WO2019062278A1 - 像素排列结构、像素结构及其制作方法、阵列基板和显示面板 - Google Patents

像素排列结构、像素结构及其制作方法、阵列基板和显示面板 Download PDF

Info

Publication number
WO2019062278A1
WO2019062278A1 PCT/CN2018/095413 CN2018095413W WO2019062278A1 WO 2019062278 A1 WO2019062278 A1 WO 2019062278A1 CN 2018095413 W CN2018095413 W CN 2018095413W WO 2019062278 A1 WO2019062278 A1 WO 2019062278A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
row
sub
column
emitting layer
Prior art date
Application number
PCT/CN2018/095413
Other languages
English (en)
French (fr)
Inventor
赵德江
袁广才
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/329,196 priority Critical patent/US10777616B2/en
Publication of WO2019062278A1 publication Critical patent/WO2019062278A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited

Definitions

  • the present disclosure relates to the field of display technology. More specifically, it relates to a pixel arrangement structure, a pixel structure, a fabrication method thereof, an array substrate, and a display panel.
  • a pixel unit of a display device generally includes three sub-pixels that emit light independently, for example, a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel, respectively, by controlling three sub-pixels in the pixel unit respectively.
  • the size of the three color components of RGB can control the color and brightness displayed by the pixel unit.
  • the pixel structure in which the RGB sub-pixels are alternately arranged is called an RGB arrangement.
  • the pixel arrangement has a pentile arrangement that cuts the number of red and blue sub-pixels by half.
  • each sub-pixel size is limited by the size of the opening of the mask.
  • each sub-pixel size is limited by the aperture of the showerhead.
  • the present disclosure provides a pixel arrangement structure, including:
  • first pixel units and second pixel units alternately arranged in a row and column direction;
  • the first pixel unit includes nine regions forming an array of three rows and three columns, wherein the three rows are the first row, the second row, the third row, and the three columns are the first column, the second column, and a third column, wherein in the first pixel unit, there is a first reserved area in a region of the first row of the first column, and a first sub-pixel in a region of the second row of the first column, a second sub-pixel in a region of the third row of the first column, a first sub-pixel in a region of the first row of the second column, and a second region in a region of the first row of the third column Subpixel, and
  • third sub-pixels are respectively in a region of the second row, a second row, a second column, a third row, a third row, a third row, and a third row In the district, or
  • Two adjacent third sub-pixels and two adjacent fourth sub-pixels are respectively in a region of the second row of the second row, a region of the third row of the second row, and a second column of the third row The zone of the row and the zone of the third row of the third column;
  • the second pixel unit includes nine regions forming an array of three rows and three columns, wherein the three rows are the first row, the second row, the third row, and the three columns are the first column, the second column, and a third column, and each row and column of the second pixel unit is aligned with a respective row and column of an adjacent first pixel unit, wherein in the second pixel unit, in the first column a second reserved area in the area of the first row, a second sub-pixel in the area of the second row of the first column, and a first sub-pixel in the area of the third row of the first column, a second sub-pixel in a region of the first row of the second column, a first sub-pixel in a region of the first row of the third column, and
  • third sub-pixels are respectively in a region of the second row, a second row, a second column, a third row, a third row, a third row, and a third row In the district, or
  • Two adjacent third sub-pixels and two adjacent fourth sub-pixels are respectively in a region of the second row of the second row, a region of the third row of the second row, and a second column of the third row The area of the row and the area of the third row of the third column.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel are respectively a red sub-pixel, a green sub-pixel, and a blue sub-pixel, and when the pixel arrangement structure includes a fourth sub-pixel In the case of a pixel, the fourth sub-pixel is a white sub-pixel.
  • the first sub-pixel, the second sub-pixel, the third sub-pixel, and the first and second reserved regions are all rectangular in shape, and when the pixel arrangement structure includes a fourth In the case of a sub-pixel, the fourth sub-pixel is a rectangle.
  • At least one of the four first sub-pixels adjacent to the first reserved area extends to the area where the first reserved area is located, and/or
  • At least one of the four second sub-pixels adjacent to the second reserved area extends toward the area where the second reserved area is located.
  • the sub-pixels in the area of the first row, the second row, the second column, the second row, and the third row of the first pixel unit constitute one pixel and the The sub-pixels in the regions of the second column first row, the third column first row, the second column third row, and the third column second row of the first pixel unit constitute another pixel; or the first pixel unit
  • the sub-pixels in the area of the second row of the first column, the third row of the first column, the third row of the second column, and the second row of the third column constitute one pixel and the second column of the first pixel unit is first
  • the sub-pixels in the region of the row, the first row of the third column, the second row of the second column, and the third row of the third column constitute another pixel;
  • Sub-pixels in a region of the first column second row, the first column third row, the second column second row, and the third column third row of the second pixel unit constitute one pixel and the second pixel unit a sub-pixel in a region of the second row, the third row, the third row, and the third column of the second column constitutes another pixel; or the first column of the second pixel unit
  • the sub-pixels in the area of the second row, the third row of the first column, the third row of the second column, and the second row of the third column constitute one pixel and the second row of the second pixel unit is the first row and the third row
  • the sub-pixels in the area of the first row, the second row, and the third row of the column constitute another pixel.
  • the present disclosure provides a pixel structure, including
  • a pixel defining layer defines a first color light emitting layer, a second color light emitting layer, and a third color light emitting layer, such that the first color light emitting layer, the second color light emitting layer, and the third color light emitting layer Forming a first sub-pixel, a second sub-pixel, and a third sub-pixel in the pixel arrangement structure according to claim 1, respectively
  • the pixel defining layer defines further defining a fourth color light emitting layer such that the fourth color light emitting layer forms the fourth sub-pixel.
  • the pixel structure further includes
  • the first color light emitting layer, the second color light emitting layer, and the third color light emitting layer are respectively a red light emitting layer, a green light emitting layer, and a blue light emitting layer.
  • the fourth color light-emitting layer is a white light-emitting layer.
  • the shapes of the first color illuminating layer, the second color illuminating layer, the third color illuminating layer, and the first and second reserved regions are all rectangular.
  • the shape of the fourth color light-emitting layer is a rectangle.
  • the present disclosure also provides a method for fabricating a pixel structure, including:
  • a fourth color light-emitting layer is further formed within a range defined by the pixel defining layer such that the fourth color light-emitting layer forms the fourth sub-pixel.
  • the manufacturing method comprises:
  • the first color light-emitting layer is formed by an evaporation method using a first mask, wherein the vapor deposition opening of the first mask is configured to form four first sub-pixels surrounding the first retention region.
  • the manufacturing method further includes:
  • the manufacturing method comprises:
  • the third color light emitting layer is formed by evaporation using a second mask, wherein the vapor deposition opening of the second mask is configured to form at least two adjacent third sub-pixels.
  • the manufacturing method comprises:
  • the first color light-emitting layer and the second color light-emitting layer are respectively formed by inkjet printing in a region including the first sub-pixel and the second sub-pixel surrounded by the bank layer.
  • the manufacturing method further includes:
  • the third color light-emitting layer is formed by an inkjet printing method in a region including the third sub-pixel surrounded by the bank layer.
  • the present disclosure provides an array substrate comprising a pixel structure as described above.
  • the present disclosure provides a display panel comprising the array substrate as described above.
  • FIG. 1 shows a schematic diagram of a pixel structure of an embodiment of the present disclosure.
  • FIG. 2 shows a schematic diagram of a first pixel unit in a pixel structure of an embodiment of the present disclosure.
  • FIG. 3 shows a schematic diagram of a second pixel unit in a pixel structure of an embodiment of the present disclosure.
  • FIGS. 4 and 5 illustrate schematic views of a mask used in an evaporation process in accordance with an embodiment of the present disclosure.
  • FIGS. 6(a)-(b) are schematic diagrams showing pixel defining layers around a first or second pixel-free region and adjacent first or second pixels in an embodiment of the present disclosure.
  • FIG. 7(a)-(c) are schematic views showing printing of a red light-emitting layer and a green light-emitting layer in an inkjet printing method according to an embodiment of the present disclosure.
  • FIGS. 8(a)-(c) are diagrams showing the printing of a blue light-emitting layer in an inkjet printing method according to an embodiment of the present disclosure.
  • FIG. 9 illustrates pixels included in a first pixel unit in an embodiment of the present disclosure.
  • FIG. 10 illustrates pixels included in a second pixel unit in an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram showing a first pixel unit of the RGWB mode included in the embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a pixel arrangement structure including: a plurality of first pixel units and second pixel units alternately arranged in a row and column direction.
  • the pixel arrangement structure shown in FIG. 1 is formed by alternately arranging the first pixel unit of FIG. 2 and the second pixel unit of FIG. 3 in the row and column directions.
  • the first pixel unit includes nine regions forming an array of three rows and three columns, wherein the three rows are the first row, the second row, the third row, and the three columns are the first column, the second column, and a third column, wherein in the first pixel unit, there is a first reserved area in a region of the first row of the first column, and a first sub-pixel in a region of the second row of the first column, a second sub-pixel in a region of the third row of the first column, a first sub-pixel in a region of the first row of the second column, and a second region in a region of the first row of the third column Subpixel, and
  • third sub-pixels are respectively in a region of the second row, a second row, a second column, a third row, a third row, a third row, and a third row In the district, or
  • Two adjacent third sub-pixels and two adjacent fourth sub-pixels are respectively in a region of the second row of the second row, a region of the third row of the second row, and a second column of the third row The area of the row and the area of the third row of the third column.
  • Each of the three rows and three columns of arrays described herein is rectangular.
  • the nine zones may be the same square, but the disclosure is not limited thereto.
  • the order of arrangement of the rows and columns of the present disclosure may be in any direction.
  • the first row, the second row, and the third row may be arranged in order from top to bottom, but may also be arranged in order from bottom to top.
  • the first column, the second column, and the third column may be arranged from left to right, but may also be arranged from right to left.
  • the upper left is taken as an example for description.
  • the present disclosure is not limited thereto.
  • sub-pixels and reserved areas there are sub-pixels and reserved areas in the specified area.
  • the sub-pixels and reserved areas in the area may be rectangular or other shapes.
  • the array of sub-pixels and the area in which the reserved area is located always conforms to the form of three rows and three columns.
  • Each row and column of the second pixel unit is aligned with a respective row and column of the adjacent first pixel unit.
  • the grids of the arrays in the two pixel units are the same. This ensures an even distribution of sub-pixels.
  • the second row of the first pixel unit or the second pixel unit, the second row of the third row, the third row of the third row, and the third row of the third row is in the area.
  • the pixel array of the present disclosure emits light in a pattern of three sub-pixels.
  • the second row of the first pixel unit or the second pixel unit, the second row of the third row, the third row of the second row, and the third row of the third row There are two third pixels and two fourth pixels in the region, wherein two third pixels are adjacent and two fourth pixels are adjacent.
  • the pixel array of the present disclosure emits light in a pattern of four seed pixels. From the viewpoint of uniformity of illumination of the composed pixels, the third pixel and the fourth pixel do not adopt a diagonal pattern distribution.
  • the present disclosure will be described by taking the case where the first sub-pixel is red, the second sub-pixel is green, and the third sub-pixel is blue.
  • the invention is not limited thereto. Blue subpixels have poorer illumination than red and green subpixels, so their area can be larger.
  • the pixel arrangement structure includes: a plurality of first pixel units and second pixel units alternately arranged in a row and column direction;
  • the first pixel unit includes: a first reserved area, a first sub-pixel and a second sub-pixel arranged in a first column in the first pixel unit; wherein the second column is sequentially arranged in the first pixel unit a first sub-pixel and two third sub-pixels; a second sub-pixel and two third sub-pixels arranged in a third column in the first pixel unit;
  • the second pixel unit includes: a second reserved area, a second sub-pixel, and a first sub-pixel arranged in a first column in the second pixel unit; wherein the second column is sequentially arranged in the second pixel unit a second sub-pixel and two third sub-pixels; a first sub-pixel and two third sub-pixels arranged in a third column in the second pixel unit;
  • first regular pattern Forming, by the first reserved area and the first sub-pixel adjacent to the first reserved area and the first sub-pixel adjacent to the first reserved area in the first pixel unit, a first regular pattern, such that the first reserved area a second sub-pixel adjacent to the second reserved area and a second sub-pixel adjacent to the second reserved area in the second reserved area and the second pixel unit form a first regular pattern, such that the first pixel unit And forming a second regular pattern with the third sub-pixel in the second pixel unit.
  • the first pixel unit includes: a reserved area in the first column in the first pixel unit, a red sub-pixel and a green sub-pixel; in the first pixel unit The second column is sequentially arranged with one red sub-pixel and two blue sub-pixels; in the first pixel unit, the third column is sequentially arranged with one green sub-pixel and two blue sub-pixels.
  • the second pixel unit includes: a reserved area in the first column in the second pixel unit, a green sub-pixel and a red sub-pixel; in the second pixel unit The second column is sequentially arranged with one green sub-pixel and two blue sub-pixels; in the second pixel unit, the third column is sequentially arranged with one red sub-pixel and two blue sub-pixels.
  • one pixel unit includes two red, green, blue, and white sub-pixels. Two of the blue sub-pixels are adjacent to each other and two white sub-pixels are adjacent to each other.
  • the reserved area referred to herein refers to an area that does not actually emit light in the actual display, that is, the reserved area in the first pixel unit does not emit red light, and the reserved area in the second pixel unit does not exit. Green light.
  • the reserved area is an area that does not contain the sub-pixels that emit light. This is further illustrated in the fabrication method described later in this article.
  • the red sub-pixel in the first pixel unit and the red sub-pixel in the second pixel unit adjacent to the first pixel unit form a regular pattern together with the reserved area, which is a cross in this embodiment.
  • the green sub-pixel in the second pixel unit and the green sub-pixel in the first pixel unit adjacent to the second pixel unit form a regular pattern together with the reserved area, which is also a cross in the embodiment, the first pixel unit And the blue sub-pixels in the second pixel unit form a regular pattern, which is a rectangle in this embodiment.
  • adjacent pixels are combined in the same color. That is, adjacent sub-pixels of the same color are combined into a regular structure that is larger than a single RGB sub-pixel size. For example, adjacent red sub-pixels are combined into a cross shape, adjacent green sub-pixels are combined into a cross shape, and adjacent blue sub-pixels are combined into a rectangular shape. This is obviously larger than a single RGB sub-pixel size.
  • the process difficulty can be greatly reduced, and a higher resolution can be obtained.
  • the display chrominance uniformity of the pixel structure is better when displayed.
  • the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel are respectively a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel. Where white subpixels are optional.
  • the pixel structure of this embodiment is suitable for high resolution products, especially products larger than 600 ppi.
  • the shapes of the red sub-pixel, the green sub-pixel, and the blue sub-pixel are all easily fabricated rectangles. In terms of craftsmanship, it is simple and easy. It will be apparent to those skilled in the art that, under the teachings of the present disclosure, the sub-pixels and the reserved areas may be other shapes as long as they are within the defined area of the array of three rows and three columns. Such an array enables the combination of adjacent sub-pixels of the same color, which are larger in size than a single RGB sub-pixel.
  • the red and green sub-pixels may form a regular cross shape
  • the blue sub-pixels may form a regular rectangle
  • the sub-pixels may also form regular patterns of other shapes as long as the combination ratio of adjacent sub-pixels of the same color can be realized.
  • a single RGB sub-pixel size is larger.
  • the following embodiments are still exemplified in three colors of RGB.
  • At least one of the four red sub-pixels adjacent to the reserved area in the first pixel unit extends to the area where the reserved area is located.
  • At least one of the four green sub-pixels adjacent to the reserved area in the second pixel unit extends to the area where the reserved area is located. This adjusts the size of the red or green sub-pixels adjacent to the reserved area.
  • the pixel array of the present disclosure can be appropriately divided into pixels. For normal display, it is necessary to ensure that three sub-pixels (or four seed pixels) are included in each pixel, and the sub-pixels in each pixel are substantially continuously arranged.
  • sub-pixels in a region of the first column second row, the first column third row, the second column second row, and the third column third row of the first pixel unit constitute One pixel (see the left diagram of FIG. 9(a)) and in the area of the second row first row, the third column first row, the second column third row, and the third column second row of the first pixel unit
  • the sub-pixel constitutes another pixel (see the right diagram of FIG. 9(a)); or the first row, the second row, the first column, the third row, the second column, the third row, and the third column of the first pixel unit
  • the sub-pixels in the area of the second row constitute one pixel (see the left diagram of FIG. 9(b) and the second row, the first row, the second row, the second row, the second row of the first pixel unit
  • the sub-pixels in the area of the third row of the third column constitute another pixel (see FIG. 9(b) right diagram);
  • the sub-pixels in the area of the first column second row, the first column third row, the second column second row, and the third column third row of the second pixel unit constitute one pixel (see FIG. 10(a)
  • the left pixel) and the sub-pixels in the region of the second column first row, the third column first row, the second column third row, and the third column second row of the second pixel unit constitute another pixel (see Figure 10 (a) right picture); or sub-pixels in the area of the first column second row, the first column third row, the second column third row, and the third column second row of the second pixel unit Forming one pixel (see the left diagram of FIG. 10(b)) and the second row of the second pixel unit, the first row of the third row, the second row of the second row, and the third row of the third row
  • the sub-pixels in the frame constitute another pixel (see Figure 10(b) right).
  • FIG. 11 shows a pixel unit in RGWB mode comprising two pixels, each pixel comprising one each of red, green, blue and white sub-pixels.
  • Another embodiment of the present disclosure provides a method for fabricating a pixel structure, including:
  • a fourth color light-emitting layer is further formed within a range defined by the pixel defining layer such that the fourth color light-emitting layer forms the fourth sub-pixel.
  • One embodiment of the fabrication method of the present disclosure includes: forming an anode layer and a pixel defining layer on a substrate;
  • first color light emitting layer Forming a first color light emitting layer, a second color light emitting layer, and a third color light emitting layer in a region defined by the pixel defining layer, wherein adjacent four first color light emitting layers and surrounding by the adjacent first color light emitting layer
  • the first reserved area forms a first regular pattern
  • the adjacent four second color light emitting layers and the second reserved area surrounded by the adjacent second color light emitting layer form a first regular pattern
  • the luminescent layer forms a second regular pattern.
  • the substrate is provided, and the substrate may be a light transmissive glass or an opaque material depending on whether the display device is a top emission or a bottom emission or a double side emission.
  • a driving transistor, an anode layer, a pixel defining layer, and the like are formed on the substrate. These are the general process steps of the display device and will not be described here.
  • a red light emitting layer, a green light emitting layer, and a blue light emitting layer in a region defined by the pixel defining layer, wherein the adjacent four red light emitting layers and the first reserved region surrounded by the adjacent red light emitting layer form a first regular pattern
  • the adjacent four green light emitting layers and the second reserved area surrounded by the adjacent green light emitting layers form a first regular pattern
  • the adjacent four blue color light emitting layers form a second regular pattern.
  • adjacent pixels are combined in the same color, that is, adjacent sub-pixels of the same color are combined into a regular structure larger than a single RGB sub-pixel size, the process difficulty can be greatly reduced.
  • the method further includes forming a white light-emitting layer.
  • the light emitting layer may be an organic light emitting material layer or a quantum dot light emitting layer or the like.
  • the above-described manufacturing method is performed by an evaporation method.
  • the fabrication method may include forming the first color luminescent layer by evaporation using a first reticle, wherein the evaporation opening of the first reticle is configured to form a surrounding One of the four first sub-pixels of the reserved area.
  • the first mask may be moved, and the second color light-emitting layer may be formed by an evaporation method to form a second retention region through the vapor deposition opening.
  • the second color light-emitting layer may be formed by an evaporation method to form a second retention region through the vapor deposition opening.
  • the third color light emitting layer may be formed by an evaporation method using a second mask, wherein the vapor deposition opening of the second mask is configured to form at least two adjacent third sub-pixels.
  • the evaporation openings of the second mask are configured to form four adjacent third sub-pixels.
  • the fourth sub-pixel may be formed using the second mask. Otherwise, a fourth sub-pixel can be formed using a separate third mask.
  • the first vapor deposition opening of the first mask is aligned with the first sub-pixel located in the first regular pattern, and the first light-emitting layer is evaporated;
  • the second vapor deposition opening of the second mask is aligned with the third sub-pixel located in the second regular pattern to evaporate the third light-emitting layer.
  • FIGS. 4 and 5 respectively show schematic views of a mask which forms a cross-shaped pattern and a rectangular pattern.
  • the figure is shown as a male panel, i.e., the point fill area is an open light transmissive area.
  • the cross-shaped opening is aligned with the red sub-pixel located in the cross, and the red light-emitting layer is evaporated. It can be seen that the opening is a cross opening, and the opening is aligned with respect to the opening of the single sub-pixel. The difficulty is much lower and the difficulty of production is much lower.
  • the reserved region is not provided with the corresponding driving transistor, so the reserved region is not The light is emitted.
  • the regular shape of the cross formed by the adjacent red sub-pixels in the pixel structure and the regular shape of the adjacent green sub-pixels forming the cross are the same, so the movement is as shown in FIG. 4 .
  • the mask is arranged such that the cross-shaped opening is aligned with the green sub-pixels located in the cross shape, and the green light-emitting layer is evaporated, so that a red and green light-emitting layer can be evaporated by using one mask, respectively, saving a mask. , reducing costs.
  • the blue light-emitting layer is vapor-deposited by aligning the rectangular opening of the mask shown in FIG. 5 with the blue sub-pixels located inside the rectangle. It can be seen that, due to the rectangular opening, the opening is much less difficult and the manufacturing difficulty is much lower than the opening of the single sub-pixel.
  • the opening of the mask can be made larger than the corresponding mask opening of the single sub-pixel, thereby reducing the process difficulty of manufacturing the display device array substrate by the evaporation process.
  • inkjet printing is used to accomplish the above fabrication method.
  • the fabricating method may include, after forming the pixel defining layer, on a pixel defining layer surrounding four first sub-pixels adjacent to the first reserved region and adjacent to the second reserved region Forming a bank layer on the pixel defining layer of the four second sub-pixels;
  • the first color light-emitting layer and the second color light-emitting layer are respectively formed by inkjet printing in a region including the first sub-pixel and the second sub-pixel surrounded by the bank layer.
  • the dam layer naturally also surrounds the area containing the third sub-pixel. Therefore, the third color light-emitting layer can be further formed by an inkjet printing method in a region including the third sub-pixel surrounded by the bank layer.
  • a bank layer is formed on the pixel defining layer, including a first bank layer surrounding the first regular pattern and a second bank layer surrounding the second regular pattern;
  • a first color light-emitting layer and a second color light-emitting layer are respectively printed in a range surrounded by the first bank layer, and a third color light-emitting layer is printed in a range surrounded by the second bank layer.
  • an additional dam layer may be disposed between the regions of the second row, the second row, the third row, the third column, the third column, and the third row of the second column for inkjet printing.
  • a three-color luminescent layer and a fourth color luminescent layer may be disposed between the regions of the second row, the second row, the third row, the third column, the third column, and the third row of the second column for inkjet printing.
  • An anode layer 200 and a pixel defining layer 300 are formed on the substrate 100, and a bank 400 is formed on the peripheral pixel defining layer corresponding to the opening region 350 forming the light emitting layer region, and the pixel defining layer surrounded by the adjacent four emitting layers It is referred to as a reserved area 500.
  • the red light-emitting layer and the green light-emitting layer are printed in the range surrounded by the bank layer 400, respectively.
  • the ink droplets are in the middle position (retained area), and then spread to the periphery to fill the entire four sub-pixels (as shown in Fig. 7(b)), but due to the barrier of the dam layer 400, It does not overflow and remains in the range surrounded by the dam layer 400. Then, separation is performed by the remaining region 500 at the time of drying, and finally the light-emitting layer 600 is formed in the opening region 350 shown in Fig. 6, as shown in Fig. 7(c).
  • the reserved area at the cross of the cross corresponds to the pixel defining layer.
  • the red light emitting layer and/or the green light emitting layer may be left on the pixel defining layer by the above process, the pixel defining layer is opaque, so that the reserved area is not The light is emitted.
  • a blue light-emitting layer is printed in a range surrounded by the bank layer.
  • the ink droplets are in the middle position, and then spread to the periphery to fill the entire four sub-pixels (as shown in Fig. 8(b)), but they do not overflow due to the barrier of the dam. It remains in the range surrounded by the dam layer.
  • the light-emitting layer 600 is finally formed by drying as shown in Fig. 8(c).
  • the dam layer may also be attached accordingly.
  • the aperture of the nozzle can be made larger than the corresponding aperture of the single sub-pixel, thereby reducing the process difficulty of manufacturing the display device array substrate by the inkjet printing process.
  • Another embodiment of the present disclosure provides a pixel structure, a pixel defining layer, wherein the pixel defining layer defines a first color light emitting layer, a second color light emitting layer, and a third color light emitting layer to cause the first color to emit light
  • the layer, the second color illuminating layer, and the third color illuminating layer respectively form the first sub-pixel, the second sub-pixel, and the third sub-pixel in the pixel arrangement structure according to claim 1
  • the pixel defining layer defines further defining a fourth color light emitting layer such that the fourth color light emitting layer forms the fourth sub-pixel.
  • the pixel structure comprises: a substrate;
  • An anode layer and a pixel defining layer disposed in a direction away from the substrate;
  • first color light emitting layer a first color light emitting layer, a second color light emitting layer, and a third color light emitting layer defined by the pixel defining layer, wherein the adjacent four first color light emitting layers and the first surrounded by the adjacent first color light emitting layer
  • the reserved area forms a first regular pattern
  • the adjacent four second color light emitting layers and the second reserved area surrounded by the adjacent second color light emitting layer form a first regular pattern
  • the adjacent four third color light emitting layers A second rule graphic is formed.
  • a red light emitting layer, a green light emitting layer, and a blue light emitting layer defined by the pixel defining layer 300 wherein adjacent four red light emitting layers and a reserved area 500 surrounded by the adjacent red light emitting layer form a regular pattern of a cross shape, Adjacent four green light-emitting layers and a reserved area surrounded by the adjacent green light-emitting layers form a regular pattern of a cross shape, and adjacent four blue light-emitting layers form a rectangular regular pattern.
  • the pixel structure formed corresponding to the inkjet printing method further includes a bank layer 400 formed on a pixel defining layer surrounding a cross-shaped structure corresponding to the red light emitting layer, and a pixel in a cross-shaped structure surrounding the corresponding green light emitting layer Formed on the defined layer.
  • adjacent four red light-emitting layers and a reserved area surrounded by the adjacent red light-emitting layers are formed into a cross-shaped regular structure, adjacent to the four green light-emitting layers, and from the adjacent green light-emitting layer
  • the surrounding reserved area is formed into a cross-shaped regular structure, and adjacent four blue light-emitting layers are formed into a rectangular regular structure.
  • the process is easier to implement by designing the shape of the light-emitting layer as a rectangle and thereby forming a regular pattern of a cross shape and a rectangular shape.
  • the red, green, and blue sub-pixels referred to in this embodiment are colors of light emitted by the light-emitting layer of the display device when excitedly emitted.
  • the color of the light emitted by the luminescent layer is red, corresponding to the red sub-pixel.
  • the color of the light emitted by the luminescent layer is green, corresponding to the green sub-pixel.
  • the color of the light emitted by the luminescent layer is blue, corresponding to the blue sub-pixel.
  • adjacent pixels are combined in the same color, that is, adjacent sub-pixels of the same color are combined to be larger than a single RGB sub-pixel.
  • the regular structure can greatly reduce the process difficulty and obtain higher resolution regardless of whether the array substrate is fabricated by evaporation or inkjet printing.
  • the display chromaticity uniformity of the pixel structure is better when displayed.
  • the pixel structure corresponds to the display area, and the non-display area surrounding the display area further includes various driving circuits, which are all prior art in the art, and are not described herein again.
  • the display panel may be an organic light emitting display panel or may be, for example, a quantum dot display panel.
  • the regular structure can greatly reduce the process difficulty and obtain higher resolution regardless of whether the display panel is fabricated by evaporation or inkjet printing.
  • the display chromaticity uniformity of the pixel structure is better when displayed.
  • Another embodiment of the present disclosure provides a display method for a display panel in the above embodiment of the present disclosure, including:
  • each display unit comprising: an adjacent one of the red sub-pixels and one of the green sub-pixels, and a blue sub-pixel adjacent to the red sub-pixel or the green sub-pixel a pixel, a blue sub-pixel with the red sub-pixel or the green sub-pixel at most one sub-pixel;
  • the display method provided by the embodiment of the present disclosure can improve the utilization ratio of each sub-pixel in the pixel structure and improve the display efficiency of the display unit by reasonably dividing the sub-pixels on the array substrate including the pixel structure into a plurality of display units. Improve display resolution and achieve display resolution of 1000 ppi or more.
  • the sub-pixels on the array substrate are divided into a display unit included in the first pixel unit as shown in FIG. 9 and a display unit included in the second pixel unit as shown in FIG.
  • This division manner is only an example, and may further include other ones according to the above “each display unit includes: one adjacent red sub-pixel and one green sub-pixel, adjacent to the red sub-pixel or the green sub-pixel.
  • the division manner of the division principle of the blue sub-pixel, the blue sub-pixel with the red sub-pixel or the one sub-pixel separated by at least one sub-pixel is not described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供了一种像素排列结构、像素结构及其制作方法、阵列基板和显示面板。像素排列结构具有:多个在行、列方向均交替排列的第一像素单元和第二像素单元;每个像素单元包括形成三行三列的阵列的九个区,并且在这些区中分别有第一、第二、第三子像素、第一、第二保留区域和任选的第四子像素。

Description

像素排列结构、像素结构及其制作方法、阵列基板和显示面板
对相关申请的交叉引用
本公开要求2017年9月30日提交的中国专利申请号201710914842.1的优先权,其通过引用以其全部结合在此。
技术领域
本公开涉及显示技术领域。更具体地,涉及一种像素排列结构、像素结构及其制作方法、阵列基板和显示面板。
背景技术
显示器件的一个像素单元通常包括独立发光的三个子像素,例如分别为红色(R)子像素、绿色(G)子像素和蓝色(B)子像素,通过控制像素单元中三个子像素分别对应的RGB三种颜色分量的大小,即可控制该像素单元所显示的色彩和亮度,这种RGB子像素交替排列的像素结构称为RGB排列。除此之外,像素排列结构还有将红色和蓝色子像素数量削减一半的pentile排列。
目前显示器件如有机发光显示器件OLED或量子点显示器件QLED的子像素的制作方式相对比较成熟的有两种。一种是采用蒸镀的方式,一种是采用喷墨打印的方式。对于上述现有的两种像素结构,无论哪种制作方式都会受到设备条件的制约。对于蒸镀方法,每个子像素尺寸受掩模板开口的尺寸的制约。对于喷墨方式,每个子像素尺寸受喷头的孔径的制约。
发明内容
在一个方面,本公开提供一种像素排列结构,包括:
多个在行、列方向均交替排列的第一像素单元和第二像素单元;
其中
第一像素单元包括形成三行三列的阵列的九个区,其中所述三行依次为第一行、第二行、第三行且所述三列依次为第一列、第二列和第三列,其中在该第一像素单元中,在所述第一列第一行的区中有第一保留区域,在所述第一列第二行的区中有第一子像素,在所述第一列第三行的区中有第二子像素,在所述第二列第一行的区中有第一子像素,在所述第三列第一行的区中有第二子像素,并且
四个第三子像素分别在所述第二列第二行的区、所述第二列第三行的 区、所述第三列第二行的区和所述第三列第三行的区中,或
两个相邻的第三子像素和两个相邻的第四子像素分别在所述第二列第二行的区、所述第二列第三行的区、所述第三列第二行的区和所述第三列第三行的区中;
第二像素单元包括形成三行三列的阵列的九个区,其中所述三行依次为第一行、第二行、第三行且所述三列依次为第一列、第二列和第三列,并且所述第二像素单元的各行和各列与相邻的第一像素单元的相应的各行和各列对准,其中在该第二像素单元中,在所述第一列第一行的区中有第二保留区域,在所述第一列第二行的区中有第二子像素,在所述第一列第三行的区中有第一子像素,在所述第二列第一行的区中有第二子像素,在所述第三列第一行的区中有第一子像素,并且
四个第三子像素分别在所述第二列第二行的区、所述第二列第三行的区、所述第三列第二行的区和所述第三列第三行的区中,或
两个相邻的第三子像素和两个相邻的第四子像素分别在所述第二列第二行的区、所述第二列第三行的区、所述第三列第二行的区和所述第三列第三行的区中。
可选地,所述第一子像素、所述第二子像素、所述第三子像素分别为红色子像素、绿色子像素、蓝色子像素,并且当所述像素排列结构包含第四子像素的情况下,所述第四子像素为白色子像素。
可选地,所述第一子像素、所述第二子像素、所述第三子像素以及所述第一和第二保留区域的形状均为矩形,并且当所述像素排列结构包含第四子像素的情况下,所述第四子像素为矩形。
可选地,与第一保留区域相邻的四个第一子像素中的至少一个向该第一保留区域所在的区延伸,和/或
与第二保留区域相邻的四个第二子像素中的至少一个向该第二保留区域所在的区延伸。
可选地,所述第一像素单元的第一列第二行、第一列第三行、第二列第二行和第三列第三行的区中的子像素构成一个像素且所述第一像素单元的第二列第一行、第三列第一行、第二列第三行和第三列第二行的区中的子像素构成另一个像素;或者所述第一像素单元的第一列第二行、第一列第三行、第二列第三行和第三列第二行的区中的子像素构成一个像素且所述第一像素单元的第二列第一行、第三列第一行、第二列第二行和第三列第三行的区中 的子像素构成另一个像素;并且
所述第二像素单元的第一列第二行、第一列第三行、第二列第二行和第三列第三行的区中的子像素构成一个像素且所述第二像素单元的第二列第一行、第三列第一行、第二列第三行和第三列第二行的区中的子像素构成另一个像素;或者所述第二像素单元的第一列第二行、第一列第三行、第二列第三行和第三列第二行的区中的子像素构成一个像素且所述第二像素单元的第二列第一行、第三列第一行、第二列第二行和第三列第三行的区中的子像素构成另一个像素。
在另一个方面,本公开提供一种像素结构,包括
像素界定层;其中所述像素界定层限定第一颜色发光层、第二颜色发光层、第三颜色发光层,以使所述第一颜色发光层、第二颜色发光层、第三颜色发光层分别形成根据权利要求1所述像素排列结构中的第一子像素、第二子像素、第三子像素,
并且当所述像素排列结构包含第四子像素的情况下,所述像素界定层限定还限定第四颜色发光层,以使所述第四颜色发光层形成所述第四子像素。
可选地,该像素结构还包括
在围绕与第一保留区域相邻的四个第一子像素的像素界定层上和在围绕与第二保留区域相邻的四个第二子像素的像素界定层上的堤坝层。
可选地,所述第一颜色发光层、所述第二颜色发光层、所述第三颜色发光层分别为红色发光层、绿色发光层、蓝色发光层,
并且当存在第四颜色发光层的情况下,所述第四颜色发光层为白色发光层。
可选地,所述第一颜色发光层、所述第二颜色发光层、所述第三颜色发光层以及所述第一和第二保留区域的形状均为矩形,
并且当存在第四颜色发光层的情况下,所述第四颜色发光层的形状为矩形。
在有一个方面,本公开还提供一种像素结构的制作方法,包括:
形成像素界定层;
在像素界定层限定的范围内形成第一颜色发光层、第二颜色发光层、第三颜色发光层,以使所述第一颜色发光层、第二颜色发光层、第三颜色发光层分别形成根据权利要求1所述像素排列结构中的第一子像素、第二子像素、第三子像素,
并且当所述像素排列结构包含第四子像素的情况下,还在像素界定层限定的范围内形成第四颜色发光层,以使所述第四颜色发光层形成所述第四子像素。
可选地,该制作方法包括:
通过使用第一掩模板采用蒸镀法形成所述第一颜色发光层,其中所述第一掩模板的蒸镀开口被配置为用于形成围绕第一保留区域的四个第一子像素。
可选地,该制作方法还包括:
在蒸镀所述第一颜色发光层后,移动所述第一掩模板,采用蒸镀法形成所述第二颜色发光层,以通过所述蒸镀开口形成围绕第二保留区域的四个第二子像素。
可选地,该制作方法包括:
通过使用第二掩模板采用蒸镀法形成所述第三颜色发光层,其中所述第二掩模板的蒸镀开口被配置为用于形成至少两个相邻的第三子像素。
可选地,该制作方法包括:
在形成像素界定层后,在围绕与第一保留区域相邻的四个第一子像素的像素界定层上和在围绕与第二保留区域相邻的四个第二子像素的像素界定层上形成堤坝层;以及
在由堤坝层围绕的包含第一子像素和第二子像素的区内通过喷墨打印法分别形成所述第一颜色发光层、第二颜色发光层。
可选地,该制作方法还包括:
在由堤坝层围绕的包含第三子像素的区内通过喷墨打印法形成所述第三颜色发光层。
在又一个方面,本公开提供了一种阵列基板,包括如上所述的像素结构。
在又一个方面,本公开提供了一种显示面板,包括如上所述的阵列基板。
附图说明
下面结合附图对本公开的具体实施方式作进一步详细的说明;
图1示出本公开实施例的像素结构的示意图。
图2示出本公开实施例的像素结构中第一像素单元的示意图。
图3示出本公开实施例的像素结构中第二像素单元的示意图。
图4和图5示出本公开实施例的在蒸镀工艺中使用的掩模板的示意图。
图6(a)-(b)示出本公开实施例中在第一或第二无像素区域和相邻的第一或 第二像素周围的像素限定层的示意图。
图7(a)-(c)示出本公开实施例的采用喷墨打印方式中打印红色发光层和绿色发光层的示意图。
图8(a)-(c)示出本公开实施例的采用喷墨打印方式中打印蓝色发光层的示意图
图9示出本公开实施例中包含于第一像素单元中的像素。
图10示出本公开实施例中包含于第二像素单元中的像素。
图11示出本公开实施例中包含的RGWB模式的一种第一像素单元的示意图。
具体实施方式
为了更清楚地说明本公开,下面结合优选实施例和附图对本公开做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本公开的保护范围。
如图1-3所示,本公开的一个实施例提供了一种像素排列结构,包括:多个在行、列方向均交替排列的第一像素单元和第二像素单元。例如,图1所示的像素排列结构是由图2的第一像素单元和图3的第二像素单元在行、列方向均交替排列形成的。
第一像素单元包括形成三行三列的阵列的九个区,其中所述三行依次为第一行、第二行、第三行且所述三列依次为第一列、第二列和第三列,其中在该第一像素单元中,在所述第一列第一行的区中有第一保留区域,在所述第一列第二行的区中有第一子像素,在所述第一列第三行的区中有第二子像素,在所述第二列第一行的区中有第一子像素,在所述第三列第一行的区中有第二子像素,并且
四个第三子像素分别在所述第二列第二行的区、所述第二列第三行的区、所述第三列第二行的区和所述第三列第三行的区中,或
两个相邻的第三子像素和两个相邻的第四子像素分别在所述第二列第二行的区、所述第二列第三行的区、所述第三列第二行的区和所述第三列第三行的区中。
本文中所述的三行三列的阵列的每个区是矩形的。在一个实例中,九个区可以是相同的正方形的,但本公开不限于此。
基于对称性,本公开所述的行和列的排列顺序可以是任何方向的。例如,第一行、第二行、第三行可以从上到下依次排列,但也可以从下到上依次排列。同样,第一列、第二列、第三列可以从左到右依次排列,但也可以从右到左依次排列。在本公开中,均以左上方为起点为例进行说明。但基于对称性,本公开不限于此。
在规定的区中有子像素和保留区域。在区中的子像素和保留区域可以是矩形的,也可以是其他形状的。不过,子像素和保留区域所在的区的阵列总是符合三行三列的形式。
第二像素单元的各行和各列与相邻的第一像素单元的相应的各行和各列对准。换言之,两种像素单元中的阵列的格子是相同的。这样可以保证子像素的均匀分布。
在一个实施方案中,第一像素单元或第二像素单元的第二列第二行的区、第二列第三行的区、第三列第二行的区和第三列第三行的区中都是第三像素。此时,本公开的像素阵列以三种子像素的模式发光。
在另一个实施方案中,第一像素单元或第二像素单元的第二列第二行的区、第二列第三行的区、第三列第二行的区和第三列第三行的区中有两个第三像素和两个第四像素,其中两个第三像素是相邻的,且两个第四像素是相邻的。此时,本公开的像素阵列以四种子像素的模式发光。从组成的像素的发光均匀性考虑,第三像素和第四像素不采用对角的样式分布。
以下以第一子像素为红色、第二子像素为绿色且第三子像素为蓝色为例说明本公开。但本发明不限于此。蓝色子像素比红色和绿色子像素发光能力差,因此其面积可以更大。
在一个实施方案中,像素排列结构包括:多个在行、列方向均交替排列的第一像素单元和第二像素单元;
第一像素单元包括:在该第一像素单元中第一列顺序排列的一个第一保留区域、一个第一子像素和一个第二子像素;在该第一像素单元中第二列顺序排列的一个第一子像素和两个第三子像素;在该第一像素单元中第三列顺序排列的一个第二子像素和两个第三子像素;
第二像素单元包括:在该第二像素单元中第一列顺序排列的一个第二保留区域、一个第二子像素和一个第一子像素;在该第二像素单元中第二列顺序排列的一个第二子像素和两个第三子像素;在该第二像素单元中第三列顺序排列的一个第一子像素和两个第三子像素;
以使得第一保留区域和第一像素单元中与第一保留区域相邻的第一子像素以及第二像素单元中与第一保留区域相邻的第一子像素形成第一规则图形,使得第二保留区域和第二像素单元中与第二保留区域相邻的第二子像素以及第一像素单元中与第二保留区域相邻的第二子像素形成第一规则图形,使得第一像素单元和第二像素单元中的第三子像素分别形成第二规则图形。
如图2所示的一个实例中,第一像素单元包括:在该第一像素单元中第一列顺序排列的一个保留区域、一个红色子像素和一个绿色子像素;在该第一像素单元中第二列顺序排列的一个红色子像素和两个蓝色子像素;在该第一像素单元中第三列顺序排列的一个绿色子像素和两个蓝色子像素。
如图3所示的一个实例中,第二像素单元包括:在该第二像素单元中第一列顺序排列的一个保留区域、一个绿色子像素和一个红色子像素;在该第二像素单元中第二列顺序排列的一个绿色子像素和两个蓝色子像素;在该第二像素单元中第三列顺序排列的一个红色子像素和两个蓝色子像素。
在图11所示的一个实例中,一个像素单元包括红色、绿色、蓝色和白色子像素各两个。其中两个蓝色子像素是彼此相邻的且两个白色子像素是彼此相邻的。
这里所说的保留区域是指在实际显示中并不会真正发光的区域,也就是说第一像素单元中的保留区域并不会出射红色的光,第二像素单元中的保留区域并不出射绿色的光。换言之,保留区域是不含发光的子像素的区域。这在本文之后介绍的制作方法中由进一步说明。
通过这样的排列结构,第一像素单元中的红色子像素和与该第一像素单元相邻的第二像素单元中的红色子像素连同保留区域形成一个规则图形,本实施例中为十字形,第二像素单元中的绿色子像素和与该第二像素单元相邻的第一像素单元中的绿色子像素连同保留区域形成一个规则图形,在本实施例中也为十字形,第一像素单元和第二像素单元中的蓝色子像素均形成一个规则图形,在本实施例中为矩形。
通过本实施例形成的像素排列结构,使得相邻的像素进行同一颜色的组合。即,相邻的同一颜色的子像素组合成比单个RGB子像素尺寸更大的规则结构。例如,相邻的红色子像素组合成十字形,相邻的绿色子像素组合成十字形,相邻的蓝色子像素组合成矩形。这显然比单个RGB子像素尺寸更大。在实际的工艺制作中,无论使用蒸镀还是喷墨打印的方式制作像素时,均可大大降低工艺难度,从而可获得较高的解析度。另外,在显示时,该像素结 构的显示色度均匀性更好。
可选地,第一子像素、第二子像素、第三子像素和第四子像素分别为红色子像素、绿色子像素、蓝色子像素和白色子像素。其中白色子像素是任选的。
以不含白色子像素的方案为例,其中是以各自相邻红色或绿色子像素排列成十字形,相邻的蓝色子像素排列成矩形。本领域技术人员能够明了,第一像素单元和第二像素单元中的红色和绿色子像素的位置可以互换,这样的互换实质上是将排列的第一像素单元和第二像素单元的位置互换。这样的方式均可以以RGBB等方式显示白光。
本实施例的像素结构适用于高解析度产品,尤其是大于600ppi的产品。
另外,本领域技术人员能够明了,在本公开的教导下,采用四种子像素,还可以RGWB的方式显示白光,在这种方案下只需将四个相邻蓝色子像素中相邻的两个子像素修改为白色子像素。这种情况下,仍可达到红色和绿色子像素的制备和分辨率的优点。不过,这种情况相比于本公开RGBB方式来说会牺牲掉部分蓝色子像素制作工艺的简易性。
在本实施例中,红色子像素、绿色子像素和蓝色子像素的形状均为易制作的矩形。在工艺上,简单易行。本领域技术人员能够明了,在本公开的教导下,子像素和保留区域还可以是其他形状,只要它们处于规定的组成三行三列的阵列的区内即可。这样的阵列能实现相邻的同一颜色的子像素的组合,其尺寸比单个RGB子像素尺寸更大。换言之,红色和绿色子像素可以形成规则的十字形,蓝色子像素可以形成规则的矩形,或者子像素还可以形成其他形状的规则图形,只要能实现相邻的同一颜色的子像素的组合比单个RGB子像素尺寸更大即可。为了简单明了起见,之后的实施例仍以RGB三种颜色进行示例。
另外,在本实施例中,与第一像素单元中的保留区域相邻的四个红色子像素中的至少一个向该保留区域所在的区延伸。与第二像素单元中的保留区域相邻的四个绿色子像素中的至少一个向该保留区域所在的区延伸。这样可以调整与保留区域相邻的红色子像素或绿色子像素的大小。
可以将本公开的像素阵列适当地划分成像素。为了正常显示,需要保证每个像素中包含三种子像素(或四种子像素),并且各像素中的子像素基本上是连续布置的。
在本公开的一个实施方案中,所述第一像素单元的第一列第二行、第一 列第三行、第二列第二行和第三列第三行的区中的子像素构成一个像素(见图9(a)左图)且所述第一像素单元的第二列第一行、第三列第一行、第二列第三行和第三列第二行的区中的子像素构成另一个像素(见图9(a)右图);或者所述第一像素单元的第一列第二行、第一列第三行、第二列第三行和第三列第二行的区中的子像素构成一个像素(见图9(b)左图)且所述第一像素单元的第二列第一行、第三列第一行、第二列第二行和第三列第三行的区中的子像素构成另一个像素(见图9(b)右图);并且
所述第二像素单元的第一列第二行、第一列第三行、第二列第二行和第三列第三行的区中的子像素构成一个像素(见图10(a)左图)且所述第二像素单元的第二列第一行、第三列第一行、第二列第三行和第三列第二行的区中的子像素构成另一个像素(见图10(a)右图);或者所述第二像素单元的第一列第二行、第一列第三行、第二列第三行和第三列第二行的区中的子像素构成一个像素(见图10(b)左图)且所述第二像素单元的第二列第一行、第三列第一行、第二列第二行和第三列第三行的区中的子像素构成另一个像素(见图10(b)右图)。
当然,在RGWB四子像素显示模式下,上述实施方案中每个像素中可以用一个白色像素替换一个蓝色像素。图11示出了一种RGWB模式下的像素单元,其包含两个像素,每个像素包含红色、绿色、蓝色和白色子像素各一个。
本公开另一个实施例提供了一种像素结构的制作方法,包括:
形成像素界定层;
在像素界定层限定的范围内形成第一颜色发光层、第二颜色发光层、第三颜色发光层,以使所述第一颜色发光层、第二颜色发光层、第三颜色发光层分别形成根据权利要求1所述像素排列结构中的第一子像素、第二子像素、第三子像素,
并且当所述像素排列结构包含第四子像素的情况下,还在像素界定层限定的范围内形成第四颜色发光层,以使所述第四颜色发光层形成所述第四子像素。
本公开的制作方法一个实施方案包括:在衬底上形成阳极层和像素界定层;
在像素界定层限定的区域形成第一颜色发光层、第二颜色发光层和第三颜色发光层,其中相邻四个第一颜色发光层和与由所述相邻第一颜色发光层 围绕的第一保留区域形成第一规则图形,相邻四个第二颜色发光层和与由所述相邻第二颜色发光层围绕的第二保留区域形成第一规则图形,相邻四个第三颜色发光层形成第二规则图形。
具体地,提供衬底,根据显示器件是顶发射还是底发射亦或是双面发射的要求,所述衬底可以为透光的玻璃或不透光的材料。
在所述衬底上形成驱动晶体管、阳极层和像素界定层等。这些是显示器件的常规工艺步骤,在此不再赘述。
在像素界定层限定的区域形成红色发光层、绿色发光层和蓝色发光层,其中相邻四个红色发光层和与由所述相邻红色发光层围绕的第一保留区域形成第一规则图形,相邻四个绿色发光层和与由所述相邻绿色发光层围绕的第二保留区域形成第一规则图形,相邻四个蓝颜色发光层形成第二规则图形。
此外,接着完成阴极、钝化层等其余工艺步骤,在此不再赘述。
通过本实施例的制作方法,由于使得相邻的像素进行同一颜色的组合,即相邻的同一颜色的子像素组合成比单个RGB子像素尺寸更大的规则结构,可大大降低工艺难度。
包含白色子像素的像素结构的制作方法中,还包括形成白色发光层。
发光层可以是有机发光材料层或量子点发光层等。
在一个具体示例中,采用蒸镀方式来完成上述制作方法。
在一个实施方案中,该制作方法可以包括:通过使用第一掩模板采用蒸镀法形成所述第一颜色发光层,其中所述第一掩模板的蒸镀开口被配置为用于形成围绕第一保留区域的四个第一子像素。
进而,可以在蒸镀所述第一颜色发光层后,移动所述第一掩模板,采用蒸镀法形成所述第二颜色发光层,以通过所述蒸镀开口形成围绕第二保留区域的四个第二子像素。
另外,可以通过使用第二掩模板采用蒸镀法形成所述第三颜色发光层,其中所述第二掩模板的蒸镀开口被配置为用于形成至少两个相邻的第三子像素。
在形成四个第三子像素的情况下,第二掩模板的蒸镀开口被配制为用于形成四个相邻的第三子像素。
在形成两个第三子像素和两个第四子像素的情况下,如果第三子像素和第四子像素形状相同,则可以使用第二掩模板形成第四子像素。否则,可以使用单独的第三掩模板形成第四子像素。
在一个实例中,使第一掩模板的第一蒸镀开口与位于第一规则图形内的第一子像素对准,蒸镀第一发光层;
移动第一掩模板,使该第一蒸镀开口与位于第一规则图形内的第二子像素对准,蒸镀第二发光层;
使第二掩模板的第二蒸镀开口与位于第二规则图形内的第三子像素对准,蒸镀第三发光层。
图4和图5分别示出了形成十字形图形和矩形图形的掩模板示意图。图中示出为阳板,即点填充区域为开口透光区域。
利用图4所示的掩模板,十字形开口与位于十字形内的红色子像素对准,蒸镀红色发光层,可以看出,开口为十字开口,相对于对准单个子像素的开口,开口的难度降低很多,制作难度也降低很多。
通过上述工艺,虽然通过掩模板的十字开口在十字形交叉的保留区域所在的区形成了红色发光层和/或绿色发光层,然而,保留区域并不设置对应的驱动晶体管,因此保留区域并不出射光。
由于在本实施例中,像素结构中相邻的红色子像素形成的十字形的规则图形和相邻的绿色子像素形成十字形的规则图形的大小、形状均相同,因此,移动如图4所示的掩模板,使该十字形开口与位于十字形内的绿色子像素对准,蒸镀绿色发光层,这样可实现使用一个掩模板分别蒸镀出红色和绿色发光层,节省了一块掩模板,降低了成本。
利用图5所示的掩模板的矩形开口与位于矩形内的蓝色子像素对准,蒸镀蓝色发光层。可以看出,由于为矩形开口,相对于对准单个子像素的开口,开口的难度降低很多,制作难度也降低很多。
通过本方案,可以将掩模板的开口制作的比单个子像素的对应的掩模板开口大,从而降低了利用蒸镀工艺制作显示器件阵列基板的工艺难度。
在另一个具体示例中,采用喷墨打印来完成上述制作方法。
在一个实施方案中,该制作方法可以包括:在形成像素界定层后,在围绕与第一保留区域相邻的四个第一子像素的像素界定层上和在围绕与第二保留区域相邻的四个第二子像素的像素界定层上形成堤坝层;以及
在由堤坝层围绕的包含第一子像素和第二子像素的区内通过喷墨打印法分别形成所述第一颜色发光层、第二颜色发光层。
堤坝层自然也围绕包含第三子像素的区。因此,进而可以在由堤坝层围绕的包含第三子像素的区内通过喷墨打印法形成所述第三颜色发光层。
在一个实例中,在像素界定层上形成堤坝层,包括围绕第一规则图形的第一堤坝层和围绕第二规则图形的第二堤坝层;
在所述第一堤坝层围绕的范围内分别打印第一颜色发光层和第二颜色发光层,在所述第二堤坝层围绕的范围内打印第三颜色发光层。
可选地,可以在第二列第二行、第二列第三行、第三列第二行、第三列第三行的区的之间设置附加的堤坝层,用于喷墨打印第三颜色发光层和第四颜色发光层。
以形成十字形规则形状为例。如图6(a)、6(b)所示,其中6(b)是沿6(a)A-A线截得的截面图。在衬底100上形成阳极层200和像素界定层300,在形成发光层区域即开口区域350对应的***像素界定层上形成堤坝层(bank)400,相邻四个发光层围绕的像素界定层称之为保留区域500。
如图7所示,在堤坝层400围绕的范围内分别打印红色发光层和绿色发光层。如图7(a)所示,墨滴滴在中间位置(保留区域),后向四周扩散,流满整个4个子像素(如图7(b)所示),但由于堤坝层400的阻挡,并不会溢出,而留存在堤坝层400所围绕的范围内。然后,干燥时通过保留区域500进行分离,最终在图6所示的开口区域350中形成发光层600,如图7(c)所示。
十字形交叉处的保留区域对应像素界定层,通过上述工艺虽然可以在该像素界定层上留有红色发光层和/或绿色发光层,然而,像素界定层不透光,使得该保留区域并不出射光。
对于矩形规则形状,如图8所示,在堤坝层围绕的范围内打印蓝色发光层。如图8(a)所示,墨滴滴在中间位置,后向四周扩散,流满整个4个子像素(如图8(b)所示),但由于堤坝的阻挡,并不会溢出,而留存在堤坝层所围绕的范围内。然后,通过干燥最终形成发光层600,如图8(c)所示。
当需要形成第四子像素时,还可以相应地附加堤坝层。
通过本方案,可以将喷嘴的孔径制作的比单个子像素的对应的开口孔径大,从而降低了利用喷墨打印工艺制作显示器件阵列基板的工艺难度。
本公开另一个实施例提供了一种像素结构,像素界定层;其中所述像素界定层限定第一颜色发光层、第二颜色发光层、第三颜色发光层,以使所述第一颜色发光层、第二颜色发光层、第三颜色发光层分别形成根据权利要求1所述像素排列结构中的第一子像素、第二子像素、第三子像素,
并且当所述像素排列结构包含第四子像素的情况下,所述像素界定层限定还限定第四颜色发光层,以使所述第四颜色发光层形成所述第四子像素。
在一个实施方案中,像素结构包括:衬底;
沿远离所述衬底方向上依次设置的阳极层和像素界定层;
由像素界定层限定的第一颜色发光层、第二颜色发光层和第三颜色发光层,其中相邻四个第一颜色发光层和与由所述相邻第一颜色发光层围绕的第一保留区域形成第一规则图形,相邻四个第二颜色发光层和与由所述相邻第二颜色发光层围绕的第二保留区域形成第一规则图形,相邻四个第三颜色发光层形成第二规则图形。
在一个实例中,如图6(b)、7(c)和图8(c)所示,包括:
衬底100;
沿远离所述衬底方向上依次设置的阳极层200、像素界定层300;
由像素界定层300限定的红色发光层、绿色发光层和蓝色发光层,其中相邻四个红色发光层和与由所述相邻红色发光层围绕的保留区域500形成十字形的规则图形,相邻四个绿色发光层和与由所述相邻绿色发光层围绕的保留区域形成十字形的规则图形,相邻四个蓝色发光层形成矩形的规则图形。
通过本公开该实施例的像素结构,由于使得相邻的像素进行同一颜色的组合,即相邻的同一颜色的子像素组合成比单个RGB子像素尺寸更大的规则结构,可大大降低工艺难度。
优选地,对应于喷墨打印方法形成的像素结构,还包括堤坝层400,在围绕对应红色发光层的十字形结构的像素界定层上形成,以及在围绕对应绿色发光层的十字形结构的像素界定层上形成。
在该实例中,相邻四个红色发光层和与由所述相邻红色发光层围绕的保留区域形成为十字形规则结构,相邻四个绿色发光层和与由所述相邻绿色发光层围绕的保留区域形成为十字形规则结构,相邻四个蓝色发光层形成为矩形规则结构。通过将发光层的形状设计为矩形,并由此形成十字形和矩形的规则图形,从而工艺上更容易实现。
本领域技术人员能够明了,在本公开的教导下,本领域技术人员能够将各发光层可以设计为其它形状,进而相邻的四个同颜色的发光层可以形成其它规则图形。
本公开的另一实施例提供一种阵列基板,包括本公开上述实施例的像素结构。本实施例中所指的红色、绿色和蓝色子像素是对应显示器件的发光层在受激发射时发出的光的颜色。发光层发出的光的颜色为红色,对应红色子像素。同理,发光层发出的光的颜色为绿色,对应绿色子像素。发光层发出 的光的颜色为蓝色,对应蓝色子像素。
通过本实施例的阵列基板,由于包括了上述实施例中的像素结构,使得相邻的像素进行同一颜色的组合,即相邻的同一颜色的子像素组合成比单个RGB子像素尺寸更大的规则结构,无论使用蒸镀还是喷墨打印的方式制作该阵列基板时,均可大大降低工艺难度,且可获得较高的解析度。另外,在显示时,该像素结构的显示色度均匀性更好。
本领域技术人员能够明了,像素结构对应于显示区,围绕显示区的非显示区还包括各种驱动电路,这都属于本领域的现有技术,在此不再赘述。
本公开另一实施例提供了一种包括本公开上述实施例的阵列基板的显示面板。该显示面板可以为有机发光显示面板,也可以为例如量子点显示面板。通过本实施例的显示面板,由于包括了一个实施例中的像素结构,使得相邻的像素进行同一颜色的组合,即相邻的同一颜色的子像素组合成比单个RGB子像素尺寸更大的规则结构,无论使用蒸镀还是喷墨打印的方式制作该显示面板时,均可大大降低工艺难度,且可获得较高的解析度。另外,在显示时,该像素结构的显示色度均匀性更好。
本公开另一实施例提供了一种用于本公开上述实施例中的显示面板的显示方法,包括:
将阵列基板上的子像素划分为多个显示单元,每个显示单元包括:相邻的一个红色子像素和一个绿色子像素、与该红色子像素或该绿色子像素相邻的一个蓝色子像素、与该红色子像素或该绿色子像素至多间隔一个子像素的一个蓝色子像素;
以一个显示单元作为一个单位进行显示。
本公开实施例提供的显示方法通过对包括上述像素结构的阵列基板上的子像素合理地划分为多个显示单元,可提高像素结构中各子像素的利用率、提高显示单元的显示效率,进而提高显示解析度,可实现1000ppi以上的显示解析度。
例如,将阵列基板上的子像素划分为如图9所示的包含于第一像素单元中的显示单元和如图10所示的包含于第二像素单元中的显示单元。这种划分方式仅是一种举例,还可包括其他根据上述“每个显示单元包括:相邻的一个红色子像素和一个绿色子像素、与该红色子像素或该绿色子像素相邻的一个蓝色子像素、与该红色子像素或该绿色子像素至多间隔一个子像素的一个蓝色子像素”的划分原则的划分方式,在此不再赘述。
通过本方案,在显示时可以以RGBB、RGWB等方式显示,提高了显示的解析度。
显然,本公开的上述实施例仅仅是为清楚地说明本公开所作的举例,而并非是对本公开的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本公开的技术方案所引伸出的显而易见的变化或变动仍处于本公开的保护范围之列。

Claims (17)

  1. 一种像素排列结构,包括:
    多个在行、列方向均交替排列的第一像素单元和第二像素单元;
    其中
    第一像素单元包括形成三行三列的阵列的九个区,其中所述三行依次为第一行、第二行、第三行且所述三列依次为第一列、第二列和第三列,其中在该第一像素单元中,在所述第一列第一行的区中有第一保留区域,在所述第一列第二行的区中有第一子像素,在所述第一列第三行的区中有第二子像素,在所述第二列第一行的区中有第一子像素,在所述第三列第一行的区中有第二子像素,并且
    四个第三子像素分别在所述第二列第二行的区、所述第二列第三行的区、所述第三列第二行的区和所述第三列第三行的区中,或
    两个相邻的第三子像素和两个相邻的第四子像素分别在所述第二列第二行的区、所述第二列第三行的区、所述第三列第二行的区和所述第三列第三行的区中;
    第二像素单元包括形成三行三列的阵列的九个区,其中所述三行依次为第一行、第二行、第三行且所述三列依次为第一列、第二列和第三列,并且所述第二像素单元的各行和各列与相邻的第一像素单元的相应的各行和各列对准,其中在该第二像素单元中,在所述第一列第一行的区中有第二保留区域,在所述第一列第二行的区中有第二子像素,在所述第一列第三行的区中有第一子像素,在所述第二列第一行的区中有第二子像素,在所述第三列第一行的区中有第一子像素,并且
    四个第三子像素分别在所述第二列第二行的区、所述第二列第三行的区、所述第三列第二行的区和所述第三列第三行的区中,或
    两个相邻的第三子像素和两个相邻的第四子像素分别在所述第二列第二行的区、所述第二列第三行的区、所述第三列第二行的区和所述第三列第三行的区中。
  2. 根据权利要求1所述的像素排列结构,其中,所述第一子像素、所述第二子像素、所述第三子像素分别为红色子像素、绿色子像素、蓝色子像素,并且当所述像素排列结构包含第四子像素的情况下,所述第四子像素为白色子像素。
  3. 根据权利要求1所述的像素排列结构,其中,所述第一子像素、所述第二子像素、所述第三子像素以及所述第一和第二保留区域的形状均为矩形,并且当所述像素排列结构包含第四子像素的情况下,所述第四子像素为矩形。
  4. 根据权利要求1所述的像素排列结构,其中,
    与第一保留区域相邻的四个第一子像素中的至少一个向该第一保留区域所在的区延伸,和/或
    与第二保留区域相邻的四个第二子像素中的至少一个向该第二保留区域所在的区延伸。
  5. 根据权利要求1所述的像素排列结构,其中,
    所述第一像素单元的第一列第二行、第一列第三行、第二列第二行和第三列第三行的区中的子像素构成一个像素且所述第一像素单元的第二列第一行、第三列第一行、第二列第三行和第三列第二行的区中的子像素构成另一个像素;或者所述第一像素单元的第一列第二行、第一列第三行、第二列第三行和第三列第二行的区中的子像素构成一个像素且所述第一像素单元的第二列第一行、第三列第一行、第二列第二行和第三列第三行的区中的子像素构成另一个像素;并且
    所述第二像素单元的第一列第二行、第一列第三行、第二列第二行和第三列第三行的区中的子像素构成一个像素且所述第二像素单元的第二列第一行、第三列第一行、第二列第三行和第三列第二行的区中的子像素构成另一个像素;或者所述第二像素单元的第一列第二行、第一列第三行、第二列第三行和第三列第二行的区中的子像素构成一个像素且所述第二像素单元的第二列第一行、第三列第一行、第二列第二行和第三列第三行的区中的子像素构成另一个像素。
  6. 一种像素结构,包括:
    像素界定层;其中所述像素界定层限定第一颜色发光层、第二颜色发光层、第三颜色发光层,以使所述第一颜色发光层、第二颜色发光层、第三颜色发光层分别形成根据权利要求1所述像素排列结构中的第一子像素、第二子像素、第三子像素,
    并且当所述像素排列结构包含第四子像素的情况下,所述像素界定层限定还限定第四颜色发光层,以使所述第四颜色发光层形成所述第四子像素。
  7. 根据权利要求6所述的像素结构,还包括:
    在围绕与第一保留区域相邻的四个第一子像素的像素界定层上和在围绕 与第二保留区域相邻的四个第二子像素的像素界定层上的堤坝层。
  8. 根据权利要求6所述的像素结构,其中,所述第一颜色发光层、所述第二颜色发光层、所述第三颜色发光层分别为红色发光层、绿色发光层、蓝色发光层,
    并且当存在第四颜色发光层的情况下,所述第四颜色发光层为白色发光层。
  9. 根据权利要求6所述的像素结构,其中,所述第一颜色发光层、所述第二颜色发光层、所述第三颜色发光层以及所述第一和第二保留区域的形状均为矩形,
    并且当存在第四颜色发光层的情况下,所述第四颜色发光层的形状为矩形。
  10. 一种像素结构的制作方法,包括:
    形成像素界定层;
    在像素界定层限定的范围内形成第一颜色发光层、第二颜色发光层、第三颜色发光层,以使所述第一颜色发光层、第二颜色发光层、第三颜色发光层分别形成根据权利要求1所述像素排列结构中的第一子像素、第二子像素、第三子像素,
    并且当所述像素排列结构包含第四子像素的情况下,还在像素界定层限定的范围内形成第四颜色发光层,以使所述第四颜色发光层形成所述第四子像素。
  11. 根据权利要求10所述的制作方法,包括:
    通过使用第一掩模板采用蒸镀法形成所述第一颜色发光层,其中所述第一掩模板的蒸镀开口被配置为用于形成围绕第一保留区域的四个第一子像素。
  12. 根据权利要求11所述的制作方法,还包括:
    在蒸镀所述第一颜色发光层后,移动所述第一掩模板,采用蒸镀法形成所述第二颜色发光层,以通过所述蒸镀开口形成围绕第二保留区域的四个第二子像素。
  13. 根据权利要求10所述的制作方法,包括:
    通过使用第二掩模板采用蒸镀法形成所述第三颜色发光层,其中所述第二掩模板的蒸镀开口被配置为用于形成至少两个相邻的第三子像素。
  14. 根据权利要求10所述的制作方法,包括:
    在形成像素界定层后,在围绕与第一保留区域相邻的四个第一子像素的 像素界定层上和在围绕与第二保留区域相邻的四个第二子像素的像素界定层上形成堤坝层;以及
    在由堤坝层围绕的包含第一子像素和第二子像素的区内通过喷墨打印法分别形成所述第一颜色发光层、第二颜色发光层。
  15. 根据权利要求14所述的制作方法,还包括:
    在由堤坝层围绕的包含第三子像素的区内通过喷墨打印法形成所述第三颜色发光层。
  16. 一种阵列基板,包括如权利要求6所述的像素结构。
  17. 一种显示面板,包括如权利要求16所述的阵列基板。
PCT/CN2018/095413 2017-09-30 2018-07-12 像素排列结构、像素结构及其制作方法、阵列基板和显示面板 WO2019062278A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/329,196 US10777616B2 (en) 2017-09-30 2018-07-12 Pixel arrangement structure, pixel structure and production method thereof, array substrate, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710914842.1A CN107680990B (zh) 2017-09-30 2017-09-30 像素排列结构、像素结构、制作方法及显示方法
CN201710914842.1 2017-09-30

Publications (1)

Publication Number Publication Date
WO2019062278A1 true WO2019062278A1 (zh) 2019-04-04

Family

ID=61139477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095413 WO2019062278A1 (zh) 2017-09-30 2018-07-12 像素排列结构、像素结构及其制作方法、阵列基板和显示面板

Country Status (3)

Country Link
US (1) US10777616B2 (zh)
CN (1) CN107680990B (zh)
WO (1) WO2019062278A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107680990B (zh) * 2017-09-30 2020-05-15 京东方科技集团股份有限公司 像素排列结构、像素结构、制作方法及显示方法
CN111354762B (zh) * 2018-12-21 2023-02-21 广东聚华印刷显示技术有限公司 像素结构、显示器件及蒸镀掩膜版
US11211430B2 (en) * 2019-01-28 2021-12-28 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel for improving display effect in low-resolution area, manufacturing method thereof, and display device
CN110323259B (zh) * 2019-06-28 2022-04-15 云谷(固安)科技有限公司 像素结构、掩膜板及显示面板
CN112817187A (zh) * 2021-02-05 2021-05-18 武汉华星光电技术有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100039011A1 (en) * 2007-02-02 2010-02-18 Canon Kabushiki Kaisha Display apparatus and production method thereof
CN104795012A (zh) * 2015-04-02 2015-07-22 京东方科技集团股份有限公司 显示面板、显示装置及像素驱动方法
US20150287767A1 (en) * 2014-04-08 2015-10-08 Apple Inc. Organic Light-Emitting Diode Display With Varying Anode Pitch
CN106910760A (zh) * 2015-12-18 2017-06-30 昆山工研院新型平板显示技术中心有限公司 Oled显示器的像素结构、oled显示器及其制备方法
CN107680990A (zh) * 2017-09-30 2018-02-09 京东方科技集团股份有限公司 像素排列结构、像素结构、制作方法及显示方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366988B2 (ja) * 2003-05-01 2009-11-18 セイコーエプソン株式会社 有機el装置および電子機器
CN105552099A (zh) * 2014-10-29 2016-05-04 上海和辉光电有限公司 一种oled像素排列结构
CN106229300B (zh) 2016-08-23 2019-03-22 武汉华星光电技术有限公司 像素结构及制作方法
CN107068729B (zh) * 2017-05-09 2020-06-02 京东方科技集团股份有限公司 像素结构及其制作方法、显示基板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100039011A1 (en) * 2007-02-02 2010-02-18 Canon Kabushiki Kaisha Display apparatus and production method thereof
US20150287767A1 (en) * 2014-04-08 2015-10-08 Apple Inc. Organic Light-Emitting Diode Display With Varying Anode Pitch
CN104795012A (zh) * 2015-04-02 2015-07-22 京东方科技集团股份有限公司 显示面板、显示装置及像素驱动方法
CN106910760A (zh) * 2015-12-18 2017-06-30 昆山工研院新型平板显示技术中心有限公司 Oled显示器的像素结构、oled显示器及其制备方法
CN107680990A (zh) * 2017-09-30 2018-02-09 京东方科技集团股份有限公司 像素排列结构、像素结构、制作方法及显示方法

Also Published As

Publication number Publication date
US20200176522A1 (en) 2020-06-04
US10777616B2 (en) 2020-09-15
CN107680990A (zh) 2018-02-09
CN107680990B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
EP3451382B1 (en) Pixel array and manufacturing method therefor, and organic light emitting diode array substrate
US10692940B2 (en) Pixel structure and display panel having the same
WO2019062278A1 (zh) 像素排列结构、像素结构及其制作方法、阵列基板和显示面板
TWI585726B (zh) 畫素結構
WO2018161809A1 (zh) Oled阵列基板及其制造方法和显示装置
TWI506774B (zh) 畫素結構及其金屬光罩
CN108010934B (zh) 像素结构及其形成方法、oled显示面板以及蒸镀掩膜版
CN109148543B (zh) 一种像素结构及显示面板
WO2018205662A1 (zh) 像素结构、其制作方法、显示面板及显示装置
WO2019041938A1 (zh) 像素结构、oled 显示屏以及蒸镀掩膜版
US20160329385A1 (en) Pixel Structure And Organic Light Emitting Display Using The Pixel Structure
JP7005657B2 (ja) 画素構造及びoled表示パネル
CN108091667B (zh) 像素结构及包含所述像素结构的oled显示面板
WO2017118003A1 (zh) Oled像素阵列、制备oled像素阵列的方法、oled显示面板和显示装置
WO2016050010A1 (zh) Oled显示基板、oled显示装置和掩膜板
WO2017059681A1 (en) Pixel structure, fabrication method thereof, display panel, and display apparatus
WO2017016201A1 (zh) 掩膜板组及制造电致发光层的方法、显示面板及驱动方法
WO2020134794A1 (zh) 像素结构和显示面板
WO2020215401A1 (zh) 一种发光器件及其制作方法、和显示面板
WO2022199003A1 (zh) 像素排布结构、显示面板及其制备方法
WO2022213581A1 (zh) 显示面板、显示装置和掩模板
WO2020001214A1 (zh) 一种像素显示模组以及制作像素显示模组的掩膜板
WO2023232106A1 (zh) 阵列基板及其制备方法、显示面板、显示装置
CN108598106A (zh) 有机发光二极管像素排列结构及显示面板
CN111063712A (zh) 像素结构及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18863087

Country of ref document: EP

Kind code of ref document: A1