005-11-30 2011-06-29 ぺんてる株式会社 静電容量型デジタル式タッチパネル
JP2007208682A (ja) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd タッチパネル
EP1860776A3 (en) * 2006-05-26 2010-08-11 Fujikura Ltd. Proximity sensor and proximity sensing method
US8860683B2 (en) * 2007-04-05 2014-10-14 Cypress Semiconductor Corporation Integrated button activation sensing and proximity sensing
US9927924B2 (en) * 2008-09-26 2018-03-27 Apple Inc. Differential sensing for a touch panel
JP2010217967A (ja) * 2009-03-13 2010-09-30 Alps Electric Co Ltd 入力装置
US9091715B2 (en) * 2013-02-25 2015-07-28 Google Technology Holdings LLC Wearable device with capacitive sensor and method of operation therefor
US10684719B2 (en) * 2015-10-05 2020-06-16 Amogreentech Co., Ltd. Apparatus for sensing touch pressure
CN107515692A (zh) * 2015-10-30 2017-12-26 深圳市汇顶科技股份有限公司 触控设备和在触控设备上进行指纹检测的方法
CN105581411B (zh) * 2016-01-26 2018-03-16 大唐国际发电股份有限公司重庆分公司 智能安全帽与人员定位管理***及方法
FR3047808B1 (fr) * 2016-02-12 2019-06-28 Continental Automotive France Procede de detection d'approche et/ou de contact d'une main d'un utilisateur vers une poignee de portiere de vehicule et dispositif de detection associe
CN106054273B (zh) * 2016-06-01 2018-06-01 广东小天才科技有限公司 一种智能穿戴设备皮肤接触的检测方法及***
CN205809842U (zh) * 2016-06-15 2016-12-14 深圳市汇顶科技股份有限公司 压力检测装置、触控设备及电子终端
WO2017214901A1 (zh) * 2016-06-15 2017-12-21 深圳市汇顶科技股份有限公司 压力检测装置、方法、触控设备及电子终端
US10405800B2 (en) * 2016-07-13 2019-09-10 Capsule Technologies, Inc. Methods, systems, and apparatuses for detecting activation of an electronic device
JP2018060502A (ja) * 2016-10-03 2018-04-12 株式会社東海理化電機製作所 入力装置
JP2018120757A (ja) * 2017-01-25 2018-08-02 パナソニックIpマネジメント株式会社 グリップセンサ
CN107065016B (zh) * 2017-03-01 2019-04-12 歌尔科技有限公司 一种用于头戴式耳机的佩戴检测方法、装置及头戴式耳机
CN107463289B (zh) * 2017-07-26 2020-07-31 Oppo广东移动通信有限公司 一种触摸屏的校准方法、装置、存储介质及终端
WO2019023941A1 (zh) * 2017-08-01 2019-02-07 深圳市汇顶科技股份有限公司 触控位置的确定方法、电容触控装置以及电容触控终端
CN107907916B (zh) * 2017-10-20 2019-04-02 歌尔科技有限公司 一种智能穿戴设备的佩戴状态检测方法及装置

Also Published As

Publication number Publication date
EP3614108B1 (en) 2022-02-02
US11671097B2 (en) 2023-06-06
CN109328293A (zh) 2019-02-12
US20220399892A1 (en) 2022-12-15
US11448675B2 (en) 2022-09-20
CN109328293B (zh) 2021-11-23
JP6732105B2 (ja) 2020-07-29
EP3614108A2 (en) 2020-02-26
WO2019063021A3 (zh) 2019-08-15
KR102540614B1 (ko) 2023-06-05
JP2019534992A (ja) 2019-12-05
US20200103446A1 (en) 2020-04-02
KR20210002610A (ko) 2021-01-08
EP3614108A4 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
WO2019063021A2 (zh) 电容检测模组、方法及电子设备
US8395589B2 (en) Press on power-up detection for a touch-sensor device
TWI726357B (zh) 儲存媒體、時序同步方法及觸控筆
JP5633565B2 (ja) 能動タッチシステム
US20160224158A1 (en) Detection of a conductive object during an initialization process of a touch-sensing device
US20120268144A1 (en) Touch sensing circuit
CN112236745A (zh) 压力感测设备和方法
TW201729050A (zh) 具多層電極結構之高精確度觸壓感應裝置
TW201248475A (en) Capacitance sensing devices and control methods
US10416810B2 (en) Method for operating electronic apparatus with independent power sources
JP2020086743A (ja) タッチ検出回路、入力装置、電子機器
JP7294896B2 (ja) タッチ検出回路、入力装置、電子機器
JP2020166656A (ja) タッチ検出回路、入力装置、電子機器
US10534471B2 (en) Electronic apparatus with independent power sources
TWI612478B (zh) 指紋辨識系統、驅動電路及指紋辨識方法
TWM522414U (zh) 具多層電極結構之高精確度觸壓感應裝置
JP7102235B2 (ja) タッチ検出回路、入力装置、電子機器
CN112752179B (zh) 一种耳机控制方法、手柄模块及耳机
WO2019135613A1 (ko) 송수신 가능한 초음파 시스템 및 그 방법
US20230283939A1 (en) Input detection with electrostatic charge sensors
US20240077968A1 (en) Electronic Device Having Sensors Laminated to One or More Interior Surfaces of a Housing
TWI738421B (zh) 觸控感測裝置及用於驅動觸控感測裝置的驅動方法
US20210396872A1 (en) Multi-tone ultrasonic proximity detection
TWI590167B (zh) 指紋辨識裝置
CN107239723B (zh) 指纹识别装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019508199

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018860959

Country of ref document: EP

Effective date: 20191122

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860959

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20207033639

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE