WO2017214901A1 - 压力检测装置、方法、触控设备及电子终端 - Google Patents

压力检测装置、方法、触控设备及电子终端 Download PDF

Info

Publication number
WO2017214901A1
WO2017214901A1 PCT/CN2016/085904 CN2016085904W WO2017214901A1 WO 2017214901 A1 WO2017214901 A1 WO 2017214901A1 CN 2016085904 W CN2016085904 W CN 2016085904W WO 2017214901 A1 WO2017214901 A1 WO 2017214901A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
detecting
detection
pressure
capacitance
Prior art date
Application number
PCT/CN2016/085904
Other languages
English (en)
French (fr)
Inventor
蒋宏
杨孟达
杨富强
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201680000600.5A priority Critical patent/CN107949824B/zh
Priority to KR1020177023027A priority patent/KR101963994B1/ko
Priority to PCT/CN2016/085904 priority patent/WO2017214901A1/zh
Priority to EP16889663.7A priority patent/EP3457258B1/en
Priority to US15/678,110 priority patent/US10649570B2/en
Publication of WO2017214901A1 publication Critical patent/WO2017214901A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/146Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • Embodiments of the present invention relate to the field of touch technologies, and in particular, to a pressure detecting device, a method, a touch device, and an electronic terminal.
  • Touch technology such as application on a smart terminal, allows the user to operate the terminal by gesture operation, and get rid of the traditional mechanical keyboard, making human-computer interaction more straightforward.
  • touch technology such as capacitive touch
  • simple finger touch can not meet the needs of users for more dimensional input.
  • Adding pressure detection technology (Force Touch) to the capacitive touch screen can increase an input dimension.
  • the touch screen can sense the pressure information of the finger, perceive the intensity of the light pressure and the pressure, and call out different corresponding functions, thereby providing a better user experience.
  • the sensor capacitance is usually used to detect the change of the effective capacitance to the ground, and combined with the display device to implement the touch display.
  • a layer of OCA glue is disposed on the upper surface of the middle frame of the device, and a pressure detecting electrode is disposed on the surface of the OCA glue on the layer.
  • the effective ground capacitance of the pressure detecting electrode becomes large. Specifically, since the distance of the pressure detecting electrode with respect to the common reference electrode layer (Vcom layer) in the display device is reduced by the hand, the effective capacitance to the ground becomes large.
  • a layer of OCA glue is disposed on the lower surface of the display device, and a pressure detecting electrode is disposed on the lower surface of the layer OCA glue, and the distance of the pressure detecting electrode relative to the middle frame of the mobile phone is reduced by the hand. , resulting in an effective capacitance to ground.
  • the pressure of the finger press can be calculated by detecting the change in the effective capacitance to ground.
  • a shielding layer is added in the prior art, and the shielding layer is disposed between the display device and the pressure detecting electrode, but adding a shielding layer leads The increase in cost and the thickening of the display as a whole.
  • the prior art does not provide a related solution to the interference caused by the load to ground capacitance.
  • An object of the present invention is to provide a pressure detecting device, a method, a touch device, and an electronic terminal, which are used to solve at least the above problems in the prior art.
  • an embodiment of the present invention provides a pressure detecting apparatus, including a first detecting capacitor, and a second method for performing differential processing on a capacitance value of the first detecting capacitor to eliminate an interference signal.
  • the first detecting capacitor includes a pressure detecting electrode
  • the second detecting capacitor includes a reference detecting electrode
  • the pressure detecting electrode is disposed in the same plane as the reference detecting electrode, so that the first detecting capacitor and the second detecting capacitor
  • the interference signal that interferes with the pressure detection is coupled at the same time.
  • the embodiment of the invention further provides a pressure detecting method, comprising:
  • the interference signal is cancelled according to the differential processing of the capacitance values of the first detection capacitor and the second detection capacitor during pressure detection to determine the magnitude of the pressure.
  • the embodiment of the invention further provides a touch device, which comprises any pressure detecting device in the embodiment of the invention.
  • the embodiment of the invention further provides an electronic terminal, which comprises any touch device in the embodiment of the invention.
  • the first detecting capacitor includes the pressure detecting electrode
  • the second detecting capacitor includes the reference detecting electrode
  • the pressure detecting electrode and the reference detecting electrode are disposed in the same plane, so that the pressure detecting is performed.
  • the interference signal is simultaneously coupled to the first detection capacitor and the second detection capacitor, and the interference value of the first detection capacitor and the second detection capacitor is differentially processed when the pressure is detected, thereby eliminating the interference signal included therein
  • the sensitivity of the pressure detection is increased without increasing the thickness of the product.
  • FIG. 1 is a schematic plan view of a pressure detecting device according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a pressure detecting device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic plan view of a pressure detecting device according to a third embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a fourth pressure detecting device according to an embodiment of the present invention.
  • Figure 5 is a schematic structural view of a pressure detecting device according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an equivalent circuit of a pressure detecting device according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural view of a pressure detecting device according to Embodiment 7 of the present invention.
  • FIG. 8 is a schematic structural diagram of an equivalent circuit of a pressure detecting device according to an eighth embodiment of the present invention.
  • Embodiment 9 is a schematic structural diagram of a differential circuit according to Embodiment 9 of the present invention.
  • FIG. 10 is a schematic flow chart of a ten pressure detecting method according to an embodiment of the present invention.
  • the pressure detecting device includes a first detecting capacitor, a second detecting capacitor for performing differential processing with the capacitance value of the first detecting capacitor to eliminate the interference signal, and the first detecting capacitor.
  • the second detecting capacitor includes a reference detecting electrode, and the pressure detecting electrode is disposed in the same plane as the reference detecting electrode, so that the first detecting capacitor and the second detecting capacitor are coupled to each other for pressure detection.
  • the interference signal that forms interference.
  • the interference signal for pressure detection is simultaneously coupled to the first detecting capacitor and the second detecting capacitor.
  • the capacitance values of the first detection capacitor and the second detection capacitor are differentially processed during pressure detection, thereby eliminating interfering signals included in the display device, such as interference signals caused by the display device, and increasing pressure without increasing the thickness of the product. Sensitivity of detection.
  • the pressure detecting device when the pressure detecting device is subjected to temperature change due to energization, on the one hand, since the reference detecting electrode and the pressure detecting electrode are disposed in the same plane, the distance between each other is relatively close, and on the other hand, the temperature change is simultaneously feedback. On the first detection capacitor and the second detection capacitor, the temperature change has an effect on the first detection capacitor and the second detection capacitor. When differential processing is performed, the effects cancel each other, thereby suppressing temperature drift.
  • Cx represents the first detection capacitance
  • Cref represents the second detection capacitance
  • Cx-Cref ⁇ C when the temperature is T1
  • FIG. 1 is a schematic plan view of a pressure detecting device according to an embodiment of the present invention; as shown in FIG. 1, the reference detecting electrode 101 and the pressure detecting electrode 102 are located in the same plane, and the plurality of pressure detecting electrodes form a pressure detecting electrode array, and the reference detecting electrode It is disposed on the periphery of the pressure detecting electrode array.
  • the number of reference detecting electrodes 101 is one, and there are corresponding nine pressure detecting electrodes 102, which are rectangular shaped ring electrodes, and pressure detecting electrode arrays surrounding nine pressure detecting electrodes 102. .
  • the first detecting electrode 101 is a rectangular electrode located at the upper right corner of the pressure detecting electrode array formed by the nine pressure detecting electrodes 102.
  • the reference detecting electrode 101 is a strip electrode located at the top end of the pressure detecting electrode array formed by the nine pressure detecting electrodes 102.
  • FIGS. 1 to 3 only schematically illustrate that a reference detecting electrode corresponds to a plurality of pressures.
  • the force detecting electrode may be a plurality of pressure detecting electrodes corresponding to the plurality of reference detecting electrodes.
  • the shape and arrangement position of the reference detecting electrode are not limited to the specific cases of Figs. 1 to 3 described above, and other cases are also possible.
  • the shape of the reference detecting electrode is a rectangle, a circle, an ellipse, a trapezoid, a strip, or any regular or irregular pattern.
  • the capacitance value of the first detecting capacitor is greater than the capacitance value of the second detecting capacitor, for example, by using a reference detecting electrode
  • the area is designed to be slightly smaller than the area of the pressure detecting electrode.
  • the position of the reference detecting electrode can be set at the periphery of the pressure detecting electrode array as shown in the embodiment of FIG. 1 to FIG. 3, and in other embodiments, it can also be at any corner position, any edge position, multiple corner positions, and multiple edges. position.
  • the second detecting capacitance formed by the reference detecting electrode is relatively small, and therefore, the areas of the reference detecting electrode and the pressure detecting electrode may be equal.
  • the reference detecting electrode may also be disposed in the middle of the pressure detecting electrode array, such as interposed in a plurality of pressure detecting electrodes, for example, the first row of pressure detecting electrodes 102 and the second row of pressures in the embodiment of FIGS. 1-3.
  • a reference detecting electrode is disposed between the detecting electrodes 102, and another detecting electrode is disposed between the second row of pressure detecting electrodes 102 and the third row of pressure detecting electrodes 102.
  • the area of the single reference detecting electrodes is preferably smaller than that of the single pressure detecting electrodes. The area is such that the reference detection electrode has the least influence on the pressure detecting electrode.
  • planar arrangement diagrams of the reference detecting electrode and the pressure detecting electrode in the above FIGS. 1 to 3 can be applied to both self-capacitance detection and mutual capacitance detection.
  • FIG. 4 is a schematic structural diagram of a fourth pressure detecting device according to an embodiment of the present invention. As shown in FIG. 4, in the embodiment, the self-capacitance detecting is taken as an example, and the pressure detecting electrode 102 is respectively connected to the first conductive surface 103 and the second conductive surface 104.
  • Coupling respectively forming a first effective detection capacitor 105 and a first load detection capacitor 106, the first detection capacitor comprising a first effective detection capacitor 105 and a first load detection capacitor 106, a first effective detection capacitor 105 and a first load detection capacitor 106
  • the reference detecting electrodes 101 are respectively coupled to the first conductive surface 103 and the second conductive surface 104 to form a second effective detecting capacitor 107 and a second load detecting capacitor 108
  • the second detecting capacitor includes a second effective detecting capacitor 107 and a second
  • the load detecting capacitor 108, the second effective detecting capacitor 107 and the second load detecting capacitor 108 are connected in series.
  • the first conductive surface 103 is a common reference electrode, and the common reference electrode is shared by the display device 109 and the pressure detecting electrode 102. Since it is self-capacitance detection, the pressure detecting electrode 102 needs to receive the excitation signal TX.
  • the second conductive surface 104 is a conductive middle frame that includes a terminal of the pressure detecting device.
  • the OCA adhesive 111 is disposed inside the conductive middle frame 104, and the pressure detecting electrode 102 is adhered to the upper surface of the OCA adhesive 111.
  • the terminal provided with the pressure detecting device includes the display device 109, and a gap 110 is formed between the display device 109 and the pressure detecting electrode 102.
  • the cover plate 113 is pressed, the size of the gap 110 varies with pressure. The change causes the capacitance values of the first detection capacitor and the second detection capacitor to change.
  • the second conductive surface 104 may also be a conductive back shell of the terminal of the pressure detecting device, which is not illustrated in detail.
  • the first conductive surface is a common reference electrode
  • the second conductive surface may be selected from the conductive structure of the pressure detecting device or the terminal, or the second conductive surface is the pressure detecting device.
  • the conductive back shell or the conductive middle frame of the terminal, and the first conductive surface is selected from the conductive structures of the pressure detecting device and the terminal.
  • FIG. 5 is a schematic structural diagram of a pressure detecting apparatus according to Embodiment 5 of the present invention; as shown in FIG. 5, in the embodiment, self-capacitance detecting is still taken as an example for description.
  • the first conductive surface 103 is a conductive middle frame including a terminal of the pressure detecting device
  • the second conductive surface 104 is a common reference electrode. That is, in the present embodiment, the pressure detecting electrodes 102 are respectively coupled to the conductive middle frame as the first conductive surface 103 and the common reference electrode as the second conductive surface 104, respectively forming the first effective detecting capacitor 105 and the first load detecting capacitor 106.
  • the first detecting capacitor includes a first effective detecting capacitor 105 and a first load detecting capacitor 106.
  • the first effective detecting capacitor 105 is connected in series with the first load detecting capacitor 106.
  • the reference detecting electrode 101 is electrically connected to the first conductive surface 103, respectively.
  • the frame is coupled to a common reference electrode as the second conductive surface 104 to form a second effective detection capacitor 107 and a second load detection capacitor 108.
  • the second detection capacitor includes a second effective detection capacitor 107 and a second load detection capacitor 108, and a second The effective sense capacitor 107 and the second load sense capacitor 108 are connected in series.
  • the lower surface of the display device 109 is provided with an OCA adhesive 111, and a pressure detecting electrode 102 is adhered to the lower surface of the OCA adhesive 111, and a pressure detecting electrode 102 and the conductive middle frame are formed.
  • the gap 110 when the cover plate 113 is pressed, the size of the gap 110 changes with pressure, causing a change in the capacitance values of the first detection capacitor and the second detection capacitor.
  • the first conductive surface 103 may also be a conductive back shell of the terminal of the pressure detecting device, which is not illustrated in detail.
  • FIG. 6 is a schematic diagram showing the structure of an equivalent circuit of a pressure detecting device according to a sixth embodiment of the present invention. As shown in FIG. 6, the first detecting capacitor 100 is connected to the positive input terminal Vin+ of the differential circuit, and the second detecting capacitor 200 is opposite to the differential circuit.
  • the differential circuit Connected to the input terminal Vin-, the differential circuit can be realized by a fully differential amplifier, or by two single-ended amplifiers, which will not be described in detail. A fully differential amplifier can better reject common mode noise.
  • the display device 109 forms a first coupling capacitor 100A with the first conductive surface
  • the display device and the second conductive surface form a second coupling capacitor 200A
  • the first coupling capacitor 100A and the second coupling capacitor 200A during pressure detection.
  • the capacitance value is the same
  • the first coupling capacitor 100A is connected in series with the first detecting capacitor 100
  • the second coupling capacitor 200 is connected in series with the second detecting capacitor 200A, so that the interference signal for pressure detection is simultaneously coupled to the first detecting capacitor 100 and the second detecting capacitor. 200 on.
  • the first coupling capacitor 100A and the second coupling capacitor 200A simultaneously couple the interference of the interference voltage Vn from the display device. Since the capacitance values of the first coupling capacitor 100A and the second coupling capacitor 200A are the same, when the differential processing is subsequently performed. This interference is eliminated.
  • the first detecting capacitor 100 is electrically connected to the first adjustable capacitor 100C
  • the second detecting capacitor 200 is electrically connected to the second adjustable capacitor 200C, according to the first adjustable capacitor 100C, Adjusting the second adjustable capacitor 200C, adjusting the first detection capacitor 100 and the second detecting capacitor 200 to adjust the capacitance values of the first detection capacitor and the second detection capacitor during pressure detection
  • the matching relationship includes adjusting a capacitance value of the first detection capacitor to be greater than, equal to, or smaller than a capacitance value of the second detection capacitor.
  • the first adjustable capacitor 100C and the second adjustable capacitor 200C are not configured at the same time, and may be configured alternatively.
  • the capacitance value of the first detecting capacitor is designed to be slightly larger.
  • the circuit obtains a positive voltage output, and the pressure is calculated.
  • the unit calculates the pressure according to the magnitude of the positive voltage to achieve pressure sensing.
  • the output of the differential circuit is zero.
  • the tunable capacitor 100C is separately adjusted, and/or the second tunable capacitor 200C is adjusted while taking into account possible assembly errors such that the output of the differential circuit is zero when there is no pressure.
  • the first detecting capacitor 100 is electrically connected to the first switch circuit 100B, and/or the second detecting capacitor 200 is electrically connected to the second switch circuit 200B to pass the first in the pressure detection.
  • a switching circuit 100B charges or discharges the first detecting capacitor 100, and respectively charges or discharges the second detecting capacitor 200 through the second switching circuit 200B.
  • the forward end is electrically connected to the third switch circuit 100D
  • the reverse end is electrically connected to the fourth switch circuit 200D
  • the first detection capacitor passes through the third switch circuit 100D
  • the forward end is electrically connected
  • the second detecting capacitor is electrically connected to the opposite end through the fourth switching circuit 200D.
  • the first switch circuit 100B and the second switch circuit 200B are closed, and the third switch circuit 100D and the fourth switch circuit 200D are disconnected to charge the first detection capacitor 100 and the second detection capacitor 200 to Vtx; the first switch circuit 100B, the second switch circuit 200B is disconnected, the third switch circuit 100D and the fourth switch circuit 200D are closed, and the first detection capacitor 100 and the second detection capacitor 200 enter a discharge state.
  • the design since the design is made first
  • the capacitance of the detection capacitor is greater than the capacitance of the second detection capacitor.
  • the output of the differential circuit is 0 by adjusting the first adjustable capacitor 100C and the second adjustable capacitor 200C; when there is pressure
  • the capacitance value of the first detecting capacitor changes more than the capacitance value of the second detecting capacitor, so that the differential circuit outputs a positive voltage
  • the pressure calculating unit calculates the pressure according to the magnitude of the positive voltage to realize the pressure sensing.
  • the capacitance value of the first detecting capacitor is smaller than the capacitance value of the second detecting capacitor, and the adjustment of the first adjustable capacitor and/or the second adjustable capacitor is performed during pressure detection.
  • the magnitude of the pressure is calculated based on the negative voltage output from the differential circuit, and the detailed description of the drawings will not be repeated.
  • the first switch circuit 100B, the second switch circuit 200B, the first adjustable capacitor 100C, and the second adjustable capacitor 200C are not necessarily included in the structure of the pressure detecting device. It can be independent of the pressure detecting device and not included in the pressure detecting device. In other embodiments, the first switch circuit 100B, the second switch circuit 200B, and the A tunable capacitor 100C and a second tunable capacitor 200C can also be configured according to actual requirements.
  • FIG. 7 is a schematic structural diagram of a pressure detecting device according to Embodiment 7 of the present invention. As shown in FIG. 7, the present embodiment is described by taking mutual capacitance detection as an example, and the pressure detecting device further includes a pressure driving electrode 112.
  • the pressure detecting electrode 102 is coupled to the pressure driving electrode 112 to form a first effective mutual capacitance, and the first effective mutual capacitance is used as the first detecting capacitor 100; the reference detecting electrode 101 is coupled with the pressure driving electrode 112 to form a second effective The mutual capacitance and the second effective mutual capacitance are used as the second detection capacitor 200.
  • a pressure driving electrode 112 is disposed on the lower surface of the display device 109, and a gap 110 is formed between the layer pressure driving electrode 112 and the pressure detecting electrode 102.
  • the two layers of electrodes that is, the pressure driving electrode and the pressure detecting electrode are taken as an example.
  • the solution of the present invention is applied to more layers of electrodes, it is only required to ensure that the pressure detecting electrode and the reference detecting electrode are disposed in the same It can be in-plane, and the detailed description of the drawings will not be repeated.
  • FIG. 8 is a schematic diagram showing the structure of an equivalent circuit of the pressure detecting device according to the eighth embodiment of the present invention; as shown in FIG. 8 , different from the embodiment shown in FIG. 6 , the adjustable capacitor 100C is used in the embodiment of FIG. 7 .
  • the first detection capacitor 100 and the second detection capacitor 200 are mutual capacitances instead of self-capacitances, and the first coupling capacitor 100A and the second coupling are respectively connected to the two ends of the first detecting capacitor 100 and the second detecting capacitor 200.
  • the capacitors 200A are respectively coupled to the first detecting capacitor 100 and the second detecting capacitor 200A is adjacent to the input terminal of the differential circuit.
  • FIG. 9 is a schematic structural diagram of a differential circuit according to Embodiment 9 of the present invention.
  • the method may include: a TIA circuit for converting a capacitance difference to a voltage difference, and LPF a low-pass filter circuit for Filtering the interference in the voltage difference signal to enhance the anti-interference ability of the circuit; the INT circuit is used to integrate the smaller voltage difference signal into a larger voltage difference signal to improve the SNR; the ADC circuit is used to realize the voltage difference Digital quantization of the value signal so that the pressure calculation module is based on the voltage difference digital signal Line pressure calculation.
  • FIG. 10 is a schematic flow chart of a ten-pressure detecting method according to an embodiment of the present invention; as shown in FIG. 10, in this embodiment, the pressure detecting electrode and the reference detecting electrode are disposed in the same plane, and the interference signal for pressure detection is simultaneously coupled to the first detecting.
  • the capacitor and the second detecting capacitor in particular, the first coupling capacitor is formed by the display device and the first conductive surface, the display device and the second conductive surface form a second coupling capacitor, and the first coupling capacitor is connected in series with the first detecting capacitor.
  • the second coupling capacitor is connected in series with the second detecting capacitor.
  • the capacitance values of the first coupling capacitor and the second coupling capacitor are the same, so that the interference signal for the pressure detection is simultaneously coupled to the first detecting capacitor and the second detecting capacitor.
  • the arrangement of the first conductive surface and the second conductive surface may refer to the embodiment shown in FIG. 4 or FIG. 5 above, and details are not described in detail.
  • the arrangement of the first conductive surface and the second conductive surface may refer to the embodiment shown in FIG. 7, and details are not described in detail.
  • the step S1001 may include:
  • the first effective detection capacitor and the first load detection capacitor are connected in series.
  • the second effective detection capacitor and the second load detection capacitor are connected in series.
  • step S1001 may include:
  • S1021B detecting a capacitance value of a second effective mutual capacitance formed by coupling the reference detection electrode and the pressure driving electrode, and using a second effective mutual capacitance as the second detection capacitance.
  • S1002 Perform differential processing on the capacitance values of the first detection capacitor and the second detection capacitor during pressure detection to eliminate the interference signal to determine the magnitude of the pressure.
  • the step S1002 may be electrically connected to the forward end of the differential circuit through the first detecting capacitor, and the second detecting capacitor is electrically connected to the opposite end of the differential circuit to the first detecting capacitor. And performing differential processing on the capacitance value of the second detecting capacitor.
  • the first detecting capacitor is electrically connected to the forward end through a third switching circuit
  • the forward end is electrically connected to the third switching circuit
  • the second detecting capacitor is connected to the fourth switching circuit by The reverse end is electrically connected, and the reverse end is electrically connected to the fourth switch circuit to perform differential processing on the capacitance values of the first detection capacitor and the second detection capacitor.
  • the first detection capacitors corresponding to the plurality of pressure detecting electrodes are respectively calculated by using a difference between the second detecting capacitors corresponding to the one reference detecting electrodes;
  • the second detection capacitance corresponding to the N reference detection electrodes is compared with the first detection capacitance corresponding to the N pressure detection electrodes of the M pressure detection electrodes, to complete M The difference detection processing of the first detection capacitor corresponding to the pressure detecting electrode.
  • the first detecting capacitor and/or the second detecting capacitor are charged or discharged by the switch circuit during the pressure detection, and the charging and discharging processing of the first detecting capacitor and the second detecting capacitor by the switching circuit is performed.
  • the embodiment shown in FIG. 6 is detailed, and details are not described in detail.
  • the method before the step 1001, further includes: a first adjustable capacitor electrically connected to the first detecting capacitor, and/or a second adjustable electrical connection with the second detecting capacitor
  • the capacitor adjusts a capacitance value of the first detection capacitor to be greater than, equal to, or smaller than a capacitance value of the second detection capacitor during pressure detection.
  • the magnitude matching relationship of the capacitance values may also be specifically before the charging and discharging processing step.
  • the method for setting the capacitance value of the first detection capacitor and the second detection capacitor is described in detail in the embodiment shown in FIG. 6, and details are not described herein again.
  • the embodiment of the invention further provides a touch device capable of using the pressure detecting device of any of the above embodiments, and an electronic terminal using the touch device, such as a smart phone, a tablet computer, a smart TV, and the like.
  • the same plane may be in the same plane or in the same curved surface.
  • the apparatus provided by the embodiments of the present application can be implemented by a computer program.
  • Those skilled in the art should be able to understand that the foregoing unit and module division manners are only one of a plurality of division manners. If the division is other units or modules or does not divide the blocks, as long as the information object has the above functions, it should be in the present application. Within the scope of protection.
  • embodiments of the present application can be provided as a method, apparatus (device), or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the device is implemented in a flow chart or Multiple processes and/or block diagrams The functions specified in one or more boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明实施例提供一种压力检测装置、方法、触控设备及电子终端,装置包括:第一检测电容、用于与所述第一检测电容的电容值进行差分处理以消除干扰信号的第二检测电容,第一检测电容包括压力检测电极,第二检测电容包括参考检测电极,所述压力检测电极与所述参考检测电极设置在同一面内,使得所述第一检测电容和第二检测电容上同时耦合有对压力检测形成干扰的所述干扰信号,在对所述第一检测电容和第二检测电容的电容值进行差分处理,从而消除了其中包括的干扰信号如显示设备导致的干扰信号,增加了压力检测的灵敏度。与此同时,由于压力检测装置的温度变化同时反馈在第一检测电容和第二检测电容上,对第一检测电容和第二检测电容的电容值进行差分处理,该影响相互抵消,从而抑制了温度漂移。

Description

压力检测装置、方法、触控设备及电子终端 技术领域
本发明实施例涉及触控技术领域,尤其涉及一种压力检测装置、方法、触控设备及电子终端。
背景技术
触控技术如应用在智能终端上,可以让使用者只要通过手势操作即可实现终端的操作,摆脱了传统的机械键盘,使人机交互更为直截了当。
但是,随着触控技术的发展,比如电容触控为例,单纯的手指触控已经不能满足用户更多维度输入的需求,在电容触摸屏中加入压力检测技术(Force Touch)能够增加一个输入维度,让触摸屏能够感知手指压力信息,感知轻压以及重压的力度,并调出不同的对应功能,从而提供更加良好的用户体验。比如在触摸屏的压力检测技术中,通常通过感应器sensor来检测有效对地电容的变化,与显示设备结合来实现触控显示。
在现有技术一种情形中,设备的中框上表面设置一层OCA胶,在该层OCA胶上表面设置压力检测电极,在受到手指按压,压力检测电极的有效对地电容会变大,具体的,因为压力检测电极相对于显示设备中的公共参考电极层(Vcom层)的距离受到手的按压变小,造成有效对地电容变大。
在现有技术的另外一情形中,在显示设备下表面设置一层OCA胶,在该层OCA胶的下表面设置压力检测电极,压力检测电极相对于手机中框的距离受到手的按压变小,造成有效对地电容变大。通过检测有效对地电容的变化大小就可以计算出手指按压的压力大小。
但是,还存在另一负载对地电容,该负载对地电容形成于压力检测电极和中框之间,该负载对地电容会对有效对地电容的检测造成负面影响,给有效对地电容带来干扰。另外,显示设备的存在给有效对地电容带来了干扰。因此,这些干扰会对有效对地电容检测的灵敏度造成负面影响,进一步降低了压力检测的灵敏度。
为了解决其中显示设备带来的干扰,现有技术中增加一层屏蔽层解决,该屏蔽层设置在显示设备和压力检测电极之间,但是增加一层屏蔽层会导 致成本的增加,以及使显示屏整体变厚。对其中负载对地电容带来的干扰现有技术并没有提供相关的解决技术方案。
发明内容
本发明实施例的目的在于提供一种压力检测装置、方法、触控设备及电子终端,用以至少解决现有技术中的上述问题。
为实现本发明实施例的目的,本发明实施例提供了一种压力检测装置,其包括第一检测电容、用于与所述第一检测电容的电容值进行差分处理以消除干扰信号的第二检测电容,第一检测电容包括压力检测电极,第二检测电容包括参考检测电极,所述压力检测电极与所述参考检测电极设置在同一面内,使得所述第一检测电容和第二检测电容上同时耦合有对压力检测形成干扰的所述干扰信号。
本发明实施例还提供了一种压力检测方法,其包括:
检测包括压力检测电极的第一检测电容和包括参考检测电极的第二检测电容的电容值,所述压力检测电极和所述参考检测电极设置在同一面内,使得第一检测电容和第二检测电容上同时耦合有对压力检测形成干扰的干扰信号;
根据对压力检测时所述第一检测电容和第二检测电容的电容值进行差分处理消除所述干扰信号以确定所述压力的大小。
本发明实施例还提供一种触控设备,其包括本发明实施例中的任一项压力检测装置。
本发明实施例还提供一种电子终端,其包括本发明实施例中的任一项触控设备。
本发明实施例中,由于第一检测电容包括所述压力检测电极,第二检测电容包括所述参考检测电极,所述压力检测电极与所述参考检测电极设置在同一面内,使得对压力检测的干扰信号同时耦合在所述第一检测电容和第二检测电容上,在对压力检测时所述第一检测电容和第二检测电容的电容值进行差分处理时从而消除了其中包括的干扰信号如显示设备导致的干扰信号, 在不需要增加产品的厚度的前提下增加了压力检测的灵敏度。
与此同时,当出现温度变化时,一方面,由于参考检测电极和压力检测电极配置在同一面内,相互之间的距离较近,另外一方面由于该温度变化同时反馈在第一检测电容和第二检测电容上,温度变化对第一检测电容和第二检测电容导致的影响相当,当进行差值处理,该影响相互抵消,从而抑制了温度漂移。
附图说明
图1为本发明实施例一压力检测装置的平面示意图;
图2为本发明实施例二压力检测装置的平面示意图;
图3为本发明实施例三压力检测装置的平面示意图;
图4为本发明实施例四压力检测装置的结构示意图;
图5为本发明实施例五压力检测装置的结构示意图;
图6为本发明实施例六压力检测装置的等效电路结构示意图;
图7为本发明实施例七压力检测装置的结构示意图;
图8为本发明实施例八压力检测装置的等效电路结构示意图;
图9为本发明实施例九差分电路的结构示意图;
图10为本发明实施例十压力检测方法流程示意图。
具体实施方式
以下将配合图式及实施例来详细说明本申请的实施方式,藉此对本申请如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
本发明下述实施例中的主要思想在于,压力检测装置包括第一检测电容、用于与所述第一检测电容的电容值进行差分处理以消除干扰信号的第二检测电容,第一检测电容包括压力检测电极,第二检测电容包括参考检测电极,所述压力检测电极与所述参考检测电极设置在同一面内,使得所述第一检测电容和第二检测电容上同时耦合有对压力检测形成干扰的所述干扰信号。
本发明下述实施例,以显示设备导致的干扰为例对本发明的技术方案进行解释,但是需要说明的是,还可以有其他干扰源,详细不再赘述。
本发明下述实施例中,由于所述压力检测电极与所述参考检测电极设置在同一面内,使得对压力检测的干扰信号同时耦合在所述第一检测电容和第二检测电容上,在压力检测时所述第一检测电容和第二检测电容的电容值进行差分处理,从而消除了其中包括的干扰信号如显示设备导致的干扰信号,在不需要增加产品的厚度的前提下增加了压力检测的灵敏度。
与此同时,当出现压力检测装置由于通电导致温度变化时,一方面,由于参考检测电极和压力检测电极配置在同一面内,相互之间的距离较近,另一方面由于该温度变化同时反馈在第一检测电容和第二检测电容上,温度变化对第一检测电容和第二检测电容导致的影响相当,当进行差分处理,该影响相互抵消,从而抑制了温度漂移。
比如,Cx表示第一检测电容,Cref表示第二检测电容,假设在温度为T1的时候,Cx-Cref=ΔC;温度变化为T2的时候,Cx和Cref都会有变化,分别为Cx+ΔCx和Cref+ΔCref,再由于Cx和Cref的电极很接近,所以ΔCx≈ΔCref,因此,Cx+ΔCx-(Cref+ΔCref)=Cx+-Cref+(ΔCx-ΔCref)≈ΔC,从而对温度漂移具有很强的抑制能力。
图1为本发明实施例一压力检测装置的平面示意图;如图1所示,参考检测电极101与压力检测电极102位于同一面内,多个压力检测电极形成一压力检测电极阵列,参考检测电极设置在压力检测电极阵列的***。本实施例中,参考检测电极101的数量为1个,而对应有9个压力检测电极102,该参考检测电极101为一矩形形状的环形电极,环绕9个压力检测电极102的压力检测电极阵列。
图2为本发明实施例二压力检测装置的平面示意图;与上述实施例一不同的是,参考检测电极101为一矩形电极,位于9个压力检测电极102形成的压力检测电极阵列的右上角。
图3为本发明实施例三压力检测装置的平面示意图;与上述实施例一不同的是,参考检测电极101为一条状电极,位于9个压力检测电极102形成的压力检测电极阵列的顶端。
上述图1-图3的实施例仅示意性的说明了一个参考检测电极对应多个压 力检测电极,但是,也可以由多个参考检测电极对应多个压力检测电极。
参考检测电极的形状和设置位置不局限于上述图1-图3特定情形,也可以有其他情形。比如,参考检测电极的形状为矩形、圆形、椭圆、梯形、长条形或任意规则或不规则图形。比如考虑到在做差分检测的时候,将参考检测电极对压力检测电极的影响降到最小,所述第一检测电容的电容值大于所述第二检测电容的电容值,比如通过将参考检测电极的面积设计成比压力检测电极的面积略小来实现。
参考检测电极的设置位置可以设置在压力检测电极阵列的***如图1-图3实施例,在其他实施例中,也可以在任一角落位置、任一边沿位置、多个角落位置、多个边沿位置。设置在***时,由于压力检测装置受力形变时,参考检测电极形成的第二检测电容形变相对较小,因此,参考检测电极与压力检测电极的面积可以相等。
另外,参考检测电极也可以设置在压力检测电极阵列的中间,比如穿插设置在多个压力检测电极中,比如,在图1-图3实施例中第一排压力检测电极102和第二排压力检测电极102之间设置一个参考检测电极,第二排压力检测电极102和第三排压力检测电极102之间设置另外一个检测电极,此时,单个参考检测电极的面积优选小于单个压力检测电极的面积,使得参考检测电极对压力检测电极的影响最小。
上述图1-图3中参考检测电极与压力检测电极的平面布置示意图既可以适用于自电容检测,也可以适用于互电容检测。
图4为本发明实施例四压力检测装置的结构示意图;如图4所示,本实施例中,以自电容检测为例,压力检测电极102分别与第一导电面103和第二导电面104耦合,分别形成第一有效检测电容105和第一负载检测电容106,第一检测电容包括第一有效检测电容105和第一负载检测电容106,第一有效检测电容105和第一负载检测电容106串联;参考检测电极101分别与第一导电面103和第二导电面104耦合,形成第二有效检测电容107和第二负载检测电容108,第二检测电容包括第二有效检测电容107和第二负载检测电容108,第二有效检测电容107和第二负载检测电容108串联。
本实施例中,第一导电面103为公共参考电极,公共参考电极为显示设备109与压力检测电极102共用,由于是自电容检测,因此,压力检测电极102需接收激励信号TX。第二导电面104为包括压力检测装置的终端的导电中框。
本实施例中,导电中框104内侧设置有OCA胶111,在OCA胶111上的上表面黏贴有压力检测电极102。设置有所述压力检测装置的终端包括所述显示设备109,所述显示设备109与压力检测电极102之间形成一间隙110,在盖板113受压时,该间隙110的大小随着压力变化而变化,进而引起第一检测电容和第二检测电容的电容值发生变化。
需要说明的是,在其他实施例中,第二导电面104也可以为压力检测装置的终端的导电背壳,详细不再附图说明。
在其他实施例中,所述第一导电面为公共参考电极,而第二导电面可以从所述压力检测装置、终端的导电结构中选择,或者,第二导电面为所述压力检测装置的终端的导电背壳或者导电中框,而所述第一导电面从压力检测装置、终端的导电结构中选择。
图5为本发明实施例五压力检测装置的结构示意图;如图5所示,本实施例中,仍以自电容检测为例说明。
与上述实施例不同的是,第一导电面103为包括压力检测装置的终端的导电中框,第二导电面104为公共参考电极。即本实施例中,压力检测电极102分别与作为第一导电面103的导电中框和作为第二导电面104的公共参考电极耦合,分别形成第一有效检测电容105和第一负载检测电容106,第一检测电容包括第一有效检测电容105和第一负载检测电容106,第一有效检测电容105和第一负载检测电容106串联;参考检测电极101分别与作为第一导电面103的导电中框和作为第二导电面104的公共参考电极耦合,形成第二有效检测电容107和第二负载检测电容108,第二检测电容包括第二有效检测电容107和第二负载检测电容108,第二有效检测电容107和第二负载检测电容108串联。
本实施例中,显示设备109的下表面设置有OCA胶111,在OCA胶111上的下表面黏贴有压力检测电极102,压力检测电极102与导电中框之间形成一 间隙110,在盖板113受压时,该间隙110的大小随着压力变化而变化,引起第一检测电容和第二检测电容的电容值发生变化。
需要说明的是,在其他实施例中,第一导电面103也可以为压力检测装置的终端的导电背壳,详细不再附图说明。
图6为本发明实施例六压力检测装置的等效电路结构示意图;如图6所示,第一检测电容100与差分电路的正向输入端Vin+连接,第二检测电容200与差分电路的反向输入端Vin-连接,该差分电路可以由全差分放大器实现,也可由两路单端放大器实现,详细不再赘述。全差分放大器可以较好地抑制共模噪声。
本实施例中,显示设备109与第一导电面形成第一耦合电容100A,显示设备与第二导电面形成第二耦合电容200A,在压力检测时第一耦合电容100A和第二耦合电容200A的电容值相同,第一耦合电容100A与第一检测电容100串联,第二耦合电容200与第二检测电容200A串联,使得对压力检测的干扰信号同时耦合在第一检测电容100和第二检测电容200上。通过第一耦合电容100A和第二耦合电容200A同时来耦合来自显示设备的干扰电压Vn的干扰,由于第一耦合电容100A和第二耦合电容200A的电容值相同,因此,在后续进行差分处理时该干扰被消除掉。
本实施例中,所述第一检测电容100电连接有第一可调电容100C,所述第二检测电容200电连接有第二可调电容200C,根据对所述第一可调电容100C、所述第二可调电容200C的调节,调整所述第一检测电容100与所述第二检测电容200在压力检测时调整所述第一检测电容和所述第二检测电容的电容值的大小匹配关系,包括调整所述第一检测电容的电容值大于、等于或者小于所述第二检测电容的电容值。在其他实施例中,并不同时配置有所述第一可调电容100C、所述第二可调电容200C,也可以择一进行配置。
具体地,设计上把第一检测电容的电容值设计的稍大,当手指按压造成第一检测电容和第二检测电容的电容值变大的时候,电路会得到一个正的电压输出,压力计算单元根据正电压大小计算出压力的大小,从而实现压力感应。同时,通过第一可调电容100C和/或第二可调电容200C,使得没有压力 时,差分电路的输出为0。比如,单独调节可调电容100C,和/或,考虑到可能存在的装配误差,同时调节第二可调电容200C,从而使得没有压力时,差分电路的输出为0。
本实施例中,可选地,所述第一检测电容100与第一开关电路100B电连接,和/或,第二检测电容200与第二开关电路200B电连接,以在压力检测时通过第一开关电路100B对所述第一检测电容100进行充电或放电处理,通过第二开关电路200B分别对第二检测电容200进行充电或放电处理。
本实施例中,可选地,所述正向端电连接第三开关电路100D,所述反向端电连接第四开关电路200D,所述第一检测电容通过所述第三开关电路100D与所述正向端电连接,所述第二检测电容通过第四开关电路200D与所述反向端电连接。
第一开关电路100B、第二开关电路200B闭合,第三开关电路100D、第四开关电路200D断开,为对所述第一检测电容100、第二检测电容200充电至Vtx;第一开关电路100B、第二开关电路200B断开,第三开关电路100D、第四开关电路200D闭合,所述第一检测电容100、第二检测电容200进入放电状态,此时,由于在设计时使得第一检测电容的电容值大于第二检测电容的电容值,因此,当不存在压力时,通过调节第一可调电容100C和第二可调电容200C,使得差分电路的输出为0;当有压力存在进行压力检测时,第一检测电容的电容值变化大于第二检测电容的电容值变化,从而使得差分电路输出正的电压,压力计算单元会根据正电压大小计算出压力的大小,实现压力感应。
需要说明的是,也可以在设计时将第一检测电容的电容值小于第二检测电容的电容值,以及通过第一可调电容和/或第二可调电容的调整,在压力检测时,根据差分电路输出的负电压计算压力大小,详细不再附图说明。
需要说明的是,在其他实施例中,上述第一开关电路100B、第二开关电路200B、第一可调电容100C、第二可调电容200C并不必须为压力检测装置中包括的结构,也可以独立于压力检测装置,不为压力检测装置所包括。在其他实施例中,并不同时配置有第一开关电路100B、第二开关电路200B、第 一可调电容100C、第二可调电容200C,也可以根据实际要求择一进行配置。
图7为本发明实施例七压力检测装置的结构示意图;如图7所示,本实施例以互电容检测为例进行说明,压力检测装置还包括压力驱动电极112。
本实施例中,压力检测电极102与压力驱动电极112耦合,形成第一有效互电容,第一有效互电容作为第一检测电容100;参考检测电极101与压力驱动电极112耦合,形成第二有效互电容,第二有效互电容作为第二检测电容200。
与上述实施例不同的是,在显示设备109下表面设置一层压力驱动电极112,该层压力驱动电极112和压力检测电极102之间形成间隙110。
需要说明的是,上述压力检测电极和压力驱动电极的设置位置可以对调,对应的,只要保证压力检测电极和参考检测电极设置在同一面内即可,详细不再附图说明。
另外,本实施例中,以两层电极即压力驱动电极和压力检测电极为例进行说明,当将本发明的方案应用于更多层电极时候,只要保证压力检测电极和参考检测电极设置在同一面内即可,详细不再附图说明。
图8为本发明实施例八压力检测装置的等效电路结构示意图;如图8所示,与上述图6所示实施例不同的是,本实施例中针对图7的情形,可调电容100C和200C直接跨接在第一检测电容100和第二检测电容200的两端,第一检测电容100和第二检测电容200分别是互电容而非自电容,第一耦合电容100A、第二耦合电容200A分别耦合到第一检测电容100、第二检测电容200A靠近差分电路输入端的一侧。
图9为本发明实施例九差分电路的结构示意图;如图9所示,其可以包括:TIA电路,用于实现电容差值到电压差值的转换,LPF为低通滤波器电路,用于过滤电压差值信号中的干扰,增强电路的抗干扰能力;INT电路,用于将较小的电压差值信号积分成更大的电压差值信号,提高SNR;ADC电路,用于实现电压差值信号的数字量化,以便压力计算模块基于电压差值数字信号进 行压力计算。
图10为本发明实施例十压力检测方法流程示意图;如图10所示,本实施例中,压力检测电极和参考检测电极设置在同一面内,对压力检测的干扰信号同时耦合在第一检测电容和第二检测电容上,具体地,比如通过显示设备与第一导电面形成第一耦合电容,显示设备与第二导电面形成第二耦合电容,第一耦合电容与第一检测电容串联,第二耦合电容与第二检测电容串联,在压力检测时第一耦合电容和第二耦合电容的电容值相同,以使得对压力检测的干扰信号同时耦合在第一检测电容和第二检测电容上。对于自电容检测来说,本实施例中,第一导电面、第二导电面的设置可以参照上述图4或图5所示的实施例,详细不再赘述。对于互电容检测来说,第一导电面、第二导电面的设置可以参照图7所示的实施例,详细不再赘述。
本实施例中检测方法具体包括如下步骤:
S1001、检测包括压力检测电极的第一检测电容和包括参考检测电极的第二检测电容的电容值,所述压力检测电极和所述参考检测电极设置在同一面内,使得第一检测电容和第二检测电容上同时耦合有对压力检测形成干扰的干扰信号;
本实施例中,对于自电容检测来说,本步骤S1001可以包括:
S1011A、检测压力检测电极分别与第一导电面和第二导电面耦合形成的第一有效检测电容和第一负载检测电容的电容值,第一检测电容包括第一有效检测电容和第一负载检测电容;
本实施例中,所述第一有效检测电容和第一负载检测电容串联。
S1021A、检测参考检测电极分别与第一导电面和第二导电面耦合形成的第二有效检测电容和第二负载检测电容的电容值,第二检测电容包括第二有效检测电容和第二负载检测电容。
本实施例中,第二有效检测电容和第二负载检测电容串联。
对于互电容检测来说,步骤S1001可以包括:
S1011B、检测压力检测电极与压力驱动电极耦合形成的第一有效互电容 的电容值,第一有效互电容作为第一检测电容;
S1021B、检测参考检测电极与压力驱动电极耦合形成的第二有效互电容的电容值,第二有效互电容作为第二检测电容。
S1002、根据对压力检测时第一检测电容和第二检测电容的电容值进行差分处理消除所述干扰信号以确定压力的大小。
本实施例中,步骤S1002具体可以通过所述第一检测电容与差分电路的正向端电连接,所述第二检测电容与差分电路的反向端电连接,以对所述第一检测电容和第二检测电容的电容值进行差分处理。具体地,比如所述第一检测电容通过第三开关电路与所述正向端电连接,所述正向端电连接所述第三开关电路,所述第二检测电容通过第四开关电路与所述反向端电连接,所述反向端电连接所述第四开关电路,以对所述第一检测电容和第二检测电容的电容值进行差分处理。
在差分处理时,假如有N个参考检测电极,M个压力检测电极,N和M均为大于0的整数,则:
(1)N=1,M>1,时,多个压力检测电极对应的第一检测电容逐一与该一个参考检测电极对应的第二检测电容进行差值计算;
(2)N=2,M>1,则N个参考检测电极对应的第二检测电容与M个压力检测电极中N个压力检测电极对应的第一检测电容进行差值处理,至完成M个压力检测电极对应的第一检测电容的差值处理。
(3)N=M时,即每个压力检测电极对应一个参考检测电极,则此时,M个压力检测电极对应的第一检测电容分别与N个压力检测电容进行一对一的电容差值处理。
本实施例中,在压力检测时通过开关电路对所述第一检测电容和/或第二检测电容进行充电或放电处理,有关开关电路对第一检测电容、第二检测电容的充放电处理,详见图6所示实施例,详细不再赘述。
在另外一实施例中,在步骤1001之前还可以包括:通过与所述第一检测电容电连接的第一可调电容,和/或,与所述第二检测电容电连接的第二可调 电容,在压力检测时调整所述第一检测电容的电容值大于、等于或者小于所述第二检测电容的电容值。该电容值的大小匹配关系还可以具体在充放电处理步骤之前。
本实施例中,有关第一检测电容和第二检测电容的电容值大小设置方法详见上述6所示实施例,详细不再赘述。
本实施例中,相关方法的具体实现可参照上述装置的实施例,在此不再赘述。
本发明实施例还提供一种可使用上述任一实施例压力检测装置的触控设备,以及使用该触控设备的电子终端,比如智能手机、平板电脑、智能电视等。
需要说明的是,上述实施例中,同一面内可以是同一平面内,也可以是同一曲面内。
本申请的实施例所提供的装置可通过计算机程序实现。本领域技术人员应该能够理解,上述的单元以及模块划分方式仅是众多划分方式中的一种,如果划分为其他单元或模块或不划分块,只要信息对象的具有上述功能,都应该在本申请的保护范围之内。
本领域的技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或 多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种压力检测装置,其特征在于,包括第一检测电容、用于与所述第一检测电容的电容值进行差分处理以消除干扰信号的第二检测电容,第一检测电容包括压力检测电极,第二检测电容包括参考检测电极,所述压力检测电极与所述参考检测电极设置在同一面内,使得所述第一检测电容和第二检测电容上同时耦合有对压力检测形成干扰的所述干扰信号。
  2. 根据权利要求1所述的装置,其特征在于,所述压力检测电极分别与第一导电面和第二导电面耦合,分别形成第一有效检测电容和第一负载检测电容;所述第一检测电容包括所述第一有效检测电容和第一负载检测电容,所述第一有效检测电容和第一负载检测电容串联;所述参考检测电极分别与所述第一导电面和所述第二导电面耦合,分别形成第二有效检测电容和第二负载检测电容,所述第二有效检测电容和第二负载检测电容串联,所述第二检测电容包括所述第二有效检测电容和第二负载检测电容。
  3. 根据权利要求2所述的装置,其特征在于,所述第一导电面为公共参考电极,和/或,第二导电面为包括所述压力检测装置的终端的导电背壳或者导电中框。
  4. 根据权利要求2所述的装置,其特征在于,所述第一导电面为包括所述压力检测装置的终端的导电背壳或者导电中框,和/或,所述第二导电面为公共参考电极。
  5. 根据权利要求2所述的装置,其特征在于,设置有所述压力检测装置的终端包括显示设备,所述第一导电面与所述显示设备形成第一耦合电容,所述显示设备与所述第二导电面形成第二耦合电容,在压力检测时第一耦合电容和第二耦合电容的电容值相同;所述第一耦合电容与所述第一检测电容串联,第二耦合电容与第二检测电容串联,以使得对压力检测的干扰信号同时耦合在所述第一检测电容和第二检测电容上。
  6. 根据权利要求1所述的装置,其特征在于,还包括:压力驱动电极,所述压力检测电极与所述压力驱动电极耦合,形成第一有效互电容,所述第一有效互电容作为所述第一检测电容;所述参考检测电极与所述压力驱动电极耦合,形成第二有效互电容,所述第二有效互电容作为所述第二检测电容。
  7. 根据权利要求1所述的装置,其特征在于,所述第一检测电容与第一 开关电路电连接,以在压力检测时通过所述第一开关电路对所述第一检测电容进行充电或放电处理;和/或,第二检测电容与第二开关电路电连接,以在压力检测时通过所述第二开关电路对所述第二检测电容进行充电或放电处理。
  8. 根据权利要求1所述的装置,其特征在于,所述第一检测电容电连接有用于在压力检测时调整所述第一检测电容的电容值的第一可调电容,和/或,所述第二检测电容电连接有用于在压力检测时调整所述第二检测电容的电容值的第二可调电容。
  9. 根据权利要求1所述的装置,其特征在于,单个所述参考检测电极的面积小于单个所述压力检测电极的面积,使得在压力检测时所述第一检测电容的电容值大于所述第二检测电容的电容值。
  10. 根据权利要求1所述的装置,其特征在于,多个所述压力检测电极形成一压力检测电极阵列,所述参考检测电极设置在所述压力检测电极阵列的***和/或中间。
  11. 根据权利要求1所述的装置,其特征在于,包括:差分电路,所述差分电路具有正向端和反向端,所述第一检测电容与所述正向端电连接,所述第二检测电容与所述反向端电连接,以对所述第一检测电容和第二检测电容的电容值进行差分处理。
  12. 根据权利要求11所述的装置,其特征在于,所述正向端电连接第三开关电路,所述反向端电连接第四开关电路,所述第一检测电容通过所述第三开关电路与所述正向端电连接,所述第二检测电容通过第四开关电路与所述反向端电连接。
  13. 一种压力检测方法,其特征在于,包括:
    检测包括压力检测电极的第一检测电容和包括参考检测电极的第二检测电容的电容值,所述压力检测电极和所述参考检测电极设置在同一面内,使得第一检测电容和第二检测电容上同时耦合有对压力检测形成干扰的干扰信号;
    根据对压力检测时所述第一检测电容和第二检测电容的电容值进行差分处理消除所述干扰信号以确定所述压力的大小。
  14. 根据权利要求13所述的方法,其特征在于,所述检测包括压力检测电极的第一检测电容和包括参考检测电极的第二检测电容的电容值包括:
    检测压力检测电极分别与第一导电面和第二导电面耦合形成的第一有效检测电容和第一负载检测电容的电容值,所述第一检测电容包括所述第一有效检测电容和第一负载检测电容,所述第一有效检测电容和第一负载检测电容串联;
    检测参考检测电极分别与第一导电面和第二导电面耦合形成的第二有效检测电容和第二负载检测电容的电容值,所述第二检测电容包括所述第二有效检测电容和第二负载检测电容,所述第二有效检测电容和第二负载检测电容串联。
  15. 根据权利要求14所述的方法,其特征在于,所述第一导电面为公共参考电极,和/或,第二导电面为包括所述压力检测装置的终端的导电背壳或者导电中框。
  16. 根据权利要求14所述的方法,其特征在于,所述第一导电面为包括所述压力检测装置的终端的导电背壳或者导电中框,和/或,所述第二导电面为公共参考电极。
  17. 根据权利要求13所述的方法,其特征在于,设置有所述压力检测装置的终端包括显示设备,通过所述显示设备与所述第一导电面形成第一耦合电容,所述显示设备与所述第二导电面形成第二耦合电容,所述第一耦合电容与所述第一检测电容串联,第二耦合电容与第二检测电容串联,在压力检测时第一耦合电容和第二耦合电容的电容值相同,以使得对压力检测的干扰信号同时耦合在所述第一检测电容和第二检测电容上。
  18. 根据权利要求13所述的方法,其特征在于,检测包括压力检测电极的第一检测电容和包括参考检测电极的第二检测电容的电容值包括:
    检测所述压力检测电极与压力驱动电极耦合形成的第一有效互电容的电容值,所述第一有效互电容作为所述第一检测电容;
    检测所述参考检测电极与所述压力驱动电极耦合形成的第二有效互电容的电容值,所述第二有效互电容作为所述第二检测电容。
  19. 根据权利要求13所述的方法,其特征在于,还包括:在压力检测时通过与所述第一检测电容电连接的第一开关电路对所述第一检测电容进行充电或放电处理;和/或,在压力检测时通过与所述第二检测电容电连接的第二开关电路对所述第二检测电容进行充电或放电处理。
  20. 根据权利要求13所述的方法,其特征在于,还包括:通过与所述第一检测电容电连接的第一可调电容,以在压力检测时调整所述第一检测电容的电容值,和/或,通过与所述第二检测电容电连接的第二可调电容,以在压力检测时调整所述第二检测电容的电容值。
  21. 根据权利要求13所述的方法,其特征在于,单个所述参考检测电极的面积小于单个所述压力检测电极的面积,使在压力检测时所述第一检测电容的电容值大于所述第二检测电容的电容值。
  22. 根据权利要求13所述的方法,其特征在于,多个所述压力检测电极形成一压力检测电极阵列,所述参考检测电极设置在所述压力检测电极阵列的***和/或中间。
  23. 根据权利要求13所述的方法,其特征在于,根据对压力检测时所述第一检测电容和第二检测电容的电容值进行差分处理以确定所述压力的大小包括:通过所述第一检测电容与差分电路的正向端电连接,所述第二检测电容与差分电路的反向端电连接,以对所述第一检测电容和第二检测电容的电容值进行差分处理。
  24. 根据权利要求13所述的方法,其特征在于,通过所述第一检测电容与差分电路的正向端电连接,所述第二检测电容与差分电路的反向端电连接,以对所述第一检测电容和第二检测电容的电容值进行差分处理包括:所述第一检测电容通过第三开关电路与所述正向端电连接,所述正向端电连接所述第三开关电路,所述第二检测电容通过第四开关电路与所述反向端电连接,所述反向端电连接所述第四开关电路,以对所述第一检测电容和第二检测电容的电容值进行差分处理。
  25. 一种触控设备,其特征在于,包括上述权利要求1-12任一项所述的压力检测装置。
  26. 一种电子终端,其特征在于,包括上述权利要求25所述的触控设备。
PCT/CN2016/085904 2016-06-15 2016-06-15 压力检测装置、方法、触控设备及电子终端 WO2017214901A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680000600.5A CN107949824B (zh) 2016-06-15 2016-06-15 压力检测装置、方法、触控设备及电子终端
KR1020177023027A KR101963994B1 (ko) 2016-06-15 2016-06-15 압력 검출 장치, 방법, 터치 제어 기기 및 전자 단말기
PCT/CN2016/085904 WO2017214901A1 (zh) 2016-06-15 2016-06-15 压力检测装置、方法、触控设备及电子终端
EP16889663.7A EP3457258B1 (en) 2016-06-15 2016-06-15 Pressure detection apparatus and method, touch control device and electronic terminal
US15/678,110 US10649570B2 (en) 2016-06-15 2017-08-16 Force detection apparatus and method, touch device and electronic terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/085904 WO2017214901A1 (zh) 2016-06-15 2016-06-15 压力检测装置、方法、触控设备及电子终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/678,110 Continuation US10649570B2 (en) 2016-06-15 2017-08-16 Force detection apparatus and method, touch device and electronic terminal

Publications (1)

Publication Number Publication Date
WO2017214901A1 true WO2017214901A1 (zh) 2017-12-21

Family

ID=60659511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085904 WO2017214901A1 (zh) 2016-06-15 2016-06-15 压力检测装置、方法、触控设备及电子终端

Country Status (5)

Country Link
US (1) US10649570B2 (zh)
EP (1) EP3457258B1 (zh)
KR (1) KR101963994B1 (zh)
CN (1) CN107949824B (zh)
WO (1) WO2017214901A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073557B2 (en) * 2015-09-09 2018-09-11 Uneo Incorporated Force sensing structure and force sensing device including the same
CN110557963B (zh) * 2016-11-24 2023-04-07 希迪普公司 可检测适用显示噪声补偿的压力的触摸输入装置
EP3531143B1 (en) * 2017-12-13 2022-02-02 Shenzhen Goodix Technology Co., Ltd. Method for determining control parameters for offset branch, and device and touch detection device thereof
GB2574588A (en) * 2018-06-06 2019-12-18 Cambridge Touch Tech Ltd Pressure sensing apparatus and method
EP3769193B1 (en) * 2018-03-23 2024-06-26 Samsung Electronics Co., Ltd. Device and method for compensating for temperature change in strain gauge pressure sensor and method for implementing strain gauge pressure from touchscreen element
KR102139808B1 (ko) * 2018-03-28 2020-07-31 주식회사 하이딥 복수 채널을 구성하는 압력 센서, 이를 포함하는 터치 입력 장치 및 이를 이용한 압력 검출 방법
CN109328293B (zh) * 2018-09-30 2021-11-23 深圳市汇顶科技股份有限公司 电容检测模组、方法及电子设备
US11367390B2 (en) 2018-12-24 2022-06-21 Novatek Microelectronics Corp. Display apparatus and method for noise reduction
EP3920547A4 (en) 2019-02-01 2022-02-16 Shenzhen Goodix Technology Co., Ltd. WEAR CONDITION DETECTOR AND PROCESS AND EARPHONES
US10837803B2 (en) * 2019-04-12 2020-11-17 Kla Corporation Inspection system with grounded capacitive sample proximity sensor
CN112905034B (zh) * 2019-12-03 2023-09-19 敦泰电子(深圳)有限公司 触控侦测方法、装置及电子设备
WO2021118126A1 (ko) * 2019-12-11 2021-06-17 주식회사 하이딥 터치 입력 장치
WO2022016359A1 (zh) * 2020-07-21 2022-01-27 深圳市汇顶科技股份有限公司 电容检测电路和触控芯片
WO2022155874A1 (zh) * 2021-01-22 2022-07-28 深圳市汇顶科技股份有限公司 检测电路、芯片及相关电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142206A (zh) * 2013-05-07 2014-11-12 上海丽恒光微电子科技有限公司 一种mems电容式压力传感器及其制作方法
CN105222931A (zh) * 2014-06-25 2016-01-06 香港科技大学 Mems电容式压力传感器及其制造方法
CN105302398A (zh) * 2015-02-11 2016-02-03 希迪普公司 触摸输入装置及电极片
CN205809842U (zh) * 2016-06-15 2016-12-14 深圳市汇顶科技股份有限公司 压力检测装置、触控设备及电子终端

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135663A1 (en) * 2006-05-19 2007-11-29 N-Trig Ltd. Variable capacitor array
US9927924B2 (en) * 2008-09-26 2018-03-27 Apple Inc. Differential sensing for a touch panel
JP2010286981A (ja) * 2009-06-10 2010-12-24 Sanyo Electric Co Ltd 静電容量型タッチセンサ用の信号処理回路
JP5427648B2 (ja) * 2010-03-02 2014-02-26 株式会社ジャパンディスプレイ 座標入力装置、およびそれを備えた表示装置
JP5625669B2 (ja) * 2010-09-17 2014-11-19 ソニー株式会社 センサ装置および情報処理装置
US8860440B2 (en) * 2011-09-13 2014-10-14 Robert Bosch Gmbh Scheme to achieve robustness to electromagnetic interference in inertial sensors
JP2015111317A (ja) * 2012-02-27 2015-06-18 国立大学法人九州大学 タッチセンサ付携帯型装置及び表示装置
US9348470B2 (en) * 2012-03-30 2016-05-24 Sharp Kabushiki Kaisha Projected capacitance touch panel with reference and guard electrode
KR101681305B1 (ko) 2014-08-01 2016-12-02 주식회사 하이딥 터치 입력 장치
US10345947B2 (en) * 2015-05-27 2019-07-09 Melfas Inc. Apparatus and method for detecting hovering object, switching matrix, apparatus for determining compensation capacitance, method of compensating for force sensing capacitance, and apparatus for detecting force input
KR101633923B1 (ko) * 2015-06-19 2016-06-27 주식회사 하이딥 스마트폰
CN104951144A (zh) * 2015-07-28 2015-09-30 芜湖科创生产力促进中心有限责任公司 基于震动吸收的三维多点式触摸屏及其控制方法
CN205121509U (zh) * 2015-08-26 2016-03-30 宸鸿科技(厦门)有限公司 一种三维触控装置
CN105183257B (zh) * 2015-09-17 2017-02-22 京东方科技集团股份有限公司 触摸屏及其压力触控检测方法
CN105426005B (zh) * 2015-09-30 2018-09-28 宸鸿科技(厦门)有限公司 三维触控面板
US10114515B2 (en) * 2015-10-26 2018-10-30 Semiconductor Components Industries, Llc Methods and apparatus for a capacitive sensor
CN105446545A (zh) * 2016-01-19 2016-03-30 京东方科技集团股份有限公司 一种触摸显示面板及其驱动方法、显示装置
WO2017190052A1 (en) * 2016-04-29 2017-11-02 Synaptics Incorporated Differential force and touch sensing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142206A (zh) * 2013-05-07 2014-11-12 上海丽恒光微电子科技有限公司 一种mems电容式压力传感器及其制作方法
CN105222931A (zh) * 2014-06-25 2016-01-06 香港科技大学 Mems电容式压力传感器及其制造方法
CN105302398A (zh) * 2015-02-11 2016-02-03 希迪普公司 触摸输入装置及电极片
CN205809842U (zh) * 2016-06-15 2016-12-14 深圳市汇顶科技股份有限公司 压力检测装置、触控设备及电子终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3457258A4 *

Also Published As

Publication number Publication date
US20170364191A1 (en) 2017-12-21
CN107949824B (zh) 2021-07-20
EP3457258B1 (en) 2021-07-28
EP3457258A4 (en) 2020-04-08
EP3457258A1 (en) 2019-03-20
KR20180009735A (ko) 2018-01-29
US10649570B2 (en) 2020-05-12
KR101963994B1 (ko) 2019-07-23
CN107949824A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
WO2017214901A1 (zh) 压力检测装置、方法、触控设备及电子终端
JP6032371B2 (ja) 検出センサ及び入力装置
US8125462B2 (en) Projecting capacitive touch sensing device, display panel, and image display system
CN205809842U (zh) 压力检测装置、触控设备及电子终端
CN106155443B (zh) 多步递增切换方案
US10234973B2 (en) Touch panel, display device and driving method thereof
WO2018076343A1 (zh) 电容检测装置、方法和压力检测***
CN109643201B (zh) 具有顶部屏蔽和/或底部屏蔽的触摸传感器面板
WO2016165251A1 (zh) 触摸屏及触控装置
TWI630537B (zh) 具有壓力感測的觸控顯示系統
US20110100727A1 (en) Touch Sensitive Device with Dielectric Layer
WO2016180148A1 (zh) 指纹传感器及显示装置
CN110244882B (zh) 处理***、处理方法、与处理***相关的方法及输入设备
WO2017071602A1 (zh) 触控模组、其驱动方法及显示装置
US20170293377A1 (en) Handheld electronic device
US20160190987A1 (en) Switched-capacitor harmonic-reject mixer
US11519801B1 (en) Sensor device for transcapacitive sensing with shielding
KR101134354B1 (ko) 윈드밀 형태의 전극 패턴을 형성하여 커패시턴스 감도 및 선형성을 향상시키는 터치스크린 패널
CN106502479B (zh) 触摸显示装置
US10289241B2 (en) Sensing apparatus for touch and force sensing
US11816919B2 (en) Sensor device for transcapacitive sensing with shielding
US20220261104A1 (en) Distributed analog display noise suppression circuit
US11106317B1 (en) Common mode noise suppression with restoration of common mode signal
US20180292929A1 (en) Touch display and electronic device
CN117008747A (zh) 分布式模拟显示噪声抑制电路

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016889663

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177023027

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE