WO2019041167A1 - 光通信装置和***以及相应的信息传输和接收方法 - Google Patents

光通信装置和***以及相应的信息传输和接收方法 Download PDF

Info

Publication number
WO2019041167A1
WO2019041167A1 PCT/CN2017/099642 CN2017099642W WO2019041167A1 WO 2019041167 A1 WO2019041167 A1 WO 2019041167A1 CN 2017099642 W CN2017099642 W CN 2017099642W WO 2019041167 A1 WO2019041167 A1 WO 2019041167A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
mode
information
frequency
light
Prior art date
Application number
PCT/CN2017/099642
Other languages
English (en)
French (fr)
Inventor
王晓东
方俊
李江亮
苏爱民
Original Assignee
陕西外号信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西外号信息技术有限公司 filed Critical 陕西外号信息技术有限公司
Priority to JP2020512412A priority Critical patent/JP7019798B2/ja
Priority to PCT/CN2017/099642 priority patent/WO2019041167A1/zh
Priority to EP17923326.7A priority patent/EP3678302A4/en
Priority to TW107130175A priority patent/TWI713887B/zh
Publication of WO2019041167A1 publication Critical patent/WO2019041167A1/zh
Priority to US16/801,059 priority patent/US10990774B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10712Fixed beam scanning
    • G06K7/10722Photodetector array or CCD scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06046Constructional details
    • G06K19/06112Constructional details the marking being simulated using a light source, e.g. a barcode shown on a display or a laser beam with time-varying intensity profile
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14131D bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the present invention belongs to the field of optical information technology, and more particularly to an optical communication device, an optical communication system including the same, and a corresponding information transmission and reception method.
  • Barcodes and QR codes have been widely adopted to encode information. When these barcodes and QR codes are scanned with a specific device or software, the corresponding information is identified.
  • the recognition distance between the barcode and the two-dimensional code is very limited. For example, for a two-dimensional code, when scanning with a mobile phone camera, the phone must typically be placed at a relatively short distance, typically about 15 times the width of the two-dimensional code. Therefore, for long-distance recognition (for example, 200 times the width of the two-dimensional code), barcodes and two-dimensional codes are usually not implemented, or very large barcodes and two-dimensional codes must be customized, but this will bring about an increase in cost. And in many cases it is impossible to achieve due to various other restrictions.
  • CMOS imaging devices data readout is serial, so clear/exposure/readout can only be done line-by-line in a pipeline-like manner and will be processed after all rows of the image sensor array have been processed. It is synthesized into one frame of image. Thus, the entire CMOS image sensor array is actually progressively exposed (in some cases CMOS image sensor arrays may also be exposed in multiple lines at a time), which results in small delays between rows. Due to this small delay, when the light source flashes at a certain frequency, some undesired streaks appear on the image taken by the CMOS imaging device, which affects the shooting effect.
  • an aspect of the invention relates to an optical communication device comprising: at least one light source; and a controller configured to control each of the at least one light source to operate at least Two modes, the at least two modes including a first mode and a second mode, wherein the first mode is for transmitting first information, and the second mode is for transmitting a different number from the first information Second information, wherein, for any one of the at least one light source, in the first mode, an attribute of light emitted by the light source changes at a first frequency to capture the light source by a CMOS image sensor a stripe appears on the image of the light source obtained at the time, in the second mode, the light emitted by the light source is not presented on the image of the light source obtained when the light source is photographed by the CMOS image sensor stripe.
  • Another aspect of the invention relates to a method of transmitting information using a light source, comprising: continuously controlling the light source to operate in a first mode or a second mode according to information to be transmitted, the first mode for transmitting first information
  • the second mode is for transmitting second information different from the first information, wherein, in the first mode, an attribute of light emitted by the light source changes at a first frequency to pass through a CMOS image a stripe appearing on an image of the light source obtained by the sensor when the light source is photographed, and in the second mode, the light emitted by the light source is obtained when the light source is photographed by a CMOS image sensor No streaks are present on the image of the light source.
  • Another aspect of the invention relates to a method of receiving information transmitted by the aforementioned optical communication device, the method comprising: obtaining an image of a light source by a CMOS image sensor; determining whether a portion of the image corresponding to a position of the light source exists Stripes; and determining whether the light source transmits the first information or the second information different from the first information according to whether there is a stripe.
  • Another aspect of the invention relates to an apparatus for receiving information transmitted by the aforementioned optical communication apparatus, comprising a CMOS image sensor, a processor and a memory, wherein the memory stores a computer program, the computer program being executed by the processor
  • the method can be used to implement the above-described information received by the optical communication device.
  • Another aspect of the invention relates to a storage medium in which is stored a computer program that, when executed, can be used to implement the above-described method of receiving information transmitted by an optical communication device.
  • an optical communication system comprising: at least one light source; a controller configured to control each of the at least one light source to operate in at least two modes, the at least two modes The first mode and the second mode are included, wherein the first mode is for transmitting first information, the second mode is for transmitting second information different from the first information, and wherein, for the at least a light source of any one of the light sources, wherein the property of the light emitted by the light source changes at a first frequency; and a device comprising a CMOS image sensor configured to photograph the at least one light source Wherein, when the light source operates in the first mode, streaks are present on an image of the light source obtained by the device, and when the light source operates in the second mode, at the device No streaks are present on the image of the obtained light source.
  • an optical communication apparatus comprising: at least one light source; and a controller configured to control each of the at least one light source to operate in at least two modes, the at least two The mode includes a first mode and a second mode, wherein the first mode is for transmitting first information, and the second mode is for transmitting second information different from the first information, wherein a light source of any one of the light sources, wherein in the first mode, an attribute of light emitted by the light source changes at a first frequency, thereby obtaining an image of the light source obtained when the light source is photographed by a CMOS image sensor Stripes appearing thereon, in the second mode, the properties of the light emitted by the light source are varied at a second frequency, thereby presenting on the image of the light source obtained when the light source is photographed by the CMOS image sensor A stripe different from the stripe in the first mode.
  • Another aspect of the invention relates to a method of transmitting information using a light source, comprising: controlling the light source to operate in a first mode or a second mode according to information to be transmitted, the first mode for transmitting first information,
  • the second mode is for transmitting second information different from the first information, wherein, in the first mode, an attribute of light emitted by the light source changes at a first frequency, thereby passing through a CMOS image sensor Stripes appearing on the image of the light source obtained when the light source is photographed, and in the second mode, the properties of the light emitted by the light source are varied at a second frequency, thereby being described by the CMOS image sensor
  • the image of the light source obtained when the light source is photographed exhibits a stripe different from the stripe in the first mode.
  • FIG. 1 is a schematic view of a CMOS imaging device
  • CMOS imaging device 2 is a pattern of an image acquired by a CMOS imaging device
  • Figure 3 is a light source in accordance with one embodiment of the present invention.
  • FIG. 4 is a light source in accordance with another embodiment of the present invention.
  • FIG. 5 is an imaging timing chart of a CMOS imaging device
  • Figure 7 shows an image of the CMOS imaging device at different stages when the light source is operating in the first mode
  • FIG. 8 illustrates an imaging timing diagram of a CMOS imaging device when the light source operates in the first mode, in accordance with an embodiment of the present invention
  • FIG. 9 illustrates an imaging timing diagram of a CMOS imaging device when the light source operates in the second mode, in accordance with an embodiment of the present invention
  • FIG. 10 illustrates an imaging timing diagram of a CMOS imaging device when a light source operates in a first mode in accordance with another embodiment of the present invention
  • FIG. 11 shows an imaging timing diagram of a CMOS imaging device for implementing a stripe different from that of FIG. 8 in accordance with another embodiment of the present invention
  • Figure 16 is an image diagram of an optical tag including a positioning indicator in accordance with one embodiment of the present invention.
  • the attribute of light in this application refers to any property that the CMOS imaging device can recognize, for example, it may be an attribute that the human eye can perceive, such as the intensity, color, and wavelength of light, or other attributes that are not perceptible to the human eye.
  • the intensity, color or wavelength of the electromagnetic wavelength outside the visible range of the human eye changes, or any combination of the above properties. Therefore, the change in the properties of light can be A single attribute changes, or it can be a combination of two or more attributes.
  • the intensity of the light is selected as an attribute, it can be achieved simply by selecting to turn the light source on or off.
  • the light source When the light source operates in the first mode or the second mode, the light source can be imaged using a CMOS imaging device or a device having a CMOS imaging device (eg, a cell phone, a tablet, smart glasses, etc.).
  • a CMOS imaging device eg, a cell phone, a tablet, smart glasses, etc.
  • a mobile phone as a CMOS imaging device will be described as an example, as shown in FIG. 2 .
  • the line scanning direction of the mobile phone is shown as a vertical direction in FIG. 2, but those skilled in the art can understand that the line scanning direction can also be a horizontal direction depending on the underlying hardware configuration.
  • the light source may be a two-dimensional array of a plurality of LED lamps, one dimension of which is longer than the other dimension, preferably a ratio of between about 6-12:1.
  • the LED light array can be composed of a plurality of LED lamps arranged in a row.
  • the LED light array can be rendered as a substantially rectangular light source when illuminated, and the operation of the light source is controlled by a controller.
  • Figure 3 illustrates a light source in accordance with one embodiment of the present invention.
  • the light source shown in FIG. 3 can be a plurality of rectangular shapes. Combination, for example, an L-shaped light source as shown in FIG.
  • FIG. 5 shows an imaging timing diagram of a CMOS imaging device, each of which corresponds to a row of sensors of the CMOS imaging device.
  • two stages are mainly involved, namely, exposure time and readout time.
  • the exposure time of each line may overlap, but the readout time does not overlap.
  • the exposure time of a CMOS imaging device can be set or adjusted (for example, set or adjusted by an APP installed on a mobile phone) to select a relative Short exposure time.
  • the exposure time can be made approximately equal to or less than the readout time of each row. Taking the 1080p resolution as an example, the readout time of each line is approximately 8.7 microseconds.
  • FIG. 6 shows an imaging timing chart of the CMOS imaging device in this case.
  • the exposure time of each line does not substantially overlap, or the number of overlapping portions is small, so that stripes having relatively clear boundaries can be obtained at the time of imaging, which is more easily recognized.
  • FIG. 6 is only a preferred embodiment of the present invention, and a longer (for example, twice or three times, four times or four times the readout time of each row, etc.) or a shorter exposure time is also feasible. of.
  • a longer for example, twice or three times, four times or four times the readout time of each row, etc.
  • Figure 7 is a view showing an image of a CMOS imaging device at different stages when the light source is operated in the first mode using a controller, in which the property of the light emitted by the light source is changed at a certain frequency, in this example Medium to turn the light source on and off.
  • Fig. 7 shows a state change diagram of the light source at different stages
  • the lower part shows an image of the light source on the CMOS imaging device at different stages, wherein the row direction of the CMOS imaging device is vertical and from the left Scan to the right. Since the image captured by the CMOS imaging device is progressively scanned, when the high-frequency flicker signal is captured, the portion of the obtained image on the image corresponding to the imaging position of the light source forms a stripe as shown in the lower part of FIG.
  • time period 1 the light source is turned on, in which the scanning line of the leftmost portion of the exposure exhibits bright streaks; in time period 2, the light source is turned off, in which the scanned lines of the exposure exhibit dark stripes; in time period 3, the light source is turned on, The scanned lines exposed during this time period exhibit bright streaks; in time period 4, the light source is turned off, during which the scanned lines of exposure exhibit dark stripes.
  • a longer turn-on or turn-off time usually corresponds to a wider stripe.
  • the exposure time is set to be substantially equal to the exposure time of each line of the CMOS imaging device (this exposure time can be set by the APP installed on the mobile phone or manually set. ), it is possible to present stripes with a width of only one pixel when imaging. In order to enable long-distance identification of optical tags, the narrower the stripes, the better.
  • transition stripes there may be some transition stripes, but there must be rows that are exposed when the light source is always off (also That is, the darkest stripe) is the line that is exposed when the light source is always on (that is, the brightest stripe), which is separated by one pixel.
  • the light and dark variations (i.e., fringes) of such pixel rows can be easily detected (e.g., by comparing the brightness or grayscale of some of the pixels in the imaged area of the source).
  • the light and dark stripe difference threshold and the ratio threshold are related to the optical label illumination intensity, the photosensitive device property, the shooting distance, and the like. Those skilled in the art will appreciate that other thresholds are also possible as long as computer-resolvable stripes are present. When the streaks are identified, the information conveyed by the light source at this time, such as binary data 0 or data 1, can be determined.
  • the stripe recognition method is as follows: obtaining an image of the optical label, and dividing the imaging area of the light source by means of projection; collecting stripe in different configurations (for example, different distances, different light source flicker frequencies, etc.) Images and unstripe pictures; normalize all collected pictures to a specific size, such as 64*16 pixels; extract each pixel feature as input feature, build a machine learning classifier; perform two-class discrimination to determine a striped picture Still a non-striped picture.
  • a specific size such as 64*16 pixels
  • extract each pixel feature as input feature, build a machine learning classifier perform two-class discrimination to determine a striped picture Still a non-striped picture.
  • strip light source For a strip light source with a length of 5 cm, when using a mobile phone that is currently on the market, setting the resolution to 1080p, when shooting 10 meters away (that is, the distance is 200 times the length of the light source),
  • the strip light source occupies about 6 pixels in its length direction, and if each stripe width is 2 pixels, it will appear in a range of widths of a plurality of apparent pixels within the width of the 6 pixels. At least one distinct stripe that can be easily identified. If a higher resolution is set, or optical zoom is used, the stripe can be recognized at a greater distance, for example, when the distance is 300 or 400 times the length of the light source.
  • the controller can also operate the light source in the second mode.
  • the properties of the light emitted by the light source are changed at another frequency different from the first mode, such as turning the light source on and off.
  • the controller can increase the turn-on and turn-off frequencies of the light source compared to the first mode.
  • the light source can be configured to turn the light source on and off at least once during the exposure time of each row of the CMOS imaging device.
  • FIG. 9 shows a case where the light source is turned on and off only once during the exposure time of each line, wherein the signal of the upper portion of FIG.
  • the turn-on time of the light source substantially corresponds to the start time of the exposure time of a certain line of the CMOS imaging device, but those skilled in the art can It is understood that even if the two are not synchronized as in Fig. 9, there is no significant difference in brightness between the respective pixel rows of the final image of the light source, so that no streaks exist. When the streaks are not recognized, the information conveyed by the light source at this time, such as binary data 1 or data 0, can be determined. For the human eye, the human eye does not perceive any flickering phenomenon when the light source of the present invention operates in the first mode and the second mode described above due to persistence of vision.
  • stripes of different widths may be implemented based on different property change frequencies, for example, in the first mode, the light source may operate as shown in FIG. 8 to achieve a first width of approximately two pixels In the second mode, the durations of the high level and the low level in each period of the light source control signal in FIG. 8 can be respectively changed to twice the original, as shown in FIG. 11, thereby realizing A second strip of width of approximately four pixels.
  • the third mode can be further set.
  • the red and blue lights are controlled in the manner shown in Figure 10 to achieve a red-blue stripe, a third type of information.
  • another type of information that is, the fourth type of information, can be further transmitted by not presenting stripes.
  • the optical label of the present invention At least 200 times the recognition distance has a distinct advantage.
  • the long-distance recognition capability is especially suitable for outdoor recognition. Taking a recognition distance of 200 times as an example, for a light source with a length of 50 cm set on a street, a person within 100 meters from the light source can pass the mobile phone and the light source. Interact.
  • the solution of the present invention does not require the CMOS imaging device to be located at a fixed distance from the optical tag, nor does it require time synchronization between the CMOS imaging device and the optical tag, and does not require accurate detection of the boundaries and widths of the individual stripes. Therefore, it has extremely strong stability and reliability in actual information transmission.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Studio Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种光通信装置,其包括:至少一个光源;以及控制器,其被配置为控制所述至少一个光源中的每个光源工作于至少两种模式,所述至少两种模式包括第一模式和第二模式,其中,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,其中,对于所述至少一个光源中的任意一个光源,在所述第一模式下,所述光源发出的光的属性以第一频率变化,以在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上不呈现条纹。

Description

光通信装置和***以及相应的信息传输和接收方法 技术领域
本发明属于光信息技术领域,更具体地涉及一种光通信装置、包含该光通信装置的光通信***以及相应的信息传输和接收方法。
背景技术
条形码和二维码已经被广泛采用来对信息进行编码。当用特定设备或软件扫描这些条形码和二维码时,相应的信息就会被识别出来。然而,条形码和二维码的识别距离很受限制。例如,对于二维码而言,当用手机摄像头对其进行扫描时,该手机通常必须置于一个比较近的距离内,该距离通常只是二维码的宽度的15倍左右。因此,对于远距离识别(例如相当于二维码宽度的200倍的距离),条形码和二维码通常不能实现,或者必须定制非常大的条形码和二维码,但这会带来成本的提升,并且在许多情形下由于其他各种限制是不可能实现的。
CMOS成像器件是目前广泛采用的成像器件,其如图1所示,包括像敏单元(也称为图像传感器)阵列以及一些其他元件。图像传感器阵列可以是光电二极管阵列,每一个图像传感器对应于一个像素。每一列图像传感器都对应于一个列放大器,列放大器的输出信号之后被送往A/D转换器(ADC)进行模数转换,然后通过接口电路输出。对于图像传感器阵列中的任一图像传感器,在曝光开始时现将其清零,然后等待曝光时间过后,将信号值读出。在CMOS成像器件中,数据的读出是串行的,所以清零/曝光/读出也只能以类似于流水线的方式逐行顺序进行,并在图像传感器阵列的所有行都处理完成后将其合成为一帧图像。因此,整个CMOS图像传感器阵列实际上是逐行曝光的(在某些情况下CMOS图像传感器阵列也可能采用每次多行一起曝光的方式),这导致了各个行之间存在小的时延。由于该小的时延,当光源以一定频率闪动时,会在CMOS成像器件拍摄的图像上呈现出一些不期望的条纹,影响到拍摄效果。
人们已经发现了理论上可以利用CMOS成像器件拍摄的图像上的条纹来传递信息(类似于条形码那样),并试图通过条纹来传递尽可能多的信息,但是这通常需要使得CMOS成像器件与光源尽量接近,并最好始终处于大致固定的距离处,并且还需要精细的时间同步、对各个条纹的边界的精确识别、对各个条纹的宽度的精确检测等等,因此,在实践中其稳定性和可靠性并不令人满意,也未获得广泛使用。
发明内容
为了实现对信息的远距离识别,本发明的一个方面涉及一种光通信装置,其包括:至少一个光源;以及控制器,其被配置为控制所述至少一个光源中的每个光源工作于至少两种模式,所述至少两种模式包括第一模式和第二模式,其中,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,其中,对于所述至少一个光源中的任意一个光源,在所述第一模式下,所述光源发出的光的属性以第一频率变化,以在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上不呈现条纹。
本发明的另一个方面涉及一种使用光源来传输信息的方法,包括:根据要传输的信息连续控制所述光源工作于第一模式或者第二模式,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,其中,在所述第一模式下,所述光源发出的光的属性以第一频率变化,以在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上不呈现条纹。
本发明的另一个方面涉及一种使用光源来传输信息的装置,包括用于对所述光源进行控制的控制器,所述控制器被配置用于实现上述使用光源来传输信息的方法。
本发明的另一个方面涉及一种存储介质,其中存储有计算机程序,所述计算机程序在被执行时能够用于实现上述使用光源来传输信息的方法。
本发明的另一个方面涉及一种接收前述光通信装置传输的信息的方法,所述方法包括:通过CMOS图像传感器获得光源的图像;判断所述图像上与所述光源的位置对应的部分是否存在条纹;以及根据是否存在条纹,确定所述光源传输的是第一信息还是与所述第一信息不同的第二信息。
本发明的另一个方面涉及一种接收前述光通信装置传输的信息的装置,包括CMOS图像传感器、处理器和存储器,所述存储器中存储有计算机程序,所述计算机程序在被所述处理器执行时能够用于实现上述接收光通信装置传输的信息的方法。
本发明的另一个方面涉及一种存储介质,其中存储有计算机程序,所述计算机程序在被执行时能够用于实现上述接收光通信装置传输的信息的方法。
本发明的另一个方面涉及一种光通信***,包括:至少一个光源;控制器,其被配置为控制所述至少一个光源中的每个光源工作于至少两种模式,所述至少两种模式包括第一模式和第二模式,其中,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,并且其中,对于所述至少一个光源中的任意一个光源,在所述第一模式下,所述光源发出的光的属性以第一频率变化;以及包括CMOS图像传感器的设备,其被配置为对所述至少一个光源进行拍摄,其中,当所述光源工作于所述第一模式时,在所述设备所获得的所述光源的图像上呈现出条纹,当所述光源工作于所述第二模式时,在所述设备所获得的所述光源的图像上不呈现条纹。
本发明的另一个方面涉及一种光通信方法,包括:根据要传输的信息控制光源工作于第一模式或者第二模式,其中,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,并且其中,在所述第一模式下,所述光源发出的光的属性以第一频率变化,从而在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上不呈现条纹;通过CMOS图像传感器获得所述光源的连续的多帧图像;判断所述光源的每一帧图像上是否存在条纹;以及根据是否存在条纹,确定所述光源传输的是 第一信息还是与所述第一信息不同的第二信息。
本发明的另一个方面涉及一种光通信装置,包括:至少一个光源;以及控制器,其被配置为控制所述至少一个光源中的每个光源工作于至少两种模式,所述至少两种模式包括第一模式和第二模式,其中,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,其中,对于所述至少一个光源中的任意一个光源,在所述第一模式下,所述光源发出的光的属性以第一频率变化,从而在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光的属性以第二频率变化,从而在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出与所述第一模式下的条纹不同的条纹。
本发明的另一个方面涉及一种使用光源来传输信息的方法,包括:根据要传输的信息控制所述光源工作于第一模式或者第二模式,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,其中,在所述第一模式下,所述光源发出的光的属性以第一频率变化,从而在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光的属性以第二频率变化,从而在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出与所述第一模式下的条纹不同的条纹。
附图说明
以下参照附图对本发明的实施例作进一步说明,其中:
图1为CMOS成像器件的示意图;
图2为CMOS成像器件获取图像的方向图;
图3为根据本发明的一个实施例的光源;
图4为根据本发明的另一个实施例的光源;
图5为CMOS成像器件的成像时序图;
图6为CMOS成像器件的另一成像时序图;
图7示出了当光源工作于第一模式时在不同阶段在CMOS成像器件上的成像图;
图8示出了根据本发明的一个实施例当光源工作于第一模式时CMOS成像器件的成像时序图;
图9示出了根据本发明的一个实施例当光源工作于第二模式时CMOS成像器件的成像时序图;
图10示出了根据本发明的另一个实施例当光源工作于第一模式时CMOS成像器件的成像时序图;
图11示出了根据本发明的另一个实施例的用于实现与图8不同的条纹的CMOS成像器件的成像时序图;
图12-13示出了在不同设置下获得的光源的两种有条纹图像;
图14示出了获得的光源的一种无条纹图像;
图15是根据本发明的一个实施例的采用三个独立光源的光标签的一个成像图;
图16是根据本发明的一个实施例的包括定位标识的光标签的一个成像图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进行进一步详细说明。
本发明的一个实施例涉及一种光通信装置,其能够通过发出不同的光来传输不同的信息。该光通信装置在本文中也被称为“光标签”,两者在整个本申请中可以互换使用。光通信装置包括光源和控制器,该控制器被配置为控制所述光源工作于两个或更多个模式,所述两个或更多个模式包括第一模式和第二模式,其中,在所述第一模式下,所述光源发出的光的属性以第一频率变化,以传递第一信息,在所述第二模式下,所述光源发出的光的属性以第二频率变化或者不发生改变,以传递与第一信息不同的第二信息。
光的属性在本申请中指的是CMOS成像器件能够识别的任何一种属性,例如其可以是光的强度、颜色、波长等人眼可感知的属性,也可以是人眼不可感知的其他属性,例如在人眼可见范围外的电磁波长的强度、颜色或波长改变,或者是上述属性的任一组合。因此,光的属性变化可以是 单个属性发生变化,也可以是两个或更多个属性的组合发生变化。当选择光的强度作为属性时,可以简单地通过选择开启或关闭光源实现。在下文中为了简单起见,以开启或关闭光源来改变光的属性,但本领域技术人员可以理解,用于改变光的属性的其他方式也是可行的。需要说明的是,在上述第一模式中以第一频率变化的光的属性可以与在上述第二模式中以第二频率变化的光的属性相同或不相同。优选地,在所述第一模式和第二模式中发生变化的光的属性是相同的。
当光源以第一模式或第二模式工作时,可以使用CMOS成像器件或者具有CMOS成像器件的设备(例如手机、平板电脑、智能眼镜等)对光源进行成像。在下文中以手机作为CMOS成像器件为例进行说明,如图2所示。该手机的行扫描方向在图2中示出为垂直方向,但本领域技术人员可以理解,依据底层硬件配置的不同,行扫描方向也可以是水平方向。
光源可以是各种形式的光源,只要其某一可被CMOS成像器件感知的属性能够以不同频率进行变化即可。例如,该光源可以是一个LED灯、由多个LED灯构成的阵列、显示屏幕或者其中的一部分,甚至光的照射区域(例如光在墙壁上的照射区域)也可以作为光源。该光源的形状可以是各种形状,例如圆形、正方形、矩形、条状、L状等。光源中可以包括各种常见的光学器件,例如导光板、柔光板、漫射器等。在一个优选实施例中,光源可以是由多个LED灯构成的二维阵列,该二维阵列的一个维度长于另外一个维度,优选地,两者之间的比例约为6-12:1。例如,该LED灯阵列可以由排成一列的多个LED灯构成。在发光时,该LED灯阵列可以呈现为一个大致为长方形的光源,并由控制器控制该光源的操作。
图3示出了根据本发明的一个实施例的光源。在使用CMOS成像器件对图3所示的光源进行成像时,优选地使图3所示的光源的长边与CMOS成像器件的行方向(例如,图2所示的手机的行扫描方向)垂直或大致垂直,以在其他条件相同的情况下成像出尽量多的条纹。然而,有时用户并不了解其手机的行扫描方向,为了保证手机在各种姿态下都能够进行识别,并且在竖屏和横屏下都能够达到最大的识别距离,光源可以为多个长方形的组合,例如,如图4所示的L状光源。
在另一实施例中,光源可以不局限于平面光源,而是可以被实现为一个 立体光源,例如,一个条状的圆柱形光源、立方体光源、等等。该光源例如可以被放置在广场上、悬置于室内场所(例如餐厅、会议室等)的大致中心位置,从而附近的位于各个方向的用户都可以通过手机拍摄该光源,从而获得该光源所传递的信息。
图5示出了CMOS成像器件的成像时序图,其中的每一行对应于CMOS成像器件的一行传感器。在CMOS成像传感器阵列的每一行进行成像时,主要涉及两个阶段,分别为曝光时间和读出时间。各行的曝光时间有可能发生重叠,但读出时间不会重叠。
需要说明的是,图5中仅示意性地示出了少量的行,在实际的CMOS成像器件中,依赖于分辨率的不同,通常具有上千行传感器。例如,对于1080p分辨率,其具有1920×1080个像素,数字1080表示有1080条扫描行,数字1920表示每行有1920个像素。对于1080p分辨率,每一行的读出时间大致为8.7微秒(即,8.7×10-6秒)。
如果曝光时间过长导致相邻行之间的曝光时间出现大量重叠,则可能在成像时呈现出明显过渡的条纹,例如,在纯黑色像素行与纯白色像素行之间的多条具有不同灰度的像素行。本发明期望能够呈现出尽量清晰的像素行,为此,可以对CMOS成像器件(例如手机)的曝光时间进行设置或调整(例如,通过手机上安装的APP来进行设置或调整),以选择相对较短的曝光时间。在一个优选的实施例中,可以使得曝光时间大致等于或小于每一行的读出时间。以1080p分辨率为例,其每一行的读出时间大致为8.7微秒,在这种情况下,可以考虑将手机的曝光时间调整为大约8.7微秒或更短。图6示出了在这种情况下的CMOS成像器件的成像时序图。在这种情况下,每行的曝光时间基本不发生重叠,或者重叠部分较少,从而可以在成像时获得具有比较清晰的边界的条纹,其更容易被识别出来。需要说明的是,图6仅仅是本发明的一个优选实施例,更长的(例如等于或小于每一行的读出时间的两倍、三倍或四倍等)或更短的曝光时间也是可行的。例如,在本申请的图12和13中所示的有条纹图像的成像过程中,每一行的读出时间大致为8.7微秒,而所设置的每行曝光时长为14微秒。另外,为了呈现出条纹,可将光源的一个周期的时长设置为曝光时长的两倍左右或更长,优选地可以设置为曝光时长的四倍左右或更长。
图7示出了当使用控制器使光源工作于第一模式时在不同阶段在CMOS成像器件上的成像图,在该第一模式下,以一定频率改变光源发出的光的属性,在本例中为开启和关闭光源。
图7的上部示出了在不同阶段的光源的状态变化图,下部示出了在不同阶段该光源在CMOS成像器件上的成像图,其中,CMOS成像器件的行方向为垂直方向,并从左向右扫描。由于CMOS成像器件采集图像是逐行扫描的,因此在拍摄高频闪烁信号时,所获得的一帧图像上与光源的成像位置对应的部分会形成如图7下部所示的条纹,具体地,在时段1,光源开启,在该时段中曝光的最左侧部分的扫描行呈现亮条纹;在时段2,光源关闭,在该时段中曝光的扫描行呈现暗条纹;在时段3,光源开启,在该时段中曝光的扫描行呈现亮条纹;在时段4,光源关闭,在该时段中曝光的扫描行呈现暗条纹。
可以通过设置光源闪烁的频率,或者设置光源每次开启和关闭的时长,来调整出现的条纹的宽度,更长的开启或关闭时间通常对应于更宽的条纹。例如,对于图6所示的情形,如果将光源每次开启和关闭的时长均设置为大致等于CMOS成像器件的每一行的曝光时间(该曝光时间可以通过手机上安装的APP进行设置或者手工设置),则可以在成像时呈现出宽度为仅一个像素的条纹。为了能够实现对光标签的远距离识别,应使条纹越窄越好。但在实践中,由于光线干扰、同步等原因,宽度为仅一个像素的条纹可能不太稳定,或者不太容易识别,因此,为了提高识别的稳定性,优选地实现宽度为两个像素的条纹。例如,对于图6所示的情形,可以通过将光源每次开启或关闭的时长均设置为大致等于CMOS成像器件的每一行的曝光时长的大约2倍,来实现宽度为大约两个像素的条纹,具体如图8所示,其中,图8的上部的信号为光源控制信号,其高电平对应于光源的开启,而低电平对应于光源的关闭。在图8所示的实施例中,将光源控制信号的占空比设置为大约50%,将每一行的曝光时长设置为大致等于每一行的读出时间,但本领域技术人员可以理解,其他设置也是可行的,只要能够呈现出可分辨的条纹即可。为了描述简单起见,图8中使用了光源与CMOS成像器件之间的同步,以使得光源的开启和关闭的时间大致对应于CMOS成像器件的某一行的曝光时长的开始或结束时间,但是本领域技术 人员可以理解,即使两者未能如图8那样同步,也可以在CMOS成像器件上呈现出明显的条纹,此时,可能会存在一些过渡条纹,但一定存在光源始终关闭时曝光的行(也即最暗的条纹)与光源始终开启时曝光的行(也即最亮的条纹),两者间隔一个像素。这种像素行的明暗变化(也即条纹)可以被容易地检测出来(例如,通过比较光源成像区域中的一些像素的亮度或灰度)。更进一步,即使不存在光源始终关闭时曝光的行(也即最暗的条纹)和光源始终开启时曝光的行(也即最亮的条纹),如果存在曝光时间内光源开启部分t1小于一定时间长度或占整个曝光时长较小比例的行(也即较暗条纹),和曝光时间内光源开启部分t2大于一定时间长度或占整个曝光时长较大比例的行(也即较亮条纹),且t2-t1>明暗条纹差值阈值(例如10微秒),或t2/t1>明暗条纹比例阈值(例如2),这些像素行之间的明暗变化也可以被检测出来。上述明暗条纹差值阈值和比例阈值和光标签发光强度、感光器件属性、拍摄距离等相关。本领域技术人员可以理解,其他阈值也是可行的,只要能够呈现出计算机可分辨的条纹即可。当识别出条纹时,可以确定出光源此时所传递的信息,例如二进制数据0或数据1。
根据本发明的一个实施例的条纹识别方法如下:得到光标签的图像,利用投影的方式分割出光源的成像区域;收集不同配置下(例如,不同距离、不同的光源闪烁频率等)的有条纹图片和无条纹图片;将所有收集的图片统一归一化到一个特定大小,例如64*16像素;提取每一个像素特征作为输入特征,构建机器学习分类器;进行二分类判别以判断是条纹图片还是非条纹图片。对于条纹识别,本领域普通技术人员还可以采用本领域公知的任何其他方法进行处理,对此不再详述。
对于一个长度为5厘米的条状光源,当使用目前市场上常见的手机,设置分辨率为1080p,在距离其10米远的地方(也即,距离为光源长度的200倍)进行拍摄时,该条状光源在其长度方向上大约会占据6个像素,如果每个条纹宽度为2个像素,则在该6个像素的宽度范围内会呈现出多个明显素的宽度范围内会呈现出至少一个明显的条纹,其可以被很容易地识别出来。如果设置更高的分辨率,或者采用光学变焦,在更远的距离,例如距离为光源长度的300倍或400倍时,也能够识别出条纹。
控制器也可以使光源工作于第二模式。在一个实施例中,在第二模式下,以与第一模式不同的另一频率来改变光源发出的光的属性,例如开启和关闭光源。在一个实施例中,相比于第一模式,控制器可以提高光源的开启和关闭频率。对于图6所示的情形,可以将光源配置为在CMOS成像器件的每一行的曝光时间内光源开启和关闭至少一次。图9示出了在每一行的曝光时间内光源开启和关闭只一次的情形,其中,图9的上部的信号为光源控制信号,其高电平对应于光源的开启,而低电平对应于光源的关闭。由于在每一行的曝光时间内,光源都会以相同的方式开启和关闭一次,每个曝光时间获取的曝光强度能量大致均等,因此光源的最终成像的各个像素行之间的亮度不会存在明显差异,从而不存在条纹。本领域技术人员可以理解,更高的开启和关闭频率也是可行的。另外,为了描述简单起见,图9中使用了光源与CMOS成像器件之间的同步,以使得光源的开启时间大致对应于CMOS成像器件的某一行的曝光时长的开始时间,但是本领域技术人员可以理解,即使两者未能如图9那样同步,在光源的最终成像的各个像素行之间的亮度也不会存在明显差异,从而不存在条纹。当不能识别出条纹时,可以确定出光源此时所传递的信息,例如二进制数据1或数据0。对于人眼而言,由于视觉暂留,本发明的光源工作于上述第一模式和第二模式下时人眼不会察觉到任何闪烁现象。另外,为了避免在第一模式和第二模式之间切换时人眼可能会察觉到的闪烁现象,可以将第一模式和第二模式的占空比设置为大致相等,从而实现在不同模式下的大致相同的光通量。
在另一实施例中,在第二模式下,可以向光源提供直流电,以使得光源发出属性基本不会发生改变的光,从而,在通过CMOS图像传感器对光源拍摄时所获得的该光源的一帧图像上不会呈现条纹。另外,在这种情况下,也可以实现在不同模式下的大致相同的光通量,以避免在第一模式和第二模式之间切换时人眼可能会察觉到的闪烁现象。
上文的图8描述了通过使光源发出的光的强度发生变化(例如,通过开启或关闭光源)来呈现条纹的实施例,在另一实施例中,如图10所示,也可以通过使光源发出的光的波长或颜色发生变化来呈现条纹。在图10所示的实施例中,光源中包括可发出红光的红色灯和可发出蓝光的蓝色灯。 图10的上部的两个信号分别为红光控制信号和蓝光控制信号,其中,高电平对应于相应光源的开启,而低电平对应于相应光源的关闭。该红光控制信号和蓝光控制信号的相位偏移180°,也即,两者电平相反。通过红光控制信号和蓝光控制信号,可以使得光源向外交替地发出红色光和蓝色光,从而当采用CMOS成像器件对光源进行成像时可以呈现出红蓝条纹。
通过确定CMOS成像器件拍摄的一帧图像上与光源对应的部分是否存在条纹,可以确定每帧图像所传递的信息,例如二进制数据1或数据0。进一步地,通过CMOS成像器件拍摄光源的连续的多帧图像,可以确定出由二进制数据1和0构成的信息序列,实现光源向CMOS成像器件(例如手机)的信息传递。在一个实施方式中,当通过CMOS成像器件拍摄光源的连续的多帧图像时,可以通过控制器进行控制,使得光源的工作模式之间的切换时间间隔等于CMOS成像器件一个完整帧成像的时间长度,从而实现光源与成像器件的帧同步,即每帧传输1比特的信息。对于30帧/每秒的拍摄速度,每秒钟可以传递30比特的信息,编码空间达到230,该信息可以包括例如,起始帧标记(帧头)、光标签的ID、口令、验证码、网址信息、地址信息、时间戳或其不同的组合等等。可以按照结构化方法,设定上述各种信息的顺序关系,形成数据包结构。每接收到一个完整的该数据包结构,视为获得一组完整数据(一个数据包),进而可以对其进行数据读取和校验分析。下表示出了根据本发明的一个实施例的数据包结构:
帧头 属性(8bit) 数据位(32bit) 校验位(8bit) 帧尾
在上文的描述中,通过判断每帧图像中在光源的成像位置处是否存在条纹来确定该帧图像所传递的信息。在其他实施例中,可以通过识别每帧图像中在光源的成像位置处的不同条纹来确定该帧图像所传递的不同信息。例如,在第一模式下,光源发出的光的属性以第一频率变化,从而能在通过CMOS图像传感器对光源拍摄时所获得的光源的图像上呈现出第一条纹;在第二模式下,光源发出的光的属性以第二频率变化,从而能在通过CMOS图像传感器对光源拍摄时所获得的光源的图像上呈现出与所述第一条纹不同的第二条纹。条纹的不同可以例如基于不同的宽度、颜色、亮度等或它们的任意组合,只要该不同能够被识别即可。
在一个实施例中,可以基于不同的属性变化频率来实现不同宽度的条纹,例如,在第一模式下,光源可以如图8所示的方式工作,从而实现宽度为大约两个像素的第一种条纹;在第二模式下,可以将图8中的光源控制信号的每个周期中的高电平和低电平的持续时间分别修改为原来的两倍,具体如图11所示,从而实现宽度为大约四个像素的第二种条纹。
在另一个实施例中,可以实现不同颜色的条纹,例如,可以将光源设置为其中包括可发出红光的红色灯和可发出蓝光的蓝色灯,在第一模式下,可以关闭蓝色灯,并使红色灯如图8所示的方式工作,从而实现红黑条纹;在第二模式下,可以关闭红色灯,并使蓝色灯如图8所示的方式工作,从而实现蓝黑条纹。在上述实施例中,在第一模式和第二模式下使用相同的变化频率实现了红黑条纹和蓝黑条纹,但是可以理解,在第一模式和第二模式下可以使用不同的属性变化频率。
另外,本领域技术人员可以理解,可以进一步地通过实现不止两种条纹来表示不止两种信息,例如,在上述光源中包括红色灯和蓝色灯的实施例中,可以进一步设置第三模式,在该第三模式下以图10所示的方式对红色灯和蓝色灯进行控制以实现红蓝条纹,即第三种信息。显然,可选地,也可以进一步通过不呈现条纹来传递另一种信息,即第四种信息。
图12示出了在针对以每秒16000次的频率闪烁的LED灯(每个周期的持续时间为62.5微秒,其中开启时长和关闭时长各为大约31.25微秒),使用1080p分辨率的成像设备,并将每行曝光时长设置为14微秒的情况下,通过实验得到的图像上的条纹。从图12可以看出,呈现出了大致为2-3像素宽度的条纹。图13示出了将图12中的LED灯闪烁频率调整为每秒8000次(每个周期的持续时间为125微秒,其中开启时长和关闭时长各为大约62.5微秒)后,在其他条件不变的情况下通过实验得到的图像上的条纹。从图13可以看出,呈现出了大致为5-6像素宽度的条纹。图14示出了将图12中的LED灯闪烁频率调整为每秒64000次(每个周期的持续时间为15.6微秒,其中开启时长和关闭时长各为大约7.8微秒)后,在其他条件不变的情况下通过实验得到的图像,其上不存在条纹,其原因是每行曝光时长14微秒中基本上涵盖了LED灯的一个开启时长和一个关闭时长。
上文中描述了采用一个光源的情形,在一些实施例中,也可以采用两个或更多个光源。控制器可以独立地控制每一个光源的操作。图15是根据本发明的一个实施例的采用三个独立光源的光标签的一个成像图,其中,两个光源的成像位置出现了条纹,一个光源的成像位置没有出现条纹,该组光源的这一帧图像可以用于传递信息,例如二进制数据110。
在一个实施例中,光标签中还可以包括位于信息传递光源附近的一个或多个定位标识,该定位标识例如可以是特定形状或颜色的灯,该灯例如可以在工作时保持常亮。该定位标识可以有助于CMOS成像器件(例如手机)的用户容易地发现光标签。另外,当CMOS成像器件被设置为对光标签进行拍摄的模式时,定位标识的成像比较明显,易于识别。因此,布置于信息传递光源附近的一个或多个定位标识还能够有助于手机快速地确定信息传递光源的位置,从而有助于识别对应于信息传递光源的成像区域是否存在条纹。在一个实施例中,在识别是否存在条纹时,可以首先在图像中对定位标识进行识别,从而在图像中发现光标签的大致位置。在识别了定位标识之后,可以基于定位标识与信息传递光源之间的相对位置关系,确定图像中的一个或多个区域,该区域涵盖信息传递光源的成像位置。接着,可以针对这些区域进行识别,以判断是否存在条纹,或存在什么样的条纹。图16是根据本发明的一个实施例的包括定位标识的光标签的一个成像图,其中包括三个水平布置的信息传递光源,以及位于信息传递光源两侧的竖直布置的两个定位标识灯。
在一个实施例中,光标签中可以包括环境光检测电路,该环境光检测电路可以用于检测环境光的强度。控制器可以基于检测到的环境光的强度来调整光源在开启时所发出的光的强度。例如,在环境光比较强时(例如白天),使得光源发出的光的强度比较大,而在环境光比较弱时(例如夜里),使得光源发出的光的强度比较小。
在一个实施例中,光标签中可以包括环境光检测电路,该环境光检测电路可以用于检测环境光的频率。控制器可以基于检测到的环境光的频率来调整光源在开启时所发出的光的频率。例如,在环境光存在同频闪动光源时,切换光源发出的光至另一未占用频率。
相比于现有技术中二维码大概15倍左右的识别距离,本发明的光标签 的至少200倍的识别距离具有明显的优势。该远距离识别能力尤其适合于室外识别,以200倍的识别距离为例,对于街道上设置的一个长度为50厘米的光源,在距离该光源100米范围内的人都可以通过手机与该光源进行交互。另外,本发明的方案不要求CMOS成像设备位于与光标签的固定的距离处,也不要求CMOS成像设备与光标签之间的时间同步,并且不需要对各个条纹的边界和宽度进行精确检测,因此,其在实际的信息传输中具有极强的稳定性和可靠性。
本说明书中针对“各个实施例”、“一些实施例”、“一个实施例”、或“实施例”等的参考指代的是结合所述实施例所描述的特定特征、结构、或性质包括在至少一个实施例中。因此,短语“在各个实施例中”、“在一些实施例中”、“在一个实施例中”、或“在实施例中”等在整个说明书中各地方的出现并非必须指代相同的实施例。此外,特定特征、结构、或性质可以在一个或多个实施例中以任何合适方式组合。因此,结合一个实施例中所示出或描述的特定特征、结构或性质可以整体地或部分地与一个或多个其他实施例的特征、结构、或性质无限制地组合,只要该组合不是非逻辑性的或不能工作。另外,本申请附图中的各个元素仅仅为了示意说明,并非按比例绘制。
由此描述了本发明的至少一个实施例的几个方面,可以理解,对本领域技术人员来说容易地进行各种改变、修改和改进。这种改变、修改和改进意于在本发明的精神和范围内。

Claims (42)

  1. 一种光通信装置,其包括:
    至少一个光源;以及
    控制器,其被配置为控制所述至少一个光源中的每个光源工作于至少两种模式,所述至少两种模式包括第一模式和第二模式,其中,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,
    其中,对于所述至少一个光源中的任意一个光源,在所述第一模式下,所述光源发出的光的属性以第一频率变化,以在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上不呈现条纹。
  2. 根据权利要求1所述的光通信装置,其中,在所述第二模式下,所述光源发出的光的属性以与所述第一频率不同的第二频率变化。
  3. 根据权利要求2所述的光通信装置,其中,所述第二频率大于所述第一频率。
  4. 根据权利要求2所述的光通信装置,其中,在所述第一模式下以第一频率变化的光的属性与在所述第二模式下以第二频率变化的光的属性相同。
  5. 根据权利要求4所述的光通信装置,其中,所述属性是光的强度。
  6. 根据权利要求5所述的光通信装置,其中,在所述第一模式下,所述光源以所述第一频率开启和关闭,在所述第二模式下,所述光源以所述第二频率开启和关闭。
  7. 根据权利要求4所述的光通信装置,其中,所述属性是光的波长。
  8. 根据权利要求1所述的光通信装置,其中,在所述第二模式下,所述光源发出的光的属性不发生改变。
  9. 根据权利要求8所述的光通信装置,其中,在所述第二模式下,向所述光源提供直流电。
  10. 根据权利要求1所述的光通信装置,其中,所述光源为条状或L状光源。
  11. 根据权利要求1所述的光通信装置,其中,所述控制器独立地控制所述至少一个光源中的每个光源所工作的模式。
  12. 根据权利要求1所述的光通信装置,还包括位于所述光源附近的一个或多个定位标识。
  13. 根据权利要求12所述的光通信装置,其中所述定位标识是具有特定颜色的灯。
  14. 根据权利要求1所述的光通信装置,其中所述第一频率大于或等于8000次/秒。
  15. 一种使用光源来传输信息的方法,包括:
    根据要传输的信息连续控制所述光源工作于第一模式或者第二模式,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,
    其中,在所述第一模式下,所述光源发出的光的属性以第一频率变化,以在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上不呈现条纹。
  16. 根据权利要求15所述的方法,其中,在所述第二模式下,所述光源发出的光的属性以与所述第一频率不同的第二频率变化。
  17. 根据权利要求16所述的方法,其中,所述第二频率大于所述第一频率。
  18. 根据权利要求16所述的方法,其中,在所述第一模式下以第一频率变化的光的属性与在所述第二模式下以第二频率变化的光的属性相同。
  19. 根据权利要求18所述的方法,其中,所述属性是光的强度。
  20. 根据权利要求19所述的方法,其中,在所述第一模式下,所述光源以所述第一频率开启和关闭,在所述第二模式下,所述光源以所述第二频率开启和关闭。
  21. 根据权利要求18所述的方法,其中,所述属性是光的波长。
  22. 根据权利要求15所述的方法,其中,在所述第二模式下,所述光源发出的光的属性不发生改变。
  23. 根据权利要求22所述的方法,其中,在所述第二模式下,向所述光源提供直流电。
  24. 根据权利要求15所述的方法,其中,通过使得所述光源随着时间连续工作于所述第一模式或所述第二模式,来传输二进制数据0和1的序列。
  25. 一种使用光源来传输信息的装置,包括用于对所述光源进行控制的控制器,所述控制器被配置用于实现权利要求15-24中任一项所述的方法。
  26. 一种接收由权利要求1-14中任一项所述的光通信装置传输的信息的方法,所述方法包括:
    通过CMOS图像传感器获得光源的图像;
    判断所述图像上与所述光源的位置对应的部分是否存在条纹;以及
    根据是否存在条纹,确定所述光源传输的是第一信息还是与所述第一信息不同的第二信息。
  27. 根据权利要求26所述的方法,其中,通过CMOS图像传感器获得所述光源的连续的多帧图像,从而确定出由第一信息和第二信息构成的信息序列。
  28. 根据权利要求26所述的方法,其中,所述判断所述图像上与所述光源的位置对应的部分是否存在条纹包括:
    在所述图像上识别光通信装置的一个或多个定位标识;
    基于所述一个或多个定位标识的位置来确定所述图像上与所述光源的位置对应的部分;以及
    判断所述部分中是否存在条纹。
  29. 一种接收由权利要求1-14中任一项所述的光通信装置传输的信息的装置,包括CMOS图像传感器、处理器和存储器,所述存储器中存储有计算机程序,所述计算机程序在被所述处理器执行时能够用于实现权利要求26-28中任一项所述的方法。
  30. 一种存储介质,其中存储有计算机程序,所述计算机程序在被执行时能够用于实现权利要求15-24和26-28中任一项所述的方法。
  31. 一种光通信***,包括:
    至少一个光源;
    控制器,其被配置为控制所述至少一个光源中的每个光源工作于至少两种模式,所述至少两种模式包括第一模式和第二模式,其中,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,并且其中,对于所述至少一个光源中的任意一个光源,在所述第一模式下,所述光源发出的光的属性以第一频率变化;以及
    包括CMOS图像传感器的设备,其被配置为对所述至少一个光源进行拍摄,其中,当所述光源工作于所述第一模式时,在所述设备所获得的所述光源的图像上呈现出条纹,当所述光源工作于所述第二模式时,在所述设备所获得的所述光源的图像上不呈现条纹。
  32. 根据权利要求31所述的光通信***,其中,在所述第二模式下,所述光源发出的光的属性以与所述第一频率不同的第二频率变化。
  33. 根据权利要求31所述的光通信***,其中,在所述第二模式下,所述光源发出的光的属性不发生改变。
  34. 一种光通信方法,包括:
    根据要传输的信息控制光源工作于第一模式或者第二模式,其中,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,并且其中,在所述第一模式下,所述光源发出的光的属性以第一频率变化,从而在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上不呈现条纹;
    通过CMOS图像传感器获得所述光源的连续的多帧图像;
    判断所述光源的每一帧图像上是否存在条纹;以及
    根据是否存在条纹,确定所述光源传输的是第一信息还是与所述第一信息不同的第二信息。
  35. 根据权利要求34所述的光通信***,其中,在所述第二模式下,所述光源发出的光的属性以与所述第一频率不同的第二频率变化。
  36. 根据权利要求34所述的光通信***,其中,在所述第二模式下,所述光源发出的光的属性不发生改变。
  37. 一种光通信装置,包括:
    至少一个光源;以及
    控制器,其被配置为控制所述至少一个光源中的每个光源工作于至少两种模式,所述至少两种模式包括第一模式和第二模式,其中,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,
    其中,对于所述至少一个光源中的任意一个光源,在所述第一模式下,所述光源发出的光的属性以第一频率变化,从而在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光的属性以第二频率变化,从而在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出与所述第一模式下的条纹不同的条纹。
  38. 根据权利要求37所述的光通信装置,其中,所述第一频率与所述第二频率相同。
  39. 根据权利要求37所述的光通信装置,其中,所述至少两种模式还包括第三模式,其用于传递与所述第一信息和所述第二信息不同的第三信息,在所述第三模式下,所述光源发出的光在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上不呈现条纹。
  40. 一种使用光源来传输信息的方法,包括:
    根据要传输的信息控制所述光源工作于第一模式或者第二模式,所述第一模式用于传递第一信息,所述第二模式用于传递与所述第一信息不同的第二信息,
    其中,在所述第一模式下,所述光源发出的光的属性以第一频率变化,从而在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出条纹,在所述第二模式下,所述光源发出的光的属性以第二频率变化,从而在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上呈现出与所述第一模式下的条纹不同的条纹。
  41. 根据权利要求40所述的方法,其中,所述第一频率与所述第二频率相同。
  42. 根据权利要求40所述的方法,还包括:
    根据要传输的信息控制所述光源工作于第三模式,所述第三模式用于传递与所述第一信息和所述第二信息不同的第三信息,其中,在所述第三模式下,所述光源发出的光在通过CMOS图像传感器对所述光源拍摄时所获得的所述光源的图像上不呈现条纹。
PCT/CN2017/099642 2017-08-30 2017-08-30 光通信装置和***以及相应的信息传输和接收方法 WO2019041167A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020512412A JP7019798B2 (ja) 2017-08-30 2017-08-30 光通信装置及びシステム、並びに対応する情報伝送及び受信の方法
PCT/CN2017/099642 WO2019041167A1 (zh) 2017-08-30 2017-08-30 光通信装置和***以及相应的信息传输和接收方法
EP17923326.7A EP3678302A4 (en) 2017-08-30 2017-08-30 OPTICAL COMMUNICATION DEVICE AND SYSTEM, AND PROCESS FOR TRANSMISSION AND RECEPTION OF INFORMATION
TW107130175A TWI713887B (zh) 2017-08-30 2018-08-29 光通信裝置和系統以及相應的資訊傳輸和接收方法
US16/801,059 US10990774B2 (en) 2017-08-30 2020-02-25 Optical communication device and system, and corresponding information transmitting and receiving methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/099642 WO2019041167A1 (zh) 2017-08-30 2017-08-30 光通信装置和***以及相应的信息传输和接收方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/801,059 Continuation US10990774B2 (en) 2017-08-30 2020-02-25 Optical communication device and system, and corresponding information transmitting and receiving methods

Publications (1)

Publication Number Publication Date
WO2019041167A1 true WO2019041167A1 (zh) 2019-03-07

Family

ID=65524603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099642 WO2019041167A1 (zh) 2017-08-30 2017-08-30 光通信装置和***以及相应的信息传输和接收方法

Country Status (5)

Country Link
US (1) US10990774B2 (zh)
EP (1) EP3678302A4 (zh)
JP (1) JP7019798B2 (zh)
TW (1) TWI713887B (zh)
WO (1) WO2019041167A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11475669B2 (en) * 2020-07-30 2022-10-18 Ncr Corporation Image/video analysis with activity signatures
CN114697559A (zh) * 2020-12-29 2022-07-01 北京外号信息技术有限公司 一种光通信装置及相应的传输信息的方法
CN114827346B (zh) 2021-01-28 2023-12-15 昇佳电子股份有限公司 接近传感器的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080173718A1 (en) * 2007-01-23 2008-07-24 Nec Infrontia Corporation Barcode reading apparatus and reading method
CN105450300A (zh) * 2015-11-19 2016-03-30 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种基于cmos图像传感器传输并检测led信息的方法
CN105515657A (zh) * 2015-11-19 2016-04-20 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种采用led灯具mimo阵列架构的可见光摄像机通信***
CN106209230A (zh) * 2016-07-11 2016-12-07 中国科学院上海技术物理研究所 一种基于app识别光条纹码的可见光通信***
CN106372701A (zh) * 2016-08-30 2017-02-01 西安小光子网络科技有限公司 一种光标签的编码及识别方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627084B2 (ja) 2005-04-12 2011-02-09 パイオニア株式会社 通信システム、通信装置及び方法、並びにコンピュータプログラム
US8451195B2 (en) * 2006-02-15 2013-05-28 Prysm, Inc. Servo-assisted scanning beam display systems using fluorescent screens
CN106888357B (zh) * 2012-05-24 2019-09-17 松下电器(美国)知识产权公司 信息通信方法、信息通信装置及记录介质
CN104885382B (zh) * 2012-12-27 2017-08-22 松下电器(美国)知识产权公司 可视光通信信号显示方法以及显示装置
CN203574655U (zh) * 2013-04-09 2014-04-30 北京半导体照明科技促进中心 利用可见光传输信息的装置和***以及光源
CN105187732B (zh) * 2014-04-24 2019-06-07 北京国承万通信息科技有限公司 一种利用来自光源的不同颜色的可见光信号传输信息方法和装置
JP6653128B2 (ja) 2014-05-16 2020-02-26 株式会社Gocco. 可視光通信システム
JP6501183B2 (ja) 2015-04-03 2019-04-17 パナソニックIpマネジメント株式会社 看板装置および看板システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080173718A1 (en) * 2007-01-23 2008-07-24 Nec Infrontia Corporation Barcode reading apparatus and reading method
CN105450300A (zh) * 2015-11-19 2016-03-30 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种基于cmos图像传感器传输并检测led信息的方法
CN105515657A (zh) * 2015-11-19 2016-04-20 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种采用led灯具mimo阵列架构的可见光摄像机通信***
CN106209230A (zh) * 2016-07-11 2016-12-07 中国科学院上海技术物理研究所 一种基于app识别光条纹码的可见光通信***
CN106372701A (zh) * 2016-08-30 2017-02-01 西安小光子网络科技有限公司 一种光标签的编码及识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678302A4 *

Also Published As

Publication number Publication date
JP7019798B2 (ja) 2022-02-15
TW201919354A (zh) 2019-05-16
EP3678302A4 (en) 2021-03-24
US10990774B2 (en) 2021-04-27
US20200193104A1 (en) 2020-06-18
TWI713887B (zh) 2020-12-21
EP3678302A1 (en) 2020-07-08
JP2020532908A (ja) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2018041136A1 (zh) 光通信装置和***以及相应的信息传输和接收方法
WO2019120053A1 (zh) 包含参考光源的光通信装置及相应的信息传输和接收方法
WO2019120052A1 (zh) 用于对光源传递的信息进行解码的方法和装置
WO2019120156A1 (zh) 基于光标签的定位方法及***
CN104871452B (zh) 可视光通信方法及可视光通信装置
US10990774B2 (en) Optical communication device and system, and corresponding information transmitting and receiving methods
TWI746973B (zh) 通過光通信裝置對能夠自主移動的機器進行導引的方法
US11328136B2 (en) Optical communication device and method for transmitting and receiving information
WO2019214642A1 (zh) 对能够自主移动的机器进行导引的***和方法
WO2019120051A1 (zh) 光标签安全判定方法和***
Georlette et al. Content triggering system using tricolor LED strips and Optical Camera Communication in Rolling Shutter mode
US20210135753A1 (en) Detecting coded light
WO2020062876A1 (zh) 基于光标签的服务提供方法和***
WO2021031879A1 (zh) 光通信装置以及用于传输和接收信息的方法
CN114697559A (zh) 一种光通信装置及相应的传输信息的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017923326

Country of ref document: EP

Effective date: 20200330