WO2019035303A1 - Vibration damping device for rolling stock - Google Patents

Vibration damping device for rolling stock Download PDF

Info

Publication number
WO2019035303A1
WO2019035303A1 PCT/JP2018/026651 JP2018026651W WO2019035303A1 WO 2019035303 A1 WO2019035303 A1 WO 2019035303A1 JP 2018026651 W JP2018026651 W JP 2018026651W WO 2019035303 A1 WO2019035303 A1 WO 2019035303A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
passage
valve
cylinder
damping device
Prior art date
Application number
PCT/JP2018/026651
Other languages
French (fr)
Japanese (ja)
Inventor
敦 作田
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2019035303A1 publication Critical patent/WO2019035303A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall

Definitions

  • the present invention relates to an improvement of a damping device for a railway vehicle.
  • the railway vehicle travels on the track, but vibration is input from the truck to the vehicle body during traveling due to the track deviation or the like, and the riding comfort is impaired. To reduce the vibration of the car body.
  • a vibration control device for a railway vehicle includes a cylinder, a piston slidably inserted in the cylinder, and a extendable cylinder having a rod connected to the piston Device, a pump capable of sucking in hydraulic oil from the tank and supplying it to the rod side chamber, a first on-off valve provided in the first passage connecting the rod side chamber and the piston side chamber, and a second connecting the piston side chamber and the tank A second on-off valve provided in the passage and a variable relief valve provided in the discharge passage connecting the rod side chamber and the tank are provided.
  • the thrust in the desired direction and magnitude Vibration of the vehicle body can be suppressed by causing the vibration damping device for a railway vehicle to
  • a pump is attached to the side of the cylinder device, and the tank is formed by an annular gap between the cylinder of the cylinder device and the outer cylinder.
  • the pump may be necessarily disposed above the tank because the installation space is narrow.
  • the pump When the pump is thus installed above the tank, the pump sucks the working oil from the lower tank, which may cause noise due to a suction failure.
  • the noise of the pump becomes large, the noise is transmitted to the vehicle body through the cylinder device, and the vehicle body acts as a speaker to cause the passenger to perceive the noise of the pump, causing discomfort to the passenger and impairing the quietness.
  • this invention aims at provision of the rail vehicle damping device which can suppress the noise of a pump and can improve the silence in a vehicle.
  • the damping device for railway vehicles includes a cylinder device having a cylinder, a pump that is attached to the cylinder device and sucks the working fluid from the tank and supplies it to the cylinder, a suction port of the pump, and a working fluid from the cylinder to the tank And a charge passage for connecting with the discharge port of the pump.
  • part of the hydraulic fluid discharged by the pump can be returned to the suction port of the pump.
  • FIG. 1 is a plan view of a railway vehicle equipped with a railway vehicle damping device.
  • FIG. 2 is a hydraulic circuit diagram of a railway vehicle vibration damping device according to one embodiment.
  • FIG. 3 is a hydraulic circuit diagram of a railway vehicle damping device according to a first modification of the embodiment.
  • FIG. 4 is a hydraulic circuit diagram of a railway vehicle damping device according to a second modification of the embodiment.
  • FIG. 5 is a hydraulic circuit diagram of a railway vehicle damping device according to a third modification of the embodiment.
  • FIG. 6 is a hydraulic circuit diagram of a railcar damping device according to a fourth modification of the embodiment.
  • FIG. 7 is a hydraulic circuit diagram of a railway vehicle damping device according to a fifth modification of the embodiment.
  • FIG. 8 is a hydraulic circuit diagram of a railcar damping device according to a sixth modification of the embodiment.
  • Vibration control device 1 for railroad cars in one embodiment is used for vibration control of car body B of a rail car.
  • the damping device 1 for a railway vehicle includes a cylinder device Cy interposed between a vehicle body B and a bogie T, a pump 15, and an expansion and contraction of the cylinder device Cy.
  • a hydraulic circuit HC is provided to control switching and thrust.
  • the cylinder device Cy is connected to a pin P hanging down below the vehicle body B, and is interposed in parallel between the vehicle body B and the truck T in a pair.
  • the carriage T rotatably holds the wheel W, and a suspension spring S is interposed between the vehicle body B and the carriage T, and the vehicle body B is elastically supported from below. Horizontal movement is allowed.
  • the damping device 1 for a railway vehicle is configured to suppress the vibration in the horizontal direction with respect to the traveling direction of the vehicle body B by active control.
  • the cylinder device Cy is, as shown in FIG. 2, a cylinder 2 connected to a car body B of a railway vehicle, a piston 3 slidably inserted in the cylinder 2, and a piston 3 inserted in the cylinder 2.
  • the rod 4 connected to the carriage T, the rod side chamber 5 and the piston side chamber 6 partitioned by the piston 3 in the cylinder 2, the outer cylinder 7 provided on the outer periphery of the cylinder 2, the cylinder 2 and the outer cylinder 7 It is provided with a tank 8 to be formed so as to be stretchable.
  • the hydraulic circuit HC is provided in the middle of a first on-off valve 12 provided in the middle of the first passage 11 which connects the rod side chamber 5 and the piston side chamber 6 and in the middle of the second passage 13 which connects the piston side chamber 6 and the tank 8. And a second on-off valve 14 provided.
  • the first on-off valve 12 is opened to connect the first passage 11 and the second on-off valve 14 is closed to shut off the second passage 13 to connect the rod side chamber 5 and the piston side chamber 6 and the piston side chamber 6 and the tank 8
  • the cylinder device Cy extends.
  • the second on-off valve 14 is opened to connect the second passage 13 and the first on-off valve 12 is closed to shut off the first passage 11 to disconnect the rod side chamber 5 and the piston side chamber 6 from each other.
  • the pump 6 is communicated with the tank 8 and the pump 15 is driven, the cylinder device Cy contracts.
  • both the cylinder 2 and the outer cylinder 7 are cylindrical, and the opening on the left end side in FIG. 2 is annular and closed by a rod guide 9 fitted to both.
  • the opening on the right end side of the outer cylinder 7 in FIG. 2 is closed by a bottom cap 10 fitted to both.
  • a rod 4 movably inserted into the cylinder 2 is slidably inserted into the rod guide 9, and axial movement of the rod 4 is guided by the rod guide 9.
  • one end of the rod 4 protrudes out of the cylinder 2 through the rod guide 9, and the other end in the cylinder 2 is connected to the piston 3 slidably inserted in the cylinder 2.
  • the rod side chamber 5 and the piston side chamber 6 partitioned by the piston 3 in the cylinder 2 are filled with the working oil as the working liquid, and the tank 8 is filled with gas in addition to the working oil. It is done.
  • the inside of the tank 8 is not particularly required to be compressed and filled with gas to be pressurized. Also, as the working fluid, other fluids may be used besides the working oil.
  • the cross-sectional area of the rod 4 is half of the cross-sectional area of the piston 3 and the pressure receiving area on the rod side chamber 5 side of the piston 3 is half the pressure receiving area on the piston side chamber 6 side. It is supposed to be. Therefore, if the pressure in the rod side chamber 5 is made the same at the extension operation time and the contraction operation time, the thrust generated by both expansion and contraction becomes equal, and the hydraulic oil amount with respect to the displacement amount of the cylinder device Cy becomes the same at both sides. .
  • the railway vehicle damping device 1 generates a thrust that is obtained by multiplying the pressure in the rod side chamber 5 and the pressure receiving area on the rod side chamber 5 side of the piston 3. As described above, the railway vehicle damping device 1 generates a thrust that is obtained by multiplying the pressure in the rod side chamber 5 and the pressure receiving area on the rod side chamber 5 side of the piston 3 in any direction of extension and contraction.
  • the generated thrust of the railway vehicle damping device 1 is a value obtained by multiplying the half of the cross-sectional area of the piston 3 by the pressure of the rod side chamber 5 in both expansion and contraction. Therefore, when controlling the thrust of this railcar damping device 1, the pressure in the rod side chamber 5 may be controlled in both the extension operation and the contraction operation. Moreover, in the damping device 1 for railway vehicles of this example, since the pressure receiving area on the rod side chamber 5 side of the piston 3 is set to half of the pressure receiving area on the piston side chamber 6 side, the same thrust is generated on both sides of expansion and contraction In this case, since the pressure in the rod side chamber 5 is the same on the extension side and the contraction side, the control is simplified.
  • the amount of hydraulic fluid with respect to the displacement amount is also the same, there is an advantage that the responsivity is the same on both sides of the expansion and contraction. Even when the pressure receiving area on the rod side chamber 5 side of the piston 3 is not set to one half of the pressure receiving area on the piston side chamber 6 side, the pressure of the rod side chamber 5 can control the thrust on both sides of expansion and contraction of the cylinder device Cy. The point does not change.
  • the bottom cap 10 for closing the left end of the rod 4 in FIG. 2 and the right end of the cylinder 2 is provided with a mounting portion (not shown). Are able to intervene.
  • the first passage 11 communicates the rod side chamber 5 with the piston side chamber 6 and includes a first on-off valve 12.
  • the first passage 11 communicates the rod side chamber 5 and the piston side chamber 6 outside the cylinder 2, but may be provided in the piston 3.
  • the first on-off valve 12 is an electromagnetic on-off valve, and the communication position for opening the first passage 11 to communicate the rod side chamber 5 with the piston side chamber 6 and the first passage 11 to block the rod side chamber 5 A shutoff position for breaking the communication with the piston side chamber 6 is provided. And this 1st on-off valve 12 takes a communication position at the time of electricity supply, and takes the interruption
  • the second passage 13 communicates the piston side chamber 6 with the tank 8 and includes a second on-off valve 14.
  • the second on-off valve 14 is an electromagnetic on-off valve, and the communication position for opening the second passage 13 to communicate the piston side chamber 6 with the tank 8 and the second passage 13 to shut off the piston side chamber 6 and the tank And a shutoff position for breaking the communication with 8.
  • this 2nd on-off valve 14 takes a communication position at the time of electricity supply, and takes the interruption
  • the pump 15 is driven by a motor 20 controlled by a controller (not shown), and is a pump that discharges hydraulic oil only in one direction.
  • the pump 15 is fixed to the bottom cap 10 in the cylinder device Cy together with the motor 20 in this example, and is thereby integrally attached to the cylinder device Cy.
  • the pump 15 may be integrally attached to the cylinder device Cy. Therefore, the structure and position of the attachment of the pump 15 to the cylinder device Cy may be different from the above-described structure and position.
  • the pump 15 is installed in the supply passage 16 connecting the rod side chamber 5 and the tank 8 with the suction port facing the tank 8 and the discharge port facing the rod side chamber 5. Therefore, when driven by the motor 20, the pump 15 sucks the hydraulic oil from the tank 8 and supplies the hydraulic oil to the rod side chamber 5.
  • the pump 15 only discharges the hydraulic oil in one direction and there is no switching operation of the rotation direction, so there is no problem that the discharge amount changes at the time of rotation switching, and an inexpensive gear pump can be used . Furthermore, since the direction of rotation of the pump 15 is always the same, high responsiveness to rotational switching is not required even in the motor 20 which is a drive source for driving the pump 15, and the motor 20 is also inexpensive accordingly Can be used. Further, a check valve 17 is provided in the middle of the supply passage 16 to prevent the backflow of the hydraulic oil from the rod side chamber 5 to the pump 15.
  • a flow control valve 25 is provided as a valve element for controlling the hydraulic oil flowing to the charge passage 24 in accordance with the discharge flow rate of the pump 15. More specifically, the flow control valve 25 opens when the discharge flow rate of the pump 15 is equal to or greater than a first flow rate as a predetermined flow rate, and closes when the flow rate is less than the first flow rate. That is, the flow control valve 25 controls the hydraulic fluid flowing through the charge passage 24 to increase according to the increase of the discharge flow rate of the pump 15.
  • the flow control valve 25 takes a valve body 25 a for opening and closing the charge passage 24, a spring 25 b for energizing the valve body 25 a to take a shut-off position to shut off the charge passage 24, and a communication position to open the charge passage 24.
  • the open pilot passage 25c that causes the pressure of the discharge port of the pump 15 to act on the valve body 25a
  • the orifice 25d provided closer to the rod side chamber 5 than the check valve 17 of the supply passage 16, and the blockage that shuts off the charge passage 24
  • It has a closed pilot passage 25e which causes the pressure on the rod side chamber 5 side to act on the valve body 25a more than the orifice 25d of the supply passage 16 so as to take a position.
  • the orifice 25 d may be provided closer to the pump 15 than the check valve 17 of the supply passage 16. Further, the charge passage 24 may be connected to the pump 15 side of the orifice 25 d of the supply passage 16, and the open pilot passage 25 c may be the pump 15 side of the orifice 25 d of the supply passage 16 or a valve element of the charge passage 24. It may be connected to the supply passage 16 side more than 25a.
  • the discharge pressure of the pump 15 acts on the valve body 25a of the flow control valve 25 in the valve opening direction, and the pressure downstream of the orifice 25d in the supply passage 16 acts on the valve body 25a in the valve closing direction. Therefore, when the difference between the discharge pressure of the pump 15 and the pressure downstream of the orifice 25d in the supply passage 16 reaches the set differential pressure, the pressure pushing the valve body 25a by the pressure squeezes the spring 25b and the flow control valve 25 opens. To speak. Since the pressure loss that occurs when hydraulic fluid having a flow rate equal to the first flow rate passes through the orifice 25d is previously set equal to the set differential pressure, when the discharge flow rate of the pump 15 becomes equal to or greater than the first flow rate, The flow control valve 25 opens to open the charge passage 24.
  • the flow control valve 25 is a normally closed flow control valve, and is switched from the closed state to the open state when the discharge flow rate of the pump 15 becomes equal to or more than the predetermined first flow rate. Therefore, when the discharge flow rate of the pump 15 becomes equal to or more than the first flow rate, the flow control valve 25 opens, and the surplus portion exceeding the first flow rate in the discharge flow rate of the pump 15 is returned to the suction port of the pump 15 through the charge passage 24. When the discharge flow rate of the pump 15 is less than the first flow rate, the flow control valve 25 is closed, so that the entire flow rate discharged by the pump 15 is supplied to the rod side chamber 5.
  • the hydraulic pressure circuit HC includes the discharge passage 21 connecting the rod side chamber 5 and the tank 8 and the valve opening pressure as a control valve provided in the middle of the discharge passage 21 A changeable variable relief valve 22 is provided.
  • variable relief valve 22 in this example is a proportional electromagnetic relief valve, which can adjust the valve opening pressure in accordance with the amount of supplied current, and when the amount of current is maximized, the valve opening pressure is minimized. If there is no supply, the valve opening pressure is maximized.
  • the pressure in the rod side chamber 5 can be adjusted to the valve opening pressure of the variable relief valve 22 when the cylinder device Cy is extended and contracted.
  • the thrust of the vibration device 1 can be controlled by the amount of current supplied to the variable relief valve 22. If the discharge passage 21 and the variable relief valve 22 are provided, the sensors necessary for adjusting the thrust of the damping device 1 for a railway vehicle become unnecessary, and the motor 20 is advanced to adjust the discharge flow rate of the pump 15 There is no need to control. Therefore, the damping device 1 for railway vehicles becomes inexpensive, and a system that is robust both in hardware and software can be constructed.
  • valves other than the variable relief valve may be used.
  • the hydraulic circuit HC in the damping device 1 for a railway vehicle operates in a straightening passage 18 that allows only the flow of hydraulic fluid from the piston side chamber 6 to the rod side chamber 5 and the operation from the tank 8 to the piston side chamber 6
  • a suction passage 19 is provided which allows only oil flow.
  • the flow straightening passage 18 communicates the piston side chamber 6 and the rod side chamber 5, and a check valve 18a is provided in the middle to allow only the flow of hydraulic fluid from the piston side chamber 6 to the rod side chamber 5 It is set in a one-way aisle.
  • the suction passage 19 communicates the tank 8 with the piston side chamber 6, and a check valve 19a is provided in the middle to allow only the flow of hydraulic oil from the tank 8 to the piston side chamber 6 It is set to.
  • the straightening passage 18 can be integrated into the first passage 11 when the shutoff position of the first on-off valve 12 is a check valve, and the shutoff position of the second on-off valve 14 is also a check valve for the suction passage 19. It can be integrated into the second passage 13.
  • the rod side chamber is formed by the straightening passage 18, the suction passage 19 and the discharge passage 21. 5
  • the piston side chamber 6 and the tank 8 are connected in a series connection.
  • the straightening passage 18, the suction passage 19 and the discharge passage 21 are set as one-way passages.
  • the pump 20 is driven by the motor 20 to supply the hydraulic oil from the pump 15 into the cylinder 2 while the first on-off valve 12 is And the second on-off valve 14 in the blocking position.
  • the rod side chamber 5 and the piston side chamber 6 are brought into communication, hydraulic fluid is supplied from the pump 15 to the both, and the piston 3 is pushed to the left in FIG.
  • the railway vehicle damping device 1 exerts a thrust in the extension direction.
  • the variable relief valve 22 When the pressure in the rod side chamber 5 and the pressure in the piston side chamber 6 exceeds the valve opening pressure of the variable relief valve 22, the variable relief valve 22 is opened and the hydraulic oil is discharged to the tank 8 via the discharge passage 21. Therefore, the pressures in the rod side chamber 5 and the piston side chamber 6 are controlled to the valve opening pressure of the variable relief valve 22 determined by the amount of current supplied to the variable relief valve 22. Then, the damping device 1 for railway vehicles multiplies the pressure in the rod side chamber 5 and the piston side chamber 6 controlled by the variable relief valve 22 by the pressure receiving area difference between the piston side chamber 6 and the rod side chamber 5 in the piston 3 Demonstrate the thrust in the direction of value expansion.
  • the pump 20 is driven by the motor 20 to supply the hydraulic oil from the pump 15 into the cylinder 2 while the first opening / closing is performed.
  • the valve 12 is in the shutoff position, and the second on-off valve 14 is in the communication position.
  • the piston side chamber 6 and the tank 8 are in communication with each other, and the hydraulic oil is supplied from the pump 15 to the rod side chamber 5, and the piston 3 is pushed to the right in FIG.
  • the railway vehicle damping device 1 exerts a thrust in the contraction direction.
  • the damping device 1 for railway vehicle is controlled by the pressure receiving area on the rod side chamber 5 side of the piston 3 and the rod side chamber 5 controlled by the variable relief valve 22.
  • the thrust in the contraction direction multiplied by the pressure of the railway vehicle vibration damping device 1 can function as an actuator that causes the cylinder device Cy to actively exert the expansion and contraction bidirectional thrust.
  • the railway vehicle damping device 1 does not exert a damping force in the direction that hinders the movement of the rod 4, that is, in the contraction direction.
  • the piston side chamber 6 on the compression side passes through the second passage 13
  • the excess hydraulic oil is discharged to the tank 8.
  • the hydraulic oil corresponding to the volume in the rod side chamber 5 which increases when the rod 4 enters the cylinder 2 is transmitted through the flow straightening passage 18 as in driving. It is supplied from the piston side chamber 6.
  • the hydraulic oil of a volume corresponding to the cylinder 2 invading the rod 4 is discharged from the piston side chamber 6 to be compressed to the tank 8 through the second passage 13.
  • the pressure in the cylinder 2 is the tank pressure in this case, the railway vehicle damping device 1 does not exert a damping force in the direction that hinders the movement of the rod 4, that is, in the extension direction.
  • the device 1 when the first on-off valve 12 is opened to close the second on-off valve 14 or the first on-off valve 12 is closed to open the second on-off valve 14, damping for railway vehicles regardless of the driving condition of the pump 15
  • the device 1 is in a state where it exerts a damping force only to either extension or contraction with respect to vibration input from an external force.
  • the damping device 1 for railway vehicles of this example exerts forces in such a direction.
  • the cylinder device Cy can be made to function as a one-way damper so that it does not occur. Therefore, since this railway vehicle damping device 1 can easily realize semi-active control based on Kalnop's skyhook theory, it can also function as a semi-active damper.
  • the damping device 1 for a railway vehicle of the present embodiment when the cylinder device Cy expands and contracts in a state where the first on-off valve 12 and the second on-off valve 14 close, hydraulic oil from the cylinder 2 via the discharge passage 21 The hydraulic fluid is discharged from the tank 8 through the suction passage 19 to the cylinder 2 through the suction passage 19. Then, the variable relief valve 22 provides resistance to the flow of hydraulic fluid discharged from the inside of the cylinder 2, and the pressure in the cylinder 2 is adjusted to the valve opening pressure of the variable relief valve 22.
  • the railway vehicle damping device 1 not only functions as an actuator, but also when the first on-off valve 12 and the second on-off valve 14 are closed, regardless of the driving condition of the motor 20 Function as a passive uniflow damper that exerts damping force on both sides.
  • each of first on-off valve 12 and second on-off valve 14 takes the blocking position, and variable relief valve 22 is opened. It functions as a pressure control valve with the valve pressure fixed at maximum. Therefore, at the time of such a failure, the railway vehicle damping device 1 automatically functions as a passive damper.
  • the damping device 1 for railway vehicles of this example can function as both an actuator and a damper, it has the charge passage 24 connecting the discharge port and the suction port of the pump 15.
  • the charge passage 24 connecting the discharge port and the suction port of the pump 15.
  • the railcar damping device 1 of the present invention even if the tank 8 is disposed below the pump 15, the noise of the pump 15 can be suppressed, and noises can not be perceived by the passengers of the railcar. Quietness of the vehicle can be improved.
  • the flow control valve (valve element) 25 is opened in the charge passage 24 when the discharge flow rate of the pump 15 is equal to or more than the first flow rate. It is provided. As described above, when the flow control valve 25 is provided, the flow control valve 25 is opened during high rotation driving of the pump 15 where suction failure easily occurs, and the first flow rate of the discharge flow rate of the pump 15 is exceeded via the charge passage 24. The flow rate can be supplied to the suction port of the pump 15. Therefore, the damping device 1 for railway vehicles provided with the flow control valve (valve element) 25 that opens when the discharge flow rate of the pump 15 becomes equal to or higher than the first flow rate is effective in the situation where suction failure of the pump 15 easily occurs.
  • the first flow rate may be set to an appropriate value in consideration of the specification required for the expansion and contraction operation of the cylinder device Cy and the discharge flow rate of the pump 15 which may cause a suction failure.
  • the flow control valve 26 has a valve body 26 a for opening and closing the charge passage 24, a spring 26 b for energizing the valve body 26 a to take a communication position for opening the charge passage 24, and a shut off position for interrupting the charge passage 24.
  • the rod side chamber 5 side of the orifice 26d of the supply passage 16 has a closed pilot passage 26c that causes the valve body 26a to act on the pressure of the discharge port of the pump 15, the orifice 26d provided in the supply passage 16 And an open pilot passage 26e for applying the pressure of the valve body 26a to the valve body 26a.
  • the discharge pressure of the pump 15 acts on the valve body 26 a of the flow control valve 26 in the valve closing direction, and the pressure downstream of the orifice 26 d in the supply passage 16 acts in the valve opening direction. Therefore, when the difference between the discharge pressure of the pump 15 and the pressure downstream of the orifice 26d in the supply passage 16 reaches the set differential pressure, the spring 26b is compressed by the force pushing the valve body 26a due to the pressure, and the flow control valve 26 is closed. To speak. Since the pressure loss generated when the hydraulic fluid equal to the second flow rate passes through the orifice 26d is equal to the set differential pressure, the flow control is performed when the discharge flow rate of the pump 15 becomes equal to or higher than the second flow rate. The valve 26 closes to shut off the charge passage 24.
  • the flow control valve 26 is a normally open flow control valve, and is switched from the open state to the closed state when the discharge flow rate of the pump 15 is equal to or more than the second flow rate. Therefore, when the discharge flow rate of the pump 15 is less than the second flow rate, the flow control valve 26 is opened, and a part of the discharge flow rate of the pump 15 is returned to the suction port of the pump 15 through the charge passage 24. On the other hand, when the discharge flow rate of the pump 15 becomes equal to or higher than the second flow rate, the flow control valve 26 closes, and the entire flow rate of the discharge flow of the pump 15 is supplied to the rod side chamber 5.
  • the charge passage 24 is closed when the discharge flow rate of the pump 15 is equal to or more than the second flow rate.
  • a valve (valve element) 26 is provided.
  • the flow control valve 26 closes when the rotational speed of the pump 15 is high and the discharge flow rate is large. Then, the entire flow rate of the pump 15 is supplied to the cylinder device Cy. Therefore, the damping device 1 for railway vehicles can exhibit a sufficient vibration suppression effect in the scene where the vehicle body B vibrates largely. In a situation where the discharge flow rate of the pump 15 is increased and suction failure is likely to occur, the vehicle body B vibrates greatly and the noise of the vehicle itself is increased. Therefore, noise due to suction failure of the pump 15 is not easily perceived by passengers.
  • the vibration control device 1 for a railway vehicle provided with the flow control valve (valve element) 26 that closes when the discharge flow rate of the pump 15 becomes equal to or higher than the second flow rate sufficiently exerts the vibration suppression effect of the vehicle body B.
  • the second flow rate may be set to an appropriate value in consideration of the specification required for the expansion and contraction operation of the cylinder device Cy and the discharge flow rate of the pump 15 that may cause a suction failure.
  • the charge passage is used as a valve element for controlling the hydraulic fluid flowing to the charge passage 24 according to the discharge flow rate of the pump 15. It is also possible to adopt a configuration in which 24 and the supply passage 16 are connected via the dividing valve 27.
  • the diverting valve 27 has an inlet port 27a communicating with the outlet of the pump 15, a first outlet port 27b communicating with the rod side chamber 5, a second outlet port 27c connected to the charge passage 24, and an inlet port 27a.
  • a first orifice passage 27d connected to the port 27b and a second orifice passage 27e connecting the inlet port 27a to the second outlet port 27c.
  • the diverting valve 27 diverts the flow of the hydraulic fluid discharged from the pump 15 at a ratio determined by the respective resistances of the first orifice passage 27d and the second orifice passage 27e to respectively supply the supply passage 16 and the charge passage. Supply to 24. Therefore, the flow rate discharged from the pump 15 is distributed to the rod side chamber 5 and the suction port of the pump 15 at the above ratio and supplied.
  • the diverting valve 27 diverts at a constant ratio to the flow rate discharged from the pump 15 and returns it to the suction port of the pump 15 through the charge passage 24. Therefore, even if the tank 8 is disposed below the pump 15, a sufficient amount of hydraulic oil can be supplied to the suction port of the pump 15, the suction failure of the pump 15 is resolved, and the generation of noise is suppressed. Therefore, according to the railway vehicle vibration damping device 1 provided with the diverter valve 27 in this manner, the noise of the pump 15 can be suppressed even if the tank 8 is disposed lower than the pump 15, and noises are transmitted to passengers of the railway vehicle. It is possible to improve the quietness of the vehicle without perceiving it.
  • the diverting valve 27 Since the diverting valve 27 returns the flow rate of a constant ratio to the total flow rate discharged by the pump 15 to the suction port, the flow rate returned to the suction port also increases when the rotational speed of the pump 15 becomes high, so suction failure easily occurs. A sufficient amount of hydraulic fluid is supplied to the suction port of the pump 15 also at high rotational speeds. Therefore, suction failure of the pump 15 can be effectively suppressed.
  • the diversion ratio of the diversion valve 27 may be variable, and may be changed according to the discharge flow rate of the pump 15, for example.
  • the charge passage is used as a valve element for controlling the hydraulic fluid flowing to the charge passage 24 according to the discharge flow rate of the pump 15.
  • a configuration in which the variable orifice 28 is provided at 24 can also be employed.
  • a check valve 29 that allows only the flow from the discharge port side to the suction port side of the pump 15 is provided on the upstream side of the variable orifice 28 of the charge passage 24. And the pump 15 is bypassed so as not to go from the suction port of the pump 15 to the discharge port.
  • variable orifice 28 When the variable orifice 28 is thus provided, a part of the flow rate discharged from the pump 15 can be returned to the suction port of the pump 15 through the charge passage 24 according to the resistance of the variable orifice 28. If the resistance of the variable orifice 28 is increased, the flow rate returned to the suction port of the pump 15 can be reduced, and if the resistance is decreased, the flow rate returned to the suction port of the pump 15 can be increased.
  • the resistance of the variable orifice 28 is reduced as the rotational speed of the pump 15 becomes higher, or the resistance is reduced when the discharge flow rate of the pump 15 becomes equal to or more than a third flow rate as a predetermined flow rate.
  • a large flow rate can be supplied to the suction port of the pump 15 at the time of high-rotation drive of the pump 15 where suction failure easily occurs. Therefore, the damping device 1 for a railway vehicle provided with the variable orifice 28 when set in this manner can effectively eliminate the suction defect and suppress the noise in a situation where the suction defect of the pump 15 tends to occur. Quietness can be improved.
  • the third flow rate is preset according to the rotational speed of the pump 15 or the like, but can be arbitrarily changed.
  • the resistance of the variable orifice 28 can be increased as the rotational speed of the pump 15 becomes higher, or the resistance can be increased when the discharge flow rate of the pump 15 becomes equal to or more than a fourth flow rate as a predetermined flow rate.
  • the vibration of the vehicle body B is small and the railway vehicle damping device 1 does not require a large thrust for damping the vehicle body B, and the rotational speed of the pump 15 is low and the discharge flow rate is low. In the state which can be decreased, suction failure of the pump 15 is prevented.
  • the fourth flow rate is preset according to the rotational speed of the pump 15 or the like, but can be arbitrarily changed.
  • the damping device 1 for railway vehicles can exhibit a sufficient vibration suppression effect in the scene where the vehicle body B vibrates largely.
  • the discharge flow rate of the pump 15 increases, the vehicle body B vibrates greatly in a state where suction failure easily occurs, and the noise of the vehicle itself becomes large. Therefore, noise due to suction failure of the pump 15 is not easily perceived by passengers. Therefore, in the railway vehicle damping device 1 provided with the variable orifice 28 set as described above, the quietness of the vehicle can be improved while sufficiently exhibiting the vibration suppressing effect of the vehicle body B.
  • a valve element for controlling the hydraulic oil flowing to the charge passage 24 according to the discharge flow rate of the pump instead of the flow control valve 25 in the hydraulic circuit HC, as a valve element for controlling the hydraulic oil flowing to the charge passage 24 according to the discharge flow rate of the pump It is also possible to employ a configuration in which a switching valve 30 is provided in the passage 24 to switch between communication and shutoff of the charge passage 24.
  • the switching valve 30 is an electromagnetic switching valve, which opens and closes depending on whether or not the solenoid is energized, and switches a part of the discharge flow rate of the pump 15 through the charge passage 24 to supply and stop to the suction port.
  • the switching valve 30 is opened to make the charge passage 24 effective, and switching is performed when the discharge flow rate is less than the fifth flow rate.
  • the valve 30 can be closed to disable the charge passage 24.
  • the switching valve 30 is closed to invalidate the charge passage 24 and switching is performed when the discharge flow rate is less than the sixth flow rate
  • the valve 30 can also be opened to enable the charge passage 24.
  • the switching valve 30 is operated as described above, the vibration of the vehicle body B is small as in the case of the flow control valve 26, and the railway vehicle vibration damping device 1 does not require a large thrust for damping the vehicle body B.
  • the suction failure of the pump 15 is prevented in a state where the rotational speed is low and the discharge flow rate can be small.
  • the sixth flow rate is preset according to the rotational speed of the pump 15 or the like, but can be arbitrarily changed.
  • the switching valve 30 closes when the rotational speed of the pump 15 is high and the discharge flow rate is large. Therefore, the entire flow rate that the pump 15 discharges is supplied to the cylinder device Cy. Therefore, the damping device 1 for railway vehicles can exhibit a sufficient vibration suppression effect in the scene where the vehicle body B vibrates largely.
  • the discharge flow rate of the pump 15 increases, the vehicle body B vibrates greatly in a state where suction failure easily occurs, and the noise of the vehicle itself becomes large. Therefore, noise due to suction failure of the pump 15 is hardly perceived by passengers. Therefore, in the railway vehicle damping device 1 including the switching valve 30 set in this manner, the quietness of the vehicle can be improved while sufficiently exhibiting the vibration suppression effect of the vehicle body B.
  • the flow control valve 25 is eliminated in the hydraulic circuit HC, and instead of connecting the discharge port and the suction port of the pump 15 in the charge passage 24, the charge passage 31 is The tank 8 side downstream of the variable relief valve 22 of the discharge passage 21 may be connected to the suction port side of the pump 15 in the supply passage 16. That is, the charge passage 31 connects the discharge passage 21 as a return passage, and the downstream of the variable relief valve 22 of the discharge passage 21 to the suction port of the pump 15 without using the tank 8.
  • the hydraulic fluid discharged from the pump 15 is once supplied to the cylinder device Cy and then returned to the tank 8 through the discharge passage 21, but at that time, through the discharge passage 21.
  • a portion of the flow rate of the hydraulic oil directed to the tank 8 is returned to the suction port of the pump 15 via the charge passage 31 without passing through the tank 8.
  • the hydraulic oil discharged from the cylinder device Cy A portion can be returned to the suction port of the pump 15 by the charge passage 31. Therefore, even if the tank 8 is disposed below the pump 15, a sufficient amount of hydraulic oil can be supplied to the suction port of the pump 15, the suction failure of the pump 15 is resolved, and the generation of noise is suppressed. Therefore, according to the railcar damping device 1 in the fifth modification, even if the tank 8 is disposed below the pump 15, the noise of the pump 15 can be suppressed, and the passenger of the railcar can not perceive the noise. It is possible to improve the quietness of the vehicle.
  • the charge passage 32 is The tank 8 side of the second passage 13 from the second on-off valve 14 may be connected to the suction port side of the pump 15 in the supply passage 16. That is, the charge passage 32 connects the tank 8 side to the suction port of the pump 15 from the second on-off valve 14 of the second passage 13 without using the tank 8 with the second passage 13 as a return passage.
  • the hydraulic oil discharged from the cylinder device Cy A portion of the valve can be returned to the suction port of the pump 15 by the charge passage 32. Therefore, even if the tank 8 is disposed below the pump 15, a sufficient amount of hydraulic oil can be supplied to the suction port of the pump 15, the suction failure of the pump 15 is resolved, and the generation of noise is suppressed. Therefore, according to the railcar damping device 1 in the sixth modification, even if the tank 8 is disposed below the pump 15, the noise of the pump 15 can be suppressed, and the passenger of the railcar can not perceive the noise. It is possible to improve the quietness of the vehicle. Note that both the charge passage 31 and the charge passage 32 may be installed.
  • the damping device 1 for a railway vehicle includes: a cylinder device Cy including the cylinder 2; and a pump 15 attached to the cylinder device Cy and suctioning the working fluid from the tank 8 to supply the cylinder 2;
  • the suction passage of the pump 15 and the return passage (second passage) 13 for returning the working fluid from the cylinder 2 to the tank 8 or the charge passage 24, 31 or 32 connecting the discharge port of the pump 15 is provided.
  • part of the hydraulic fluid discharged by the pump 15 can be returned to the suction port of the pump 15.
  • the railcar damping device 1 of the present invention even if the tank 8 is disposed below the pump 15, the noise of the pump 15 can be suppressed, and noises can not be perceived by the passengers of the railcar. Quietness of the vehicle can be improved.
  • the damping device for railway vehicle 1 connects the suction port of the pump 15 and the discharge port of the pump 15 through the charge passage 24 and controls the operating fluid flowing through the charge passage 24 to the charge passage 24. , 27, 28, 30 may be provided. According to the vibration damping device 1 for a railway vehicle configured in this manner, if the working fluid supplied to the suction port of the pump 15 is increased in a situation where the suction failure of the pump 15 is likely to occur, the suction failure is effective. Noise can be suppressed, and the quietness of the vehicle can be improved.
  • the valve element when the valve element is set to reduce the amount of working liquid returned to the discharge port of the pump 15 in a situation where the cylinder device Cy requires a large thrust, the vehicle B for the railway vehicle damping device 1 In the case of large vibration, sufficient vibration suppression effect can be exhibited. In such a case, the vehicle B vibrates to a large extent and the noise of the vehicle itself is increased. Therefore, the noise due to the suction failure of the pump 15 is hardly perceived by the passengers. Quietness can be improved.
  • the railway vehicle damping device 1 may be configured to control the valve elements 25 and 28 to increase the working fluid flowing through the charge passage 24 according to the increase of the discharge flow rate of the pump 15.
  • the suction failure is effectively eliminated because the working fluid supplied to the suction port of the pump 15 is increased when the suction failure of the pump 15 is likely to occur. Noise can be suppressed.
  • the railcar damping device 1 may be configured to cause the charge passage 24 to communicate when the valve elements 25 and 30 have the discharge flow rate of the pump 15 equal to or more than the predetermined flow rate set in advance. According to the railcar damping device 1 configured as described above, the valve elements 25 and 30 are opened to supply the working fluid to the discharge port of the pump 15 in a situation where suction failure of the pump 15 is likely to occur. Thus, the suction failure can be effectively eliminated to suppress the noise, and the quietness of the vehicle can be improved.
  • the damping device for railway vehicle 1 includes a supply passage 16 connecting the discharge port of the pump 15 to the cylinder device Cy, and a valve element is connected to the charge passage 24 and the supply passage 16 to connect the charge passage 24 and the supply passage 16.
  • the flow dividing valve 27 may be used to divide the flow of the working fluid.
  • the railway vehicle vibration damping device 1 may use a variable orifice 28 capable of changing the resistance given to the charge passage 24 according to the rotational speed of the pump 15 or the discharge flow rate of the pump 15. According to the vibration damping device 1 for a railway vehicle configured in this manner, the resistance at the variable orifice 28 is reduced in the situation where suction failure of the pump 15 easily occurs, and the amount of working fluid supplied to the discharge port of the pump 15 is large. As a result, the suction failure can be effectively eliminated, the noise can be suppressed, and the quietness of the vehicle can be improved.
  • the railway vehicle vibration damping device 1 includes a hydraulic circuit HC that controls expansion and contraction of the cylinder device Cy.
  • the cylinder device Cy is slidably inserted into the cylinder 2 and the rod side chamber 5 and the piston in the cylinder 2
  • the hydraulic circuit HC communicates the rod side chamber 5 with the piston side chamber 6
  • the first on-off valve 12 provided in the middle of one passage 11, the second on-off valve 14 provided in the middle of the second passage 13 communicating the piston side chamber 6 and the tank 8, the rod side chamber 5 and the tank 8 are connected Discharge passage 21 and a control valve 22 provided in the middle of the discharge passage 21 to control the pressure in the cylinder 2, and the charge passage 31, 32 with the discharge passage 21 or the second passage 13 as a return passage.
  • Return passage And 3,21 and the suction port of the pump 15 may be configured to connect. Even with this configuration, a part of the hydraulic fluid discharged by the pump 15 can be returned to the suction port of the pump 15, so the noise of the pump 15 can be suppressed even if the tank 8 is disposed below the pump 15, It is possible to improve the quietness of the vehicle without making the passengers of the vehicle perceive the noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

This vibration damping device (1) for rolling stock comprises: a cylinder device (Cy) comprising a cylinder (2); a pump (15) attached to the cylinder device (Cy), that sucks in hydraulic fluid from a tank (8) and supplies same to the cylinder (2); and charge passages (24, 31, 32) that connect either return passages (13, 21) that return hydraulic fluid to the tank (8) from the cylinder (2) or a discharge port in the pump (15), to an intake port in the pump (15).

Description

鉄道車両用制振装置Vibration control device for railway vehicles
 本発明は、鉄道車両用制振装置の改良に関する。 The present invention relates to an improvement of a damping device for a railway vehicle.
 鉄道車両は、軌道上を走行するが、軌道の狂い等に起因して走行中には台車から車体に振動が入力されて乗心地が損なわれるため、鉄道車両用制振装置を車体と台車との間に介装して車体の振動を抑制している。 The railway vehicle travels on the track, but vibration is input from the truck to the vehicle body during traveling due to the track deviation or the like, and the riding comfort is impaired. To reduce the vibration of the car body.
 鉄道車両用制振装置は、たとえば、JP2014-216895Aに開示されているように、シリンダとシリンダ内に摺動自在に挿入されるピストンとピストンに連結されるロッドとを有して伸縮可能なシリンダ装置と、タンクから作動油を吸い込んでロッド側室へ供給可能なポンプと、ロッド側室とピストン側室とを連通する第一通路に設けた第一開閉弁と、ピストン側室とタンクとを連通する第二通路に設けた第二開閉弁と、ロッド側室とタンクとを接続する排出通路に設けた可変リリーフ弁とを備えている。 For example, as disclosed in JP2014-216895A, a vibration control device for a railway vehicle includes a cylinder, a piston slidably inserted in the cylinder, and a extendable cylinder having a rod connected to the piston Device, a pump capable of sucking in hydraulic oil from the tank and supplying it to the rod side chamber, a first on-off valve provided in the first passage connecting the rod side chamber and the piston side chamber, and a second connecting the piston side chamber and the tank A second on-off valve provided in the passage and a variable relief valve provided in the discharge passage connecting the rod side chamber and the tank are provided.
 そして、ポンプでシリンダ装置へ作動油を供給しつつ第一開閉弁と第二開閉弁を開閉制御するとともに、可変リリーフ弁でシリンダ装置内の圧力を制御すれば、所望する方向と大きさの推力を鉄道車両用制振装置に発揮させて車体の振動を抑制できる。 Then, while supplying hydraulic oil to the cylinder device with the pump and controlling the opening and closing of the first on-off valve and the second on-off valve, and controlling the pressure in the cylinder device with the variable relief valve, the thrust in the desired direction and magnitude Vibration of the vehicle body can be suppressed by causing the vibration damping device for a railway vehicle to
 従来の鉄道車両用制振装置では、シリンダ装置の側方にポンプが取付けてあり、タンクをシリンダ装置のシリンダと外筒との間の環状隙間で形成している。このような鉄道車両用制振装置を鉄道車両の車体と台車との間に設置するのであるが、設置スペースが狭いために、ポンプがどうしてもタンクよりも上方に配置されてしまう場合がある。 In the conventional railway vehicle vibration damping device, a pump is attached to the side of the cylinder device, and the tank is formed by an annular gap between the cylinder of the cylinder device and the outer cylinder. Although such a damping device for railway vehicles is installed between the car body of the railway vehicle and the bogie, the pump may be necessarily disposed above the tank because the installation space is narrow.
 このようにポンプがタンクよりも上方に設置されると、ポンプが下方のタンクから作動油を吸い上げるため、吸込不良によって騒音が発生する恐れがある。 When the pump is thus installed above the tank, the pump sucks the working oil from the lower tank, which may cause noise due to a suction failure.
 ポンプの騒音が大きくなるとシリンダ装置を介して騒音が車体に伝達され、車体がスピーカとなって乗客にポンプの騒音を知覚させてしまい、乗客に不快感を与えて静粛性を損なってしまう。 When the noise of the pump becomes large, the noise is transmitted to the vehicle body through the cylinder device, and the vehicle body acts as a speaker to cause the passenger to perceive the noise of the pump, causing discomfort to the passenger and impairing the quietness.
 そこで、本発明は、ポンプの騒音を抑制し車両における静粛性を向上できる鉄道車両制振装置の提供を目的としている。 Then, this invention aims at provision of the rail vehicle damping device which can suppress the noise of a pump and can improve the silence in a vehicle.
 そのため、鉄道車両用制振装置は、シリンダを備えたシリンダ装置と、シリンダ装置に取付けられるとともに作動液体をタンクから吸込んでシリンダへ供給するポンプと、ポンプの吸込口と、シリンダからタンクへ作動液体を戻す戻り通路、或いはポンプの吐出口とを接続するチャージ通路とを備えている。このように構成された鉄道車両用制振装置にあっては、ポンプが吐出した作動油の一部をポンプの吸込口へ戻せる。 Therefore, the damping device for railway vehicles includes a cylinder device having a cylinder, a pump that is attached to the cylinder device and sucks the working fluid from the tank and supplies it to the cylinder, a suction port of the pump, and a working fluid from the cylinder to the tank And a charge passage for connecting with the discharge port of the pump. In the railway vehicle damping device configured as described above, part of the hydraulic fluid discharged by the pump can be returned to the suction port of the pump.
図1は、鉄道車両用制振装置を搭載した鉄道車両の平面図である。FIG. 1 is a plan view of a railway vehicle equipped with a railway vehicle damping device. 図2は、一実施の形態における鉄道車両用制振装置の液圧回路図である。FIG. 2 is a hydraulic circuit diagram of a railway vehicle vibration damping device according to one embodiment. 図3は、一実施の形態の第一変形例における鉄道車両用制振装置の液圧回路図である。FIG. 3 is a hydraulic circuit diagram of a railway vehicle damping device according to a first modification of the embodiment. 図4は、一実施の形態の第二変形例における鉄道車両用制振装置の液圧回路図である。FIG. 4 is a hydraulic circuit diagram of a railway vehicle damping device according to a second modification of the embodiment. 図5は、一実施の形態の第三変形例における鉄道車両用制振装置の液圧回路図である。FIG. 5 is a hydraulic circuit diagram of a railway vehicle damping device according to a third modification of the embodiment. 図6は、一実施の形態の第四変形例における鉄道車両用制振装置の液圧回路図である。FIG. 6 is a hydraulic circuit diagram of a railcar damping device according to a fourth modification of the embodiment. 図7は、一実施の形態の第五変形例における鉄道車両用制振装置の液圧回路図である。FIG. 7 is a hydraulic circuit diagram of a railway vehicle damping device according to a fifth modification of the embodiment. 図8は、一実施の形態の第六変形例における鉄道車両用制振装置の液圧回路図である。FIG. 8 is a hydraulic circuit diagram of a railcar damping device according to a sixth modification of the embodiment.
 以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態における鉄道車両用制振装置1は、鉄道車両の車体Bの制振に利用されている。本例の鉄道車両用制振装置1は、図1および図2に示すように、車体Bと台車Tとの間に介装されるシリンダ装置Cyと、ポンプ15と、シリンダ装置Cyの伸縮の切換と推力を制御する液圧回路HCとを備えている。 Hereinafter, the present invention will be described based on the embodiments shown in the drawings. Vibration control device 1 for railroad cars in one embodiment is used for vibration control of car body B of a rail car. As shown in FIGS. 1 and 2, the damping device 1 for a railway vehicle according to this embodiment includes a cylinder device Cy interposed between a vehicle body B and a bogie T, a pump 15, and an expansion and contraction of the cylinder device Cy. A hydraulic circuit HC is provided to control switching and thrust.
 シリンダ装置Cyは、鉄道車両の場合、車体Bの下方に垂下されるピンPに連結され、車体Bと台車Tとの間で対を成して並列に介装されている。台車Tは、車輪Wを回転自在に保持しており、車体Bと台車Tとの間には、懸架ばねSが介装され、車体Bが下方から弾性支持されており、台車Tに対する車体Bの横方向への移動が許容されている。そして、鉄道車両用制振装置1は、基本的には、アクティブ制御により車体Bの車両進行方向に対して水平横方向の振動を抑制するようになっている。 In the case of a railway vehicle, the cylinder device Cy is connected to a pin P hanging down below the vehicle body B, and is interposed in parallel between the vehicle body B and the truck T in a pair. The carriage T rotatably holds the wheel W, and a suspension spring S is interposed between the vehicle body B and the carriage T, and the vehicle body B is elastically supported from below. Horizontal movement is allowed. And, basically, the damping device 1 for a railway vehicle is configured to suppress the vibration in the horizontal direction with respect to the traveling direction of the vehicle body B by active control.
 シリンダ装置Cyは、図2に示すように、鉄道車両の車体Bに連結されるシリンダ2と、シリンダ2内に摺動可能に挿入されるピストン3と、シリンダ2内に挿入されてピストン3と台車Tに連結されるロッド4と、シリンダ2内にピストン3で区画したロッド側室5とピストン側室6と、シリンダ2の外周に設けた外筒7と、シリンダ2と外筒7との間に形成されるタンク8とを備えて伸縮可能とされている。 The cylinder device Cy is, as shown in FIG. 2, a cylinder 2 connected to a car body B of a railway vehicle, a piston 3 slidably inserted in the cylinder 2, and a piston 3 inserted in the cylinder 2. The rod 4 connected to the carriage T, the rod side chamber 5 and the piston side chamber 6 partitioned by the piston 3 in the cylinder 2, the outer cylinder 7 provided on the outer periphery of the cylinder 2, the cylinder 2 and the outer cylinder 7 It is provided with a tank 8 to be formed so as to be stretchable.
 液圧回路HCは、ロッド側室5とピストン側室6とを連通する第一通路11の途中に設けた第一開閉弁12と、ピストン側室6とタンク8とを連通する第二通路13の途中に設けた第二開閉弁14とを備えている。 The hydraulic circuit HC is provided in the middle of a first on-off valve 12 provided in the middle of the first passage 11 which connects the rod side chamber 5 and the piston side chamber 6 and in the middle of the second passage 13 which connects the piston side chamber 6 and the tank 8. And a second on-off valve 14 provided.
 第一開閉弁12を開いて第一通路11を連通させて第二開閉弁14を閉じて第二通路13を遮断し、ロッド側室5とピストン側室6とを連通させるとともにピストン側室6とタンク8との連通を断ち、ポンプ15を駆動すると、シリンダ装置Cyは伸長する。反対に、第二開閉弁14を開いて第二通路13を連通させて第一開閉弁12を閉じて第一通路11を遮断し、ロッド側室5とピストン側室6との連通を断ちつつピストン側室6とタンク8とを連通させ、ポンプ15を駆動すると、シリンダ装置Cyは収縮する。 The first on-off valve 12 is opened to connect the first passage 11 and the second on-off valve 14 is closed to shut off the second passage 13 to connect the rod side chamber 5 and the piston side chamber 6 and the piston side chamber 6 and the tank 8 When the pump 15 is driven, the cylinder device Cy extends. On the contrary, the second on-off valve 14 is opened to connect the second passage 13 and the first on-off valve 12 is closed to shut off the first passage 11 to disconnect the rod side chamber 5 and the piston side chamber 6 from each other. When the pump 6 is communicated with the tank 8 and the pump 15 is driven, the cylinder device Cy contracts.
 以下、鉄道車両用制振装置1の各部について詳細に説明する。まず、シリンダ装置Cyの各部について説明する。図2に示すように、シリンダ2と外筒7はともに筒状であって、図2中左端側の開口部は、環状であって両者に嵌合するロッドガイド9によって閉塞され、シリンダ2と外筒7の図2中右端側の開口部は、両者に嵌合するボトムキャップ10によって閉塞されている。また、前記ロッドガイド9内には、シリンダ2内に移動自在に挿入されるロッド4が摺動自在に挿入されており、ロッド4の軸方向の移動がロッドガイド9によって案内される。また、ロッド4は、ロッドガイド9を通して一端をシリンダ2外へ突出させており、シリンダ2内の他端をシリンダ2内に摺動自在に挿入されるピストン3に連結している。 Hereinafter, each part of the damping device 1 for railway vehicles will be described in detail. First, each part of the cylinder device Cy will be described. As shown in FIG. 2, both the cylinder 2 and the outer cylinder 7 are cylindrical, and the opening on the left end side in FIG. 2 is annular and closed by a rod guide 9 fitted to both. The opening on the right end side of the outer cylinder 7 in FIG. 2 is closed by a bottom cap 10 fitted to both. Further, a rod 4 movably inserted into the cylinder 2 is slidably inserted into the rod guide 9, and axial movement of the rod 4 is guided by the rod guide 9. Further, one end of the rod 4 protrudes out of the cylinder 2 through the rod guide 9, and the other end in the cylinder 2 is connected to the piston 3 slidably inserted in the cylinder 2.
 なお、ロッド4の外周、ロッドガイド9とシリンダ2との間、ロッドガイド9と外筒7との間、シリンダ2とボトムキャップ10との間および外筒7とボトムキャップ10との間は、それぞれ、図示を省略したシール部材によってシールされている。これによりシリンダ2内およびタンク8は密閉状態に維持されている。 The outer periphery of the rod 4, between the rod guide 9 and the cylinder 2, between the rod guide 9 and the outer cylinder 7, between the cylinder 2 and the bottom cap 10, and between the outer cylinder 7 and the bottom cap 10, Each is sealed by a sealing member (not shown). Thus, the inside of the cylinder 2 and the tank 8 are maintained in a sealed state.
 そして、シリンダ2内にピストン3によって区画されるロッド側室5とピストン側室6には、本例では、作動液体として作動油が充填されるとともに、タンク8には、作動油の他に気体が充填されている。なお、タンク8内は、特に、気体を圧縮して充填して加圧状態とする必要は無い。また、作動液体は、作動油以外にも他の液体を利用してもよい。 Then, in the present embodiment, the rod side chamber 5 and the piston side chamber 6 partitioned by the piston 3 in the cylinder 2 are filled with the working oil as the working liquid, and the tank 8 is filled with gas in addition to the working oil. It is done. The inside of the tank 8 is not particularly required to be compressed and filled with gas to be pressurized. Also, as the working fluid, other fluids may be used besides the working oil.
 また、このシリンダ装置Cyの場合、ロッド4の断面積をピストン3の断面積の二分の一にして、ピストン3のロッド側室5側の受圧面積がピストン側室6側の受圧面積の二分の一となるようになっている。よって、伸長作動時と収縮作動時とでロッド側室5の圧力を同じにすると、伸縮の双方で発生される推力が等しくなり、シリンダ装置Cyの変位量に対する作動油量も伸縮両側で同じとなる。 Further, in the case of this cylinder device Cy, the cross-sectional area of the rod 4 is half of the cross-sectional area of the piston 3 and the pressure receiving area on the rod side chamber 5 side of the piston 3 is half the pressure receiving area on the piston side chamber 6 side. It is supposed to be. Therefore, if the pressure in the rod side chamber 5 is made the same at the extension operation time and the contraction operation time, the thrust generated by both expansion and contraction becomes equal, and the hydraulic oil amount with respect to the displacement amount of the cylinder device Cy becomes the same at both sides. .
 シリンダ装置Cyを伸長作動させる場合、前述したようにロッド側室5とピストン側室6を連通させ、ピストン側室6とタンク8との連通を断って、ポンプ15から作動油を供給する。すると、ロッド側室5内とピストン側室6内の圧力が等しくなり、鉄道車両用制振装置1は、ピストン3におけるロッド側室5側とピストン側室6側の受圧面積差に前記圧力を乗じた推力を発生する。反対に、シリンダ装置Cyを収縮作動させる場合、ロッド側室5とピストン側室6との連通を断ちピストン側室6をタンク8に連通させて、ポンプ15から作動油を供給する。すると、鉄道車両用制振装置1は、ロッド側室5内の圧力とピストン3におけるロッド側室5側の受圧面積を乗じた推力を発生する。このように、鉄道車両用制振装置1は、伸び縮みのいずれの方向へもロッド側室5内の圧力とピストン3におけるロッド側室5側の受圧面積を乗じた推力を発生する。 When the cylinder device Cy is operated to extend, as described above, the rod side chamber 5 and the piston side chamber 6 are communicated with each other, the piston side chamber 6 and the tank 8 are disconnected, and hydraulic fluid is supplied from the pump 15. Then, the pressure in the rod side chamber 5 and the pressure in the piston side chamber 6 become equal, and the damping device 1 for railway vehicles is the thrust force area difference between the rod side chamber 5 side and the piston side chamber 6 side in the piston 3 multiplied by the pressure Occur. On the contrary, when the cylinder device Cy is contracted, the communication between the rod side chamber 5 and the piston side chamber 6 is cut off, the piston side chamber 6 is made to communicate with the tank 8, and the hydraulic oil is supplied from the pump 15. Then, the railway vehicle damping device 1 generates a thrust that is obtained by multiplying the pressure in the rod side chamber 5 and the pressure receiving area on the rod side chamber 5 side of the piston 3. As described above, the railway vehicle damping device 1 generates a thrust that is obtained by multiplying the pressure in the rod side chamber 5 and the pressure receiving area on the rod side chamber 5 side of the piston 3 in any direction of extension and contraction.
 要するに、鉄道車両用制振装置1の発生推力は伸縮の双方でピストン3の断面積の二分の一にロッド側室5の圧力を乗じた値となるのである。したがって、この鉄道車両用制振装置1の推力を制御する場合、伸長作動、収縮作動共に、ロッド側室5の圧力を制御すればよい。また、本例の鉄道車両用制振装置1では、ピストン3のロッド側室5側の受圧面積をピストン側室6側の受圧面積の二分の一に設定しているので、伸縮両側で同じ推力を発生する場合に伸長側と収縮側でロッド側室5の圧力が同じとなるので制御が簡素となる。加えて、変位量に対する作動油量も同じとなるので伸縮両側で応答性が同じとなる利点がある。なお、ピストン3のロッド側室5側の受圧面積をピストン側室6側の受圧面積の二分の一に設定しない場合にあっても、ロッド側室5の圧力でシリンダ装置Cyの伸縮両側の推力を制御できる点は変わらない。 In short, the generated thrust of the railway vehicle damping device 1 is a value obtained by multiplying the half of the cross-sectional area of the piston 3 by the pressure of the rod side chamber 5 in both expansion and contraction. Therefore, when controlling the thrust of this railcar damping device 1, the pressure in the rod side chamber 5 may be controlled in both the extension operation and the contraction operation. Moreover, in the damping device 1 for railway vehicles of this example, since the pressure receiving area on the rod side chamber 5 side of the piston 3 is set to half of the pressure receiving area on the piston side chamber 6 side, the same thrust is generated on both sides of expansion and contraction In this case, since the pressure in the rod side chamber 5 is the same on the extension side and the contraction side, the control is simplified. In addition, since the amount of hydraulic fluid with respect to the displacement amount is also the same, there is an advantage that the responsivity is the same on both sides of the expansion and contraction. Even when the pressure receiving area on the rod side chamber 5 side of the piston 3 is not set to one half of the pressure receiving area on the piston side chamber 6 side, the pressure of the rod side chamber 5 can control the thrust on both sides of expansion and contraction of the cylinder device Cy. The point does not change.
 戻って、ロッド4の図2中左端とシリンダ2の右端を閉塞するボトムキャップ10とには、図示しない取付部を備えており、このシリンダ装置Cyを鉄道車両における車体Bと台車Tとの間に介装できるようになっている。 Returning back, the bottom cap 10 for closing the left end of the rod 4 in FIG. 2 and the right end of the cylinder 2 is provided with a mounting portion (not shown). Are able to intervene.
 つづいて、液圧回路HCについて説明する。第一通路11は、ロッド側室5とピストン側室6とを連通しており、第一開閉弁12を備えている。この第一通路11は、シリンダ2外でロッド側室5とピストン側室6とを連通しているが、ピストン3に設けられてもよい。 Subsequently, the hydraulic circuit HC will be described. The first passage 11 communicates the rod side chamber 5 with the piston side chamber 6 and includes a first on-off valve 12. The first passage 11 communicates the rod side chamber 5 and the piston side chamber 6 outside the cylinder 2, but may be provided in the piston 3.
 第一開閉弁12は、電磁開閉弁とされており、第一通路11を開放してロッド側室5とピストン側室6とを連通する連通ポジションと、第一通路11を遮断してロッド側室5とピストン側室6との連通を断つ遮断ポジションとを備えている。そして、この第一開閉弁12は、通電時に連通ポジションを採り、非通電時に遮断ポジションを採るようになっている。 The first on-off valve 12 is an electromagnetic on-off valve, and the communication position for opening the first passage 11 to communicate the rod side chamber 5 with the piston side chamber 6 and the first passage 11 to block the rod side chamber 5 A shutoff position for breaking the communication with the piston side chamber 6 is provided. And this 1st on-off valve 12 takes a communication position at the time of electricity supply, and takes the interruption | blocking position at the time of no electricity supply.
 第二通路13は、ピストン側室6とタンク8とを連通しており、第二開閉弁14を備えている。第二開閉弁14は、電磁開閉弁とされており、第二通路13を開放してピストン側室6とタンク8とを連通する連通ポジションと、第二通路13を遮断してピストン側室6とタンク8との連通を断つ遮断ポジションとを備えている。そして、この第二開閉弁14は、通電時に連通ポジションを採り、非通電時に遮断ポジションを採るようになっている。 The second passage 13 communicates the piston side chamber 6 with the tank 8 and includes a second on-off valve 14. The second on-off valve 14 is an electromagnetic on-off valve, and the communication position for opening the second passage 13 to communicate the piston side chamber 6 with the tank 8 and the second passage 13 to shut off the piston side chamber 6 and the tank And a shutoff position for breaking the communication with 8. And this 2nd on-off valve 14 takes a communication position at the time of electricity supply, and takes the interruption | blocking position at the time of no electricity supply.
 ポンプ15は、図示しないコントローラに制御されるモータ20によって駆動され、一方向のみに作動油を吐出するポンプとされている。ポンプ15は、詳細には図示しないが、本例では、モータ20とともにシリンダ装置Cyにおけるボトムキャップ10に固定されており、これにより、シリンダ装置Cyに一体に取付けられている。ポンプ15は、シリンダ装置Cyに一体に取付けられていればよいので、ポンプ15のシリンダ装置Cyへの取付けに関する構造と位置については、前述した構造と位置と異なる構造と位置とされてもよい。そして、ポンプ15は、ロッド側室5とタンク8とを接続する供給通路16に、吸込口をタンク8側に吐出口をロッド側室5側に向けて設置されている。よって、ポンプ15は、モータ20によって駆動されるとタンク8から作動油を吸込んでロッド側室5へ作動油を供給する。 The pump 15 is driven by a motor 20 controlled by a controller (not shown), and is a pump that discharges hydraulic oil only in one direction. Although not illustrated in detail, the pump 15 is fixed to the bottom cap 10 in the cylinder device Cy together with the motor 20 in this example, and is thereby integrally attached to the cylinder device Cy. The pump 15 may be integrally attached to the cylinder device Cy. Therefore, the structure and position of the attachment of the pump 15 to the cylinder device Cy may be different from the above-described structure and position. The pump 15 is installed in the supply passage 16 connecting the rod side chamber 5 and the tank 8 with the suction port facing the tank 8 and the discharge port facing the rod side chamber 5. Therefore, when driven by the motor 20, the pump 15 sucks the hydraulic oil from the tank 8 and supplies the hydraulic oil to the rod side chamber 5.
 前述のようにポンプ15は、一方向のみに作動油を吐出するのみで回転方向の切換動作がないので、回転切換時に吐出量が変化するといった問題は皆無であり、安価なギアポンプ等を使用できる。さらに、ポンプ15の回転方向が常に同一方向であるので、ポンプ15を駆動する駆動源であるモータ20にあっても回転切換に対する高い応答性が要求されず、その分、モータ20も安価なものを使用できる。また、供給通路16の途中には、ロッド側室5からポンプ15への作動油の逆流を阻止する逆止弁17が設けられている。 As described above, the pump 15 only discharges the hydraulic oil in one direction and there is no switching operation of the rotation direction, so there is no problem that the discharge amount changes at the time of rotation switching, and an inexpensive gear pump can be used . Furthermore, since the direction of rotation of the pump 15 is always the same, high responsiveness to rotational switching is not required even in the motor 20 which is a drive source for driving the pump 15, and the motor 20 is also inexpensive accordingly Can be used. Further, a check valve 17 is provided in the middle of the supply passage 16 to prevent the backflow of the hydraulic oil from the rod side chamber 5 to the pump 15.
 そして、本例では、供給通路16のポンプ15を挟んで両側に接続されてポンプ15の吐出口と吸込口とを接続するチャージ通路24が設けられている。また、このチャージ通路24の途中には、ポンプ15の吐出流量に応じてチャージ通路24に流れる作動油を制御する弁要素としての流量制御弁25が設けられている。より詳しくは、流量制御弁25は、ポンプ15の吐出流量が予め設定される所定流量としての第一流量以上となると開弁し、第一流量未満では閉弁する。つまり、流量制御弁25は、ポンプ15の吐出流量の増加に応じてチャージ通路24を流れる作動油を増加させるように制御する。 And in this example, it connects on both sides across the pump 15 of the supply passage 16, and the charge passage 24 which connects the discharge port and suction port of the pump 15 is provided. In the middle of the charge passage 24, a flow control valve 25 is provided as a valve element for controlling the hydraulic oil flowing to the charge passage 24 in accordance with the discharge flow rate of the pump 15. More specifically, the flow control valve 25 opens when the discharge flow rate of the pump 15 is equal to or greater than a first flow rate as a predetermined flow rate, and closes when the flow rate is less than the first flow rate. That is, the flow control valve 25 controls the hydraulic fluid flowing through the charge passage 24 to increase according to the increase of the discharge flow rate of the pump 15.
 流量制御弁25は、チャージ通路24を開閉する弁体25aと、チャージ通路24を遮断する遮断ポジションを採るように弁体25aを附勢するばね25bと、チャージ通路24を開放する連通ポジションを採るようにポンプ15の吐出口の圧力を弁体25aに作用させる開パイロット通路25cと、供給通路16の逆止弁17よりもロッド側室5側に設けたオリフィス25dと、チャージ通路24を遮断する遮断ポジションを採るように供給通路16のオリフィス25dよりもロッド側室5側の圧力を弁体25aに作用させる閉パイロット通路25eとを備えている。なお、オリフィス25dは、供給通路16の逆止弁17よりもポンプ15側に設けてもよい。また、チャージ通路24は、供給通路16のオリフィス25dよりもポンプ15側に接続されればよく、開パイロット通路25cは、供給通路16のオリフィス25dよりもポンプ15側か、チャージ通路24の弁体25aよりも供給通路16側に接続されればよい。 The flow control valve 25 takes a valve body 25 a for opening and closing the charge passage 24, a spring 25 b for energizing the valve body 25 a to take a shut-off position to shut off the charge passage 24, and a communication position to open the charge passage 24. As described above, the open pilot passage 25c that causes the pressure of the discharge port of the pump 15 to act on the valve body 25a, the orifice 25d provided closer to the rod side chamber 5 than the check valve 17 of the supply passage 16, and the blockage that shuts off the charge passage 24 It has a closed pilot passage 25e which causes the pressure on the rod side chamber 5 side to act on the valve body 25a more than the orifice 25d of the supply passage 16 so as to take a position. The orifice 25 d may be provided closer to the pump 15 than the check valve 17 of the supply passage 16. Further, the charge passage 24 may be connected to the pump 15 side of the orifice 25 d of the supply passage 16, and the open pilot passage 25 c may be the pump 15 side of the orifice 25 d of the supply passage 16 or a valve element of the charge passage 24. It may be connected to the supply passage 16 side more than 25a.
 流量制御弁25の弁体25aには、ポンプ15の吐出圧が開弁方向に作用し、供給通路16におけるオリフィス25dの下流の圧力が閉弁方向に作用している。よって、ポンプ15の吐出圧と供給通路16におけるオリフィス25dの下流の圧力との差が設定差圧に達すると、圧力による弁体25aを押す力でばね25bを押し縮めて流量制御弁25は開弁する。第一流量に等しい流量の作動油がオリフィス25dを通過する際に生じる圧力損失を前記設定差圧と等しくなるように予め設定されているので、ポンプ15の吐出流量が第一流量以上となると、流量制御弁25は開弁してチャージ通路24を開放する。このように流量制御弁25は、ノーマルクローズの流量制御弁であって、ポンプ15の吐出流量が所定の第一流量以上となると閉弁状態から開弁状態へ切換わるようになっている。したがって、ポンプ15の吐出流量が第一流量以上となると流量制御弁25が開弁し、ポンプ15の吐出流量における第一流量を超える余剰分がチャージ通路24を通じてポンプ15の吸込口へ戻される。なお、ポンプ15の吐出流量が第一流量未満である場合、流量制御弁25が閉弁するので、ポンプ15が吐出する全流量がロッド側室5へ供給される。 The discharge pressure of the pump 15 acts on the valve body 25a of the flow control valve 25 in the valve opening direction, and the pressure downstream of the orifice 25d in the supply passage 16 acts on the valve body 25a in the valve closing direction. Therefore, when the difference between the discharge pressure of the pump 15 and the pressure downstream of the orifice 25d in the supply passage 16 reaches the set differential pressure, the pressure pushing the valve body 25a by the pressure squeezes the spring 25b and the flow control valve 25 opens. To speak. Since the pressure loss that occurs when hydraulic fluid having a flow rate equal to the first flow rate passes through the orifice 25d is previously set equal to the set differential pressure, when the discharge flow rate of the pump 15 becomes equal to or greater than the first flow rate, The flow control valve 25 opens to open the charge passage 24. As described above, the flow control valve 25 is a normally closed flow control valve, and is switched from the closed state to the open state when the discharge flow rate of the pump 15 becomes equal to or more than the predetermined first flow rate. Therefore, when the discharge flow rate of the pump 15 becomes equal to or more than the first flow rate, the flow control valve 25 opens, and the surplus portion exceeding the first flow rate in the discharge flow rate of the pump 15 is returned to the suction port of the pump 15 through the charge passage 24. When the discharge flow rate of the pump 15 is less than the first flow rate, the flow control valve 25 is closed, so that the entire flow rate discharged by the pump 15 is supplied to the rod side chamber 5.
 戻って、本例の液圧回路HCは、前述の構成に加えて、ロッド側室5とタンク8とを接続する排出通路21と、排出通路21の途中に設けた制御弁としての開弁圧を変更可能な可変リリーフ弁22を備えている。 Returning to the above, in addition to the above-described configuration, the hydraulic pressure circuit HC according to the present embodiment includes the discharge passage 21 connecting the rod side chamber 5 and the tank 8 and the valve opening pressure as a control valve provided in the middle of the discharge passage 21 A changeable variable relief valve 22 is provided.
 可変リリーフ弁22は、本例では、比例電磁リリーフ弁とされており、供給される電流量に応じて開弁圧を調節でき、前記電流量が最大となると開弁圧を最小とし、電流の供給がないと開弁圧を最大とするようになっている。 The variable relief valve 22 in this example is a proportional electromagnetic relief valve, which can adjust the valve opening pressure in accordance with the amount of supplied current, and when the amount of current is maximized, the valve opening pressure is minimized. If there is no supply, the valve opening pressure is maximized.
 このように、排出通路21と可変リリーフ弁22とを設けると、シリンダ装置Cyを伸縮作動させる際に、ロッド側室5内の圧力を可変リリーフ弁22の開弁圧に調節でき、鉄道車両用制振装置1の推力を可変リリーフ弁22へ供給する電流量で制御できる。排出通路21と可変リリーフ弁22とを設けると、鉄道車両用制振装置1の推力を調節するために必要なセンサ類が不要となり、ポンプ15の吐出流量の調節のためにモータ20を高度に制御する必要もなくなる。よって、鉄道車両用制振装置1が安価となり、ハードウェア的にもソフトウェア的にも堅牢なシステムを構築できる。 Thus, when the discharge passage 21 and the variable relief valve 22 are provided, the pressure in the rod side chamber 5 can be adjusted to the valve opening pressure of the variable relief valve 22 when the cylinder device Cy is extended and contracted. The thrust of the vibration device 1 can be controlled by the amount of current supplied to the variable relief valve 22. If the discharge passage 21 and the variable relief valve 22 are provided, the sensors necessary for adjusting the thrust of the damping device 1 for a railway vehicle become unnecessary, and the motor 20 is advanced to adjust the discharge flow rate of the pump 15 There is no need to control. Therefore, the damping device 1 for railway vehicles becomes inexpensive, and a system that is robust both in hardware and software can be constructed.
 なお、可変リリーフ弁22に与える電流量で開弁圧を比例的に変化させる比例電磁リリーフ弁を用いると開弁圧の制御が簡単となるが、制御弁は、ロッド側室5内の圧力を調節できれば、可変リリーフ弁以外の弁を利用してもよい。 Note that although the use of a proportional solenoid valve that proportionally changes the valve opening pressure by the amount of current supplied to the variable relief valve 22 simplifies control of the valve opening pressure, the control valve adjusts the pressure in the rod side chamber 5 If possible, valves other than the variable relief valve may be used.
 さらに、本例の鉄道車両用制振装置1における液圧回路HCは、ピストン側室6からロッド側室5へ向かう作動油の流れのみを許容する整流通路18と、タンク8からピストン側室6へ向かう作動油の流れのみを許容する吸込通路19を備えている。 Furthermore, the hydraulic circuit HC in the damping device 1 for a railway vehicle according to the present embodiment operates in a straightening passage 18 that allows only the flow of hydraulic fluid from the piston side chamber 6 to the rod side chamber 5 and the operation from the tank 8 to the piston side chamber 6 A suction passage 19 is provided which allows only oil flow.
 より詳細には、整流通路18は、ピストン側室6とロッド側室5とを連通しており、途中に逆止弁18aが設けられ、ピストン側室6からロッド側室5へ向かう作動油の流れのみを許容する一方通行の通路に設定されている。さらに、吸込通路19は、タンク8とピストン側室6とを連通しており、途中に逆止弁19aが設けられ、タンク8からピストン側室6へ向かう作動油の流れのみを許容する一方通行の通路に設定されている。なお、整流通路18は、第一開閉弁12の遮断ポジションを逆止弁とすると第一通路11に集約でき、吸込通路19についても、第二開閉弁14の遮断ポジションを逆止弁とすると第二通路13に集約できる。 More specifically, the flow straightening passage 18 communicates the piston side chamber 6 and the rod side chamber 5, and a check valve 18a is provided in the middle to allow only the flow of hydraulic fluid from the piston side chamber 6 to the rod side chamber 5 It is set in a one-way aisle. Further, the suction passage 19 communicates the tank 8 with the piston side chamber 6, and a check valve 19a is provided in the middle to allow only the flow of hydraulic oil from the tank 8 to the piston side chamber 6 It is set to. The straightening passage 18 can be integrated into the first passage 11 when the shutoff position of the first on-off valve 12 is a check valve, and the shutoff position of the second on-off valve 14 is also a check valve for the suction passage 19. It can be integrated into the second passage 13.
 このように構成された鉄道車両用制振装置1では、第一開閉弁12と第二開閉弁14がともに遮断ポジションを採っても、整流通路18、吸込通路19および排出通路21で、ロッド側室5、ピストン側室6およびタンク8を数珠繋ぎに連通させる。また、整流通路18、吸込通路19および排出通路21は、一方通行の通路に設定されている。 In the railway vehicle vibration damping device 1 configured as described above, even if the first on-off valve 12 and the second on-off valve 14 both take the blocking position, the rod side chamber is formed by the straightening passage 18, the suction passage 19 and the discharge passage 21. 5, the piston side chamber 6 and the tank 8 are connected in a series connection. Further, the straightening passage 18, the suction passage 19 and the discharge passage 21 are set as one-way passages.
 つづいて、鉄道車両用制振装置1に所望の伸長方向の推力を発揮させる場合、モータ20でポンプ15を駆動し、ポンプ15からシリンダ2内へ作動油を供給しつつ、第一開閉弁12を連通ポジションとし、第二開閉弁14を遮断ポジションとする。このようにすると、ロッド側室5とピストン側室6とが連通状態におかれて両者にポンプ15から作動油が供給され、ピストン3が図2中左方へ押されてシリンダ装置Cyが伸長し、鉄道車両用制振装置1は伸長方向の推力を発揮する。ロッド側室5内およびピストン側室6内の圧力が可変リリーフ弁22の開弁圧を上回ると、可変リリーフ弁22が開弁して作動油が排出通路21を介してタンク8へ排出される。よって、ロッド側室5内およびピストン側室6内の圧力は、可変リリーフ弁22に与える電流量で決まる可変リリーフ弁22の開弁圧にコントロールされる。そして、鉄道車両用制振装置1は、ピストン3におけるピストン側室6側とロッド側室5側の受圧面積差に可変リリーフ弁22によってコントロールされるロッド側室5内およびピストン側室6内の圧力を乗じた値の伸長方向の推力を発揮する。 Subsequently, in order to cause the damping device 1 for a railway vehicle to exert a thrust in a desired extension direction, the pump 20 is driven by the motor 20 to supply the hydraulic oil from the pump 15 into the cylinder 2 while the first on-off valve 12 is And the second on-off valve 14 in the blocking position. As a result, the rod side chamber 5 and the piston side chamber 6 are brought into communication, hydraulic fluid is supplied from the pump 15 to the both, and the piston 3 is pushed to the left in FIG. The railway vehicle damping device 1 exerts a thrust in the extension direction. When the pressure in the rod side chamber 5 and the pressure in the piston side chamber 6 exceeds the valve opening pressure of the variable relief valve 22, the variable relief valve 22 is opened and the hydraulic oil is discharged to the tank 8 via the discharge passage 21. Therefore, the pressures in the rod side chamber 5 and the piston side chamber 6 are controlled to the valve opening pressure of the variable relief valve 22 determined by the amount of current supplied to the variable relief valve 22. Then, the damping device 1 for railway vehicles multiplies the pressure in the rod side chamber 5 and the piston side chamber 6 controlled by the variable relief valve 22 by the pressure receiving area difference between the piston side chamber 6 and the rod side chamber 5 in the piston 3 Demonstrate the thrust in the direction of value expansion.
 これに対して、鉄道車両用制振装置1に所望の収縮方向の推力を発揮させる場合、モータ20でポンプ15を駆動し、ポンプ15からシリンダ2内へ作動油を供給しつつ、第一開閉弁12を遮断ポジションとし、第二開閉弁14を連通ポジションとする。このようにすると、ピストン側室6とタンク8が連通状態におかれるとともにロッド側室5にポンプ15から作動油が供給され、ピストン3が図2中右方へ押されてシリンダ装置Cyが収縮し、鉄道車両用制振装置1は収縮方向の推力を発揮する。そして、前述と同様に、可変リリーフ弁22の電流量を調節すると、鉄道車両用制振装置1は、ピストン3におけるロッド側室5側の受圧面積と可変リリーフ弁22にコントロールされるロッド側室5内の圧力を乗じた収縮方向の推力を発揮する。このように、鉄道車両用制振装置1は、シリンダ装置Cyに積極的に伸縮双方向の推力を発揮させるアクチュエータとして機能できる。 On the other hand, when making the damping device 1 for rail vehicles exhibit thrust of a desired contraction direction, the pump 20 is driven by the motor 20 to supply the hydraulic oil from the pump 15 into the cylinder 2 while the first opening / closing is performed. The valve 12 is in the shutoff position, and the second on-off valve 14 is in the communication position. As a result, the piston side chamber 6 and the tank 8 are in communication with each other, and the hydraulic oil is supplied from the pump 15 to the rod side chamber 5, and the piston 3 is pushed to the right in FIG. The railway vehicle damping device 1 exerts a thrust in the contraction direction. Then, in the same manner as described above, when the current amount of the variable relief valve 22 is adjusted, the damping device 1 for railway vehicle is controlled by the pressure receiving area on the rod side chamber 5 side of the piston 3 and the rod side chamber 5 controlled by the variable relief valve 22. The thrust in the contraction direction multiplied by the pressure of As described above, the railway vehicle vibration damping device 1 can function as an actuator that causes the cylinder device Cy to actively exert the expansion and contraction bidirectional thrust.
 また、第一開閉弁12を開き第二開閉弁14を閉じた状態で、外力でロッド4が図2中左方へ移動する場合、ポンプ15の駆動の有無に拘わらず、鉄道車両用制振装置1はロッド4の移動を妨げる方向、つまり、収縮方向の力を発揮しない。この場合、ポンプ15が駆動中では、ロッド4がシリンダ2から退出する際に減少するシリンダ2内における体積変化にポンプ15の吐出流量が追い付かなくなるが、吸込通路19を通じてタンク8からシリンダ2内へ作動油が供給される。また、この場合において、ポンプ15が駆動していない場合には、ロッド4がシリンダ2から退出する体積分の作動油が吸込通路19を通じてタンク8からシリンダ2内へ作動油が供給される。いずれにせよ、この場合には、シリンダ2内の圧力はタンク圧となるから、鉄道車両用制振装置1はロッド4の移動を妨げる方向、つまり、収縮方向の減衰力を発揮しない。 When the rod 4 is moved to the left in FIG. 2 by an external force in a state where the first on-off valve 12 is opened and the second on-off valve 14 is closed, damping for railway vehicles regardless of the presence or absence of driving of the pump 15 The device 1 does not exert a force in the direction that impedes the movement of the rod 4, that is, in the contraction direction. In this case, while the pump 15 is in operation, the discharge flow rate of the pump 15 can not catch up with the volume change in the cylinder 2 which decreases when the rod 4 exits from the cylinder 2. Hydraulic oil is supplied. Further, in this case, when the pump 15 is not driven, the working oil is supplied from the tank 8 into the cylinder 2 through the suction passage 19 by the volume corresponding to the rod 4 exiting from the cylinder 2. In any case, since the pressure in the cylinder 2 is the tank pressure in this case, the railway vehicle damping device 1 does not exert a damping force in the direction that hinders the movement of the rod 4, that is, in the contraction direction.
 なお、第一開閉弁12を開き第二開閉弁14を閉じた状態で、外力でロッド4が図2中右方へ移動する場合、ポンプ15の駆動の有無に拘わらず、シリンダ2内へのロッド4の侵入によってシリンダ2内から押し出された作動油は、排出通路21を通じてタンク8へ戻される。この場合には、シリンダ2内の圧力が可変リリーフ弁22によって所望の圧力に制御されるので、鉄道車両用制振装置1はロッド4の移動を妨げる方向、つまり、伸長方向の力を発揮できる。 In the state where the first on-off valve 12 is opened and the second on-off valve 14 is closed, when the rod 4 moves to the right in FIG. 2 by an external force, regardless of whether the pump 15 is driven, The hydraulic oil pushed out of the cylinder 2 by the entry of the rod 4 is returned to the tank 8 through the discharge passage 21. In this case, since the pressure in the cylinder 2 is controlled to a desired pressure by the variable relief valve 22, the railway vehicle vibration damping device 1 can exert a force in the direction that hinders the movement of the rod 4, that is, the extension direction. .
 他方、第一開閉弁12を閉じ第二開閉弁14を開いた状態で、外力でロッド4が図2中右方へ移動する場合、ポンプ15の駆動の有無に拘わらず、鉄道車両用制振装置1はロッド4の移動を妨げる方向、つまり、伸長方向の力を発揮しない。この場合、ポンプ15が駆動中では、ロッド4がシリンダ2へ進入する際に増加するロッド側室5内における体積変化にポンプ15の吐出流量が追い付かなくなるが、整流通路18を通じてピストン側室6からロッド側室5内へ作動油が供給される。また、ロッド4がシリンダ2内へ進入するために、シリンダ2内でロッド4のシリンダ2侵入分の体積の作動油が過剰となるが、圧縮側のピストン側室6が第二通路13を通じており、この過剰分の作動油がタンク8へ排出される。また、この場合において、ポンプ15が駆動していない場合にも、駆動中と同様に、ロッド4がシリンダ2へ進入する際に増加するロッド側室5内の体積分の作動油が整流通路18を通じてピストン側室6から供給される。そして、過剰となるロッド4のシリンダ2侵入分の体積の作動油は、圧縮されるピストン側室6から第二通路13を介してタンク8へ排出される。いずれにせよ、この場合には、シリンダ2内の圧力はタンク圧となるから、鉄道車両用制振装置1はロッド4の移動を妨げる方向、つまり、伸長方向の減衰力を発揮しない。 On the other hand, when the rod 4 moves to the right in FIG. 2 by an external force in a state where the first on-off valve 12 is closed and the second on-off valve 14 is opened, damping for railway vehicles regardless of the presence or absence of driving of the pump 15 The device 1 does not exert a force in the direction that impedes the movement of the rod 4, that is, in the extension direction. In this case, while the pump 15 is in operation, the discharge flow rate of the pump 15 can not catch up with the volume change in the rod side chamber 5 that increases when the rod 4 enters the cylinder 2. The hydraulic oil is supplied into 5. Further, although the volume of working oil in the cylinder 2 intruding of the rod 4 becomes excessive in the cylinder 2 in order for the rod 4 to enter the cylinder 2, the piston side chamber 6 on the compression side passes through the second passage 13, The excess hydraulic oil is discharged to the tank 8. Further, in this case, even when the pump 15 is not driven, the hydraulic oil corresponding to the volume in the rod side chamber 5 which increases when the rod 4 enters the cylinder 2 is transmitted through the flow straightening passage 18 as in driving. It is supplied from the piston side chamber 6. Then, the hydraulic oil of a volume corresponding to the cylinder 2 invading the rod 4 is discharged from the piston side chamber 6 to be compressed to the tank 8 through the second passage 13. In any case, since the pressure in the cylinder 2 is the tank pressure in this case, the railway vehicle damping device 1 does not exert a damping force in the direction that hinders the movement of the rod 4, that is, in the extension direction.
 なお、第一開閉弁12を閉じて第二開閉弁14を開いた状態で、外力でロッド4が図2中左方へ移動する場合、ポンプ15の駆動の有無に拘わらず、ロッド側室5から押し出された作動油は、排出通路21を通じてタンク8へ戻される。この場合には、ロッド側室5内の圧力が可変リリーフ弁22によって所望の圧力に制御されるので、鉄道車両用制振装置1はロッド4の移動を妨げる方向、つまり、収縮方向の力を発揮できる。 When the rod 4 is moved to the left in FIG. 2 by an external force in a state in which the first on-off valve 12 is closed and the second on-off valve 14 is opened, the rod side chamber 5 is opened regardless of whether the pump 15 is driven. The extruded hydraulic oil is returned to the tank 8 through the discharge passage 21. In this case, since the pressure in the rod side chamber 5 is controlled to a desired pressure by the variable relief valve 22, the railway vehicle damping device 1 exerts a force in the direction to prevent the movement of the rod 4, that is, the contraction direction. it can.
 つまり、第一開閉弁12を開いて第二開閉弁14を閉じる場合或いは第一開閉弁12を閉じて第二開閉弁14を開く場合、ポンプ15の駆動状況に拘わらず、鉄道車両用制振装置1は、外力からの振動入力に対して伸長或いは収縮のいずれか一方にのみ減衰力を発揮する状態となる。 That is, when the first on-off valve 12 is opened to close the second on-off valve 14 or the first on-off valve 12 is closed to open the second on-off valve 14, damping for railway vehicles regardless of the driving condition of the pump 15 The device 1 is in a state where it exerts a damping force only to either extension or contraction with respect to vibration input from an external force.
 よって、本例の鉄道車両用制振装置1は、たとえば、力を発揮する方向が鉄道車両の台車Tの振動により車体Bを加振する方向である場合、そのような方向には力を出さないようにシリンダ装置Cyを片効きのダンパとして機能させ得る。よって、この鉄道車両用制振装置1は、カルノップのスカイフック理論に基づくセミアクティブ制御を容易に実現できるため、セミアクティブダンパとしても機能できる。 Therefore, for example, when the direction in which the force is exerted is a direction in which the vehicle body B is excited by the vibration of the bogie T of the railway vehicle, the damping device 1 for railway vehicles of this example exerts forces in such a direction. The cylinder device Cy can be made to function as a one-way damper so that it does not occur. Therefore, since this railway vehicle damping device 1 can easily realize semi-active control based on Kalnop's skyhook theory, it can also function as a semi-active damper.
 また、本例の鉄道車両用制振装置1では、第一開閉弁12および第二開閉弁14が閉弁する状態でシリンダ装置Cyが伸縮すると、シリンダ2から作動油が排出通路21を介してタンク8へ排出され、シリンダ2には作動油が吸込通路19を介してタンク8から供給される。そして、シリンダ2内から排出される作動油の流れに対して可変リリーフ弁22が抵抗を与え、シリンダ2内の圧力が可変リリーフ弁22の開弁圧に調節される。よって、鉄道車両用制振装置1は、アクチュエータとして機能するのみならず、モータ20の駆動状況に拘わらず、第一開閉弁12と第二開閉弁14が閉じている場合、シリンダ装置Cyの伸縮の双方で減衰力を発揮するパッシブなユニフローダンパとして機能できる。 Further, in the damping device 1 for a railway vehicle of the present embodiment, when the cylinder device Cy expands and contracts in a state where the first on-off valve 12 and the second on-off valve 14 close, hydraulic oil from the cylinder 2 via the discharge passage 21 The hydraulic fluid is discharged from the tank 8 through the suction passage 19 to the cylinder 2 through the suction passage 19. Then, the variable relief valve 22 provides resistance to the flow of hydraulic fluid discharged from the inside of the cylinder 2, and the pressure in the cylinder 2 is adjusted to the valve opening pressure of the variable relief valve 22. Thus, the railway vehicle damping device 1 not only functions as an actuator, but also when the first on-off valve 12 and the second on-off valve 14 are closed, regardless of the driving condition of the motor 20 Function as a passive uniflow damper that exerts damping force on both sides.
 また、鉄道車両用制振装置1の各機器への通電が不能となるようなフェール時には、第一開閉弁12と第二開閉弁14のそれぞれが遮断ポジションを採り、可変リリーフ弁22は、開弁圧が最大に固定された圧力制御弁として機能する。よって、このようなフェール時には、鉄道車両用制振装置1は、自動的に、パッシブダンパとして機能する。 In addition, at the time of failure such that energization to each device of damping device 1 for rail vehicles can not be performed, each of first on-off valve 12 and second on-off valve 14 takes the blocking position, and variable relief valve 22 is opened. It functions as a pressure control valve with the valve pressure fixed at maximum. Therefore, at the time of such a failure, the railway vehicle damping device 1 automatically functions as a passive damper.
 このように、本例の鉄道車両用制振装置1は、アクチュエータとしてもダンパとしても機能できるが、ポンプ15の吐出口と吸込口とを接続するチャージ通路24を備えている。このような構成を備えた鉄道車両用制振装置1にあっては、ポンプ15が吐出した作動油の一部をチャージ通路24によってポンプ15の吸込口へ戻せる。よって、タンク8がポンプ15よりも下方に配置されても、ポンプ15の吸込口へ十分な量の作動油を供給でき、ポンプ15の吸込不良が解消されて騒音の発生が抑制される。したがって、本発明の鉄道車両用制振装置1によれば、タンク8がポンプ15よりも下方に配置されてもポンプ15の騒音を抑制でき、鉄道車両の乗客へ騒音を知覚させずに済んで車両における静粛性を向上できる。 Thus, although the damping device 1 for railway vehicles of this example can function as both an actuator and a damper, it has the charge passage 24 connecting the discharge port and the suction port of the pump 15. In the railcar damping device 1 having such a configuration, a part of the hydraulic fluid discharged by the pump 15 can be returned to the suction port of the pump 15 by the charge passage 24. Therefore, even if the tank 8 is disposed below the pump 15, a sufficient amount of hydraulic oil can be supplied to the suction port of the pump 15, the suction failure of the pump 15 is resolved, and the generation of noise is suppressed. Therefore, according to the railcar damping device 1 of the present invention, even if the tank 8 is disposed below the pump 15, the noise of the pump 15 can be suppressed, and noises can not be perceived by the passengers of the railcar. Quietness of the vehicle can be improved.
 また、本例の鉄道車両用制振装置1では、チャージ通路24にポンプ15の吐出流量が第一流量以上となると開弁し第一流量未満では閉弁する流量制御弁(弁要素)25が設けられている。このように流量制御弁25を設けると、吸込不良が生じやすくなるポンプ15の高回転駆動時に流量制御弁25が開弁してチャージ通路24を介してポンプ15の吐出流量の第一流量を超える流量をポンプ15の吸込口へ供給できる。よって、ポンプ15の吐出流量が第一流量以上となると開弁する流量制御弁(弁要素)25を備えた鉄道車両用制振装置1では、ポンプ15の吸込不良が生じやすくなる場面で効果的に吸込不良を解消して騒音を抑制でき、車両における静粛性を向上できる。なお、第一流量は、シリンダ装置Cyの伸縮作動に要求される仕様と吸込不良が発生する可能性があるポンプ15の吐出流量とを勘案して適値となるように設定されればよい。 Moreover, in the damping device 1 for railway vehicles of the present embodiment, the flow control valve (valve element) 25 is opened in the charge passage 24 when the discharge flow rate of the pump 15 is equal to or more than the first flow rate. It is provided. As described above, when the flow control valve 25 is provided, the flow control valve 25 is opened during high rotation driving of the pump 15 where suction failure easily occurs, and the first flow rate of the discharge flow rate of the pump 15 is exceeded via the charge passage 24. The flow rate can be supplied to the suction port of the pump 15. Therefore, the damping device 1 for railway vehicles provided with the flow control valve (valve element) 25 that opens when the discharge flow rate of the pump 15 becomes equal to or higher than the first flow rate is effective in the situation where suction failure of the pump 15 easily occurs. It is possible to eliminate the suction failure and to suppress the noise, and to improve the quietness of the vehicle. The first flow rate may be set to an appropriate value in consideration of the specification required for the expansion and contraction operation of the cylinder device Cy and the discharge flow rate of the pump 15 which may cause a suction failure.
 なお、図3に示す第一変形例のように、液圧回路HCにおいて流量制御弁25の代わりに、ポンプ15の吐出流量に応じてチャージ通路24に流れる作動油を制御する弁要素として、ポンプ15の吐出流量が所定の第二流量以上となると閉弁し、第二流量未満では開弁する流量制御弁26を設ける構成も採用できる。 As in the first modified example shown in FIG. 3, in place of the flow control valve 25 in the hydraulic circuit HC, as a valve element for controlling the hydraulic oil flowing to the charge passage 24 according to the discharge flow rate of the pump 15 It is also possible to adopt a configuration in which the flow control valve 26 is provided which closes when the discharge flow rate of 15 reaches a predetermined second flow rate or more and opens below the second flow rate.
 流量制御弁26は、チャージ通路24を開閉する弁体26aと、チャージ通路24を開放する連通ポジションを採るように弁体26aを附勢するばね26bと、チャージ通路24を遮断する遮断ポジションを採るようにポンプ15の吐出口の圧力を弁体26aに作用させる閉パイロット通路26cと、供給通路16に設けたオリフィス26dと、連通ポジションを採るように供給通路16のオリフィス26dよりもロッド側室5側の圧力を弁体26aに作用させる開パイロット通路26eとを備えている。 The flow control valve 26 has a valve body 26 a for opening and closing the charge passage 24, a spring 26 b for energizing the valve body 26 a to take a communication position for opening the charge passage 24, and a shut off position for interrupting the charge passage 24. As described above, the rod side chamber 5 side of the orifice 26d of the supply passage 16 has a closed pilot passage 26c that causes the valve body 26a to act on the pressure of the discharge port of the pump 15, the orifice 26d provided in the supply passage 16 And an open pilot passage 26e for applying the pressure of the valve body 26a to the valve body 26a.
 流量制御弁26の弁体26aには、ポンプ15の吐出圧が閉弁方向作用し、供給通路16におけるオリフィス26dの下流の圧力が開弁方向に作用している。よって、ポンプ15の吐出圧と供給通路16におけるオリフィス26dの下流の圧力との差が設定差圧に達すると、圧力による弁体26aを押す力でばね26bを押し縮めて流量制御弁26は閉弁する。第二流量に等しい作動油がオリフィス26dを通過する際に生じる圧力損失を前記設定差圧と等しくなるように予め設定されているので、ポンプ15の吐出流量が第二流量以上となると、流量制御弁26は閉弁してチャージ通路24を遮断する。このように流量制御弁26は、ノーマルオープンの流量制御弁であって、ポンプ15の吐出流量が第二流量以上となると開弁状態から閉弁状態へ切換わるようになっている。したがって、ポンプ15の吐出流量が第二流量未満では流量制御弁26が開弁しており、ポンプ15の吐出流量の一部がチャージ通路24を通じてポンプ15の吸込口へ戻される。他方、ポンプ15の吐出流量が第二流量以上となると流量制御弁26が閉弁して、ポンプ15の吐出流量の全流量がロッド側室5へ供給される。 The discharge pressure of the pump 15 acts on the valve body 26 a of the flow control valve 26 in the valve closing direction, and the pressure downstream of the orifice 26 d in the supply passage 16 acts in the valve opening direction. Therefore, when the difference between the discharge pressure of the pump 15 and the pressure downstream of the orifice 26d in the supply passage 16 reaches the set differential pressure, the spring 26b is compressed by the force pushing the valve body 26a due to the pressure, and the flow control valve 26 is closed. To speak. Since the pressure loss generated when the hydraulic fluid equal to the second flow rate passes through the orifice 26d is equal to the set differential pressure, the flow control is performed when the discharge flow rate of the pump 15 becomes equal to or higher than the second flow rate. The valve 26 closes to shut off the charge passage 24. As described above, the flow control valve 26 is a normally open flow control valve, and is switched from the open state to the closed state when the discharge flow rate of the pump 15 is equal to or more than the second flow rate. Therefore, when the discharge flow rate of the pump 15 is less than the second flow rate, the flow control valve 26 is opened, and a part of the discharge flow rate of the pump 15 is returned to the suction port of the pump 15 through the charge passage 24. On the other hand, when the discharge flow rate of the pump 15 becomes equal to or higher than the second flow rate, the flow control valve 26 closes, and the entire flow rate of the discharge flow of the pump 15 is supplied to the rod side chamber 5.
 このように構成された第一変形例における鉄道車両用制振装置1では、チャージ通路24にポンプ15の吐出流量が第二流量以上となると閉弁し、第二流量未満では開弁する流量制御弁(弁要素)26が設けられている。このように流量制御弁26を設けると、車体Bの振動が小さく車体Bの制振に鉄道車両用制振装置1が大きな推力を必要とせず、ポンプ15の回転速度が低く吐出流量が少なくて済む状態では、流量制御弁26が開弁してポンプ15の吸込不良が防止される。他方、車体Bの振動が大きく車体Bの制振に鉄道車両用制振装置1が大きな推力を必要とする場合、ポンプ15の回転速度が高く吐出流量が多くなると、流量制御弁26が閉弁してポンプ15の全流量がシリンダ装置Cyへ供給される。よって、鉄道車両用制振装置1は、車体Bが大きく振動する場面では十分な振動抑制効果を発揮できる。ポンプ15の吐出流量が多くなって吸込不良が生じやすくなる状況では車体Bが大きく振動して車両自体の騒音が大きくなるため、ポンプ15の吸込不良による騒音も乗客に知覚されにくくなる。よって、このようにポンプ15の吐出流量が第二流量以上となると閉弁する流量制御弁(弁要素)26を備えた鉄道車両用制振装置1では、車体Bの振動抑制効果を充分に発揮しつつ車両における静粛性を向上できる。なお、第二流量は、シリンダ装置Cyの伸縮作動に要求される仕様と吸込不良が発生する可能性があるポンプ15の吐出流量とを勘案して適値となるように設定されればよい。 In the damping device 1 for a railway vehicle in the first modified example configured as described above, the charge passage 24 is closed when the discharge flow rate of the pump 15 is equal to or more than the second flow rate. A valve (valve element) 26 is provided. Thus, when the flow control valve 26 is provided, the vibration of the vehicle body B is small and the railway vehicle damping device 1 does not require a large thrust for damping the vehicle body B, and the rotational speed of the pump 15 is low and the discharge flow rate is small. In the end condition, the flow control valve 26 is opened to prevent suction failure of the pump 15. On the other hand, when the vibration of the vehicle body B is large and the railway vehicle damping device 1 requires a large thrust for damping the vehicle body B, the flow control valve 26 closes when the rotational speed of the pump 15 is high and the discharge flow rate is large. Then, the entire flow rate of the pump 15 is supplied to the cylinder device Cy. Therefore, the damping device 1 for railway vehicles can exhibit a sufficient vibration suppression effect in the scene where the vehicle body B vibrates largely. In a situation where the discharge flow rate of the pump 15 is increased and suction failure is likely to occur, the vehicle body B vibrates greatly and the noise of the vehicle itself is increased. Therefore, noise due to suction failure of the pump 15 is not easily perceived by passengers. Therefore, the vibration control device 1 for a railway vehicle provided with the flow control valve (valve element) 26 that closes when the discharge flow rate of the pump 15 becomes equal to or higher than the second flow rate sufficiently exerts the vibration suppression effect of the vehicle body B. At the same time, the quietness of the vehicle can be improved. The second flow rate may be set to an appropriate value in consideration of the specification required for the expansion and contraction operation of the cylinder device Cy and the discharge flow rate of the pump 15 that may cause a suction failure.
 また、図4に示す第二変形例のように、液圧回路HCにおいて流量制御弁25の代わりに、ポンプ15の吐出流量に応じてチャージ通路24に流れる作動油を制御する弁要素としてチャージ通路24と供給通路16とを分流弁27を介して接続する構成も採用できる。分流弁27は、ポンプ15の吐出口へ通じる入口ポート27aと、ロッド側室5へ通じる第一出口ポート27bと、チャージ通路24に接続される第二出口ポート27cと、入口ポート27aを第一出口ポート27bへ接続する第一オリフィス通路27dと、入口ポート27aを第二出口ポート27cへ接続する第二オリフィス通路27eとを備えている。 Further, as in the second modification shown in FIG. 4, instead of the flow control valve 25 in the hydraulic circuit HC, the charge passage is used as a valve element for controlling the hydraulic fluid flowing to the charge passage 24 according to the discharge flow rate of the pump 15. It is also possible to adopt a configuration in which 24 and the supply passage 16 are connected via the dividing valve 27. The diverting valve 27 has an inlet port 27a communicating with the outlet of the pump 15, a first outlet port 27b communicating with the rod side chamber 5, a second outlet port 27c connected to the charge passage 24, and an inlet port 27a. A first orifice passage 27d connected to the port 27b and a second orifice passage 27e connecting the inlet port 27a to the second outlet port 27c.
 そして、分流弁27は、ポンプ15から吐出される作動油の流れを第一オリフィス通路27dと第二オリフィス通路27eの各抵抗によって決せられる比率で分流して、それぞれ、供給通路16とチャージ通路24へ供給する。よって、ポンプ15から吐出される流量は、ロッド側室5とポンプ15の吸込口へ前記比率で分配されて供給される。 Then, the diverting valve 27 diverts the flow of the hydraulic fluid discharged from the pump 15 at a ratio determined by the respective resistances of the first orifice passage 27d and the second orifice passage 27e to respectively supply the supply passage 16 and the charge passage. Supply to 24. Therefore, the flow rate discharged from the pump 15 is distributed to the rod side chamber 5 and the suction port of the pump 15 at the above ratio and supplied.
 このように分流弁27を設けると、分流弁27によってポンプ15から吐出された流量に対して一定の比率で分流されてチャージ通路24を介してポンプ15の吸込口へ戻される。よって、タンク8がポンプ15よりも下方に配置されても、ポンプ15の吸込口へ十分な量の作動油を供給でき、ポンプ15の吸込不良が解消されて騒音の発生が抑制される。したがって、このように分流弁27を設けた鉄道車両用制振装置1によれば、タンク8がポンプ15よりも下方に配置されてもポンプ15の騒音を抑制でき、鉄道車両の乗客へ騒音を知覚させずに済んで車両における静粛性を向上できる。分流弁27は、ポンプ15が吐出する全流量に対して一定比率の流量を吸込口へ戻すので、ポンプ15の回転速度が高速になると吸込口へ戻す流量も多くなるので、吸込不良が生じやすい高回転速度時にもポンプ15の吸込口へ十分な作動油量が供給される。よって、ポンプ15の吸込不良を効果的に抑制できる。なお、分流弁27の分流比率は、可変とされてもよく、たとえば、ポンプ15の吐出流量に応じて変化するようになっていてもよい。 When the diverting valve 27 is provided as described above, the diverting valve 27 diverts at a constant ratio to the flow rate discharged from the pump 15 and returns it to the suction port of the pump 15 through the charge passage 24. Therefore, even if the tank 8 is disposed below the pump 15, a sufficient amount of hydraulic oil can be supplied to the suction port of the pump 15, the suction failure of the pump 15 is resolved, and the generation of noise is suppressed. Therefore, according to the railway vehicle vibration damping device 1 provided with the diverter valve 27 in this manner, the noise of the pump 15 can be suppressed even if the tank 8 is disposed lower than the pump 15, and noises are transmitted to passengers of the railway vehicle. It is possible to improve the quietness of the vehicle without perceiving it. Since the diverting valve 27 returns the flow rate of a constant ratio to the total flow rate discharged by the pump 15 to the suction port, the flow rate returned to the suction port also increases when the rotational speed of the pump 15 becomes high, so suction failure easily occurs. A sufficient amount of hydraulic fluid is supplied to the suction port of the pump 15 also at high rotational speeds. Therefore, suction failure of the pump 15 can be effectively suppressed. The diversion ratio of the diversion valve 27 may be variable, and may be changed according to the discharge flow rate of the pump 15, for example.
 また、図5に示す第三変形例のように、液圧回路HCにおいて流量制御弁25の代わりに、ポンプ15の吐出流量に応じてチャージ通路24に流れる作動油を制御する弁要素としてチャージ通路24に可変オリフィス28を設ける構成も採用できる。第三変形例では、チャージ通路24の可変オリフィス28の上流側にポンプ15の吐出口側から吸込口側への流れのみを許容する逆止弁29を設けており、作動油が、チャージ通路24を介してポンプ15を迂回してポンプ15の吸込口から吐出口へ向かわないようにしている。 Further, as in the third modification shown in FIG. 5, instead of the flow control valve 25 in the hydraulic circuit HC, the charge passage is used as a valve element for controlling the hydraulic fluid flowing to the charge passage 24 according to the discharge flow rate of the pump 15. A configuration in which the variable orifice 28 is provided at 24 can also be employed. In the third modification, a check valve 29 that allows only the flow from the discharge port side to the suction port side of the pump 15 is provided on the upstream side of the variable orifice 28 of the charge passage 24. And the pump 15 is bypassed so as not to go from the suction port of the pump 15 to the discharge port.
 このように可変オリフィス28を設けると、可変オリフィス28の抵抗に応じてポンプ15から吐出された流量の一部をポンプ15の吸込口へチャージ通路24を介して戻せる。可変オリフィス28の抵抗を大きくすれば、ポンプ15の吸込口へ戻す流量を少なくでき、反対に抵抗を小さくすれば、ポンプ15の吸込口へ戻す流量を多くできる。 When the variable orifice 28 is thus provided, a part of the flow rate discharged from the pump 15 can be returned to the suction port of the pump 15 through the charge passage 24 according to the resistance of the variable orifice 28. If the resistance of the variable orifice 28 is increased, the flow rate returned to the suction port of the pump 15 can be reduced, and if the resistance is decreased, the flow rate returned to the suction port of the pump 15 can be increased.
 そして、ポンプ15の回転速度が高くなるほど可変オリフィス28の抵抗を小さくするか、或いは、ポンプ15の吐出流量が予め設定される所定流量としての第三流量以上になると抵抗を小さくする場合には、流量制御弁25と同様に、吸込不良が生じやすくなるポンプ15の高回転駆動時に多くの流量をポンプ15の吸込口へ供給できる。よって、このように設定されると可変オリフィス28を備えた鉄道車両用制振装置1では、ポンプ15の吸込不良が生じやすくなる場面で効果的に吸込不良を解消して騒音を抑制でき、車両における静粛性を向上できる。なお、第三流量は、ポンプ15の回転速度等に応じて予め設定されるが、任意に変更可能である。 Then, the resistance of the variable orifice 28 is reduced as the rotational speed of the pump 15 becomes higher, or the resistance is reduced when the discharge flow rate of the pump 15 becomes equal to or more than a third flow rate as a predetermined flow rate. Similar to the flow control valve 25, a large flow rate can be supplied to the suction port of the pump 15 at the time of high-rotation drive of the pump 15 where suction failure easily occurs. Therefore, the damping device 1 for a railway vehicle provided with the variable orifice 28 when set in this manner can effectively eliminate the suction defect and suppress the noise in a situation where the suction defect of the pump 15 tends to occur. Quietness can be improved. The third flow rate is preset according to the rotational speed of the pump 15 or the like, but can be arbitrarily changed.
 また、ポンプ15の回転速度が高くなるほど可変オリフィス28の抵抗を大きくするか、或いは、ポンプ15の吐出流量が予め設定される所定流量としての第四流量以上になると抵抗を大きくすることもできる。この場合には、流量制御弁26と同様に、車体Bの振動が小さく車体Bの制振に鉄道車両用制振装置1が大きな推力を必要とせず、ポンプ15の回転速度が低く吐出流量が少なくて済む状態においてポンプ15の吸込不良が防止される。なお、第四流量は、ポンプ15の回転速度等に応じて予め設定されるが、任意に変更可能である。他方、車体Bの振動が大きく車体Bの制振に鉄道車両用制振装置1が大きな推力を必要とする場合、ポンプ15の回転速度が高く吐出流量が多くなると、可変オリフィス28の抵抗が大きくなるので、ポンプ15の吐出流量の多くがシリンダ装置Cyへ供給されるようになる。よって、鉄道車両用制振装置1は、車体Bが大きく振動する場面では十分な振動抑制効果を発揮できる。また、ポンプ15の吐出流量が多くなると吸込不良が生じやすい状態では車体Bが大きく振動して車両自体の騒音が大きくなるため、ポンプ15の吸込不良による騒音も乗客に知覚されにくくなる。よって、このように設定された可変オリフィス28を備えた鉄道車両用制振装置1では、車体Bの振動抑制効果を充分に発揮しつつ車両における静粛性を向上できる。 Further, the resistance of the variable orifice 28 can be increased as the rotational speed of the pump 15 becomes higher, or the resistance can be increased when the discharge flow rate of the pump 15 becomes equal to or more than a fourth flow rate as a predetermined flow rate. In this case, similarly to the flow control valve 26, the vibration of the vehicle body B is small and the railway vehicle damping device 1 does not require a large thrust for damping the vehicle body B, and the rotational speed of the pump 15 is low and the discharge flow rate is low. In the state which can be decreased, suction failure of the pump 15 is prevented. The fourth flow rate is preset according to the rotational speed of the pump 15 or the like, but can be arbitrarily changed. On the other hand, when the vibration of the vehicle body B is large and the railway vehicle damping device 1 requires a large thrust for damping the vehicle body B, the resistance of the variable orifice 28 is large when the rotational speed of the pump 15 is high and the discharge flow rate is large. Therefore, much of the discharge flow rate of the pump 15 is supplied to the cylinder device Cy. Therefore, the damping device 1 for railway vehicles can exhibit a sufficient vibration suppression effect in the scene where the vehicle body B vibrates largely. When the discharge flow rate of the pump 15 increases, the vehicle body B vibrates greatly in a state where suction failure easily occurs, and the noise of the vehicle itself becomes large. Therefore, noise due to suction failure of the pump 15 is not easily perceived by passengers. Therefore, in the railway vehicle damping device 1 provided with the variable orifice 28 set as described above, the quietness of the vehicle can be improved while sufficiently exhibiting the vibration suppressing effect of the vehicle body B.
 また、図6に示す第四変形例のように、液圧回路HCにおいて流量制御弁25の代わりに、ポンプ15の吐出流量に応じてチャージ通路24に流れる作動油を制御する弁要素として、チャージ通路24にチャージ通路24の連通と遮断を切換える切換弁30を設ける構成も採用できる。切換弁30は、電磁切換弁とされており、ソレノイドへの通電の有無によって開閉して、チャージ通路24を通じてポンプ15の吐出流量の一部を吸込口への供給と停止を切換える。 Further, as in the fourth modification shown in FIG. 6, instead of the flow control valve 25 in the hydraulic circuit HC, as a valve element for controlling the hydraulic oil flowing to the charge passage 24 according to the discharge flow rate of the pump It is also possible to employ a configuration in which a switching valve 30 is provided in the passage 24 to switch between communication and shutoff of the charge passage 24. The switching valve 30 is an electromagnetic switching valve, which opens and closes depending on whether or not the solenoid is energized, and switches a part of the discharge flow rate of the pump 15 through the charge passage 24 to supply and stop to the suction port.
 そして、ポンプ15の回転速度が高くなりポンプ15の吐出流量が予め設定される第五流量以上になると切換弁30を開いてチャージ通路24を有効とし、吐出流量が第五流量未満であると切換弁30を閉じてチャージ通路24を無効とするようにできる。このように切換弁30を動作させる場合、流量制御弁25と同様に、吸込不良が生じやすくなるポンプ15の高回転駆動時に多くの流量をポンプ15の吸込口へ供給できる。よって、このように設定されると切換弁30を備えた鉄道車両用制振装置1では、ポンプ15の吸込不良が生じやすくなる場面で効果的に吸込不良を解消して騒音を抑制でき、車両における静粛性を向上できる。なお、第五流量は、ポンプ15の回転速度等に応じて予め設定されるが、任意に変更可能である。 Then, when the rotational speed of the pump 15 becomes high and the discharge flow rate of the pump 15 becomes equal to or more than the preset fifth flow rate, the switching valve 30 is opened to make the charge passage 24 effective, and switching is performed when the discharge flow rate is less than the fifth flow rate. The valve 30 can be closed to disable the charge passage 24. When the switching valve 30 is operated as described above, a large flow rate can be supplied to the suction port of the pump 15 at the time of high-rotation driving of the pump 15 where suction failure tends to occur similarly to the flow control valve 25. Therefore, in the damping device 1 for railway vehicles provided with the switching valve 30 when set in this manner, the suction defect can be effectively eliminated and the noise can be suppressed when the suction defect of the pump 15 is likely to occur. Quietness can be improved. The fifth flow rate is preset according to the rotational speed of the pump 15 or the like, but can be arbitrarily changed.
 また、ポンプ15の回転速度が高くなりポンプ15の吐出流量が予め設定される第六流量以上になると切換弁30を閉じてチャージ通路24を無効とし、吐出流量が第六流量未満であると切換弁30を開いてチャージ通路24を有効とすることもできる。このように切換弁30を動作させる場合には、流量制御弁26と同様に、車体Bの振動が小さく車体Bの制振に鉄道車両用制振装置1が大きな推力を必要とせず、ポンプ15の回転速度が低く吐出流量が少なくて済む状態においてポンプ15の吸込不良が防止される。なお、第六流量は、ポンプ15の回転速度等に応じて予め設定されるが、任意に変更可能である。他方、車体Bの振動が大きく車体Bの制振に鉄道車両用制振装置1が大きな推力を必要とする場合、ポンプ15の回転速度が高く吐出流量が多くなると、切換弁30が閉弁するので、ポンプ15が吐出する全流量がシリンダ装置Cyへ供給されるようになる。よって、鉄道車両用制振装置1は、車体Bが大きく振動する場面では十分な振動抑制効果を発揮できる。また、ポンプ15の吐出流量が多くなると吸込不良が生じやすくなる状態では車体Bが大きく振動して車両自体の騒音が大きくなるため、ポンプ15の吸込不良による騒音も乗客に知覚されにくくなる。よって、このように設定された切換弁30を備えた鉄道車両用制振装置1では、車体Bの振動抑制効果を充分に発揮しつつ車両における静粛性を向上できる。 Further, when the rotational speed of the pump 15 becomes high and the discharge flow rate of the pump 15 becomes equal to or more than the sixth flow rate set in advance, the switching valve 30 is closed to invalidate the charge passage 24 and switching is performed when the discharge flow rate is less than the sixth flow rate The valve 30 can also be opened to enable the charge passage 24. When the switching valve 30 is operated as described above, the vibration of the vehicle body B is small as in the case of the flow control valve 26, and the railway vehicle vibration damping device 1 does not require a large thrust for damping the vehicle body B. The suction failure of the pump 15 is prevented in a state where the rotational speed is low and the discharge flow rate can be small. The sixth flow rate is preset according to the rotational speed of the pump 15 or the like, but can be arbitrarily changed. On the other hand, when the vibration of the vehicle body B is large and the railway vehicle damping device 1 requires a large thrust for damping the vehicle body B, the switching valve 30 closes when the rotational speed of the pump 15 is high and the discharge flow rate is large. Therefore, the entire flow rate that the pump 15 discharges is supplied to the cylinder device Cy. Therefore, the damping device 1 for railway vehicles can exhibit a sufficient vibration suppression effect in the scene where the vehicle body B vibrates largely. In addition, when the discharge flow rate of the pump 15 increases, the vehicle body B vibrates greatly in a state where suction failure easily occurs, and the noise of the vehicle itself becomes large. Therefore, noise due to suction failure of the pump 15 is hardly perceived by passengers. Therefore, in the railway vehicle damping device 1 including the switching valve 30 set in this manner, the quietness of the vehicle can be improved while sufficiently exhibiting the vibration suppression effect of the vehicle body B.
 さらに、図7に示す第五変形例のように、液圧回路HCにおいて流量制御弁25を廃止するとともに、チャージ通路24でポンプ15の吐出口と吸込口とを接続する代わりに、チャージ通路31で排出通路21の可変リリーフ弁22の下流であるタンク8側を供給通路16におけるポンプ15の吸込口側へ接続してもよい。つまり、チャージ通路31は、排出通路21を戻り通路として、タンク8を介さずに排出通路21の可変リリーフ弁22より下流をポンプ15の吸込口へ接続している。 Furthermore, as in the fifth modification shown in FIG. 7, the flow control valve 25 is eliminated in the hydraulic circuit HC, and instead of connecting the discharge port and the suction port of the pump 15 in the charge passage 24, the charge passage 31 is The tank 8 side downstream of the variable relief valve 22 of the discharge passage 21 may be connected to the suction port side of the pump 15 in the supply passage 16. That is, the charge passage 31 connects the discharge passage 21 as a return passage, and the downstream of the variable relief valve 22 of the discharge passage 21 to the suction port of the pump 15 without using the tank 8.
 本例の鉄道車両用制振装置1では、ポンプ15から吐出された作動油は、一旦シリンダ装置Cyへ供給されてから排出通路21を通じてタンク8へ戻されるが、その際に、排出通路21を通じてタンク8へ向かう作動油の流量の一部がタンク8を介さずにチャージ通路31を介してポンプ15の吸込口へ戻される。 In the railcar damping device 1 of this example, the hydraulic fluid discharged from the pump 15 is once supplied to the cylinder device Cy and then returned to the tank 8 through the discharge passage 21, but at that time, through the discharge passage 21. A portion of the flow rate of the hydraulic oil directed to the tank 8 is returned to the suction port of the pump 15 via the charge passage 31 without passing through the tank 8.
 このようにチャージ通路31で排出通路(戻り通路)21とポンプ15の吸込口とを接続する構成を備えた鉄道車両用制振装置1にあっては、シリンダ装置Cyから排出された作動油の一部をチャージ通路31によってポンプ15の吸込口へ戻せる。よって、タンク8がポンプ15よりも下方に配置されても、ポンプ15の吸込口へ十分な量の作動油を供給でき、ポンプ15の吸込不良が解消されて騒音の発生が抑制される。したがって、第五変形例における鉄道車両用制振装置1によれば、タンク8がポンプ15よりも下方に配置されてもポンプ15の騒音を抑制でき、鉄道車両の乗客へ騒音を知覚させずに済んで車両における静粛性を向上できる。 Thus, in the damping device 1 for a railway vehicle having a configuration in which the discharge passage (return passage) 21 and the suction port of the pump 15 are connected by the charge passage 31, the hydraulic oil discharged from the cylinder device Cy A portion can be returned to the suction port of the pump 15 by the charge passage 31. Therefore, even if the tank 8 is disposed below the pump 15, a sufficient amount of hydraulic oil can be supplied to the suction port of the pump 15, the suction failure of the pump 15 is resolved, and the generation of noise is suppressed. Therefore, according to the railcar damping device 1 in the fifth modification, even if the tank 8 is disposed below the pump 15, the noise of the pump 15 can be suppressed, and the passenger of the railcar can not perceive the noise. It is possible to improve the quietness of the vehicle.
 また、図8に示す第六変形例のように、液圧回路HCにおいて流量制御弁25を廃止するとともに、チャージ通路24でポンプ15の吐出口と吸込口とを接続する代わりに、チャージ通路32で第二通路13の第二開閉弁14よりタンク8側を供給通路16におけるポンプ15の吸込口側へ接続してもよい。つまり、チャージ通路32は、第二通路13を戻り通路として、タンク8を介さずに第二通路13の第二開閉弁14よりタンク8側をポンプ15の吸込口へ接続している。 Further, as in the sixth modification shown in FIG. 8, instead of eliminating the flow control valve 25 in the hydraulic circuit HC, instead of connecting the discharge port and the suction port of the pump 15 in the charge passage 24, the charge passage 32 is The tank 8 side of the second passage 13 from the second on-off valve 14 may be connected to the suction port side of the pump 15 in the supply passage 16. That is, the charge passage 32 connects the tank 8 side to the suction port of the pump 15 from the second on-off valve 14 of the second passage 13 without using the tank 8 with the second passage 13 as a return passage.
 本例の鉄道車両用制振装置1では、第二開閉弁14が開弁状態ではシリンダ装置Cyが収縮すると作動油は、ピストン側室6からタンク8へ排出されるが、その際に、タンク8へ向かう作動油の流量の一部がタンク8を介さずにチャージ通路32を介してポンプ15の吸込口へ戻される。 In the railcar damping device 1 of the present embodiment, when the second on-off valve 14 is in the open state, the hydraulic oil is discharged from the piston side chamber 6 to the tank 8 when the cylinder device Cy is contracted. A part of the flow rate of the hydraulic fluid toward the rear is returned to the suction port of the pump 15 through the charge passage 32 without passing through the tank 8.
 このようにチャージ通路32で第二通路(戻り通路)13とポンプ15の吸込口とを接続する構成を備えた鉄道車両用制振装置1にあっては、シリンダ装置Cyから排出された作動油の一部をチャージ通路32によってポンプ15の吸込口へ戻せる。よって、タンク8がポンプ15よりも下方に配置されても、ポンプ15の吸込口へ十分な量の作動油を供給でき、ポンプ15の吸込不良が解消されて騒音の発生が抑制される。したがって、第六変形例における鉄道車両用制振装置1によれば、タンク8がポンプ15よりも下方に配置されてもポンプ15の騒音を抑制でき、鉄道車両の乗客へ騒音を知覚させずに済んで車両における静粛性を向上できる。なお、チャージ通路31とチャージ通路32とは、双方とも設置されていても構わない。 As described above, in the railway vehicle damping device 1 having the configuration in which the second passage (return passage) 13 and the suction port of the pump 15 are connected by the charge passage 32, the hydraulic oil discharged from the cylinder device Cy A portion of the valve can be returned to the suction port of the pump 15 by the charge passage 32. Therefore, even if the tank 8 is disposed below the pump 15, a sufficient amount of hydraulic oil can be supplied to the suction port of the pump 15, the suction failure of the pump 15 is resolved, and the generation of noise is suppressed. Therefore, according to the railcar damping device 1 in the sixth modification, even if the tank 8 is disposed below the pump 15, the noise of the pump 15 can be suppressed, and the passenger of the railcar can not perceive the noise. It is possible to improve the quietness of the vehicle. Note that both the charge passage 31 and the charge passage 32 may be installed.
 前述したとおり、本発明の鉄道車両用制振装置1は、シリンダ2を備えたシリンダ装置Cyと、シリンダ装置Cyに取付けられるとともに作動液体をタンク8から吸込んでシリンダ2へ供給するポンプ15と、ポンプ15の吸込口と、シリンダ2からタンク8へ作動液体を戻す戻り通路(第二通路)13、或いはポンプ15の吐出口とを接続するチャージ通路24,31,32とを備えている。このように構成された鉄道車両用制振装置1にあっては、ポンプ15が吐出した作動油の一部をポンプ15の吸込口へ戻せる。よって、タンク8がポンプ15よりも下方に配置されても、ポンプ15の吸込口へ十分な量の作動油を供給でき、ポンプ15の吸込不良が解消されて騒音の発生が抑制される。したがって、本発明の鉄道車両用制振装置1によれば、タンク8がポンプ15よりも下方に配置されてもポンプ15の騒音を抑制でき、鉄道車両の乗客へ騒音を知覚させずに済んで車両における静粛性を向上できる。 As described above, the damping device 1 for a railway vehicle according to the present invention includes: a cylinder device Cy including the cylinder 2; and a pump 15 attached to the cylinder device Cy and suctioning the working fluid from the tank 8 to supply the cylinder 2; The suction passage of the pump 15 and the return passage (second passage) 13 for returning the working fluid from the cylinder 2 to the tank 8 or the charge passage 24, 31 or 32 connecting the discharge port of the pump 15 is provided. In the railway vehicle damping device 1 configured as described above, part of the hydraulic fluid discharged by the pump 15 can be returned to the suction port of the pump 15. Therefore, even if the tank 8 is disposed below the pump 15, a sufficient amount of hydraulic oil can be supplied to the suction port of the pump 15, the suction failure of the pump 15 is resolved, and the generation of noise is suppressed. Therefore, according to the railcar damping device 1 of the present invention, even if the tank 8 is disposed below the pump 15, the noise of the pump 15 can be suppressed, and noises can not be perceived by the passengers of the railcar. Quietness of the vehicle can be improved.
 また、鉄道車両用制振装置1は、チャージ通路24でポンプ15の吸込口とポンプ15の吐出口とを接続し、チャージ通路24にチャージ通路24を流れる作動液体を制御する弁要素25,26,27,28,30を備えていてもよい。このように構成された鉄道車両用制振装置1によれば、ポンプ15の吸込不良が生じやすくなる場面でポンプ15の吸込口へ供給する作動流体を多くするようにすれば効果的に吸込不良を解消して騒音を抑制でき、車両における静粛性を向上できる。反対に、シリンダ装置Cyが大きな推力を必要とする場面ではポンプ15の吐出口へ戻す作動液体の量を少なくするように弁要素が設定される場合、鉄道車両用制振装置1は車体Bが大きく振動する場面では十分な振動抑制効果を発揮できる。このような場合、車体Bが大きく振動して車両自体の騒音が大きくなるため、ポンプ15の吸込不良による騒音も乗客に知覚されにくくなるから、車体Bの振動抑制効果を充分に発揮しつつ車両における静粛性を向上できる。 In addition, the damping device for railway vehicle 1 connects the suction port of the pump 15 and the discharge port of the pump 15 through the charge passage 24 and controls the operating fluid flowing through the charge passage 24 to the charge passage 24. , 27, 28, 30 may be provided. According to the vibration damping device 1 for a railway vehicle configured in this manner, if the working fluid supplied to the suction port of the pump 15 is increased in a situation where the suction failure of the pump 15 is likely to occur, the suction failure is effective. Noise can be suppressed, and the quietness of the vehicle can be improved. On the other hand, when the valve element is set to reduce the amount of working liquid returned to the discharge port of the pump 15 in a situation where the cylinder device Cy requires a large thrust, the vehicle B for the railway vehicle damping device 1 In the case of large vibration, sufficient vibration suppression effect can be exhibited. In such a case, the vehicle B vibrates to a large extent and the noise of the vehicle itself is increased. Therefore, the noise due to the suction failure of the pump 15 is hardly perceived by the passengers. Quietness can be improved.
 また、鉄道車両用制振装置1は、弁要素25,28がポンプ15の吐出流量の増加に応じてチャージ通路24を流れる作動液体を増加させるように制御するように構成されてもよい。このように構成された鉄道車両用制振装置1によれば、ポンプ15の吸込不良が生じやすくなる場面でポンプ15の吸込口へ供給する作動流体を多くするため、効果的に吸込不良を解消して騒音を抑制できる。 Alternatively, the railway vehicle damping device 1 may be configured to control the valve elements 25 and 28 to increase the working fluid flowing through the charge passage 24 according to the increase of the discharge flow rate of the pump 15. According to the vibration damping device 1 for a railway vehicle configured as described above, the suction failure is effectively eliminated because the working fluid supplied to the suction port of the pump 15 is increased when the suction failure of the pump 15 is likely to occur. Noise can be suppressed.
 さらに、鉄道車両用制振装置1は、弁要素25,30がポンプ15の吐出流量が予め設定される所定流量以上となるとチャージ通路24を連通させるように構成されてもよい。このように構成された鉄道車両用制振装置1によれば、ポンプ15の吸込不良が生じやすくなる場面で弁要素25,30が開弁してポンプ15の吐出口へ作動液体を供給するから、効果的に吸込不良を解消して騒音を抑制でき、車両における静粛性を向上できる。 Furthermore, the railcar damping device 1 may be configured to cause the charge passage 24 to communicate when the valve elements 25 and 30 have the discharge flow rate of the pump 15 equal to or more than the predetermined flow rate set in advance. According to the railcar damping device 1 configured as described above, the valve elements 25 and 30 are opened to supply the working fluid to the discharge port of the pump 15 in a situation where suction failure of the pump 15 is likely to occur. Thus, the suction failure can be effectively eliminated to suppress the noise, and the quietness of the vehicle can be improved.
 また、鉄道車両用制振装置1がポンプ15の吐出口をシリンダ装置Cyへ接続する供給通路16を備え、弁要素をチャージ通路24と供給通路16とに接続されてチャージ通路24と供給通路16への作動液体の流れ分流する分流弁27としてもよい。このように構成された鉄道車両用制振装置1によれば、ポンプが吐出する全流量に対して一定比率の流量を吸込口へ戻すので、吸込不良が生じやすい高回転速度時にもポンプの吸込口へ十分な作動液体量を供給でき、ポンプの吸込不良を効果的に抑制できる。 In addition, the damping device for railway vehicle 1 includes a supply passage 16 connecting the discharge port of the pump 15 to the cylinder device Cy, and a valve element is connected to the charge passage 24 and the supply passage 16 to connect the charge passage 24 and the supply passage 16. Alternatively, the flow dividing valve 27 may be used to divide the flow of the working fluid. According to the railway vehicle damping device 1 configured as described above, since the flow rate of a fixed ratio is returned to the suction port with respect to the total flow rate discharged by the pump, the suction of the pump occurs even at high rotational speed where suction failure easily occurs. A sufficient amount of working fluid can be supplied to the mouth, and suction failure of the pump can be effectively suppressed.
 そして、鉄道車両用制振装置1は、弁要素をポンプ15の回転速度、或いはポンプ15の吐出流量に応じてチャージ通路24に与える抵抗を変更可能な可変オリフィス28としてもよい。このように構成された鉄道車両用制振装置1によれば、ポンプ15の吸込不良が生じやすくなる場面で可変オリフィス28における抵抗を小さくして、ポンプ15の吐出口へ供給する作動液体を多くし、効果的に吸込不良を解消して騒音を抑制でき、車両における静粛性を向上できる。 The railway vehicle vibration damping device 1 may use a variable orifice 28 capable of changing the resistance given to the charge passage 24 according to the rotational speed of the pump 15 or the discharge flow rate of the pump 15. According to the vibration damping device 1 for a railway vehicle configured in this manner, the resistance at the variable orifice 28 is reduced in the situation where suction failure of the pump 15 easily occurs, and the amount of working fluid supplied to the discharge port of the pump 15 is large. As a result, the suction failure can be effectively eliminated, the noise can be suppressed, and the quietness of the vehicle can be improved.
 さらに、鉄道車両用制振装置1は、シリンダ装置Cyの伸縮を制御する液圧回路HCを備え、シリンダ装置Cyがシリンダ2内に摺動可能に挿入されてシリンダ2内をロッド側室5とピストン側室6とに区画するピストン3と、シリンダ2内に移動可能に挿入されてピストン3に連結されるロッド4とを有し、液圧回路HCがロッド側室5とピストン側室6とを連通する第一通路11の途中に設けた第一開閉弁12と、ピストン側室6とタンク8とを連通する第二通路13の途中に設けた第二開閉弁14と、ロッド側室5とタンク8とを接続する排出通路21と、排出通路21の途中に設けられてシリンダ2内の圧力を制御する制御弁22とを有し、排出通路21或いは第二通路13を戻り通路として、チャージ通路31,32で戻り通路13,21とポンプ15の吸込口とを接続するように構成されてもよい。このように構成されても、ポンプ15が吐出した作動油の一部をポンプ15の吸込口へ戻せるので、タンク8がポンプ15よりも下方に配置されてもポンプ15の騒音を抑制でき、鉄道車両の乗客へ騒音を知覚させずに済んで車両における静粛性を向上できる。 Furthermore, the railway vehicle vibration damping device 1 includes a hydraulic circuit HC that controls expansion and contraction of the cylinder device Cy. The cylinder device Cy is slidably inserted into the cylinder 2 and the rod side chamber 5 and the piston in the cylinder 2 A piston 3 divided into the side chamber 6 and a rod 4 movably inserted into the cylinder 2 and connected to the piston 3, and the hydraulic circuit HC communicates the rod side chamber 5 with the piston side chamber 6 The first on-off valve 12 provided in the middle of one passage 11, the second on-off valve 14 provided in the middle of the second passage 13 communicating the piston side chamber 6 and the tank 8, the rod side chamber 5 and the tank 8 are connected Discharge passage 21 and a control valve 22 provided in the middle of the discharge passage 21 to control the pressure in the cylinder 2, and the charge passage 31, 32 with the discharge passage 21 or the second passage 13 as a return passage. Return passage And 3,21 and the suction port of the pump 15 may be configured to connect. Even with this configuration, a part of the hydraulic fluid discharged by the pump 15 can be returned to the suction port of the pump 15, so the noise of the pump 15 can be suppressed even if the tank 8 is disposed below the pump 15, It is possible to improve the quietness of the vehicle without making the passengers of the vehicle perceive the noise.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 While the preferred embodiments of the present invention have been described above in detail, modifications, variations and changes are possible without departing from the scope of the claims.
 本願は、2017年8月14日に日本国特許庁に出願された特願2017-156389に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2017-156389 filed on Aug. 14, 2017 to the Japanese Patent Office, and the entire contents of this application are incorporated herein by reference.

Claims (7)

  1.  鉄道車両用制振装置であって、
     シリンダを備えたシリンダ装置と、
     前記シリンダ装置に取付けられるとともに作動液体をタンクから吸込んで前記シリンダへ供給するポンプと、
     前記ポンプの吸込口と、前記シリンダから前記タンクへ前記作動液体を戻す戻り通路、或いは前記ポンプの吐出口とを接続するチャージ通路とを備えた
     鉄道車両用制振装置。
    It is a damping device for railway vehicles, and
    A cylinder device provided with a cylinder;
    A pump attached to the cylinder device and suctioning a working fluid from a tank and supplying it to the cylinder;
    A vibration control device for a railway vehicle, comprising: a suction port of the pump; and a charge passage connecting the return passage for returning the working fluid from the cylinder to the tank or a discharge port of the pump.
  2.  請求項1に記載の鉄道車両用制振装置であって、
     前記チャージ通路は、前記ポンプの吸込口と前記ポンプの吐出口とを接続し、
     前記チャージ通路には、前記チャージ通路を流れる前記作動液体を制御する弁要素を備えた
     鉄道車両用制振装置。
    It is a damping device for railway vehicles according to claim 1,
    The charge passage connects the suction port of the pump and the discharge port of the pump,
    A damping device for a railway vehicle, comprising a valve element for controlling the hydraulic fluid flowing through the charge passage in the charge passage.
  3.  請求項2に記載の鉄道車両用制振装置であって、
     前記弁要素は、前記ポンプの吐出流量の増加に応じて、前記チャージ通路を流れる前記作動液体を増加させるように制御する
     鉄道車両用制振装置。
    It is a damping device for rail vehicles according to claim 2,
    The vibration control device for a railway vehicle, wherein the valve element controls the hydraulic fluid flowing through the charge passage to increase according to an increase in the discharge flow rate of the pump.
  4.  請求項3に記載の鉄道車両用制振装置であって、
     前記弁要素は、前記ポンプの吐出流量が予め設定される所定流量以上となると前記チャージ通路を連通させる
     鉄道車両用制振装置。
    It is a damping device for rail vehicles according to claim 3,
    The damping device for a railway vehicle, wherein the valve element causes the charge passage to communicate when the discharge flow rate of the pump is equal to or more than a predetermined flow rate set in advance.
  5.  請求項2に記載の鉄道車両用制振装置であって、
     前記ポンプの吐出口を前記シリンダ装置へ接続する供給通路をさらに備え、
     前記弁要素は、前記チャージ通路と前記供給通路とに接続されて前記チャージ通路と前記供給通路への前記作動液体の流れ分流する分流弁である
     鉄道車両用制振装置。
    It is a damping device for rail vehicles according to claim 2,
    It further comprises a supply passage connecting the discharge port of the pump to the cylinder device,
    The vibration control device for a railway vehicle, wherein the valve element is a diverting valve connected to the charge passage and the supply passage to divert the flow of the working liquid to the charge passage and the supply passage.
  6.  請求項2に記載の鉄道車両用制振装置であって、
     前記弁要素は、前記ポンプの回転速度、或いは前記ポンプの吐出流量に応じて前記チャージ通路に与える抵抗を変更可能な可変オリフィスである
     鉄道車両用制振装置。
    It is a damping device for rail vehicles according to claim 2,
    The said valve element is a variable orifice which can change the resistance given to the said charge passage according to the rotational speed of the said pump, or the discharge flow volume of the said pump.
  7.  請求項1に記載の鉄道車両用制振装置であって、
     前記シリンダ装置の伸縮を制御する液圧回路を備え、
     前記シリンダ装置は、
     前記シリンダ内に摺動可能に挿入されて前記シリンダ内をロッド側室とピストン側室とに区画するピストンと、
     前記シリンダ内に移動可能に挿入されて前記ピストンに連結されるロッドとをさらに有し、
     前記液圧回路は、
     前記ロッド側室と前記ピストン側室とを連通する第一通路の途中に設けた第一開閉弁と、
     前記ピストン側室と前記タンクとを連通する第二通路の途中に設けた第二開閉弁と、
     前記ロッド側室と前記タンクとを接続する排出通路と、
     前記排出通路の途中に設けられて前記シリンダ内の圧力を制御する制御弁とを有し、
     前記第二通路を前記戻り通路として前記チャージ通路で前記第二通路の前記第二開閉弁よりタンク側と前記ポンプの吸込口とを接続するか、或いは前記排出通路を前記戻り通路として前記チャージ通路で前記排出通路の前記制御弁より前記タンク側と前記ポンプの吸込口とを接続するか、或いは前記第二通路と前記排出通路とを前記戻り通路として前記チャージ通路で前記第二通路の前記第二開閉弁より前記タンク側と前記ポンプの吸込口とを接続するとともに前記排出通路の前記制御弁より前記タンク側と前記ポンプの吸込口とを接続する
     鉄道車両用制振装置。
    It is a damping device for railway vehicles according to claim 1,
    It has a hydraulic circuit that controls expansion and contraction of the cylinder device,
    The cylinder device is
    A piston slidably inserted in the cylinder to divide the inside of the cylinder into a rod side chamber and a piston side chamber;
    And a rod movably inserted in the cylinder and connected to the piston,
    The hydraulic circuit is
    A first on-off valve provided in the middle of a first passage communicating the rod side chamber and the piston side chamber;
    A second on-off valve provided in the middle of a second passage communicating the piston side chamber and the tank;
    A discharge passage connecting the rod side chamber and the tank;
    A control valve provided in the middle of the discharge passage to control the pressure in the cylinder;
    Connect the tank side of the second passage from the second on-off valve of the second passage with the suction passage of the pump, or use the discharge passage as the return passage. In the discharge passage, the tank side of the control valve of the discharge passage is connected to the suction port of the pump, or the second passage and the discharge passage are used as the return passage in the charge passage. A damping device for a railway vehicle, wherein the tank side and the suction port of the pump are connected from two on-off valves and the tank side and the suction port of the pump are connected from the control valve of the discharge passage.
PCT/JP2018/026651 2017-08-14 2018-07-17 Vibration damping device for rolling stock WO2019035303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017156389A JP2019034620A (en) 2017-08-14 2017-08-14 Damping device for railway vehicle
JP2017-156389 2017-08-14

Publications (1)

Publication Number Publication Date
WO2019035303A1 true WO2019035303A1 (en) 2019-02-21

Family

ID=65362186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026651 WO2019035303A1 (en) 2017-08-14 2018-07-17 Vibration damping device for rolling stock

Country Status (2)

Country Link
JP (1) JP2019034620A (en)
WO (1) WO2019035303A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148509U (en) * 1987-03-20 1988-09-30
JPH01130804U (en) * 1988-03-02 1989-09-06
JP2010065797A (en) * 2008-09-12 2010-03-25 Kayaba Ind Co Ltd Cylinder device
JP2016084841A (en) * 2014-10-24 2016-05-19 Kyb株式会社 Liquid pressure equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148509U (en) * 1987-03-20 1988-09-30
JPH01130804U (en) * 1988-03-02 1989-09-06
JP2010065797A (en) * 2008-09-12 2010-03-25 Kayaba Ind Co Ltd Cylinder device
JP2016084841A (en) * 2014-10-24 2016-05-19 Kyb株式会社 Liquid pressure equipment

Also Published As

Publication number Publication date
JP2019034620A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
TWI475161B (en) Hydraulic cylinder device
WO2016072510A1 (en) Suspension device
WO2016042996A1 (en) Railroad vibration control device
JP5503680B2 (en) Vibration control device for railway vehicles
JP6510796B2 (en) Suspension device and suspension control device
KR101718640B1 (en) Actuator unit
JP7383730B2 (en) Active control anti-yaw damper damping system and vehicle
WO2014027576A1 (en) Actuator
JP5427081B2 (en) Vibration control device for railway vehicles
WO2018084099A1 (en) Cylinder device
JP6134182B2 (en) Shock absorber
JP6654943B2 (en) Railcar damper
JP5627096B2 (en) Dampers for vibration control of railway vehicles
TWI640702B (en) Cylinder device
WO2019035303A1 (en) Vibration damping device for rolling stock
JP2017506598A (en) Damping device and vehicle brake device capable of slip control
JP6932897B2 (en) Cylinder device and vibration damping device for railway vehicles
JPH09222146A (en) Damping force adjusting type hydraulic buffer
JP6916696B2 (en) Railroad vehicle dampers and railroad vehicle vibration damping devices
CN104520620A (en) Pressure-limiting valve and hydrostatic traction drive
KR20200124518A (en) Active suspension system for vehicle
JP6675923B2 (en) Suspension device
JP2019183979A (en) Damper for railroad vehicle
WO2018020757A1 (en) Damping device for railway vehicle
JP6975093B2 (en) Damper for railroad vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847130

Country of ref document: EP

Kind code of ref document: A1