WO2019054348A1 - Electrode mixture for non-aqueous electrolyte secondary battery - Google Patents

Electrode mixture for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2019054348A1
WO2019054348A1 PCT/JP2018/033549 JP2018033549W WO2019054348A1 WO 2019054348 A1 WO2019054348 A1 WO 2019054348A1 JP 2018033549 W JP2018033549 W JP 2018033549W WO 2019054348 A1 WO2019054348 A1 WO 2019054348A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
crosslinking agent
electrolyte secondary
electrode mixture
copolymer
Prior art date
Application number
PCT/JP2018/033549
Other languages
French (fr)
Japanese (ja)
Inventor
靖仁 牛島
隼一 藤重
藤田 浩司
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to KR1020197033362A priority Critical patent/KR102659815B1/en
Priority to JP2019542051A priority patent/JP7139341B2/en
Priority to CN201880042996.9A priority patent/CN110800141B/en
Publication of WO2019054348A1 publication Critical patent/WO2019054348A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode mixture for non-aqueous electrolyte secondary batteries.
  • a carbon material such as graphite is generally used as a negative electrode active material, but studies of silicon materials are being promoted for the purpose of further improving the battery capacity. . Since the silicon-based material has a large volume change due to charge and discharge, when the strength of the binder resin is not sufficient, desired characteristics can not be exhibited as an electrode.
  • Patent Document 1 a technique using polyimide as a binder resin
  • Patent Document 2 a technique using a predetermined polyacrylic acid as a binder resin
  • the present invention has been made in view of the above-mentioned prior art, and its main object is to apply an electrode mixture for a non-aqueous electrolyte secondary battery which is applicable to existing electrode coating equipment and has excellent cycle characteristics. It is to provide.
  • the present inventors have used an electrode mixture for a non-aqueous electrolyte secondary battery including a specific binder, a crosslinking agent, and an electrode active material.
  • the inventors have found that the cycle characteristics are improved, and further improvements have been made to complete the present invention.
  • the present invention includes, for example, the subject matters described in the following sections.
  • Item 1 Containing an electrode active material, a crosslinking agent, and a binder,
  • the binder includes a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid.
  • Electrode mixture for non-aqueous electrolyte secondary batteries Item 2.
  • the crosslinking agent is a crosslinking agent having two or more functional groups selected from the group consisting of an isocyanate group, an epoxy group, a carbodiimide group, an alkoxy group, and a vinyl sulfone group, which may be the same or different.
  • the electrode mixture for nonaqueous electrolyte secondary batteries as described. Item 5.
  • the electrode mixture for a non-aqueous electrolyte secondary battery according to any one of Items 1 to 4, wherein the crosslinking agent is a titanium chelate complex compound.
  • the content ratio of the said binder is 0.5 mass% or more and 40 mass% or less with respect to the total mass of the said electrode active material, the said crosslinking agent, and the said binding agent in any one of claim 1 to 5
  • Electrode mixture for non-aqueous electrolyte secondary batteries Item 7. 7.
  • Item 8. An electrode for a non-aqueous electrolyte secondary battery using the electrode mixture for a non-aqueous electrolyte secondary battery according to any one of Items 1 to 7.
  • a non-aqueous electrolyte secondary battery comprising the electrode for a non-aqueous electrolyte secondary battery according to item 8.
  • An electrical device comprising the non-aqueous electrolyte secondary battery according to item 9.
  • Item 11 An electrode active material, A crosslinking agent, A binder comprising a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, Including the step of mixing The manufacturing method of the electrode mixture for nonaqueous electrolyte secondary batteries.
  • Item 12. Item 12. The electrode mixture for a non-aqueous electrolyte secondary battery according to item 11, wherein the mixing ratio of the crosslinking agent is 0.1 mass% or more and 20 mass% or less with respect to the total mass of the crosslinking agent and the binding agent. Production method.
  • Item 13 Item 13.
  • the non-aqueous electrolyte secondary battery according to any one of items 11 to 16, wherein the ethylenically unsaturated carboxylic acid alkali metal neutralized product is an alkali metal acrylate neutralized product and / or an alkali metal methacrylate neutralized product.
  • Method of producing an electrode mixture is any one of items 11 to 16, wherein the ethylenically unsaturated carboxylic acid alkali metal neutralized product is an alkali metal acrylate neutralized product and / or an alkali metal methacrylate neutralized product.
  • the non-aqueous electrolyte secondary battery provided with the electrode using the electrode mixture for a non-aqueous electrolyte secondary battery according to the present invention has improved cycle characteristics. Although not wishing to be interpreted in a limited manner, it is presumed that the effect is obtained by suppressing the expansion and contraction of the electrode active material accompanying charge and discharge. Furthermore, the non-aqueous electrolyte secondary battery can also improve the discharge characteristics.
  • the outline is shown about one aspect of the electrode mixture for nonaqueous electrolyte secondary batteries included in the present invention.
  • An electrode mixture for a non-aqueous electrolyte secondary battery shown in FIG. 1 is coated on a metal foil, dried, pressed, and heated to prepare an outline of one embodiment when an electrode is prepared.
  • the electrode mixture for a non-aqueous electrolyte secondary battery included in the present invention contains an electrode active material (active material for positive electrode or negative electrode), a crosslinking agent, and a binder, and the binder is vinyl. Copolymers of alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid are included.
  • the combination is a composition (mixture composition) containing the components described above. The mixture is preferably in the form of a slurry.
  • the electrode mixture may contain, for example, a liquid medium (preferably water). Furthermore, a conductive aid, a dispersion aid and the like may be contained.
  • the binder used in the present invention comprises a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid.
  • the said copolymer is obtained, for example, by copolymerizing a vinyl ester and an ethylenically unsaturated carboxylic acid ester, in a mixed solvent of an aqueous organic solvent and water in the presence of an alkali containing alkali metal. Can be obtained by saponification.
  • vinyl ester examples include vinyl acetate, vinyl propionate, and vinyl pivalate, but vinyl acetate is preferable because the saponification reaction easily proceeds.
  • vinyl esters may be used alone, or two or more thereof may be used in combination.
  • ethylenically unsaturated carboxylic acid ester examples include acrylic acid, methyl ester of methacrylic acid, ethyl ester, n-propyl ester, iso-propyl ester, n-butyl ester, t-butyl ester, etc. Methyl acrylate and methyl methacrylate are preferred because the reaction tends to proceed.
  • One of these ethylenically unsaturated carboxylic acid esters may be used alone, or two or more thereof may be used in combination.
  • ethylenically unsaturated monomers copolymerizable with vinyl ester and ethylenically unsaturated carboxylic acid ester are used in addition to vinyl ester and ethylenically unsaturated carboxylic acid ester, and these are used. It may be copolymerized.
  • the copolymer obtained by saponifying the copolymer thus obtained and obtained by polymerizing vinyl alcohol as a monomer can also be used as a binder in the present invention.
  • a crosslinking agent may also be combined and copolymerized.
  • the copolymer obtained by saponifying the copolymer thus obtained is also included in the copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and a binder It can be preferably used as That is, the copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid may be an uncrosslinked resin or a crosslinked resin.
  • crosslink monomer in resin in the present specification
  • the electrode assembly for a non-aqueous electrolyte secondary battery according to the present invention It distinguishes conceptually from the "crosslinking agent” which an agent contains. That is, the electrode mixture for a non-aqueous electrolyte secondary battery according to the present invention contains an electrode active material, a "crosslinking agent”, and a binder, and the binder contains a crosslinkable resin.
  • crosslinking agent which an agent contains. That is, the electrode mixture for a non-aqueous electrolyte secondary battery according to the present invention contains an electrode active material, a "crosslinking agent", and a binder, and the binder contains a crosslinkable resin.
  • in-resin crosslinking monomers may be used for the preparation of the crosslinkable resin. However, only the concept is merely distinguished, and it does not prevent that the substance used as the "crosslinking agent” and the substance used as the "in-resin crosslinking monomer” are the same substance.
  • the intra-resin crosslinking monomer includes those having two or more reactive functional groups capable of copolymerization.
  • the said reactive functional group is a reactive functional group which can be copolymerized with the monomer which is the raw material of the copolymer of vinyl alcohol and an alkali metal neutralized ethylenically unsaturated carboxylic acid.
  • Each of the two or more reactive functional groups crosslinks by being incorporated (bonded) into the backbone of another copolymer.
  • a reactive functional group capable of copolymerization a vinyl group is preferably mentioned.
  • a monomer having two vinyl groups is preferably mentioned as the in-resin crosslinking monomer.
  • intra-resin crosslinking monomer for example, divinylbenzene is preferably mentioned.
  • divinylbenzene is preferably mentioned.
  • bifunctional acrylate, bifunctional methacrylate and the like for example, 2-hydroxy-3-acryloyloxypropyl methacrylate, polyethylene glycol diacrylate and the like are preferably mentioned.
  • crosslinking agents having two or more vinyl sulfone groups can also be used as intra-resin crosslinking monomers, for example, CH 2 2CH—SO 2 —CH 2 —CO—NH— (CH 2 ) n —NH
  • a compound represented by —CO—CH 2 —SO 2 —CH CH 2 (wherein n is a natural number of 1 to 6, and 2 or 3 is particularly preferable).
  • Examples of commercially available products of such compounds include VS-B and VS-C manufactured by Fujifilm.
  • the electrode mixture for non-aqueous electrolyte secondary batteries included in the present invention contains an electrode active material, a crosslinking agent, and a binder.
  • the electrode mixture for a non-aqueous electrolyte secondary battery is different from, and distinguished from, the electrode mixture containing the crosslinkable resin and the electrode active material. That is, the "in-resin crosslinking monomer" -derived portion contained in the crosslinkable resin is not a "crosslinking agent".
  • the intra-resin crosslinking monomer is already used for crosslinking when preparing the crosslinkable resin and has no crosslinking ability (in other words, the intra-resin crosslinking monomer already constitutes the crosslinkable portion of the crosslinkable resin) It is.
  • a composition after heat treatment of the electrode mixture for non-aqueous electrolyte secondary batteries included in the present invention and crosslinking by a crosslinking agent for example, the mixture is applied to a metal plate or a metal foil and heat treated
  • the electrode mixture containing the binder containing the crosslinkable resin and the electrode active material is different and distinguished. Ru.
  • the crosslinking agent not only crosslinks the copolymers contained in the binder but can also crosslink the copolymer contained in the binder and the electrode active material, and It is because it can crosslink.
  • the electrode mixture for a non-aqueous electrolyte secondary battery included in the present invention is applied to a metal plate or a metal foil and then heat-treated to obtain the composition (for example, in the case of an electrode composition)
  • the crosslinking agent can also bond the metal plate or metal foil and the copolymer or electrode active material contained in the binder.
  • a crosslink portion derived from a crosslink monomer in the resin exists in the crosslinkable resin, but the crosslinkable resin and the electrode active material crosslink It has not been.
  • summary is shown in FIG. 1 about the one aspect
  • the said electrode mixture is coated to metal foil, it is made to dry, it presses, and it heats, and the outline
  • the binder containing the crosslinkable resin and the electrode mixture only containing the electrode active material are different from the electrode mixture for the non-aqueous electrolyte secondary battery of the present invention, a crosslinking agent is further added thereto.
  • An outline is shown in FIG. 3 about what can become an electrode mixture for non-aqueous electrolyte secondary batteries of this invention in the case.
  • the copolymer of the vinyl alcohol and the ethylenically unsaturated carboxylic acid alkali metal neutralized product randomly copolymerizes the vinyl ester and the ethylenically unsaturated carboxylic acid ester, It is a substance obtained by saponifying an ester moiety derived from a monomer, and the bond between the monomers is a C—C covalent bond. (Hereafter, it may be described as a saponified vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer. Moreover, as is apparent from the above description, "/" in this case indicates that random copolymerization is performed. Show)
  • the molar ratio of vinyl ester to ethylenically unsaturated carboxylic acid ester is preferably 95/5 to 5/95. , 95/5 to 50/50 is more preferable, and 90/10 to 60/40 is further preferable. Within the range of 95/5 to 5/95, the polymer obtained after saponification has particularly preferably improved retention as a binder.
  • the copolymerization composition ratio is preferably 95/5 to 5/95 in molar ratio, and 95/5 to 50 / 50 is more preferable, and 90/10 to 60/40 is further preferable.
  • the ethylenically unsaturated carboxylic acid alkali metal neutralized product is preferably at least one selected from the group consisting of alkali metal acrylate neutralized products and alkali metal methacrylate neutralized products.
  • alkali metal of the ethylenically unsaturated carboxylic acid alkali metal neutralized material although lithium, sodium, potassium, rubidium, cesium etc. can be illustrated, Preferably they are potassium and sodium.
  • Particularly preferred ethylenically unsaturated carboxylic acid alkali metal neutralized products are selected from the group consisting of sodium acrylate neutralized products, potassium acrylate neutralized products, sodium methacrylate neutralized products, and potassium methacrylate neutralized products It is at least one kind.
  • a vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer which is a precursor of a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, is a powdery form, from the viewpoint of obtaining the copolymer. Obtained by a suspension polymerization method in which a polymer particle is obtained by polymerizing in the state of suspending a monomer mainly composed of a vinyl ester and an ethylenically unsaturated carboxylic acid ester in a dispersant aqueous solution containing a polymerization catalyst. Is preferred.
  • polymerization catalyst examples include organic peroxides such as benzoyl peroxide and lauryl peroxide, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile, with preference given to lauryl peroxide.
  • the addition amount of the polymerization catalyst is preferably 0.01 to 5% by mass, more preferably 0.05 to 3% by mass, and still more preferably 0.1 to 3% by mass, with respect to the total mass of the monomers.
  • the amount is less than 0.01% by mass, the polymerization reaction may not be completed, and when the amount is more than 5% by mass, binding of a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid finally obtained. The effect may not be enough.
  • An appropriate substance may be selected as the above-mentioned dispersant at the time of carrying out the polymerization, depending on the kind and amount of monomers to be used, but specifically, polyvinyl alcohol (partially saponified polyvinyl alcohol, completely saponified polyvinyl alcohol And water soluble polymers such as polyvinyl pyrrolidone, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose; and water insoluble inorganic compounds such as calcium phosphate and magnesium silicate. These dispersants may be used alone or in combination of two or more.
  • the amount of the dispersing agent used is preferably 0.01 to 10% by mass, and more preferably 0.05 to 5% by mass, based on the total mass of the monomers, although it depends on the kind of monomers to be used, etc. .
  • water-soluble salts such as alkali metals and alkaline earth metals can also be added to adjust the surface active effect and the like of the dispersant.
  • examples thereof include sodium chloride, potassium chloride, calcium chloride, lithium chloride, anhydrous sodium sulfate, potassium sulfate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, trisodium phosphate and tripotassium phosphate, etc., and their water solubility
  • the salts may be used alone or in combination of two or more.
  • the amount of the water-soluble salt used is usually 0.01 to 10% by mass with respect to the mass of the aqueous dispersant solution, depending on the type, amount and the like of the dispersant used.
  • the temperature for polymerizing the monomer is preferably -20 to 20 ° C, more preferably -10 to 10 ° C, with respect to the 10 hour half-life temperature of the polymerization catalyst.
  • the 10 hour half-life temperature of lauryl peroxide is about 62 ° C.
  • the polymerization reaction may not be completed, and when the temperature exceeds 20 ° C, a copolymer of vinyl alcohol obtained and alkali metal neutralized with ethylenically unsaturated carboxylic acid is obtained.
  • the binding effect of may not be sufficient.
  • the time for polymerizing the monomers depends on the type and amount of the polymerization catalyst used, the polymerization temperature and the like, but is usually several hours to several tens of hours.
  • the copolymer After completion of the polymerization reaction, the copolymer is separated by a method such as centrifugation, filtration and the like, and is obtained as a water-containing cake.
  • the obtained water-containing cake-like copolymer can be used as it is or, if necessary, dried for saponification reaction.
  • the number average molecular weight of the polymer in the present specification is a value determined by a molecular weight measurement apparatus equipped with a GFC column (for example, OHpak manufactured by Shodex Corp.) using DMF as a solvent.
  • a molecular weight measuring device for example, 2695 manufactured by Waters, RI detector 2414 can be mentioned.
  • the number average molecular weight of the copolymer before saponification is preferably 10,000 to 1,000,000, and more preferably 50,000 to 800,000.
  • the binding power tends to be further improved as a binder. Therefore, even if the electrode mixture (particularly, the negative electrode mixture) is an aqueous slurry, thick coating of the slurry is facilitated.
  • the saponification reaction can be carried out, for example, in the presence of an alkali containing an alkali metal, in an aqueous organic solvent alone, or in a mixed solvent of an aqueous organic solvent and water.
  • an alkali containing an alkali metal used for the saponification reaction conventionally known ones can be used, but alkali metal hydroxide is preferable, and sodium hydroxide and potassium hydroxide are preferable from the viewpoint of high reactivity. Is particularly preferred.
  • the amount of the alkali is preferably 60 to 140% by mole, and more preferably 80 to 120% by mole, relative to the number of moles of the monomer. If the alkali amount is less than 60 mol%, saponification may be insufficient, and even if it is used more than 140 mol%, no further effect is obtained and it is not economical.
  • an aqueous organic solvent or a mixed solvent of an aqueous organic solvent and water examples include lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and t-butanol; ketones such as acetone and methyl ethyl ketone; and mixtures thereof
  • Lower alcohols are preferable, and in particular, a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid having excellent binding effect and excellent resistance to mechanical shear can be obtained, particularly methanol. And ethanol are preferred.
  • the mass ratio of the aqueous organic solvent / water in the mixed solvent of the aqueous organic solvent and water is preferably 30/70 to 85/15, more preferably 40/60 to 85/15, and further preferably 40/60 to 80/20. preferable. If it deviates from the range of 30/70 to 85/15, the solvent affinity of the copolymer before saponification or the solvent affinity of the copolymer after saponification is insufficient, and the saponification reaction is sufficiently advanced May not be When the ratio of the aqueous organic solvent is less than 30/70, not only the binding ability as a binder is lowered, but also the viscosity is significantly increased in the saponification reaction, so that vinyl ester / ethylenically unsaturated carboxylic acid is industrially It is difficult to obtain a saponified ester copolymer, and when the ratio of the aqueous organic solvent is more than 85/15, the water solubility of the resulting vinyl ester / ethylenically unsaturated carb
  • the temperature at which the vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer is saponified is, for example, preferably 20 to 60 ° C., more preferably 20 to 50 ° C., although it depends on the molar ratio of the monomers.
  • saponification is performed at a temperature lower than 20 ° C., there is a possibility that the saponification reaction may not be completed, and in the case of a temperature higher than 60 ° C., the inside of the reaction system may be thickened and stirring becomes impossible.
  • the time for the saponification reaction varies depending on the type and amount of alkali used, but the reaction is usually completed in about several hours.
  • a paste or slurry-like copolymer saponified dispersion is usually obtained.
  • Spherical single particles or spherical particles can be obtained by solid-liquid separation according to a conventionally known method such as centrifugation, filtration, and thoroughly washed with a lower alcohol such as methanol to obtain a saponified liquid-containing copolymer obtained. It is possible to obtain a saponified copolymer, that is, a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid as aggregated agglomerated particles.
  • the acid saponification of the saponified copolymer with an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid; an organic acid such as formic acid, acetic acid, oxalic acid or citric acid;
  • an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid
  • an organic acid such as formic acid, acetic acid, oxalic acid or citric acid
  • Different alkali metals such as lithium oxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, francium hydroxide and the like (that is, different alkali metals), vinyl alcohol and ethylenic unsaturated carbon Copolymers of acid alkali metal neutralized products can also be obtained.
  • the conditions for drying the liquid-containing copolymer saponified product are not particularly limited, but in general, it is preferable to dry at a temperature of 30 to 120 ° C. under normal pressure or reduced pressure.
  • the drying time is usually from several hours to several tens of hours, depending on the pressure and temperature at the time of drying.
  • the volume average particle diameter of the copolymer of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid is preferably 1 to 200 ⁇ m, and more preferably 10 to 100 ⁇ m.
  • a binding effect can be obtained more preferably at 1 ⁇ m or more, and by making it 200 ⁇ m or less, the water-based thickening liquid becomes more uniform and a preferable binding effect can be obtained.
  • the volume average particle size of the copolymer is determined by installing a batch cell (for example, SALD-BC manufactured by Shimadzu Corporation, for example, SALD-BC manufactured by Shimadzu Corporation) and using 2 as the dispersion solvent. It is a value measured using propanol or methanol.
  • the saponified liquid-containing copolymer is dried, and when the volume-average particle diameter of the obtained saponified copolymer exceeds 100 ⁇ m, the volume-average particle is obtained by grinding using a conventionally known grinding method such as mechanical milling.
  • the diameter can be adjusted to, for example, 10 to 100 ⁇ m.
  • Mechanical milling is a method of applying to the saponified copolymer obtained with external force such as impact, tension, friction, compression, shear, etc., and a device for that purpose is a rolling mill, a vibration mill, a planetary mill, a rocking motion. Mills, horizontal mills, attritor mills, jet mills, grinders, homogenizers, fluidizers, paint shakers, mixers and the like.
  • a planetary mill saponified copolymer and balls are put together in a container, and the kinetic energy generated by rotating and revolving is used to grind or mix the saponified copolymer powder. According to this method, it is known to be crushed to nano order.
  • copolymer of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid is used.
  • the viscosity of the aqueous solution containing 1% by mass is preferably 30 mPa ⁇ s to 10000 mPa ⁇ s, and more preferably 40 to 5000 mPa ⁇ s.
  • the viscosity of the prepared slurry-like electrode mixture is preferably obtained, and when the composition is applied to a current collector, the mixture does not spread too much and coating may be facilitated, and The dispersibility of the active material and the conductive aid in the agent also becomes good. If the viscosity is 10000 mPa ⁇ s or less, the viscosity of the prepared mixture is not too high, and it becomes easier to thinly and uniformly coat the current collector.
  • the viscosity of the 1% by mass aqueous solution was measured using a rotational viscometer (model DV-I +) manufactured by BROOK FIELD, spindle No. 5 and 50 rpm (liquid temperature 25 ° C.).
  • a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid can function as a binder for a lithium ion secondary battery electrode which is excellent in binding ability and binding persistence.
  • a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid strengthens the current collector and the active material and the active material to each other.
  • binding durability such that the electrode mixture does not peel off from the current collector or the active material falls off due to the volume change of the active material caused by the repetition of charge and discharge. It is considered that this is because the capacity of the active material is not reduced.
  • the mixture for a lithium ion secondary battery electrode (preferably, electrode slurry) contains vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid as a binder, as long as the effects of the present invention are not impaired.
  • Other aqueous binders may be added to the copolymer of
  • the addition amount of the other water-based binder is 80% by mass based on the total mass of the copolymer of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid and the other water-based binder.
  • it is less than. More preferably, it is less than 70% by mass.
  • the content ratio of the copolymer of vinyl alcohol and the alkali metal neutralized product of ethylenic unsaturated carboxylic acid in the binder is preferably 20% by mass or more and 100% by mass or less. Preferably, it is 30% by mass or more and 100% by mass or less. Furthermore, the said minimum may be 40 mass% or more, 50 mass% or more, 60 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, or 95 mass% or more.
  • water-based binder materials include, for example, carboxymethylcellulose (CMC), polyacrylic acid, sodium polyacrylate, acrylic resin such as polyacrylate, sodium alginate, polyimide (PI), polytetrafluoroethylene ( Materials such as PTFE), polyamide, polyamide imide, styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), ethylene acetic acid copolymer (EVA) and the like can be mentioned. These may be used singly or in combination of two or more.
  • acrylic resins represented by sodium polyacrylate, sodium alginate, polyimide and the like are suitably used, and acrylic resins are particularly suitably used.
  • the crosslinking agent is preferably a crosslinking agent having two or more (preferably 2, 3 or 4 and more preferably 2) functional groups capable of reacting with a carboxyl group and / or a hydroxyl group.
  • the crosslinking agent is preferably an aqueous crosslinking agent (water-soluble crosslinking agent).
  • the functional group capable of reacting with the carboxyl group and / or the hydroxyl group means a functional group that reacts with the carboxyl group and / or the hydroxyl group to form a chemical bond. Like an alkoxy group, even if oneself is eliminated by a reaction, if a bond is formed as a result, it is included in this.
  • the need for the catalyst and the need for heating are not particularly limited.
  • an isocyanate group an epoxy group, a carbodiimide group, an alkoxy group, an acylate group, and a vinyl sulfone group.
  • alkoxy group include, for example, 1 to 18 carbon atoms (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18) And linear or branched alkoxy groups.
  • acylate group a lactate group, a stearate group, an isostearate group etc. are mentioned, for example.
  • the copolymer with the hydrate is crosslinked to improve the mechanical strength.
  • two or more (preferably two, three or four, and more preferably two) functional groups capable of reacting with a carboxyl group and / or a hydroxyl group are present in the crosslinker molecule. There is a need.
  • the functional groups present in one molecule may be the same or different.
  • the crosslinking point is increased and the mechanical strength may be improved.
  • gelation may progress in the state of the electrode coating liquid, which may make coating difficult, and in this case it is inconvenient is there. Whether or not gelation occurs depends on the number of carboxyl groups and / or hydroxyl groups in the molecular chain of the copolymer of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid, the copolymer and the crosslinking agent Since it also depends on the mixing ratio, gelation can be avoided by appropriately adjusting these.
  • a crosslinking agent which has an isocyanate group a diisocyanate compound, a triisocyanate compound, a block isocyanate compound etc. are mentioned preferably.
  • the blocked isocyanate compound include isocyanate compounds such as Kitahiro Chemical Co., Ltd. TZ-1370 and TZ-1372.
  • the compound which has 2 or more (for example, 3 or 4) glycidyloxy group is preferable, and the compound which has 2 glycidyloxy groups is more preferable.
  • a compound in which both terminal hydrogen atoms of a linear or branched alkane having 2 to 8 carbon atoms are substituted one by one with a glycidyloxy group is preferable.
  • neopentyl glycol diglycidyl ester Naopentyl Glycol Diglycidyl Ether
  • 1,6-hexadiol diglycidyl ester 1,6-hexanediol Diglycidyl Ether
  • 1,4-butanediol diglycidyl ester 1,4-butanediol diglycidyl ester
  • a commercially available product can also be used, and an epoxy resin such as Denacol EX-810, EX-851, etc., manufactured by Nagase ChemteX Co., Ltd., is exemplified.
  • a crosslinking agent which has a carbodiimide group a dicarbodiimide compound, a tricarbodiimide compound, a carbodiimide polymer etc. are mentioned, for example.
  • a carbodiimide polymer in particular, Carbodilite V-04, V-10 and the like manufactured by Nisshinbo Chemical Co., Ltd. are exemplified.
  • crosslinking agent having an alkoxy group examples include various metal alkoxides such as Organics TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd., and the like.
  • crosslinking agent having an acylate group examples include various metal acylates such as Organics ZC-200 or ZC-300 manufactured by Matsumoto Fine Chemical Co., Ltd., TC-800, and the like.
  • Examples of commercially available products of such compounds include VS-B and VS-C manufactured by Fujifilm.
  • an organic metal compound having a crosslinking ability (in particular, having two or more functional groups capable of reacting with a carboxyl group and / or a hydroxyl group) is preferable.
  • Preferred examples of the organic metal compound include metal alkoxide compounds, metal acylate compounds and metal chelate complex compounds, and metal chelate complex compounds are particularly preferable.
  • organic titanium compounds, organic zirconium compounds, organic aluminum compounds, organic silane compounds and the like can be preferably exemplified.
  • examples of the organic metal compound used as a crosslinking agent include titanium alkoxide compounds, titanium acylate compounds, titanium chelate complex compounds, zirconium alkoxide compounds, zirconium acylate compounds, zirconium chelate complex compounds, aluminum alkoxide compounds, aluminum
  • the chelate complex compound and the isocyanate silane compound are particularly preferably exemplified.
  • the titanium chelate complex compound is preferable.
  • titanium alkoxide compound examples include tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetraoctyl titanate, tetratertiary butyl titanate, tetrastearyl titanate, etc.
  • Ti (O-- i-C 3 H 7 ) 4 , Ti (O-n-C 4 H 9 ) 4 , (n-C 4 H 9 O) 3 Ti-O-Ti (O-n-C 4 H 9 ) 3 , Ti [OCH 2 CH (C 2 H 5 ) C 4 H 9 ] 4 , Ti (Ot-C 4 H 9 ) 4 , Ti (OC 18 H 37 ) 4 and the like can be mentioned.
  • titanium acylate compounds examples include titanium isostearate, and more specifically, (i-C 3 H 7 O) Ti (OCOC 17 H 35 ) 3 .
  • titanium chelate complex compound for example, titanium lactate ammonium salt, titanium lactate, titanium triethanol aminate, titanium diethanol aminate, titanium aminoethyl aminoethanolate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethyl acetoacetate, dodecyl Preferred are benzenesulfonic acid titanium compounds, titanium phosphate compounds, titanium octylene glycolate, titanium ethyl acetoacetate, etc. Among them, titanium lactate ammonium salt, titanium lactate, titanium triethanolaminate, titanium diethanolaminate, titanium aminoethylamino Ethanolate is more preferred.
  • organic titanium compounds include, for example, Organics TC series manufactured by Matsumoto Fine Chemical Co., Ltd. and organics TA series, and more specifically, for example, as commercially available products of titanium chelate complex compounds, Orga Examples include Chicks TC-300, TC-310, TC-400, TC-315, TC-335, TC-500, and TC-510.
  • zirconium alkoxide compound examples include normal propyl zirconate and normal butyl zirconate, and more specifically, for example, Zr (O-n-C 3 H 7 ) 4 and Zr (O-n-C 4). H 9 ) 4 .
  • zirconium acylate compound examples include a zirconium octylate compound and a zirconium stearate, and more specifically, for example, (nC 4 H 9 O) Zr (OCOC 17 H 35 ).
  • zirconium chelate complex compound a zirconyl chloride compound, a zirconium lactate ammonium salt etc. are mentioned preferably, for example. More specifically, for example, (HO) Zr [OCH (CH 3 ) COO ⁇ ] 3 (NH 4 + ) 3 and the like can be mentioned.
  • organic zirconium compounds include, for example, Orgatics ZA series manufactured by Matsumoto Fine Chemical Co., Ltd., Orgatics ZC series and AZ coat 5800MT manufactured by San Nopco Co., Ltd., and more specifically, zirconium, for example.
  • examples of commercially available products of chelate complex compounds include Organix ZC-126, ZC-300 and the like.
  • aluminum alkoxide compound examples include, for example, aluminum secondary butoxide, and more specifically, for example, Al (O-sec-C 4 H 9 ) 3 .
  • aluminum chelate complex compounds include aluminum trisacetylacetonate, aluminum bisethylacetoacetate monoacetylacetonate, aluminum trisethylacetoacetate and the like, and more specifically, for example, Al (C 5 H 7 O 2 ) 3 And Al (C 5 H 7 O 2 ) (C 6 H 9 O 3 ) 2 and Al (C 6 H 9 O 3 ) 3 .
  • isocyanate silane compound examples include methyl triisocyanate silane and tetraisocyanate silane.
  • isocyanate silane compound examples include methyl triisocyanate silane and tetraisocyanate silane.
  • product organics SI series are mentioned, for example.
  • a crosslinking agent can be used individually by 1 type or in combination of 2 or more types.
  • the content of the crosslinking agent can be appropriately adjusted according to the number of carboxyl groups or hydroxyl groups in the binder and the number of functional groups in the crosslinking agent.
  • the content of the crosslinking agent is preferably 0.1% by mass or more based on the total mass of the crosslinking agent and the binder, and 0.2, 0.3, 0.4, or 0.5 mass. More preferably, it is at least%.
  • the content is preferably 20% by mass or less, more preferably 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, or 6% by mass or less, It is more preferable that it is 5 or 4 mass% or less, and it is still more preferable that it is 3 mass% or less.
  • the content rate of the said crosslinking agent is 20 mass% or less, gelatinization can not advance easily in the state of an electrode coating liquid, and coating can be performed simply. Furthermore, the electrical resistance value of the electrode obtained in which the proportion of the active material is relatively high may be particularly preferably lowered. Moreover, when the content rate of the said crosslinking agent is 0.1 mass% or more, the crosslinking effect fully expresses, mechanical strength of binder resin is high, and preferable battery performance is obtained preferably.
  • the positive electrode active material used in this technical field can be used.
  • the negative electrode active material is not particularly limited, and examples thereof include silicon (Si) and tin (Sn) or materials containing these, carbon (especially carbon materials (eg, graphite, hard carbon, soft carbon)), lithium titanate and the like.
  • silicon Si
  • tin Sn
  • carbon especially carbon materials (eg, graphite, hard carbon, soft carbon)
  • lithium titanate lithium titanate
  • materials capable of absorbing and desorbing lithium ions in large quantities can be used. If it is such a material, it is possible to exhibit the effect of the present embodiment regardless of any one of a simple substance, an alloy, a compound, a solid solution, and a composite active material containing a silicon-containing material and a tin-containing material.
  • silicon-containing material in addition to Si (silicon), silicon oxide (preferably SiOx (0.05 ⁇ x ⁇ 1.95), more specifically, for example, SiO), or B or Mg in any of these At least one element selected from the group consisting of Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, W, Zn, C, N, Sn, and Si
  • Si silicon oxide
  • SiOx 0.05 ⁇ x ⁇ 1.95
  • B or Mg in any of these At least one element selected from the group consisting of Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, W, Zn, C, N, Sn, and Si
  • An alloy, a compound, a solid solution or the like in which a part is substituted can be used. These can be referred to as silicon compounds.
  • tin-containing materials include Ni 2 Sn 4 , Mg 2 Sn, SnO x (0 ⁇ x ⁇ 2), SnO 2 , SnSiO 3 , LiSnO, and the like.
  • a carbon material crystalline carbon, amorphous carbon, or these may be used together. These materials can be used singly or in combination of two or more. In particular, at least one selected from the group consisting of silicon, silicon compounds, and carbon materials is preferable.
  • the ratio of carbon material to silicon and / or silicon compound is 5/95 to 50 in mass ratio It is preferable that it is / 50.
  • the upper limit of the mass ratio may be 10/90 or 15/85.
  • the lower limit of the mass ratio may be 40/60, 35/65, 30/70, or 25/75.
  • the conductive aid is not particularly limited as long as it has conductivity.
  • powder of metal, carbon, conductive polymer, conductive glass and the like can be exemplified, and acetylene black (AB), ketjen black (KB), carbon black (for example, SuperP (SP)), graphite, thermal black, furnace Black, lamp black, channel black, roller black, disc black, soft carbon, hard carbon, graphene, amorphous carbon carbon nanotube (CNT), carbon nanofiber (for example, vapor grown carbon fiber named VGCF which is a registered trademark) Etc.
  • the conduction aid be contained in the electrode mixture, for example, about 0.01 to 5% by mass, and it is more preferable to contain about 0.02 to 3% by mass or about 0.05 to 2% by mass. preferable.
  • Dispersion aid When a dispersion aid is used, examples of the dispersion aid include glucuronic acid, humic acid, glycine, polyglycine, aspartic acid, glutamic acid and the like.
  • Electrode mix By adding a crosslinking agent, a binder and, if necessary, a liquid medium (preferably water) to an electrode active material (positive electrode active material or negative electrode active material) to form a paste-like slurry, an electrode mixture (positive electrode combination) Agent or negative electrode mixture) is obtained.
  • the binder may be dissolved in water in advance, and may be used, or the active material and the powder of the binder may be mixed in advance, and then water may be added and mixed. Moreover, also when adding other components, it can mix with the said slurry.
  • the use amount of the liquid medium is not particularly limited, but, for example, 40% by mass or more and 2000% by mass or less when the total of the active material, the crosslinking agent, and the binding agent is 100% by mass. Preferably, 50% by mass or more and 1000% by mass or less are more preferable, and 60% by mass or more and 500% by mass or less are more preferable.
  • the binder is used for the purpose of bonding the active materials to each other and the current collector. That is, it is used to form a good active material layer when the slurry is applied onto the current collectors of both electrodes and dried.
  • the amount of the binder used is also not particularly limited, but is preferably 0.5% by mass or more based on the total mass of the electrode active material, the crosslinking agent, and the binder, for example. % Or more is more preferable, and 2% by mass or more is more preferable.
  • the content is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and still more preferably 10% by mass or less.
  • the binder is at or below the upper limit, the proportion of the active material is not relatively too small, and a high capacity can be further obtained during charge and discharge of the battery.
  • the electrode mixture may be a positive electrode mixture or a negative electrode mixture, and is particularly preferably a negative electrode mixture.
  • the content of the electrode active material is preferably 80% by mass or more, more preferably 85% by mass or more, and 90% by mass or more More preferable.
  • the total content of the crosslinking agent and the binder in the electrode mixture is preferably less than 20% by mass, more preferably less than 15% by mass, and less than 10% by mass, though not particularly limited. More preferable.
  • the positive electrode can be made using techniques used in the art.
  • the current collector of the positive electrode is not particularly limited as long as it is a material having electron conductivity and capable of supplying a current to the held positive electrode material.
  • conductive materials such as C, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, Al, etc., alloys containing two or more of these conductive materials (for example, stainless steel) ) Can be used.
  • C, Al, stainless steel and the like are preferable as the current collector from the viewpoints of high electrical conductivity and stability in the electrolytic solution and oxidation resistance, and Al and the like are preferable from the viewpoint of material cost.
  • the shape of the current collector is not particularly limited, and a foil-like substrate, a three-dimensional substrate or the like can be used.
  • a three-dimensional substrate foil metal, mesh, woven fabric, non-woven fabric, expand, etc.
  • an electrode of high capacity density can be obtained even with a binder that lacks adhesion to the current collector. .
  • high rate charge and discharge characteristics are also improved.
  • the negative electrode can be made using techniques used in the art.
  • the current collector of the negative electrode is not particularly limited as long as it is a material having electron conductivity and capable of supplying a current to the held negative electrode material.
  • conductive materials such as C, Cu, Ni, Fe, V, Nb, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, Al, etc., and two kinds of these conductive materials Alloys containing the above, such as stainless steel, may be used.
  • Fe may be plated with Cu. From the viewpoints of high electrical conductivity and good stability and oxidation resistance in the electrolyte, C, Ni, stainless steel and the like are preferable as the current collector, and Cu and Ni are more preferable from the viewpoint of material cost.
  • the shape of the current collector is not particularly limited, and a foil-like substrate, a three-dimensional substrate or the like can be used. Among them, when a three-dimensional substrate (foam metal, mesh, woven fabric, non-woven fabric, expanded substrate, etc.) is used, an electrode having a high capacity density even with a binder which lacks adhesion to the current collector. Is obtained. In addition, high rate charge and discharge characteristics are also improved.
  • the nonaqueous electrolyte secondary battery of the present embodiment can be obtained by using the electrode of the nonaqueous electrolyte secondary battery of the present embodiment.
  • a non-aqueous electrolyte secondary battery for example, a lithium ion secondary battery is preferable.
  • a lithium ion secondary battery needs to contain lithium ions, and therefore, a lithium salt is preferable as the electrolyte salt.
  • the lithium salt is not particularly limited, and specific examples thereof include lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium trifluoromethanesulfonate, and the like. . These lithium salts can be used singly or in combination of two or more.
  • the above-mentioned lithium salt has high electronegativity and is easy to ionize, so it is excellent in charge and discharge cycle characteristics, and can improve the charge and discharge capacity of the secondary battery.
  • a solvent for the electrolyte for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone and the like can be used, and these solvents can be used singly or in combination of two or more.
  • propylene carbonate alone, a mixture of ethylene carbonate and diethyl carbonate, or ⁇ -butyrolactone alone is preferable.
  • the mixing ratio of the mixture of ethylene carbonate and diethyl carbonate can be arbitrarily adjusted in the range in which one component is 10% by volume or more and 90% by volume or less.
  • the electrolyte of the lithium secondary battery of the present embodiment may be a solid electrolyte or an ionic liquid.
  • the lithium secondary battery of the above-mentioned structure it can function as a lithium secondary battery excellent in the life characteristic.
  • lithium secondary battery Although it does not specifically limit as a structure of a lithium secondary battery, It can apply to the existing battery forms and structures, such as a lamination type battery and a wound type battery.
  • the non-aqueous electrolyte secondary battery provided with the negative electrode of the present embodiment has excellent life characteristics, and can be used as a power source for various electric devices (including vehicles using electricity).
  • Examples of the electric devices include portable TVs, laptops, tablets, smartphones, PC keyboards, displays for PCs, desktop PCs, CRT monitors, PC racks, printers, integrated PCs, wearable computers, word processors, word processors, mice, hard disks, PCs Peripheral equipment, Iron, Cooling equipment, Refrigerator, Hot air heater, Hot carpet, Clothes dryer, Futon dryer, Humidifier, Dehumidifier, Window fan, Blower, Ventilation fan, Toilet seat with cleaning function, Car navigation system, Flashlight, Lighting equipment , Mobile karaoke machine, microphone, air purifier, blood pressure monitor, coffee mill, coffee maker, Kotatsu, mobile phone, game machine, music recorder, music player, disc changer, radio, shaver, juicer, Shredder, water purifier, dish dryer, car component, stereo, speaker, headphone, transceiver, trouser press, vacuum cleaner, body fat scale, weight scale, health meter, movie player, electric kettle, electric razor, electric stand, electric pot, Electronic game machines,
  • the term “comprising” also includes “consisting essentially of” and “consisting of” (The term “comprising” includes “consisting essentially of” and “consisting of.”).
  • Gr represents graphite
  • the volume average particle diameter of the saponified vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer was 180 ⁇ m. The volume average particle size was measured by a laser diffraction type particle size distribution measuring apparatus (SALD-7100 manufactured by Shimadzu Corporation).
  • the particle diameter of the obtained saponified copolymer was measured by a laser diffraction type particle size distribution analyzer (SALD-7100 manufactured by Shimadzu Corporation), and the volume average particle diameter was 39 ⁇ m.
  • SALD-7100 laser diffraction type particle size distribution analyzer manufactured by Shimadzu Corporation
  • the saponified vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer obtained in Production Example 3 was used as a copolymer [1] in the examination.
  • the viscosity of a 1% by mass aqueous solution of the copolymer [1] was 1,630 mPa ⁇ s, and the copolymerization composition ratio of vinyl ester to ethylenically unsaturated carboxylic acid ester was 6/4 in molar ratio.
  • the viscosity of the 1% by mass aqueous solution was measured using a rotational viscometer (model DV-I +) manufactured by BROOK FIELD, and spindle No. 1 was used. It measured on the conditions of 5 and 50 rpm (liquid temperature 25 degreeC).
  • Production Example 4 In Production Example 1, 25.9 g (0.301 mol) of methyl acrylate and 232.8 g (2.704 mol) of vinyl acetate are used instead of 104 g (1.209 mol) of methyl acrylate and 155 g (1.802 mol) of vinyl acetate. The same procedures as in Production Examples 1 to 3 were carried out except using, to obtain a saponified vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer. The said vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer saponification thing was used for examination as copolymer [2].
  • the volume average particle diameter of the copolymer [2] was 34 ⁇ m. Further, the viscosity of a 1% by mass aqueous solution of the copolymer [2] was 50 mPa ⁇ s, and the copolymer composition ratio of the vinyl ester and the ethylenically unsaturated carboxylic acid ester was 9/1. The volume average particle diameter and the viscosity of the 1% by mass aqueous solution were measured in the same manner as in the copolymer [1].
  • the obtained mixture is applied on a 20 ⁇ m thick electrolytic copper foil and dried, and then pressure is applied using a roll press (manufactured by Ono Roll Co., Ltd.) to closely bond the electrolytic copper foil and the coating film. Then, heat treatment (at 140 ° C. for 12 hours under reduced pressure) was performed to fabricate a negative electrode.
  • the thickness of the active material layer (coated film) was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Example 2 A negative electrode was produced in the same manner as in Example 1 except that, in Example 1, 9.9 parts by mass of the copolymer [1] was used instead of 9.9 parts by mass of the copolymer [2].
  • the thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Example 3 In Example 1, 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-300) is substituted for 0.1 part by mass of the organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400).
  • a negative electrode was produced in the same manner as in Example 1 except that it was used.
  • the thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Example 4 In Example 1, 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-315) is substituted for 0.1 part by mass of the organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400).
  • a negative electrode was produced in the same manner as in Example 1 except that it was used.
  • the thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Example 5 In Example 1, 0.1 part by mass of an organic zirconia compound crosslinking agent (manufactured by Sannopco, AZ-coated 5800 MT) is used in place of 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400).
  • a negative electrode was produced in the same manner as in Example 1 except that it was used.
  • the thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Example 6 In Example 1, 0.1 part by mass of a vinyl-based crosslinking agent (VS-B, manufactured by Fujifilm Corp.) is used in place of 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400). A negative electrode was produced in the same manner as in Example 1 except that the negative electrode was used. The thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • VS-B vinyl-based crosslinking agent
  • an organic titanium compound crosslinking agent manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400
  • Example 7 In Example 1, in place of 0.1 part by mass of organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400), 0.1 part by mass of epoxy-based crosslinking agent (manufactured by Nagase ChemteX Co., Ltd., Denacol EX-810) A negative electrode was produced in the same manner as in Example 1 except for using.
  • the thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Example 1 In Example 1, 9.9 parts by mass of the copolymer [1] and 0.1 parts by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400) are substituted for the copolymer without adding a crosslinking agent. [1] A negative electrode was produced in the same manner as in Example 1 except that only 10 parts by mass was mixed. The thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • an organic titanium compound crosslinking agent manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400
  • a negative electrode was produced in the same manner as in Example 1 except that 5 parts by mass of carboxymethylcellulose (CMC) and 5 parts by mass of styrene butadiene rubber (SBR) were used in place of copolymer [1] in Example 1. .
  • the thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Comparative example 2 A negative electrode was produced in the same manner as in Example 1 except that polyvinyl alcohol (PVA) was used in place of copolymer [1] in Example 1.
  • PVA polyvinyl alcohol
  • the negative electrode mixture of Comparative Example 2 had a weak binding power to the electrodeposited copper foil and peeled off after drying.
  • Comparative example 3 A negative electrode was produced in the same manner as in Example 1 except that sodium polyacrylate (PAANa) was used in place of copolymer [1] in Example 1.
  • the negative electrode mixture of Comparative Example 3 had a weak binding power to the electrodeposited copper foil and peeled off after drying.
  • Example 1 In Example 1, in place of 9.9 parts by mass of the copolymer [1], 7.5 parts by mass of the copolymer [1], an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) 0.1 A negative electrode slurry was prepared in the same manner as in Example 1 except that 2.5 parts by mass of an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) was used instead of the parts by mass. As a result, no slurry was obtained, which made it difficult to coat the electrodeposited copper foil.
  • TC-400 organic titanium compound crosslinking agent manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Table 2 shows the composition of each negative electrode.
  • the aluminum foil and the coating film are closely bonded with a roll press (made by Ono Roll Co., Ltd.), and then heat treatment (140 ° C. under reduced pressure) , 12 hours or more) to prepare a positive electrode.
  • the capacity density of the positive electrode was 1.6 mAh / cm 2 (average thickness of the active material layer: 50 ⁇ m).
  • the said positive electrode was used as a positive electrode also in any examination shown below.
  • Table 3 shows the cycle test results.
  • the capacity retention ratio (%) of the negative electrode is obtained by converting the capacity of the first cycle to 100.
  • the thickness of the active material layer was 40 ⁇ m, and the basis weight of the negative electrode was 8 mg / cm 2 .
  • the thickness of the active material layer was 30 ⁇ m, and the basis weight of the negative electrode was 6 mg / cm 2 .
  • Example 8 9.9 parts by mass of the copolymer [1] and 0.1 parts by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400) are substituted for the copolymer without adding a crosslinking agent.
  • a negative electrode was produced in the same manner as in Example 8 except that only 10 parts by mass was used.
  • the thickness of the active material layer was 30 ⁇ m, and the basis weight of the negative electrode was 6 mg / cm 2 .
  • Example 8 5 parts by mass of carboxymethylcellulose (CMC) and styrene butadiene rubber (SBR) are substituted for the copolymer (copolymer [1]) of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid.
  • a negative electrode was produced in the same manner as in Example 8 except that 5 parts by mass was used.
  • the thickness of the active material layer was 30 ⁇ m, and the basis weight of the negative electrode was 6 mg / cm 2 .
  • Table 4 shows the composition of each negative electrode.
  • a battery was assembled in the same manner as described above using each of these negative electrodes and the positive electrode obtained in Example A, and a cycle test was performed.
  • Table 5 shows the cycle test results.
  • the capacity retention ratio (%) of the negative electrode is obtained by converting the capacity of the first cycle to 100.
  • a negative electrode mixture was prepared as follows, and a battery was produced using the negative electrode mixture, and the discharge characteristics of the obtained battery were examined.
  • the slurry-like negative electrode mixture was prepared by mixing .05 parts by mass and 100 parts by mass of water.
  • the obtained mixture is applied on an electrolytic copper foil having a thickness of 10 ⁇ m and dried, and then pressure is applied using a roll press (manufactured by Ono Roll Co., Ltd.) to closely bond the electrolytic copper foil and the coating film. Then, heat treatment (under reduced pressure, 120 ° C., 12 hours) was performed to fabricate a negative electrode.
  • the thickness of the active material layer (coated film) was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Example I-2 In Example I-1, 4.9 parts by mass of the copolymer [1] is used in place of 4.95 parts by mass of the copolymer [1], and an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) A negative electrode was produced in the same manner as in Example I-1 except that 0.1 part by mass of an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) was used instead of 0.05 parts by mass. The thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • an organic titanium compound crosslinking agent TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Example I-3 In Example I-1, 4.65 parts by mass of the copolymer [1] is used in place of 4.95 parts by mass of the copolymer [1], and an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) A negative electrode was produced in the same manner as in Example I-1 except that 0.35 parts by mass of an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) was used instead of 0.05 parts by mass. The thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Example I-1 is replaced with 4.95 parts by mass of the copolymer [1], and a crosslinking agent is not added, except that only 5.0 parts by mass of the copolymer [1] is mixed.
  • a negative electrode was produced in the same manner as in the above. The thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Example I-4 In Example I-2, in place of 0.1 part by mass of the organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400), the organic titanium compound crosslinking agent (TC-300 manufactured by Matsumoto Fine Chemical Co., Ltd.) 0.1 mass A negative electrode was produced in the same manner as in Example I-2 except that a part was used. The thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • Example I-5 In Example I-2, in place of 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400), an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., TC-315) 0.1 mass A negative electrode was produced in the same manner as in Example I-2 except that a part was used. The thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • an organic titanium compound crosslinking agent manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400
  • an organic titanium compound crosslinking agent manufactured by Matsumoto Fine Chemical Co., TC-315
  • Example I-6 In Example I-2, in place of 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400), 0.1 mass of an organic zirconia compound crosslinking agent (manufactured by Sannopco, AZ-coated 5800MT) A negative electrode was produced in the same manner as in Example I-2 except that a part was used. The thickness of the active material layer was 50 ⁇ m, and the basis weight of the negative electrode was 10 mg / cm 2 .
  • an organic titanium compound crosslinking agent manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400
  • an organic zirconia compound crosslinking agent manufactured by Sannopco, AZ-coated 5800MT
  • Table 6 shows the composition of each negative electrode.
  • Example I-A Active material (Li (Ni 0.8 Co 0.1 Mn 0.1) O 2: 95 parts by weight of Beijing Toshin Technology Co., Ltd.), 3 parts by weight of copolymer [1] as a binder, acetylene black (denka black: made by Denka as a conductive aid 2 parts by mass and 100 parts by mass of water were mixed to prepare a slurry-like positive electrode mixture. After applying and drying the above mixture on an aluminum foil with a thickness of 10 ⁇ m, the aluminum foil and the coating film are closely bonded with a roll press machine (made by Ono Roll Co., Ltd.), and then heat treatment (under reduced pressure, 120 ° C.
  • a roll press machine made by Ono Roll Co., Ltd.
  • the capacity density of the positive electrode was 1.6 mAh / cm 2 (average thickness of the active material layer: 50 ⁇ m).
  • the said positive electrode was used as a positive electrode also in any examination shown below.
  • PP (Celgard # 2500: made by Celgard) as a separator
  • electrolysis As a liquid, a 20 mAh small-sized pouch cell was prepared, which contained an EC / DEC (1/1 v / v%) + 1 mass% VC solution (manufactured by Kishida Chemical Co., Ltd.) containing 1 mol / L of LiPF6 electrolyte.
  • PP indicates polypropylene
  • LiPF6 indicates lithium hexafluorophosphate
  • EC indicates ethylene carbonate
  • DEC indicates diethyl carbonate
  • VC vinylene carbonate.
  • Capacity maintenance rate (%) [discharge capacity after 100 cycles (mAh / g)] / [initial discharge capacity after aging (mAh / g)] ⁇ 100

Abstract

Provided is an electrode mixture for a non-aqueous electrolyte secondary battery, said electrode mixture having superior cycling characteristics and being able to be used in extant electrode coating equipment. Specifically provided is an electrode mixture for a non-aqueous electrolyte secondary battery, said electrode mixture including an electrode active material, a crosslinking agent, and a binding agent, wherein the binding agent includes a copolymer of a vinyl alcohol and an ethylenically unsaturated alkali metal carboxylate neutralization product.

Description

非水電解質二次電池用電極合剤Electrode mixture for non-aqueous electrolyte secondary battery
  本発明は、非水電解質二次電池用電極合剤に関する。 The present invention relates to an electrode mixture for non-aqueous electrolyte secondary batteries.
  近年、ノートパソコン、スマートフォン、携帯ゲーム機器、PDA等の携帯電子機器の普及に伴い、これらの機器をより軽量化し、且つ、長時間の使用を可能とするため、電源として使用される二次電池の小型化及び高容量化が要求されている。 In recent years, with the spread of portable electronic devices such as laptop computers, smartphones, portable game devices, PDAs, etc., secondary batteries used as a power source to reduce the weight of these devices and enable long-time use Needs to be miniaturized and to have a high capacity.
  その部材の一つである電極に関しては、例えば負極活物質としてグラファイトなどの炭素材料が一般的に使用されているが、電池容量の更なる向上を目的としてシリコン系材料の検討が進められている。シリコン系材料は充放電による体積変化が大きいため、バインダー樹脂の強度が充分でない場合、電極として所望の特性を発現することは出来ない。 For the electrode which is one of the members, for example, a carbon material such as graphite is generally used as a negative electrode active material, but studies of silicon materials are being promoted for the purpose of further improving the battery capacity. . Since the silicon-based material has a large volume change due to charge and discharge, when the strength of the binder resin is not sufficient, desired characteristics can not be exhibited as an electrode.
 このような問題に対し、シリコン系負極に対し、例えばポリイミドをバインダー樹脂として使用する技術(特許文献1)や所定のポリアクリル酸をバインダー樹脂として使用する技術(特許文献2)が提案されている。  For such problems, for example, a technique using polyimide as a binder resin (Patent Document 1) and a technique using a predetermined polyacrylic acid as a binder resin (Patent Document 2) have been proposed for silicon-based negative electrodes. .
 しかしながら、上記従来の技術では、充放電に伴うシリコン系負極活物質の膨張および収縮を十分に抑制することができず、さらに特許文献1のようなポリイミド樹脂は前躯体のポリアミド酸をイミド化するために少なくとも200℃以上の加熱が必要であるため、既存の電極塗工装置では対応できず、別途焼成炉を設ける必要がある。 However, in the above-described conventional techniques, expansion and contraction of the silicon-based negative electrode active material due to charge and discharge can not be sufficiently suppressed, and a polyimide resin as disclosed in Patent Document 1 imidizes the polyamide acid of the precursor. Because heating at least 200 ° C. or more is necessary to cope with this, the existing electrode coating apparatus can not cope with the problem, and it is necessary to provide a separate baking furnace.
特開2012-204203号公報JP 2012-204203 A 特開2000-348730号公報JP 2000-348730 A
  本発明は、上記従来技術の現状に鑑みてなされたものであり、その主な目的は、既存の電極塗工設備に適用可能で、サイクル特性に優れる非水電解質二次電池用電極合剤を提供することである。 The present invention has been made in view of the above-mentioned prior art, and its main object is to apply an electrode mixture for a non-aqueous electrolyte secondary battery which is applicable to existing electrode coating equipment and has excellent cycle characteristics. It is to provide.
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の結着剤と、架橋剤と、電極活物質と、を含む非水電解質二次電池用電極合剤を用いることで、サイクル特性が向上すること見出し、さらに改良を重ねて本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have used an electrode mixture for a non-aqueous electrolyte secondary battery including a specific binder, a crosslinking agent, and an electrode active material. The inventors have found that the cycle characteristics are improved, and further improvements have been made to complete the present invention.
 本発明は例えば以下の項に記載の主題を包含する。
項1.
 電極活物質と、架橋剤と、結着剤とを含有し、
前記結着剤は、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体を含む、
非水電解質二次電池用電極合剤。
項2.
 前記架橋剤と前記結着剤の合計質量に対し、前記架橋剤の含有割合が0.1質量%以上20質量%以下である、項1に記載の非水電解質二次電池用電極合剤。
項3.
 前記架橋剤は、カルボキシル基および/または水酸基と反応可能な官能基を2個以上有する架橋剤である、項1または2に記載の非水電解質二次電池用電極合剤。
項4.
 前記架橋剤は、イソシアネート基、エポキシ基、カルボジイミド基、アルコキシ基、及びビニルスルホン基からなる群より選択される官能基を、同一又は異なって2個以上有する架橋剤である、項1または2に記載の非水電解質二次電池用電極合剤。
項5.
 前記架橋剤は、チタンキレート錯体化合物である、項1~4のいずれかに記載の非水電解質二次電池用電極合剤。
項6.
 前記電極活物質、前記架橋剤、および前記結着剤の合計質量に対し、前記結着剤の含有割合が0.5質量%以上40質量%以下である、項1~5のいずれかに記載の非水電解質二次電池用電極合剤。
項7.
 前記エチレン性不飽和カルボン酸アルカリ金属中和物が、アクリル酸アルカリ金属中和物および/またはメタクリル酸アルカリ金属中和物である、項1~6のいずれかに記載の非水電解質二次電池用電極合剤。
項8.
  項1~7のいずれかに記載の非水電解質二次電池用電極合剤を用いた非水電解質二次電池用電極。
項9.
  項8に記載の非水電解質二次電池用電極を備えた非水電解質二次電池。
項10.
  項9に記載の非水電解質二次電池を備えた電気機器。
項11.
電極活物質と、
架橋剤と、
ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体を含む結着剤と、
を混合する工程を含む、
非水電解質二次電池用電極合剤の製造方法。
項12.
 前記架橋剤と前記結着剤の合計質量に対し、前記架橋剤の混合割合が0.1質量%以上20質量%以下である、項11に記載の非水電解質二次電池用電極合剤の製造方法。
項13.
 前記架橋剤は、カルボキシル基および/または水酸基と反応可能な官能基を2個以上有する架橋剤である、項11または12に記載の非水電解質二次電池用電極合剤の製造方法。
項14.
 前記架橋剤は、イソシアネート基、エポキシ基、カルボジイミド基、アルコキシ基、及びビニルスルホン基からなる群より選択される官能基を、同一又は異なって2個以上有する架橋剤である、項11または12に記載の非水電解質二次電池用電極合剤の製造方法。
項15.
 前記架橋剤は、チタンキレート錯体化合物である、項11~14のいずれかに記載の非水電解質二次電池用電極合剤の製造方法。
項16.
 前記電極活物質、前記架橋剤、および前記結着剤の合計質量に対し、前記結着剤の混合割合が0.5質量%以上40質量%以下である、項11~15のいずれかに記載の非水電解質二次電池用電極合剤の製造方法。
項17.
 前記エチレン性不飽和カルボン酸アルカリ金属中和物が、アクリル酸アルカリ金属中和物および/またはメタクリル酸アルカリ金属中和物である、項11~16のいずれかに記載の非水電解質二次電池用電極合剤の製造方法。
The present invention includes, for example, the subject matters described in the following sections.
Item 1.
Containing an electrode active material, a crosslinking agent, and a binder,
The binder includes a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid.
Electrode mixture for non-aqueous electrolyte secondary batteries.
Item 2.
The electrode mixture for non-aqueous electrolyte secondary batteries according to Item 1, wherein the content of the crosslinking agent is 0.1% by mass or more and 20% by mass or less based on the total mass of the crosslinking agent and the binding agent.
Item 3.
The electrode mixture for non-aqueous electrolyte secondary battery according to Item 1 or 2, wherein the crosslinking agent is a crosslinking agent having two or more functional groups capable of reacting with a carboxyl group and / or a hydroxyl group.
Item 4.
The crosslinking agent is a crosslinking agent having two or more functional groups selected from the group consisting of an isocyanate group, an epoxy group, a carbodiimide group, an alkoxy group, and a vinyl sulfone group, which may be the same or different. The electrode mixture for nonaqueous electrolyte secondary batteries as described.
Item 5.
The electrode mixture for a non-aqueous electrolyte secondary battery according to any one of Items 1 to 4, wherein the crosslinking agent is a titanium chelate complex compound.
Item 6.
The content ratio of the said binder is 0.5 mass% or more and 40 mass% or less with respect to the total mass of the said electrode active material, the said crosslinking agent, and the said binding agent in any one of claim 1 to 5 Electrode mixture for non-aqueous electrolyte secondary batteries.
Item 7.
7. The non-aqueous electrolyte secondary battery according to any one of items 1 to 6, wherein the ethylenically unsaturated carboxylic acid alkali metal neutralized product is an alkali metal acrylate neutralized product and / or an alkali metal methacrylate neutralized product. Electrode mix.
Item 8.
An electrode for a non-aqueous electrolyte secondary battery using the electrode mixture for a non-aqueous electrolyte secondary battery according to any one of Items 1 to 7.
Item 9.
Item 9. A non-aqueous electrolyte secondary battery comprising the electrode for a non-aqueous electrolyte secondary battery according to item 8.
Item 10.
Item 10. An electrical device comprising the non-aqueous electrolyte secondary battery according to item 9.
Item 11.
An electrode active material,
A crosslinking agent,
A binder comprising a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid,
Including the step of mixing
The manufacturing method of the electrode mixture for nonaqueous electrolyte secondary batteries.
Item 12.
Item 12. The electrode mixture for a non-aqueous electrolyte secondary battery according to item 11, wherein the mixing ratio of the crosslinking agent is 0.1 mass% or more and 20 mass% or less with respect to the total mass of the crosslinking agent and the binding agent. Production method.
Item 13.
Item 13. The method for producing an electrode mixture for a non-aqueous electrolyte secondary battery according to Item 11 or 12, wherein the crosslinking agent is a crosslinking agent having two or more functional groups capable of reacting with a carboxyl group and / or a hydroxyl group.
Item 14.
11. The crosslinker according to item 11 or 12, wherein the crosslinker is a crosslinker having two or more functional groups selected from the group consisting of an isocyanate group, an epoxy group, a carbodiimide group, an alkoxy group, and a vinyl sulfone group. The manufacturing method of the electrode mixture for nonaqueous electrolyte secondary batteries as described.
Item 15.
Item 15. The method for producing an electrode mixture for a non-aqueous electrolyte secondary battery according to any one of Items 11 to 14, wherein the crosslinking agent is a titanium chelate complex compound.
Item 16.
Item 16. The method according to any one of items 11 to 15, wherein the mixing ratio of the binder is 0.5 mass% to 40 mass% with respect to the total mass of the electrode active material, the crosslinking agent, and the binder. The manufacturing method of the electrode mixture for non-aqueous electrolyte secondary batteries.
Item 17.
17. The non-aqueous electrolyte secondary battery according to any one of items 11 to 16, wherein the ethylenically unsaturated carboxylic acid alkali metal neutralized product is an alkali metal acrylate neutralized product and / or an alkali metal methacrylate neutralized product. Method of producing an electrode mixture.
 本発明に係る非水電解質二次電池用電極合剤を用いた電極を備えた非水電解質二次電池は、サイクル特性が向上する。限定的な解釈を望むものではないが、当該効果は、充放電に伴う電極活物質の膨張および収縮が抑制されることによって得られるものと推察される。さらにまた、当該非水電解質二次電池は、放電特性も向上し得る。 The non-aqueous electrolyte secondary battery provided with the electrode using the electrode mixture for a non-aqueous electrolyte secondary battery according to the present invention has improved cycle characteristics. Although not wishing to be interpreted in a limited manner, it is presumed that the effect is obtained by suppressing the expansion and contraction of the electrode active material accompanying charge and discharge. Furthermore, the non-aqueous electrolyte secondary battery can also improve the discharge characteristics.
本発明に包含される非水電解質二次電池用電極合剤の一態様について、その概要を示す。The outline is shown about one aspect of the electrode mixture for nonaqueous electrolyte secondary batteries included in the present invention. 図1に示す非水電解質二次電池用電極合剤を金属箔に塗工し、乾燥させ、プレスし、加熱して電極を調製した際の一態様の概要を示す。An electrode mixture for a non-aqueous electrolyte secondary battery shown in FIG. 1 is coated on a metal foil, dried, pressed, and heated to prepare an outline of one embodiment when an electrode is prepared. 架橋型樹脂を含む結着剤及び電極活物質を含有する電極合剤、並びに、これにさらに架橋剤を加えた場合には本発明の非水電解質二次電池用電極合剤となり得ることについて、概要を示す。An electrode mixture containing a binder and an electrode active material containing a crosslinkable resin, and when it is further added with a crosslinking agent, it can be an electrode mixture for a non-aqueous electrolyte secondary battery of the present invention, Give an overview.
 以下、本発明の各実施形態について、さらに詳細に説明する。 Hereinafter, each embodiment of the present invention will be described in more detail.
  本発明に包含される非水電解質二次電池用電極合剤は、電極活物質(正極または負極用活物質)と、架橋剤と、結着剤とを含有し、前記結着剤は、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体を含む。当該合剤は、前記の成分を含む組成物(合剤組成物)である。また、当該合剤は、スラリーの形態であることが好ましい。 The electrode mixture for a non-aqueous electrolyte secondary battery included in the present invention contains an electrode active material (active material for positive electrode or negative electrode), a crosslinking agent, and a binder, and the binder is vinyl. Copolymers of alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid are included. The combination is a composition (mixture composition) containing the components described above. The mixture is preferably in the form of a slurry.
 また、当該電極合剤には、電極活物質、架橋剤、及び結着剤の他にも、例えば液体媒体(好ましくは水)が含まれていてもよい。またさらに、導電助剤、分散助剤などが含まれていてもよい。 In addition to the electrode active material, the crosslinking agent, and the binder, the electrode mixture may contain, for example, a liquid medium (preferably water). Furthermore, a conductive aid, a dispersion aid and the like may be contained.
  (結着剤)
  本発明に用いられる結着剤は、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体を含む。当該共重合体は、例えば、ビニルエステルとエチレン性不飽和カルボン酸エステルとを共重合させて得られた共重合体を、アルカリ金属を含むアルカリの存在下、水性有機溶媒と水の混合溶媒中でケン化することによって得ることができる。すなわち、ビニルアルコール自体は不安定であるため直接モノマーとして使用することはできないが、ビニルエステルをモノマーとして使用して得られた重合体をケン化することにより、生成された重合体は結果としてビニルアルコールをモノマーとして重合させた態様となる。
(Binding agent)
The binder used in the present invention comprises a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid. The said copolymer is obtained, for example, by copolymerizing a vinyl ester and an ethylenically unsaturated carboxylic acid ester, in a mixed solvent of an aqueous organic solvent and water in the presence of an alkali containing alkali metal. Can be obtained by saponification. That is, although vinyl alcohol itself is unstable and can not be used directly as a monomer, the polymer produced by saponifying a polymer obtained using a vinyl ester as a monomer results in vinyl as a result It becomes an aspect which polymerized alcohol as a monomer.
  前記ビニルエステルとしては、例えば酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニルなどが挙げられるが、ケン化反応が進行しやすいため酢酸ビニルが好ましい。これらのビニルエステルは、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the vinyl ester include vinyl acetate, vinyl propionate, and vinyl pivalate, but vinyl acetate is preferable because the saponification reaction easily proceeds. One of these vinyl esters may be used alone, or two or more thereof may be used in combination.
  前記エチレン性不飽和カルボン酸エステルとしては、例えばアクリル酸、メタクリル酸のメチルエステル、エチルエステル、n-プロピルエステル、iso-プロピルエステル、n-ブチルエステル、t-ブチルエステルなどが挙げられるが、ケン化反応が進行しやすいためアクリル酸メチル、メタクリル酸メチルが好ましい。これらのエチレン性不飽和カルボン酸エステルは、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the ethylenically unsaturated carboxylic acid ester include acrylic acid, methyl ester of methacrylic acid, ethyl ester, n-propyl ester, iso-propyl ester, n-butyl ester, t-butyl ester, etc. Methyl acrylate and methyl methacrylate are preferred because the reaction tends to proceed. One of these ethylenically unsaturated carboxylic acid esters may be used alone, or two or more thereof may be used in combination.
  また、必要に応じてビニルエステル及びエチレン性不飽和カルボン酸エステルと共重合可能な他のエチレン性不飽和単量体を、ビニルエステル及びエチレン性不飽和カルボン酸エステルに加えて使用し、これらを共重合させてもよい。このようにして得られる共重合体をケン化して得られる、ビニルアルコールをモノマーとして重合させた態様の共重合体も、本発明において結着剤として用いることができる。 Also, if necessary, other ethylenically unsaturated monomers copolymerizable with vinyl ester and ethylenically unsaturated carboxylic acid ester are used in addition to vinyl ester and ethylenically unsaturated carboxylic acid ester, and these are used. It may be copolymerized. The copolymer obtained by saponifying the copolymer thus obtained and obtained by polymerizing vinyl alcohol as a monomer can also be used as a binder in the present invention.
 またさらに、ビニルエステル及びエチレン性不飽和カルボン酸エステル(並びに必要に応じて前記他のエチレン性不飽和単量体)を共重合する際、架橋剤をも組み合わせて共重合させてもよい。このようにして得られる共重合体をケン化して得られる共重合体も、本発明において、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体に包含され、結着剤として好ましく用いることができる。つまり、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体は、未架橋樹脂であっても架橋型樹脂であってもよい。 Furthermore, when copolymerizing a vinyl ester and an ethylenically unsaturated carboxylic acid ester (and, if necessary, the other ethylenically unsaturated monomer), a crosslinking agent may also be combined and copolymerized. In the present invention, the copolymer obtained by saponifying the copolymer thus obtained is also included in the copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and a binder It can be preferably used as That is, the copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid may be an uncrosslinked resin or a crosslinked resin.
 なお、このようにして得られる架橋型樹脂を調製するために用いられる架橋剤を、本明細書では「樹脂内架橋モノマー」と表記して、本発明に係る非水電解質二次電池用電極合剤が含有する「架橋剤」と概念上区別する。すなわち、本発明に係る非水電解質二次電池用電極合剤は、電極活物質と、「架橋剤」と、結着剤とを含有するところ、当該結着剤は架橋型樹脂を含んでいてもよく、当該架橋型樹脂の調製には「樹脂内架橋モノマー」が用いられ得る。ただし、概念上区別するだけであって、当該「架橋剤」として用いられる物質と、当該「樹脂内架橋モノマー」として用いられる物質とが、同一物質であることは妨げない。 The crosslinker used to prepare the crosslinkable resin thus obtained is referred to as "crosslink monomer in resin" in the present specification, and the electrode assembly for a non-aqueous electrolyte secondary battery according to the present invention It distinguishes conceptually from the "crosslinking agent" which an agent contains. That is, the electrode mixture for a non-aqueous electrolyte secondary battery according to the present invention contains an electrode active material, a "crosslinking agent", and a binder, and the binder contains a crosslinkable resin. Also, "in-resin crosslinking monomers" may be used for the preparation of the crosslinkable resin. However, only the concept is merely distinguished, and it does not prevent that the substance used as the "crosslinking agent" and the substance used as the "in-resin crosslinking monomer" are the same substance.
 樹脂内架橋モノマーとしては、共重合が可能な反応性官能基を2つ又はそれ以上有するものが挙げられる。当該反応性官能基は、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体の原料であるモノマーと、共重合が可能な反応性官能基である。2つ又はそれ以上の反応性官能基のそれぞれが別の共重合体の骨格中に取り込まれる(結合する)ことで架橋する。共重合が可能な反応性官能基としてはビニル基が好ましく挙げられる。樹脂内架橋モノマーとして、ビニル基を2個有するモノマーが好ましく挙げられる。より具体的には、当該樹脂内架橋モノマーとしては、例えばジビニルベンゼンが好ましく挙げられる。また例えば、2官能性アクリレート、2官能性メタクリレート等(例えば2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、等)が好ましく挙げられる。またさらに、ビニルスルホン基を2個又はそれ以上有する架橋剤も樹脂内架橋モノマーとして用いることができ、例えば、CH=CH-SO-CH-CO-NH-(CH-NH-CO-CH-SO-CH=CH(ここでnは1~6の自然数を示し、2又は3が特に好ましい)で表される化合物が好ましく挙げられる。このような化合物の市販品として、例えば富士フイルム社製VS-B、VS-Cを挙げることができる。 The intra-resin crosslinking monomer includes those having two or more reactive functional groups capable of copolymerization. The said reactive functional group is a reactive functional group which can be copolymerized with the monomer which is the raw material of the copolymer of vinyl alcohol and an alkali metal neutralized ethylenically unsaturated carboxylic acid. Each of the two or more reactive functional groups crosslinks by being incorporated (bonded) into the backbone of another copolymer. As a reactive functional group capable of copolymerization, a vinyl group is preferably mentioned. A monomer having two vinyl groups is preferably mentioned as the in-resin crosslinking monomer. More specifically, as the intra-resin crosslinking monomer, for example, divinylbenzene is preferably mentioned. For example, bifunctional acrylate, bifunctional methacrylate and the like (for example, 2-hydroxy-3-acryloyloxypropyl methacrylate, polyethylene glycol diacrylate and the like) are preferably mentioned. Furthermore, crosslinking agents having two or more vinyl sulfone groups can also be used as intra-resin crosslinking monomers, for example, CH 2 2CH—SO 2 —CH 2 —CO—NH— (CH 2 ) n —NH Preferred is a compound represented by —CO—CH 2 —SO 2 —CH = CH 2 (wherein n is a natural number of 1 to 6, and 2 or 3 is particularly preferable). Examples of commercially available products of such compounds include VS-B and VS-C manufactured by Fujifilm.
 上記の通り、本発明に包含される非水電解質二次電池用電極合剤は、電極活物質と、架橋剤と、結着剤とを含有する。ここで、当該非水電解質二次電池用電極合剤は、前記架橋型樹脂を含む結着剤及び電極活物質を含有する電極合剤とは異なるものであり、区別される。つまり、前記架橋型樹脂に含まれる「樹脂内架橋モノマー」由来部分は、「架橋剤」ではない。樹脂内架橋モノマーは架橋型樹脂調製時に既に架橋のために用いられており架橋能を有していない(換言すれば、樹脂内架橋モノマーは架橋型樹脂の架橋部分を既に構成している)からである。 As described above, the electrode mixture for non-aqueous electrolyte secondary batteries included in the present invention contains an electrode active material, a crosslinking agent, and a binder. Here, the electrode mixture for a non-aqueous electrolyte secondary battery is different from, and distinguished from, the electrode mixture containing the crosslinkable resin and the electrode active material. That is, the "in-resin crosslinking monomer" -derived portion contained in the crosslinkable resin is not a "crosslinking agent". The intra-resin crosslinking monomer is already used for crosslinking when preparing the crosslinkable resin and has no crosslinking ability (in other words, the intra-resin crosslinking monomer already constitutes the crosslinkable portion of the crosslinkable resin) It is.
 またさらに、本発明に包含される非水電解質二次電池用電極合剤を熱処理して架橋剤による架橋がなされた後の組成物(例えば、当該合剤を金属版もしくは金属箔に塗布及び熱処理して調製した非水電解質二次電池用電極が備える電極組成物)についても、前記架橋型樹脂を含む結着剤と電極活物質とを含有する電極合剤とは異なるものであり、区別される。当該組成物において、架橋剤は結着剤に含まれる共重合体どうしを架橋するのみならず、結着剤に含まれる共重合体と電極活物質とをも架橋し得、また電極活物質どうしを架橋し得るからである。さらには、本発明に包含される非水電解質二次電池用電極合剤が金属板若しくは金属箔に塗布された後熱処理されて当該組成物が得られた場合(例えば、電極組成物である場合)、架橋剤は、当該金属板若しくは金属箔と結着剤に含まれる共重合体又は電極活物質とをも結合し得る。前記架橋型樹脂を含む結着剤と電極活物質とを含有する電極合剤では、架橋型樹脂内に樹脂内架橋モノマー由来の架橋部分が存在するが、架橋型樹脂と電極活物質とは架橋されていない。 Furthermore, a composition after heat treatment of the electrode mixture for non-aqueous electrolyte secondary batteries included in the present invention and crosslinking by a crosslinking agent (for example, the mixture is applied to a metal plate or a metal foil and heat treated Also for the electrode composition provided in the electrode for the non-aqueous electrolyte secondary battery prepared in the above manner, the electrode mixture containing the binder containing the crosslinkable resin and the electrode active material is different and distinguished. Ru. In the composition, the crosslinking agent not only crosslinks the copolymers contained in the binder but can also crosslink the copolymer contained in the binder and the electrode active material, and It is because it can crosslink. Furthermore, when the electrode mixture for a non-aqueous electrolyte secondary battery included in the present invention is applied to a metal plate or a metal foil and then heat-treated to obtain the composition (for example, in the case of an electrode composition) The crosslinking agent can also bond the metal plate or metal foil and the copolymer or electrode active material contained in the binder. In the electrode mixture containing the binder containing the crosslinkable resin and the electrode active material, a crosslink portion derived from a crosslink monomer in the resin exists in the crosslinkable resin, but the crosslinkable resin and the electrode active material crosslink It has not been.
 本発明に包含される非水電解質二次電池用電極合剤の一態様について、その概要を図1に示す。また、当該電極合剤を金属箔に塗工し、乾燥させ、プレスし、加熱して電極を調製した際の一態様の概要を図2に示す。また、架橋型樹脂を含む結着剤及び電極活物質を含有するだけの電極合剤は、本発明の非水電解質二次電池用電極合剤とは異なるが、これにさらに架橋剤を加えた場合には本発明の非水電解質二次電池用電極合剤となり得ることについて、概要を図3に示す。 The outline | summary is shown in FIG. 1 about the one aspect | mode of the electrode mixture for nonaqueous electrolyte secondary batteries included in this invention. Moreover, the said electrode mixture is coated to metal foil, it is made to dry, it presses, and it heats, and the outline | summary of one aspect at the time of preparing an electrode is shown in FIG. Further, although the binder containing the crosslinkable resin and the electrode mixture only containing the electrode active material are different from the electrode mixture for the non-aqueous electrolyte secondary battery of the present invention, a crosslinking agent is further added thereto. An outline is shown in FIG. 3 about what can become an electrode mixture for non-aqueous electrolyte secondary batteries of this invention in the case.
  本実施形態におけるケン化反応の一例として、酢酸ビニル/アクリル酸メチル共重合体が水酸化カリウム(KOH)により100%ケン化されたときのケン化反応を以下に示す。 As an example of the saponification reaction in this embodiment, a saponification reaction when vinyl acetate / methyl acrylate copolymer is 100% saponified with potassium hydroxide (KOH) is shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、上に示すように本実施形態に係るビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体は、ビニルエステルとエチレン性不飽和カルボン酸エステルをランダム共重合させて、モノマー由来のエステル部分をケン化させた物質であり、モノマー同士の結合はC-C共有結合である。(以下、ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物と記載する場合がある。また、前記説明から明らかなように、ここでの「/」はランダム共重合していることを示す。) In addition, as shown above, the copolymer of the vinyl alcohol and the ethylenically unsaturated carboxylic acid alkali metal neutralized product according to the present embodiment randomly copolymerizes the vinyl ester and the ethylenically unsaturated carboxylic acid ester, It is a substance obtained by saponifying an ester moiety derived from a monomer, and the bond between the monomers is a C—C covalent bond. (Hereafter, it may be described as a saponified vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer. Moreover, as is apparent from the above description, "/" in this case indicates that random copolymerization is performed. Show)
  本実施形態の共重合体においては、ビニルエステルとエチレン性不飽和カルボン酸エステルのモル比(ビニルアルコール/エチレン性不飽和カルボン酸アルカリ金属中和物)は、95/5~5/95が好ましく、95/5~50/50がより好ましく、90/10~60/40が更に好ましい。95/5~5/95の範囲内であれば、ケン化後得られる重合体が、結着剤としての保持力が特に好ましく向上する。 In the copolymer of the present embodiment, the molar ratio of vinyl ester to ethylenically unsaturated carboxylic acid ester (vinyl alcohol / ethylenically unsaturated carboxylic acid alkali metal neutralized product) is preferably 95/5 to 5/95. , 95/5 to 50/50 is more preferable, and 90/10 to 60/40 is further preferable. Within the range of 95/5 to 5/95, the polymer obtained after saponification has particularly preferably improved retention as a binder.
  したがって、得られるビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との前記共重合体において、共重合組成比はモル比で95/5~5/95が好ましく、95/5~50/50がより好ましく、90/10~60/40が更に好ましい。 Therefore, in the copolymer of vinyl alcohol obtained and the above-mentioned copolymer of an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, the copolymerization composition ratio is preferably 95/5 to 5/95 in molar ratio, and 95/5 to 50 / 50 is more preferable, and 90/10 to 60/40 is further preferable.
  エチレン性不飽和カルボン酸アルカリ金属中和物としては、アクリル酸アルカリ金属中和物及びメタクリル酸アルカリ金属中和物からなる群より選択される少なくとも1種が好ましい。また、エチレン性不飽和カルボン酸アルカリ金属中和物のアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が例示できるが、好ましくはカリウム及びナトリウムである。特に好ましいエチレン性不飽和カルボン酸アルカリ金属中和物は、アクリル酸ナトリウム中和物、アクリル酸カリウム中和物、メタクリル酸ナトリウム中和物、及びメタクリル酸カリウム中和物からなる群より選択される少なくとも1種である。 The ethylenically unsaturated carboxylic acid alkali metal neutralized product is preferably at least one selected from the group consisting of alkali metal acrylate neutralized products and alkali metal methacrylate neutralized products. Moreover, as an alkali metal of the ethylenically unsaturated carboxylic acid alkali metal neutralized material, although lithium, sodium, potassium, rubidium, cesium etc. can be illustrated, Preferably they are potassium and sodium. Particularly preferred ethylenically unsaturated carboxylic acid alkali metal neutralized products are selected from the group consisting of sodium acrylate neutralized products, potassium acrylate neutralized products, sodium methacrylate neutralized products, and potassium methacrylate neutralized products It is at least one kind.
  ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体の前駆体であるビニルエステル/エチレン性不飽和カルボン酸エステル共重合体は、粉末状で共重合体が得られる観点から、重合触媒を含む分散剤水溶液中にビニルエステルおよびエチレン性不飽和カルボン酸エステルを主体とする単量体を懸濁させた状態で重合させて重合体粒子とする懸濁重合法により得られたものが好ましい。 A vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer, which is a precursor of a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, is a powdery form, from the viewpoint of obtaining the copolymer. Obtained by a suspension polymerization method in which a polymer particle is obtained by polymerizing in the state of suspending a monomer mainly composed of a vinyl ester and an ethylenically unsaturated carboxylic acid ester in a dispersant aqueous solution containing a polymerization catalyst. Is preferred.
  前記重合触媒としては、例えばベンゾイルパーオキシド、ラウリルパーオキシドなどの有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物が挙げられるが、とりわけラウリルパーオキシドが好ましい。 Examples of the polymerization catalyst include organic peroxides such as benzoyl peroxide and lauryl peroxide, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile, with preference given to lauryl peroxide.
  重合触媒の添加量は、単量体の総質量に対して、0.01~5質量%が好ましく、0.05~3質量%がより好ましく、0.1~3質量%がさらに好ましい。0.01質量%未満では、重合反応が完結しない場合があり、5質量%を超えると最終的に得られるビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体の結着効果が十分でない場合がある。 The addition amount of the polymerization catalyst is preferably 0.01 to 5% by mass, more preferably 0.05 to 3% by mass, and still more preferably 0.1 to 3% by mass, with respect to the total mass of the monomers. When the amount is less than 0.01% by mass, the polymerization reaction may not be completed, and when the amount is more than 5% by mass, binding of a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid finally obtained. The effect may not be enough.
  重合を行わせる際の前記分散剤は、使用する単量体の種類、量などにより適当な物質を選択すればよいが、具体的にはポリビニルアルコール(部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール)、ポリ(メタ)アクリル酸およびその塩、ポリビニルピロリドン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどの水溶性高分子;リン酸カルシウム、珪酸マグネシウムなどの水不溶性無機化合物などが挙げられる。これらの分散剤は、単独で使用してもよいし、2種以上を組合せて使用してもよい。 An appropriate substance may be selected as the above-mentioned dispersant at the time of carrying out the polymerization, depending on the kind and amount of monomers to be used, but specifically, polyvinyl alcohol (partially saponified polyvinyl alcohol, completely saponified polyvinyl alcohol And water soluble polymers such as polyvinyl pyrrolidone, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose; and water insoluble inorganic compounds such as calcium phosphate and magnesium silicate. These dispersants may be used alone or in combination of two or more.
  分散剤の使用量は、使用する単量体の種類などにもよるが、単量体の総質量に対して、0.01~10質量%が好ましく、0.05~5質量%がより好ましい。 The amount of the dispersing agent used is preferably 0.01 to 10% by mass, and more preferably 0.05 to 5% by mass, based on the total mass of the monomers, although it depends on the kind of monomers to be used, etc. .
  さらに、前記分散剤の界面活性効果などを調整するため、アルカリ金属、アルカリ土類金属などの水溶性塩を添加することもできる。例えば塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化リチウム、無水硫酸ナトリウム、硫酸カリウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸三ナトリウム及びリン酸三カリウムなどが挙げられ、これらの水溶性塩は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Furthermore, water-soluble salts such as alkali metals and alkaline earth metals can also be added to adjust the surface active effect and the like of the dispersant. Examples thereof include sodium chloride, potassium chloride, calcium chloride, lithium chloride, anhydrous sodium sulfate, potassium sulfate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, trisodium phosphate and tripotassium phosphate, etc., and their water solubility The salts may be used alone or in combination of two or more.
  水溶性塩の使用量は、使用する分散剤の種類、量などにもよるが、分散剤水溶液の質量に対して通常0.01~10質量%である。 The amount of the water-soluble salt used is usually 0.01 to 10% by mass with respect to the mass of the aqueous dispersant solution, depending on the type, amount and the like of the dispersant used.
  単量体を重合させる温度は、重合触媒の10時間半減期温度に対して-20~20℃が好ましく、-10~10℃がより好ましい。例えば、ラウリルパーオキシドの10時間半減期温度は約62℃である。 The temperature for polymerizing the monomer is preferably -20 to 20 ° C, more preferably -10 to 10 ° C, with respect to the 10 hour half-life temperature of the polymerization catalyst. For example, the 10 hour half-life temperature of lauryl peroxide is about 62 ° C.
  10時間半減期温度に対して-20℃未満では、重合反応が完結しない場合があり、20℃を超えると、得られるビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体の結着効果が十分でない場合がある。 When the temperature is less than -20 ° C with respect to the 10 hour half-life temperature, the polymerization reaction may not be completed, and when the temperature exceeds 20 ° C, a copolymer of vinyl alcohol obtained and alkali metal neutralized with ethylenically unsaturated carboxylic acid is obtained. The binding effect of may not be sufficient.
  単量体を重合させる時間は、使用する重合触媒の種類、量、重合温度などにもよるが、通常数時間~数十時間である。 The time for polymerizing the monomers depends on the type and amount of the polymerization catalyst used, the polymerization temperature and the like, but is usually several hours to several tens of hours.
  重合反応終了後、共重合体は遠心分離、濾過などの方法により分離され、含水ケーキ状で得られる。得られた含水ケーキ状の共重合体はそのまま、もしくは必要に応じて乾燥し、ケン化反応に使用することができる。 After completion of the polymerization reaction, the copolymer is separated by a method such as centrifugation, filtration and the like, and is obtained as a water-containing cake. The obtained water-containing cake-like copolymer can be used as it is or, if necessary, dried for saponification reaction.
  本明細書における重合体の数平均分子量は、溶媒としてDMFを用いGFCカラム(例えばShodex社製OHpak)を備えた分子量測定装置にて求めた値である。このような分子量測定装置としては、例えばウォーターズ社製2695、RI検出器2414が挙げられる。 The number average molecular weight of the polymer in the present specification is a value determined by a molecular weight measurement apparatus equipped with a GFC column (for example, OHpak manufactured by Shodex Corp.) using DMF as a solvent. As such a molecular weight measuring device, for example, 2695 manufactured by Waters, RI detector 2414 can be mentioned.
  ケン化前の共重合体の数平均分子量は、10,000~1,000,000が好ましく、50,000~800,000がより好ましい。ケン化前の数平均分子量を10,000~1,000,000の範囲内にすることで、結着剤として結着力がより向上する傾向がある。従って、電極用合剤(特に負極合剤)が水系スラリーであっても、スラリーの厚塗りが容易になる。 The number average molecular weight of the copolymer before saponification is preferably 10,000 to 1,000,000, and more preferably 50,000 to 800,000. When the number average molecular weight before saponification is in the range of 10,000 to 1,000,000, the binding power tends to be further improved as a binder. Therefore, even if the electrode mixture (particularly, the negative electrode mixture) is an aqueous slurry, thick coating of the slurry is facilitated.
  ケン化反応は、例えば、アルカリ金属を含むアルカリの存在下、水性有機溶媒のみ、又は水性有機溶媒と水との混合溶媒中で実施することができる。前記ケン化反応に使用するアルカリ金属を含むアルカリとしては、従来公知のものを使用することができるが、アルカリ金属水酸化物が好ましく、反応性が高いという観点より、水酸化ナトリウム及び水酸化カリウムが特に好ましい。 The saponification reaction can be carried out, for example, in the presence of an alkali containing an alkali metal, in an aqueous organic solvent alone, or in a mixed solvent of an aqueous organic solvent and water. As the alkali containing an alkali metal used for the saponification reaction, conventionally known ones can be used, but alkali metal hydroxide is preferable, and sodium hydroxide and potassium hydroxide are preferable from the viewpoint of high reactivity. Is particularly preferred.
  前記アルカリの量は、単量体のモル数に対して60~140モル%が好ましく、80~120モル%がより好ましい。60モル%より少ないアルカリ量ではケン化が不十分となる場合があり、140モル%を超えて使用してもそれ以上の効果が得られず経済的でない。 The amount of the alkali is preferably 60 to 140% by mole, and more preferably 80 to 120% by mole, relative to the number of moles of the monomer. If the alkali amount is less than 60 mol%, saponification may be insufficient, and even if it is used more than 140 mol%, no further effect is obtained and it is not economical.
 前記ケン化反応には、水性有機溶媒のみ、又は水性有機溶媒と水との混合溶媒を用いることが好ましい。当該水性有機溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノールなどの低級アルコール類;アセトン、メチルエチルケトンなどのケトン類;およびこれらの混合物などが挙げられるが、なかでも低級アルコール類が好ましく、優れた結着効果と機械的せん断に対して優れた耐性を有するビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体が得られることから、特にメタノールおよびエタノールが好ましい。 In the saponification reaction, it is preferable to use only an aqueous organic solvent or a mixed solvent of an aqueous organic solvent and water. Examples of the aqueous organic solvent include lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and t-butanol; ketones such as acetone and methyl ethyl ketone; and mixtures thereof Lower alcohols are preferable, and in particular, a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid having excellent binding effect and excellent resistance to mechanical shear can be obtained, particularly methanol. And ethanol are preferred.
  前記水性有機溶媒と水の混合溶媒における水性有機溶媒/水の質量比は、30/70~85/15が好ましく、40/60~85/15がより好ましく、40/60~80/20がさらに好ましい。30/70~85/15の範囲を逸脱する場合、ケン化前の共重合体の溶媒親和性またはケン化後の共重合体の溶媒親和性が不足し、充分にケン化反応を進行させることができないおそれがある。水性有機溶媒が30/70の比率より少ない場合、結着剤としての結着力が低下するだけでなく、ケン化反応の際に著しく増粘するため工業的にビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物を得ることが難しく、水性有機溶媒が85/15の比率より多い場合、得られるビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物の水溶性が低下するので電極に使用すると、乾燥後の結着力が損なわれる場合がある。なお、含水ケーキ状の共重合体をそのままケン化反応に使用する場合、前記水性有機溶媒/水の質量比は、含水ケーキ状の共重合体中の水を含むものとする。 The mass ratio of the aqueous organic solvent / water in the mixed solvent of the aqueous organic solvent and water is preferably 30/70 to 85/15, more preferably 40/60 to 85/15, and further preferably 40/60 to 80/20. preferable. If it deviates from the range of 30/70 to 85/15, the solvent affinity of the copolymer before saponification or the solvent affinity of the copolymer after saponification is insufficient, and the saponification reaction is sufficiently advanced May not be When the ratio of the aqueous organic solvent is less than 30/70, not only the binding ability as a binder is lowered, but also the viscosity is significantly increased in the saponification reaction, so that vinyl ester / ethylenically unsaturated carboxylic acid is industrially It is difficult to obtain a saponified ester copolymer, and when the ratio of the aqueous organic solvent is more than 85/15, the water solubility of the resulting vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer decreases, so that the electrode If used, the binding after drying may be impaired. When the water-containing cake copolymer is used as it is for the saponification reaction, the mass ratio of the aqueous organic solvent / water includes water in the water-containing cake copolymer.
  ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体をケン化させる温度は、単量体のモル比にもよるが、例えば20~60℃が好ましく、20~50℃がより好ましい。20℃より低い温度でケン化させた場合、ケン化反応が完結しないおそれがあり、60℃を超える温度の場合、反応系内が増粘し撹拌不能となる場合がある。 The temperature at which the vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer is saponified is, for example, preferably 20 to 60 ° C., more preferably 20 to 50 ° C., although it depends on the molar ratio of the monomers. When saponification is performed at a temperature lower than 20 ° C., there is a possibility that the saponification reaction may not be completed, and in the case of a temperature higher than 60 ° C., the inside of the reaction system may be thickened and stirring becomes impossible.
  ケン化反応の時間は、使用するアルカリの種類、量などにより異なるが、通常数時間程度で反応は終了する。 The time for the saponification reaction varies depending on the type and amount of alkali used, but the reaction is usually completed in about several hours.
  ケン化反応が終了した時点で通常、ペーストないしスラリー状の共重合体ケン化物の分散体となる。遠心分離、濾過など従来公知の方法により固液分離し、メタノールなどの低級アルコールなどでよく洗浄して得られた含液共重合体ケン化物を乾燥することにより、球状単一粒子または球状粒子が凝集した凝集粒子として共重合体ケン化物、すなわちビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体を得ることができる。 When the saponification reaction is completed, a paste or slurry-like copolymer saponified dispersion is usually obtained. Spherical single particles or spherical particles can be obtained by solid-liquid separation according to a conventionally known method such as centrifugation, filtration, and thoroughly washed with a lower alcohol such as methanol to obtain a saponified liquid-containing copolymer obtained. It is possible to obtain a saponified copolymer, that is, a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid as aggregated agglomerated particles.
 前記ケン化反応以降において、塩酸、硫酸、燐酸、硝酸などの無機酸;ギ酸、酢酸、シュウ酸、クエン酸などの有機酸等の酸を用いて共重合体ケン化物を酸処理した後に、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化フランシウムなど任意のアルカリ金属を用いて、異種の(つまり、アルカリ金属が異なる)、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物の共重合体を得ることもできる。 After the above saponification reaction, the acid saponification of the saponified copolymer with an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid; an organic acid such as formic acid, acetic acid, oxalic acid or citric acid; Different alkali metals such as lithium oxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, francium hydroxide and the like (that is, different alkali metals), vinyl alcohol and ethylenic unsaturated carbon Copolymers of acid alkali metal neutralized products can also be obtained.
  含液共重合体ケン化物を乾燥する条件は、特に限定されないが通常、常圧もしくは減圧下、30~120℃の温度で乾燥することが好ましい。 The conditions for drying the liquid-containing copolymer saponified product are not particularly limited, but in general, it is preferable to dry at a temperature of 30 to 120 ° C. under normal pressure or reduced pressure.
  乾燥時間は、乾燥時の圧力、温度にもよるが通常数時間~数十時間である。 The drying time is usually from several hours to several tens of hours, depending on the pressure and temperature at the time of drying.
  ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体の体積平均粒子径は、1~200μmであることが好ましく、10~100μmであることがより好ましい。1μm以上でより好ましく結着効果が得られ、200μm以下であることで水系増粘液がより均一になり好ましい結着効果が得られる。なお、共重合体の体積平均粒子径はレーザー回折式粒度分布測定装置(例えば島津製作所社製、SALD-7100)に回分セル(例えば、同社製、SALD-BC)を設置し、分散溶媒に2-プロパノールまたはメタノールを用い測定した値である。 The volume average particle diameter of the copolymer of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid is preferably 1 to 200 μm, and more preferably 10 to 100 μm. A binding effect can be obtained more preferably at 1 μm or more, and by making it 200 μm or less, the water-based thickening liquid becomes more uniform and a preferable binding effect can be obtained. The volume average particle size of the copolymer is determined by installing a batch cell (for example, SALD-BC manufactured by Shimadzu Corporation, for example, SALD-BC manufactured by Shimadzu Corporation) and using 2 as the dispersion solvent. It is a value measured using propanol or methanol.
  含液共重合体ケン化物を乾燥し、得られた共重合体ケン化物の体積平均粒子径が100μmを超える場合は、メカニカルミリング処理などの従来公知の粉砕方法にて粉砕することにより体積平均粒子径を例えば10~100μmに調整することができる。 The saponified liquid-containing copolymer is dried, and when the volume-average particle diameter of the obtained saponified copolymer exceeds 100 μm, the volume-average particle is obtained by grinding using a conventionally known grinding method such as mechanical milling. The diameter can be adjusted to, for example, 10 to 100 μm.
  メカニカルミリング処理とは、衝撃・引張り・摩擦・圧縮・せん断等の外力を得られた共重合体ケン化物に与える方法で、そのための装置としては、転動ミル、振動ミル、遊星ミル、揺動ミル、水平ミル、アトライターミル、ジェットミル、擂潰機、ホモジナイザー、フルイダイザー、ペイントシェイカー、ミキサー等などが挙げられる。例えば、遊星ミルは、共重合体ケン化物とボールとを共に容器に入れ、自転と公転をさせることによって生じる力学的エネルギーにより、共重合体ケン化物粉末を粉砕又は混合させるものである。この方法によれば、ナノオーダーまで粉砕されることが知られている。 Mechanical milling is a method of applying to the saponified copolymer obtained with external force such as impact, tension, friction, compression, shear, etc., and a device for that purpose is a rolling mill, a vibration mill, a planetary mill, a rocking motion. Mills, horizontal mills, attritor mills, jet mills, grinders, homogenizers, fluidizers, paint shakers, mixers and the like. For example, in a planetary mill, saponified copolymer and balls are put together in a container, and the kinetic energy generated by rotating and revolving is used to grind or mix the saponified copolymer powder. According to this method, it is known to be crushed to nano order.
 ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体の結着剤における増粘効果としては、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体を1質量%含む水溶液の粘度が30mPa・s~10000mPa・sであることが好ましく、40~5000mPa・sであることがより好ましい。前記粘度が30mPa・s以上であれば、作製したスラリー状電極用合剤の粘度が好ましく得られ、集電体へ塗工する際に合剤が広がりすぎず塗工が容易となり得、また合剤中の活物質や導電助剤の分散性も良好となる。前記粘度が10000mPa・s以下であると、作製した合剤の粘度が高過ぎず、集電体に薄く均一に塗工することがより簡単となる。なお、前記1質量%水溶液の粘度は、BROOKFIELD製回転粘度計(型式DV-I+)、スピンドルNo.5、50rpm(液温25℃)にて測定した値である。 As a thickening effect in the binder of the copolymer of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid, copolymer of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid is used. The viscosity of the aqueous solution containing 1% by mass is preferably 30 mPa · s to 10000 mPa · s, and more preferably 40 to 5000 mPa · s. If the viscosity is 30 mPa · s or more, the viscosity of the prepared slurry-like electrode mixture is preferably obtained, and when the composition is applied to a current collector, the mixture does not spread too much and coating may be facilitated, and The dispersibility of the active material and the conductive aid in the agent also becomes good. If the viscosity is 10000 mPa · s or less, the viscosity of the prepared mixture is not too high, and it becomes easier to thinly and uniformly coat the current collector. The viscosity of the 1% by mass aqueous solution was measured using a rotational viscometer (model DV-I +) manufactured by BROOK FIELD, spindle No. 5 and 50 rpm (liquid temperature 25 ° C.).
  ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体は、結着力と結着持続性に優れるリチウムイオン二次電池電極用結着剤として機能し得る。その理由としては、限定的な解釈を望むものではないが、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体は、集電体と活物質および活物質同士を強固に結着し、充放電の繰り返しに起因する活物質の体積変化によって集電体から電極用合剤が剥離したり、活物質が脱落したりすることがないような結着持続性を有することで、活物質の容量を低下させることがないためであると考えられる。 A copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid can function as a binder for a lithium ion secondary battery electrode which is excellent in binding ability and binding persistence. Although the reason is that it is not desired to be interpreted in a limited way, a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid strengthens the current collector and the active material and the active material to each other. By having binding durability such that the electrode mixture does not peel off from the current collector or the active material falls off due to the volume change of the active material caused by the repetition of charge and discharge. It is considered that this is because the capacity of the active material is not reduced.
  本実施形態リチウムイオン二次電池電極用合剤(好ましくは電極スラリー)には、本発明の効果を損なわない範囲で、結着剤として、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体にさらに他の水系結着剤を加えてもよい。この場合、他の水系結着剤の添加量は、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体と他の水系結着剤との合計質量に対して80質量%未満であることが好ましい。より好ましくは、70質量%未満である。すなわち、換言すれば、結着剤中におけるビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体の含有割合は、20質量%以上100質量%以下であることが好ましく、より好ましくは、30質量%以上100質量%以下である。さらに、当該下限は、例えば40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、又は95質量%以上であり得る。 In this embodiment, the mixture for a lithium ion secondary battery electrode (preferably, electrode slurry) contains vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid as a binder, as long as the effects of the present invention are not impaired. Other aqueous binders may be added to the copolymer of In this case, the addition amount of the other water-based binder is 80% by mass based on the total mass of the copolymer of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid and the other water-based binder. Preferably it is less than. More preferably, it is less than 70% by mass. That is, in other words, the content ratio of the copolymer of vinyl alcohol and the alkali metal neutralized product of ethylenic unsaturated carboxylic acid in the binder is preferably 20% by mass or more and 100% by mass or less. Preferably, it is 30% by mass or more and 100% by mass or less. Furthermore, the said minimum may be 40 mass% or more, 50 mass% or more, 60 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, or 95 mass% or more.
  他の水系結着剤の材料としては、例えば、カルボキシメチルセルロース(CMC)、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸塩などのアクリル樹脂、アルギン酸ナトリウム、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)、ポリアミド、ポリアミドイミド、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、エチレン酢酸共重合体(EVA)等の材料が挙げられる。これらは、一種単独で用いてもよく、二種以上を併用してもよい。他の水系結着剤のうち、ポリアクリル酸ナトリウムに代表されるアクリル樹脂、アルギン酸ナトリウム、ポリイミド等が好適に用いられ、アクリル樹脂が特に好適に用いられる。 Other water-based binder materials include, for example, carboxymethylcellulose (CMC), polyacrylic acid, sodium polyacrylate, acrylic resin such as polyacrylate, sodium alginate, polyimide (PI), polytetrafluoroethylene ( Materials such as PTFE), polyamide, polyamide imide, styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), ethylene acetic acid copolymer (EVA) and the like can be mentioned. These may be used singly or in combination of two or more. Among the other water-based binders, acrylic resins represented by sodium polyacrylate, sodium alginate, polyimide and the like are suitably used, and acrylic resins are particularly suitably used.
  (架橋剤)
  架橋剤は、カルボキシル基および/または水酸基と反応可能な官能基を2個以上(好ましくは2、3、又は4個であり、より好ましくは2個)有する架橋剤が好ましい。また、架橋剤は、水系架橋剤(水溶性架橋剤)であることが好ましい。カルボキシル基および/または水酸基と反応可能な官能基とは、カルボキシル基および/または水酸基と反応して化学結合を形成する官能基をいう。アルコキシ基のように、自らは反応により脱離してしまっても、結果として結合が形成されていれば、これに含まれる。触媒の必要性、加熱の必要性は特に限定されない。具体例として、イソシアネート基、エポキシ基、カルボジイミド基、アルコキシ基、アシレート基、及びビニルスルホン基等が挙げられる。アルコキシ基としては、例えば、炭素数1~18(1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、又は18)の、直鎖若しくは分岐鎖状のアルコキシ基が挙げられる。アシレート基としては、例えばラクテート基、ステアレート基、イソステアレート基等が挙げられる。
(Crosslinking agent)
The crosslinking agent is preferably a crosslinking agent having two or more (preferably 2, 3 or 4 and more preferably 2) functional groups capable of reacting with a carboxyl group and / or a hydroxyl group. The crosslinking agent is preferably an aqueous crosslinking agent (water-soluble crosslinking agent). The functional group capable of reacting with the carboxyl group and / or the hydroxyl group means a functional group that reacts with the carboxyl group and / or the hydroxyl group to form a chemical bond. Like an alkoxy group, even if oneself is eliminated by a reaction, if a bond is formed as a result, it is included in this. The need for the catalyst and the need for heating are not particularly limited. Specific examples thereof include an isocyanate group, an epoxy group, a carbodiimide group, an alkoxy group, an acylate group, and a vinyl sulfone group. Examples of the alkoxy group include, for example, 1 to 18 carbon atoms (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18) And linear or branched alkoxy groups. As an acylate group, a lactate group, a stearate group, an isostearate group etc. are mentioned, for example.
  これら官能基がビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体分子鎖のカルボキシル基および/または水酸基と反応することによって、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体が架橋され、機械強度が向上する。架橋剤として作用するため、カルボキシル基および/または水酸基と反応可能な官能基は、架橋剤分子中に2個以上(好ましくは2、3、又は4個であり、より好ましくは2個)存在する必要がある。一分子内に存在する当該官能基は同一であっても異なっていてもよい。官能基の数が多いほど架橋点が増えるため機械強度が向上し得るが、多すぎると電極塗工液の状態でゲル化が進み塗工が困難になってしまう場合があり、この場合不便である。ゲル化が生じるかどうかはビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体分子鎖中のカルボキシル基および/または水酸基の個数の他、当該共重合体と架橋剤との混合比によっても左右されるため、これらを適宜調整することでゲル化を回避可能である。 By reacting these functional groups with the carboxyl group and / or hydroxyl group of the molecular chain of the copolymer of vinyl alcohol and alkali metal of ethylenically unsaturated carboxylic acid, in vinyl alcohol and alkali metal of ethylenically unsaturated carboxylic acid The copolymer with the hydrate is crosslinked to improve the mechanical strength. In order to act as a crosslinker, two or more (preferably two, three or four, and more preferably two) functional groups capable of reacting with a carboxyl group and / or a hydroxyl group are present in the crosslinker molecule. There is a need. The functional groups present in one molecule may be the same or different. As the number of functional groups is increased, the crosslinking point is increased and the mechanical strength may be improved. However, when the number is too large, gelation may progress in the state of the electrode coating liquid, which may make coating difficult, and in this case it is inconvenient is there. Whether or not gelation occurs depends on the number of carboxyl groups and / or hydroxyl groups in the molecular chain of the copolymer of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid, the copolymer and the crosslinking agent Since it also depends on the mixing ratio, gelation can be avoided by appropriately adjusting these.
 イソシアネート基を有する架橋剤としては、ジイソシアネート化合物、トリイソシアネート化合物、ブロックイソシアネート化合物等が好ましく挙げられる。ブロックイソシアネート化合物としては、例えば、北広ケミカル(株)製 TZ-1370、TZ-1372などのイソシアネート化合物が挙げられる。 As a crosslinking agent which has an isocyanate group, a diisocyanate compound, a triisocyanate compound, a block isocyanate compound etc. are mentioned preferably. Examples of the blocked isocyanate compound include isocyanate compounds such as Kitahiro Chemical Co., Ltd. TZ-1370 and TZ-1372.
 エポキシ基を有する架橋剤としては、グリシジルオキシ基を2個又はそれ以上(たとえば3又は4個)有する化合物が好ましく、グリシジルオキシ基を2個有する化合物がより好ましい。中でも、炭素数2~8の直鎖状又は分岐鎖状アルカンの両末端水素原子が1つずつグリシジルオキシ基で置換された化合物が好ましい。より具体的には、例えばネオペンチルグリコールジグリシジルエステル(Neopentyl Glycol Diglycidyl Ether)、1,6-ヘキサジオールジグリシジルエステル(1,6-Hexanediol Diglycidyl Ether)、1,4-ブタンジオールジグリシジルエステル(1,4-Butanediol Diglycidyl Ether)等が挙げられる。市販品を用いることもでき、ナガセケムテックス(株)製 デナコール EX-810、EX-851などのエポキシ樹脂などが例示される。 As a crosslinking agent which has an epoxy group, the compound which has 2 or more (for example, 3 or 4) glycidyloxy group is preferable, and the compound which has 2 glycidyloxy groups is more preferable. Among them, a compound in which both terminal hydrogen atoms of a linear or branched alkane having 2 to 8 carbon atoms are substituted one by one with a glycidyloxy group is preferable. More specifically, for example, neopentyl glycol diglycidyl ester (Neopentyl Glycol Diglycidyl Ether), 1,6-hexadiol diglycidyl ester (1,6-hexanediol Diglycidyl Ether), 1,4-butanediol diglycidyl ester (1 , 4-Butanediol Diglycidyl Ether) and the like. A commercially available product can also be used, and an epoxy resin such as Denacol EX-810, EX-851, etc., manufactured by Nagase ChemteX Co., Ltd., is exemplified.
 カルボジイミド基を有する架橋剤としては、例えば、ジカルボジイミド化合物、トリカルボジイミド化合物、カルボジイミドポリマー等が挙げられる。カルボジイミドポリマーとしては、特に日清紡ケミカル(株)製 カルボジライト V-04、V-10などが例示される。 As a crosslinking agent which has a carbodiimide group, a dicarbodiimide compound, a tricarbodiimide compound, a carbodiimide polymer etc. are mentioned, for example. As the carbodiimide polymer, in particular, Carbodilite V-04, V-10 and the like manufactured by Nisshinbo Chemical Co., Ltd. are exemplified.
 アルコキシ基を有する架橋剤としてはマツモトファインケミカル(株)製 オルガチックスTC-400などの各種金属アルコキシドなどが例示される。
 アシレート基を有する架橋剤としては、マツモトファインケミカル(株)製 オルガチックスZC-200若しくはZC-300、又はTC-800などの各種金属アシレートなどが例示される。
Examples of the crosslinking agent having an alkoxy group include various metal alkoxides such as Organics TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd., and the like.
Examples of the crosslinking agent having an acylate group include various metal acylates such as Organics ZC-200 or ZC-300 manufactured by Matsumoto Fine Chemical Co., Ltd., TC-800, and the like.
 ビニルスルホン基を有する架橋剤としては、例えば、CH=CH-SO-CH-CO-NH-(CH-NH-CO-CH-SO-CH=CH(ここでnは1~6の自然数を示し、2又は3が特に好ましい)で表される化合物が好ましく挙げられる。このような化合物の市販品として、例えば富士フイルム社製VS-B、VS-Cを挙げることができる。 As a crosslinking agent having a vinyl sulfone group, for example, CH 2 CHCH—SO 2 —CH 2 —CO—NH— (CH 2 ) n —NH—CO—CH 2 —SO 2 —CH = CH 2 (wherein n is a natural number of 1 to 6, and 2 or 3 is particularly preferable). Examples of commercially available products of such compounds include VS-B and VS-C manufactured by Fujifilm.
 また、架橋剤としては、架橋能を有する(特に、カルボキシル基および/または水酸基と反応可能な官能基を2個以上有する)有機金属化合物が好ましい。当該有機金属化合物としては金属アルコキシド化合物、金属アシレート化合物、及び金属キレート錯体化合物が好ましく例示され、金属キレート錯体化合物が特に好ましい。また、当該有機金属化合物としては、有機チタン化合物、有機ジルコニウム化合物、有機アルミニウム化合物、有機シラン化合物等が好ましく例示できる。 Further, as the crosslinking agent, an organic metal compound having a crosslinking ability (in particular, having two or more functional groups capable of reacting with a carboxyl group and / or a hydroxyl group) is preferable. Preferred examples of the organic metal compound include metal alkoxide compounds, metal acylate compounds and metal chelate complex compounds, and metal chelate complex compounds are particularly preferable. In addition, as the organic metal compound, organic titanium compounds, organic zirconium compounds, organic aluminum compounds, organic silane compounds and the like can be preferably exemplified.
 架橋剤として用いる有機金属化合物として、より具体的には、例えば、チタンアルコキシド化合物、チタンアシレート化合物、チタンキレート錯体化合物、ジルコニウムアルコキシド化合物、ジルコニウムアシレート化合物、ジルコニウムキレート錯体化合物、アルミニウムアルコキシド化合物、アルミニウムキレート錯体化合物、及びイソシアネートシラン化合物、が特に好ましく例示され、なかでもチタンキレート錯体化合物が好ましい。 More specifically, examples of the organic metal compound used as a crosslinking agent include titanium alkoxide compounds, titanium acylate compounds, titanium chelate complex compounds, zirconium alkoxide compounds, zirconium acylate compounds, zirconium chelate complex compounds, aluminum alkoxide compounds, aluminum The chelate complex compound and the isocyanate silane compound are particularly preferably exemplified. Among them, the titanium chelate complex compound is preferable.
 チタンアルコキシド化合物としては、例えばテトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラオクチルチタネート、テトラターシャリーブチルチタネート、テトラステアリルチタネート、等が挙げられ、より具体的には、例えばTi(O-i-C、Ti(O-n-C、(n-CO)Ti-O-Ti(O-n-C、Ti[OCHCH(C)C、Ti(O-t-C、Ti(OC1837、等が挙げられる。 Examples of the titanium alkoxide compound include tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetraoctyl titanate, tetratertiary butyl titanate, tetrastearyl titanate, etc. More specifically, for example, Ti (O-- i-C 3 H 7 ) 4 , Ti (O-n-C 4 H 9 ) 4 , (n-C 4 H 9 O) 3 Ti-O-Ti (O-n-C 4 H 9 ) 3 , Ti [OCH 2 CH (C 2 H 5 ) C 4 H 9 ] 4 , Ti (Ot-C 4 H 9 ) 4 , Ti (OC 18 H 37 ) 4 and the like can be mentioned.
 チタンアシレート化合物としては、例えばチタンイソステアレートが挙げられ、より具体的には(i-CO)Ti(OCOC1735が挙げられる。 Examples of titanium acylate compounds include titanium isostearate, and more specifically, (i-C 3 H 7 O) Ti (OCOC 17 H 35 ) 3 .
 チタンキレート錯体化合物としては、例えばチタンラクテートアンモニウム塩、チタンラクテート、チタントリエタノールアミネート、チタンジエタノールアミネート、チタンアミノエチルアミノエタノレート、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、ドデシルベンゼンスルホン酸チタン化合物、リン酸チタン化合物、チタンオクチレングリコート、チタンエチルアセトアセテート等が好ましく挙げられ、中でもチタンラクテートアンモニウム塩、チタンラクテート、チタントリエタノールアミネート、チタンジエタノールアミネート、チタンアミノエチルアミノエタノレートがより好ましい。より具体的には、例えば(i-CO)Ti(C14NO、(HO)Ti[OCH(CH)COO(NH 、(HO)Ti[OCH(CH)COOH]、(i-CO)Ti(OCNHCNH、(i-CO)Ti(C、Ti(C、(i-CO)Ti(C、Ti(O-i-C、(C17O)Ti(O17、(i-CO)Ti(C、等が挙げられる。 As a titanium chelate complex compound, for example, titanium lactate ammonium salt, titanium lactate, titanium triethanol aminate, titanium diethanol aminate, titanium aminoethyl aminoethanolate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethyl acetoacetate, dodecyl Preferred are benzenesulfonic acid titanium compounds, titanium phosphate compounds, titanium octylene glycolate, titanium ethyl acetoacetate, etc. Among them, titanium lactate ammonium salt, titanium lactate, titanium triethanolaminate, titanium diethanolaminate, titanium aminoethylamino Ethanolate is more preferred. More specifically, for example, (i-C 3 H 7 O) 2 Ti (C 6 H 14 NO 3 ) 2 , (HO) 2 Ti [OCH (CH 3 ) COO ] 2 (NH 4 + ) 2 , (HO) 2 Ti [OCH (CH 3 ) COOH] 2 , (i-C 3 H 7 O) Ti (OC 2 H 4 NHC 2 H 4 NH 2 ) 3 , (i-C 3 H 7 O) 2 Ti (C 6 H 7 O 2 ) 2 , Ti (C 5 H 7 O 2 ) 4 , (i-C 3 H 7 O) 2 Ti (C 6 H 9 O 3 ) 2 , Ti (Oi-C 3 H 7 ) 4 , (C 8 H 17 O) 2 Ti (O 2 C 8 H 17 ) 2 , (i-C 3 H 7 O) 2 Ti (C 6 H 9 O 3 ) 2 , and the like.
 このような有機チタン化合物の市販品としては、例えばマツモトファインケミカル(株)製 オルガチックスTCシリーズ、オルガチックスTAシリーズが挙げられ、より具体的には、例えばチタンキレート錯体化合物の市販品としては、オルガチックスTC-300、TC-310、TC-400、TC-315、TC-335、TC-500、及びTC-510等が挙げられる。 Commercially available products of such organic titanium compounds include, for example, Organics TC series manufactured by Matsumoto Fine Chemical Co., Ltd. and organics TA series, and more specifically, for example, as commercially available products of titanium chelate complex compounds, Orga Examples include Chicks TC-300, TC-310, TC-400, TC-315, TC-335, TC-500, and TC-510.
 ジルコニウムアルコキシド化合物としては、例えばノルマルプロピルジルコネート、ノルマルブチルジルコネート等が好ましく挙げられ、より具体的には例えば、Zr(O-n-C、Zr(O-n-C、が挙げられる。 Preferred examples of the zirconium alkoxide compound include normal propyl zirconate and normal butyl zirconate, and more specifically, for example, Zr (O-n-C 3 H 7 ) 4 and Zr (O-n-C 4). H 9 ) 4 .
 ジルコニウムアシレート化合物としては、例えばオクチル酸ジルコニウム化合物、ステアリン酸ジルコニウム等が好ましく挙げられ、より具体的には例えば、(n-CO)Zr(OCOC1735)が挙げられる。 Preferred examples of the zirconium acylate compound include a zirconium octylate compound and a zirconium stearate, and more specifically, for example, (nC 4 H 9 O) Zr (OCOC 17 H 35 ).
 ジルコニウムキレート錯体化合物としては、例えば塩化ジルコニル化合物、ジルコニウムラクテートアンモニウム塩、等が好ましく挙げられる。より具体的には、例えば(HO)Zr[OCH(CH)COO(NH 等が挙げられる。 As a zirconium chelate complex compound, a zirconyl chloride compound, a zirconium lactate ammonium salt etc. are mentioned preferably, for example. More specifically, for example, (HO) Zr [OCH (CH 3 ) COO ] 3 (NH 4 + ) 3 and the like can be mentioned.
 このような有機ジルコニウム化合物の市販品としては、例えばマツモトファインケミカル(株)製 オルガチックスZAシリーズ、オルガチックスZCシリーズ及びサンノプコ(株)製 AZ コート 5800MT等が挙げられ、より具体的には、例えばジルコニウムキレート錯体化合物の市販品としては、例えばオルガチックスZC-126、ZC-300等が挙げられる。 Commercially available products of such organic zirconium compounds include, for example, Orgatics ZA series manufactured by Matsumoto Fine Chemical Co., Ltd., Orgatics ZC series and AZ coat 5800MT manufactured by San Nopco Co., Ltd., and more specifically, zirconium, for example. Examples of commercially available products of chelate complex compounds include Organix ZC-126, ZC-300 and the like.
 アルミニウムアルコキシド化合物としては、例えばアルミニウムセカンダリーブトキシドが挙げられ、より具体的には例えばAl(O-sec-Cが挙げられる。 Examples of the aluminum alkoxide compound include, for example, aluminum secondary butoxide, and more specifically, for example, Al (O-sec-C 4 H 9 ) 3 .
 アルミニウムキレート錯体化合物としては、例えばアルミニウムトリスアセチルアセトネート、アルミニウムビスエチルアセトアセテートモノアセチルアセトネート、アルミニウムトリスエチルアセトアセテート等が挙げられ、より具体的には例えばAl(C、Al(C)(C、Al(Cが挙げられる。 Examples of aluminum chelate complex compounds include aluminum trisacetylacetonate, aluminum bisethylacetoacetate monoacetylacetonate, aluminum trisethylacetoacetate and the like, and more specifically, for example, Al (C 5 H 7 O 2 ) 3 And Al (C 5 H 7 O 2 ) (C 6 H 9 O 3 ) 2 and Al (C 6 H 9 O 3 ) 3 .
 このような有機アルミニウム化合物の市販品としては、例えばマツモトファインケミカル(株)製 オルガチックスALシリーズが挙げられる。 As a commercial item of such an organic aluminum compound, Matsumoto Fine Chemical Co., Ltd. product organics AL series are mentioned, for example.
 イソシアネートシラン化合物としては、例えばメチルトリイソシアネートシラン、テトライソシアネートシラン等が挙げられる。市販品としては、例えばマツモトファインケミカル(株)製 オルガチックスSIシリーズが挙げられる。 Examples of the isocyanate silane compound include methyl triisocyanate silane and tetraisocyanate silane. As a commercial item, Matsumoto Fine Chemical Co., Ltd. product organics SI series are mentioned, for example.
 架橋剤は1種単独で又は2種以上を組み合わせて用いることができる。 A crosslinking agent can be used individually by 1 type or in combination of 2 or more types.
  架橋剤の含有量については、結着剤中のカルボキシル基または水酸基の個数、ならびに架橋剤中の官能基の個数に応じて適宜調整することができる。例えば、架橋剤と結着剤の合計質量に対し、架橋剤の含有割合は、0.1質量%以上であることが好ましく、0.2、0.3、0.4、又は0.5質量%以上であることがより好ましい。また、20質量%以下であることが好ましく、19、18、17、16、15、14、13、12、11、10、9、8、7、又は6質量%以下であることがより好ましく、5又は4質量%以下であることがさらに好ましく、3質量%以下であることがよりさらに好ましい。当該架橋剤の含有割合が20質量%以下であることにより、電極塗工液の状態でゲル化が進みづらくなり塗工を簡便に行うことができる。またさらに、活物質の比率が相対的に高くなり得られる電極の電気抵抗値が特に好ましく低下し得る。また、当該架橋剤の含有割合が0.1質量%以上であることにより、架橋効果が十分に発現し、結着剤樹脂の機械強度が高く好ましい電池性能が好ましく得られる。 The content of the crosslinking agent can be appropriately adjusted according to the number of carboxyl groups or hydroxyl groups in the binder and the number of functional groups in the crosslinking agent. For example, the content of the crosslinking agent is preferably 0.1% by mass or more based on the total mass of the crosslinking agent and the binder, and 0.2, 0.3, 0.4, or 0.5 mass. More preferably, it is at least%. The content is preferably 20% by mass or less, more preferably 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, or 6% by mass or less, It is more preferable that it is 5 or 4 mass% or less, and it is still more preferable that it is 3 mass% or less. When the content rate of the said crosslinking agent is 20 mass% or less, gelatinization can not advance easily in the state of an electrode coating liquid, and coating can be performed simply. Furthermore, the electrical resistance value of the electrode obtained in which the proportion of the active material is relatively high may be particularly preferably lowered. Moreover, when the content rate of the said crosslinking agent is 0.1 mass% or more, the crosslinking effect fully expresses, mechanical strength of binder resin is high, and preferable battery performance is obtained preferably.
 (正極活物質)
 正極活物質としては、本技術分野で使用される正極活物質が使用できる。例えば、リン酸鉄リチウム(LiFePO)、リン酸マンガンリチウム(LiMnPO)、リン酸コバルトリチウム(LiCoPO)、ピロリン酸鉄(LiFeP)、コバルト酸リチウム複合酸化物(LiCoO)、スピネル型マンガン酸リチウム複合酸化物(LiMn)、マンガン酸リチウム複合酸化物(LiMnO)、ニッケル酸リチウム複合酸化物(LiNiO)、ニオブ酸リチウム複合酸化物(LiNbO)、鉄酸リチウム複合酸化物(LiFeO)、マグネシウム酸リチウム複合酸化物(LiMgO)、カルシウム酸リチウム複合酸化物(LiCaO)、銅酸リチウム複合酸化物(LiCuO)、亜鉛酸リチウム複合酸化物(LiZnO)、モリブデン酸リチウム複合酸化物(LiMoO)、タンタル酸リチウム複合酸化物(LiTaO)、タングステン酸リチウム複合酸化物(LiWO)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05)、リチウム-ニッケル-コバルト-マンガン複合酸化物(LiNiCoMn1-x-y2 ここで0<x<1,0<y<1,x+y<1)、Li過剰系ニッケル-コバルト-マンガン複合酸化物、酸化マンガンニッケル(LiNi0.5Mn1.5)、酸化マンガン(MnO)、バナジウム系酸化物、硫黄系酸化物、シリケート系酸化物、等が好適に使用される。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
(Positive electrode active material)
As a positive electrode active material, the positive electrode active material used in this technical field can be used. For example, lithium iron phosphate (LiFePO 4 ), lithium manganese phosphate (LiMnPO 4 ), lithium cobalt phosphate (LiCoPO 4 ), iron pyrophosphate (Li 2 FeP 2 O 7 ), lithium cobaltate complex oxide (LiCoO 2) ), Spinel type lithium manganate complex oxide (LiMn 2 O 4 ), lithium manganate complex oxide (LiMnO 2 ), lithium nickelate complex oxide (LiNiO 2 ), lithium niobate complex oxide (LiNbO 2 ), ferrate lithium composite oxide (LiFeO 2), magnesium lithium composite oxide (LiMgO 2), lithium composite oxide of calcium acid (LiCaO 2), cuprate lithium composite oxide (LiCuO 2), lithium zincate complex oxide (LiZnO 2 ), lithium molybdate Complex oxide (LiMoO 2 ), lithium tantalate complex oxide (LiTaO 2 ), lithium tungstate complex oxide (LiWO 2 ), lithium-nickel-cobalt-aluminum complex oxide (LiNi 0.8 Co 0.15 Al) 0.05 O 2), lithium - nickel - cobalt - manganese composite oxide (LiNi x Co y Mn 1- x-y O 2 where 0 <x <1,0 <y < 1, x + y <1), Li Excess system nickel-cobalt-manganese complex oxide, manganese nickel oxide (LiNi 0.5 Mn 1.5 O 4 ), manganese oxide (MnO 2 ), vanadium oxide, sulfur oxide, silicate oxide, etc. Is preferably used. These can be used singly or in combination of two or more.
(負極活物質)
  負極活物質としては、特に限定はなく、例えばケイ素(Si)やスズ(Sn)あるいはこれらを含む材料、炭素(特に炭素材料(例えばグラファイト、ハードカーボン、ソフトカーボン))、チタン酸リチウムなどのようにリチウムイオンを大量に吸蔵放出可能な材料、等を用いることができる。このような材料であれば、単体、合金、化合物、固溶体およびケイ素含有材料やスズ含有材料を含む複合活物質の何れであっても、本実施形態の効果を発揮させることは可能である。ケイ素含有材料としては、Si(ケイ素)の他に、酸化ケイ素(好ましくはSiOx(0.05<x<1.95)、より具体的には例えばSiO)、またはこれらのいずれかにB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N、Snからなる群から選択される少なくとも1つ以上の元素でSiの一部を置換した合金や化合物、もしくは固溶体などを用いることができる。これらはケイ素化合物ということができる。スズ含有材料としてはNiSn、MgSn、SnOx(0<x<2)、SnO、SnSiO、LiSnOなどを挙げることができる。炭素材料としては結晶質炭素、非晶質炭素またはこれらを共に使用しても良い。これらの材料は、それぞれ1種単独で、あるいは2種以上を組み合わせて用いることができる。特に、ケイ素、ケイ素化合物、および炭素材料からなる群から選ばれる少なくとも1種が好ましい。また、特に、ケイ素及び/又はケイ素化合物と炭素材料とを組み合わせて用いる場合、炭素材料とケイ素及び/又はケイ素化合物との比率(炭素材料/ケイ素又はケイ素化合物)が質量比で5/95~50/50であることが好ましい。当該質量比の上限は、10/90又は15/85であってもよい。また、当該質量比の下限は、40/60、35/65、30/70、又は25/75であってもよい。
(Anode active material)
The negative electrode active material is not particularly limited, and examples thereof include silicon (Si) and tin (Sn) or materials containing these, carbon (especially carbon materials (eg, graphite, hard carbon, soft carbon)), lithium titanate and the like. For example, materials capable of absorbing and desorbing lithium ions in large quantities can be used. If it is such a material, it is possible to exhibit the effect of the present embodiment regardless of any one of a simple substance, an alloy, a compound, a solid solution, and a composite active material containing a silicon-containing material and a tin-containing material. As the silicon-containing material, in addition to Si (silicon), silicon oxide (preferably SiOx (0.05 <x <1.95), more specifically, for example, SiO), or B or Mg in any of these At least one element selected from the group consisting of Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, W, Zn, C, N, Sn, and Si An alloy, a compound, a solid solution or the like in which a part is substituted can be used. These can be referred to as silicon compounds. Examples of tin-containing materials include Ni 2 Sn 4 , Mg 2 Sn, SnO x (0 <x <2), SnO 2 , SnSiO 3 , LiSnO, and the like. As a carbon material, crystalline carbon, amorphous carbon, or these may be used together. These materials can be used singly or in combination of two or more. In particular, at least one selected from the group consisting of silicon, silicon compounds, and carbon materials is preferable. In particular, when using a combination of silicon and / or silicon compound and carbon material, the ratio of carbon material to silicon and / or silicon compound (carbon material / silicon or silicon compound) is 5/95 to 50 in mass ratio It is preferable that it is / 50. The upper limit of the mass ratio may be 10/90 or 15/85. Also, the lower limit of the mass ratio may be 40/60, 35/65, 30/70, or 25/75.
(導電助剤)
 導電助剤を用いる場合、導電助剤は、導電性を有していれば、特に限定されることはない。例えば、金属、炭素、導電性高分子、導電性ガラスなどの粉末が例示でき、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンブラック(例えばSuperP(SP))、黒鉛、サーマルブラック、ファーネスブラック、ランプブラック、チャンネルブラック、ローラーブラック、ディスクブラック、ソフトカーボン、ハードカーボン、グラフェン、アモルファスカーボンカーボンナノチューブ(CNT)、カーボンナノファイバー(例えば、登録商標であるVGCFという名称の気相成長炭素繊維)などが挙げられる。これらは一種単独で用いてもよいし、または二種以上を併用してもよい。特に制限されないが、伝導助剤は、電極合剤中例えば0.01~5質量%程度含有させることが好ましく、0.02~3質量%又は0.05~2質量%程度含有させることがより好ましい。
(Conduction agent)
When using a conductive aid, the conductive aid is not particularly limited as long as it has conductivity. For example, powder of metal, carbon, conductive polymer, conductive glass and the like can be exemplified, and acetylene black (AB), ketjen black (KB), carbon black (for example, SuperP (SP)), graphite, thermal black, furnace Black, lamp black, channel black, roller black, disc black, soft carbon, hard carbon, graphene, amorphous carbon carbon nanotube (CNT), carbon nanofiber (for example, vapor grown carbon fiber named VGCF which is a registered trademark) Etc. These may be used alone or in combination of two or more. Although not particularly limited, it is preferable that the conduction aid be contained in the electrode mixture, for example, about 0.01 to 5% by mass, and it is more preferable to contain about 0.02 to 3% by mass or about 0.05 to 2% by mass. preferable.
(分散助剤)
  分散助剤を用いる場合、分散助剤としては、例えば、グルクロン酸、フミン酸、グリシン、ポリグリシン、アスパラギン酸、グルタミン酸などが例示される。
(Dispersion aid)
When a dispersion aid is used, examples of the dispersion aid include glucuronic acid, humic acid, glycine, polyglycine, aspartic acid, glutamic acid and the like.
(電極合剤)
  電極活物質(正極活物質又は負極活物質)に、架橋剤、結着剤、および必要に応じて液体媒体(好ましくは水)を加えてペースト状のスラリーとすることにより電極合剤(正極合剤又は負極合剤)が得られる。結着剤は、あらかじめ水に溶かして用いてもよいし、活物質、結着剤の粉末をあらかじめ混合し、その後に水を加え混合してもよい。また、その他の成分を加える場合にも当該スラリーへ混合することができる。
(Electrode mix)
By adding a crosslinking agent, a binder and, if necessary, a liquid medium (preferably water) to an electrode active material (positive electrode active material or negative electrode active material) to form a paste-like slurry, an electrode mixture (positive electrode combination) Agent or negative electrode mixture) is obtained. The binder may be dissolved in water in advance, and may be used, or the active material and the powder of the binder may be mixed in advance, and then water may be added and mixed. Moreover, also when adding other components, it can mix with the said slurry.
  液体媒体(好ましくは水)の使用量については、特に限定的ではないが、例えば、活物質、架橋剤、結着剤の合計を100質量%とした場合、40質量%以上2000質量%以下が好ましく50質量%以上1000質量%以下がより好ましく、60質量%以上500質量%以下がさらに好ましい。 The use amount of the liquid medium (preferably water) is not particularly limited, but, for example, 40% by mass or more and 2000% by mass or less when the total of the active material, the crosslinking agent, and the binding agent is 100% by mass. Preferably, 50% by mass or more and 1000% by mass or less are more preferable, and 60% by mass or more and 500% by mass or less are more preferable.
  結着剤は、活物質同士、およびこれらと集電体との接着を目的として使用される。すなわち、両極の集電体上にスラリーを塗布し、乾燥させたときに良好な活物質層を形成するために使用される。 The binder is used for the purpose of bonding the active materials to each other and the current collector. That is, it is used to form a good active material layer when the slurry is applied onto the current collectors of both electrodes and dried.
  結着剤の使用量についても、特に限定的ではないが、例えば、電極活物質、架橋剤、及び結着剤の合計質量に対して、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。また、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましく、10質量%以下であることがよりさらに好ましい。結着剤が当該上限以下であることで、活物質の割合が相対的に少なすぎず、電池の充放電時に高容量がより得られうる。また、当該下限以上であることで、より好ましく結着力が得られ、好ましいサイクル寿命特性を得られ、またスラリーの粘性不足による凝集が生じる傾向も減少する。
 当該電極合剤は、正極用合剤又は負極用合剤で有り得、特に負極用合剤であることが好ましい。
 なお、特に制限はされないが、電極合剤においては、電極活物質の含有量が80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 また、特に制限はされないが、 電極合剤における架橋剤及び結着剤の合計含有量は、20質量%より小さいことが好ましく、15質量%より小さいことがより好ましく、10質量%より小さいことがさらに好ましい。
The amount of the binder used is also not particularly limited, but is preferably 0.5% by mass or more based on the total mass of the electrode active material, the crosslinking agent, and the binder, for example. % Or more is more preferable, and 2% by mass or more is more preferable. The content is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and still more preferably 10% by mass or less. When the binder is at or below the upper limit, the proportion of the active material is not relatively too small, and a high capacity can be further obtained during charge and discharge of the battery. Moreover, by being more than the said lower limit, more preferable binding strength is obtained, preferable cycle life characteristics can be obtained, and the tendency of aggregation due to insufficient viscosity of the slurry also decreases.
The electrode mixture may be a positive electrode mixture or a negative electrode mixture, and is particularly preferably a negative electrode mixture.
There is no particular limitation, but in the electrode mixture, the content of the electrode active material is preferably 80% by mass or more, more preferably 85% by mass or more, and 90% by mass or more More preferable.
In addition, the total content of the crosslinking agent and the binder in the electrode mixture is preferably less than 20% by mass, more preferably less than 15% by mass, and less than 10% by mass, though not particularly limited. More preferable.
  (正極)
  正極は、本技術分野で使用される手法を用いて作製することができる。
(Positive electrode)
The positive electrode can be made using techniques used in the art.
  正極の集電体は、電子伝導性を有し、保持した正極材料に通電し得る材料であれば特に限定されない。例えば、C、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、Al等の導電性物質、これら導電性物質の二種類以上を含有する合金(例えば、ステンレス鋼)を使用し得る。電気伝導性が高く、電解液中の安定性と耐酸化性がよい観点から、集電体としてはC、Al、ステンレス鋼等が好ましく、さらに材料コストの観点からAl等が好ましい。 The current collector of the positive electrode is not particularly limited as long as it is a material having electron conductivity and capable of supplying a current to the held positive electrode material. For example, conductive materials such as C, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, Al, etc., alloys containing two or more of these conductive materials (for example, stainless steel) ) Can be used. C, Al, stainless steel and the like are preferable as the current collector from the viewpoints of high electrical conductivity and stability in the electrolytic solution and oxidation resistance, and Al and the like are preferable from the viewpoint of material cost.
  集電体の形状には、特に制約はないが、箔状基材、三次元基材などを用いることができる。ただし、三次元基材(発泡メタル、メッシュ、織布、不織布、エキスパンド等)を用いると、集電体との密着性に欠けるような結着剤であっても高い容量密度の電極が得られる。加えて、高率充放電特性も良好になる。 The shape of the current collector is not particularly limited, and a foil-like substrate, a three-dimensional substrate or the like can be used. However, when a three-dimensional substrate (foam metal, mesh, woven fabric, non-woven fabric, expand, etc.) is used, an electrode of high capacity density can be obtained even with a binder that lacks adhesion to the current collector. . In addition, high rate charge and discharge characteristics are also improved.
  (負極)
  負極は、本技術分野で使用される手法を用いて作製することができる。
(Negative electrode)
The negative electrode can be made using techniques used in the art.
  負極の集電体は、電子伝導性を有し、保持した負極材料に通電し得る材料であれば特に限定されない。例えば、C、Cu、Ni、Fe、V、Nb、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、Al等の導電性物質、これら導電性物質の二種類以上を含有する合金(例えば、ステンレス鋼)を使用し得る。あるいは、FeにCuをめっきしたものであってもよい。電気伝導性が高く、電解液中の安定性と耐酸化性がよい観点から、集電体としてはC、Ni、ステンレス鋼等が好ましく、さらに材料コストの観点からCu、Niが好ましい。 The current collector of the negative electrode is not particularly limited as long as it is a material having electron conductivity and capable of supplying a current to the held negative electrode material. For example, conductive materials such as C, Cu, Ni, Fe, V, Nb, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, Al, etc., and two kinds of these conductive materials Alloys containing the above, such as stainless steel, may be used. Alternatively, Fe may be plated with Cu. From the viewpoints of high electrical conductivity and good stability and oxidation resistance in the electrolyte, C, Ni, stainless steel and the like are preferable as the current collector, and Cu and Ni are more preferable from the viewpoint of material cost.
  集電体の形状には、特に制約はないが、箔状基材、三次元基材などを用いることができる。なかでも、三次元基材(発泡メタル、メッシュ、織布、不織布、エキスパンド基材等)を用いると、集電体との密着性に欠けるような結着剤であっても高い容量密度の電極が得られる。加えて、高率充放電特性も良好になる。 The shape of the current collector is not particularly limited, and a foil-like substrate, a three-dimensional substrate or the like can be used. Among them, when a three-dimensional substrate (foam metal, mesh, woven fabric, non-woven fabric, expanded substrate, etc.) is used, an electrode having a high capacity density even with a binder which lacks adhesion to the current collector. Is obtained. In addition, high rate charge and discharge characteristics are also improved.
 (電池)
  本実施形態の非水電解質二次電池用電極を用い、本実施形態の非水電解質二次電池とすることができる。非水電解質二次電池としては、例えばリチウムイオン二次電池が好ましい。
(battery)
The nonaqueous electrolyte secondary battery of the present embodiment can be obtained by using the electrode of the nonaqueous electrolyte secondary battery of the present embodiment. As a non-aqueous electrolyte secondary battery, for example, a lithium ion secondary battery is preferable.
  本実施形態の非水電解質二次電池のなかでもリチウムイオン二次電池は、リチウムイオンを含有する必要があることから、電解質塩としてはリチウム塩が好ましい。このリチウム塩としては特に制限されないが、具体例としては、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸イミドリチウムなどを挙げることができる。これらのリチウム塩は、1種単独又は2種以上混合して用いることができる。上記のリチウム塩は、電気的陰性度が高くイオン化しやすいことから、充放電サイクル特性に優れ、二次電池の充放電容量を向上させることができる。 Among the non-aqueous electrolyte secondary batteries of the present embodiment, a lithium ion secondary battery needs to contain lithium ions, and therefore, a lithium salt is preferable as the electrolyte salt. The lithium salt is not particularly limited, and specific examples thereof include lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium trifluoromethanesulfonate, and the like. . These lithium salts can be used singly or in combination of two or more. The above-mentioned lithium salt has high electronegativity and is easy to ionize, so it is excellent in charge and discharge cycle characteristics, and can improve the charge and discharge capacity of the secondary battery.
  上記電解質の溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトン等を用いることができ、これらの溶媒を一種単独又は2種以上混合して用いることができる。特に、プロピレンカーボネート単体、エチレンカーボネートとジエチルカーボネートとの混合物又はγ-ブチロラクトン単体が好適である。なお、上記エチレンカーボネートとジエチルカーボネートとの混合物の混合比は、一方の成分が10体積%以上90体積%以下となる範囲で任意に調整することができる。 As a solvent for the electrolyte, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone and the like can be used, and these solvents can be used singly or in combination of two or more. In particular, propylene carbonate alone, a mixture of ethylene carbonate and diethyl carbonate, or γ-butyrolactone alone is preferable. The mixing ratio of the mixture of ethylene carbonate and diethyl carbonate can be arbitrarily adjusted in the range in which one component is 10% by volume or more and 90% by volume or less.
  また、本実施形態のリチウム二次電池の電解質は、固体電解質やイオン性液体であっても構わない。 In addition, the electrolyte of the lithium secondary battery of the present embodiment may be a solid electrolyte or an ionic liquid.
  上述の構造のリチウム二次電池によれば、寿命特性に優れるリチウム二次電池として機能することができる。 According to the lithium secondary battery of the above-mentioned structure, it can function as a lithium secondary battery excellent in the life characteristic.
  リチウム二次電池の構造としては、特に限定されないが、積層式電池、捲回式電池などの既存の電池形態・構造に適用できる。 Although it does not specifically limit as a structure of a lithium secondary battery, It can apply to the existing battery forms and structures, such as a lamination type battery and a wound type battery.
  (電気機器)
  本実施形態の負極を具備した非水電解質二次電池は、寿命特性に優れており、様々な電気機器(電気を使用する乗り物を含む)の電源として利用することができる。
(Electric equipment)
The non-aqueous electrolyte secondary battery provided with the negative electrode of the present embodiment has excellent life characteristics, and can be used as a power source for various electric devices (including vehicles using electricity).
  電気機器としては、例えば、ポータブルテレビ、ノートパソコン、タブレット、スマートフォン、パソコンキーボード、パソコン用ディスプレイ、デスクトップ型パソコン、CRTモニター、パソコンラック、プリンター、一体型パソコン、ウェアラブルコンピュータ、ワープロ、マウス、ハードディスク、パソコン周辺機器、アイロン、冷房機器、冷蔵庫、温風ヒーター、ホットカーペット、衣類乾燥機、布団乾燥機、加湿器、除湿器、ウインドウファン、送風機、換気扇、洗浄機能付便座、カーナビ、懐中電灯、照明器具、携帯カラオケ機、マイク、空気清浄器、血圧計、コーヒーミル、コーヒーメーカー、こたつ、携帯電話、ゲーム機、音楽レコーダー、音楽プレーヤー、ディスクチェンジャー、ラジオ、シェーバー、ジューサー、シュレッダー、浄水器、食器乾燥機、カーコンポ、ステレオ、スピーカー、ヘッドホン、トランシーバー、ズボンプレッサー、掃除機、体脂肪計、体重計、ヘルスメーター、ムービープレーヤー、電気釜、電気かみそり、電気スタンド、電気ポット、電子ゲーム機、携帯ゲーム機、電子辞書、電子手帳、電磁調理器、電卓、電動カート、電動車椅子、電動工具、電動歯ブラシ、あんか、散髪器具、電話機、時計、インターホン、電撃殺虫器、ホットプレート、トースター、ドライヤー、電動ドリル、給湯器、パネルヒーター、粉砕機、はんだごて、ビデオカメラ、ファクシミリ、フードプロセッサー、マッサージ機、豆電球、ミキサー、ミシン、もちつき機、リモコン、冷水器、冷風器、泡だて器、電子楽器、オートバイ、おもちゃ類、芝刈り機、うき、自転車、自動車、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、鉄道、船、飛行機、非常用蓄電池などが挙げられる。 Examples of the electric devices include portable TVs, laptops, tablets, smartphones, PC keyboards, displays for PCs, desktop PCs, CRT monitors, PC racks, printers, integrated PCs, wearable computers, word processors, word processors, mice, hard disks, PCs Peripheral equipment, Iron, Cooling equipment, Refrigerator, Hot air heater, Hot carpet, Clothes dryer, Futon dryer, Humidifier, Dehumidifier, Window fan, Blower, Ventilation fan, Toilet seat with cleaning function, Car navigation system, Flashlight, Lighting equipment , Mobile karaoke machine, microphone, air purifier, blood pressure monitor, coffee mill, coffee maker, Kotatsu, mobile phone, game machine, music recorder, music player, disc changer, radio, shaver, juicer, Shredder, water purifier, dish dryer, car component, stereo, speaker, headphone, transceiver, trouser press, vacuum cleaner, body fat scale, weight scale, health meter, movie player, electric kettle, electric razor, electric stand, electric pot, Electronic game machines, portable game machines, electronic dictionaries, electronic organizers, electromagnetic cookers, calculators, electric carts, electric wheelchairs, electric tools, electric toothbrushes, electric toothbrushes, electric toothbrushes, haircuts, telephones, watches, intercoms, electric shock insecticides, hot plates , Toaster, dryer, electric drill, water heater, panel heater, grinder, soldering iron, video camera, facsimile, food processor, massage machine, bean light bulb, mixer, sewing machine, sewing machine, rice cooker, remote control, water cooler, air cooler, Foamer, electronic musical instrument, motorcycle, toys, lawn mower Machine, float, bicycle, motor vehicles, hybrid vehicles, plug-in hybrid vehicles, electric vehicles, rail, ship, airplane, such as an emergency storage battery, and the like.
 なお、本明細書において「含む」とは、「本質的にからなる」と、「からなる」をも包含する(The term "comprising" includes "consisting essentially of” and "consisting of.")。 In the present specification, the term "comprising" also includes "consisting essentially of" and "consisting of" (The term "comprising" includes "consisting essentially of" and "consisting of.").
 以下、実施例により本実施形態を更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、Grはグラファイトを示す。 Hereinafter, the present embodiment will be more specifically described by way of examples, but the present invention is not limited to these examples. Gr represents graphite.
 (結着剤の作製)
 (製造例1)ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体の合成撹拌機、温度計、Nガス導入管、還流冷却機および滴下ロートを備えた容量2Lの反応槽に、水768g、無水硫酸ナトリウム12gを仕込み、Nガスを吹き込んで系内を脱酸素した。続いて部分ケン化ポリビニルアルコール(ケン化度88%)1g、ラウリルパーオキシド1gを仕込み内温60℃まで昇温した後、アクリル酸メチル104g(1.209mol)および酢酸ビニル155g(1.802mol)の単量体を滴下ロートにより4時間かけて適下した後、内温65℃で2時間保持し反応を完結させた。その後、固形分を濾別することによりビニルエステル/エチレン性不飽和カルボン酸エステル共重合体288g(10.4質量%含水)を得た。得られた重合体をDMFに溶解させた後フィルターにてろ過を実施、分子量測定装置(ウォーターズ社製2695、RI検出器2414)により求めた数平均分子量は18.8万であった。
(Preparation of binding agent)
Production Example 1 Synthesis of vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer 768 g of water in a 2 L reactor equipped with a stirrer, a thermometer, an N 2 gas introduction pipe, a reflux condenser and a dropping funnel Then, 12 g of anhydrous sodium sulfate was charged, and N 2 gas was blown into the system to deoxygenate the system. Subsequently, 1 g of partially saponified polyvinyl alcohol (88% saponification degree) and 1 g of lauryl peroxide were charged and heated to an internal temperature of 60 ° C., then 104 g (1.209 mol) of methyl acrylate and 155 g (1.802 mol) of vinyl acetate The monomer of (1) was dropped over 4 hours by a dropping funnel, and then maintained at an internal temperature of 65 ° C. for 2 hours to complete the reaction. Thereafter, the solid content was separated by filtration to obtain 288 g (10.4 mass% water content) of a vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer. The obtained polymer was dissolved in DMF and then filtered through a filter, and the number average molecular weight determined with a molecular weight measuring apparatus (2695 manufactured by Waters, RI detector 2414) was 188,000.
 (製造例2)ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物の調製
  上記同様の反応槽に、メタノール450g、水420g、水酸化ナトリウム132g(3.3mol)および製造例1で得られた含水共重合体288g(10.4質量%含水)を仕込み、撹拌下で30℃、3時間ケン化反応を行った。ケン化反応終了後、得られた共重合体ケン化物をメタノールで洗浄、濾過し、70℃で6時間乾燥させ、ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物(ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体、アルカリ金属はナトリウム)193gを得た。ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物の体積平均粒子径は180μmであった。なお、体積平均粒子径は、レーザー回折式粒度分布測定装置(株式会社島津製作所社製SALD-7100)により測定した。
Production Example 2 Preparation of Saponified Vinyl Ester / Ethylene Unsaturated Carboxylic Acid Ester Copolymer In the same reaction vessel as described above, 450 g of methanol, 420 g of water, 132 g (3.3 mol) of sodium hydroxide and 288 g (10.4 mass% water content) of the obtained water-containing copolymer was charged, and a saponification reaction was carried out under stirring at 30 ° C. for 3 hours. After completion of the saponification reaction, the resulting saponified copolymer is washed with methanol, filtered, dried at 70 ° C. for 6 hours, and saponified vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer (vinyl alcohol and ethylene As a result, 193 g of a copolymer with an alkali metal neutralized with an unsaturated unsaturated carboxylic acid (the alkali metal is sodium) was obtained. The volume average particle diameter of the saponified vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer was 180 μm. The volume average particle size was measured by a laser diffraction type particle size distribution measuring apparatus (SALD-7100 manufactured by Shimadzu Corporation).
 (製造例3)ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物の粉砕
 上記ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物193gを、ジェットミル(日本ニューマチック工業社製LJ)により粉砕し、微粉末状のビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物173gを得た。得られた共重合体ケン化物の粒子径をレーザー回折式粒度分布測定装置(島津製作所社製SALD-7100)により測定したところ、体積平均粒子径は39μmであった。以下、製造例3で得られたビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物を共重合体〔1〕として検討に用いた。
Production Example 3 Pulverization of Saponified Product of Vinyl Ester / Ethylene Unsaturated Carboxylic Acid Ester Copolymer 193 g of the above saponified vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer is a jet mill (manufactured by Nippon Pneumatic Mfg. Co., Ltd.) The resultant mixture was pulverized according to LJ to obtain 173 g of a finely powdered vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer saponified product. The particle diameter of the obtained saponified copolymer was measured by a laser diffraction type particle size distribution analyzer (SALD-7100 manufactured by Shimadzu Corporation), and the volume average particle diameter was 39 μm. Hereinafter, the saponified vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer obtained in Production Example 3 was used as a copolymer [1] in the examination.
 なお、共重合体〔1〕の1質量%水溶液の粘度は1,630mPa・s、ビニルエステルとエチレン性不飽和カルボン酸エステルの共重合組成比はモル比で6/4であった。前記1質量%水溶液の粘度は、BROOKFIELD製回転粘度計(型式DV-I+)を用いて、スピンドルNo.5、50rpm(液温25℃)の条件で測定した。 The viscosity of a 1% by mass aqueous solution of the copolymer [1] was 1,630 mPa · s, and the copolymerization composition ratio of vinyl ester to ethylenically unsaturated carboxylic acid ester was 6/4 in molar ratio. The viscosity of the 1% by mass aqueous solution was measured using a rotational viscometer (model DV-I +) manufactured by BROOK FIELD, and spindle No. 1 was used. It measured on the conditions of 5 and 50 rpm (liquid temperature 25 degreeC).
(製造例4)
  製造例1において、アクリル酸メチル104g(1.209mol)および酢酸ビニル155g(1.802mol)に代えて、アクリル酸メチル25.9g(0.301mol)および酢酸ビニル232.8g(2.704mol)を用いた以外は製造例1~3と同様の操作を行い、ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物を得た。当該ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体ケン化物を共重合体〔2〕として検討に用いた。
(Production Example 4)
In Production Example 1, 25.9 g (0.301 mol) of methyl acrylate and 232.8 g (2.704 mol) of vinyl acetate are used instead of 104 g (1.209 mol) of methyl acrylate and 155 g (1.802 mol) of vinyl acetate. The same procedures as in Production Examples 1 to 3 were carried out except using, to obtain a saponified vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer. The said vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer saponification thing was used for examination as copolymer [2].
  なお、共重合体〔2〕の体積平均粒子径は34μmであった。また、共重合体〔2〕の1質量%水溶液の粘度は50mPa・s、ビニルエステルとエチレン性不飽和カルボン酸エステルの共重合組成比は9/1であった。当該体積平均粒子径及び1質量%水溶液の粘度は、共重合体〔1〕と同様にして測定した。 The volume average particle diameter of the copolymer [2] was 34 μm. Further, the viscosity of a 1% by mass aqueous solution of the copolymer [2] was 50 mPa · s, and the copolymer composition ratio of the vinyl ester and the ethylenically unsaturated carboxylic acid ester was 9/1. The volume average particle diameter and the viscosity of the 1% by mass aqueous solution were measured in the same manner as in the copolymer [1].
検討1
 以下のようにして、負極合剤を調製し、さらに当該負極合剤を用いて電池を作製し、得られた電池のサイクル特性(寿命特性)を検討した。
 (架橋剤の検討)
 (実施例1)
 Si(Si:5-10μm 福田金属箔紛工業社製)18質量部、Gr(MAG-D:日立化成製)72質量部(Si/Gr=2/8の質量比)、製造例3で得られたビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体(共重合体〔1〕)9.9質量部、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)0.1質量部、及び水100質量部を混合してスラリー状の負極合剤を調製した。
Examination 1
A negative electrode mixture was prepared as described below, and a battery was produced using the negative electrode mixture, and the cycle characteristics (life characteristics) of the obtained battery were examined.
(Study of crosslinker)
Example 1
18 parts by mass of Si (Si: 5-10 μm, manufactured by Fukuda Metal Foil & Powder Industries Co., Ltd.), 72 parts by mass of Gr (MAG-D: manufactured by Hitachi Chemical Co., Ltd.) (mass ratio of Si / Gr = 2/8) 9.9 parts by mass of copolymer (copolymer [1]) of selected vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid, organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400) 0.1 parts by mass and 100 parts by mass of water were mixed to prepare a slurry-like negative electrode mixture.
 得られた合剤を厚さ20μmの電解銅箔上に塗布し乾燥させた後、ロールプレス(大野ロール社製)を用いて圧力を加えることで、電解銅箔と塗膜とを密着接合させ、次に、加熱処理(減圧中、140℃、12時間)を行って負極を作製した。活物質層(塗膜)の厚みは50μm、負極の目付重量は10mg/cmであった。 The obtained mixture is applied on a 20 μm thick electrolytic copper foil and dried, and then pressure is applied using a roll press (manufactured by Ono Roll Co., Ltd.) to closely bond the electrolytic copper foil and the coating film. Then, heat treatment (at 140 ° C. for 12 hours under reduced pressure) was performed to fabricate a negative electrode. The thickness of the active material layer (coated film) was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (実施例2)
 実施例1において、共重合体〔1〕 9.9質量部に代えて、共重合体〔2〕 9.9質量部を用いた以外は実施例1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
(Example 2)
A negative electrode was produced in the same manner as in Example 1 except that, in Example 1, 9.9 parts by mass of the copolymer [1] was used instead of 9.9 parts by mass of the copolymer [2]. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (実施例3)
 実施例1において、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)0.1質量部に代えて、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-300)0.1質量部を用いた以外は実施例1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
(Example 3)
In Example 1, 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-300) is substituted for 0.1 part by mass of the organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400). A negative electrode was produced in the same manner as in Example 1 except that it was used. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (実施例4)
 実施例1において、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)0.1質量部に代えて、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-315)0.1質量部を用いた以外は実施例1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
(Example 4)
In Example 1, 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-315) is substituted for 0.1 part by mass of the organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400). A negative electrode was produced in the same manner as in Example 1 except that it was used. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (実施例5)
 実施例1において、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)0.1質量部に代えて、有機ジルコニア化合物架橋剤(サンノプコ社製、AZ-コート 5800MT)0.1質量部を用いた以外は実施例1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
(Example 5)
In Example 1, 0.1 part by mass of an organic zirconia compound crosslinking agent (manufactured by Sannopco, AZ-coated 5800 MT) is used in place of 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400). A negative electrode was produced in the same manner as in Example 1 except that it was used. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (実施例6)
 実施例1において、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)0.1質量部に代えて、ビニル系架橋剤(富士フイルム社製、VS-B)0.1質量部を用いた以外は実施例1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
(Example 6)
In Example 1, 0.1 part by mass of a vinyl-based crosslinking agent (VS-B, manufactured by Fujifilm Corp.) is used in place of 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400). A negative electrode was produced in the same manner as in Example 1 except that the negative electrode was used. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (実施例7)
 実施例1において、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)0.1質量部に代えて、エポキシ系架橋剤(ナガセケムテック社製、デナコール EX-810)0.1質量部を用いた以外は実施例1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
(Example 7)
In Example 1, in place of 0.1 part by mass of organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400), 0.1 part by mass of epoxy-based crosslinking agent (manufactured by Nagase ChemteX Co., Ltd., Denacol EX-810) A negative electrode was produced in the same manner as in Example 1 except for using. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 なお、上記各実施例で用いた架橋剤について、表1にまとめて示す。 In addition, about the crosslinking agent used by said each Example, it collects in Table 1 and shows.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (比較例A)
 実施例1において、共重合体〔1〕 9.9質量部、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)0.1質量部に代えて、架橋剤を加えず、共重合体〔1〕 10質量部のみを混合した以外は、実施例1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
(Comparative example A)
In Example 1, 9.9 parts by mass of the copolymer [1] and 0.1 parts by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400) are substituted for the copolymer without adding a crosslinking agent. [1] A negative electrode was produced in the same manner as in Example 1 except that only 10 parts by mass was mixed. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (比較例1)
 実施例1において、共重合体〔1〕に代えて、カルボキシメチルセルロース(CMC)5質量部とスチレンブタジエンゴム(SBR)5質量部を用いた以外は、実施例1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
(Comparative example 1)
A negative electrode was produced in the same manner as in Example 1 except that 5 parts by mass of carboxymethylcellulose (CMC) and 5 parts by mass of styrene butadiene rubber (SBR) were used in place of copolymer [1] in Example 1. . The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (比較例2)
 実施例1において、共重合体〔1〕に代えて、ポリビニルアルコール(PVA)を用いた以外は、実施例1と同様にして負極を作製した。比較例2の負極合剤は電解銅箔への結着力が弱く乾燥後に剥がれた。
(Comparative example 2)
A negative electrode was produced in the same manner as in Example 1 except that polyvinyl alcohol (PVA) was used in place of copolymer [1] in Example 1. The negative electrode mixture of Comparative Example 2 had a weak binding power to the electrodeposited copper foil and peeled off after drying.
 (比較例3)
 実施例1において、共重合体〔1〕に代えて、ポリアクリル酸ナトリウム(PAANa)を用いた以外は、実施例1と同様にして負極を作製した。比較例3の負極合剤は電解銅箔への結着力が弱く乾燥後に剥がれた。
(Comparative example 3)
A negative electrode was produced in the same manner as in Example 1 except that sodium polyacrylate (PAANa) was used in place of copolymer [1] in Example 1. The negative electrode mixture of Comparative Example 3 had a weak binding power to the electrodeposited copper foil and peeled off after drying.
 (参考例1)
 実施例1において、共重合体〔1〕 9.9質量部に代えて、共重合体〔1〕 7.5質量部、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)0.1質量部に代えて、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)2.5質量部を用いた以外は実施例1と同様にして負極スラリーを作製しようとしたところ、ゲル化をおこしスラリーが得られず、このため電解銅箔への塗工が困難であった。
(Reference Example 1)
In Example 1, in place of 9.9 parts by mass of the copolymer [1], 7.5 parts by mass of the copolymer [1], an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) 0.1 A negative electrode slurry was prepared in the same manner as in Example 1 except that 2.5 parts by mass of an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) was used instead of the parts by mass. As a result, no slurry was obtained, which made it difficult to coat the electrodeposited copper foil.
 表2に、各負極の組成を示す。 Table 2 shows the composition of each negative electrode.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (正極)
 (実施例A)
 活物質(Li(Ni,Co,Mn)xO2 x=1/3:日本化学産業社製)95質量部、バインダーとして共重合体〔1〕3質量部、導電助剤としてアセチレンブラック(デンカブラック:デンカ製)2質量部、水100質量部を混合してスラリー状の正極合剤を調製した。
(Positive electrode)
Example A
Active material (Li (Ni, Co, Mn) x O2 x = 1/3: manufactured by Nippon Chemical Industrial Co., Ltd.) 95 parts by mass, Copolymer [1] 3 parts by mass as a binder, Acetylene black (Denka black: 2 parts by mass of Denka made) and 100 parts by mass of water were mixed to prepare a slurry-like positive electrode mixture.
 厚さ20μmのアルミニウム箔上に前記合剤を塗布・乾燥後、ロールプレス機(大野ロール社製)により、アルミニウム箔と塗膜とを密着接合させ、次に、加熱処理(減圧中、140℃、12時間以上)して、正極を作製した。当該正極において、正極容量密度は1.6mAh/cm(活物質物質層の平均厚み:50μm)であった。なお、以下に示すいずれの検討においても、正極電極として当該正極を用いた。 After the above mixture is applied and dried on an aluminum foil with a thickness of 20 μm, the aluminum foil and the coating film are closely bonded with a roll press (made by Ono Roll Co., Ltd.), and then heat treatment (140 ° C. under reduced pressure) , 12 hours or more) to prepare a positive electrode. In the positive electrode, the capacity density of the positive electrode was 1.6 mAh / cm 2 (average thickness of the active material layer: 50 μm). In addition, the said positive electrode was used as a positive electrode also in any examination shown below.
 (電池の組立)
 実施例1~7、比較例Aおよび比較例1で得られた負極電極と、実施例Aで得た正極を用い、セパレータとしてPP(セルガード#2500:セルガード社製)、電解液として、LiPF6 1molの電解質入りのEC/DEC(1/1 vol%)+1質量%溶液(キシダ化学社製)を具備したコインセル(CR2032;φ20×3.2mm)を作製した。
(Assembly of battery)
Using the negative electrodes obtained in Examples 1 to 7 and Comparative Examples A and 1 and the positive electrode obtained in Example A, PP (Celgard # 2500: made by Celgard) as a separator, LiPF 6 1 mol as an electrolytic solution A coin cell (CR 2032; φ 20 × 3.2 mm) was prepared which had an EC / DEC (1/1 vol%) + 1% by mass solution (manufactured by Kishida Chemical Co., Ltd.) containing the electrolyte described above.
 なお、比較例2、3の負極電極は、負極合剤が集電体から剥離してしまったため、電池の組み立て不可と判断した。 In the negative electrodes of Comparative Examples 2 and 3, the negative electrode mixture was peeled from the current collector, so it was determined that the battery could not be assembled.
 <サイクル試験>
 上記のようにして作製したコインセルを用いて60℃でのサイクル試験を行った。
            測定条件:1C充電、1C放電を繰り返し
            カットオフ電位:2.5-4.2V(vs.Li+/Li)
<Cycle test>
A cycle test at 60 ° C. was performed using the coin cell produced as described above.
Measurement conditions: 1 C charge, 1 C discharge repeated Cutoff potential: 2.5-4.2 V (vs. Li + / Li)
 なお、以下に示すいずれのサイクル試験も本条件にて行った。 In addition, any cycle test shown below was performed on this condition.
 表3にサイクル試験結果を示した。ここで負極の容量維持率(%)は1サイクル目の容量を100として換算したものである。 Table 3 shows the cycle test results. Here, the capacity retention ratio (%) of the negative electrode is obtained by converting the capacity of the first cycle to 100.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (Si/Gr比の検討)
 (実施例8)
 実施例1において、活物質(Si/Gr=1/9)に代えて、活物質(Si/Gr=3/7)を用いた以外は実施例1と同様にして負極を作製した。活物質層の厚みは40μm、負極の目付重量は8mg/cmであった。
(Study of Si / Gr ratio)
(Example 8)
A negative electrode was produced in the same manner as in Example 1 except that the active material (Si / Gr = 1/9) was used instead of the active material (Si / Gr = 1/9). The thickness of the active material layer was 40 μm, and the basis weight of the negative electrode was 8 mg / cm 2 .
 (実施例9)
 実施例8において、活物質(Si/Gr=3/7)に代えて、活物質(Si/Gr=5/5)を用いた以外は実施例8と同様にして負極を作製した。活物質層の厚みは30μm、負極の目付重量は6mg/cmであった。
(Example 9)
A negative electrode was produced in the same manner as in Example 8 except that the active material (Si / Gr = 3/7) was used in place of the active material (Si / Gr = 3/7). The thickness of the active material layer was 30 μm, and the basis weight of the negative electrode was 6 mg / cm 2 .
 (参考例2)
 実施例8において、共重合体〔1〕 9.9質量部、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)0.1質量部に代えて、架橋剤を加えず、共重合体〔1〕 10質量部のみ用いた以外は、実施例8と同様にして負極を作製した。活物質層の厚みは、30μm、負極の目付重量は6mg/cmであった。
(Reference Example 2)
In Example 8, 9.9 parts by mass of the copolymer [1] and 0.1 parts by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400) are substituted for the copolymer without adding a crosslinking agent. [1] A negative electrode was produced in the same manner as in Example 8 except that only 10 parts by mass was used. The thickness of the active material layer was 30 μm, and the basis weight of the negative electrode was 6 mg / cm 2 .
 (比較例4)
  実施例8において、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体(共重合体〔1〕)に代えて、カルボキシメチルセルロース(CMC)5質量部とスチレンブタジエンゴム(SBR)5質量部を用いた以外は、実施例8と同様にして負極を作製した。活物質層の厚みは30μm、負極の目付重量は6mg/cmであった。
(Comparative example 4)
In Example 8, 5 parts by mass of carboxymethylcellulose (CMC) and styrene butadiene rubber (SBR) are substituted for the copolymer (copolymer [1]) of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid. A negative electrode was produced in the same manner as in Example 8 except that 5 parts by mass was used. The thickness of the active material layer was 30 μm, and the basis weight of the negative electrode was 6 mg / cm 2 .
 表4に、各負極の組成を示す。 Table 4 shows the composition of each negative electrode.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 これらの各負極及び実施例Aで得た正極を用い、上記と同様にして電池を組み立て、サイクル試験を実施した。表5にサイクル試験結果を示した。ここで負極の容量維持率(%)は1サイクル目の容量を100として換算したものである。 A battery was assembled in the same manner as described above using each of these negative electrodes and the positive electrode obtained in Example A, and a cycle test was performed. Table 5 shows the cycle test results. Here, the capacity retention ratio (%) of the negative electrode is obtained by converting the capacity of the first cycle to 100.
Figure JPOXMLDOC01-appb-T000006
検討2
 以下のようにして、負極合剤を調製し、さらに当該負極合剤を用いて電池を作製し、得られた電池の放電特性を検討した。
Figure JPOXMLDOC01-appb-T000006
Examination 2
A negative electrode mixture was prepared as follows, and a battery was produced using the negative electrode mixture, and the discharge characteristics of the obtained battery were examined.
(架橋剤量の検討)
 (実施例I-1)
 SiO(平均粒子径5-10μm:日立化成社製)18.8質量部、Gr(G1:江西紫宸科技社製)75.2質量部(SiO/Gr=2/8の質量比)、SP(SuperP:Timcal社製カーボンブラック)1.0質量部、製造例3で得られた共重合体〔1〕 4.95質量部、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400)0.05質量部、及び水100質量部を混合してスラリー状の負極合剤を調製した。
 得られた合剤を厚さ10μmの電解銅箔上に塗布し乾燥させた後、ロールプレス(大野ロール社製)を用いて圧力を加えることで、電解銅箔と塗膜とを密着接合させ、次に、加熱処理(減圧中、120℃、12時間)を行って負極を作製した。活物質層(塗膜)の厚みは50μm、負極の目付重量は10mg/cmであった。
(Examination of the amount of crosslinking agent)
Example I-1
18.8 parts by mass of SiO (average particle diameter: 5-10 μm: manufactured by Hitachi Chemical Co., Ltd.), 75.2 parts by mass of Gr (G1: manufactured by Kosai Shioshi Technology), (mass ratio of SiO / Gr = 2/8), SP (SuperP: carbon black manufactured by Timcal) 1.0 part by mass, 4.95 parts by mass of the copolymer [1] obtained in Production Example 3, organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400) 0 The slurry-like negative electrode mixture was prepared by mixing .05 parts by mass and 100 parts by mass of water.
The obtained mixture is applied on an electrolytic copper foil having a thickness of 10 μm and dried, and then pressure is applied using a roll press (manufactured by Ono Roll Co., Ltd.) to closely bond the electrolytic copper foil and the coating film. Then, heat treatment (under reduced pressure, 120 ° C., 12 hours) was performed to fabricate a negative electrode. The thickness of the active material layer (coated film) was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (実施例I-2)
 実施例I-1において、共重合体〔1〕 4.95質量部に代えて、共重合体〔1〕 4.9質量部を用い、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400) 0.05質量部に代えて、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400) 0.1質量部を用いた以外は実施例I-1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
Example I-2
In Example I-1, 4.9 parts by mass of the copolymer [1] is used in place of 4.95 parts by mass of the copolymer [1], and an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) A negative electrode was produced in the same manner as in Example I-1 except that 0.1 part by mass of an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) was used instead of 0.05 parts by mass. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (実施例I-3)
 実施例I-1において、共重合体〔1〕 4.95質量部に代えて、共重合体〔1〕 4.65質量部を用い、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400) 0.05質量部に代えて、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400) 0.35質量部を用いた以外は実施例I-1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
Example I-3
In Example I-1, 4.65 parts by mass of the copolymer [1] is used in place of 4.95 parts by mass of the copolymer [1], and an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) A negative electrode was produced in the same manner as in Example I-1 except that 0.35 parts by mass of an organic titanium compound crosslinking agent (TC-400 manufactured by Matsumoto Fine Chemical Co., Ltd.) was used instead of 0.05 parts by mass. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (比較例I-A)
 実施例I-1において、共重合体〔1〕 4.95質量部に代えて、架橋剤を加えず、共重合体〔1〕 5.0質量部のみを混合した以外は実施例I-1と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
(Comparative Example IA)
Example I-1 is replaced with 4.95 parts by mass of the copolymer [1], and a crosslinking agent is not added, except that only 5.0 parts by mass of the copolymer [1] is mixed. A negative electrode was produced in the same manner as in the above. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (架橋剤種の検討)
 (実施例I-4)
 実施例I-2において、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400) 0.1質量部に代えて、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-300) 0.1質量部を用いた以外は実施例I-2と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
(Study of crosslinker species)
Example I-4
In Example I-2, in place of 0.1 part by mass of the organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400), the organic titanium compound crosslinking agent (TC-300 manufactured by Matsumoto Fine Chemical Co., Ltd.) 0.1 mass A negative electrode was produced in the same manner as in Example I-2 except that a part was used. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (実施例I-5)
 実施例I-2において、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400) 0.1質量部に代えて、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-315) 0.1質量部を用いた以外は実施例I-2と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
Example I-5
In Example I-2, in place of 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400), an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., TC-315) 0.1 mass A negative electrode was produced in the same manner as in Example I-2 except that a part was used. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 (実施例I-6)
 実施例I-2において、有機チタン化合物架橋剤(マツモトファインケミカル社製、TC-400) 0.1質量部に代えて、有機ジルコニア化合物架橋剤(サンノプコ社製、AZ-コート 5800MT)0.1質量部を用いた以外は実施例I-2と同様にして負極を作製した。活物質層の厚みは50μm、負極の目付重量は10mg/cmであった。
Example I-6
In Example I-2, in place of 0.1 part by mass of an organic titanium compound crosslinking agent (manufactured by Matsumoto Fine Chemical Co., Ltd., TC-400), 0.1 mass of an organic zirconia compound crosslinking agent (manufactured by Sannopco, AZ-coated 5800MT) A negative electrode was produced in the same manner as in Example I-2 except that a part was used. The thickness of the active material layer was 50 μm, and the basis weight of the negative electrode was 10 mg / cm 2 .
 表6に、各負極の組成を示す。 Table 6 shows the composition of each negative electrode.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (正極)
 (実施例I-A)
 活物質(Li(Ni0.8Co0.1Mn0.1)O2:北京当升科技社製)95質量部、バインダーとして共重合体〔1〕3質量部、導電助剤としてアセチレンブラック(デンカブラック:デンカ製)2質量部、及び水100質量部を混合してスラリー状の正極合剤を調製した。
 厚さ10μmのアルミニウム箔上に前記合剤を塗布・乾燥後、ロールプレス機(大野ロール社製)により、アルミニウム箔と塗膜とを密着接合させ、次に、加熱処理(減圧中、120℃、12時間以上)して、正極を作製した。当該正極において、正極容量密度は1.6mAh/cm(活物質物質層の平均厚み:50μm)であった。なお、以下に示すいずれの検討においても、正極電極として当該正極を用いた。
(Positive electrode)
(Example I-A)
Active material (Li (Ni 0.8 Co 0.1 Mn 0.1) O 2: 95 parts by weight of Beijing Toshin Technology Co., Ltd.), 3 parts by weight of copolymer [1] as a binder, acetylene black (denka black: made by Denka as a conductive aid 2 parts by mass and 100 parts by mass of water were mixed to prepare a slurry-like positive electrode mixture.
After applying and drying the above mixture on an aluminum foil with a thickness of 10 μm, the aluminum foil and the coating film are closely bonded with a roll press machine (made by Ono Roll Co., Ltd.), and then heat treatment (under reduced pressure, 120 ° C. , 12 hours or more) to prepare a positive electrode. In the positive electrode, the capacity density of the positive electrode was 1.6 mAh / cm 2 (average thickness of the active material layer: 50 μm). In addition, the said positive electrode was used as a positive electrode also in any examination shown below.
 (電池の組立)
 実施例I-1~I-6、及び比較例I-Aで得られた負極電極と、実施例I-Aで得た正極を用い、セパレータとしてPP(セルガード#2500:セルガード社製)、電解液として、LiPF6 1mol/Lの電解質入りのEC/DEC(1/1 v/v%)+1質量%VC溶液(キシダ化学社製)を具備した20mAhの小型パウチセルを作製した。
 なお、PPはポリプロピレンを、LiPF6はヘキサフルオロリン酸リチウムを、ECはエチレンカルボナートを、DECは炭酸ジエチルを、VCはビニレンカーボネートを、それぞれ示す。
(Assembly of battery)
Using the negative electrodes obtained in Examples I-1 to I-6 and Comparative Example IA and the positive electrode obtained in Example IA, PP (Celgard # 2500: made by Celgard) as a separator, electrolysis As a liquid, a 20 mAh small-sized pouch cell was prepared, which contained an EC / DEC (1/1 v / v%) + 1 mass% VC solution (manufactured by Kishida Chemical Co., Ltd.) containing 1 mol / L of LiPF6 electrolyte.
PP indicates polypropylene, LiPF6 indicates lithium hexafluorophosphate, EC indicates ethylene carbonate, DEC indicates diethyl carbonate, and VC indicates vinylene carbonate.
<エージング後高率放電試験>
 上記のようにして作製したパウチセルを用いて以下(1)~(10)に示すような手順で、エージングから高率放電試験を行い、DC-IR抵抗値を算出した。
        試験温度   :30℃
        カットオフ電位:2.5-4.3V(vs.Li+/Li)
<High rate discharge test after aging>
Using the pouch cell produced as described above, a high-rate discharge test was carried out from aging according to the following procedures (1) to (10) to calculate the DC-IR resistance value.
Test temperature: 30 ° C
Cut-off potential: 2.5-4.3 V (vs. Li + / Li)
(1)CC(CV)充電/CC放電において、0.2C(0.05C)/0.2Cの条件で10サイクルエージングを実施した。この際、エージング最後の平均放電電圧値を記録した。
   ※充電/放電の順に記載。カッコ内はCVの終端電流である。
(2)0.2C(0.05C)/0.5Cの条件で3サイクル実施し、3サイクル目の平均放電電圧値を記録した。
(3)0.2C(0.05C)/0.2Cで2サイクル実施した。
(4)(2)の放電レートを0.7Cにして3サイクル実施し、3サイクル目の平均放電電圧値を記録した。
(5)0.2C(0.05C)/0.2Cで2サイクル実施した。
(6)(2)の放電レートを1.0Cにして3サイクル実施し、3サイクル目の平均放電電圧値を記録した。
(7)0.2C(0.05C)/0.2Cで2サイクル実施した。
(8)(2)の放電レートを2.0Cにして3サイクル実施し、3サイクル目の平均放電電圧値を記録した。
(9)横軸に放電電流(レート)、縦軸に平均放電電圧のグラフを作成した。その際、0.2、0.5、0.7、1.0、2.0C時の平均電圧値を入力した。
(10)グラフの傾きをDC-IRの値(Ω)とした。
(1) In CC (CV) charge / CC discharge, 10 cycle aging was implemented on the conditions of 0.2C (0.05C) /0.2C. At this time, the average discharge voltage value at the end of aging was recorded.
※ Described in order of charge / discharge. In parentheses are the termination currents of CV.
(2) Three cycles were carried out under the conditions of 0.2 C (0.05 C) /0.5 C, and the average discharge voltage value of the third cycle was recorded.
(3) Two cycles of 0.2 C (0.05 C) /0.2 C were performed.
(4) Three cycles were carried out with the discharge rate of (2) set to 0.7 C, and the average discharge voltage value of the third cycle was recorded.
(5) Two cycles of 0.2 C (0.05 C) /0.2 C were performed.
(6) Three cycles were carried out with the discharge rate of (2) set to 1.0 C, and the average discharge voltage value at the third cycle was recorded.
(7) Two cycles of 0.2 C (0.05 C) /0.2 C were performed.
(8) Three cycles were carried out with the discharge rate of (2) set to 2.0 C, and the average discharge voltage value at the third cycle was recorded.
(9) The horizontal axis is the discharge current (rate), and the vertical axis is the graph of the average discharge voltage. At that time, average voltage values at 0.2, 0.5, 0.7, 1.0, and 2.0 C were input.
(10) The slope of the graph was taken as the value (Ω) of DC-IR.
 なお、作製した全てのパウチセルを用いて、本条件にて試験を行った。
試験により算出したDC-IR値を、表3に示す。
In addition, it tested on this condition using all the manufactured pouch cells.
The DC-IR values calculated by the test are shown in Table 3.
<サイクル試験>
 上記のようにして高率放電試験を終えた各パウチセルを用いて、以下に示すような手順で、サイクル試験を行った。
        試験温度   :30℃
        カットオフ電位:2.5-4.3V(vs.Li+/Li)
    サイクルレート:0.5C(0.05C)/0.5C
    サイクル数  :100
<Cycle test>
The cycle test was conducted according to the following procedure using each pouch cell finished the high rate discharge test as described above.
Test temperature: 30 ° C
Cut-off potential: 2.5-4.3 V (vs. Li + / Li)
Cycle rate: 0.5C (0.05C) /0.5C
Number of cycles: 100
 サイクル後、次の式を用いて容量維持率を算出した。結果を表7に示す。
 ※容量維持率(%)=[100サイクル後の放電容量(mAh/g)]/[エージング後の初期放電容量(mAh/g)]×100
After the cycle, the capacity retention rate was calculated using the following equation. The results are shown in Table 7.
※ Capacity maintenance rate (%) = [discharge capacity after 100 cycles (mAh / g)] / [initial discharge capacity after aging (mAh / g)] × 100
<100サイクル後高率放電試験>
 上記のようにしてサイクル試験を終えた各パウチセルを用いて、高率放電試験を行った。なお、試験方法・条件はエージング後高率放電試験と同様とした。
試験により算出したDC-IR値を、表7に示す。
<High-rate discharge test after 100 cycles>
The high rate discharge test was performed using each pouch cell which finished the cycle test as mentioned above. The test method and conditions were the same as in the high-rate discharge test after aging.
The DC-IR values calculated by the test are shown in Table 7.
 なお、DC-IR抵抗値(Ω)は、値が低いほど電池性能(放電特性)において良好と言え、容量維持率(%)は値が高いほど電池性能(サイクル特性)において良好と言える。 The lower the DC-IR resistance value (Ω), the better the battery performance (discharge characteristics), and the higher the capacity retention rate (%), the better the battery performance (cycle characteristics).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上の結果から、実施例I-1~I-6で製造した負極及び実施例I-Aで調製した正極を備える電池は、サイクル特性のみならず、放電特性にも優れることが確認できた。 From the above results, it was confirmed that the batteries provided with the negative electrodes manufactured in Examples I-1 to I-6 and the positive electrode prepared in Example IA were excellent not only in the cycle characteristics but also in the discharge characteristics.

Claims (11)

  1.  電極活物質と、架橋剤と、結着剤とを含有し、
    前記結着剤は、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体を含む、
    非水電解質二次電池用電極合剤。
    Containing an electrode active material, a crosslinking agent, and a binder,
    The binder includes a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid.
    Electrode mixture for non-aqueous electrolyte secondary batteries.
  2.  前記架橋剤と前記結着剤の合計質量に対し、前記架橋剤の含有割合が0.1質量%以上20質量%以下である、請求項1に記載の非水電解質二次電池用電極合剤。 The electrode mixture according to claim 1, wherein the content of the crosslinking agent is 0.1% by mass or more and 20% by mass or less based on the total mass of the crosslinking agent and the binder. .
  3.  前記架橋剤は、カルボキシル基および/または水酸基と反応可能な官能基を2個以上有する架橋剤である、請求項1または2に記載の非水電解質二次電池用電極合剤。 The electrode mixture for a non-aqueous electrolyte secondary battery according to claim 1, wherein the crosslinking agent is a crosslinking agent having two or more functional groups capable of reacting with a carboxyl group and / or a hydroxyl group.
  4. 前記架橋剤は、イソシアネート基、エポキシ基、カルボジイミド基、アルコキシ基、及びビニルスルホン基からなる群より選択される官能基を、同一又は異なって2個以上有する架橋剤である、請求項1または2に記載の非水電解質二次電池用電極合剤。 The crosslinking agent is a crosslinking agent having the same or different two or more functional groups selected from the group consisting of an isocyanate group, an epoxy group, a carbodiimide group, an alkoxy group, and a vinyl sulfone group. The electrode mixture for non-aqueous electrolyte secondary batteries as described in 4.
  5. 前記架橋剤は、チタンキレート錯体化合物である、請求項1~4のいずれかに記載の非水電解質二次電池用電極合剤。 The electrode mixture for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the crosslinking agent is a titanium chelate complex compound.
  6.  前記電極活物質、前記架橋剤、および前記結着剤の合計質量に対し、前記結着剤の含有割合が0.5質量%以上40質量%以下である、請求項1~5のいずれかに記載の非水電解質二次電池用電極合剤。 The content ratio of the said binding agent is 0.5 mass% or more and 40 mass% or less with respect to the total mass of the said electrode active material, the said crosslinking agent, and the said binding agent. The electrode mixture for nonaqueous electrolyte secondary batteries as described.
  7.  前記エチレン性不飽和カルボン酸アルカリ金属中和物が、アクリル酸アルカリ金属中和物および/またはメタクリル酸アルカリ金属中和物である、請求項1~6のいずれかに記載の非水電解質二次電池用電極合剤。 The non-aqueous electrolyte secondary according to any one of claims 1 to 6, wherein the ethylenically unsaturated carboxylic acid alkali metal neutralized product is an alkali metal acrylate neutralized product and / or an alkali metal methacrylate neutralized product. Electrode mixture for batteries.
  8.   請求項1~7のいずれかに記載の非水電解質二次電池用電極合剤を用いた非水電解質二次電池用電極。 An electrode for a non-aqueous electrolyte secondary battery using the electrode mixture for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 7.
  9.   請求項8に記載の非水電解質二次電池用電極を備えた非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the electrode for a non-aqueous electrolyte secondary battery according to claim 8.
  10.   請求項9に記載の非水電解質二次電池を備えた電気機器。 An electrical apparatus comprising the non-aqueous electrolyte secondary battery according to claim 9.
  11. 電極活物質と、
    架橋剤と、
    ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体を含む結着剤と、
    を混合する工程を含む、
    非水電解質二次電池用電極合剤の製造方法。
    An electrode active material,
    A crosslinking agent,
    A binder comprising a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid,
    Including the step of mixing
    The manufacturing method of the electrode mixture for nonaqueous electrolyte secondary batteries.
PCT/JP2018/033549 2017-09-12 2018-09-11 Electrode mixture for non-aqueous electrolyte secondary battery WO2019054348A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197033362A KR102659815B1 (en) 2017-09-12 2018-09-11 Electrode mixture for non-aqueous electrolyte secondary batteries
JP2019542051A JP7139341B2 (en) 2017-09-12 2018-09-11 Electrode mix for non-aqueous electrolyte secondary batteries
CN201880042996.9A CN110800141B (en) 2017-09-12 2018-09-11 Electrode mixture for nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175158 2017-09-12
JP2017-175158 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019054348A1 true WO2019054348A1 (en) 2019-03-21

Family

ID=65723277

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/033553 WO2019054350A1 (en) 2017-09-12 2018-09-11 Electrode mixture for non-aqueous electrolyte secondary battery
PCT/JP2018/033549 WO2019054348A1 (en) 2017-09-12 2018-09-11 Electrode mixture for non-aqueous electrolyte secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033553 WO2019054350A1 (en) 2017-09-12 2018-09-11 Electrode mixture for non-aqueous electrolyte secondary battery

Country Status (5)

Country Link
JP (2) JP7139341B2 (en)
KR (1) KR20200051521A (en)
CN (2) CN110832679B (en)
TW (2) TWI770277B (en)
WO (2) WO2019054350A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087258A1 (en) * 2017-10-30 2019-05-09 日立化成株式会社 Resin composition, cured product, molding and method for producing same, film capacitor and method or producing same
US20220336815A1 (en) 2019-09-30 2022-10-20 Zeon Corporation Binder composition for secondary battery, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
CN112164799A (en) * 2020-09-29 2021-01-01 浙江大学 Boron crosslinked binder, electrode slice and preparation method
CN112670506B (en) * 2020-12-22 2022-04-19 北京理工大学重庆创新中心 Nickel-cobalt-manganese-tantalum composite quaternary positive electrode material coated by fast ion conductor and preparation method thereof
CN112952100B (en) * 2021-05-13 2021-07-30 蜂巢能源科技有限公司 Cobalt-free anode material slurry and preparation method and application thereof
CN114614017A (en) * 2022-03-24 2022-06-10 深圳市皓飞实业有限公司 Binder, negative pole piece and lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021408A (en) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
WO2014057627A1 (en) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
JP2017152121A (en) * 2016-02-23 2017-08-31 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066682B2 (en) * 1992-09-10 2000-07-17 富士写真フイルム株式会社 Chemical battery
JP2000348730A (en) 2000-01-01 2000-12-15 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
JP2012069457A (en) * 2010-09-27 2012-04-05 Konica Minolta Holdings Inc Porous layer and lithium ion secondary battery
JP5684620B2 (en) 2011-03-25 2015-03-18 三井化学株式会社 Nonaqueous secondary battery binder resin composition, nonaqueous secondary battery negative electrode, and nonaqueous secondary battery
CN105340110B (en) * 2013-06-28 2018-08-24 住友精化株式会社 Anode for nonaqueous electrolyte secondary battery mixture, the anode for nonaqueous electrolyte secondary battery containing the mixture, the non-aqueous electrolyte secondary battery and electrical equipment for having the cathode
WO2015151440A1 (en) * 2014-04-01 2015-10-08 住友精化株式会社 Binder for electric double-layer capacitor electrode, electric double-layer capacitor electrode comprising same binder, electric double-layer capacitor using same electrode, and electric apparatus
JP6278804B2 (en) * 2014-04-04 2018-02-14 住友精化株式会社 Lithium ion secondary battery electrode mixture, lithium ion secondary battery electrode containing this mixture, lithium ion secondary battery equipped with this electrode, and electrical equipment
KR102475886B1 (en) * 2015-06-25 2022-12-08 삼성전자주식회사 Negative electrode for lithium metal battery and lithium metal battery including the same
JP6844240B2 (en) * 2015-12-16 2021-03-17 三菱ケミカル株式会社 Binder composition for secondary battery negative electrode, secondary battery negative electrode and secondary battery
JP6647624B2 (en) * 2016-02-08 2020-02-14 住友精化株式会社 Non-aqueous electrolyte secondary battery electrode mixture, non-aqueous electrolyte secondary battery electrode containing the mixture, and non-aqueous electrolyte secondary battery and electric device provided with the electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021408A (en) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
WO2014057627A1 (en) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
JP2017152121A (en) * 2016-02-23 2017-08-31 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same

Also Published As

Publication number Publication date
TWI770277B (en) 2022-07-11
JPWO2019054350A1 (en) 2020-08-27
WO2019054350A1 (en) 2019-03-21
TW201921786A (en) 2019-06-01
TWI803520B (en) 2023-06-01
TW201921787A (en) 2019-06-01
JPWO2019054348A1 (en) 2020-08-27
CN110832679B (en) 2023-04-28
CN110800141A (en) 2020-02-14
CN110832679A (en) 2020-02-21
CN110800141B (en) 2024-01-02
KR20200051521A (en) 2020-05-13
JP7139341B2 (en) 2022-09-20
JP7139342B2 (en) 2022-09-20
KR20200051520A (en) 2020-05-13

Similar Documents

Publication Publication Date Title
TWI743101B (en) Adhesives for non-aqueous electrolyte secondary battery electrodes, electrode mixtures for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and electrical equipment
JP7139341B2 (en) Electrode mix for non-aqueous electrolyte secondary batteries
JP6512606B2 (en) Negative electrode mixture for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery containing the mixture, non-aqueous electrolyte secondary battery including the negative electrode, and electric device
JP5686332B2 (en) Binder for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery containing this binder, lithium ion secondary battery and electric equipment using this positive electrode
JP6647624B2 (en) Non-aqueous electrolyte secondary battery electrode mixture, non-aqueous electrolyte secondary battery electrode containing the mixture, and non-aqueous electrolyte secondary battery and electric device provided with the electrode
JP7223699B2 (en) Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment
KR102659815B1 (en) Electrode mixture for non-aqueous electrolyte secondary batteries
TWI771498B (en) Binder for non-aqueous electrolyte secondary battery electrodes, electrode mixture for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries and electrical equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855973

Country of ref document: EP

Kind code of ref document: A1