WO2019059315A1 - Lighting device for exposure, exposure apparatus and exposure method - Google Patents

Lighting device for exposure, exposure apparatus and exposure method Download PDF

Info

Publication number
WO2019059315A1
WO2019059315A1 PCT/JP2018/034920 JP2018034920W WO2019059315A1 WO 2019059315 A1 WO2019059315 A1 WO 2019059315A1 JP 2018034920 W JP2018034920 W JP 2018034920W WO 2019059315 A1 WO2019059315 A1 WO 2019059315A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
mirror
fly
mask
eye lenses
Prior art date
Application number
PCT/JP2018/034920
Other languages
French (fr)
Japanese (ja)
Inventor
榎本 芳幸
洋徳 川島
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020207003602A priority Critical patent/KR20200060345A/en
Priority to CN201880061765.2A priority patent/CN111133386A/en
Priority to JP2019543713A priority patent/JPWO2019059315A1/en
Publication of WO2019059315A1 publication Critical patent/WO2019059315A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system

Definitions

  • the present invention relates to an illumination apparatus for exposure, an exposure apparatus, and an exposure method, and more specifically, an illumination apparatus for exposure capable of correcting a change in average illuminance caused by mirror bending performed for exposure pattern correction, exposure
  • the present invention relates to an apparatus and an exposure method.
  • a curvature correction mechanism for correcting the curvature of the reflecting mirror is provided in the illumination device, and the shape of the exposure pattern is obtained by curving the reflecting mirror and changing the declination angle of the reflecting mirror. It has been devised to correct the image data and obtain a highly accurate exposure result (see, for example, Patent Document 1).
  • a first optical integrator having a plurality of first unit wavefront division surfaces arranged in a plane intersecting with the optical axis of the illumination optical system, and a plurality of first unit wavefront division surfaces are separately provided.
  • the division integrator of the second unit wavefront division surface is moved in the optical axis direction to change the distance between the second optical integrator having the corresponding second unit wavefront division surface and the first and second optical integrators.
  • An illumination optical system and an exposure apparatus are disclosed which are provided with a moving mechanism and independently adjust the light intensity distribution on the surface to be illuminated.
  • the correction amount of the exposure pattern depends on the bending amount of the mirror and the correction shape depends on the mirror shape, correcting the curvature of the reflecting mirror by the curvature correcting mechanism (mirror bending mechanism)
  • the reflective surface bends outward (convex shape)
  • the reflected light diffuses and the illuminance decreases (darkens)
  • the reflective surface of the reflective mirror bends inwardly (concave shape)
  • the reflected light converges
  • the illuminance increases (brightens), and the illuminance distribution on the exposed surface and the average illuminance value change.
  • the change of the average illuminance value affects the exposure amount, which affects the exposure time and thus the tact time.
  • changing the exposure time or tact time according to the exposure amount is very complicated in control.
  • the measurement result calculated based on the detection signal from the pupil intensity distribution measurement apparatus, that is, based on each pupil intensity distribution corresponding to each point in the illumination area of the reticle.
  • the division integrator is moved along the Y-axis direction to adjust each pupil intensity distribution to a desired distribution, which requires a complicated mechanism and control device, which increases the cost of the illumination device. .
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to suppress variations in tact time by correcting a change in average illuminance value on an exposure surface caused by mirror bending.
  • An exposure illumination device, an exposure device, and an exposure method are provided.
  • An integrator unit including two fly's eye lenses each having a plurality of lens elements arranged in a matrix, wherein the illuminance distribution of the light from the light source is equalized;
  • a mirror bending mechanism capable of changing the shape of the reflecting surface, and a reflecting mirror that reflects the light emitted from the integrator unit,
  • An exposure illumination device for exposing and transferring the exposure pattern onto the workpiece by irradiating the workpiece with exposure light from the light source through a mask on which the exposure pattern is formed.
  • It has a fly eye lens distance adjustment mechanism capable of changing the distance between the two fly eye lenses in the optical axis direction, An interval between the two fly's eye lenses in the optical axis direction is changed according to a shape change of a reflecting surface of the reflecting mirror by the mirror bending mechanism.
  • a plurality of reflecting mirrors that reflect the light emitted from the integrator unit, The exposure illumination apparatus according to (1), wherein the mirror bending mechanism is provided in a plane mirror that reflects the light last among the plurality of reflecting mirrors.
  • a table is provided which represents the relationship between the shape of the reflecting surface of the reflecting mirror by the mirror bending mechanism and the distance between the two fly-eye lenses in the optical axis direction. The distance between the two fly's eye lenses in the optical axis direction is changed according to the shape change of the reflecting surface of the reflecting mirror by the mirror bending mechanism using the table (1).
  • the illumination apparatus for exposure as described.
  • the distance between the two fly's-eye lenses in the optical axis direction corresponds to the average illuminance value obtained on the exposed surface before and after the shape change of the reflecting surface of the reflecting mirror by the mirror bending mechanism.
  • the illumination apparatus for exposure according to (1) characterized in that it is changed.
  • the integrator unit includes two fly-eye lenses, and the fly-eye lens interval adjusting mechanism changes the interval in the optical axis direction of the two fly-eye lenses. Since the distance between the two fly's eye lenses in the optical axis direction is changed according to the shape change of the reflecting surface of the reflecting mirror by the mirror bending mechanism, the change of the average illuminance value on the exposed surface due to the mirror bending should be corrected. Can. Thereby, variations in exposure time and tact time can be suppressed.
  • two sheets are provided according to the shape change of the reflecting surface of the reflecting mirror by the mask supporting unit supporting the mask, the work supporting unit supporting the work, and the mirror bending mechanism.
  • an exposure illumination device including a fly-eye lens interval adjustment mechanism capable of changing the distance in the optical axis direction of the fly-eye lens, thereby correcting a change in average illuminance value on the exposure surface due to mirror bending.
  • FIG. 1 is a front view of an exposure apparatus to which an illumination apparatus for exposure according to the present invention is applied. It is a schematic diagram which shows the structure of the illuminating device concerning this invention.
  • A) is a top view which shows the reflective mirror support structure of the illuminating device for exposure,
  • (b) is sectional drawing in alignment with the III-III line of (a),
  • FIG. 3 is a cross-sectional view taken along the line III′-III ′.
  • the proximity exposure apparatus PE uses the mask M smaller than the workpiece W as a material to be exposed, holds the mask M by the mask stage (mask support portion) 1 and works the workpiece W (workpiece) Support part) 2 hold. Then, in a state in which the mask M and the work W are brought close to each other and disposed opposite to each other with a predetermined exposure gap, the pattern of the mask M is irradiated by irradiating the mask M with light for pattern exposure from the illumination device 3 for exposure. Exposure and transfer onto the work W. Further, the work stage 2 is moved stepwise with respect to the mask M in two axial directions of the X-axis direction and the Y-axis direction, and the exposure transfer is performed for each step.
  • an X-axis stage feed mechanism 5 is provided on the apparatus base 4 to move the X-axis feed stand 5a stepwise in the X-axis direction.
  • a Y-axis stage feed mechanism 6 is provided on the X-axis feed stand 5a of the X-axis stage feed mechanism 5 to step-move the Y-axis feed stand 6a in the Y-axis direction. It is done.
  • a work stage 2 is installed on the Y-axis feed stand 6 a of the Y-axis stage feed mechanism 6.
  • the workpiece W is held on the upper surface of the workpiece stage 2 in a vacuum-sucked state by a workpiece chuck or the like.
  • a substrate-side displacement sensor 15 for measuring the height of the lower surface of the mask M is disposed on the side of the work stage 2. Therefore, the substrate side displacement sensor 15 is movable in the X and Y axis directions together with the work stage 2.
  • a plurality of (four in the illustrated embodiment) X-axis linear guide guide rails 51 are disposed on the apparatus base 4 in the X-axis direction, and each guide rail 51 is provided with the lower surface of the X-axis feed stand 5a.
  • the slider 52 fixed to is straddled.
  • the X-axis feed stand 5 a is driven by the first linear motor 20 of the X-axis stage feed mechanism 5, and can reciprocate in the X-axis direction along the guide rail 51.
  • guide rails 53 of a plurality of Y-axis linear guides are arranged in the Y-axis direction, and on each guide rail 53, sliders 54 fixed to the lower surface of the Y-axis feed stand 6a. Is straddled.
  • the Y-axis feed stand 6 a is driven by the second linear motor 21 of the Y-axis stage feed mechanism 6, and can reciprocate in the Y-axis direction along the guide rails 53.
  • the positioning resolution is relatively high, but the moving stroke and moving speed and movement coarse movement device 7 are relatively coarse. Compared with device 7, positioning is possible with high resolution, and vertical movement and small movement device 8 is installed to finely adjust the gap between the facing surfaces of mask M and workpiece W to a predetermined amount by finely moving work stage 2 up and down .
  • the up and down coarse movement device 7 moves the work stage 2 up and down with respect to the fine movement stage 6 b by a suitable drive mechanism provided on the fine movement stage 6 b described later.
  • the coarse stage moving shaft 14 fixed to four places on the bottom surface of the work stage 2 engages with the linear motion bearing 14a fixed to the fine movement stage 6b, and is guided in the vertical direction with respect to the fine movement stage 6b.
  • the up-and-down coarse motion apparatus 7 even if resolution is low, it is desirable that a repeat positioning accuracy is high.
  • the vertical fine adjustment device 8 includes a fixed base 9 fixed to the Y-axis feed base 6a, and a guide rail 10 of a linear guide attached to the fixed base 9 with its inner end inclined obliquely downward.
  • a nut (not shown) of a ball screw is connected to a slide body 12 which reciprocates along the guide rail 10 via a slider 11 straddled by the guide rail 10 and an upper end surface of the slide body 12 Is slidably in contact with the flange 12a fixed to the fine adjustment stage 6b in the horizontal direction.
  • the vertical movement adjustment device 8 may drive the slide body 12 by a linear motor instead of driving the slide body 12 by the motor 17 and the ball screw.
  • This vertical movement fine adjustment device 8 is installed one at the one end side (left end side in FIG. 1) of the Z-axis feed stand 6a in the Y-axis direction and two at the other end side. It has become so. Thereby, the vertical movement fine adjustment device 8 finely adjusts the heights of the three flanges 12 a independently based on the measurement result of the gap amount between the mask M and the work W at a plurality of places by the gap sensor 27 to work stage 2 Fine-tune the height and inclination of the In addition, when the height of the work stage 2 can be sufficiently adjusted by the up and down fine adjustment device 8, the up and down movement device 7 may be omitted.
  • a bar mirror 19 facing the Y-axis laser interferometer 18 for detecting the position of the work stage 2 in the Y direction, and an X-axis laser for detecting the position of the work stage 2 in the X-axis direction A bar mirror (both not shown) facing the interferometer is installed.
  • the bar mirror 19 facing the Y-axis laser interferometer 18 is disposed along the X-axis direction on one side of the Y-axis feed stand 6a, and the bar mirror facing the X-axis laser interferometer is the Y-axis feed stand 6a. It is arranged along the Y-axis direction at one end side.
  • the Y-axis laser interferometer 18 and the X-axis laser interferometer are supported by the device base 4 so as to always face the corresponding bar mirrors.
  • Two Y-axis laser interferometers 18 are provided separately in the X-axis direction.
  • Two Y-axis laser interferometers 18 detect the Y-axis position and yawing error of the Y-axis carriage 6 a and hence the work stage 2 via the bar mirror 19.
  • the X axis laser interferometer detects the position of the X axis carriage 5a and hence the work stage 2 in the X axis direction via the facing bar mirror.
  • the mask stage 1 is inserted into the mask base frame 24 formed of a substantially rectangular frame body and a central opening of the mask base frame 24 through a gap, in the X, Y, ⁇ directions (in the X, Y plane).
  • the mask base frame 24 is held at a fixed position above the work stage 2 by columns 4 a protruding from the apparatus base 4.
  • a frame-like mask holder 26 is provided on the lower surface of the central opening of the mask frame 25. That is, the lower surface of the mask frame 25 is provided with a plurality of mask holder suction grooves connected to a vacuum suction device (not shown), and the mask holder 26 is suctioned to the mask frame 25 through the plurality of mask holder suction grooves. It is held.
  • a plurality of mask suction grooves for suctioning the peripheral portion where the mask pattern of the mask M is not drawn are opened.
  • the mask M is formed via the mask suction grooves. It is detachably held on the lower surface of the mask holder 26 by a vacuum suction device (not shown).
  • the illumination device 3 for exposure includes a lamp unit 60 as a light source for ultraviolet irradiation, flat mirrors 63 and 64 for changing the direction of the light path EL, and exposure control for opening and closing the light path EL.
  • An integrator unit 90 which is disposed downstream of the shutter unit 65 and the exposure control shutter unit 65 and uniformly emits light from the lamp unit 60, and collimation, which irradiates the light emitted from the integrator unit 90 as parallel light
  • a mirror 67 and a plane mirror 68 for irradiating the parallel light toward the mask M are provided.
  • the lamp unit 60 is configured by arranging unit parts having a plurality of high pressure mercury lamps and a plurality of reflectors correspondingly in a matrix.
  • the light source may be a single high-pressure mercury lamp and a reflector, or may be an LED.
  • the integrator unit 90 includes two fly eye lenses 91 and 92 each having a plurality of lens elements 93A and 93B arranged in a matrix, and the light from the lamp unit 60 has an illuminance distribution as uniform as possible in the irradiation area. It emits as it becomes.
  • the lens elements 93A of the fly's eye lens 91 and the lens elements 93B of the fly's eye lens 92 have the same number, and the lens elements 93A and the lens elements 93B correspond on a one-to-one basis. That is, the lens element 93A of the fly's eye lens 91 facing each other and the lens element 93B of the fly's eye lens 92 constitute one unit lens of the integrator section 90.
  • the respective fly eye lenses 91 and 92 are preferably arranged so as to be arranged in the longitudinal direction in a range of 3 or more and 15 or less and in the lateral direction in a range of 3 or more and 15 or less.
  • the number of eyes is more preferably about 10 ⁇ 10.
  • Each lens element 93A of the fly eye lens 91 may be a plano-convex lens convex on the lamp unit 60 side, and each lens element 93B of the fly eye lens 92 may be a plano-convex lens convex on the exposure surface side. That is, it is preferable that one surface of the fly eye lenses 91 and 92 is a fly eye structure and the other surface is a plane, and the planes of the fly eye lenses 91 and 92 be arranged to face each other.
  • the integrator unit 90 also includes a fly eye lens interval adjustment mechanism 95 for changing the interval d of the fly eye lenses 91 and 92.
  • the fly-eye lens interval adjustment mechanism 95 can be configured by any mechanism such as a cam mechanism, rack and pinion, etc., and one or both of the fly-eye lenses 91 and 92 are relatively moved along the optical axis. Change the interval d.
  • the fly's-eye lens interval adjustment mechanism 95 operates in accordance with a command from the control unit 80 that controls the change in shape of the reflection surface of the flat mirror 68 described later. That is, the fly-eye lens interval adjustment mechanism 95 changes the interval d of the fly-eye lenses 91 and 92 in accordance with the shape change of the reflection surface of the flat mirror 68.
  • the focal length of the unit lens of the integrator unit 90 (that is, the combined focal length of the pair of lens elements 93A and 93B) f changes.
  • the focal length f is short, thereby realizing illumination with a low NA and a large field of view.
  • the distance d between the fly's eye lens 91 and the fly's eye lens 92 is long, illumination of a high NA and a small field of view is realized by the focal length f becoming long.
  • a DUV cut filter, a polarization filter, a band pass filter, or the like may be disposed between the integrator unit 90 and the exposure surface.
  • the flat mirror 68 is made of a glass material formed in a rectangular shape in a front view.
  • the flat mirror 68 is supported by the holding frame 71 by a plurality of mirror bending mechanisms 70 provided on the back surface side of the flat mirror 68.
  • Each mirror bending mechanism 70 includes a pad 72 fixed to the back surface of the flat mirror 68 with an adhesive, a support member 73 fixed to the pad 72 at one end, and an actuator 74 for driving the support member 73.
  • the support member 73 is provided with a ball joint 76 as a bending mechanism that allows bending of ⁇ 0.5 deg or more at a position closer to the pad 72 with respect to the holding frame 71, and the opposite side to the holding frame 71.
  • An actuator 74 is attached to the other end.
  • a plurality of contact-type sensors 77 are attached to the back surface of each position of the flat mirror 68 that reflects the exposure light to the position of the alignment mark (not shown) on the mask side.
  • the flat mirror 68 senses the displacement amount of the flat mirror 68 by the contact type sensor 77 based on the command from the control unit 80 connected to each actuator 74 by the signal line 81 (see FIG. 2).
  • the actuator 74 of each mirror bending mechanism 70 is driven to change the length of each support member 73, thereby changing the shape of the flat mirror 68 and changing the curvature of the reflecting surface, thereby removing the flat mirror 68.
  • National angle can be corrected.
  • each mirror bending mechanism 70 is provided with the ball joint 76, the portion on the support portion side can be made three-dimensionally rotatable, and each pad 72 is formed on the surface of the plane mirror 68. It can be sloped along. For this reason, while preventing adhesion peeling of each pad 72 and the plane mirror 68, the stress of the plane mirror 68 between each pad 72 from which a movement amount differs is suppressed, and it is a case where it consists of a glass material with small average fracture stress value. Even if the shape of the plane mirror 68 is locally changed, the plane mirror 68 can be bent on the order of 10 mm without damaging the plane mirror 68, and the curvature can be largely changed.
  • the control unit 80 detects the illuminance value at a plurality of points (for example, 5 points ⁇ 5 points) in the exposure area according to each pattern. Is previously measured or simulated to obtain an average illuminance value, and a table representing the relationship between the shape of the reflecting surface of the plane mirror 68 and the average illuminance value is provided. Further, the control unit 80 measures or simulates the average illuminance value in advance when the distance d of the fly eye lenses 91 and 92 is changed, and gives the relationship between the distance d of the fly eye lenses 91 and 92 and the average illuminance value. Have a table. Further, based on the above relationship, a table may be configured in which the mirror bending amount (the shape of the reflecting surface of the flat mirror 68) by the mirror bending mechanism 70 and the distance d of the fly eye lenses 91 and 92 are associated.
  • the entire reflection surface may be changed to be concave or convex with uniform curvature, and in such a case, the plane mirror A table may be prepared in which the shape of the reflecting surface 68 (in this case, the curvature of the reflecting surface) and the distance d of the fly eye lenses 91 and 92 are associated.
  • the mirror bending mechanism 70 is disposed on the plane mirror 68 disposed at the end of the light path EL, but the invention is not limited to the plane mirror 68, and the mirror bending mechanism 70 may be disposed on another mirror It can also be set up. However, if the mirror bending mechanism 70 is disposed on the plane mirror 68 (final mirror) disposed at the end of the light path EL, calculation of the mirror bending amount, the mirror bending amount (shape of the reflection surface of the plane mirror 68) and the average It becomes easy to design a table that gives the relationship between the illuminance value and the relationship between the distance d between the fly's eye lenses 91 and 92 and the average illuminance value.
  • the exposure apparatus PE configured in this way, when the exposure control shutter unit 65 is open-controlled at the time of exposure in the exposure illumination device 3, light emitted from the lamp unit 60 is reflected by the flat mirrors 63 and 64. The light is incident on the incident surface of the integrator unit 90. Then, the light emitted from the exit surface of the integrator unit 90 is changed in its traveling direction by the collimation mirror 67 and the flat mirror 68 and converted into parallel light. Then, the parallel light is irradiated as light for pattern exposure substantially perpendicularly to the mask M held by the mask stage 1 and the surface of the work W held by the work stage 2, and the pattern of the mask M is Exposure and transfer onto the work W.
  • controller 80 in order to correct the pattern of mask M to be exposed and transferred onto workpiece W corresponding to the exposed pattern of workpiece W, controller 80 to each actuator 74 of plane mirror 68 When the drive signal is transmitted with respect to this, the actuator 74 of each mirror bending mechanism 70 changes the length of each support member 73 to change the shape of the reflection surface of the plane mirror 68, and the declination angle of the plane mirror 68 Correct the
  • the illuminance of the exposure light irradiated to the mask M also changes. Specifically, when the flat mirror 68 is pushed from the back surface by the actuator 74 and the reflecting surface of the flat mirror 68 becomes convex, the reflected light is diffused and the reflecting surface of the flat mirror 68 is in a flat state (before change) As compared with the case of the above, the irradiation area becomes wider, and the average illuminance value on the exposure surface is lowered (darkened).
  • the reflection surface of the plane mirror 68 When the back surface of the plane mirror 68 is pulled by the actuator 74 and the reflection surface of the plane mirror 68 becomes concave, the reflected light converges, and the reflection surface of the plane mirror 68 is in the plane state (before change). In comparison, the irradiated area narrows and the average illuminance value on the exposed surface increases (becomes brighter).
  • the fly-eye lenses 91 and 92 are adjusted by the fly-eye lens interval adjustment mechanism 95 based on the above-described table in order to correct the average illuminance value to the value before the change (the value when the reflecting surface of the flat mirror 68 is flat).
  • the distance d between the fly eye lenses 91 and 92 is narrowed to shorten the focal distance f of the unit lens of the integrator unit 90, and the average illuminance value on the exposure surface Reduce
  • the average illuminance value can be made substantially constant regardless of the change in the shape of the reflection surface of the flat mirror 68, and the exposure time can be made constant to suppress variations in tact time.
  • the integrator unit 90 includes the two fly eye lenses 91 and 92, and the fly eye lens interval adjustment mechanism 95 includes the two fly eye lenses.
  • the interval d in the optical axis direction of 91 and 92 is changed. Since the distance d between the two fly eye lenses 91 and 92 in the optical axis direction is changed according to the shape change of the reflection surface of the flat mirror 68 by the mirror bending mechanism 70, the average illuminance value on the exposure surface by mirror bending Can be corrected.
  • the exposure time is substantially constant by correcting the average illuminance value on the exposure surface to approximate the average illuminance value (standard average illuminance value) before the reflection surface of the flat mirror 68 is changed.
  • the variation in tact time can be suppressed.
  • the mirror bending mechanism 70 is provided with a plurality of reflecting mirrors 67 and 68 for reflecting light emitted from the integrator unit, and the mirror bending mechanism 70 is provided to the flat mirror 68 disposed at the last of the light path EL. Since it is provided, it is possible to easily perform table design giving calculation of mirror bending amount, relationship between mirror bending amount and average illuminance value, and relationship between interval d of fly eye lenses 91 and 92 and average illuminance value. .
  • the distance d between the two fly's eye lenses 91 and 92 in the optical axis direction is changed according to the shape change of the reflecting surface of the flat mirror 68 by the mirror bending mechanism 70 using the table.
  • the average illuminance value on the exposure surface can be made substantially constant without acquiring the average illuminance value.
  • interval d of the optical axis direction of two fly's-eye lenses 91 and 92 with the said method you may acquire the average illuminance value in an exposure surface.
  • the distance d of the fly eye lenses 91 and 92 is changed so that the average illuminance value on the exposure surface becomes substantially constant.
  • the corrected simulation result will be described.
  • the simulation results are shown in Table 1.
  • Table 1 shows the coordinates of one of the movable fly eye lenses 91, and the distance d between the fly eye lenses 91 and 92 becomes a predetermined value when the reflection surface of the plane mirror 79 is flat.
  • the coordinates of the fly's eye lens 91 are 0 (mm).
  • the reflecting surface of the flat mirror 68 is flat (standard state), and the distance d between the fly eye lenses 91 and 92 is a predetermined value (the coordinates of one fly eye lens 91 is 0 (mm)).
  • the average illuminance value at one time is 54.7 mW / cm 2 .
  • the average illuminance on the exposed surface is increased, and when the distance d between the fly eye lenses 91 and 92 is a predetermined value, the average illuminance is 57.4 mW / Rise to cm 2 Therefore, if the distance d between the fly's eye lenses 91 and 92 is reduced by 2.6 mm from the predetermined value, the average illuminance value decreases to 54.6 mW / cm 2, and the value when the reflection surface of the flat mirror 68 is flat is obtained. Approximate.
  • the average illuminance value on the exposed surface decreases, and when the distance d between the fly eye lenses 91 and 92 is a predetermined value, the average illuminance value is 52.1 mW It drops to / cm 2 . Therefore, if the distance d of the fly's eye lenses 91 and 92 is increased by 2.5 mm from the predetermined value, the average illuminance value rises to 54.6 mW / cm 2, and the value when the reflection surface of the flat mirror 68 is flat is obtained. Approximate.
  • the average illuminance value on the exposure surface rises, and if the distance d between the fly's eye lenses 91 and 92 is a predetermined value, the average illuminance value Increases to 55.2 mW / cm 2 .
  • the average illuminance value decreases to 54.6 mW / cm 2 , and approximates the value when the reflection surface of the plane mirror 68 is a plane. .
  • the change of the average illuminance value on the exposure surface along with the shape change of the reflection surface of the plane mirror 68 adjusts the distance d of the fly eye lenses 91 and 92 according to the shape change of the reflection surface of the plane mirror 68 It can be corrected by
  • the actual average illuminance value is calculated using a table representing the relationship between the shape of the reflecting surface of the reflecting mirror by the mirror bending mechanism 70 and the distance d between the two fly eye lenses 91 and 92 in the optical axis direction.
  • the distance d in the optical axis direction of the two fly eye lenses 91 and 92 is adjusted from the shape of the reflecting surface of the reflecting mirror without acquisition.
  • the exposure surface after the shape change may be adjusted so that the average illuminance value becomes the average illuminance value on the exposure surface before the shape change.
  • Exposure illumination device 60 Lamp unit (light source) 67 Collimation mirror (reflection mirror) 68 flat mirror (reflecting mirror) 70 Mirror Bending Mechanism 90 Integrator Parts 91 and 92 Fly Eye Lens 93A, 93B Lens Element 95 Fly Eye Lens Interval Adjustment Mechanism d Distance M of Two Fly Eye Lenses in Optical Axis Direction M Mask W Work

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

An integrator unit (90) is provided with two fly-eye lenses (91, 92), and a fly-eye lens distance adjustment mechanism (95) changes a distance (d) in an optical axis direction between the two fly-eye lenses (91, 92). The distance (d) in the optical axis direction between the two fly-eye lenses (91, 92) is changed in response to a shape change in a reflection surface of a plane mirror (68) by a mirror bending mechanism (70), thereby correcting a change in average illuminance value on an exposure surface due to mirror bending. The present invention provides a lighting device for exposure, an exposure apparatus and an exposure method which make it possible to suppress variations in takt time by correcting a change in average illuminance value on an exposure surface due to mirror bending.

Description

露光用照明装置、露光装置及び露光方法Illumination apparatus for exposure, exposure apparatus and exposure method
 本発明は、露光用照明装置、露光装置及び露光方法に関し、より詳細には、露光パターン補正のために行われるミラー曲げに起因する平均照度の変化を補正することができる露光用照明装置、露光装置及び露光方法に関する。 The present invention relates to an illumination apparatus for exposure, an exposure apparatus, and an exposure method, and more specifically, an illumination apparatus for exposure capable of correcting a change in average illuminance caused by mirror bending performed for exposure pattern correction, exposure The present invention relates to an apparatus and an exposure method.
 従来の露光装置では、反射鏡の曲率を補正する曲率補正機構が照明装置に設けられたものがあり、反射鏡を湾曲させて反射鏡のデクリネーション角を変化させることで、露光パターンの形状を補正し、高精度な露光結果を得るものが考案されている(例えば、特許文献1参照)。 In the conventional exposure apparatus, a curvature correction mechanism for correcting the curvature of the reflecting mirror is provided in the illumination device, and the shape of the exposure pattern is obtained by curving the reflecting mirror and changing the declination angle of the reflecting mirror. It has been devised to correct the image data and obtain a highly accurate exposure result (see, for example, Patent Document 1).
 また、特許文献2には、照明光学系の光軸と交差する面内に配列される複数の第1単位波面分割面を有する第1のオプティカルインテグレータと、複数の第1単位波面分割面に個別対応する第2単位波面分割面を有する第2のオプティカルインテグレータと、第1及び第2のオプティカルインテグレータの間の間隔を変更させるべく、第2単位波面分割面の分割インテグレータを光軸方向に移動する移動機構と、を備え、被照射面での光強度分布を独立に調整するようにした照明光学系及び露光装置が記載されている。 Further, in Patent Document 2, a first optical integrator having a plurality of first unit wavefront division surfaces arranged in a plane intersecting with the optical axis of the illumination optical system, and a plurality of first unit wavefront division surfaces are separately provided. The division integrator of the second unit wavefront division surface is moved in the optical axis direction to change the distance between the second optical integrator having the corresponding second unit wavefront division surface and the first and second optical integrators. An illumination optical system and an exposure apparatus are disclosed which are provided with a moving mechanism and independently adjust the light intensity distribution on the surface to be illuminated.
日本国特開2012-155086号公報Japan JP 2012-155086 日本国特許第5453804号公報Japanese Patent No. 5453804
 ところで、露光パターンの補正量は、ミラーの曲げ量に依存し、補正形状は、ミラー形状に依存しているため、曲率補正機構(ミラー曲げ機構)によって反射鏡の曲率を補正すると、反射鏡の反射面が外側(凸面状)に曲がるときは、反射光が拡散して照度が低下し(暗くなる)、反射鏡の反射面が内側(凹面状)に曲がるときは、反射光が収束して照度が高まり(明るくなる)、露光面での照度分布や平均照度値が変化する。平均照度値の変化は、露光量に影響を及ぼして露光時間、ひいてはタクトタイムに影響を及ぼす。一方、露光量に応じて、露光時間やタクトタイムを変更することは、制御が非常に煩雑であった。 By the way, since the correction amount of the exposure pattern depends on the bending amount of the mirror and the correction shape depends on the mirror shape, correcting the curvature of the reflecting mirror by the curvature correcting mechanism (mirror bending mechanism) When the reflective surface bends outward (convex shape), the reflected light diffuses and the illuminance decreases (darkens), and when the reflective surface of the reflective mirror bends inwardly (concave shape), the reflected light converges The illuminance increases (brightens), and the illuminance distribution on the exposed surface and the average illuminance value change. The change of the average illuminance value affects the exposure amount, which affects the exposure time and thus the tact time. On the other hand, changing the exposure time or tact time according to the exposure amount is very complicated in control.
 特許文献2の照明光学系及び露光装置では、該瞳強度分布計測装置からの検出信号に基づいて算出された計測結果、即ちレチクルの照明領域内の各点に対応する各瞳強度分布に基づいて分割インテグレータをY軸方向に沿ってそれぞれ移動させて、各瞳強度分布が所望の分布となるように調整しているため、複雑な機構と制御装置が必要となり、照明装置のコストが嵩んでしまう。 In the illumination optical system and the exposure apparatus of Patent Document 2, the measurement result calculated based on the detection signal from the pupil intensity distribution measurement apparatus, that is, based on each pupil intensity distribution corresponding to each point in the illumination area of the reticle. The division integrator is moved along the Y-axis direction to adjust each pupil intensity distribution to a desired distribution, which requires a complicated mechanism and control device, which increases the cost of the illumination device. .
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、ミラー曲げに起因する露光面での平均照度値の変化を補正することで、タクトタイムのばらつきを抑制することができる露光用照明装置、露光装置及び露光方法を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to suppress variations in tact time by correcting a change in average illuminance value on an exposure surface caused by mirror bending. An exposure illumination device, an exposure device, and an exposure method.
 本発明の上記目的は、下記の構成により達成される。
(1) 光源と、
 マトリックス状に配列された複数のレンズ素子をそれぞれ有する2枚のフライアイレンズを備え、前記光源からの光の照度分布を均一化するインテグレータ部と、
 反射面の形状を変更可能なミラー曲げ機構を備え、前記インテグレータ部から出射された前記光を反射する反射鏡と、を備え、
 露光パターンが形成されたマスクを介して前記光源からの露光光をワーク上に照射して前記露光パターンを前記ワークに露光転写するための露光用照明装置であって、
 前記2枚のフライアイレンズの光軸方向の間隔を変更可能なフライアイレンズ間隔調整機構を備え、
 前記2枚のフライアイレンズの光軸方向の間隔は、前記ミラー曲げ機構による前記反射鏡の反射面の形状変更に応じて変更されることを特徴とする露光用照明装置。
The above object of the present invention is achieved by the following constitution.
(1) With a light source,
An integrator unit including two fly's eye lenses each having a plurality of lens elements arranged in a matrix, wherein the illuminance distribution of the light from the light source is equalized;
A mirror bending mechanism capable of changing the shape of the reflecting surface, and a reflecting mirror that reflects the light emitted from the integrator unit,
An exposure illumination device for exposing and transferring the exposure pattern onto the workpiece by irradiating the workpiece with exposure light from the light source through a mask on which the exposure pattern is formed.
It has a fly eye lens distance adjustment mechanism capable of changing the distance between the two fly eye lenses in the optical axis direction,
An interval between the two fly's eye lenses in the optical axis direction is changed according to a shape change of a reflecting surface of the reflecting mirror by the mirror bending mechanism.
(2) 前記インテグレータ部から出射された前記光を反射する複数の反射鏡を備え、
 前記ミラー曲げ機構は、前記複数の反射鏡のうち、前記光を最後に反射する平面鏡に設けられることを特徴とする(1)に記載の露光用照明装置。
(3) 前記ミラー曲げ機構による前記反射鏡の反射面の形状と、前記2枚のフライアイレンズの前記光軸方向の間隔との関係を表すテーブルを備え、
 前記2枚のフライアイレンズの光軸方向の間隔は、該テーブルを用いて、前記ミラー曲げ機構による前記反射鏡の反射面の形状変更に応じて変更されることを特徴とする(1)に記載の露光用照明装置。
(4) 前記2枚のフライアイレンズの光軸方向の間隔は、前記ミラー曲げ機構による前記反射鏡の反射面の形状変更前と形状変形後の前記露光面で取得された平均照度値に応じて、変更されることを特徴とする(1)に記載の露光用照明装置。
(5) マスクを支持するマスク支持部と、
 ワークを支持するワーク支持部と、
 前記(1)~(4)のいずれかに記載の露光用照明装置と、
を備え、
 前記光源からの露光光を前記マスクを介して前記ワークに照射して前記マスクの露光パターンを前記ワークに露光転写することを特徴とする露光装置。
(6) (5)に記載の露光装置を使用し、前記光源からの露光光を前記マスクを介して前記ワークに照射して前記マスクの露光パターンを前記ワークに露光転写することを特徴とする露光方法。
(2) A plurality of reflecting mirrors that reflect the light emitted from the integrator unit,
The exposure illumination apparatus according to (1), wherein the mirror bending mechanism is provided in a plane mirror that reflects the light last among the plurality of reflecting mirrors.
(3) A table is provided which represents the relationship between the shape of the reflecting surface of the reflecting mirror by the mirror bending mechanism and the distance between the two fly-eye lenses in the optical axis direction.
The distance between the two fly's eye lenses in the optical axis direction is changed according to the shape change of the reflecting surface of the reflecting mirror by the mirror bending mechanism using the table (1). The illumination apparatus for exposure as described.
(4) The distance between the two fly's-eye lenses in the optical axis direction corresponds to the average illuminance value obtained on the exposed surface before and after the shape change of the reflecting surface of the reflecting mirror by the mirror bending mechanism. The illumination apparatus for exposure according to (1), characterized in that it is changed.
(5) a mask support unit for supporting the mask;
A work support that supports the work;
The illumination apparatus for exposure according to any one of (1) to (4) above,
Equipped with
An exposure apparatus characterized in that the exposure light from the light source is irradiated to the work through the mask to expose and transfer the exposure pattern of the mask onto the work.
(6) Using the exposure apparatus described in (5), the exposure light from the light source is irradiated to the work through the mask to expose and transfer the exposure pattern of the mask onto the work. Exposure method.
 本発明の露光用照明装置によれば、インテグレータ部が、2枚のフライアイレンズを備え、フライアイレンズ間隔調整機構が2枚のフライアイレンズの光軸方向の間隔を変更する。2枚のフライアイレンズの光軸方向の間隔は、ミラー曲げ機構による反射鏡の反射面の形状変更に応じて変更されるので、ミラー曲げによる露光面での平均照度値の変化を補正することができる。これにより、露光時間やタクトタイムのばらつきを抑えることができる。 According to the illumination apparatus for exposure of the present invention, the integrator unit includes two fly-eye lenses, and the fly-eye lens interval adjusting mechanism changes the interval in the optical axis direction of the two fly-eye lenses. Since the distance between the two fly's eye lenses in the optical axis direction is changed according to the shape change of the reflecting surface of the reflecting mirror by the mirror bending mechanism, the change of the average illuminance value on the exposed surface due to the mirror bending should be corrected. Can. Thereby, variations in exposure time and tact time can be suppressed.
 また、本発明の露光装置及び露光方法によれば、マスクを支持するマスク支持部と、ワークを支持するワーク支持部と、ミラー曲げ機構による反射鏡の反射面の形状変更に応じて、2枚のフライアイレンズの光軸方向の間隔を変更可能なフライアイレンズ間隔調整機構を備える露光用照明装置と、を備えるので、ミラー曲げに起因する露光面での平均照度値の変化を補正することで、露光時間やタクトタイムのばらつきを抑えることができる。 Further, according to the exposure apparatus and the exposure method of the present invention, two sheets are provided according to the shape change of the reflecting surface of the reflecting mirror by the mask supporting unit supporting the mask, the work supporting unit supporting the work, and the mirror bending mechanism. And an exposure illumination device including a fly-eye lens interval adjustment mechanism capable of changing the distance in the optical axis direction of the fly-eye lens, thereby correcting a change in average illuminance value on the exposure surface due to mirror bending. Thus, variations in exposure time and tact time can be suppressed.
本発明に係る露光用照明装置が適用される露光装置の正面図である。FIG. 1 is a front view of an exposure apparatus to which an illumination apparatus for exposure according to the present invention is applied. 本発明に係る露光用照明装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the illuminating device concerning this invention. (a)は、露光用照明装置の反射鏡支持構造を示す平面図であり、(b)は(a)のIII-III線に沿った断面図であり、(c)は、(a)のIII´-III´線に沿った断面図である。(A) is a top view which shows the reflective mirror support structure of the illuminating device for exposure, (b) is sectional drawing in alignment with the III-III line of (a), (c) of (a) FIG. 3 is a cross-sectional view taken along the line III′-III ′.
 以下、本発明に係る露光装置の一実施形態を図面に基づいて詳細に説明する。図1に示すように、近接露光装置PEは、被露光材としてのワークWより小さいマスクMを用い、マスクMをマスクステージ(マスク支持部)1で保持すると共に、ワークWをワークステージ(ワーク支持部)2で保持する。そして、マスクMとワークWとを近接させて所定の露光ギャップで対向配置した状態で、露光用照明装置3からパターン露光用の光をマスクMに向けて照射することにより、マスクMのパターンがワークW上に露光転写される。また、ワークステージ2をマスクMに対してX軸方向とY軸方向の二軸方向にステップ移動させて、ステップ毎に露光転写が行われる。 Hereinafter, an embodiment of an exposure apparatus according to the present invention will be described in detail based on the drawings. As shown in FIG. 1, the proximity exposure apparatus PE uses the mask M smaller than the workpiece W as a material to be exposed, holds the mask M by the mask stage (mask support portion) 1 and works the workpiece W (workpiece) Support part) 2 hold. Then, in a state in which the mask M and the work W are brought close to each other and disposed opposite to each other with a predetermined exposure gap, the pattern of the mask M is irradiated by irradiating the mask M with light for pattern exposure from the illumination device 3 for exposure. Exposure and transfer onto the work W. Further, the work stage 2 is moved stepwise with respect to the mask M in two axial directions of the X-axis direction and the Y-axis direction, and the exposure transfer is performed for each step.
 ワークステージ2をX軸方向にステップ移動させるため、装置ベース4上には、X軸送り台5aをX軸方向にステップ移動させるX軸ステージ送り機構5が設置されている。X軸ステージ送り機構5のX軸送り台5a上には、ワークステージ2をY軸方向にステップ移動させるため、Y軸送り台6aをY軸方向にステップ移動させるY軸ステージ送り機構6が設置されている。Y軸ステージ送り機構6のY軸送り台6a上には、ワークステージ2が設置されている。ワークステージ2の上面には、ワークWがワークチャック等で真空吸引された状態で保持される。また、ワークステージ2の側部には、マスクMの下面高さを測定するための基板側変位センサ15が配設されている。従って、基板側変位センサ15は、ワークステージ2と共にX、Y軸方向に移動可能である。 In order to move the work stage 2 stepwise in the X-axis direction, an X-axis stage feed mechanism 5 is provided on the apparatus base 4 to move the X-axis feed stand 5a stepwise in the X-axis direction. A Y-axis stage feed mechanism 6 is provided on the X-axis feed stand 5a of the X-axis stage feed mechanism 5 to step-move the Y-axis feed stand 6a in the Y-axis direction. It is done. A work stage 2 is installed on the Y-axis feed stand 6 a of the Y-axis stage feed mechanism 6. The workpiece W is held on the upper surface of the workpiece stage 2 in a vacuum-sucked state by a workpiece chuck or the like. In addition, a substrate-side displacement sensor 15 for measuring the height of the lower surface of the mask M is disposed on the side of the work stage 2. Therefore, the substrate side displacement sensor 15 is movable in the X and Y axis directions together with the work stage 2.
 装置ベース4上には、複数(図に示す実施形態では4本)のX軸リニアガイドのガイドレール51がX軸方向に配置され、それぞれのガイドレール51には、X軸送り台5aの下面に固定されたスライダ52が跨架されている。これにより、X軸送り台5aは、X軸ステージ送り機構5の第1リニアモータ20で駆動され、ガイドレール51に沿ってX軸方向に往復移動可能である。また、X軸送り台5a上には、複数のY軸リニアガイドのガイドレール53がY軸方向に配置され、それぞれのガイドレール53には、Y軸送り台6aの下面に固定されたスライダ54が跨架されている。これにより、Y軸送り台6aは、Y軸ステージ送り機構6の第2リニアモータ21で駆動され、ガイドレール53に沿ってY軸方向に往復移動可能である。 A plurality of (four in the illustrated embodiment) X-axis linear guide guide rails 51 are disposed on the apparatus base 4 in the X-axis direction, and each guide rail 51 is provided with the lower surface of the X-axis feed stand 5a. The slider 52 fixed to is straddled. As a result, the X-axis feed stand 5 a is driven by the first linear motor 20 of the X-axis stage feed mechanism 5, and can reciprocate in the X-axis direction along the guide rail 51. Further, on the X-axis feed stand 5a, guide rails 53 of a plurality of Y-axis linear guides are arranged in the Y-axis direction, and on each guide rail 53, sliders 54 fixed to the lower surface of the Y-axis feed stand 6a. Is straddled. Thus, the Y-axis feed stand 6 a is driven by the second linear motor 21 of the Y-axis stage feed mechanism 6, and can reciprocate in the Y-axis direction along the guide rails 53.
 Y軸ステージ送り機構6とワークステージ2の間には、ワークステージ2を上下方向に移動させるため、比較的位置決め分解能は粗いが移動ストローク及び移動速度が大きな上下粗動装置7と、上下粗動装置7と比べて高分解能での位置決めが可能でワークステージ2を上下に微動させてマスクMとワークWとの対向面間のギャップを所定量に微調整する上下微動装置8が設置されている。 In order to move the work stage 2 in the vertical direction between the Y-axis stage feed mechanism 6 and the work stage 2, the positioning resolution is relatively high, but the moving stroke and moving speed and movement coarse movement device 7 are relatively coarse. Compared with device 7, positioning is possible with high resolution, and vertical movement and small movement device 8 is installed to finely adjust the gap between the facing surfaces of mask M and workpiece W to a predetermined amount by finely moving work stage 2 up and down .
 上下粗動装置7は後述の微動ステージ6bに設けられた適宜の駆動機構によりワークステージ2を微動ステージ6bに対して上下動させる。ワークステージ2の底面の4箇所に固定されたステージ粗動軸14は、微動ステージ6bに固定された直動ベアリング14aに係合し、微動ステージ6bに対し上下方向に案内される。なお、上下粗動装置7は、分解能が低くても、繰り返し位置決め精度が高いことが望ましい。 The up and down coarse movement device 7 moves the work stage 2 up and down with respect to the fine movement stage 6 b by a suitable drive mechanism provided on the fine movement stage 6 b described later. The coarse stage moving shaft 14 fixed to four places on the bottom surface of the work stage 2 engages with the linear motion bearing 14a fixed to the fine movement stage 6b, and is guided in the vertical direction with respect to the fine movement stage 6b. In addition, as for the up-and-down coarse motion apparatus 7, even if resolution is low, it is desirable that a repeat positioning accuracy is high.
 上下微動装置8は、Y軸送り台6aに固定された固定台9と、固定台9にその内端側を斜め下方に傾斜させた状態で取り付けられたリニアガイドの案内レール10とを備えており、該案内レール10に跨架されたスライダ11を介して案内レール10に沿って往復移動するスライド体12にボールねじのナット(図示せず)が連結されると共に、スライド体12の上端面は微動ステージ6bに固定されたフランジ12aに対して水平方向に摺動自在に接している。 The vertical fine adjustment device 8 includes a fixed base 9 fixed to the Y-axis feed base 6a, and a guide rail 10 of a linear guide attached to the fixed base 9 with its inner end inclined obliquely downward. A nut (not shown) of a ball screw is connected to a slide body 12 which reciprocates along the guide rail 10 via a slider 11 straddled by the guide rail 10 and an upper end surface of the slide body 12 Is slidably in contact with the flange 12a fixed to the fine adjustment stage 6b in the horizontal direction.
 そして、固定台9に取り付けられたモータ17によってボールねじのねじ軸を回転駆動させると、ナット、スライダ11及びスライド体12が一体となって案内レール10に沿って斜め方向に移動し、これにより、フランジ12aが上下微動する。
 なお、上下微動装置8は、モータ17とボールねじによってスライド体12を駆動する代わりに、リニアモータによってスライド体12を駆動するようにしてもよい。
Then, when the screw shaft of the ball screw is rotationally driven by the motor 17 attached to the fixed base 9, the nut, the slider 11 and the slide body 12 integrally move along the guide rail 10 in an oblique direction, , The flange 12a moves up and down slightly.
The vertical movement adjustment device 8 may drive the slide body 12 by a linear motor instead of driving the slide body 12 by the motor 17 and the ball screw.
 この上下微動装置8は、Z軸送り台6aのY軸方向の一端側(図1の左端側)に1台、他端側に2台、合計3台設置されてそれぞれが独立に駆動制御されるようになっている。これにより、上下微動装置8は、ギャップセンサ27による複数箇所でのマスクMとワークWとのギャップ量の計測結果に基づき、3箇所のフランジ12aの高さを独立に微調整してワークステージ2の高さ及び傾きを微調整する。
 なお、上下微動装置8によってワークステージ2の高さを十分に調整できる場合には、上下粗動装置7を省略してもよい。
This vertical movement fine adjustment device 8 is installed one at the one end side (left end side in FIG. 1) of the Z-axis feed stand 6a in the Y-axis direction and two at the other end side. It has become so. Thereby, the vertical movement fine adjustment device 8 finely adjusts the heights of the three flanges 12 a independently based on the measurement result of the gap amount between the mask M and the work W at a plurality of places by the gap sensor 27 to work stage 2 Fine-tune the height and inclination of the
In addition, when the height of the work stage 2 can be sufficiently adjusted by the up and down fine adjustment device 8, the up and down movement device 7 may be omitted.
 また、Y軸送り台6a上には、ワークステージ2のY方向の位置を検出するY軸レーザ干渉計18に対向するバーミラー19と、ワークステージ2のX軸方向の位置を検出するX軸レーザ干渉計に対向するバーミラー(共に図示せず)とが設置されている。Y軸レーザ干渉計18に対向するバーミラー19は、Y軸送り台6aの一側でX軸方向に沿って配置されており、X軸レーザ干渉計に対向するバーミラーは、Y軸送り台6aの一端側でY軸方向に沿って配置されている。 Also, on the Y-axis feed stand 6a, a bar mirror 19 facing the Y-axis laser interferometer 18 for detecting the position of the work stage 2 in the Y direction, and an X-axis laser for detecting the position of the work stage 2 in the X-axis direction A bar mirror (both not shown) facing the interferometer is installed. The bar mirror 19 facing the Y-axis laser interferometer 18 is disposed along the X-axis direction on one side of the Y-axis feed stand 6a, and the bar mirror facing the X-axis laser interferometer is the Y-axis feed stand 6a. It is arranged along the Y-axis direction at one end side.
 Y軸レーザ干渉計18及びX軸レーザ干渉計は、それぞれ常に対応するバーミラーに対向するように配置されて装置ベース4に支持されている。なお、Y軸レーザ干渉計18は、X軸方向に離間して2台設置されている。2台のY軸レーザ干渉計18により、バーミラー19を介してY軸送り台6a、ひいてはワークステージ2のY軸方向の位置及びヨーイング誤差を検出する。また、X軸レーザ干渉計により、対向するバーミラーを介してX軸送り台5a、ひいてはワークステージ2のX軸方向の位置を検出する。 The Y-axis laser interferometer 18 and the X-axis laser interferometer are supported by the device base 4 so as to always face the corresponding bar mirrors. Two Y-axis laser interferometers 18 are provided separately in the X-axis direction. Two Y-axis laser interferometers 18 detect the Y-axis position and yawing error of the Y-axis carriage 6 a and hence the work stage 2 via the bar mirror 19. Further, the X axis laser interferometer detects the position of the X axis carriage 5a and hence the work stage 2 in the X axis direction via the facing bar mirror.
 マスクステージ1は、略長方形状の枠体からなるマスク基枠24と、該マスク基枠24の中央部開口にギャップを介して挿入されてX,Y,θ方向(X,Y平面内)に移動可能に支持されたマスクフレーム25とを備えており、マスク基枠24は装置ベース4から突設された支柱4aによってワークステージ2の上方の定位置に保持されている。 The mask stage 1 is inserted into the mask base frame 24 formed of a substantially rectangular frame body and a central opening of the mask base frame 24 through a gap, in the X, Y, θ directions (in the X, Y plane). The mask base frame 24 is held at a fixed position above the work stage 2 by columns 4 a protruding from the apparatus base 4.
 マスクフレーム25の中央部開口の下面には、枠状のマスクホルダ26が設けられている。即ち、マスクフレーム25の下面には、図示しない真空式吸着装置に接続される複数のマスクホルダ吸着溝が設けられており、マスクホルダ26が複数のマスクホルダ吸着溝を介してマスクフレーム25に吸着保持される。 A frame-like mask holder 26 is provided on the lower surface of the central opening of the mask frame 25. That is, the lower surface of the mask frame 25 is provided with a plurality of mask holder suction grooves connected to a vacuum suction device (not shown), and the mask holder 26 is suctioned to the mask frame 25 through the plurality of mask holder suction grooves. It is held.
 マスクホルダ26の下面には、マスクMのマスクパターンが描かれていない周縁部を吸着するための複数のマスク吸着溝(図示せず)が開設されており、マスクMは、マスク吸着溝を介して図示しない真空式吸着装置によりマスクホルダ26の下面に着脱自在に保持される。 On the lower surface of the mask holder 26, a plurality of mask suction grooves (not shown) for suctioning the peripheral portion where the mask pattern of the mask M is not drawn are opened. The mask M is formed via the mask suction grooves. It is detachably held on the lower surface of the mask holder 26 by a vacuum suction device (not shown).
 図2に示すように、露光用照明装置3は、紫外線照射用の光源としてのランプユニット60と、光路ELの向きを変えるための平面ミラー63,64と、光路ELを開閉制御する露光制御用シャッターユニット65と、露光制御用シャッターユニット65の下流側に配置され、ランプユニット60からの光を均一にして出射するインテグレータ部90と、インテグレータ部90から出射された光を平行光として照射するコリメーションミラー67と、該平行光をマスクMに向けて照射する平面ミラー68と、を備える。 As shown in FIG. 2, the illumination device 3 for exposure includes a lamp unit 60 as a light source for ultraviolet irradiation, flat mirrors 63 and 64 for changing the direction of the light path EL, and exposure control for opening and closing the light path EL. An integrator unit 90, which is disposed downstream of the shutter unit 65 and the exposure control shutter unit 65 and uniformly emits light from the lamp unit 60, and collimation, which irradiates the light emitted from the integrator unit 90 as parallel light A mirror 67 and a plane mirror 68 for irradiating the parallel light toward the mask M are provided.
 ランプユニット60は、高圧水銀ランプとリフレクタとを対応して複数備えたユニット部品をマトリクス状に配置することで構成される。なお、光源としては、単一の高圧水銀ランプとリフレクタの構成であってもよく、或いは、LEDによって構成されてもよい。 The lamp unit 60 is configured by arranging unit parts having a plurality of high pressure mercury lamps and a plurality of reflectors correspondingly in a matrix. The light source may be a single high-pressure mercury lamp and a reflector, or may be an LED.
 インテグレータ部90は、マトリックス状に配列された複数のレンズ素子93A,93Bをそれぞれ有する2枚のフライアイレンズ91,92を備え、ランプユニット60からの光を、照射領域においてできるだけ均一な照度分布となるようにして出射する。フライアイレンズ91のレンズ素子93Aと、フライアイレンズ92のレンズ素子93Bは、同数であり、レンズ素子93Aとレンズ素子93Bとが1対1で対応している。即ち、互いに対向するフライアイレンズ91のレンズ素子93Aと、フライアイレンズ92のレンズ素子93Bとが、インテグレータ部90の1つの単位レンズを構成する。
 なお、各フライアイレンズ91、92は、縦方向に3個以上15個以下、横方向に3個以上15個以下で並ぶように配置されることが好ましい。各フライアイレンズ91、92は、目の個数を増やすと、照度分布が向上するが、照度は暗くなり、一方、目の個数を減らすと、照度分布は低下するが、照度は明るくなることから、目の個数は、10個×10個程度とするのがより好ましい。
The integrator unit 90 includes two fly eye lenses 91 and 92 each having a plurality of lens elements 93A and 93B arranged in a matrix, and the light from the lamp unit 60 has an illuminance distribution as uniform as possible in the irradiation area. It emits as it becomes. The lens elements 93A of the fly's eye lens 91 and the lens elements 93B of the fly's eye lens 92 have the same number, and the lens elements 93A and the lens elements 93B correspond on a one-to-one basis. That is, the lens element 93A of the fly's eye lens 91 facing each other and the lens element 93B of the fly's eye lens 92 constitute one unit lens of the integrator section 90.
The respective fly eye lenses 91 and 92 are preferably arranged so as to be arranged in the longitudinal direction in a range of 3 or more and 15 or less and in the lateral direction in a range of 3 or more and 15 or less. With each fly's eye lens 91, 92, increasing the number of eyes improves the illuminance distribution, but the illuminance decreases, while reducing the number of eyes decreases the illuminance distribution, but the illuminance increases. The number of eyes is more preferably about 10 × 10.
 フライアイレンズ91の各レンズ素子93Aは、ランプユニット60側に凸とした平凸レンズにすると共に、フライアイレンズ92の各レンズ素子93Bは、露光面側に凸とした平凸レンズにするとよい。即ち、フライアイレンズ91,92は、一方の面がフライアイ構造であり、他方の面が平面であり、フライアイレンズ91,92の平面は、対向させて並べることが好ましい。 Each lens element 93A of the fly eye lens 91 may be a plano-convex lens convex on the lamp unit 60 side, and each lens element 93B of the fly eye lens 92 may be a plano-convex lens convex on the exposure surface side. That is, it is preferable that one surface of the fly eye lenses 91 and 92 is a fly eye structure and the other surface is a plane, and the planes of the fly eye lenses 91 and 92 be arranged to face each other.
 また、インテグレータ部90は、フライアイレンズ91,92の間隔dを変更するためのフライアイレンズ間隔調整機構95を備える。フライアイレンズ間隔調整機構95は、例えば、カム機構、ラックアンドピニオンなど、任意の機構で構成可能であり、フライアイレンズ91,92のいずれか一方、又は両方を光軸に沿って相対移動させて間隔dを変更する。 The integrator unit 90 also includes a fly eye lens interval adjustment mechanism 95 for changing the interval d of the fly eye lenses 91 and 92. The fly-eye lens interval adjustment mechanism 95 can be configured by any mechanism such as a cam mechanism, rack and pinion, etc., and one or both of the fly- eye lenses 91 and 92 are relatively moved along the optical axis. Change the interval d.
 フライアイレンズ間隔調整機構95は、後述する平面ミラー68の反射面の形状変更を制御する制御部80からの指令により作動する。即ち、フライアイレンズ間隔調整機構95は、平面ミラー68の反射面の形状変更に応じてフライアイレンズ91,92の間隔dを変更する。 The fly's-eye lens interval adjustment mechanism 95 operates in accordance with a command from the control unit 80 that controls the change in shape of the reflection surface of the flat mirror 68 described later. That is, the fly-eye lens interval adjustment mechanism 95 changes the interval d of the fly- eye lenses 91 and 92 in accordance with the shape change of the reflection surface of the flat mirror 68.
 フライアイレンズ91,92の間隔dを変更することで、インテグレータ部90の単位レンズの焦点距離(すなわち、一対のレンズ素子93A,93Bの合成焦点距離)fが変化する。フライアイレンズ91とフライアイレンズ92の間隔dが短いときには、焦点距離fが短くなることで、低NAかつ大視野の照明が実現する。一方、フライアイレンズ91とフライアイレンズ92の間隔dが長いときには、焦点距離fが長くなることで、高NAかつ小視野の照明が実現する。 By changing the distance d between the fly's eye lenses 91 and 92, the focal length of the unit lens of the integrator unit 90 (that is, the combined focal length of the pair of lens elements 93A and 93B) f changes. When the distance d between the fly's eye lens 91 and the fly's eye lens 92 is short, the focal length f is short, thereby realizing illumination with a low NA and a large field of view. On the other hand, when the distance d between the fly's eye lens 91 and the fly's eye lens 92 is long, illumination of a high NA and a small field of view is realized by the focal length f becoming long.
 また、露光用照明装置3では、インテグレータ部90と露光面との間に、DUVカットフィルタ、偏光フィルタ、バンドパスフィルタなどが配置されてもよい。 In addition, in the illumination device 3 for exposure, a DUV cut filter, a polarization filter, a band pass filter, or the like may be disposed between the integrator unit 90 and the exposure surface.
 図3に示すように、平面ミラー68は、正面視矩形状に形成されたガラス素材からなる。平面ミラー68は、平面ミラー68の裏面側に設けられた複数のミラー曲げ機構70により保持枠71に支持されている。 As shown in FIG. 3, the flat mirror 68 is made of a glass material formed in a rectangular shape in a front view. The flat mirror 68 is supported by the holding frame 71 by a plurality of mirror bending mechanisms 70 provided on the back surface side of the flat mirror 68.
 各ミラー曲げ機構70は、平面ミラー68の裏面に接着剤で固定されるパッド72と、一端がパッド72に固定された支持部材73と、支持部材73を駆動するアクチュエータ74と、を備える。 Each mirror bending mechanism 70 includes a pad 72 fixed to the back surface of the flat mirror 68 with an adhesive, a support member 73 fixed to the pad 72 at one end, and an actuator 74 for driving the support member 73.
 支持部材73には、保持枠71に対してパッド72寄りの位置に、±0・5deg以上の屈曲を許容する屈曲機構としてのボールジョイント76が設けられており、保持枠71に対して反対側となる他端には、アクチュエータ74が取り付けられている。 The support member 73 is provided with a ball joint 76 as a bending mechanism that allows bending of ± 0.5 deg or more at a position closer to the pad 72 with respect to the holding frame 71, and the opposite side to the holding frame 71. An actuator 74 is attached to the other end.
 さらに、マスク側のアライメントマーク(図示せず)の位置に露光光を反射する平面ミラー68の各位置の裏面には、複数の接触式センサ77が取り付けられている。 Furthermore, a plurality of contact-type sensors 77 are attached to the back surface of each position of the flat mirror 68 that reflects the exposure light to the position of the alignment mark (not shown) on the mask side.
 これにより、平面ミラー68は、信号線81により各アクチュエータ74に接続された制御部80からの指令に基づいて(図2参照)、接触式センサ77によって平面ミラー68の変位量をセンシングしながら、各ミラー曲げ機構70のアクチュエータ74を駆動して、各支持部材73の長さを変えることによって、平面ミラー68の形状を変更し、反射面の曲率を変更することで、平面ミラー68のデクリネーション角を補正することができる。 Thereby, the flat mirror 68 senses the displacement amount of the flat mirror 68 by the contact type sensor 77 based on the command from the control unit 80 connected to each actuator 74 by the signal line 81 (see FIG. 2). The actuator 74 of each mirror bending mechanism 70 is driven to change the length of each support member 73, thereby changing the shape of the flat mirror 68 and changing the curvature of the reflecting surface, thereby removing the flat mirror 68. Nation angle can be corrected.
 その際、各ミラー曲げ機構70には、ボールジョイント76が設けられているので、支持部側の部分を三次元的に回動可能とすることができ、各パッド72を平面ミラー68の表面に沿って傾斜させることができる。このため、各パッド72と平面ミラー68との接着剥がれを防止するすると共に、移動量の異なる各パッド72間における平面ミラー68の応力が抑制され、平均破壊応力値が小さいガラス素材からなる場合であっても、平面ミラー68の形状を局部的に変更する際、平面ミラー68を破損することなく、10mmオーダーで平面ミラー68を曲げることができ、曲率を大きく変更することができる。 At this time, since each mirror bending mechanism 70 is provided with the ball joint 76, the portion on the support portion side can be made three-dimensionally rotatable, and each pad 72 is formed on the surface of the plane mirror 68. It can be sloped along. For this reason, while preventing adhesion peeling of each pad 72 and the plane mirror 68, the stress of the plane mirror 68 between each pad 72 from which a movement amount differs is suppressed, and it is a case where it consists of a glass material with small average fracture stress value. Even if the shape of the plane mirror 68 is locally changed, the plane mirror 68 can be bent on the order of 10 mm without damaging the plane mirror 68, and the curvature can be largely changed.
 また、制御部80は、ミラー曲げ機構70が平面ミラー68の反射面の曲率を変更した際、各パターンに応じて、露光エリア内の複数点(例えば、5点×5点)での照度値を予め測定又はシミュレーションして、平均照度値を求め、平面ミラー68の反射面の形状と平均照度値との関係を表すテーブルを備える。また、制御部80は、フライアイレンズ91,92の間隔dを変更した際の平均照度値を予め測定又はシミュレーションして、フライアイレンズ91,92の間隔dと平均照度値との関係を与えるテーブルを備えておく。
 また、上記の関係から、ミラー曲げ機構70によるミラー曲げ量(平面ミラー68の反射面の形状)とフライアイレンズ91、92の間隔dとを関連付けたテーブルを構成してもよい。
In addition, when the mirror bending mechanism 70 changes the curvature of the reflection surface of the flat mirror 68, the control unit 80 detects the illuminance value at a plurality of points (for example, 5 points × 5 points) in the exposure area according to each pattern. Is previously measured or simulated to obtain an average illuminance value, and a table representing the relationship between the shape of the reflecting surface of the plane mirror 68 and the average illuminance value is provided. Further, the control unit 80 measures or simulates the average illuminance value in advance when the distance d of the fly eye lenses 91 and 92 is changed, and gives the relationship between the distance d of the fly eye lenses 91 and 92 and the average illuminance value. Have a table.
Further, based on the above relationship, a table may be configured in which the mirror bending amount (the shape of the reflecting surface of the flat mirror 68) by the mirror bending mechanism 70 and the distance d of the fly eye lenses 91 and 92 are associated.
 特に、露光面における照射領域の大きさを変更するパターン補正の場合、反射面全体が一様な曲率の凹面状、又は凸面状になるように変更してもよく、このような場合の平面ミラー68の反射面の形状(この場合、反射面の曲率)とフライアイレンズ91、92の間隔dとを関連付けたテーブルを準備してもよい。 In particular, in the case of pattern correction for changing the size of the irradiation area on the exposure surface, the entire reflection surface may be changed to be concave or convex with uniform curvature, and in such a case, the plane mirror A table may be prepared in which the shape of the reflecting surface 68 (in this case, the curvature of the reflecting surface) and the distance d of the fly eye lenses 91 and 92 are associated.
 なお、図2に示す実施形態では、光路ELの最後に配置された平面ミラー68にミラー曲げ機構70を配設したが、平面ミラー68に限定されず、ミラー曲げ機構70を他のミラーに配設することもできる。ただし、光路ELの最後に配置された平面ミラー68(最終ミラー)にミラー曲げ機構70を配設すれば、ミラー曲げ量の計算や、ミラー曲げ量(平面ミラー68の反射面の形状)と平均照度値との関係、及びフライアイレンズ91、92の間隔dと平均照度値との関係を与えるテーブル設計が容易となる。 In the embodiment shown in FIG. 2, the mirror bending mechanism 70 is disposed on the plane mirror 68 disposed at the end of the light path EL, but the invention is not limited to the plane mirror 68, and the mirror bending mechanism 70 may be disposed on another mirror It can also be set up. However, if the mirror bending mechanism 70 is disposed on the plane mirror 68 (final mirror) disposed at the end of the light path EL, calculation of the mirror bending amount, the mirror bending amount (shape of the reflection surface of the plane mirror 68) and the average It becomes easy to design a table that gives the relationship between the illuminance value and the relationship between the distance d between the fly's eye lenses 91 and 92 and the average illuminance value.
 このように構成された露光装置PEでは、露光用照明装置3において、露光時に露光制御用シャッターユニット65が開制御されると、ランプユニット60から照射された光が、平面ミラー63,64で反射されてインテグレータ部90の入射面に入射される。そして、インテグレータ部90の出射面から発せられた光は、コリメーションミラー67、及び平面ミラー68によってその進行方向が変えられるとともに平行光に変換される。そして、この平行光は、マスクステージ1に保持されるマスクM、さらにはワークステージ2に保持されるワークWの表面に対して略垂直にパターン露光用の光として照射され、マスクMのパターンがワークW上に露光転写される。 In the exposure apparatus PE configured in this way, when the exposure control shutter unit 65 is open-controlled at the time of exposure in the exposure illumination device 3, light emitted from the lamp unit 60 is reflected by the flat mirrors 63 and 64. The light is incident on the incident surface of the integrator unit 90. Then, the light emitted from the exit surface of the integrator unit 90 is changed in its traveling direction by the collimation mirror 67 and the flat mirror 68 and converted into parallel light. Then, the parallel light is irradiated as light for pattern exposure substantially perpendicularly to the mask M held by the mask stage 1 and the surface of the work W held by the work stage 2, and the pattern of the mask M is Exposure and transfer onto the work W.
 ここで、図2も参照して、ワークWの露光済みのパターンに対応してワークW上に露光転写されるマスクMのパターンを補正するため、制御部80から平面ミラー68の各アクチュエータ74に対して駆動信号を伝達すると、各ミラー曲げ機構70のアクチュエータ74は、各支持部材73の長さを変えて、平面ミラー68の反射面の形状を変更して、平面ミラー68のデクリネーション角を補正する。 Here, referring also to FIG. 2, in order to correct the pattern of mask M to be exposed and transferred onto workpiece W corresponding to the exposed pattern of workpiece W, controller 80 to each actuator 74 of plane mirror 68 When the drive signal is transmitted with respect to this, the actuator 74 of each mirror bending mechanism 70 changes the length of each support member 73 to change the shape of the reflection surface of the plane mirror 68, and the declination angle of the plane mirror 68 Correct the
 このとき、平面ミラー68の形状変更により、マスクMに照射される露光光の照度も変化する。具体的には、アクチュエータ74によって平面ミラー68が裏面から押されて、平面ミラー68の反射面が凸面状になると、反射光が拡散して、平面ミラー68の反射面が平面状態(変更前)のときと比較して照射領域が広くなり、露光面での平均照度値が低下する(暗くなる)。また、アクチュエータ74によって平面ミラー68の裏面が引かれて、平面ミラー68の反射面が凹面状になると、反射光が収束して、平面ミラー68の反射面が平面状態(変更前)のときと比較して照射領域が狭まり、露光面での平均照度値が高まる(明るくなる)。 At this time, due to the shape change of the flat mirror 68, the illuminance of the exposure light irradiated to the mask M also changes. Specifically, when the flat mirror 68 is pushed from the back surface by the actuator 74 and the reflecting surface of the flat mirror 68 becomes convex, the reflected light is diffused and the reflecting surface of the flat mirror 68 is in a flat state (before change) As compared with the case of the above, the irradiation area becomes wider, and the average illuminance value on the exposure surface is lowered (darkened). When the back surface of the plane mirror 68 is pulled by the actuator 74 and the reflection surface of the plane mirror 68 becomes concave, the reflected light converges, and the reflection surface of the plane mirror 68 is in the plane state (before change). In comparison, the irradiated area narrows and the average illuminance value on the exposed surface increases (becomes brighter).
 露光面での平均照度値の変化は、露光時間に影響するため、タクトタイムのばらつきとなって現れるので生産効率上、好ましくない。そこで、平均照度値を変更前の値(平面ミラー68の反射面が平面のときの値)に補正するため、上述したテーブルに基づいて、フライアイレンズ間隔調整機構95によりフライアイレンズ91,92の間隔dを変更する。具体的には、平面ミラー68の反射面が凸面状に変更されたときには、フライアイレンズ91,92の間隔dを広げてインテグレータ部90の単位レンズの焦点距離fを長くし、露光面での平均照度値を高める。また、平面ミラー68の反射面が凹面状に変更されたときには、フライアイレンズ91,92の間隔dを狭めてインテグレータ部90の単位レンズの焦点距離fを短くし、露光面での平均照度値を低下させる。 A change in the average illuminance value on the exposure surface affects the exposure time, and thus appears as a variation in tact time, which is not preferable in terms of production efficiency. Therefore, the fly- eye lenses 91 and 92 are adjusted by the fly-eye lens interval adjustment mechanism 95 based on the above-described table in order to correct the average illuminance value to the value before the change (the value when the reflecting surface of the flat mirror 68 is flat). Change the interval d of Specifically, when the reflection surface of the flat mirror 68 is changed to a convex shape, the distance d of the fly eye lenses 91 and 92 is increased to lengthen the focal length f of the unit lens of the integrator unit 90, and Increase the average illumination value. In addition, when the reflection surface of the flat mirror 68 is changed to a concave shape, the distance d between the fly eye lenses 91 and 92 is narrowed to shorten the focal distance f of the unit lens of the integrator unit 90, and the average illuminance value on the exposure surface Reduce
 これにより、平面ミラー68の反射面の形状変更に拘らず、平均照度値を略一定にすることができ、露光時間が一定となってタクトタイムのばらつきを抑制することができる。 Thus, the average illuminance value can be made substantially constant regardless of the change in the shape of the reflection surface of the flat mirror 68, and the exposure time can be made constant to suppress variations in tact time.
 以上説明したように、本実施形態の露光用照明装置3によれば、インテグレータ部90が、2枚のフライアイレンズ91,92を備え、フライアイレンズ間隔調整機構95が2枚のフライアイレンズ91,92の光軸方向の間隔dを変更する。2枚のフライアイレンズ91,92の光軸方向の間隔dは、ミラー曲げ機構70による平面ミラー68の反射面の形状変更に応じて変更されるので、ミラー曲げによる露光面での平均照度値の変化を補正することができる。これにより、例えば、露光面での平均照度値を、平面ミラー68の反射面が変更される前の平均照度値(標準平均照度値)に近似するように補正することで、露光時間を略一定にすることができ、タクトタイムのばらつきを抑えることができる。 As described above, according to the exposure illumination device 3 of the present embodiment, the integrator unit 90 includes the two fly eye lenses 91 and 92, and the fly eye lens interval adjustment mechanism 95 includes the two fly eye lenses. The interval d in the optical axis direction of 91 and 92 is changed. Since the distance d between the two fly eye lenses 91 and 92 in the optical axis direction is changed according to the shape change of the reflection surface of the flat mirror 68 by the mirror bending mechanism 70, the average illuminance value on the exposure surface by mirror bending Can be corrected. Thereby, for example, the exposure time is substantially constant by correcting the average illuminance value on the exposure surface to approximate the average illuminance value (standard average illuminance value) before the reflection surface of the flat mirror 68 is changed. The variation in tact time can be suppressed.
 また、インテグレータ部から出射された光を反射する複数の反射鏡67、68を備え、ミラー曲げ機構70は、複数の反射鏡67、68のうち、光路ELの最後に配置された平面ミラー68に設けられるので、ミラー曲げ量の計算や、ミラー曲げ量と平均照度値との関係、及びフライアイレンズ91、92の間隔dと平均照度値との関係を与えるテーブル設計を容易に行うことができる。 In addition, the mirror bending mechanism 70 is provided with a plurality of reflecting mirrors 67 and 68 for reflecting light emitted from the integrator unit, and the mirror bending mechanism 70 is provided to the flat mirror 68 disposed at the last of the light path EL. Since it is provided, it is possible to easily perform table design giving calculation of mirror bending amount, relationship between mirror bending amount and average illuminance value, and relationship between interval d of fly eye lenses 91 and 92 and average illuminance value. .
 さらに、ミラー曲げ機構70による平面ミラー68の反射面の形状と、露光面での平均照度値との関係、及び、2枚のフライアイレンズ91,92の光軸方向の間隔dと、露光面での平均照度値との関係に基づいて、ミラー曲げ機構70による平面ミラー68の反射面の形状と、2枚のフライアイレンズ91,92の光軸方向の間隔dとの関係を表すテーブルを備える。そして、2枚のフライアイレンズ91,92の光軸方向の間隔dは、該テーブルを用いて、ミラー曲げ機構70による平面ミラー68の反射面の形状変更に応じて変更されるので、実際の平均照度値を取得することなく、露光面での平均照度値を略一定にすることができる。ただし、上記手法によって、2枚のフライアイレンズ91,92の光軸方向の間隔dを調整する場合に、露光面での平均照度値を取得していてもよい。 Furthermore, the relationship between the shape of the reflection surface of the flat mirror 68 by the mirror bending mechanism 70 and the average illuminance value on the exposure surface, the distance d between the two fly eye lenses 91 and 92 in the optical axis direction, and the exposure surface Table showing the relationship between the shape of the reflecting surface of the flat mirror 68 by the mirror bending mechanism 70 and the distance d between the two fly eye lenses 91 and 92 in the optical axis direction based on the relationship with the average illuminance value in Prepare. The distance d between the two fly's eye lenses 91 and 92 in the optical axis direction is changed according to the shape change of the reflecting surface of the flat mirror 68 by the mirror bending mechanism 70 using the table. The average illuminance value on the exposure surface can be made substantially constant without acquiring the average illuminance value. However, when adjusting the space | interval d of the optical axis direction of two fly's- eye lenses 91 and 92 with the said method, you may acquire the average illuminance value in an exposure surface.
 ここで、ミラー曲げ機構70により平面ミラー68の反射面の形状を変更した場合、露光面での平均照度値が略一定となるように、フライアイレンズ91,92の間隔dを変更して照度補正したシミュレーション結果について説明する。シミュレーション結果を表1に示す。なお、ここでは、平面ミラー68の反射面の形状変更は、局部的な変更ではなく、全体を一様な曲率に変更する場合について説明する。また、表1では、可動する一方のフライアイレンズ91の座標を表しており、平面ミラー79の反射面が平面の状態で、フライアイレンズ91、92の間隔dが所定値となる際の、フライアイレンズ91の座標を0(mm)としている。 Here, when the shape of the reflection surface of the flat mirror 68 is changed by the mirror bending mechanism 70, the distance d of the fly eye lenses 91 and 92 is changed so that the average illuminance value on the exposure surface becomes substantially constant. The corrected simulation result will be described. The simulation results are shown in Table 1. Here, the case of changing the shape of the reflecting surface of the plane mirror 68 is not a local change but a case of changing the whole into a uniform curvature. Further, Table 1 shows the coordinates of one of the movable fly eye lenses 91, and the distance d between the fly eye lenses 91 and 92 becomes a predetermined value when the reflection surface of the plane mirror 79 is flat. The coordinates of the fly's eye lens 91 are 0 (mm).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、平面ミラー68の反射面が平面(標準状態)であり、フライアイレンズ91,92の間隔dが所定値(一方のフライアイレンズ91の座標が0(mm))であるときの平均照度値は、54.7mW/cmである。ここで、平面ミラー68の反射面を内曲げ(凹面状)すると露光面での平均照度値が高まり、フライアイレンズ91,92の間隔dが所定値の場合、平均照度値が57.4mW/cmに上昇する。このため、フライアイレンズ91,92の間隔dを所定値から2.6mm狭めると、平均照度値が54.6mW/cmに低下して、平面ミラー68の反射面が平面のときの値に近似する。 As shown in Table 1, the reflecting surface of the flat mirror 68 is flat (standard state), and the distance d between the fly eye lenses 91 and 92 is a predetermined value (the coordinates of one fly eye lens 91 is 0 (mm)). The average illuminance value at one time is 54.7 mW / cm 2 . Here, when the reflection surface of the flat mirror 68 is bent (concave), the average illuminance on the exposed surface is increased, and when the distance d between the fly eye lenses 91 and 92 is a predetermined value, the average illuminance is 57.4 mW / Rise to cm 2 Therefore, if the distance d between the fly's eye lenses 91 and 92 is reduced by 2.6 mm from the predetermined value, the average illuminance value decreases to 54.6 mW / cm 2, and the value when the reflection surface of the flat mirror 68 is flat is obtained. Approximate.
 同様に、平面ミラー68の反射面を外曲げ(凸面状)すると露光面での平均照度値が低下し、フライアイレンズ91,92の間隔dが所定値の場合、平均照度値が52.1mW/cmに低下する。このため、フライアイレンズ91,92の間隔dを所定値から2.5mm広げると、平均照度値が54.6mW/cmに上昇して、平面ミラー68の反射面が平面のときの値に近似する。 Similarly, when the reflection surface of the flat mirror 68 is bent (convex shape), the average illuminance value on the exposed surface decreases, and when the distance d between the fly eye lenses 91 and 92 is a predetermined value, the average illuminance value is 52.1 mW It drops to / cm 2 . Therefore, if the distance d of the fly's eye lenses 91 and 92 is increased by 2.5 mm from the predetermined value, the average illuminance value rises to 54.6 mW / cm 2, and the value when the reflection surface of the flat mirror 68 is flat is obtained. Approximate.
 さらに、平面ミラー68の反射面を縦方向にのみ外曲げ(凸面状)すると、露光面での平均照度値が上昇し、フライアイレンズ91,92の間隔dが所定値の場合、平均照度値が55.2mW/cmに上昇する。ここで、フライアイレンズ91,92の間隔dを所定値から2mm広げると、平均照度値が54.6mW/cmに低下して、平面ミラー68の反射面が平面のときの値に近似する。
 これにより、平面ミラー68の反射面の形状変更に伴う露光面での平均照度値の変化は、フライアイレンズ91,92の間隔dを、平面ミラー68の反射面の形状変更に応じて調整することで補正できる。
Furthermore, if the reflection surface of the flat mirror 68 is bent outward (convex shape) only in the vertical direction, the average illuminance value on the exposure surface rises, and if the distance d between the fly's eye lenses 91 and 92 is a predetermined value, the average illuminance value Increases to 55.2 mW / cm 2 . Here, when the distance d of the fly's eye lenses 91 and 92 is increased by 2 mm from a predetermined value, the average illuminance value decreases to 54.6 mW / cm 2 , and approximates the value when the reflection surface of the plane mirror 68 is a plane. .
Thereby, the change of the average illuminance value on the exposure surface along with the shape change of the reflection surface of the plane mirror 68 adjusts the distance d of the fly eye lenses 91 and 92 according to the shape change of the reflection surface of the plane mirror 68 It can be corrected by
 尚、本発明は、前述した実施形態及び実施例に限定されるものではなく、適宜、変形、改良、等が可能である。 The present invention is not limited to the embodiments and examples described above, and appropriate modifications, improvements, etc. are possible.
 上述した実施形態では、ミラー曲げ機構70による反射鏡の反射面の形状と、2枚のフライアイレンズ91,92の光軸方向の間隔dとの関係を表すテーブルによって、実際の平均照度値を取得することなく、反射鏡の反射面の形状から、2枚のフライアイレンズ91,92の光軸方向の間隔dを調整している。
 ただし、ミラー曲げ機構70による反射鏡の反射面の形状変更前と形状変更後の、実際の露光面での平均照度値を図示しない照度計で取得した上で、形状変更後の露光面での平均照度値が形状変更前の露光面での平均照度値となるように、2枚のフライアイレンズ91,92の光軸方向の間隔dを調整してもよい。
In the embodiment described above, the actual average illuminance value is calculated using a table representing the relationship between the shape of the reflecting surface of the reflecting mirror by the mirror bending mechanism 70 and the distance d between the two fly eye lenses 91 and 92 in the optical axis direction. The distance d in the optical axis direction of the two fly eye lenses 91 and 92 is adjusted from the shape of the reflecting surface of the reflecting mirror without acquisition.
However, after acquiring the average illuminance value on the actual exposure surface before and after the shape change of the reflection surface of the reflecting mirror by the mirror bending mechanism 70 with an illuminance meter (not shown), the exposure surface after the shape change The distance d in the optical axis direction of the two fly eye lenses 91 and 92 may be adjusted so that the average illuminance value becomes the average illuminance value on the exposure surface before the shape change.
 本出願は、2017年9月22日出願の日本特許出願2017-182803に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2017-182803 filed on Sep. 22, 2017, the contents of which are incorporated herein by reference.
3   露光用照明装置
60  ランプユニット(光源)
67  コリメーションミラー(反射鏡)
68  平面ミラー(反射鏡)
70  ミラー曲げ機構
90  インテグレータ部
91,92  フライアイレンズ
93A,93B   レンズ素子
95  フライアイレンズ間隔調整機構
d   2枚のフライアイレンズの光軸方向の間隔
M   マスク
W   ワーク
3 Exposure illumination device 60 Lamp unit (light source)
67 Collimation mirror (reflection mirror)
68 flat mirror (reflecting mirror)
70 Mirror Bending Mechanism 90 Integrator Parts 91 and 92 Fly Eye Lens 93A, 93B Lens Element 95 Fly Eye Lens Interval Adjustment Mechanism d Distance M of Two Fly Eye Lenses in Optical Axis Direction M Mask W Work

Claims (6)

  1.  光源と、
     マトリックス状に配列された複数のレンズ素子をそれぞれ有する2枚のフライアイレンズを備え、前記光源からの光の照度分布を均一化するインテグレータ部と、
     反射面の形状を変更可能なミラー曲げ機構を備え、前記インテグレータ部から出射された前記光を反射する反射鏡と、を備え、
     露光パターンが形成されたマスクを介して前記光源からの露光光をワーク上に照射して前記露光パターンを前記ワークに露光転写するための露光用照明装置であって、
     前記2枚のフライアイレンズの光軸方向の間隔を変更可能なフライアイレンズ間隔調整機構を備え、
     前記2枚のフライアイレンズの光軸方向の間隔は、前記ミラー曲げ機構による前記反射鏡の反射面の形状変更に応じて変更されることを特徴とする露光用照明装置。
    Light source,
    An integrator unit including two fly's eye lenses each having a plurality of lens elements arranged in a matrix, wherein the illuminance distribution of the light from the light source is equalized;
    A mirror bending mechanism capable of changing the shape of the reflecting surface, and a reflecting mirror that reflects the light emitted from the integrator unit,
    An exposure illumination device for exposing and transferring the exposure pattern onto the workpiece by irradiating the workpiece with exposure light from the light source through a mask on which the exposure pattern is formed.
    It has a fly eye lens distance adjustment mechanism capable of changing the distance between the two fly eye lenses in the optical axis direction,
    An interval between the two fly's eye lenses in the optical axis direction is changed according to a shape change of a reflecting surface of the reflecting mirror by the mirror bending mechanism.
  2.  前記インテグレータ部から出射された前記光を反射する複数の反射鏡を備え、
     前記ミラー曲げ機構は、前記複数の反射鏡のうち、光路の最後に配置された平面ミラーに設けられることを特徴とする請求項1に記載の露光用照明装置。
    A plurality of reflecting mirrors for reflecting the light emitted from the integrator unit;
    The exposure illumination device according to claim 1, wherein the mirror bending mechanism is provided on a flat mirror disposed at the end of an optical path among the plurality of reflecting mirrors.
  3.  前記ミラー曲げ機構による前記反射鏡の反射面の形状と、前記2枚のフライアイレンズの前記光軸方向の間隔との関係を表すテーブルを備え、
     前記2枚のフライアイレンズの光軸方向の間隔は、該テーブルを用いて、前記ミラー曲げ機構による前記反射鏡の反射面の形状変更に応じて変更されることを特徴とする請求項1に記載の露光用照明装置。
    A table representing a relationship between a shape of a reflection surface of the reflection mirror by the mirror bending mechanism and a distance between the two fly-eye lenses in the optical axis direction;
    The distance between the two fly's-eye lenses in the optical axis direction is changed using the table in accordance with the shape change of the reflecting surface of the reflecting mirror by the mirror bending mechanism. The illumination apparatus for exposure as described.
  4.  前記2枚のフライアイレンズの光軸方向の間隔は、前記ミラー曲げ機構による前記反射鏡の反射面の形状変更前と形状変形後の前記露光面で取得された平均照度値に応じて、変更されることを特徴とする請求項1に記載の露光用照明装置。 The distance between the two fly's eye lenses in the direction of the optical axis is changed according to the average illuminance value obtained on the exposed surface before and after the shape change of the reflecting surface of the reflecting mirror by the mirror bending mechanism. The illumination apparatus for exposure according to claim 1, characterized in that:
  5.  マスクを支持するマスク支持部と、
     ワークを支持するワーク支持部と、
     請求項1~4のいずれか1項に記載の露光用照明装置と、
    を備え、
     前記光源からの露光光を前記マスクを介して前記ワークに照射して前記マスクの露光パターンを前記ワークに露光転写することを特徴とする露光装置。
    A mask support that supports the mask;
    A work support that supports the work;
    An illuminating device for exposure according to any one of claims 1 to 4.
    Equipped with
    An exposure apparatus characterized in that the exposure light from the light source is irradiated to the work through the mask to expose and transfer the exposure pattern of the mask onto the work.
  6.  請求項5に記載の露光装置を使用し、前記光源からの露光光を前記マスクを介して前記ワークに照射して前記マスクの露光パターンを前記ワークに露光転写することを特徴とする露光方法。 An exposure method comprising: using the exposure apparatus according to claim 5, irradiating the workpiece with exposure light from the light source through the mask to expose and transfer an exposure pattern of the mask onto the workpiece.
PCT/JP2018/034920 2017-09-22 2018-09-20 Lighting device for exposure, exposure apparatus and exposure method WO2019059315A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207003602A KR20200060345A (en) 2017-09-22 2018-09-20 Lighting apparatus for exposure, exposure apparatus and exposure method
CN201880061765.2A CN111133386A (en) 2017-09-22 2018-09-20 Exposure illumination device, exposure device, and exposure method
JP2019543713A JPWO2019059315A1 (en) 2017-09-22 2018-09-20 Lighting equipment for exposure, exposure equipment and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182803 2017-09-22
JP2017-182803 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059315A1 true WO2019059315A1 (en) 2019-03-28

Family

ID=65810299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034920 WO2019059315A1 (en) 2017-09-22 2018-09-20 Lighting device for exposure, exposure apparatus and exposure method

Country Status (5)

Country Link
JP (1) JPWO2019059315A1 (en)
KR (1) KR20200060345A (en)
CN (1) CN111133386A (en)
TW (1) TW201921157A (en)
WO (1) WO2019059315A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230062356A (en) 2021-10-29 2023-05-09 가부시키가이샤 오크세이사쿠쇼 Illumination optical system and laser processing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613289A (en) * 1992-06-25 1994-01-21 Canon Inc Illumination equipment and aligner using the same
JP2010153663A (en) * 2008-12-25 2010-07-08 Nikon Corp Lighting optical system, exposure system and method of manufacturing device
WO2016190381A1 (en) * 2015-05-26 2016-12-01 株式会社ブイ・テクノロジー Lighting device for exposure, exposure apparatus and exposure method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5645126B2 (en) 2011-01-25 2014-12-24 Nskテクノロジー株式会社 Exposure apparatus and exposure method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613289A (en) * 1992-06-25 1994-01-21 Canon Inc Illumination equipment and aligner using the same
JP2010153663A (en) * 2008-12-25 2010-07-08 Nikon Corp Lighting optical system, exposure system and method of manufacturing device
WO2016190381A1 (en) * 2015-05-26 2016-12-01 株式会社ブイ・テクノロジー Lighting device for exposure, exposure apparatus and exposure method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230062356A (en) 2021-10-29 2023-05-09 가부시키가이샤 오크세이사쿠쇼 Illumination optical system and laser processing apparatus

Also Published As

Publication number Publication date
JPWO2019059315A1 (en) 2020-09-03
CN111133386A (en) 2020-05-08
KR20200060345A (en) 2020-05-29
TW201921157A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
US20110027542A1 (en) Exposure apparatus and exposure method
JP6535197B2 (en) Exposure apparatus and exposure method
JP6765607B2 (en) Exposure device, exposure method
CN107615170B (en) Exposure illumination device, exposure device, and exposure method
JP5464991B2 (en) Proximity exposure apparatus and proximity exposure method
WO2019155886A1 (en) Proximity exposure device, proximity exposure method, and light irradiation device for proximity exposure device
US8400618B2 (en) Method for arranging an optical module in a measuring apparatus and a measuring apparatus
TW202202950A (en) Light source device for exposure, lighting device, exposure device, and exposure method
WO2019059315A1 (en) Lighting device for exposure, exposure apparatus and exposure method
TWI281701B (en) A device of exposure
JP6712508B2 (en) Method of manufacturing illuminance adjustment filter, illuminance adjustment filter, illumination optical system, and exposure apparatus
JP6587557B2 (en) Exposure illumination apparatus, exposure apparatus and exposure method
JP6484853B2 (en) Reflector unit for exposure apparatus and exposure apparatus
JP6485627B2 (en) Exposure apparatus and exposure method
JP2021138599A (en) Interpolation mechanism for laser scribe device and scribe device applied with interpolation mechanism
TWI748017B (en) Proximity exposure device and proximity exposure method
JP6500282B2 (en) Exposure apparatus and illumination apparatus
JP2019109445A (en) Proximity exposure device and proximity exposure method
JP2016218381A (en) Illumination device for proximity exposure, proximity exposure apparatus and proximity exposure method
JP6705666B2 (en) Proximity exposure apparatus and proximity exposure method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858342

Country of ref document: EP

Kind code of ref document: A1