WO2019044646A1 - Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member - Google Patents

Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member Download PDF

Info

Publication number
WO2019044646A1
WO2019044646A1 PCT/JP2018/031108 JP2018031108W WO2019044646A1 WO 2019044646 A1 WO2019044646 A1 WO 2019044646A1 JP 2018031108 W JP2018031108 W JP 2018031108W WO 2019044646 A1 WO2019044646 A1 WO 2019044646A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
heat dissipation
composition
silane coupling
coupling agent
Prior art date
Application number
PCT/JP2018/031108
Other languages
French (fr)
Japanese (ja)
Inventor
研人 氏家
武 藤原
國信 隆史
和宏 滝沢
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to KR1020207002876A priority Critical patent/KR20200044789A/en
Priority to JP2019539423A priority patent/JP7060021B2/en
Priority to CN201880050456.5A priority patent/CN111051466A/en
Publication of WO2019044646A1 publication Critical patent/WO2019044646A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a composition capable of forming a heat dissipating member used in an electronic device such as an electronic substrate. Further, the present invention relates to a heat dissipating member capable of dissipating heat by efficiently conducting and transmitting the heat generated by the electronic device.
  • the operating temperature of semiconductor devices for power control such as hybrid cars and electric cars, CPUs for high-performance computers, etc. has risen due to the use of wide gap semiconductors and the like.
  • the operating temperature is 200 ° C. or higher, and therefore the package material is required to have high heat resistance of 250 ° C. or higher.
  • thermal strain is generated due to the difference in the coefficient of thermal expansion between the materials used in the package, and the reduction in life due to peeling of the wiring is also a problem.
  • Patent Document 2 discloses a heat dissipation member in which an organic material and an inorganic material are compounded, and the heat dissipation member in which inorganic materials are connected by a silane coupling agent and a polymerizable liquid crystal compound. By connecting the silane coupling agent and the polymerizable liquid crystal compound, it has become possible to extremely enhance the thermal conductivity between the inorganic materials.
  • the heat dissipating member obtained by these methods uses a liquid crystal compound, although the heat conductivity is high, the heat resistance is not sufficient.
  • an object of the present invention is to provide a composition capable of forming a heat dissipating member simultaneously having high thermal conductivity and high heat resistance, and a heat dissipating member obtained using the composition.
  • the present inventors diligently studied to solve the above problems. As a result, instead of adding an inorganic material such as boron nitride to the resin, the inorganic material and an organic material such as a silane coupling agent are combined and added to the resin in such an aspect as connecting the inorganic materials. It has been found that the heat dissipating member having a high thermal conductivity can be formed and the heat resistance can be further improved by using it as the present invention.
  • composition for a heat dissipation member according to the first aspect of the present invention comprises a first inorganic filler bonded to one end of a first silane coupling agent, and a second inorganic bonded to one end of a second silane coupling agent. It contains a filler and a bifunctional or higher functional carboxylic acid anhydride. For example, as shown in FIG.
  • a first inorganic filler 1 bonded to one end of a first silane coupling agent 11 and a second inorganic filler 2 bonded to one end of a second silane coupling agent 12 A composition for a heat dissipation member, wherein the other end of the first silane coupling agent 11 and the other end of the second silane coupling agent 12 are each bonded to a bifunctional or higher functional carboxylic acid anhydride 21 by curing treatment. It is a thing.
  • the "one end” and the “other end” may be the edge or the end of the shape of the molecule, and may or may not be both ends of the long side of the molecule.
  • the heat dissipating member can be formed by combining the inorganic fillers with each other via the silane coupling agent and the carboxylic acid anhydride. Therefore, since the phonon which is a main element of heat conduction can be directly propagated, the heat dissipation member obtained from the composition for heat dissipation member can have extremely high thermal conductivity and extremely high heat resistance. .
  • composition for heat dissipation member according to the second aspect of the present invention is the composition for heat dissipation member according to the first aspect of the present invention, wherein the first inorganic filler combined with one end of the first silane coupling agent
  • the other end of the first silane coupling agent is bonded to a bifunctional or higher functional carboxylic acid anhydride.
  • the heat dissipating member can be easily formed by combining the inorganic fillers with each other via the silane coupling agent and the carboxylic acid anhydride.
  • composition for heat dissipation member according to the third aspect of the present invention is the composition for heat dissipation member according to the first aspect or the second aspect of the present invention, wherein the bifunctional or higher carboxylic acid anhydride is anhydrous It is at least one selected from the group consisting of phthalic acid, succinic anhydride, maleic anhydride, acetic anhydride, propionic anhydride and benzoic anhydride.
  • the carboxylic anhydride is thermosetting, can be cured without being affected by the amount of the filler, and is further excellent in heat resistance.
  • the molecular structure is considered to be advantageous for the conduction of phonons because of its symmetry and linearity.
  • composition for heat dissipation member according to the fourth aspect of the present invention is the composition for heat dissipation member according to the first aspect or the second aspect of the present invention, wherein the bifunctional or higher carboxylic acid anhydride has the formula (1) At least one compound selected from the group of compounds represented by Formula (2) and Formula (3).
  • R 1 is independent of a single bond, alkyl having 1 to 20 carbons, cycloalkyl having 4 to 8 carbons, aryl and arylalkyl having 7 to 20 carbons And the group selected.
  • composition for heat dissipation member according to the fifth aspect of the present invention is the composition for heat dissipation member according to the first aspect or the second aspect of the present invention, wherein the bifunctional or higher carboxylic acid anhydride has the formula (4) and at least one compound selected from the group of compounds represented by formula (5).
  • R 2 is independently selected from a single bond, alkyl having 1 to 20 carbons, cycloalkyl having 4 to 8 carbons, aryl and arylalkyl having 7 to 20 carbons Group.
  • R 3 is independently carbon or nitrogen.
  • composition for heat dissipation member according to the sixth aspect of the present invention is the composition for heat dissipation member according to the first aspect or the second aspect of the present invention, wherein the bifunctional or higher carboxylic acid anhydride has the formula It is at least one compound selected from the group of compounds represented by (6).
  • R 4 and R 5 are groups independently selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms.
  • n is independently 1 to 4.
  • the composition for heat dissipation member according to the seventh aspect of the present invention is the composition for heat dissipation member according to any one of the first aspect to the sixth aspect of the present invention, which comprises:
  • the second inorganic filler is a nitride, a metal oxide, a silicate compound, or a carbon material. If comprised in this way, a thermal radiation member can contain a more preferable compound as an inorganic filler.
  • the composition for heat dissipation member according to the eighth aspect of the present invention is the composition for heat dissipation member according to any one of the first aspect to the seventh aspect of the present invention, wherein the first inorganic filler And the second inorganic filler is at least one selected from boron nitride, aluminum nitride, boron carbide, boron carbon nitride, graphite, carbon fiber, carbon nanotube, alumina and cordierite.
  • the composition for a heat dissipation member according to a ninth aspect of the present invention is the composition for a heat dissipation member according to any one of the first to eighth aspects of the present invention, wherein the first inorganic filler And a third inorganic filler having a thermal expansion coefficient different from that of the second inorganic filler.
  • the composition for the heat dissipation member is compounded.
  • the physical properties of matter also produce large anisotropy.
  • the third inorganic filler By adding the third inorganic filler, there is an advantage that the orientation of the first and second inorganic fillers is relaxed and the anisotropy is reduced. Furthermore, when the thermal expansion coefficient of the first and second inorganic fillers is very small or negative, by adding the third inorganic filler having a positive thermal expansion coefficient, the thermal expansion coefficient is made negative by the mixing ratio. Positive control makes it possible to control precisely. Although there is no restriction
  • the composition for heat dissipation member according to the tenth aspect of the present invention is the composition for heat dissipation member according to any one of the first to ninth aspects of the present invention, wherein the first inorganic filler And a polymerizable compound or a macromolecular compound not bound to the second inorganic filler.
  • the first inorganic filler And a polymerizable compound or a macromolecular compound not bound to the second inorganic filler.
  • a heat dissipation member according to an eleventh aspect of the present invention is the composition according to any one of the first to tenth aspects of the present invention, wherein the heat dissipation member composition is cured. It is a heat dissipation member.
  • the heat dissipation member has a bond between the inorganic fillers, and this bond does not cause molecular vibration or phase change as in ordinary resins, so that the thermal expansion has high linearity and further high thermal conductivity. You can have
  • An electronic device is the heat dissipation member according to the eleventh aspect of the present invention, comprising: a heat dissipation member; and an electronic device having a heat generation portion, the heat dissipation member contacting the heat generation portion An electronic device, which is disposed in the electronic device.
  • the heat dissipation member has high heat resistance and can control the thermal expansion coefficient to a high temperature, so that the thermal distortion that may occur in the electronic device can be suppressed.
  • the method for producing a composition for heat dissipation member according to a thirteenth aspect of the present invention comprises the steps of: bonding a first inorganic filler to one end of a first silane coupling agent; And bonding the other end of the first silane coupling agent and the other end of the second silane coupling agent with each other.
  • a process for producing a heat sink composition comprising the steps of: According to this structure, it is possible to manufacture a heat dissipating member in which the inorganic fillers are bonded to the silane coupling agent by a carboxylic acid anhydride.
  • the heat dissipation member formed from the composition for heat dissipation member of the present invention simultaneously has extremely high thermal conductivity and heat resistance. Furthermore, they have excellent properties such as controllability of thermal expansion, chemical stability, hardness and mechanical strength.
  • the heat dissipating member is suitable for, for example, a heat dissipating substrate, a heat dissipating plate (planar heat sink), a heat dissipating sheet, a heat dissipating coating, a heat dissipating adhesive, and the like.
  • FIG. 7 is a conceptual view showing that two ends of the carboxylic acid anhydride 21 are combined with the first silane coupling agent 11 and the second silane coupling agent 12 by the curing treatment of the composition for heat dissipation member.
  • Conceptual view showing that the other end of the carboxylic acid anhydride 21 bonded to the first silane coupling agent 11 is bonded to the other end of the second silane coupling agent 12 by the curing treatment of the composition for heat dissipation member
  • It is. 5 is a graph showing measurement results by the thermomechanical analyzer of Example 1.
  • FIG. 7 is a graph showing measurement results by the thermomechanical analyzer of Example 2.
  • FIG. 15 is a graph showing the measurement results by the thermomechanical analyzer of Example 4. It is a graph which shows the measurement result by the thermomechanical analyzer of the comparative example 1.
  • FIG. 5 is a graph showing measurement results by the thermomechanical analyzer of Example 1.
  • FIG. 7 is a graph showing measurement results by the thermomechanical analyzer of Example 2.
  • the compound represented by Formula (1) may be described as a compound (1).
  • the compounds represented by other formulas may be similarly simplified and referred to.
  • the expression “any A may be replaced by B or C” means that at least one A is B, in addition to the case where at least one A is replaced by B and the at least one A is replaced by C. Means that at least one other A may be replaced by C at the same time.
  • the display data of the electronic balance is shown using g (gram) which is a mass unit. Weight percent and weight ratio are data based on such numerical values.
  • composition for heat dissipation member is a composition capable of forming heat dissipation members by directly bonding inorganic fillers with a silane coupling agent and a bifunctional or higher functional carboxylic acid anhydride by curing.
  • FIG. 1 shows an example in which boron nitride is used as the inorganic filler.
  • boron nitride h-BN
  • silane coupling agent is bonded only around the boron nitride because there is no reactive group in the plane of the particle.
  • Boron nitride treated with a silane coupling agent can form a bond with a bifunctional or higher functional carboxylic acid anhydride.
  • boron nitride By combining the other end of the silane coupling agent bonded to boron nitride with the other end of the carboxylic acid anhydride further bonded to the silane coupling agent bonded to boron nitride (see FIG. 2), boron nitride They are mutually connected as shown in FIG.
  • the heat-radiating member after curing has extremely high thermal conductivity, and inorganic It is possible to produce a composite material that directly reflects the coefficient of thermal expansion of the components.
  • the composition for a heat dissipation member according to the first embodiment of the present invention is, for example, as shown in FIG. 2, a thermally conductive first inorganic filler 1 combined with one end of a first silane coupling agent 11 And a thermally conductive second inorganic filler 2 bonded to one end of the silane coupling agent 12.
  • a thermally conductive first inorganic filler 1 combined with one end of a first silane coupling agent 11
  • a thermally conductive second inorganic filler 2 bonded to one end of the silane coupling agent 12.
  • the other end of the first silane coupling agent 11 is bonded to one end of the carboxylic acid anhydride 21 to form the second silane coupling agent 12.
  • the other end bonds with the other end of the carboxylic acid anhydride 21 for example, as shown in FIG.
  • one end of the carboxylic anhydride 21 is bonded to the other end of the first silane coupling agent 11. However, the other end of the carboxylic acid anhydride 21 is not bonded to the other end of the second silane coupling agent 12. As shown in FIG. 3, when the composition for heat dissipation member is cured, the other end of the second silane coupling agent 12 is bonded to the other end of the carboxylic acid anhydride 21. In this way, bonds between the inorganic fillers are formed. In the present invention, it is important in the present invention to realize such bonding between inorganic fillers, and before bonding the silane coupling agent to the inorganic filler, the silane coupling agent and the bifunctional or higher carboxylic acid anhydride are previously prepared. May be reacted using organic synthesis techniques.
  • the bifunctional or higher carboxylic acid anhydride is at least one of phthalic acid anhydride, succinic acid anhydride, maleic acid anhydride, acetic acid anhydride, propionic acid anhydride, or a carboxylic acid anhydride having benzoic acid anhydride.
  • R 1 is a single bond or alkyl having 1 to 20 carbon atoms, cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms It is a group independently selected.
  • the preferred carbon number of this alkyl is 1 to 10. More preferable R 1 is a linear mesogen (eg, liquid crystal compound).
  • R 2 is independently selected from a single bond or alkyl having 1 to 20 carbon atoms, cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms Group.
  • the preferred carbon number of this alkyl is 1 to 10.
  • R 3 is independently carbon or nitrogen. More preferred R 2 is a linear mesogen (eg, liquid crystal compound).
  • R 4 and R 5 are groups selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
  • the preferred carbon number of this alkyl is 1 to 10.
  • n is independently an integer of 1 to 4;
  • -Phthalic anhydride examples include compounds (1-1) to (1-4) shown below.
  • m is an integer of 1 to 20, preferably an integer of 1 to 10, more preferably an integer of 4 to 8.
  • n is an integer of 0 to 6, and preferably an integer of 1 to 6.
  • q is an integer of 0 to 4, preferably an integer of 0 to 2.
  • R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
  • m is an integer of 1 to 20, preferably an integer of 1 to 10, more preferably an integer of 4 to 8.
  • n is an integer of 0 to 6, and preferably an integer of 1 to 6.
  • q is an integer of 0 to 4, preferably an integer of 0 to 2.
  • R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
  • Examples of preferred formula (3) include compounds (3-1) to (3-4) shown below.
  • m is an integer of 1 to 20, preferably an integer of 1 to 10, and more preferably an integer of 4 to 8.
  • n is an integer of 0 to 6, and preferably an integer of 1 to 6.
  • q is an integer of 0 to 4, preferably an integer of 0 to 2.
  • R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
  • Acetic anhydride examples include compounds (4-1) to (4-8) shown below.
  • m is an integer of 1 to 20, preferably an integer of 1 to 10, and more preferably an integer of 4 to 8.
  • n is an integer of 0 to 6, and preferably an integer of 1 to 6.
  • q is an integer of 0 to 4, preferably an integer of 0 to 2.
  • R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
  • Examples of preferable formula (5) include compounds (5-1) to (5-8) shown below.
  • m is an integer of 1 to 20, preferably an integer of 1 to 10, and more preferably an integer of 4 to 8.
  • n is an integer of 0 to 6, and preferably an integer of 1 to 6.
  • q is an integer of 0 to 4, preferably an integer of 0 to 2.
  • R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
  • Benzoic anhydride examples include compounds (6-1) to (6-6) shown below.
  • Carboxylic Anhydrides Preferred examples include the compounds (7-1) to (7-9) shown below.
  • m is an integer of 0 to 2;
  • n is an integer of 0 to 6, preferably an integer of 0 to 4, and more preferably an integer of 0 to 2.
  • R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
  • first inorganic filler and the second inorganic filler examples include nitrides, carbides, carbon materials, metal oxides, and silicate minerals.
  • the first inorganic filler and the second inorganic filler may be the same or different.
  • inorganic fillers having high thermal conductivity and a very small or negative coefficient of thermal expansion can be used. Specifically, boron nitride, boron carbide, boron carbon nitride, Graphite, carbon fiber, carbon nanotube can be mentioned.
  • alumina, silica, magnesium oxide, zinc oxide, iron oxide, ferrite, mullite, cordierite, silicon nitride, and silicon carbide can be mentioned.
  • an inorganic filler having a high thermal conductivity and a positive coefficient of thermal expansion described below may be used for either the first or second inorganic filler.
  • an inorganic filler having a high thermal conductivity, a positive coefficient of thermal expansion, or a size smaller than the first and second inorganic fillers can be used.
  • the structure of the carboxylic acid anhydride preferably has a shape and a length capable of efficiently directly bonding between the inorganic fillers.
  • the type, shape, size, addition amount, etc. of the inorganic filler can be appropriately selected according to the purpose.
  • the heat dissipating member to be obtained requires insulation, it may be an inorganic filler having conductivity as long as desired insulation is maintained.
  • the shape of the inorganic filler include plate-like, spherical, amorphous, fibrous, rod-like and cylindrical.
  • boron nitride aluminum nitride, silicon nitride, silicon carbide, graphite, carbon fibers, and carbon nanotubes.
  • hexagonal boron nitride (h-BN) and graphite are preferable.
  • Boron nitride and graphite are preferable because they have a very high thermal conductivity in the planar direction and boron nitride has a low dielectric constant and high insulation.
  • it is preferable to use plate-like crystal boron nitride because the plate-like structure is easily oriented along the mold due to the flow or pressure of the raw material at the time of molding and curing.
  • the average particle size of the inorganic filler is preferably 0.1 to 200 ⁇ m. More preferably, it is 1 to 100 ⁇ m. A thermal conductivity is good in it being 0.1 micrometer or more, and a filling factor can be raised as it is 200 micrometers or less.
  • the average particle diameter is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle diameter by a wet method using analysis based on the franhofer diffraction theory and Mie's scattering theory, the diameter at which the large side and the small side become equivalent (volume based) As the median diameter.
  • the proportions of the inorganic filler, the silane coupling agent and the carboxylic anhydride depend on the amount of silane coupling agent to be combined with the inorganic filler used.
  • the compound (for example, boron nitride) used as a 1st, 2nd inorganic filler does not have a reactive group on the surface as mentioned above, and a reactive group exists only on the side. It is preferable to bind as many silane coupling agents as possible to the few reactive groups, and to bind a carboxylic acid anhydride having the same number or a few more reactive groups as the number of reactive groups.
  • the reaction amount of the silane coupling agent to the inorganic filler mainly changes depending on the size of the inorganic filler and the reactivity of the silane coupling agent used. For example, as the size of the inorganic filler increases, the area ratio of the side surfaces of the inorganic filler decreases, so the amount of modification is small. It is preferable to react as many silane coupling agents as possible with the inorganic filler, but it is preferable to balance the smaller inorganic filler particles, as the thermal conductivity of the product is reduced.
  • the volume ratio of the silane coupling agent and carboxylic acid anhydride in the heat radiation member which is a cured product to the inorganic filler is preferably in the range of 5:95 to 30:70, more preferably 10:90 to 25. : 75.
  • the silane coupling agent to be bonded to the inorganic filler is preferably a silane coupling agent having an amine reactive group at the end, since it is preferable to react with a bifunctional or higher functional carboxylic acid anhydride.
  • a silane coupling agent having an amine reactive group at the end since it is preferable to react with a bifunctional or higher functional carboxylic acid anhydride.
  • CYRA ACE registered trademark
  • KBM 903 and KBE 903 manufactured by Shin-Etsu Chemical Co., Ltd. may be mentioned.
  • the first silane coupling agent and the second silane coupling agent may be the same or different.
  • the first inorganic filler can be used after being treated with a silane coupling agent and further surface-modified with a bifunctional or higher functional carboxylic acid anhydride.
  • the inorganic coupling agent is a carboxylic acid by further binding a bifunctional or higher functional carboxylic acid anhydride to the silane coupling agent. It is surface modified with acid anhydride.
  • the first inorganic filler surface-modified with carboxylic acid anhydride can form a bond with the second inorganic filler with the carboxylic acid anhydride and the silane coupling agent, as shown in FIG.
  • the first inorganic filler may be one that has been subjected to coupling treatment with a silane coupling agent that has been previously bonded to a bifunctional or higher functional carboxylic acid anhydride.
  • the bifunctional or higher carboxylic acid anhydride is preferably a bifunctional or higher carboxylic acid anhydride represented by the above formulas (1) and (2).
  • other carboxylic acid anhydrides may be used.
  • the carboxylic acid anhydride is a polycycle, heat resistance is high, and when the carboxylic acid anhydride is high in linearity, there is little elongation or fluctuation due to heat between the inorganic fillers, and the heat phonon conduction is efficiently transmitted. It is preferable because The surface modification with carboxylic acid anhydride or the like is preferable because the more the surface modification, the more the bonding.
  • the composition for heat dissipation member may further contain an organic compound (for example, a polymerizable compound or a polymer compound) not bound to the first inorganic filler and the second inorganic filler, that is, not contributing to the binding. , And may contain a polymerization initiator, a solvent, and the like.
  • an organic compound for example, a polymerizable compound or a polymer compound
  • the composition for heat dissipation members may contain a carboxylic acid anhydride (in this case, it may not necessarily be bifunctional or more) which is not bonded to the inorganic filler.
  • a carboxylic acid anhydride a compound which does not interfere with the thermal curing of the organic compound modified to the inorganic filler and which does not evaporate or bleed out by heating is preferable.
  • the polymerizable compounds are classified into compounds having no liquid crystallinity and compounds having liquid crystallinity.
  • Examples of the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives and itaconic acid derivatives. It is preferable to prepare a composition for a heat-dissipation member which does not contain a compound which is not bonded first, to measure its porosity, and to add an amount of the compound capable of filling the porosity.
  • the composition for heat dissipation member may have a polymer compound not bound to the inorganic filler as a component.
  • a polymer compound which does not reduce film formability and mechanical strength is preferable.
  • the polymer compound may be an inorganic filler, a silane coupling agent, and a polymer compound which does not react with the carboxylic acid anhydride.
  • the carboxylic acid anhydride has an oxiranyl group and the silane coupling agent has an amino group
  • polyolefin resins, polyvinyl resins, silicone resins, waxes and the like are examples of the carboxylic acid anhydride.
  • composition for a heat dissipation member which does not contain a polymerizable compound which is not bonded, measure its porosity, and add a polymer compound in an amount capable of filling the porosity.
  • the composition for heat dissipation members may contain a liquid crystal compound having no polymerizable group.
  • non-polymerizable liquid crystalline compounds are described in Liquist (LiqCryst, LCI Publisher GmbH, Hamburg, Germany), which is a database of liquid crystalline compounds, and the like.
  • composite materials of the compound (1) (2) and the liquid crystal compound can be obtained by polymerizing the composition containing the non-polymerizable liquid crystal compound.
  • a nonpolymerizable liquid crystal compound is present in the polymer network.
  • it is a liquid crystal compound having such a property that it does not flow in the temperature range to be used.
  • the inorganic filler may be compounded by a method of injecting into the voids in a temperature range showing an isotropic phase, or the amount of the liquid crystal compound calculated to fill the voids in the inorganic filler in advance. After mixing, the inorganic fillers may be polymerized.
  • the composition for heat dissipation members may contain a solvent.
  • the polymerization may be carried out in a solvent or in the absence of a solvent.
  • the composition containing a solvent may be coated on a substrate by, for example, spin coating, and then the solvent may be removed and then photopolymerization may be performed. Further, after photocuring, post-treatment may be performed by heating to a suitable temperature and heat curing.
  • Preferred solvents include, for example, benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, ⁇ -butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide, cyclohexane, methylcyclohexane, cyclopentanone , Cyclohexanone, PGMEA and the like.
  • the above solvents may be used singly or in combination of two or more. There is no point in limiting the use ratio of the solvent at the time of polymerization, and it may be determined for each case in consideration of the polymerization efficiency, solvent cost, energy cost and the like.
  • a stabilizer may be added to the composition for heat dissipation member in order to facilitate handling.
  • a stabilizer known ones can be used without limitation, and examples thereof include hydroquinone, 4-ethoxyphenol and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
  • BHT 3,5-di-t-butyl-4-hydroxytoluene
  • an additive such as an oxide
  • fine powders of titanium oxide for making white, carbon black for making black, and fine powder of silica for adjusting viscosity can be mentioned.
  • additives may be added to further increase the mechanical strength.
  • inorganic fibers or cloths such as glass fibers, carbon fibers, carbon nanotubes or the like, or as polymer additives, fibers or long molecules such as polyvinyl formal, polyvinyl butyral, polyester, polyamide, polyimide and the like can be mentioned.
  • the second inorganic filler is subjected to a coupling process, and one end of the second silane coupling agent is bonded to the second inorganic filler to form a second silane coupling agent. Let it be a second inorganic filler bonded to one end.
  • a well-known method can be used for a coupling process. As an example, first, the inorganic filler and the silane coupling agent are added to the solvent. After stirring using a stirrer etc., it dries.
  • the mixing ratio of the first inorganic filler and the second inorganic filler is, for example, when the bonding group forming the bond between the first inorganic filler and the second inorganic filler is each amine: epoxy, the weight of only the inorganic filler is, for example, And preferably 1: 1 to 1:30, more preferably 1: 3 to 1:20.
  • the mixing ratio is determined by the number of terminal bonding groups that form a bond between the first inorganic filler and the second inorganic filler, and, for example, secondary amines can react with two oxiranyl groups, so The amount may be small compared to the base side, and the oxiranyl side may be open, and it is preferable to use a larger amount calculated from the epoxy equivalent.
  • (4) Manufacturing a Heat Dissipation Member As an example, a method of manufacturing a film as a heat dissipation member using a composition for a heat dissipation member will be described. The composition for heat dissipation member is sandwiched in a heating plate using a compression molding machine, and oriented and cured by compression molding.
  • the pressure at the time of compression molding is preferably 50 ⁇ 200kgf / cm 2, more preferably 70 ⁇ 180kgf / cm 2.
  • the pressure at curing is preferably high. However, it is preferable to appropriately change the pressure in accordance with the fluidity in the mold and the desired physical properties (such as which direction of thermal conductivity is to be emphasized).
  • the method of manufacturing the film as a heat radiating member using the composition for heat radiating members containing a solvent is demonstrated concretely.
  • the composition is applied onto a substrate, and the solvent is removed by drying to form a coating layer having a uniform film thickness.
  • the coating method include spin coating, roll coating, curtain coating, flow coating, printing, microgravure coating, gravure coating, wire bar coating, wire coating, dip coating, spray coating, and meniscus coating.
  • the solvent can be dried and removed by, for example, air drying at room temperature, drying on a hot plate, drying in a drying oven, spraying of warm air or hot air, or the like.
  • the conditions for solvent removal are not particularly limited, and the solvent may be generally removed and the film may be dried until the fluidity of the coating layer is lost.
  • the substrate examples include metal substrates such as copper, aluminum and iron; inorganic semiconductor substrates such as silicon, silicon nitride, gallium nitride and zinc oxide; glass substrates such as alkali glass, borosilicate glass and flint glass, alumina, Inorganic insulating substrates such as aluminum nitride; polyimides, polyamideimides, polyamides, polyetherimides, polyetheretherketones, polyetherketones, polyketone sulfides, polyethersulfones, polysulfones, polysulfones, polyphenylene sulfides, polyphenylene oxides, polyethylene terephthalates, polybutylene terephthalates , Polyethylene naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulose, Triacetyl cellulose or partially saponified product thereof, epoxy resins, phenolic resins, and a plastic film substrate
  • the film substrate may be a uniaxially stretched film or a biaxially stretched film.
  • the film substrate may be subjected to surface treatment such as saponification treatment, corona treatment or plasma treatment in advance.
  • a protective layer which is not corroded by the solvent contained in the said composition for thermal radiation members on these film substrates.
  • a material used as a protective layer polyvinyl alcohol is mentioned, for example.
  • an anchor coat layer may be formed to enhance the adhesion between the protective layer and the substrate.
  • Such an anchor coat layer may be any of inorganic and organic materials as long as the adhesion between the protective layer and the substrate is enhanced.
  • the bond between the inorganic fillers is constituted by the coupling-treated inorganic filler and the coupling-treated inorganic filler further modified with a carboxylic acid anhydride.
  • the second inorganic filler is subjected to coupling treatment with a silane coupling agent having an amino.
  • the first inorganic filler is coupled with a silane coupling agent having an amino, and then bonded to one end of the amino and a compound having a carboxylic acid anhydride at both ends.
  • the amino on the second inorganic filler side is bonded to the other of the COO groups possessed by the carboxylic acid anhydride on the first inorganic filler side.
  • the inorganic filler side may have an epoxy, and the carboxylic acid anhydride side may have a carboxylic acid.
  • the first and second inorganic fillers treated with a silane coupling agent may be mixed and pressed with a bifunctional or higher carboxylic acid anhydride calculated from the modification amount of the silane coupling agent.
  • a bifunctional or higher carboxylic acid anhydride calculated from the modification amount of the silane coupling agent.
  • the carboxylic anhydride has fluidity and soaks into the gaps of the inorganic filler. Further heating allows the carboxylic anhydride to bond with the silane coupling agent to form a bond (ie, cure) between the first inorganic filler and the second inorganic filler.
  • the bond between the inorganic coupling agents may form a bond between the inorganic fillers.
  • the first inorganic filler is coupled with a silane coupling agent having an amino.
  • the second inorganic filler is coupled with a silane coupling agent having a carboxylic acid.
  • the amino on the first inorganic filler side and the epoxy on the second inorganic filler side are bonded.
  • the silane coupling agent bound to the first inorganic filler and the silane coupling agent bound to the second inorganic filler each have a functional group for binding the silane coupling agents to each other.
  • the functional group on the side of the first inorganic filler and the functional group on the side of the second inorganic filler may be a combination of different ones or a combination of the same ones as long as bonding between the silane coupling agents becomes possible.
  • Examples of combinations of functional groups forming bonds between silane coupling agents include combinations of oxiranyl and amino, vinyls, methacryloxys, carboxy or carboxylic anhydride residues and amino, imidazole and oxiranyl, etc. It can, but is not limited to these. A combination of highly heat resistant functional groups is more preferred.
  • At least one of the silane coupling agents contains a carboxylic acid anhydride in the structure.
  • the first inorganic filler and the second inorganic filler can be connected, and the heat dissipation member composition of the present invention has extremely high thermal conductivity. It is possible to obtain a heat dissipating member having the controllability of the heat resistance and the coefficient of thermal expansion.
  • said functional group is an illustration, and as long as the effect of this invention is acquired, it is not restricted to said functional group.
  • the heat radiating member of the present invention is a cured product obtained by curing the heat radiating member composition and molding it according to the use.
  • This cured product can be suitably used as a heat dissipation member because it has high thermal conductivity and high heat resistance at the same time.
  • the cured product can have a negative or very low coefficient of thermal expansion, and is excellent in chemical stability, hardness and mechanical strength.
  • the mechanical strength includes Young's modulus, tensile strength, tear strength, flexural strength, flexural modulus, impact strength and the like.
  • the heat dissipating member is useful for a heat dissipating plate, a heat dissipating sheet, a heat dissipating film, a heat dissipating adhesive, a heat dissipating molded product, and the like.
  • the thermal conductivity can be evaluated by the thermal conductivity in the vertical direction.
  • the vertical direction generally indicates the thickness direction of the sample.
  • the thermal conductivity of the heat radiating member of the present invention in the vertical direction is preferably 5 (W / mK) or more, more preferably 9 (W / mK) or more, when boron nitride is used. If it is this range, since it is excellent in heat conduction, it can utilize suitably for a heat sink etc.
  • the heat resistance can be evaluated by measuring the 5% weight loss temperature.
  • the 5% weight loss temperature of the heat dissipation member of the present invention is preferably 280 ° C. or higher, more preferably 290 ° C.
  • the thermal expansion can be evaluated by the thermal expansion coefficient.
  • the coefficient of thermal expansion indicates the elongation in the plane direction of the sample in the range of 50 to 200 ° C.
  • the thermal expansion coefficient of the heat dissipation member of the present invention is preferably ⁇ 20 to 50 (ppm / K), and more preferably ⁇ 5 to 20 (ppm / K). If it is this range, since it is excellent in non-thermal expansion property, it can utilize suitably for the die attachment etc. to the metal substrate which generates heat.
  • the conditions for the pre-curing for curing the composition for heat dissipation member by thermal polymerization include a thermosetting temperature in the range of room temperature to 350 ° C., preferably room temperature to 300 ° C., more preferably 120 ° C. to 250 ° C. Is in the range of 5 seconds to 10 hours, preferably 1 minute to 5 hours, more preferably 5 minutes to 1 hour. After polymerization, slow cooling is preferable to suppress stress and strain. Further, reheating treatment may be performed to reduce distortion and the like.
  • the heat dissipation member is used in the form of a sheet, a film, a thin film, a fiber, a molded body or the like.
  • Preferred shapes are plates, sheets, films and thin films.
  • the thickness of the sheet in the present specification is 1 mm or more, the thickness of the film is 5 ⁇ m or more, preferably 10 to 500 ⁇ m, more preferably 20 to 300 ⁇ m, and the thickness of the thin film is less than 5 ⁇ m.
  • the film thickness may be appropriately changed according to the application.
  • the composition for a heat dissipation member can also be used as an adhesive or a filler as it is.
  • An electronic device of the present invention includes the heat dissipation member of the present invention, and an electronic device having a heat generating portion or a cooling portion.
  • the heat dissipation member is disposed in the electronic device so as to contact the heat generating portion.
  • the shape of the heat dissipating member may be any of a heat dissipating electronic substrate, a heat dissipating plate, a heat dissipating sheet, a heat dissipating film, a heat dissipating adhesive, a heat dissipating molded product, and the like.
  • a semiconductor module can be mentioned as an electronic device.
  • the heat-radiating member of the present invention has high thermal conductivity, high heat resistance, and high insulation properties in addition to low thermal expansion, so it is an insulated gate bipolar that requires a more efficient heat dissipation mechanism for high power among semiconductor elements. It is particularly effective for a transistor (Insulated Gate Bipolar Transistor, IGBT).
  • IGBT Insulated Gate Bipolar Transistor
  • the IGBT is one of the semiconductor elements, and is a bipolar transistor in which a MOSFET is incorporated in the gate portion, and is used in power control applications.
  • Examples of electronic devices equipped with IGBTs include a main conversion element of a large power inverter, an uninterruptible power supply, a variable voltage variable frequency controller of an AC motor, a controller of a railway vehicle, an electric transportation device such as a hybrid car and an electric car, IH A cooker etc. can be mentioned.
  • the second inorganic filler obtained by the coupling treatment of the present invention and the first inorganic filler further modified with the carboxylic anhydride after the coupling treatment are combined to form a bond between the inorganic fillers, resulting in low heat.
  • the heat dissipating member having the expansibility, high thermal conductivity and high heat resistance has been described, the present invention is not limited thereto.
  • a second inorganic filler modified with a carboxylic acid anhydride may be combined with the first inorganic filler subjected to the coupling treatment to form a bond between the inorganic fillers.
  • the carboxylic acid anhydrides may be bonded with an appropriate polymerization initiator or the like using only the inorganic filler modified with the carboxylic acid anhydride to form a bond between the inorganic fillers.
  • an appropriate polymerization initiator or the like using only the inorganic filler modified with the carboxylic acid anhydride to form a bond between the inorganic fillers.
  • the material which comprises the thermal radiation member used for the Example of this invention is as follows.
  • 1,3-Isobenzobenzofurandione 5,5 ′-(1,8-octanediyl) bis-5,5 ′-(1,8-octanediyl) bis [1,3-isobenzofurandione]: Compound represented by (8-2) (manufactured by JNC Co., Ltd.)
  • Liquid crystalline epoxy compound a compound represented by the following formula (9-1) (manufactured by JNC Co., Ltd.). The compound can be synthesized by the method described in Japanese Patent No. 5084148.
  • Silane coupling agent 1 N- (2-aminoethyl) -3-aminopropyltrimethoxysilane represented by the following formula (10-1) (manufactured by JNC Co., Ltd., (trade name) SYRAACE S320)
  • -Silane coupling agent 2 3-aminopropyltrimethoxysilane represented by the following formula (10-2) (Shin-Etsu Chemical Co., Ltd. product, (trade name) KBM-903)
  • Example 1 Preparation of heat dissipation member> Below, the preparation example of a thermal radiation member is shown. -Preparation of silane coupling agent-treated boron nitride particles 15 g of boron nitride particles (PTX-25 manufactured by Momentive Performance Materials Japan) and 2.25 g of silane coupling agent 1 are added to 100 mL of toluene, and 500 rpm using a stirrer The resulting mixture was dried at 40 ° C. for 4 hours. Furthermore, it heat-processed under vacuum conditions for 5 hours using the vacuum dryer set to 120 degreeC after solvent drying. The obtained particles were used as a second inorganic filler (BN).
  • BN second inorganic filler
  • the resulting mixture is added to 45 mL of tetrahydrofuran, and after sufficient stirring, insolubles are precipitated with a centrifuge (High speed cooling centrifuge model CR22 manufactured by Hitachi Koki Co., Ltd., 4,000 rotation x 10 minutes x 25 ° C) Then, the solution containing the portion in which the unreacted acid anhydride was dissolved was removed by decantation. Thereafter, 45 mL of acetone was added, and the same operation as described above was performed. Further, the same operation was repeated in the order of tetrahydrofuran and acetone. The particles obtained by drying the insolubles were used as the first inorganic filler.
  • the coverage of the first inorganic filler and the second inorganic filler with respect to the silane coupling agent or acid anhydride of BN is determined using a thermogravimetric / differential thermal analyzer (TG-8121 manufactured by Rigaku Corporation)). Calculated from weight loss on heating at 900 ° C.
  • the resulting mixture is held in a stainless steel plate using a metal frame so as not to be oxidized, and pressurized to 30 MPa using a compression molding machine (IMC-19EC manufactured by Imoto Machinery Co., Ltd.) set at 150 ° C. for 15 minutes
  • a compression molding machine IMC-19EC manufactured by Imoto Machinery Co., Ltd.
  • the amounts of the metal frame and the sample were adjusted so that the thickness of the sample was about 500 ⁇ m.
  • curing was performed at 80 ° C. for 3 hours and at 200 ° C. for 14 hours using a vacuum oven. The sample obtained by this operation is used as a heat dissipation member.
  • the coating amount of the obtained sample on the inorganic filler was calculated from the heat loss at 900 ° C. using a thermal weight and differential thermal measurement device (TG-8121 manufactured by Rigaku Corporation) .
  • the 5% weight loss temperature of the heat dissipation member was calculated from the temperature when it decreased by 5 wt% when the amount of decrease from 140 ° C. to 900 ° C. was 100 wt%, using the above-mentioned measuring apparatus.
  • the thermal conductivity is determined in advance by the specific heat of the heat dissipation member (Rigaku Co., Ltd. DSC-8231, measured with a DSC-type input-compensated differential scanning calorimeter) and the specific gravity (a specific gravity meter AG204 manufactured by METTLER TOLEDO
  • the thermal conductivity is measured in the vertical direction by multiplying the thermal diffusivity obtained by using ai-Phase Mobile 1u thermal diffusivity measuring device by measuring the density measurement kit). I asked.
  • Example 2 A sample was prepared and measured in the same manner as in Example 1 except that Formula (8-2) was used instead of Formula (8-1).
  • Example 3 A sample was prepared and measured in the same manner as in Example 1 except that formula (8-3) was used instead of formula (8-1).
  • Example 4 A sample was prepared and measured in the same manner as in Example 1 except that Formula (8-4) was used instead of Formula (8-1).
  • Comparative Example 1 A sample was prepared and measured in the same manner as in Example 1 except that formula (9-1) was used instead of formula (8-1). After precuring, curing was performed at 150 ° C. for 5 hours using a vacuum oven.
  • thermomechanical analyzer of Examples 1, 2 and 4 and Comparative Example 1 are summarized in FIGS. 4 to 7.
  • the first and second behaviors were almost the same for each measurement. It can be seen that the repeated stability of the heat resistance temperature and the temperature cycle is good.
  • Comparative Example 1 In the method of dispersing an ordinary high thermal conductivity filler in an epoxy resin and a curing agent, for example, as in Comparative Example 1, the coefficient of thermal expansion changes largely before and after the glass transition temperature.
  • Comparative Example 1 since a liquid crystalline epoxy compound excellent in heat resistance and thermal expansion is used, a relatively high thermal expansion coefficient and heat resistance temperature are shown, but a normal bisphenol type epoxy compound and silica are used.
  • the composite material of a diamine curing agent has a coefficient of thermal expansion of about 50 ⁇ 10 ⁇ 6 / K and a heat resistance temperature of about 120 ° C.
  • the heat dissipating member formed from the composition for heat dissipating member of the present invention has extremely high thermal conductivity and heat resistance at the same time, so for example, a heat dissipating substrate, a heat dissipating plate (planar heat sink), a heat dissipating sheet, a heat dissipating coating, It can be used as a heat dissipating adhesive.
  • first inorganic filler 2 second inorganic filler 11 first silane coupling agent 12 second silane coupling agent 21 bifunctional or higher carboxylic anhydride 3 first silane coupling agent and bifunctional or higher The site where the carboxylic anhydride and the second silane coupling agent are bound

Abstract

According to the present invention, a composition which enables the formation of a heat dissipation member that has high heat resistance and high thermal conductivity at the same time is obtained. A composition for heat dissipation members according to the present invention contains: a first inorganic filler (1) that is bonded to one end of a first silane coupling agent (11); a second inorganic filler (2) that is bonded to one end of a second silane coupling agent (12); and a carboxylic acid anhydride (21) that has a functionality of 2 or more.

Description

放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法Composition for heat radiation member, heat radiation member, electronic device, method of manufacturing heat radiation member
 本発明は、電子基板等の電子機器に用いる放熱部材を形成することが可能な組成物に関する。さらに電子機器で生じた熱を効率よく伝導、伝達することにより放熱できる放熱部材に関する。 The present invention relates to a composition capable of forming a heat dissipating member used in an electronic device such as an electronic substrate. Further, the present invention relates to a heat dissipating member capable of dissipating heat by efficiently conducting and transmitting the heat generated by the electronic device.
 近年、ハイブリッド自動車や電気自動車などの電力制御用の半導体素子や、高機能コンピューター用のCPUなどにおいて、ワイドギャップ半導体の利用などにより、その動作温度が上昇している。特に注目されている炭化ケイ素(SiC)半導体などでは、動作温度が200℃以上になるため、そのパッケージ材料には、250℃以上の高耐熱性が求められている。さらに、動作温度の上昇により、パッケージ内に使用されている材料間の熱膨張率の差により熱歪が発生し、配線の剥離などによる寿命の低下も問題になっている。 In recent years, the operating temperature of semiconductor devices for power control such as hybrid cars and electric cars, CPUs for high-performance computers, etc. has risen due to the use of wide gap semiconductors and the like. In the case of silicon carbide (SiC) semiconductors and the like that are attracting particular attention, the operating temperature is 200 ° C. or higher, and therefore the package material is required to have high heat resistance of 250 ° C. or higher. Furthermore, due to the rise in operating temperature, thermal strain is generated due to the difference in the coefficient of thermal expansion between the materials used in the package, and the reduction in life due to peeling of the wiring is also a problem.
 このような耐熱問題を解決するために、窒化アルミニウムや窒化ケイ素などの高熱伝導セラミックス基板や、熱伝導率を向上させるための無機フィラーと複合化させた高耐熱の有機樹脂やシリコーン樹脂が開発され、特にオキサジンなどの高耐熱樹脂や、高耐熱シリコーン樹脂の開発が進んでいる。特許文献1には、耐熱性に優れたポリベンゾオキサジン変性ビスマレイミド樹脂が開示されているが、充分な耐熱性を有してはおらず、さらに高耐熱な材料の開発が行われている。 In order to solve such heat resistance problems, highly heat-resistant organic resins and silicone resins combined with high thermal conductivity ceramic substrates such as aluminum nitride and silicon nitride, and inorganic fillers to improve the thermal conductivity have been developed. Particularly, development of high heat resistant resins such as oxazine and high heat resistant silicone resins is in progress. Although the polybenzoxazine modified bismaleimide resin excellent in heat resistance is disclosed by patent document 1, it does not have sufficient heat resistance and development of the further high heat resistant material is performed.
 このような放熱問題を解決する方法としては、発熱部位に高熱伝導性材料(放熱部材)を接触させて熱を外部に導き、放熱する方法が挙げられる。特許文献2には、有機材料と無機材料を複合化させた放熱部材であって、無機材料間をシランカップリング剤と重合性液晶化合物で繋いだ放熱部材が開示されている。シランカップリング剤と重合性液晶化合物で繋ぐことにより、無機材料間の熱伝導性を極めて高めることを可能とした。しかしながら、これらの方法によって得られる放熱部材は、液晶化合物を用いていることから、熱伝導率は高いものの耐熱性が充分ではなかった。 As a method for solving such a heat radiation problem, there is a method in which a high thermal conductivity material (heat radiation member) is brought into contact with the heat generation portion to lead the heat to the outside and radiate it. Patent Document 2 discloses a heat dissipation member in which an organic material and an inorganic material are compounded, and the heat dissipation member in which inorganic materials are connected by a silane coupling agent and a polymerizable liquid crystal compound. By connecting the silane coupling agent and the polymerizable liquid crystal compound, it has become possible to extremely enhance the thermal conductivity between the inorganic materials. However, since the heat dissipating member obtained by these methods uses a liquid crystal compound, although the heat conductivity is high, the heat resistance is not sufficient.
特開2012-97207号公報JP 2012-97207 A 国際公開第2015/170744号International Publication No. 2015/170744
 そこで本発明の課題は、高い熱伝導率と、高い耐熱性を同時に有する放熱部材を形成することが可能な組成物および該組成物を用いて得られる放熱部材を提供することである。 Therefore, an object of the present invention is to provide a composition capable of forming a heat dissipating member simultaneously having high thermal conductivity and high heat resistance, and a heat dissipating member obtained using the composition.
 本発明者らは、上記課題を解決するために鋭意検討を行った。その結果、樹脂に窒化ホウ素などの無機材料を添加するのではなく、無機材料同士をつなげるような態様、すなわち、無機材料とシランカップリング剤などの有機材料とを結合させて、樹脂に添加して使用すると、熱伝導率が高い放熱部材を形成でき、さらに耐熱性を向上できることを見出し、本発明を完成させた。 The present inventors diligently studied to solve the above problems. As a result, instead of adding an inorganic material such as boron nitride to the resin, the inorganic material and an organic material such as a silane coupling agent are combined and added to the resin in such an aspect as connecting the inorganic materials. It has been found that the heat dissipating member having a high thermal conductivity can be formed and the heat resistance can be further improved by using it as the present invention.
 本発明の第1の態様に係る放熱部材用組成物は、第1のシランカップリング剤の一端と結合した第1の無機フィラー、第2のシランカップリング剤の一端と結合した第2の無機フィラーおよび2官能以上のカルボン酸無水物を含有する。例えば図2に示すように、第1のシランカップリング剤11の一端と結合した第1の無機フィラー1と、第2のシランカップリング剤12の一端と結合した第2の無機フィラー2とを含み、硬化処理により、前記第1のシランカップリング剤11の他端と前記第2のシランカップリング剤12の他端がそれぞれ2官能以上のカルボン酸無水物21に結合する、放熱部材用組成物である。
 「一端」および「他端」とは、分子の形状の縁または端であればよく、分子の長辺の両端であってもなくてもよい。
 このように構成すると、無機フィラー同士をシランカップリング剤およびカルボン酸無水物を介して結合させて放熱部材を形成することができる。そのため、直接的に、熱伝導の主な要素であるフォノンを伝播することができることから、放熱部材用組成物から得られる放熱部材は極めて高い熱伝導性と、極めて高い耐熱性を有することができる。
The composition for a heat dissipation member according to the first aspect of the present invention comprises a first inorganic filler bonded to one end of a first silane coupling agent, and a second inorganic bonded to one end of a second silane coupling agent. It contains a filler and a bifunctional or higher functional carboxylic acid anhydride. For example, as shown in FIG. 2, a first inorganic filler 1 bonded to one end of a first silane coupling agent 11 and a second inorganic filler 2 bonded to one end of a second silane coupling agent 12 A composition for a heat dissipation member, wherein the other end of the first silane coupling agent 11 and the other end of the second silane coupling agent 12 are each bonded to a bifunctional or higher functional carboxylic acid anhydride 21 by curing treatment. It is a thing.
The "one end" and the "other end" may be the edge or the end of the shape of the molecule, and may or may not be both ends of the long side of the molecule.
According to this structure, the heat dissipating member can be formed by combining the inorganic fillers with each other via the silane coupling agent and the carboxylic acid anhydride. Therefore, since the phonon which is a main element of heat conduction can be directly propagated, the heat dissipation member obtained from the composition for heat dissipation member can have extremely high thermal conductivity and extremely high heat resistance. .
 本発明の第2の態様に係る放熱部材用組成物は、上記本発明の第1の態様に係る放熱部材用組成物において、第1のシランカップリング剤の一端と結合した第1の無機フィラーは、前記第1のシランカップリング剤の他端と2官能以上のカルボン酸無水物とが結合している。
 このように構成すると、無機フィラー同士をシランカップリング剤およびカルボン酸無水物を介して結合させて放熱部材を形成することが容易にできる。
The composition for heat dissipation member according to the second aspect of the present invention is the composition for heat dissipation member according to the first aspect of the present invention, wherein the first inorganic filler combined with one end of the first silane coupling agent In the above, the other end of the first silane coupling agent is bonded to a bifunctional or higher functional carboxylic acid anhydride.
According to this structure, the heat dissipating member can be easily formed by combining the inorganic fillers with each other via the silane coupling agent and the carboxylic acid anhydride.
 本発明の第3の態様に係る放熱部材用組成物は、上記本発明の第1の態様または第2の態様に係る放熱部材用組成物において、前記2官能以上のカルボン酸無水物が、無水フタル酸、無水コハク酸、無水マレイン酸、無水酢酸、無水プロピオン酸および無水安息香酸からなる群から選ばれる少なくとも一つである。
 このように構成すると、カルボン酸無水物が熱硬化性であり、フィラーの量に影響を受けずに硬化させることができ、さらに耐熱性に優れる。また分子構造は、対称性、直線性を有するため、フォノンの伝導に有利であると考えられる。
The composition for heat dissipation member according to the third aspect of the present invention is the composition for heat dissipation member according to the first aspect or the second aspect of the present invention, wherein the bifunctional or higher carboxylic acid anhydride is anhydrous It is at least one selected from the group consisting of phthalic acid, succinic anhydride, maleic anhydride, acetic anhydride, propionic anhydride and benzoic anhydride.
When configured in this manner, the carboxylic anhydride is thermosetting, can be cured without being affected by the amount of the filler, and is further excellent in heat resistance. The molecular structure is considered to be advantageous for the conduction of phonons because of its symmetry and linearity.
 本発明の第4の態様に係る放熱部材用組成物は、上記本発明の第1の態様または第2の態様に係る放熱部材用組成物において、前記2官能以上のカルボン酸無水物が、式(1)、式(2)および式(3)で表される化合物の群から選ばれる少なくとも1種の化合物である。 The composition for heat dissipation member according to the fourth aspect of the present invention is the composition for heat dissipation member according to the first aspect or the second aspect of the present invention, wherein the bifunctional or higher carboxylic acid anhydride has the formula (1) At least one compound selected from the group of compounds represented by Formula (2) and Formula (3).
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 上記式(1)、(2)および(3)中、Rは単結合、炭素数1~20のアルキル、炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから独立して選択される基である。 In the above formulas (1), (2) and (3), R 1 is independent of a single bond, alkyl having 1 to 20 carbons, cycloalkyl having 4 to 8 carbons, aryl and arylalkyl having 7 to 20 carbons And the group selected.
 本発明の第5の態様に係る放熱部材用組成物は、上記本発明の第1の態様または第2の態様に係る放熱部材用組成物において、前記2官能以上のカルボン酸無水物が、式(4)および式(5)で表される化合物の群から選ばれる少なくとも1種の化合物である。 The composition for heat dissipation member according to the fifth aspect of the present invention is the composition for heat dissipation member according to the first aspect or the second aspect of the present invention, wherein the bifunctional or higher carboxylic acid anhydride has the formula (4) and at least one compound selected from the group of compounds represented by formula (5).
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 上記式(4)および(5)中、Rは単結合、炭素数1~20のアルキル、炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから独立して選択される基である。式(4)および式(5)のそれぞれにおいて、Rは独立して炭素または窒素である。 In the above formulas (4) and (5), R 2 is independently selected from a single bond, alkyl having 1 to 20 carbons, cycloalkyl having 4 to 8 carbons, aryl and arylalkyl having 7 to 20 carbons Group. In each of Formula (4) and Formula (5), R 3 is independently carbon or nitrogen.
 本発明の第6の態様に係る放熱部材用組成物は、上記本発明の第1の態様または第2の態様に係る放熱部材用組成物において、前記2官能以上のカルボン酸無水物が、式(6)で表される化合物の群から選ばれる少なくとも1種の化合物である。 The composition for heat dissipation member according to the sixth aspect of the present invention is the composition for heat dissipation member according to the first aspect or the second aspect of the present invention, wherein the bifunctional or higher carboxylic acid anhydride has the formula It is at least one compound selected from the group of compounds represented by (6).
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
 上記式(6)中、RおよびRは、炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから独立して選択される基である。式(6)において、nは独立して1~4である。 In the above formula (6), R 4 and R 5 are groups independently selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms. In formula (6), n is independently 1 to 4.
 本発明の第7の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第6の態様のいずれか1に係る放熱部材用組成物において、前記第1の無機フィラーと前記第2の無機フィラーが、窒化物、金属酸化物、珪酸塩化合物、または炭素材料である。
 このように構成すると、放熱部材は、無機フィラーとして、より好ましい化合物を含有することができる。
The composition for heat dissipation member according to the seventh aspect of the present invention is the composition for heat dissipation member according to any one of the first aspect to the sixth aspect of the present invention, which comprises: The second inorganic filler is a nitride, a metal oxide, a silicate compound, or a carbon material.
If comprised in this way, a thermal radiation member can contain a more preferable compound as an inorganic filler.
 本発明の第8の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第7の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラーと前記第2の無機フィラーが、窒化ホウ素、窒化アルミニウム、炭化ホウ素、窒化ホウ素炭素、黒鉛、炭素繊維、カーボンナノチューブ、アルミナおよびコーディエライトから選ばれる少なくとも一つである。
 このように構成すると、熱伝導率が高く、熱膨張率が非常に小さいかまたは負である放熱部材が得られる。
The composition for heat dissipation member according to the eighth aspect of the present invention is the composition for heat dissipation member according to any one of the first aspect to the seventh aspect of the present invention, wherein the first inorganic filler And the second inorganic filler is at least one selected from boron nitride, aluminum nitride, boron carbide, boron carbon nitride, graphite, carbon fiber, carbon nanotube, alumina and cordierite.
With this configuration, it is possible to obtain a heat dissipating member having a high thermal conductivity and a very small or negative coefficient of thermal expansion.
 本発明の第9の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第8の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラーおよび前記第2の無機フィラーと異なる熱膨張率を持つ第3の無機フィラーをさらに含む。
 このように構成すると、前記第1の無機フィラーと前記第2の無機フィラーが2次元の板状または1次元の線状である場合、それらだけを複合化させると、複合化した放熱部材用組成物の物性も大きな異方性が生じる。第3の無機フィラーを加えることにより、第1、第2の無機フィラーの配向性が緩和し、異方性が少なくなる利点がある。さらに、第1、第2の無機フィラーの熱膨張率が非常に小さいか負であるとき、熱膨張率が正の第3の無機フィラーを加えることにより、その混合比率によって熱膨張率を負から正により精密に制御することが可能になる。第3の無機フィラーに使用する無機フィラーに制約はないが、熱伝導率が高い無機フィラーであることが好ましい。
The composition for a heat dissipation member according to a ninth aspect of the present invention is the composition for a heat dissipation member according to any one of the first to eighth aspects of the present invention, wherein the first inorganic filler And a third inorganic filler having a thermal expansion coefficient different from that of the second inorganic filler.
When configured in this way, when the first inorganic filler and the second inorganic filler are two-dimensional plate-like or one-dimensional linear, when they are compounded, the composition for the heat dissipation member is compounded. The physical properties of matter also produce large anisotropy. By adding the third inorganic filler, there is an advantage that the orientation of the first and second inorganic fillers is relaxed and the anisotropy is reduced. Furthermore, when the thermal expansion coefficient of the first and second inorganic fillers is very small or negative, by adding the third inorganic filler having a positive thermal expansion coefficient, the thermal expansion coefficient is made negative by the mixing ratio. Positive control makes it possible to control precisely. Although there is no restriction | limiting in the inorganic filler used for a 3rd inorganic filler, It is preferable that it is an inorganic filler with high heat conductivity.
 本発明の第10の態様に係る放熱部材用組成物は、上記本発明の第1の態様~第9の態様のいずれか1の態様に係る放熱部材用組成物において、前記第1の無機フィラーおよび前記第2の無機フィラーに結合していない、重合性化合物または高分子化合物をさらに含む。
 このように構成すると、第1、第2の無機フィラーを直接接続して硬化させた放熱部材では、放熱部材の熱伝導率を向上させるためにフィラーの粒径を大きくするにつれて、それにあいまって空隙率が高くなる。その空隙を結合していない化合物で満たすことにより、放熱部材の熱伝導率や水蒸気遮断性能などを向上させることができる。
The composition for heat dissipation member according to the tenth aspect of the present invention is the composition for heat dissipation member according to any one of the first to ninth aspects of the present invention, wherein the first inorganic filler And a polymerizable compound or a macromolecular compound not bound to the second inorganic filler.
According to this structure, in the heat dissipating member in which the first and second inorganic fillers are directly connected and cured, as the particle diameter of the filler is increased in order to improve the thermal conductivity of the heat dissipating member, the air gap is generated. The rate goes up. By filling the void with a compound that is not bonded, it is possible to improve the thermal conductivity and the water vapor blocking performance of the heat dissipation member.
 本発明の第11の態様に係る放熱部材は、上記本発明の第1の態様~第10の態様のいずれか1の態様に係る放熱部材用組成物において、放熱部材用組成物が硬化した、放熱部材である。
 このように構成すると、放熱部材は、無機フィラー間に結合を有し、この結合が通常の樹脂のように分子振動や相変化を起こさないため熱膨張の直線性が高く、さらに高い熱伝導性を有することができる。
A heat dissipation member according to an eleventh aspect of the present invention is the composition according to any one of the first to tenth aspects of the present invention, wherein the heat dissipation member composition is cured. It is a heat dissipation member.
In such a configuration, the heat dissipation member has a bond between the inorganic fillers, and this bond does not cause molecular vibration or phase change as in ordinary resins, so that the thermal expansion has high linearity and further high thermal conductivity. You can have
 本発明の第12の態様に係る電子機器は、上記本発明の第11の態様に係る放熱部材において、放熱部材と、発熱部を有する電子デバイスとを備え、前記放熱部材が前記発熱部に接触するように前記電子デバイスに配置された、電子機器である。
 このように構成すると、放熱部材が、耐熱性がよく熱膨張率を高温まで制御できるため、電子機器に生じ得る熱歪を抑制することができる。
An electronic device according to a twelfth aspect of the present invention is the heat dissipation member according to the eleventh aspect of the present invention, comprising: a heat dissipation member; and an electronic device having a heat generation portion, the heat dissipation member contacting the heat generation portion An electronic device, which is disposed in the electronic device.
According to this structure, the heat dissipation member has high heat resistance and can control the thermal expansion coefficient to a high temperature, so that the thermal distortion that may occur in the electronic device can be suppressed.
 本発明の第13の態様に係る放熱部材用組成物の製造方法は、第1の無機フィラーを、第1のシランカップリング剤の一端と結合させる工程と、第2の無機フィラーを、第2のシランカップリング剤の一端と結合させる工程とを備え、さらに、前記第1のシランカップリング剤の他端と前記第2のシランカップリング剤の他端をそれぞれ2官能以上のカルボン酸無水物に結合させる工程を備える、放熱部材用組成物の製造方法である。
 このように構成すると、無機フィラー同士がシランカップリング剤とカルボン酸無水物で結合した放熱部材が製造できる。
The method for producing a composition for heat dissipation member according to a thirteenth aspect of the present invention comprises the steps of: bonding a first inorganic filler to one end of a first silane coupling agent; And bonding the other end of the first silane coupling agent and the other end of the second silane coupling agent with each other. A process for producing a heat sink composition, comprising the steps of:
According to this structure, it is possible to manufacture a heat dissipating member in which the inorganic fillers are bonded to the silane coupling agent by a carboxylic acid anhydride.
 本発明の放熱部材用組成物から形成された放熱部材は、極めて高い熱伝導性と耐熱性とを同時に有する。さらに、熱膨張率の制御性、化学的安定性、硬度および機械的強度などの優れた特性を有する。当該放熱部材は、例えば、放熱基板、放熱板(面状ヒートシンク)、放熱シート、放熱塗膜、放熱接着剤などに適している。 The heat dissipation member formed from the composition for heat dissipation member of the present invention simultaneously has extremely high thermal conductivity and heat resistance. Furthermore, they have excellent properties such as controllability of thermal expansion, chemical stability, hardness and mechanical strength. The heat dissipating member is suitable for, for example, a heat dissipating substrate, a heat dissipating plate (planar heat sink), a heat dissipating sheet, a heat dissipating coating, a heat dissipating adhesive, and the like.
本発明の放熱部材において、無機フィラー同士の結合を窒化ホウ素を例として示す概念図である。In the heat radiating member of this invention, it is a conceptual diagram which shows the coupling | bonding of inorganic fillers as an example of boron nitride. 放熱部材用組成物の硬化処理により、カルボン酸無水物21の2つの端部が、第1のシランカップリング剤11と第2のシランカップリング剤12と結合することを示す概念図である。FIG. 7 is a conceptual view showing that two ends of the carboxylic acid anhydride 21 are combined with the first silane coupling agent 11 and the second silane coupling agent 12 by the curing treatment of the composition for heat dissipation member. 放熱部材用組成物の硬化処理により、第1のシランカップリング剤11に結合したカルボン酸無水物21の他端が、第2のシランカップリング剤12の他端と結合することを示す概念図である。Conceptual view showing that the other end of the carboxylic acid anhydride 21 bonded to the first silane coupling agent 11 is bonded to the other end of the second silane coupling agent 12 by the curing treatment of the composition for heat dissipation member It is. 実施例1の熱機械分析装置による測定結果を示すグラフである。5 is a graph showing measurement results by the thermomechanical analyzer of Example 1. FIG. 実施例2の熱機械分析装置による測定結果を示すグラフである。7 is a graph showing measurement results by the thermomechanical analyzer of Example 2. FIG. 実施例4の熱機械分析装置による測定結果を示すグラフである。15 is a graph showing the measurement results by the thermomechanical analyzer of Example 4. 比較例1の熱機械分析装置による測定結果を示すグラフである。It is a graph which shows the measurement result by the thermomechanical analyzer of the comparative example 1. FIG.
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same or similar reference numerals, and redundant description will be omitted. Further, the present invention is not limited to the following embodiments.
 本発明で用いる用語について説明する。式(1)で表わされる化合物を化合物(1)と表記することがある。他の式で表される化合物についても同様に簡略化して称することがある。「任意のAはBまたはCで置き換えられてもよい」という表現は、少なくとも1つのAがBで置き換えられる場合および少なくとも1つのAがCで置き換えられる場合に加えて、少なくとも1つのAがBで置き換えられると同時に、その他のAの少なくとも1つがCで置き換えられる場合があることを意味する。実施例においては、電子天秤の表示データを質量単位であるg(グラム)を用いて示した。重量%や重量比はこのような数値に基づくデータである。 The terms used in the present invention will be described. The compound represented by Formula (1) may be described as a compound (1). The compounds represented by other formulas may be similarly simplified and referred to. The expression “any A may be replaced by B or C” means that at least one A is B, in addition to the case where at least one A is replaced by B and the at least one A is replaced by C. Means that at least one other A may be replaced by C at the same time. In the examples, the display data of the electronic balance is shown using g (gram) which is a mass unit. Weight percent and weight ratio are data based on such numerical values.
[放熱部材用組成物]
 本発明の放熱部材用組成物は、硬化させることにより、無機フィラー同士をシランカップリング剤および2官能以上のカルボン酸無水物で直接結合させて放熱部材を形成できる組成物である。図1は無機フィラーとして窒化ホウ素を用いた場合の例である。窒化ホウ素(h-BN)をシランカップリング剤で処理すると、窒化ホウ素は粒子の平面に反応基がないため、その周囲にのみ、シランカップリング剤が結合する。シランカップリング剤で処理された窒化ホウ素は、2官能以上のカルボン酸無水物との結合を形成できる。したがって、窒化ホウ素に結合したシランカップリング剤の他端と、窒化ホウ素に結合したシランカップリング剤にさらに結合したカルボン酸無水物の他端とを結合させることにより(図2参照)、窒化ホウ素同士を図1のように互いに結合する。
 このように、無機フィラー同士をシランカップリング剤およびカルボン酸無水物で結合させることにより、直接的にフォノンを伝播することができるので、硬化後の放熱部材は極めて高い熱伝導を有し、無機成分の熱膨張率を直接反映させた複合材の作製が可能になる。
[Composition for heat dissipation member]
The composition for heat dissipation members of the present invention is a composition capable of forming heat dissipation members by directly bonding inorganic fillers with a silane coupling agent and a bifunctional or higher functional carboxylic acid anhydride by curing. FIG. 1 shows an example in which boron nitride is used as the inorganic filler. When boron nitride (h-BN) is treated with a silane coupling agent, the silane coupling agent is bonded only around the boron nitride because there is no reactive group in the plane of the particle. Boron nitride treated with a silane coupling agent can form a bond with a bifunctional or higher functional carboxylic acid anhydride. Thus, by combining the other end of the silane coupling agent bonded to boron nitride with the other end of the carboxylic acid anhydride further bonded to the silane coupling agent bonded to boron nitride (see FIG. 2), boron nitride They are mutually connected as shown in FIG.
As described above, since phonons can be directly propagated by bonding the inorganic fillers with a silane coupling agent and a carboxylic acid anhydride, the heat-radiating member after curing has extremely high thermal conductivity, and inorganic It is possible to produce a composite material that directly reflects the coefficient of thermal expansion of the components.
 本発明の第1の実施の形態に係る放熱部材用組成物は、例えば図2に示すように、第1のシランカップリング剤11の一端と結合した熱伝導性の第1の無機フィラー1と、シランカップリング剤12の一端と結合した熱伝導性の第2の無機フィラー2とを含む。図2に示すように、放熱部材用組成物を硬化させると、第1のシランカップリング剤11の他端が、カルボン酸無水物21の一端と結合し、第2のシランカップリング剤12の他端が、カルボン酸無水物21の他端と結合する。
 また、例えば図3に示すように、第1のシランカップリング剤11の他端には、カルボン酸無水物21の一端が結合している。しかし、第2のシランカップリング剤12の他端には、カルボン酸無水物21の他端が結合していない。図3に示すように、放熱部材用組成物を硬化させると、第2のシランカップリング剤12の他端が、カルボン酸無水物21の他端と結合する。
 このようにして、無機フィラー間の結合が形成される。なお、このような無機フィラー間の結合を実現することが本発明では重要であり、シランカップリング剤を無機フィラーに結合させる前に、あらかじめシランカップリング剤と2官能以上のカルボン酸無水物とを有機合成技術を用いて反応させておいてもよい。
The composition for a heat dissipation member according to the first embodiment of the present invention is, for example, as shown in FIG. 2, a thermally conductive first inorganic filler 1 combined with one end of a first silane coupling agent 11 And a thermally conductive second inorganic filler 2 bonded to one end of the silane coupling agent 12. As shown in FIG. 2, when the composition for heat dissipation member is cured, the other end of the first silane coupling agent 11 is bonded to one end of the carboxylic acid anhydride 21 to form the second silane coupling agent 12. The other end bonds with the other end of the carboxylic acid anhydride 21.
For example, as shown in FIG. 3, one end of the carboxylic anhydride 21 is bonded to the other end of the first silane coupling agent 11. However, the other end of the carboxylic acid anhydride 21 is not bonded to the other end of the second silane coupling agent 12. As shown in FIG. 3, when the composition for heat dissipation member is cured, the other end of the second silane coupling agent 12 is bonded to the other end of the carboxylic acid anhydride 21.
In this way, bonds between the inorganic fillers are formed. In the present invention, it is important in the present invention to realize such bonding between inorganic fillers, and before bonding the silane coupling agent to the inorganic filler, the silane coupling agent and the bifunctional or higher carboxylic acid anhydride are previously prepared. May be reacted using organic synthesis techniques.
<2官能以上のカルボン酸無水物>
 2官能以上のカルボン酸無水物は、無水フタル酸、無水コハク酸、無水マレイン酸、無水酢酸、無水プロピオン酸、または無水安息香酸を有するカルボン酸無水物の少なくとも1つである。
<Bifunctional or higher carboxylic acid anhydride>
The bifunctional or higher carboxylic acid anhydride is at least one of phthalic acid anhydride, succinic acid anhydride, maleic acid anhydride, acetic acid anhydride, propionic acid anhydride, or a carboxylic acid anhydride having benzoic acid anhydride.
 このような構造のカルボン酸無水物の具体例として、化合物(1)~化合物(6)として示すことができる。 Specific examples of the carboxylic acid anhydride having such a structure can be shown as Compound (1) to Compound (6).
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
 式(1)、式(2)および式(3)において、Rは単結合または炭素数1~20のアルキル、炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから独立して選ばれる基である。式(1)、式(2)および式(3)のそれぞれにおいて、このアルキルの好ましい炭素数は1~10である。さらに好ましいRは、直線的なメソゲン(例えば液晶性化合物)である。 In the formulas (1), (2) and (3), R 1 is a single bond or alkyl having 1 to 20 carbon atoms, cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms It is a group independently selected. In each of Formula (1), Formula (2) and Formula (3), the preferred carbon number of this alkyl is 1 to 10. More preferable R 1 is a linear mesogen (eg, liquid crystal compound).
 式(4)、および式(5)において、Rは単結合または炭素数1~20のアルキル、炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから独立して選ばれる基である。式(4)および式(5)のそれぞれにおいて、このアルキルの好ましい炭素数は1~10である。Rは独立して炭素または窒素である。さらに好ましいRは、直線的なメソゲン(例えば液晶性化合物)である。 In the formulas (4) and (5), R 2 is independently selected from a single bond or alkyl having 1 to 20 carbon atoms, cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms Group. In each of Formula (4) and Formula (5), the preferred carbon number of this alkyl is 1 to 10. R 3 is independently carbon or nitrogen. More preferred R 2 is a linear mesogen (eg, liquid crystal compound).
 式(6)において、RおよびRは炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから選ばれる基であり独立していてもよい。式(6)のそれぞれにおいて、このアルキルの好ましい炭素数は1~10である。nは独立して1~4の整数である。 In the formula (6), R 4 and R 5 are groups selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent. In each of the formulas (6), the preferred carbon number of this alkyl is 1 to 10. n is independently an integer of 1 to 4;
・無水フタル酸
 好ましい式(1)の例としては、以下に示す化合物(1-1)~(1-4)が挙げられる。mは1~20の整数であり、好ましくは1~10の整数、より好ましくは4~8の整数である。nは0~6の整数であり、好ましくは1~6の整数である。qは0~4の整数であり、好ましくは0~2の整数である。Rは炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから選ばれる基であり独立していてもよい。
-Phthalic anhydride Examples of preferred formula (1) include compounds (1-1) to (1-4) shown below. m is an integer of 1 to 20, preferably an integer of 1 to 10, more preferably an integer of 4 to 8. n is an integer of 0 to 6, and preferably an integer of 1 to 6. q is an integer of 0 to 4, preferably an integer of 0 to 2. R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
・無水コハク酸
 好ましい式(2)の例としては、以下に示す化合物(2-1)~(2-4)が挙げられる。mは1~20の整数であり、好ましくは1~10の整数、より好ましくは4~8の整数である。nは0~6の整数であり、好ましくは1~6の整数である。qは0~4の整数であり、好ましくは0~2の整数である。Rは炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから選ばれる基であり独立していてもよい。
Succinic Anhydride As a preferred example of the formula (2), the compounds (2-1) to (2-4) shown below can be mentioned. m is an integer of 1 to 20, preferably an integer of 1 to 10, more preferably an integer of 4 to 8. n is an integer of 0 to 6, and preferably an integer of 1 to 6. q is an integer of 0 to 4, preferably an integer of 0 to 2. R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
・無水マレイン酸
 好ましい式(3)の例としては、以下に示す化合物(3-1)~(3-4)が挙げられる。mは1~20の整数であり、好ましくは1~10の整数であり、より好ましくは4~8の整数である。nは0~6の整数であり、好ましくは1~6の整数である。qは0~4の整数であり、好ましくは0~2の整数である。Rは炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから選ばれる基であり独立していてもよい。
Maleic anhydride Examples of preferred formula (3) include compounds (3-1) to (3-4) shown below. m is an integer of 1 to 20, preferably an integer of 1 to 10, and more preferably an integer of 4 to 8. n is an integer of 0 to 6, and preferably an integer of 1 to 6. q is an integer of 0 to 4, preferably an integer of 0 to 2. R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
・無水酢酸
 好ましい式(4)の例としては、以下に示す化合物(4-1)~(4-8)が挙げられる。mは1~20の整数であり、好ましくは1~10の整数であり、より好ましくは4~8の整数である。nは0~6の整数であり、好ましくは1~6の整数である。qは0~4の整数であり、好ましくは0~2の整数である。Rは炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから選ばれる基であり独立していてもよい。
Acetic anhydride: Examples of preferred formula (4) include compounds (4-1) to (4-8) shown below. m is an integer of 1 to 20, preferably an integer of 1 to 10, and more preferably an integer of 4 to 8. n is an integer of 0 to 6, and preferably an integer of 1 to 6. q is an integer of 0 to 4, preferably an integer of 0 to 2. R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
・無水プロピオン酸
 好ましい式(5)の例としては、以下に示す化合物(5-1)~(5-8)が挙げられる。mは1~20の整数であり、好ましくは1~10の整数であり、より好ましくは4~8の整数である。nは0~6の整数であり、好ましくは1~6の整数である。qは0~4の整数であり、好ましくは0~2の整数である。Rは炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから選ばれる基であり独立していてもよい。
Propionic Acid Anhydride Examples of preferable formula (5) include compounds (5-1) to (5-8) shown below. m is an integer of 1 to 20, preferably an integer of 1 to 10, and more preferably an integer of 4 to 8. n is an integer of 0 to 6, and preferably an integer of 1 to 6. q is an integer of 0 to 4, preferably an integer of 0 to 2. R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
・無水安息香酸
 好ましい式(6)の例としては、以下に示す化合物(6-1)~(6-6)が挙げられる。
· Benzoic anhydride Examples of preferred formula (6) include compounds (6-1) to (6-6) shown below.
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
・その他のカルボン酸無水物
 好ましい例としては、以下に示す化合物(7-1)~(7-9)が挙げられる。mは0~2の整数である。nは0~6の整数であり、好ましくは0~4の整数であり、より好ましくは0~2の整数である。Rは炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから選ばれる基であり独立していてもよい。
Other Carboxylic Anhydrides Preferred examples include the compounds (7-1) to (7-9) shown below. m is an integer of 0 to 2; n is an integer of 0 to 6, preferably an integer of 0 to 4, and more preferably an integer of 0 to 2. R 6 is a group selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms, and may be independent.
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000014
<無機フィラー>
 第1の無機フィラー、および第2の無機フィラーとしては、窒化物、炭化物、炭素材料、金属酸化物、ケイ酸塩鉱物等を挙げることができる。第1の無機フィラーおよび第2の無機フィラーは、同一であってもよく異なったものでもよい。
 第1の無機フィラー、第2の無機フィラーとしては、高熱伝導性で熱膨張率が非常に小さいか負である無機フィラーが利用でき、具体的には、窒化ホウ素、炭化ホウ素、窒化ホウ素炭素、黒鉛、炭素繊維、カーボンナノチューブを挙げることができる。または、アルミナ、シリカ、酸化マグネシウム、酸化亜鉛、酸化鉄、フェライト、ムライト、コーディエライト、窒化珪素、および炭化珪素を挙げることができる。
 または、第1または第2の無機フィラーのどちらか一方に下記の熱伝導率が高く熱膨張率が正である無機フィラーを用いてもよい。
 第3のフィラーとしては、熱伝導率が高い、熱膨張率が正、または第1、第2の無機フィラーよりもサイズが小さい等である無機フィラーが利用でき、具体的には、アルミナ、シリカ、炭化珪素、窒化アルミニウム、窒化珪素、ダイアモンド、カーボンナノチューブ、黒鉛、グラフェン、珪素、ベリリア、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、酸化珪素、酸化銅、酸化チタン、酸化セリウム、酸化イットリウム、酸化錫、酸化ホルミニウム、酸化ビスマス、酸化コバルト、酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、金、銀、銅、白金、鉄、錫、鉛、ニッケル、アルミニウム、マグネシウム、タングステン、モリブデン、ステンレスなどの無機充填材および金属充填材を挙げることができる。
 カルボン酸無水物の構造はこれら無機フィラーの間を効率よく直接結合できる形状及び長さを持っていることが好ましい。無機フィラーの種類、形状、大きさ、添加量などは、目的に応じて適宜選択できる。得られる放熱部材が絶縁性を必要とする場合、所望の絶縁性が保たれれば導電性を有する無機フィラーであっても構わない。無機フィラーの形状としては、板状、球状、無定形、繊維状、棒状、筒状などが挙げられる。
<Inorganic filler>
Examples of the first inorganic filler and the second inorganic filler include nitrides, carbides, carbon materials, metal oxides, and silicate minerals. The first inorganic filler and the second inorganic filler may be the same or different.
As the first inorganic filler and the second inorganic filler, inorganic fillers having high thermal conductivity and a very small or negative coefficient of thermal expansion can be used. Specifically, boron nitride, boron carbide, boron carbon nitride, Graphite, carbon fiber, carbon nanotube can be mentioned. Or, alumina, silica, magnesium oxide, zinc oxide, iron oxide, ferrite, mullite, cordierite, silicon nitride, and silicon carbide can be mentioned.
Alternatively, an inorganic filler having a high thermal conductivity and a positive coefficient of thermal expansion described below may be used for either the first or second inorganic filler.
As the third filler, an inorganic filler having a high thermal conductivity, a positive coefficient of thermal expansion, or a size smaller than the first and second inorganic fillers can be used. Specifically, alumina, silica, etc. , Silicon carbide, aluminum nitride, silicon nitride, diamond, carbon nanotube, graphite, graphene, silicon, beryllia, magnesium oxide, aluminum oxide, zinc oxide, silicon oxide, copper oxide, copper oxide, titanium oxide, cerium oxide, yttrium oxide, tin oxide, Inorganic fillers such as holmium oxide, bismuth oxide, cobalt oxide, calcium oxide, magnesium hydroxide, aluminum hydroxide, gold, silver, copper, platinum, iron, tin, lead, nickel, aluminum, magnesium, tungsten, molybdenum and stainless steel And metal fillers.
The structure of the carboxylic acid anhydride preferably has a shape and a length capable of efficiently directly bonding between the inorganic fillers. The type, shape, size, addition amount, etc. of the inorganic filler can be appropriately selected according to the purpose. When the heat dissipating member to be obtained requires insulation, it may be an inorganic filler having conductivity as long as desired insulation is maintained. Examples of the shape of the inorganic filler include plate-like, spherical, amorphous, fibrous, rod-like and cylindrical.
 好ましくは、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素、黒鉛、炭素繊維、カーボンナノチューブである。特に六方晶系の窒化ホウ素(h-BN)や黒鉛が好ましい。窒化ホウ素、黒鉛は平面方向の熱伝導率が非常に高く、窒化ホウ素は誘電率も低く、絶縁性も高いため好ましい。例えば、板状結晶の窒化ホウ素を用いると、成型および硬化時に、原料のフローや圧力によって、板状構造が金型に沿って配向され易いため好ましい。 Preferred are boron nitride, aluminum nitride, silicon nitride, silicon carbide, graphite, carbon fibers, and carbon nanotubes. In particular, hexagonal boron nitride (h-BN) and graphite are preferable. Boron nitride and graphite are preferable because they have a very high thermal conductivity in the planar direction and boron nitride has a low dielectric constant and high insulation. For example, it is preferable to use plate-like crystal boron nitride because the plate-like structure is easily oriented along the mold due to the flow or pressure of the raw material at the time of molding and curing.
 無機フィラーの平均粒径は、0.1~200μmであることが好ましい。より好ましくは、1~100μmである。0.1μm以上であると熱伝導率がよく、200μm以下であると充填率を上げることができる。
 なお、本明細書において平均粒径とは、レーザー回折・散乱法による粒度分布測定に基づく。すなわち、フランホーファー回折理論およびミーの散乱理論による解析を利用して、湿式法により、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量(体積基準)となる径をメジアン径とした。
 無機フィラー、シランカップリング剤およびカルボン酸無水物の割合は、使用する無機フィラーと結合させるシランカップリング剤の量に依存する。第1、第2の無機フィラーとして用いられる化合物(例えば窒化ホウ素)は、前述のように表面に反応基がなく、側面にのみ反応基が存在する。その少ない反応基にできるだけ多くのシランカップリング剤を結合させ、その反応基の数と同数か少し多い反応基の数を有するカルボン酸無水物を結合させることが好ましい。無機フィラーへのシランカップリング剤の反応量は、主に無機フィラーの大きさや使用するシランカップリング剤の反応性により変化する。例えば、無機フィラーが大きくなるほど、無機フィラーの側面の面積比が減少するので修飾量は少ない。できるだけ多くのシランカップリング剤と無機フィラーとを反応させることが好ましいが、無機フィラーの粒子を小さくすると生成物の熱伝導率が低くなるので、バランスを取ることが好ましい。
 硬化物である放熱部材中のシランカップリング剤およびカルボン酸無水物と、無機フィラーとの体積比率は、5:95~30:70の範囲になることが好ましく、さらに好ましくは10:90~25:75である。
The average particle size of the inorganic filler is preferably 0.1 to 200 μm. More preferably, it is 1 to 100 μm. A thermal conductivity is good in it being 0.1 micrometer or more, and a filling factor can be raised as it is 200 micrometers or less.
In the present specification, the average particle diameter is based on particle size distribution measurement by a laser diffraction / scattering method. That is, when the powder is divided into two from a certain particle diameter by a wet method using analysis based on the franhofer diffraction theory and Mie's scattering theory, the diameter at which the large side and the small side become equivalent (volume based) As the median diameter.
The proportions of the inorganic filler, the silane coupling agent and the carboxylic anhydride depend on the amount of silane coupling agent to be combined with the inorganic filler used. The compound (for example, boron nitride) used as a 1st, 2nd inorganic filler does not have a reactive group on the surface as mentioned above, and a reactive group exists only on the side. It is preferable to bind as many silane coupling agents as possible to the few reactive groups, and to bind a carboxylic acid anhydride having the same number or a few more reactive groups as the number of reactive groups. The reaction amount of the silane coupling agent to the inorganic filler mainly changes depending on the size of the inorganic filler and the reactivity of the silane coupling agent used. For example, as the size of the inorganic filler increases, the area ratio of the side surfaces of the inorganic filler decreases, so the amount of modification is small. It is preferable to react as many silane coupling agents as possible with the inorganic filler, but it is preferable to balance the smaller inorganic filler particles, as the thermal conductivity of the product is reduced.
The volume ratio of the silane coupling agent and carboxylic acid anhydride in the heat radiation member which is a cured product to the inorganic filler is preferably in the range of 5:95 to 30:70, more preferably 10:90 to 25. : 75.
<シランカップリング剤>
 無機フィラーに結合させるシランカップリング剤は、2官能以上のカルボン酸無水物と反応することが好ましいことから、アミン系反応基を末端に持つシランカップリング剤が好ましい。例えば、JNC(株)製では、サイラエース(登録商標)S310、S320、S330、S360、信越化学工業(株)製では、KBM903、KBE903などが挙げられる。
 第1のシランカップリング剤と第2のシランカップリング剤は、同一であっても異なっていてもよい。
<Silane coupling agent>
The silane coupling agent to be bonded to the inorganic filler is preferably a silane coupling agent having an amine reactive group at the end, since it is preferable to react with a bifunctional or higher functional carboxylic acid anhydride. For example, CYRA ACE (registered trademark) S310, S320, S330, S360 manufactured by JNC Co., Ltd., and KBM 903 and KBE 903 manufactured by Shin-Etsu Chemical Co., Ltd. may be mentioned.
The first silane coupling agent and the second silane coupling agent may be the same or different.
 第1の無機フィラーは、シランカップリング剤で処理した後、さらに2官能以上のカルボン酸無水物で表面修飾した後に用いることができる。例えば、シランカップリング剤で処理された無機フィラー(シランカップリング剤と結合した無機フィラー)の、当該シランカップリング剤にさらに2官能以上のカルボン酸無水物を結合させることにより、無機フィラーをカルボン酸無水物で表面修飾する。カルボン酸無水物で表面修飾された第1の無機フィラーは、図2に示すように、カルボン酸無水物およびシランカップリング剤で第2の無機フィラーとの結合を形成でき、この結合が熱伝導に著しく寄与する。
 なお、第1の無機フィラーは、あらかじめ2官能以上のカルボン酸無水物と結合させたシランカップリング剤でカップリング処理したものを用いてもよい。
 2官能以上のカルボン酸無水物は、上記式(1)、(2)で示す2官能以上のカルボン酸無水物が好ましい。しかし、それ以外のカルボン酸無水物であってもよい。カルボン酸無水物が多環である場合、耐熱性が高くなり、カルボン酸無水物が直線性の高い場合、無機フィラー間の熱による伸びや揺らぎが少なく、さらに熱のフォノン伝導を効率よく伝えることができるため好ましい。なお、カルボン酸無水物等による表面修飾は、多ければ多いほど結合が増えるため好ましい。
The first inorganic filler can be used after being treated with a silane coupling agent and further surface-modified with a bifunctional or higher functional carboxylic acid anhydride. For example, of an inorganic filler treated with a silane coupling agent (inorganic filler bound to a silane coupling agent), the inorganic coupling agent is a carboxylic acid by further binding a bifunctional or higher functional carboxylic acid anhydride to the silane coupling agent. It is surface modified with acid anhydride. The first inorganic filler surface-modified with carboxylic acid anhydride can form a bond with the second inorganic filler with the carboxylic acid anhydride and the silane coupling agent, as shown in FIG. Contribute significantly to
The first inorganic filler may be one that has been subjected to coupling treatment with a silane coupling agent that has been previously bonded to a bifunctional or higher functional carboxylic acid anhydride.
The bifunctional or higher carboxylic acid anhydride is preferably a bifunctional or higher carboxylic acid anhydride represented by the above formulas (1) and (2). However, other carboxylic acid anhydrides may be used. When the carboxylic acid anhydride is a polycycle, heat resistance is high, and when the carboxylic acid anhydride is high in linearity, there is little elongation or fluctuation due to heat between the inorganic fillers, and the heat phonon conduction is efficiently transmitted. It is preferable because The surface modification with carboxylic acid anhydride or the like is preferable because the more the surface modification, the more the bonding.
<その他の成分>
 放熱部材用組成物は、さらに第1の無機フィラーおよび第2の無機フィラーに結合していない、すなわち結合に寄与していない有機化合物(例えば重合性化合物または高分子化合物)を含んでいてもよく、重合開始剤や溶媒等を含んでいてもよい。
<Other ingredients>
The composition for heat dissipation member may further contain an organic compound (for example, a polymerizable compound or a polymer compound) not bound to the first inorganic filler and the second inorganic filler, that is, not contributing to the binding. , And may contain a polymerization initiator, a solvent, and the like.
<結合していない重合性化合物>
 放熱部材用組成物は、無機フィラーに結合していないカルボン酸無水物(この場合、必ずしも2官能以上でなくてもよい)を含有していてもよい。このようなカルボン酸無水物としては、無機フィラーに修飾している有機化合物の熱硬化を妨げず、加熱により蒸発やブリードアウトがないものが好ましい。または、無機フィラーに結合していない他の重合性化合物を含有していてもよい。この重合性化合物は、液晶性を有しない化合物と液晶性を有する化合物とに分類される。液晶性を有しない重合性化合物としては、ビニル誘導体、スチレン誘導体、(メタ)アクリル酸誘導体、ソルビン酸誘導体、フマル酸誘導体、イタコン酸誘導体、などが挙げられる。含有量は、まず結合していない化合物を含まない、放熱部材用組成物を作製し、その空隙率を測定して、その空隙率を埋められる量の化合物を添加することが好ましい。
<Polymerizable compound not bound>
The composition for heat dissipation members may contain a carboxylic acid anhydride (in this case, it may not necessarily be bifunctional or more) which is not bonded to the inorganic filler. As such a carboxylic acid anhydride, a compound which does not interfere with the thermal curing of the organic compound modified to the inorganic filler and which does not evaporate or bleed out by heating is preferable. Or you may contain the other polymeric compound which is not couple | bonded with the inorganic filler. The polymerizable compounds are classified into compounds having no liquid crystallinity and compounds having liquid crystallinity. Examples of the polymerizable compound having no liquid crystallinity include vinyl derivatives, styrene derivatives, (meth) acrylic acid derivatives, sorbic acid derivatives, fumaric acid derivatives and itaconic acid derivatives. It is preferable to prepare a composition for a heat-dissipation member which does not contain a compound which is not bonded first, to measure its porosity, and to add an amount of the compound capable of filling the porosity.
<結合していない高分子化合物>
 放熱部材用組成物は、無機フィラーに結合していない高分子化合物を構成要素としてもよい。このような高分子化合物としては、膜形成性および機械的強度を低下させない化合物が好ましい。この高分子化合物は、無機フィラー、シランカップリング剤、およびカルボン酸無水物と反応しない高分子化合物であればよく、例えばカルボン酸無水物がオキシラニル基でシランカップリング剤がアミノ基を持つ場合は、ポリオレフィン系樹脂、ポリビニル系樹脂、シリコーン樹脂、ワックスなどが挙げられる。含有量は、まず結合していない重合性化合物を含まない、放熱部材用組成物を作製し、その空隙率を測定して、その空隙率を埋められる量の高分子化合物を添加することが好ましい。
<Polymer compound not bound>
The composition for heat dissipation member may have a polymer compound not bound to the inorganic filler as a component. As such a high molecular compound, a compound which does not reduce film formability and mechanical strength is preferable. The polymer compound may be an inorganic filler, a silane coupling agent, and a polymer compound which does not react with the carboxylic acid anhydride. For example, when the carboxylic acid anhydride has an oxiranyl group and the silane coupling agent has an amino group, And polyolefin resins, polyvinyl resins, silicone resins, waxes and the like. It is preferable to first prepare a composition for a heat dissipation member which does not contain a polymerizable compound which is not bonded, measure its porosity, and add a polymer compound in an amount capable of filling the porosity. .
<非重合性の液晶性化合物>
 放熱部材用組成物は、重合性基を有しない液晶性化合物を含有していてもよい。このような非重合性の液晶性化合物の例は、液晶性化合物のデータベースであるリクリスト(LiqCryst, LCI Publisher GmbH, Hamburg, Germany)などに記載されている。非重合性の液晶性化合物を含有する該組成物を重合させることによって、例えば、化合物(1)(2)と液晶性化合物との複合材(composite materials)を得ることができる。このような複合材では、高分子網目中に非重合性の液晶性化合物が存在している。好ましくは、使用する温度領域で流動性がないような特性を持つ液晶性化合物である。無機フィラーを硬化させた後で、等方相を示す温度領域でその空隙に注入するような手法で複合化させてもよく、無機フィラーに予め空隙を埋めるように計算した分量の液晶性化合物を混合しておき、無機フィラー同士を重合させてもよい。
<Non-polymerizable liquid crystalline compound>
The composition for heat dissipation members may contain a liquid crystal compound having no polymerizable group. Examples of such non-polymerizable liquid crystalline compounds are described in Liquist (LiqCryst, LCI Publisher GmbH, Hamburg, Germany), which is a database of liquid crystalline compounds, and the like. For example, composite materials of the compound (1) (2) and the liquid crystal compound can be obtained by polymerizing the composition containing the non-polymerizable liquid crystal compound. In such a composite material, a nonpolymerizable liquid crystal compound is present in the polymer network. Preferably, it is a liquid crystal compound having such a property that it does not flow in the temperature range to be used. After curing the inorganic filler, the inorganic filler may be compounded by a method of injecting into the voids in a temperature range showing an isotropic phase, or the amount of the liquid crystal compound calculated to fill the voids in the inorganic filler in advance. After mixing, the inorganic fillers may be polymerized.
<溶媒>
 放熱部材用組成物は溶媒を含有してもよい。重合させる必要がある成分を該組成物中に含む場合、重合は溶媒中で行っても、無溶媒で行ってもよい。溶媒を含有する該組成物を基板上に、例えばスピンコート法などにより塗布した後、溶媒を除去してから光重合させてもよい。また、光硬化後適当な温度に加温して熱硬化により後処理を行ってもよい。
 好ましい溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テトラヒドロフラン、γ-ブチロラクトン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサン、メチルシクロヘキサン、シクロペンタノン、シクロヘキサノン、PGMEAなどが挙げられる。上記溶媒は1種単独で用いても、2種以上を混合して用いてもよい。
 なお、重合時の溶媒の使用割合を限定することにはあまり意味がなく、重合効率、溶媒コスト、エネルギーコストなどを考慮して、個々のケースごとに決定すればよい。
<Solvent>
The composition for heat dissipation members may contain a solvent. When the composition which needs to be polymerized is contained in the composition, the polymerization may be carried out in a solvent or in the absence of a solvent. The composition containing a solvent may be coated on a substrate by, for example, spin coating, and then the solvent may be removed and then photopolymerization may be performed. Further, after photocuring, post-treatment may be performed by heating to a suitable temperature and heat curing.
Preferred solvents include, for example, benzene, toluene, xylene, mesitylene, hexane, heptane, octane, nonane, decane, tetrahydrofuran, γ-butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide, cyclohexane, methylcyclohexane, cyclopentanone , Cyclohexanone, PGMEA and the like. The above solvents may be used singly or in combination of two or more.
There is no point in limiting the use ratio of the solvent at the time of polymerization, and it may be determined for each case in consideration of the polymerization efficiency, solvent cost, energy cost and the like.
<その他>
 放熱部材用組成物には、取扱いを容易にするために、安定剤を添加してもよい。このような安定剤としては、公知のものを制限なく使用でき、例えば、ハイドロキノン、4-エトキシフェノールおよび3,5-ジ-t-ブチル-4-ヒドロキシトルエン(BHT)などが挙げられる。
 さらに、放熱部材用組成物の粘度や色を調整するために添加剤(酸化物等)を添加してもよい。例えば、白色にするための酸化チタン、黒色にするためのカーボンブラック、粘度を調整するためのシリカの微粉末を挙げることができる。また、機械的強度をさらに増すために添加剤を添加してもよい。例えば、ガラスファイバー、カーボンファイバー、カーボンナノチューブなどの無機繊維やクロス、または高分子添加剤として、ポリビニルホルマール、ポリビニルブチラール、ポリエステル、ポリアミド、ポリイミドなどの繊維または長分子を挙げることができる。
<Others>
A stabilizer may be added to the composition for heat dissipation member in order to facilitate handling. As such a stabilizer, known ones can be used without limitation, and examples thereof include hydroquinone, 4-ethoxyphenol and 3,5-di-t-butyl-4-hydroxytoluene (BHT).
Furthermore, an additive (such as an oxide) may be added to adjust the viscosity and color of the composition for heat dissipation member. For example, fine powders of titanium oxide for making white, carbon black for making black, and fine powder of silica for adjusting viscosity can be mentioned. Also, additives may be added to further increase the mechanical strength. For example, inorganic fibers or cloths such as glass fibers, carbon fibers, carbon nanotubes or the like, or as polymer additives, fibers or long molecules such as polyvinyl formal, polyvinyl butyral, polyester, polyamide, polyimide and the like can be mentioned.
<製造方法>
 以下、放熱部材用組成物を製造する方法、および該組成物から放熱部材を製造する方法について具体的に説明する。
(1)カップリング処理を施す
 第2の無機フィラーにカップリング処理を施し、第2のシランカップリング剤の一端と第2の無機フィラーとを結合させることで、第2のシランカップリング剤の一端と結合した第2の無機フィラーとする。カップリング処理は、公知の方法を用いることができる。
 一例として、まず無機フィラーとシランカップリング剤を溶媒に加える。スターラー等を用いて撹拌したのち、乾燥する。溶媒乾燥後に、真空乾燥機等を用いて、真空条件下で加熱処理をする。この無機フィラーに溶媒を加えて、超音波処理により粉砕する。遠心分離機を用いてこの溶液を分離精製する。上澄みを捨てたのち、溶媒を加えて同様の操作を数回行う。オーブンを用いて精製後のカップリング処理を施した無機フィラーを乾燥させる。
(2)カルボン酸無水物で修飾する
 カップリング処理を施し、第1のシランカップリング剤の一端と結合した第1の無機フィラー(上記(1)で得られる第2のシランカップリング剤の一端と結合した第2の無機フィラーと同じであってもよく、異なっていてもよい)の、シランカップリング剤の他端に2官能以上のカルボン酸無水物を結合させる。このようにカルボン酸無水物で修飾し、第1のシランカップリング剤の一端と結合した第1の無機フィラーとする。
 一例として、カップリング処理された無機フィラーと2官能以上のカルボン酸無水物を、メノウ乳鉢等を用いて混合したのち、2軸ロール等を用いて混練する。その後、超音波処理および遠心分離によって分離精製する。
(3)混合する
 カルボン酸無水物で修飾し、第1のシランカップリング剤の一端と結合した第1の無機フィラーと第2のシランカップリング剤の一端と結合した第2の無機フィラーとを、例えば無機フィラーのみの重量が重量比で1:1になるように量り取り、メノウ乳鉢等で混合する。その後2軸ロール等を用いて混合し、放熱部材用組成物を得る。
 第1の無機フィラーと第2の無機フィラーの混合割合は、第1の無機フィラーと第2の無機フィラー間の結合を形成する結合基がそれぞれアミン:エポキシの場合、無機フィラーのみの重量は例えば、1:1~1:30であることが好ましく、より好ましくは1:3~1:20である。混合割合は、第1の無機フィラーと第2の無機フィラー間の結合を形成する末端の結合基の数により決定し、例えば2級アミンで有れば2個のオキシラニル基と反応できるため、オキシラニル基側に比べて少量でよく、オキシラニル基側は開環してしまっている可能性もありエポキシ当量から計算される量を多めに使用することが好ましい。
(4)放熱部材を製造する
 一例として、放熱部材用組成物を用いて、放熱部材としてのフィルムを製造する方法を説明する。放熱部材用組成物を、圧縮成形機を用いて加熱板中にはさみ、圧縮成形により配向・硬化成形する。さらに、オーブン等を用いて後硬化を行い、本発明の放熱部材を得る。なお、圧縮成形時の圧力は、50~200kgf/cmが好ましく、より好ましくは70~180kgf/cmである。硬化時の圧力は基本的には高い方が好ましい。しかし、金型内での流動性や、目的とする物性(どちら向きの熱伝導率を重視するかなど)によって適宜変更し、適切な圧力を加えることが好ましい。
<Manufacturing method>
Hereinafter, the method of manufacturing the composition for heat dissipation members, and the method of manufacturing a heat dissipation member from the composition will be specifically described.
(1) Performing a coupling process The second inorganic filler is subjected to a coupling process, and one end of the second silane coupling agent is bonded to the second inorganic filler to form a second silane coupling agent. Let it be a second inorganic filler bonded to one end. A well-known method can be used for a coupling process.
As an example, first, the inorganic filler and the silane coupling agent are added to the solvent. After stirring using a stirrer etc., it dries. After solvent drying, heat treatment is performed under vacuum conditions using a vacuum dryer or the like. A solvent is added to the inorganic filler, and the mixture is crushed by ultrasonication. The solution is separated and purified using a centrifuge. After discarding the supernatant, the solvent is added and the same operation is repeated several times. An oven is used to dry the purified inorganic filler that has been subjected to the coupling treatment.
(2) Modification with Carboxylic Anhydride A coupling treatment is applied, and the first inorganic filler bonded to one end of the first silane coupling agent (one end of the second silane coupling agent obtained in the above (1) The bifunctional or higher carboxylic acid anhydride is bonded to the other end of the silane coupling agent, which may be the same as or different from the second inorganic filler bonded to Thus, it is modified with a carboxylic acid anhydride to form a first inorganic filler bonded to one end of the first silane coupling agent.
As an example, after the coupling-treated inorganic filler and the bifunctional or higher functional carboxylic acid anhydride are mixed using an agate mortar or the like, they are kneaded using a biaxial roll or the like. It is then separated and purified by sonication and centrifugation.
(3) Mixing A first inorganic filler modified with a carboxylic acid anhydride and bonded to one end of a first silane coupling agent and a second inorganic filler bonded to one end of a second silane coupling agent For example, it measures so that the weight of only an inorganic filler may be 1: 1 by a weight ratio, and it mixes with an agate mortar etc. Thereafter, they are mixed using a biaxial roll or the like to obtain a composition for a heat radiating member.
The mixing ratio of the first inorganic filler and the second inorganic filler is, for example, when the bonding group forming the bond between the first inorganic filler and the second inorganic filler is each amine: epoxy, the weight of only the inorganic filler is, for example, And preferably 1: 1 to 1:30, more preferably 1: 3 to 1:20. The mixing ratio is determined by the number of terminal bonding groups that form a bond between the first inorganic filler and the second inorganic filler, and, for example, secondary amines can react with two oxiranyl groups, so The amount may be small compared to the base side, and the oxiranyl side may be open, and it is preferable to use a larger amount calculated from the epoxy equivalent.
(4) Manufacturing a Heat Dissipation Member As an example, a method of manufacturing a film as a heat dissipation member using a composition for a heat dissipation member will be described. The composition for heat dissipation member is sandwiched in a heating plate using a compression molding machine, and oriented and cured by compression molding. Furthermore, post curing is performed using an oven or the like to obtain the heat dissipation member of the present invention. The pressure at the time of compression molding is preferably 50 ~ 200kgf / cm 2, more preferably 70 ~ 180kgf / cm 2. Basically, the pressure at curing is preferably high. However, it is preferable to appropriately change the pressure in accordance with the fluidity in the mold and the desired physical properties (such as which direction of thermal conductivity is to be emphasized).
 以下、溶媒を含有する放熱部材用組成物を用いて、放熱部材としてのフィルムを製造する方法について具体的に説明する。
 まず、基板上に該組成物を塗布し、溶媒を乾燥除去して膜厚の均一な塗膜層を形成する。塗布方法としては、例えば、スピンコート、ロールコート、カテンコート、フローコート、プリント、マイクログラビアコート、グラビアコート、ワイヤーバーコート、ディップコート、スプレーコート、メニスカスコート法などが挙げられる。
 溶媒の乾燥除去は、例えば、室温での風乾、ホットプレートでの乾燥、乾燥炉での乾燥、温風や熱風の吹き付けなどにより行うことができる。溶媒除去の条件は特に限定されず、溶媒がおおむね除去され、塗膜層の流動性がなくなるまで乾燥すればよい。
Hereinafter, the method of manufacturing the film as a heat radiating member using the composition for heat radiating members containing a solvent is demonstrated concretely.
First, the composition is applied onto a substrate, and the solvent is removed by drying to form a coating layer having a uniform film thickness. Examples of the coating method include spin coating, roll coating, curtain coating, flow coating, printing, microgravure coating, gravure coating, wire bar coating, wire coating, dip coating, spray coating, and meniscus coating.
The solvent can be dried and removed by, for example, air drying at room temperature, drying on a hot plate, drying in a drying oven, spraying of warm air or hot air, or the like. The conditions for solvent removal are not particularly limited, and the solvent may be generally removed and the film may be dried until the fluidity of the coating layer is lost.
 上記基板としては、例えば、銅、アルミニウム、鉄、などの金属基板;シリコン、窒化ケイ素、窒化ガリウム、酸化亜鉛などの無機半導体基板;アルカリガラス、ホウ珪酸ガラス、フリントガラスなどのガラス基板、アルミナ、窒化アルミニウムなどの無機絶縁基板;ポリイミド、ポリアミドイミド、ポリアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリケトンサルファイド、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリカーボネート、ポリアリレート、アクリル樹脂、ポリビニルアルコール、ポリプロピレン、セルロース、トリアセチルセルロースもしくはその部分鹸化物、エポキシ樹脂、フェノール樹脂、ノルボルネン樹脂などのプラスティックフィルム基板などが挙げられる。 Examples of the substrate include metal substrates such as copper, aluminum and iron; inorganic semiconductor substrates such as silicon, silicon nitride, gallium nitride and zinc oxide; glass substrates such as alkali glass, borosilicate glass and flint glass, alumina, Inorganic insulating substrates such as aluminum nitride; polyimides, polyamideimides, polyamides, polyetherimides, polyetheretherketones, polyetherketones, polyketone sulfides, polyethersulfones, polysulfones, polysulfones, polyphenylene sulfides, polyphenylene oxides, polyethylene terephthalates, polybutylene terephthalates , Polyethylene naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulose, Triacetyl cellulose or partially saponified product thereof, epoxy resins, phenolic resins, and a plastic film substrate such as norbornene resins.
 上記フィルム基板は、一軸延伸フィルムでも、二軸延伸フィルムであってもよい。上記フィルム基板は、事前に鹸化処理、コロナ処理、プラズマ処理などの表面処理を施してもよい。なお、これらのフィルム基板上には、上記放熱部材用組成物に含まれる溶媒に侵されないような保護層を形成してもよい。保護層として用いられる材料としては、例えばポリビニルアルコールが挙げられる。さらに、保護層と基板の密着性を高めるためにアンカーコート層を形成させてもよい。このようなアンカーコート層は保護層と基板の密着性を高めるものであれば、無機系および有機系のいずれの材料であってもよい。 The film substrate may be a uniaxially stretched film or a biaxially stretched film. The film substrate may be subjected to surface treatment such as saponification treatment, corona treatment or plasma treatment in advance. In addition, you may form a protective layer which is not corroded by the solvent contained in the said composition for thermal radiation members on these film substrates. As a material used as a protective layer, polyvinyl alcohol is mentioned, for example. Furthermore, an anchor coat layer may be formed to enhance the adhesion between the protective layer and the substrate. Such an anchor coat layer may be any of inorganic and organic materials as long as the adhesion between the protective layer and the substrate is enhanced.
 以上、無機フィラー同士の結合を、カップリング処理された無機フィラーと、カップリング処理されさらにカルボン酸無水物で修飾された無機フィラーで構成する場合を説明した。具体的には、例えば、第2の無機フィラーを、アミノを有するシランカップリング剤でカップリング処理する。第1の無機フィラーを、アミノを有するシランカップリング剤でカップリング処理した後、アミノと、両末端にカルボン酸無水物を有する化合物の一端と結合させる。最後に第2の無機フィラー側のアミノと、第1の無機フィラー側のカルボン酸無水物が有するCOO基の他方とを結合させる。なお、無機フィラー側がエポキシを有し、カルボン酸無水物側がカルボン酸を有する組合せであってもよい。 The case has been described above in which the bond between the inorganic fillers is constituted by the coupling-treated inorganic filler and the coupling-treated inorganic filler further modified with a carboxylic acid anhydride. Specifically, for example, the second inorganic filler is subjected to coupling treatment with a silane coupling agent having an amino. The first inorganic filler is coupled with a silane coupling agent having an amino, and then bonded to one end of the amino and a compound having a carboxylic acid anhydride at both ends. Finally, the amino on the second inorganic filler side is bonded to the other of the COO groups possessed by the carboxylic acid anhydride on the first inorganic filler side. The inorganic filler side may have an epoxy, and the carboxylic acid anhydride side may have a carboxylic acid.
 または、他の方法として、シランカップリング剤で処理した第1、第2の無機フィラーと、シランカップリング剤の修飾量から計算した2官能以上のカルボン酸無水物を混合しプレスしてもよい。加圧したまま加温することにより、まずカルボン酸無水物が流動性を有し無機フィラーの隙間に染み込む。さらに加温することにより、カルボン酸無水物がシランカップリング剤と結合し、第1の無機フィラーと第2の無機フィラー間の結合を形成できる(すなわち硬化する)。 Alternatively, as another method, the first and second inorganic fillers treated with a silane coupling agent may be mixed and pressed with a bifunctional or higher carboxylic acid anhydride calculated from the modification amount of the silane coupling agent. . By heating under pressure, first, the carboxylic anhydride has fluidity and soaks into the gaps of the inorganic filler. Further heating allows the carboxylic anhydride to bond with the silane coupling agent to form a bond (ie, cure) between the first inorganic filler and the second inorganic filler.
 このように、シランカップリング剤同士の結合により、無機フィラー間の結合を形成してもよい。例えば、第1の無機フィラーを、アミノを有するシランカップリング剤でカップリング処理する。第2の無機フィラーを、カルボン酸を有するシランカップリング剤でカップリング処理する。最後に第1の無機フィラー側のアミノと第2の無機フィラー側のエポキシとを結合させる。このように、第1の無機フィラーに結合したシランカップリング剤と第2の無機フィラーに結合したシランカップリング剤は、シランカップリング剤同士を結合させる官能基をそれぞれ有する。第1の無機フィラー側の官能基と第2の無機フィラー側の官能基は、シランカップリング剤同士の結合が可能になる限り、異なるものの組合せでもよく、同一のものの組合せでもよい。
 シランカップリング剤同士の結合を形成する官能基の組合せとしては、例えば、オキシラニルとアミノ、ビニル同士、メタクリロキシ同士、カルボキシまたはカルボン酸無水物残基とアミノ、イミダゾールとオキシラニル等の組合せを挙げることができるが、これらに限られない。耐熱性の高い官能基の組合せがより好ましい。
Thus, the bond between the inorganic coupling agents may form a bond between the inorganic fillers. For example, the first inorganic filler is coupled with a silane coupling agent having an amino. The second inorganic filler is coupled with a silane coupling agent having a carboxylic acid. Finally, the amino on the first inorganic filler side and the epoxy on the second inorganic filler side are bonded. As described above, the silane coupling agent bound to the first inorganic filler and the silane coupling agent bound to the second inorganic filler each have a functional group for binding the silane coupling agents to each other. The functional group on the side of the first inorganic filler and the functional group on the side of the second inorganic filler may be a combination of different ones or a combination of the same ones as long as bonding between the silane coupling agents becomes possible.
Examples of combinations of functional groups forming bonds between silane coupling agents include combinations of oxiranyl and amino, vinyls, methacryloxys, carboxy or carboxylic anhydride residues and amino, imidazole and oxiranyl, etc. It can, but is not limited to these. A combination of highly heat resistant functional groups is more preferred.
 シランカップリング剤同士の結合により無機フィラー間に結合を形成する態様では、シランカップリング剤の少なくともどちらか一方がその構造中にカルボン酸無水物を含むことが好ましい。 In the aspect of forming a bond between the inorganic fillers by bonding of the silane coupling agents, it is preferable that at least one of the silane coupling agents contains a carboxylic acid anhydride in the structure.
 このように、シランカップリング剤およびカルボン酸無水物を適宜選択することにより、第1の無機フィラーと第2の無機フィラーを繋ぐことができ、本発明の放熱部材用組成物から極めて高い熱伝導性と熱膨張率の制御性を有する放熱部材を得ることができる。なお、上記の官能基は例示であり、本発明の効果を得られる限り上記の官能基に限られない。 As described above, by appropriately selecting the silane coupling agent and the carboxylic acid anhydride, the first inorganic filler and the second inorganic filler can be connected, and the heat dissipation member composition of the present invention has extremely high thermal conductivity. It is possible to obtain a heat dissipating member having the controllability of the heat resistance and the coefficient of thermal expansion. In addition, said functional group is an illustration, and as long as the effect of this invention is acquired, it is not restricted to said functional group.
[放熱部材]
 本発明の放熱部材は、放熱部材用組成物を硬化させ、用途に応じて成形した硬化物である。この硬化物は、高い熱伝導性と高い耐熱性を同時に有することから放熱部材として好適に用いることができる。さらに、硬化物は、熱膨張率が負かまたは非常に小さい正にすることができ、化学的安定性、硬度および機械的強度などに優れている。なお、前記機械的強度とは、ヤング率、引っ張り強度、引き裂き強度、曲げ強度、曲げ弾性率、衝撃強度などである。放熱部材は、放熱板、放熱シート、放熱フィルム、放熱接着材、放熱成形品などに有用である。
[Heat dissipation member]
The heat radiating member of the present invention is a cured product obtained by curing the heat radiating member composition and molding it according to the use. This cured product can be suitably used as a heat dissipation member because it has high thermal conductivity and high heat resistance at the same time. Furthermore, the cured product can have a negative or very low coefficient of thermal expansion, and is excellent in chemical stability, hardness and mechanical strength. The mechanical strength includes Young's modulus, tensile strength, tear strength, flexural strength, flexural modulus, impact strength and the like. The heat dissipating member is useful for a heat dissipating plate, a heat dissipating sheet, a heat dissipating film, a heat dissipating adhesive, a heat dissipating molded product, and the like.
 本発明において、熱伝導性は、垂直方向の熱伝導率により評価することができる。ここで、垂直方向とは、一般的に試料の厚み方向を示す。本発明の放熱部材の垂直方向の熱伝導率は、窒化ホウ素を用いた場合は5(W/mK)以上であることが好ましく、9(W/mK)以上であることがより好ましい。この範囲であれば、熱伝導に優れることから、放熱板などに好適に利用できる。
 また、本発明において、耐熱性は、5%重量減少温度の測定により評価することができる。本発明の放熱部材の5%重量減少温度は、280℃以上であることが好ましく、290℃以上であることがより好ましく、300℃以上であることが最も好ましい。この範囲であれば、高パワー向け放熱部材への用途に好適に利用できる。
 本発明において、熱膨張性は熱膨張率により評価することができる。ここで、熱膨張率とは、50~200℃の範囲での試料の平面方向における伸び率を示す。本発明の放熱部材の熱膨張率は、-20~50(ppm/K)であることが好ましく、-5~20(ppm/K)であることがより好ましい。この範囲であれば、非熱膨張性に優れることから、発熱する金属基板へのダイアタッチメントなどに好適に利用できる。
In the present invention, the thermal conductivity can be evaluated by the thermal conductivity in the vertical direction. Here, the vertical direction generally indicates the thickness direction of the sample. The thermal conductivity of the heat radiating member of the present invention in the vertical direction is preferably 5 (W / mK) or more, more preferably 9 (W / mK) or more, when boron nitride is used. If it is this range, since it is excellent in heat conduction, it can utilize suitably for a heat sink etc.
In the present invention, the heat resistance can be evaluated by measuring the 5% weight loss temperature. The 5% weight loss temperature of the heat dissipation member of the present invention is preferably 280 ° C. or higher, more preferably 290 ° C. or higher, and most preferably 300 ° C. or higher. If it is this range, it can utilize suitably for the use to a high power heat dissipation member.
In the present invention, the thermal expansion can be evaluated by the thermal expansion coefficient. Here, the coefficient of thermal expansion indicates the elongation in the plane direction of the sample in the range of 50 to 200 ° C. The thermal expansion coefficient of the heat dissipation member of the present invention is preferably −20 to 50 (ppm / K), and more preferably −5 to 20 (ppm / K). If it is this range, since it is excellent in non-thermal expansion property, it can utilize suitably for the die attachment etc. to the metal substrate which generates heat.
 熱重合により放熱部材用組成物を硬化させる前硬化の条件としては、熱硬化温度が、室温~350℃、好ましくは室温~300℃、より好ましくは120℃~250℃の範囲であり、硬化時間は、5秒~10時間、好ましくは1分~5時間、より好ましくは5分~1時間の範囲である。重合後は、応力ひずみなど抑制するために徐冷することが好ましい。また、再加熱処理を行い、ひずみなどを緩和させてもよい。 The conditions for the pre-curing for curing the composition for heat dissipation member by thermal polymerization include a thermosetting temperature in the range of room temperature to 350 ° C., preferably room temperature to 300 ° C., more preferably 120 ° C. to 250 ° C. Is in the range of 5 seconds to 10 hours, preferably 1 minute to 5 hours, more preferably 5 minutes to 1 hour. After polymerization, slow cooling is preferable to suppress stress and strain. Further, reheating treatment may be performed to reduce distortion and the like.
 放熱部材は、シート、フィルム、薄膜、繊維、成形体などの形状で使用する。好ましい形状は、板、シート、フィルムおよび薄膜である。なお、本明細書におけるシートの膜厚は1mm以上であり、フィルムの膜厚は5μm以上、好ましくは10~500μm、より好ましくは20~300μmであり、薄膜の膜厚は5μm未満である。膜厚は、用途に応じて適宜変更すればよい。放熱部材用組成物は、そのまま接着剤や充填剤として使用することもできる。 The heat dissipation member is used in the form of a sheet, a film, a thin film, a fiber, a molded body or the like. Preferred shapes are plates, sheets, films and thin films. The thickness of the sheet in the present specification is 1 mm or more, the thickness of the film is 5 μm or more, preferably 10 to 500 μm, more preferably 20 to 300 μm, and the thickness of the thin film is less than 5 μm. The film thickness may be appropriately changed according to the application. The composition for a heat dissipation member can also be used as an adhesive or a filler as it is.
[電子機器]
 本発明の電子機器は、本発明の放熱部材と、発熱部または冷却部を有する電子デバイスとを備える。放熱部材は、前記発熱部に接触するように電子デバイスに配置される。放熱部材の形状は、放熱電子基板、放熱板、放熱シート、放熱フィルム、放熱接着材、放熱成形品などのいずれであってもよい。
 例えば、電子デバイスとして、半導体モジュールを挙げることができる。本発明の放熱部材は、低熱膨張性に加え、高熱伝導性、高耐熱性、高絶縁性を有することから、半導体素子の中でも高電力のためより効率的な放熱機構を必要とする絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、IGBT)に特に有効である。IGBTは半導体素子の一つで、MOSFETをゲート部に組み込んだバイポーラトランジスタであり、電力制御の用途で使用される。IGBTを備えた電子機器には、大電力インバータの主変換素子、無停電電源装置、交流電動機の可変電圧可変周波数制御装置、鉄道車両の制御装置、ハイブリッドカー、エレクトリックカーなどの電動輸送機器、IH調理器などを挙げることができる。
[Electronics]
An electronic device of the present invention includes the heat dissipation member of the present invention, and an electronic device having a heat generating portion or a cooling portion. The heat dissipation member is disposed in the electronic device so as to contact the heat generating portion. The shape of the heat dissipating member may be any of a heat dissipating electronic substrate, a heat dissipating plate, a heat dissipating sheet, a heat dissipating film, a heat dissipating adhesive, a heat dissipating molded product, and the like.
For example, a semiconductor module can be mentioned as an electronic device. The heat-radiating member of the present invention has high thermal conductivity, high heat resistance, and high insulation properties in addition to low thermal expansion, so it is an insulated gate bipolar that requires a more efficient heat dissipation mechanism for high power among semiconductor elements. It is particularly effective for a transistor (Insulated Gate Bipolar Transistor, IGBT). The IGBT is one of the semiconductor elements, and is a bipolar transistor in which a MOSFET is incorporated in the gate portion, and is used in power control applications. Examples of electronic devices equipped with IGBTs include a main conversion element of a large power inverter, an uninterruptible power supply, a variable voltage variable frequency controller of an AC motor, a controller of a railway vehicle, an electric transportation device such as a hybrid car and an electric car, IH A cooker etc. can be mentioned.
 以上、本発明をカップリング処理した第2の無機フィラーと、カップリング処理後さらにカルボン酸無水物で修飾した第1の無機フィラーとを結合させて、無機フィラー間に結合を形成し、低い熱膨張性と、高い熱伝導性と高い耐熱性を有する放熱部材を得るとして説明したが、本発明はこれに限られない。カップリング処理後さらにカルボン酸無水物で修飾した第2の無機フィラーと、カップリング処理した第1の無機フィラーとを結合させて、無機フィラー間に結合を形成させてもよい。
 さらには、カップリング処理後さらにカルボン酸無水物で修飾した無機フィラーのみを用いて、適切な重合開始剤等によりカルボン酸無水物同士を結合させて、無機フィラー間に結合を形成してもよい。
 すなわち、本発明は、無機材料と有機材料の複合化において、無機材料間に有機化合物で結合を形成し、熱伝導性を著しく向上させ、さらに耐熱性を向上させたものである。
As described above, the second inorganic filler obtained by the coupling treatment of the present invention and the first inorganic filler further modified with the carboxylic anhydride after the coupling treatment are combined to form a bond between the inorganic fillers, resulting in low heat. Although the heat dissipating member having the expansibility, high thermal conductivity and high heat resistance has been described, the present invention is not limited thereto. After the coupling treatment, a second inorganic filler modified with a carboxylic acid anhydride may be combined with the first inorganic filler subjected to the coupling treatment to form a bond between the inorganic fillers.
Furthermore, after the coupling treatment, the carboxylic acid anhydrides may be bonded with an appropriate polymerization initiator or the like using only the inorganic filler modified with the carboxylic acid anhydride to form a bond between the inorganic fillers. .
That is, in the present invention, in complex formation of an inorganic material and an organic material, a bond is formed between the inorganic materials with an organic compound, the thermal conductivity is remarkably improved, and the heat resistance is further improved.
 以下に、実施例を用いて、本発明を詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the contents described in the following examples.
 本発明の実施例に用いた、放熱部材を構成する材料は次のとおりである。 The material which comprises the thermal radiation member used for the Example of this invention is as follows.
<カルボン酸無水物>
・1,3-イソベンゾフランジオン,5,5’-(1,4-ブタンジイル)ビス-5,5’-(1,4-ブタンジイル)ビス[1,3-イソベンゾフランジオン]:下記式(8-1)で示される化合物(JNC(株)製)
<Carboxylanhydride>
1,3-Isobenzobenzofurandione, 5,5 ′-(1,4-butanediyl) bis-5,5 ′-(1,4-butanediyl) bis [1,3-isobenzofurandione]: the following formula (8) Compound (1) (JNC)
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
・1,3-イソベンゾフランジオン,5,5’-(1,8-オクタンジイル)ビス-5,5’-(1,8-オクタンジイル)ビス[1,3-イソベンゾフランジオン]:下記式(8-2)で示される化合物(JNC(株)製) 1,3-Isobenzobenzofurandione 5,5 ′-(1,8-octanediyl) bis-5,5 ′-(1,8-octanediyl) bis [1,3-isobenzofurandione]: Compound represented by (8-2) (manufactured by JNC Co., Ltd.)
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
・テトラヒドロ-[3,3’-ビフラン]-2,2’,5,5-テトラオン:下記式(8-3)で示される化合物(新日本理化(株)製)(商品名)リカシッド BT-100 -Tetrahydro- [3,3'-bifuran] -2,2 ', 5,5-tetraone: a compound represented by the following formula (8-3) (manufactured by Shin Nippon Chemical Co., Ltd.) (trade name) RIKACID BT- 100
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000017
・4,4’-(エタン-1,2-ジイル)ビス(モノフォリン-2,6-ジオン):下記式(8-4)で示される化合物(JNC(株)製) · 4, 4'- (Ethane-1, 2-diyl) bis (monophorin-2, 6-dione): a compound represented by the following formula (8-4) (manufactured by JNC Ltd.)
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000018
<重合性液晶化合物>
・液晶性エポキシ化合物:下記式(9-1)で示される化合物(JNC(株)製)。
 該化合物は、特許第5084148号公報に記載の方法で合成することができる。
<Polymerizable liquid crystal compound>
Liquid crystalline epoxy compound: a compound represented by the following formula (9-1) (manufactured by JNC Co., Ltd.).
The compound can be synthesized by the method described in Japanese Patent No. 5084148.
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000019
<無機フィラー>
・窒化ホウ素:h-BN粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合)製、(商品名)PolarTherm PTX-25)
<Inorganic filler>
-Boron Nitride: h-BN particles (Momentive Performance Materials Japan (combined) made, (trade name) PolarTherm PTX-25)
<シランカップリング剤>
・シランカップリング剤1:下記式(10-1)で示されるN-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(JNC(株)製、(商品名)サイラエース S320)
<Silane coupling agent>
Silane coupling agent 1: N- (2-aminoethyl) -3-aminopropyltrimethoxysilane represented by the following formula (10-1) (manufactured by JNC Co., Ltd., (trade name) SYRAACE S320)
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000020
・シランカップリング剤2:下記式(10-2)で示される3-アミノプロピルトリメトキシシラン(信越化学(株)製、(商品名)KBM-903) -Silane coupling agent 2: 3-aminopropyltrimethoxysilane represented by the following formula (10-2) (Shin-Etsu Chemical Co., Ltd. product, (trade name) KBM-903)
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000021
[実施例1]
<放熱部材の調製>
 以下に、放熱部材の調製例を示す。
・シランカップリング剤処理窒化ホウ素粒子の準備
 窒化ホウ素粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン製PTX-25)15gとシランカップリング剤1を2.25g、トルエン100mLに加え、スターラーを用いて500rpmで1時間攪拌し、得られた混合物を40℃で4時間乾燥した。さらに、溶媒乾燥後に120℃に設定した真空乾燥機を用いて真空条件下で5時間加熱処理した。得られた粒子を、第2の無機フィラー(BN)とした。
Example 1
<Preparation of heat dissipation member>
Below, the preparation example of a thermal radiation member is shown.
-Preparation of silane coupling agent-treated boron nitride particles 15 g of boron nitride particles (PTX-25 manufactured by Momentive Performance Materials Japan) and 2.25 g of silane coupling agent 1 are added to 100 mL of toluene, and 500 rpm using a stirrer The resulting mixture was dried at 40 ° C. for 4 hours. Furthermore, it heat-processed under vacuum conditions for 5 hours using the vacuum dryer set to 120 degreeC after solvent drying. The obtained particles were used as a second inorganic filler (BN).
 第2の無機フィラーと式(8-1)で示される化合物を、それぞれ1.0gずつ量り取り、2本ロール((株)井元製作所製IMC-AE00型)を用いて120℃で10分混合した。この重量比は第2の無機フィラーが有するアミノ基が十分に反応する酸無水物基の個数並びに2本ロール上で双方が十分に練り合わせられる量である。得られた混合物をテトラヒドロフラン45mLに加え、十分攪拌した後、遠心分離機(日立工機(株)製高速冷却遠心機CR22形、4,000回転×10分×25℃)で不溶分を沈降させ、デカンテーションで未反応の酸無水物が溶解した分を含む溶液を取り除いた。その後、アセトン45mLを加え、前述と同様の操作を行った。さらに、テトラヒドロフラン、アセトンの順に同様の操作を繰り返した。不溶分を乾燥して得られた粒子を、第1の無機フィラーとした。 Measure 1.0 g each of the second inorganic filler and the compound represented by the formula (8-1), and mix them at 120 ° C. for 10 minutes using a 2-roll mill (IMC-AE00 manufactured by Imoto Machinery Co., Ltd.) did. The weight ratio is the number of acid anhydride groups to which the amino groups of the second inorganic filler react sufficiently, and the amount by which both are sufficiently mixed on a two-roll. The resulting mixture is added to 45 mL of tetrahydrofuran, and after sufficient stirring, insolubles are precipitated with a centrifuge (High speed cooling centrifuge model CR22 manufactured by Hitachi Koki Co., Ltd., 4,000 rotation x 10 minutes x 25 ° C) Then, the solution containing the portion in which the unreacted acid anhydride was dissolved was removed by decantation. Thereafter, 45 mL of acetone was added, and the same operation as described above was performed. Further, the same operation was repeated in the order of tetrahydrofuran and acetone. The particles obtained by drying the insolubles were used as the first inorganic filler.
 第1の無機フィラーおよび第2の無機フィラーのシランカップリング剤または酸無水物のBNに対する被覆量は、熱重量/示差熱測定装置((株)リガク製TG-8121))を用いて、その900℃における加熱減量から算出した。 The coverage of the first inorganic filler and the second inorganic filler with respect to the silane coupling agent or acid anhydride of BN is determined using a thermogravimetric / differential thermal analyzer (TG-8121 manufactured by Rigaku Corporation)). Calculated from weight loss on heating at 900 ° C.
・第1の無機フィラーと第2の無機フィラーとの混合および成形・硬化
 作製した第2の無機フィラーを0.10gと第1の無機フィラーを0.26gとを量り取り、混合した。
-Mixing and shaping | molding / hardening of a 1st inorganic filler and a 2nd inorganic filler 0.10g of 2nd inorganic fillers and 0.26g of 1st inorganic fillers which were produced were measured and mixed.
 得られた混合物を酸化されないように金枠を用いてステンレス製板中にはさみ、150℃に設定した圧縮成形機((株)井元製作所製IMC-19EC)を用いて30MPaまで加圧し、15分間加熱状態を続けることで、配向処理と前硬化を行った。すなわちステンレス板の間を混合物が広がる際に、BNは板状粒子であるため、粒子とステンレス板が平行になるように配向させた。試料の厚みが約500μmになるように、金枠と試料の量を調整した。さらに真空オーブンを用いて80℃で3時間、200℃で14時間硬化を行った。この操作で得られた試料を放熱部材とする。 The resulting mixture is held in a stainless steel plate using a metal frame so as not to be oxidized, and pressurized to 30 MPa using a compression molding machine (IMC-19EC manufactured by Imoto Machinery Co., Ltd.) set at 150 ° C. for 15 minutes By continuing the heating state, alignment treatment and pre-curing were performed. That is, when the mixture spreads between the stainless steel plates, since the BN is a plate-like particle, the particles and the stainless steel plate are oriented so as to be parallel. The amounts of the metal frame and the sample were adjusted so that the thickness of the sample was about 500 μm. Further, curing was performed at 80 ° C. for 3 hours and at 200 ° C. for 14 hours using a vacuum oven. The sample obtained by this operation is used as a heat dissipation member.
・熱重量(TG)の測定
 得られた試料の無機フィラーに対する被覆量は、熱重量・示差熱測定装置((株)リガク製TG-8121)を用いて、その900℃における加熱減量から算出した。
 また、放熱部材の5%重量減少温度は、前記の測定装置を用いて、140℃から900℃への減少量を100重量%とした際の5重量%減少した時の温度から算出した。
Measurement of thermal weight (TG) The coating amount of the obtained sample on the inorganic filler was calculated from the heat loss at 900 ° C. using a thermal weight and differential thermal measurement device (TG-8121 manufactured by Rigaku Corporation) .
In addition, the 5% weight loss temperature of the heat dissipation member was calculated from the temperature when it decreased by 5 wt% when the amount of decrease from 140 ° C. to 900 ° C. was 100 wt%, using the above-mentioned measuring apparatus.
・熱膨張率の評価
 得られた試料から、4×20mmの試験片を切り出し、熱膨張率(SII(株)TMA-SS6100熱機械分析装置で測定した。)を、50~200℃の範囲で求めた。試験片の長さや温度の範囲は、測定する試料の形状や耐熱性により適宜調整した。
Evaluation of Thermal Expansion Coefficient A 4 × 20 mm test piece is cut out of the obtained sample, and the thermal expansion coefficient (measured with SII Co., Ltd. TMA-SS6100 thermal mechanical analyzer) in the range of 50 to 200 ° C. I asked. The range of the length and temperature of the test piece was appropriately adjusted according to the shape and heat resistance of the sample to be measured.
・熱伝導率の評価
 熱伝導率は、予め放熱部材の比熱((株)リガク DSC-8231、DSC型入力補償型示差走査熱量測定装置で測定した。)と比重(メトラー・トレド製比重計AG204密度測定キットにより測定した。)を求めておき、その値を(株)アイフェイズ製 ai-Phase Mobile 1u 熱拡散率測定装置により求めた熱拡散率を掛け合わせることにより垂直方向の熱伝導率を求めた。
Evaluation of Thermal Conductivity The thermal conductivity is determined in advance by the specific heat of the heat dissipation member (Rigaku Co., Ltd. DSC-8231, measured with a DSC-type input-compensated differential scanning calorimeter) and the specific gravity (a specific gravity meter AG204 manufactured by METTLER TOLEDO The thermal conductivity is measured in the vertical direction by multiplying the thermal diffusivity obtained by using ai-Phase Mobile 1u thermal diffusivity measuring device by measuring the density measurement kit). I asked.
[実施例2]
 式(8-2)を式(8-1)の代わりに使用した以外は、 実施例1と同様に試料を作製し、測定を行った。
Example 2
A sample was prepared and measured in the same manner as in Example 1 except that Formula (8-2) was used instead of Formula (8-1).
[実施例3]
 式(8-3)を式(8-1)の代わりに使用した以外は、 実施例1と同様に試料を作製し、測定を行った。
[Example 3]
A sample was prepared and measured in the same manner as in Example 1 except that formula (8-3) was used instead of formula (8-1).
[実施例4]
 式(8-4)を式(8-1)の代わりに使用した以外は、 実施例1と同様に試料を作製し、測定を行った。
Example 4
A sample was prepared and measured in the same manner as in Example 1 except that Formula (8-4) was used instead of Formula (8-1).
[比較例1]
 式(9-1)を式(8-1)の代わりに使用した以外は、 実施例1と同様に試料を作製し、測定を行った。前硬化の後、真空オーブンを用いて150℃で5時間硬化を行った。
Comparative Example 1
A sample was prepared and measured in the same manner as in Example 1 except that formula (9-1) was used instead of formula (8-1). After precuring, curing was performed at 150 ° C. for 5 hours using a vacuum oven.
 実施例1、2、4、比較例1の熱機械分析装置による測定結果を図4~図7にまとめた。各測定ともに1回目と2回目の挙動がほぼ同じであった。耐熱温度や温度サイクルの繰り返し安定性が良いことがわかる。 The measurement results by the thermomechanical analyzer of Examples 1, 2 and 4 and Comparative Example 1 are summarized in FIGS. 4 to 7. The first and second behaviors were almost the same for each measurement. It can be seen that the repeated stability of the heat resistance temperature and the temperature cycle is good.
 実施例1~4、比較例1の5重量%減少温度、熱伝導率および熱膨張率の測定結果を表1にまとめた。 The measurement results of the 5 wt% reduction temperature, the thermal conductivity and the thermal expansion coefficient of Examples 1 to 4 and Comparative Example 1 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 通常の高熱伝導フィラーをエポキシ樹脂と硬化剤に分散させる方法では、例えば、比較例1のように、ガラス転移温度の前後で熱膨張率が大きく変化する。比較例1では、耐熱性と熱膨張性に優れた液晶性エポキシ化合物を使用しているため、比較的、高い熱膨張率と耐熱温度を示しているが、通常のビスフェノール型エポキシ化合物とシリカとジアミン系硬化剤の複合材では、その熱膨張率は50×10-6/K程度で、耐熱温度も120℃程度といわれている。それと比べて、本発明のカルボン酸無水物基をシランカップリング剤でBNに直接結合させた場合では、明確なガラス転移点が認められず、温度に対する熱膨張率の変化が非常に小さい。また、熱膨張率自体も非常に小さい特徴を持つ。エポキシとアミンの結合に比べ、無水フタル酸とアミンとが反応してできたイミド結合のほうが、耐熱性が高いためと考えられる。したがって耐熱性が特に求められる用途では、他にもマレイミドなど耐熱性の高い結合を使用することが好ましいことがわかる。 In the method of dispersing an ordinary high thermal conductivity filler in an epoxy resin and a curing agent, for example, as in Comparative Example 1, the coefficient of thermal expansion changes largely before and after the glass transition temperature. In Comparative Example 1, since a liquid crystalline epoxy compound excellent in heat resistance and thermal expansion is used, a relatively high thermal expansion coefficient and heat resistance temperature are shown, but a normal bisphenol type epoxy compound and silica are used. The composite material of a diamine curing agent has a coefficient of thermal expansion of about 50 × 10 −6 / K and a heat resistance temperature of about 120 ° C. In contrast, when the carboxylic anhydride group of the present invention is directly bonded to BN with a silane coupling agent, no clear glass transition point is observed, and the change in the coefficient of thermal expansion with temperature is very small. In addition, the coefficient of thermal expansion itself is also very small. It is considered that the imide bond formed by the reaction of phthalic anhydride and amine is higher in heat resistance than the bond of epoxy and amine. Therefore, it is understood that it is preferable to use a highly heat resistant bond such as maleimide, in applications where heat resistance is particularly required.
 本発明の放熱部材用組成物から形成された放熱部材は、極めて高い熱伝導性と耐熱性を同時に有することから、例えば、放熱基板、放熱板(面状ヒートシンク)、放熱シート、放熱塗膜、放熱接着剤などに利用することができる。 The heat dissipating member formed from the composition for heat dissipating member of the present invention has extremely high thermal conductivity and heat resistance at the same time, so for example, a heat dissipating substrate, a heat dissipating plate (planar heat sink), a heat dissipating sheet, a heat dissipating coating, It can be used as a heat dissipating adhesive.
1  第1の無機フィラー
2  第2の無機フィラー
11 第1のシランカップリング剤
12 第2のシランカップリング剤
21 2官能以上のカルボン酸無水物
3  第1のシランカップリング剤と2官能以上のカルボン酸無水物と第2のシランカップリング剤とが結合した部位
1 first inorganic filler 2 second inorganic filler 11 first silane coupling agent 12 second silane coupling agent 21 bifunctional or higher carboxylic anhydride 3 first silane coupling agent and bifunctional or higher The site where the carboxylic anhydride and the second silane coupling agent are bound

Claims (13)

  1.  第1のシランカップリング剤の一端と結合した第1の無機フィラー、第2のシランカップリング剤の一端と結合した第2の無機フィラーおよび2官能以上のカルボン酸無水物を含有する、放熱部材用組成物。 A heat dissipation member containing a first inorganic filler bonded to one end of a first silane coupling agent, a second inorganic filler bonded to one end of a second silane coupling agent, and a bifunctional or higher functional carboxylic acid anhydride Composition.
  2.  第1のシランカップリング剤の一端と結合した第1の無機フィラーは、前記第1のシランカップリング剤の他端と2官能以上のカルボン酸無水物とが結合している請求項1に記載の放熱部材用組成物。 The first inorganic filler bonded to one end of the first silane coupling agent according to claim 1, wherein the other end of the first silane coupling agent is bonded to a bifunctional or higher functional carboxylic acid anhydride. Composition for a heat dissipating member.
  3.  前記2官能以上のカルボン酸無水物が、無水フタル酸、無水コハク酸、無水マレイン酸、無水酢酸、無水プロピオン酸および無水安息香酸からなる群から選ばれる少なくとも1つであるカルボン酸無水物である、
     請求項1または2に記載の放熱部材用組成物。
    The carboxylic anhydride which is at least one selected from the group consisting of phthalic anhydride, succinic anhydride, maleic anhydride, acetic anhydride, propionic acid anhydride and benzoic acid anhydride is a carboxylic acid anhydride having two or more functional groups. ,
    The composition for heat dissipation members according to claim 1 or 2.
  4.  前記2官能以上のカルボン酸無水物が、式(1)、式(2)および式(3)で表される化合物の群から選ばれる少なくとも1種の化合物である、請求項1または2に記載の放熱部材用組成物。
    Figure JPOXMLDOC01-appb-I000001
    [上記式(1)、(2)および(3)中、
     Rは単結合、炭素数1~20のアルキル、炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから独立して選択される基である。]
    The compound according to claim 1 or 2, wherein the bifunctional or higher functional carboxylic acid anhydride is at least one compound selected from the group of compounds represented by Formula (1), Formula (2) and Formula (3). Composition for a heat dissipating member.
    Figure JPOXMLDOC01-appb-I000001
    [In the above formulas (1), (2) and (3),
    R 1 is a group independently selected from a single bond, alkyl having 1 to 20 carbons, cycloalkyl having 4 to 8 carbons, aryl and arylalkyl having 7 to 20 carbons. ]
  5.  前記2官能以上のカルボン酸無水物が、式(4)および式(5)で表される化合物の群から選ばれる少なくとも1種の化合物である、請求項1または2に記載の放熱部材用組成物。

    Figure JPOXMLDOC01-appb-I000002

    [上記式(4)および(5)中、
     Rは単結合、炭素数1~20のアルキル、炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから独立して選択される基である。式(4)および式(5)のそれぞれにおいて、Rは独立して炭素または窒素である。]
    The composition according to claim 1 or 2, wherein the bifunctional or higher functional carboxylic acid anhydride is at least one compound selected from the group of compounds represented by Formula (4) and Formula (5). object.

    Figure JPOXMLDOC01-appb-I000002

    [In the above formulas (4) and (5),
    R 2 is a group independently selected from a single bond, alkyl having 1 to 20 carbons, cycloalkyl having 4 to 8 carbons, aryl and arylalkyl having 7 to 20 carbons. In each of Formula (4) and Formula (5), R 3 is independently carbon or nitrogen. ]
  6.  前記2官能以上のカルボン酸無水物が、式(6)で表される化合物の群から選ばれる少なくとも1種の化合物である、請求項1または2に記載の放熱部材用組成物。
    Figure JPOXMLDOC01-appb-I000003
    [上記式(6)中、
     RおよびRは、炭素数4~8のシクロアルキル、アリールおよび炭素数7~20のアリールアルキルから独立して選択される基である。式(6)において、nは独立して1~4である。]
    The composition for heat dissipation members according to claim 1 or 2, wherein the bifunctional or higher functional carboxylic acid anhydride is at least one compound selected from the group of compounds represented by formula (6).
    Figure JPOXMLDOC01-appb-I000003
    [In the above formula (6),
    R 4 and R 5 are groups independently selected from cycloalkyl having 4 to 8 carbon atoms, aryl and arylalkyl having 7 to 20 carbon atoms. In formula (6), n is independently 1 to 4. ]
  7.  前記第1の無機フィラーと前記第2の無機フィラーが、窒化物、金属酸化物、珪酸塩化合物、または炭素材料である、
     請求項1~6のいずれか1項に記載の放熱部材用組成物。
    The first inorganic filler and the second inorganic filler are a nitride, a metal oxide, a silicate compound, or a carbon material,
    A composition for a heat dissipation member according to any one of claims 1 to 6.
  8.  前記第1の無機フィラーと前記第2の無機フィラーが、窒化ホウ素、窒化アルミニウム、炭化ホウ素、窒化ホウ素炭素、黒鉛、炭素繊維、カーボンナノチューブ、アルミナおよびコーディエライトから選ばれる少なくとも一つである、
     請求項1~7のいずれか1項に記載の放熱部材用組成物。
    The first inorganic filler and the second inorganic filler are at least one selected from boron nitride, aluminum nitride, boron carbide, boron carbon nitride, graphite, carbon fiber, carbon nanotube, alumina and cordierite.
    A composition for a heat dissipation member according to any one of claims 1 to 7.
  9.  前記第1の無機フィラーおよび前記第2の無機フィラーと異なる熱膨張率を持つ第3の無機フィラーをさらに含む、
     請求項1~8のいずれか1項に記載の放熱部材用組成物。
    It further comprises a third inorganic filler having a coefficient of thermal expansion different from the first inorganic filler and the second inorganic filler.
    A composition for a heat dissipation member according to any one of claims 1 to 8.
  10.  前記第1の無機フィラーおよび前記第2の無機フィラーに結合していない、重合性化合物または高分子化合物をさらに含む、
     請求項1~9のいずれか1項に記載の放熱部材用組成物。
    It further comprises a polymerizable compound or polymer compound not bound to the first inorganic filler and the second inorganic filler.
    A composition for a heat dissipation member according to any one of claims 1 to 9.
  11.  請求項1~10のいずれか1項に記載の放熱部材用組成物が硬化した、
     放熱部材。
    The composition for heat dissipation member according to any one of claims 1 to 10 is cured,
    Heat dissipation member.
  12.  請求項11に記載の放熱部材と、
     発熱部を有する電子デバイスとを備え、
     前記放熱部材が前記発熱部に接触するように前記電子デバイスに配置された、
     電子機器。
    A heat dissipation member according to claim 11;
    And an electronic device having a heat generating portion,
    The heat dissipation member is disposed in the electronic device such that the heat dissipation member contacts the heat generating portion;
    Electronics.
  13.  第1の無機フィラーを、第1のシランカップリング剤の一端と結合させる工程と、
     第2の無機フィラーを、第2のシランカップリング剤の一端と結合させる工程とを備え、さらに、
     前記第1のシランカップリング剤の他端と前記第2のシランカップリング剤の他端をそれぞれ2官能以上のカルボン酸無水物に結合させる工程を備える、
     放熱部材用組成物の製造方法。
    Combining the first inorganic filler with one end of the first silane coupling agent;
    Combining the second inorganic filler with one end of the second silane coupling agent, and
    Bonding the other end of the first silane coupling agent and the other end of the second silane coupling agent to a bifunctional or higher functional carboxylic acid anhydride,
    The manufacturing method of the composition for thermal radiation members.
PCT/JP2018/031108 2017-08-30 2018-08-23 Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member WO2019044646A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207002876A KR20200044789A (en) 2017-08-30 2018-08-23 Composition for heat radiation member, heat radiation member, electronic device, method for manufacturing heat radiation member
JP2019539423A JP7060021B2 (en) 2017-08-30 2018-08-23 Manufacturing method of composition for heat dissipation member, heat dissipation member, electronic device, heat dissipation member
CN201880050456.5A CN111051466A (en) 2017-08-30 2018-08-23 Composition for heat-emitting member, electronic device, and method for producing heat-emitting member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017166038 2017-08-30
JP2017-166038 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019044646A1 true WO2019044646A1 (en) 2019-03-07

Family

ID=65527251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031108 WO2019044646A1 (en) 2017-08-30 2018-08-23 Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member

Country Status (5)

Country Link
JP (1) JP7060021B2 (en)
KR (1) KR20200044789A (en)
CN (1) CN111051466A (en)
TW (1) TW201920590A (en)
WO (1) WO2019044646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029273A (en) * 2020-09-07 2020-12-04 北京航天凯恩化工科技有限公司 Conductive nylon master batch with graphene-carbon nanotube composite structure and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170744A1 (en) * 2014-05-09 2015-11-12 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, and electronic device
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
JP2016153500A (en) * 2016-03-29 2016-08-25 グンゼ株式会社 Insulating thermoconductive polyimide resin composition
JP2017095566A (en) * 2015-11-20 2017-06-01 株式会社巴川製紙所 Thermal conductive thermosetting adhesive composition and thermal conductive thermosetting adhesive sheet
WO2017150589A1 (en) * 2016-03-02 2017-09-08 Jnc株式会社 Composition for heat-dissipating member, heat-dissipating member, electronic instrument, and method for producing heat-dissipating member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182807B1 (en) 2011-02-24 2012-09-13 주식회사 나노시스템 Apparatus for regulating optical path of interference system and Optical path regulation method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170744A1 (en) * 2014-05-09 2015-11-12 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, and electronic device
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
JP2017095566A (en) * 2015-11-20 2017-06-01 株式会社巴川製紙所 Thermal conductive thermosetting adhesive composition and thermal conductive thermosetting adhesive sheet
WO2017150589A1 (en) * 2016-03-02 2017-09-08 Jnc株式会社 Composition for heat-dissipating member, heat-dissipating member, electronic instrument, and method for producing heat-dissipating member
JP2016153500A (en) * 2016-03-29 2016-08-25 グンゼ株式会社 Insulating thermoconductive polyimide resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029273A (en) * 2020-09-07 2020-12-04 北京航天凯恩化工科技有限公司 Conductive nylon master batch with graphene-carbon nanotube composite structure and preparation method thereof
CN112029273B (en) * 2020-09-07 2022-04-29 北京航天凯恩化工科技有限公司 Conductive nylon master batch with graphene-carbon nanotube composite structure and preparation method thereof

Also Published As

Publication number Publication date
KR20200044789A (en) 2020-04-29
TW201920590A (en) 2019-06-01
JP7060021B2 (en) 2022-04-26
JPWO2019044646A1 (en) 2020-08-13
CN111051466A (en) 2020-04-21

Similar Documents

Publication Publication Date Title
JP6902193B2 (en) Manufacture method of composition for heat dissipation member, heat dissipation member, electronic device, heat dissipation member
WO2016031888A1 (en) Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
JP6959488B2 (en) Method for manufacturing composition for low thermal expansion member, low thermal expansion member, electronic device, low thermal expansion member
WO2017150588A1 (en) Composition for heat-dissipating member, heat-dissipating member, electronic instrument, method for producing composition for heat-dissipating member, and method for producing heat-dissipating member
JP2019172936A (en) Composition for heat radiation member, heat radiation member, and electronic device
WO2019044646A1 (en) Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member
JP2019177688A (en) Laminated sheet, heat dissipation component, light-emitting device, and light-emitting apparatus
JP2020164755A (en) Composition for heat radiation member, heat radiation member, electronic apparatus, and method for manufacturing heat radiation member
WO2019188973A1 (en) Composition, heat dissipation member, electronic device and method for producing composition
US20210187902A1 (en) Laminate, electronic device, and production method for laminate
JP7452304B2 (en) Composition for heat dissipation member, heat dissipation member, electronic device, and method for producing heat dissipation member
WO2018181839A1 (en) Laminated body, electronic apparatus, and method for manufacturing laminated body
JP2020164756A (en) Composition for heat radiation member, heat radiation member, electronic apparatus, and method for manufacturing heat radiation member
WO2010047398A1 (en) Prepreg having excllent heat conductivity, method for producing prepreg, and molded plate
WO2018181838A1 (en) Composition for heat dissipation members, heat dissipation member, electronic device, and method for producing heat dissipation member
JP2019137801A (en) Composition for heat radiation members, heat radiation member, electronic apparatus, and method for producing heat radiation member
WO2019049911A1 (en) Composition for heat dissipating member, heat dissipating member, electronic device, and method for manufacturing heat dissipating member
JP2019172937A (en) Composition for heat radiation member, heat radiation member, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850073

Country of ref document: EP

Kind code of ref document: A1