WO2019033830A1 - 有机发光显示面板及制备方法、显示装置 - Google Patents

有机发光显示面板及制备方法、显示装置 Download PDF

Info

Publication number
WO2019033830A1
WO2019033830A1 PCT/CN2018/089932 CN2018089932W WO2019033830A1 WO 2019033830 A1 WO2019033830 A1 WO 2019033830A1 CN 2018089932 W CN2018089932 W CN 2018089932W WO 2019033830 A1 WO2019033830 A1 WO 2019033830A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
layer
light emitting
electrode
layers
Prior art date
Application number
PCT/CN2018/089932
Other languages
English (en)
French (fr)
Inventor
王强
孙增标
罗丽平
刘会双
李振山
赵杰
赵明亮
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/330,324 priority Critical patent/US11158840B2/en
Publication of WO2019033830A1 publication Critical patent/WO2019033830A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present disclosure relates to the field of organic optoelectronics, and in particular to an organic light emitting display panel, a method of fabricating the same, and a display device.
  • An organic light emitting display is a thin film light emitting device fabricated using an organic semiconductor material and driven by a direct current voltage.
  • the organic light-emitting display technology is different from the conventional LCD display technology.
  • the organic light-emitting display technology does not require a backlight, and uses a very thin organic material coating and a glass substrate. When an electric current passes, these organic materials emit light.
  • the organic light-emitting display screen can be made lighter and thinner, and has the advantages of large viewing angle, wide color gamut, large brightness, power saving, and flexible display.
  • the organic light emitting display panel may be classified into a top emission organic light emitting display panel and a bottom emission organic light emitting display panel according to a direction in which the light is emitted.
  • the present disclosure proposes an organic light emitting display panel.
  • the organic light emitting display panel includes: a substrate; a first electrode on the substrate; a light emitting layer on a side of the first electrode away from the substrate; and a second electrode located in the a side of the light emitting layer away from the first electrode; and a polarizing reflective layer between the substrate and the first electrode or on a side of the second electrode away from the light emitting layer.
  • the polarized reflection layer includes a distributed Bragg mirror and a polarization grating which are stacked on each other.
  • the distributed Bragg mirror includes a plurality of sub-layers; the polarization grating is composed of at least one of the sub-layers located on a light-emitting side of the distributed Bragg mirror.
  • the total number of layers of the plurality of sublayers is 10 to 30 layers.
  • the material of the plurality of sub-layers includes a compound or element of a group element.
  • the plurality of sub-layers include a first sub-layer and a second sub-layer that are alternately stacked.
  • a material of one of the first sub-layer and the second sub-layer includes silicon nitride, and a material of the other of the first sub-layer and the second sub-layer includes silicon oxide.
  • the first sub-layer has a thickness of 68 to 73 nm
  • the second sub-layer has a thickness of 103 to 106 nm.
  • the grating period of the polarization grating is 198 to 202 nm
  • the height of the polarization grating is 0.9 to 1.1 ⁇ m
  • the duty ratio of the polarization grating is 0.5 to 0.7.
  • the first electrode is an anode and the second electrode is a cathode.
  • the present disclosure proposes a display device.
  • the display device includes the organic light emitting display panel as described above.
  • the present disclosure proposes a method of preparing an organic light emitting display panel.
  • the method includes: providing a substrate; forming a first electrode on the substrate; forming a light emitting layer on a side of the first electrode away from the substrate; and emitting the light A layer is formed on a side of the layer away from the first electrode.
  • the method further includes forming a polarized reflective layer between the substrate and the first electrode or on a side of the second electrode remote from the light emitting layer.
  • the polarized reflection layer includes a distributed Bragg mirror and a polarization grating stacked on each other.
  • the distributed Bragg mirror comprises a plurality of sub-layers; the polarization grating being composed of at least one of the sub-layers located on the light-emitting side of the distributed Bragg mirror.
  • forming the polarized reflective layer between the substrate and the first electrode includes depositing the plurality of sub-layers on the substrate to form the distributed Bragg reflection And a plurality of equally-width and equally spaced grooves are formed in at least one of the sub-layers of the light-emitting side of the distributed Bragg mirror to form the polarization grating.
  • forming the polarized reflective layer on a side of the second electrode away from the light emitting layer includes: forming the plurality of sublayers on the one side of the second electrode a first set of sub-layers; forming a plurality of equally wide and equally spaced grooves in the first set of sub-layers to form the polarization grating; and forming a second set of sub-layers on the first set of sub-layers The distributed Bragg mirror is formed.
  • the plurality of sub-layers include a first sub-layer and a second sub-layer that are alternately stacked.
  • the first sublayer has a thickness of 68 to 73 nm
  • the second sublayer has a thickness of 103 to 106 nm.
  • the total number of layers of the plurality of sublayers is 10 to 30 layers.
  • a material of one of the first sub-layer and the second sub-layer includes silicon nitride, and a material of the other of the first sub-layer and the second sub-layer includes silicon oxide.
  • FIG. 1 illustrates a schematic cross-sectional view of an organic light emitting display panel according to an embodiment of the present disclosure
  • FIG. 2 illustrates a schematic cross-sectional view of an organic light emitting display panel in accordance with an embodiment of the present disclosure
  • FIG. 3 illustrates a schematic cross-sectional view of a polarizing reflective layer in accordance with an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of a distributed Bragg mirror reflection principle in accordance with an embodiment of the present disclosure
  • FIG. 5 illustrates a schematic cross-sectional view of an organic light emitting display panel according to an embodiment of the present disclosure
  • FIG. 6 illustrates a schematic cross-sectional view of an organic light emitting display panel according to an embodiment of the present disclosure
  • FIG. 7 illustrates a flow chart of a method of fabricating an organic light emitting display panel according to an embodiment of the present disclosure
  • FIG. 8 illustrates a partial flow chart of a method of fabricating an organic light emitting display panel in accordance with an embodiment of the present disclosure
  • FIG. 9 illustrates a partial flow chart of a method of fabricating an organic light emitting display panel in accordance with an embodiment of the present disclosure.
  • the present disclosure is based on the discovery and recognition of the following facts and problems by the inventors.
  • organic light-emitting display panels often have problems of low brightness and poor light-emitting quality.
  • the inventors have conducted intensive research and a large number of experiments and found that this is mainly due to the low anode emissivity of the organic light-emitting display panel and the polarization instability of the light source due to self-luminescence of the organic light-emitting display panel.
  • the anode of the top emission organic light emitting display panel in order to ensure a high injection efficiency of holes, the anode of the top emission organic light emitting display panel generally adopts a material having a higher work function, such as ITO.
  • the anode of the above organic light-emitting display panel is still unable to reflect light 100%, which causes a decrease in external quantum efficiency, and on the other hand, when transmitted light enters the backplane circuit, photogenerated carriers are generated in the circuit. Affect the stability of the circuit.
  • the inventors have found that since the organic light-emitting display panel is a self-luminous panel, the polarization directions of the light sources generated are different, and polarization-stable output light cannot be obtained, thereby affecting the light-emitting quality of the panel.
  • a combination of ITO/Ag/ITO is generally used, which has the advantages of high work function of ITO and high reflectivity of Ag.
  • Ag has a high reflectance, it can only reach about 90%, that is, some of the light is still absorbed or projected into the backplane circuit.
  • the back-plate circuit is relatively complicated and sensitive, and the photo-generated carriers generated by the projected light in the back-plate circuit greatly affect the stability of the back-plate circuit. , which in turn affects the performance of the panel.
  • a method of attaching a polarizer to the cover glass is often employed.
  • the inventors have found that although the polarizing plate is attached to the cover glass to polarize the emitted light, the adhesion of the polarizing plate leads to an increase in the thickness of the screen, which is disadvantageous to the heat dissipation of the panel, which is contrary to the ultra-thinness and integration of the electronic product. The direction of development and stabilization.
  • the present disclosure is intended to alleviate or solve at least some of the above mentioned problems at least to some extent.
  • the organic light emitting display panel includes a substrate 100, a first electrode, a light emitting layer 400, a second electrode, and a polarized reflective layer 200.
  • the first electrode is located on the substrate 100.
  • the light emitting layer 400 is located on a side of the first electrode away from the substrate 100.
  • the second electrode is located on a side of the light emitting layer 400 away from the first electrode.
  • the polarized reflective layer 200 is located between the substrate 100 and the first electrode (as shown in FIG. 1), or the polarized reflective layer 200 is located on the side of the second electrode away from the light emitting layer 400 (as shown in FIG. 2).
  • the first electrode may be the anode 300 and the second electrode may be the cathode 500.
  • the electrode reflectance of the organic light-emitting display panel can be improved, the brightness and stability of the panel can be improved, and the polarization characteristics of the panel output light can be improved, and the light-emitting quality of the panel can be improved.
  • the type of the organic light-emitting display panel is not particularly limited, and those skilled in the art can design according to specific conditions.
  • the organic light emitting display panel may be a top emission organic light emitting display panel.
  • the polarized reflection layer 200 is located between the substrate 100 and the anode 300.
  • the organic light emitting display panel may also be a bottom emission organic light emitting display panel.
  • the polarized reflection layer 200 is located on the side of the cathode 500 away from the light-emitting layer 400.
  • the material of the substrate is not particularly limited, and those skilled in the art can select designs according to specific conditions.
  • the substrate 100 may be composed of amorphous silicon and may also be composed of polysilicon.
  • the materials of the anode and the cathode are also not particularly limited as long as the anode material has a high work function and the cathode material has a low work function, and those skilled in the art can design according to the specific conditions.
  • the anode 300 may be composed of ITO/Ag/ITO.
  • the cathode 500 may be composed of a Mg/Ag alloy. Thereby, the cathode has a higher electron injection efficiency.
  • a polarizing reflective layer 200 is disposed between the anode 300 and the substrate 100, and light transmitted through the anode 300 can be reflected.
  • the reflectance can be made 99%, thereby improving the reflectance, thereby increasing the brightness of the panel.
  • the polarized reflection layer 200 includes a distributed Bragg mirror 210 and a polarization grating 220 stacked on each other.
  • the distributed Bragg mirror 200 includes a plurality of sub-layers. Regarding the total number of layers in the sub-layer, further design is required. Those skilled in the art can understand that if the number of sublayer layers is larger, the reflectivity of the distributed Bragg reflector 210 is higher, but at the same time, the overall thickness of the panel is increased, which is contrary to the design concept of ultra-thin panel. . If the number of sublayers is small, a high reflectance is not achieved.
  • the total number of layers of the sub-layer may be 10 to 30 layers. According to a particular embodiment of the present disclosure, the total number of layers of the sub-layer may also be 15 to 25 layers. Thereby, the panel is made to have a suitable thickness while ensuring a high reflectance.
  • the material of the plurality of sub-layers includes a compound or element of the same group element.
  • adjacent sub-layers are composed of different materials.
  • "a compound or a simple substance of a group element” means that a compound or a simple substance constituting two adjacent sub-layers contains an element in the same group.
  • adjacent sub-layers may be composed of aluminum and gallium arsenide, respectively, or may be composed of silicon oxide and silicon nitride, respectively.
  • a sub-layer of distributed Bragg mirrors can be constructed using materials of a wide variety of sources as described above.
  • the selection of the sub-layer material should also take into account the quality of the interface between the film layer and the sub-layer. That is, there should be less interface defects and a higher degree of matching between the film layer and the sub-layer.
  • the "film layer” means a film layer as a deposition substrate of the sub-layer.
  • the substrate 100 may be composed of amorphous silicon or polycrystalline silicon.
  • the sub-layer may be composed of silicon oxide or silicon nitride.
  • the sub-layer may include the first sub-layer 211 and the second sub-layer 212 that are alternately stacked.
  • the order of lamination of the first sub-layer and the second sub-layer is not particularly limited, and those skilled in the art can design according to specific conditions.
  • the panel is a top emission organic light emitting display panel
  • the first sub-layer 211 may be disposed on the substrate 100
  • the second sub-layer 212 is disposed on a side of the first sub-layer 211 away from the substrate 100, the first sub-layer 211 and second sub-layer 212 are alternately stacked in this order.
  • the second sub-layer 212 may be disposed on the substrate 100, the first sub-layer 211 may be disposed on a side of the second sub-layer 212 away from the substrate 100, and the second sub-layer 212 and the first sub-layer 211 are in the order Alternately stacked.
  • the first sub-layer 211 and the second sub-layer 212 may be composed of silicon nitride and silicon oxide, respectively.
  • the first sub-layer may have a thickness of 68 to 73 nm (as shown in FIG. 3), and the second sub-layer may have a thickness of 103 to 106 nm (such as D2 shown in FIG. 3).
  • the thickness of the first sub-layer may be 71.3 nm, and the thickness of the second sub-layer may be 105 nm.
  • the distributed Bragg mirror can be made to have a suitable thickness.
  • the principle that the distributed Bragg mirror 210 has a higher reflectance is as shown in FIG. 4.
  • the second sub-layer When light is irradiated onto the surface of the sub-layer (for example, the second sub-layer), the second sub-layer will The light is reflected for the first time, and the unreflected light is transmitted to the surface of the first sub-layer through the second sub-layer, and the first sub-layer performs the second reflection on the part of the light, and the unreflected light continues to pass through.
  • the first sub-layer illuminates the surface of the lower second sub-layer, the second sub-layer performs a third reflection of the portion of the light, and so on, so that the transmitted light is reflected.
  • the first sub-layer 211 may have a refractive index of 2.0
  • the second sub-layer 212 may have a refractive index of 1.35, thereby being distributed by alternately stacking the first sub-layer and the second sub-layer.
  • Bragg mirrors have a high reflectivity.
  • the polarized reflective layer 200 includes a polarization grating 220.
  • the polarization grating 220 is composed of at least one sub-layer located on the light-emitting side of the distributed Bragg reflector 210.
  • a distributed Bragg mirror can be used to form the polarization grating, thereby saving material.
  • the grating period may be 198 to 202 nm (d as shown in FIG. 3), and the height may be 0.9 to 1.1 ⁇ m (such as H shown in FIG. 3). ), the duty ratio can be 0.5 to 0.7.
  • the grating period of the polarization grating 220 may be 200 nm, the height may be 1 ⁇ m, and the duty ratio may be 0.6. Since the polarization direction is different from the equivalent refractive index of the outgoing light parallel to and parallel to the polarization grating 220, the output external quantum efficiency of the two polarized lights is different, so that the polarization stability of the panel can be improved.
  • FIGS. 5 and 6 respectively show schematic cross-sectional views corresponding to FIGS. 1 and 2, respectively, when the polarized reflection layer includes distributed Bragg mirrors and polarization gratings stacked on each other.
  • the organic light emitting display panel may further include a hole transport layer and a hole injection layer, an electron transport layer and an electron injection layer, and a cover glass. And other structures.
  • the hole transport layer and the hole injection layer are located between the anode and the light-emitting layer, and the electron transport layer and the electron injection layer are located between the light-emitting layer and the cathode to ensure injection and transport of holes and electrons.
  • a cover glass is disposed on a side of the cathode away from the light-emitting layer, and is connected by a sealant to encapsulate the panel.
  • a display device in another aspect of the present disclosure, includes the organic light emitting display panel as described above.
  • the display device has all of the features and advantages of the organic light-emitting display panel as described above, and will not be described herein. In general, the display device has higher brightness and higher illumination quality.
  • the organic light emitting display panel prepared by the method may be an organic light emitting display panel as described above.
  • the organic light emitting display panel prepared by the method may have the same features and advantages as the organic light emitting display panel as described above, and details are not described herein again.
  • the method includes steps S701 to S704.
  • a first electrode is formed on a substrate.
  • the first electrode may be an anode.
  • the substrate may be composed of amorphous silicon or polycrystalline silicon
  • the anode may be composed of ITO/Ag/ITO.
  • the backplane circuit can be obtained on the substrate by a semiconductor process such as deposition and photolithography.
  • an ITO/Ag/ITO layer is deposited on a substrate having a backplane circuit to form an anode. Thereby, the display of the organic light emitting display panel can be controlled by the backplane circuit.
  • a light-emitting layer is formed on a side of the first electrode away from the substrate.
  • the organic luminescent material is evaporated on the side of the anode away from the substrate to form a luminescent layer.
  • the hole transport layer and the hole injection layer may be formed by vapor deposition on the side of the anode away from the substrate.
  • the hole injection layer is located between the anode and the light-emitting layer.
  • a second electrode is formed on a side of the light emitting layer away from the first electrode.
  • the second electrode may be a cathode.
  • the material about the cathode has been described in detail above and will not be described again here.
  • the cathode may be composed of a Mg/Ag alloy.
  • a Mg/Ag alloy is sputtered on the side of the light-emitting layer away from the anode to form a cathode.
  • the electron transport layer and the electron injection layer can be formed by evaporation on the side of the light-emitting layer away from the anode, that is, the electron transport layer and the electron injection layer are located. Between the cathode and the luminescent layer.
  • the method may further include step S705 or step S705'.
  • the method when the panel is a bottom emission organic light emitting display panel, after step S701 and before step S702, the method further includes step S705, that is, forming a polarization reflection between the substrate and the first electrode Floor.
  • the method after step S704, the method further includes step S705′, that is, when the panel is a top emission organic light emitting display panel, in step S705′, the second electrode is away from the light emitting layer.
  • a polarizing reflective layer is formed on one side.
  • the polarized reflection layer includes a distributed Bragg mirror and a polarization grating which are stacked on each other.
  • the distributed Bragg mirror includes a plurality of sub-layers.
  • the polarization grating consists of at least one of the sublayers located on the light exit side of the distributed Bragg mirror.
  • a polarized reflection layer may be formed on the substrate before the anode is deposited on the substrate, and the final structure is as shown in FIG. 5.
  • step S705 that is, the step of forming a polarized reflection layer between the substrate and the first electrode includes steps S801 and S802.
  • a distributed Bragg mirror is formed.
  • a plurality of sub-layers are deposited to form a distributed Bragg mirror.
  • the distributed Bragg mirror comprises a first sub-layer and a second sub-layer that are alternately stacked, ie, the plurality of sub-layers comprise a first sub-layer and a second sub-layer that are alternately stacked.
  • the first sub-layer has a thickness of 68 to 73 nm
  • the second sub-layer has a thickness of 103 to 106 nm.
  • the thickness of the first sub-layer may be 71.3 nm, and the thickness of the second sub-layer may be 105 nm.
  • the type of deposition is not particularly limited, and for example, a method of PECVD deposition may be employed according to an embodiment of the present disclosure.
  • the number of layers of the sublayer has been described in detail above, and will not be described herein.
  • the total number of layers of the first sub-layer and the second sub-layer may be 10 to 30 layers.
  • the total number of layers of the first sub-layer and the second sub-layer may also be 15 to 25 layers.
  • the panel is provided with a suitable thickness while ensuring a high reflectance.
  • the materials of the first sub-layer and the second sub-layer and the order of setting are also described in detail above, and are not described herein again.
  • one of the first sub-layer and the second sub-layer may be composed of silicon nitride, and the other may be composed of silicon oxide.
  • a distributed Bragg mirror can be obtained with a simple production process.
  • a polarization grating is formed.
  • the polarization grating is formed using at least one sub-layer of the light-emitting side of the distributed Bragg mirror.
  • at least one sub-layer on the light-emitting side of the distributed Bragg mirror is etched to form a plurality of equally-width and equally-spaced grooves to form a polarization grating.
  • the number of layers of the sub-layer to be etched needs to be determined according to the thickness of each sub-layer and the height of the polarization grating.
  • the type of etching is not particularly limited, and for example, in accordance with an embodiment of the present disclosure, ion beam assisted radical etching may be employed.
  • the parameters of the polarization grating have been described in detail above, and are not described herein again.
  • the grating period of the polarization grating may be 200 nm
  • the height may be 1 ⁇ m
  • the duty ratio may be 0.6.
  • step S705' that is, the step of forming the polarized reflection layer on the side of the second electrode away from the light-emitting layer includes steps S901 to S902.
  • step S901 a first group of sub-layers of the plurality of sub-layers is formed on one side of the second electrode.
  • step S902 a plurality of equally wide and equally spaced grooves are formed in the first set of sub-layers to form a polarization grating.
  • step S903 a second set of sub-layers is formed on the first set of sub-layers to form a distributed Bragg mirror.
  • the first set of sub-layers and the second set of sub-layers each comprise a first sub-layer and a second sub-layer that are alternately stacked.
  • the thicknesses of the first and second sub-layers are as described above and will not be described herein.
  • the number of layers of the first and second sub-layers has been described in detail above and will not be described herein.
  • the method of forming the first and second sets of sublayers includes deposition.
  • the type of deposition is not particularly limited, and for example, a method of PECVD deposition may be employed according to an embodiment of the present disclosure.
  • the materials of the first sub-layer and the second sub-layer and the order of setting are also described in detail above, and are not described herein again.
  • Forming the polarization grating specifically includes etching the first set of sub-layers to form a plurality of equally wide and equally spaced grooves.
  • the number of layers of the sub-layer to be etched needs to be determined according to the thickness of each sub-layer and the height of the polarization grating.
  • the type of etching is as described above, and the parameters of the polarization grating have been described in detail above, and are not described herein again.
  • the description of the terms “one embodiment”, “another embodiment” or the like means that the specific features, structures, materials or characteristics described in connection with the embodiments are included in at least one embodiment of the present disclosure. .
  • the schematic representation of the above terms is not necessarily directed to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
  • various embodiments or examples described in the specification and features of various embodiments or examples may be combined and combined without departing from the scope of the invention.
  • the terms “first” and “second” are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开公开了有机发光显示面板及制备方法、显示装置。所述有机发光显示面板包括:衬底;第一电极,其位于所述衬底上;发光层,其位于所述第一电极远离所述衬底的一侧;第二电极,其位于所述发光层远离所述第一电极的一侧;以及偏振反射层,其位于所述衬底与所述第一电极之间,或者位于所述第二电极远离所述发光层的一侧。

Description

有机发光显示面板及制备方法、显示装置
相关申请的交叉引用
本申请要求于2017年8月18日递交的中国专利申请第201710710508.4号优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及有机光电领域,具体地,涉及有机发光显示面板及制备方法、显示装置。
背景技术
有机发光显示器(OLED)是一种利用有机半导体材料制成的、用直流电压驱动的薄膜发光器件。有机发光显示技术与传统的LCD显示方式不同,有机发光显示技术无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且有机发光显示屏幕可以做得更轻更薄,具有可视角度大、广色域、亮度大、节省电能、便于柔性显示等优点。按照光线出射的方向,有机发光显示面板可以分为顶发射有机发光显示面板以及底发射有机发光显示面板。
然而,目前的有机发光显示面板及制备方法、显示装置仍有待改进。
发明内容
在本公开的一个方面,本公开提出了一种有机发光显示面板。所述有机发光显示面板包括:衬底;第一电极,其位于所述衬底上;发光层,其位于所述第一电极远离所述衬底的一侧;第二电极,其位于所述发光层远离所述第一电极的一侧;以及偏振反射层,其位于所述衬底与所述第一电极之间,或者位于所述第二电极远离所述发光层的一侧。
根据本公开的实施例,所述偏振反射层包括彼此层叠的分布式布拉格 反射镜和偏振光栅。
根据本公开的实施例,所述分布式布拉格反射镜包括多个亚层;所述偏振光栅由位于所述分布式布拉格反射镜的出光侧的至少一个所述亚层构成。
根据本公开的实施例,所述多个亚层的总层数为10~30层。
根据本公开的实施例,所述多个亚层的材料包括同族元素的化合物或单质。
根据本公开的实施例,所述多个亚层包括交替层叠的第一亚层和第二亚层。所述第一亚层和所述第二亚层中的一者的材料包括氮化硅,所述第一亚层和所述第二亚层中的另一者的材料包括氧化硅。
根据本公开的实施例,所述第一亚层的厚度为68~73nm,所述第二亚层的厚度为103~106nm。
根据本公开的实施例,所述偏振光栅的光栅周期为198~202nm,所述偏振光栅的高度为0.9~1.1μm,所述偏振光栅的占空比为0.5~0.7。
根据本公开的实施例,所述第一电极为阳极,所述第二电极为阴极。
在本公开的另一方面,本公开提出了一种显示装置。根据本公开的实施例,所述显示装置包括如上所述的有机发光显示面板。
在本公开的另一方面,本公开提出了一种制备有机发光显示面板的方法。根据本公开的实施例,所述方法包括:提供衬底;在所述衬底上形成第一电极;在所述第一电极远离所述衬底的一侧形成发光层;以及在所述发光层远离所述第一电极的一侧形成第二电极。所述方法还包括:在所述衬底与所述第一电极之间或者在所述第二电极远离所述发光层的一侧形成偏振反射层。
根据本公开的实施例,所述偏振反射层包括彼此层叠的分布式布拉格反射镜和偏振光栅。
根据本公开的实施例,所述分布式布拉格反射镜包括多个亚层;所述偏振光栅由位于所述分布式布拉格反射镜的出光侧的至少一个所述亚层构 成。
根据本公开的实施例,在所述衬底与所述第一电极之间形成所述偏振反射层,包括:在所述衬底上沉积所述多个亚层以形成所述分布式布拉格反射镜;以及在所述分布式布拉格反射镜的出光侧的至少一个所述亚层中形成多个等宽且等间距的凹槽以形成所述偏振光栅。
根据本公开的实施例,在所述第二电极远离所述发光层的一侧形成所述偏振反射层,包括:在所述第二电极的所述一侧形成所述多个亚层中的第一组亚层;在所述第一组亚层中形成多个等宽且等间距的凹槽以形成所述偏振光栅;以及在所述第一组亚层上形成第二组亚层以形成所述分布式布拉格反射镜。
根据本公开的实施例,所述多个亚层包括交替层叠的第一亚层和第二亚层。所述第一亚层的厚度为68~73nm,所述第二亚层的厚度为103~106nm。所述多个亚层的总层数为10~30层。所述第一亚层和所述第二亚层中的一者的材料包括氮化硅,所述第一亚层和所述第二亚层中的另一者的材料包括氧化硅。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本公开的实施例的有机发光显示面板的截面示意图;
图2示出了根据本公开的实施例的有机发光显示面板的截面示意图;
图3示出了根据本公开的实施例的偏振反射层的截面示意图;
图4示出了根据本公开的实施例的分布式布拉格反射镜反射原理示意图;
图5示出了根据本公开的实施例的有机发光显示面板的截面示意图;
图6示出了根据本公开的实施例的有机发光显示面板的截面示意图;
图7示出了根据本公开的实施例的制备有机发光显示面板方法的流程 图;
图8示出了根据本公开的实施例的制备有机发光显示面板方法的部分流程图;以及
图9示出了根据本公开的实施例的制备有机发光显示面板方法的部分流程图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
本公开是基于发明人对于以下事实和问题的发现和认识作出的。
目前,有机发光显示面板多存在亮度较小以及发光质量较差的问题。发明人经过深入研究以及大量实验发现,这主要是由于有机发光显示面板的阳极发射率较低以及有机发光显示面板由于依靠发光层自发光而产生的光源偏振不稳定导致的。以顶发射型有机发光显示面板为例,为了保证空穴具有较高的注入效率,顶发射有机发光显示面板的阳极通常采用功函数较高的材料,例如ITO等。然而,上述有机发光显示面板的阳极仍旧不能100%地将光反射出去,一方面造成了外量子效率的降低,另一方面透射光进入背板电路后,会在电路中产生光生载流子,影响电路的稳定性。
此外,发明人发现,由于有机发光显示面板为自发光面板,其产生的光源偏振方向各异,无法得到偏振稳定的输出光,因而影响面板的发光质量。在现有技术中,为了提高顶发射有机发光显示面板的阳极反射率,普遍采用ITO/Ag/ITO的组合,兼具了ITO高功函数和Ag高反射率的优点。然而,发明人发现,虽然Ag具有较高的反射率,但只能达到90%左右,也就是,仍有一部分光被吸收或者投射到背板电路中。而对于有机发光显示面板来说,由于其需要进行电压补偿,因此其背板电路比较复杂和敏感, 投射的光在背板电路中产生的光生载流子会极大地影响背板电路的稳定性,进而影响面板的性能。而在现有技术中,为了解决有机发光显示面板发光偏振不稳定的问题,常采用在盖板玻璃粘贴偏光片的方法。发明人发现,虽然在盖板玻璃上粘贴偏光片可以对射出的光进行偏振处理,但偏振片的粘贴导致了屏幕厚度的增加,不利于面板的散热,有悖于电子产品超薄化、集成化和稳定化的发展方向。
本公开旨在至少一定程度上缓解或解决上述提及问题中至少一个。
在本公开的一个方面,提出了一种有机发光显示面板。根据本公开的实施例,参考图1以及图2,该有机发光显示面板包括:衬底100、第一电极、发光层400、第二电极以及偏振反射层200。第一电极位于衬底100上。发光层400位于第一电极远离衬底100的一侧。第二电极位于发光层400远离第一电极的一侧。偏振反射层200位于衬底100与第一电极之间(如图1所示),或者偏振反射层200位于第二电极远离发光层400的一侧(如图2所示)。根据本公开的实施例,第一电极可以为阳极300,第二电极可以为阴极500。由此,可以提高有机发光显示面板的电极反射率,提高面板的亮度以及稳定性,并且改善面板输出光的偏振特性,提高面板的发光质量。
下面根据本公开的具体实施例,对该有机发光显示面板的各个结构进行详细说明。
这里,该有机发光显示面板的类型不受特别限制,本领域的技术人员可以根据具体情况进行设计。例如,根据本公开的实施例,该有机发光显示面板可以为顶发射有机发光显示面板。如图1所示,偏振反射层200位于衬底100与阳极300之间。根据本公开的另一实施例,该有机发光显示面板还可以为底发射有机发光显示面板。如图2所示,偏振反射层200位于阴极500远离发光层400的一侧。
这里,衬底的材料不受特别限制,本领域的技术人员可以根据具体情况进行选择设计。例如,根据本公开的实施例,衬底100可以由非晶硅构 成,还可以由多晶硅构成。根据本公开的实施例,为了实现有机发光显示面板的使用,还需要在衬底100上设置背板电路,从而通过背板电路控制有机发光显示面板的显示。
这里,阳极以及阴极的材料也不受特别限制,只要满足阳极材料具有较高的功函数、阴极材料具有较低的功函数即可,本领域技术人员可以根据具体情况进行设计。例如,根据本公开的实施例,阳极300可以由ITO/Ag/ITO构成。由此,阳极具有较高的空穴注入效率以及较高的反射率。根据本公开的实施例,阴极500可以由Mg/Ag合金构成。由此,阴极具有较高的电子注入效率。
此外,虽然Ag具有较高的反射率,但只能达到90%,并且ITO透光度较高。本领域技术人员能够理解的是,当面板为顶发射有机发光显示面板时,由于阳极300由透明导电材料ITO和金属Ag构成,因此阳极的整体反射率很低,透过阳极的光会进入背板电路中,影响面板的稳定性。根据本公开的实施例,在阳极300与衬底100之间设置偏振反射层200,可以对透过阳极300的光进行反射。另外,由于偏振反射层200的特殊结构,可以使反射率达到99%,因此提高了反射率,从而提高了面板的亮度。
根据本公开的实施例,参考图3,偏振反射层200包括彼此层叠的分布式布拉格反射镜210和偏振光栅220。分布式布拉格反射镜200包括多个亚层。关于亚层的总层数,需要进行进一步设计。本领域技术人员能够理解的是,若亚层层数越多,分布式布拉格反射镜210的反射率越高,但同时会使面板的整体厚度变大,有悖于面板超薄化的设计理念。若亚层层数较少,则达不到较高的反射率。由此,根据本公开的实施例,亚层的总层数可以为10~30层。根据本公开的具体实施例,亚层的总层数还可以为15~25层。由此,在保证较高反射率的情况下,使面板具有合适的厚度。
根据本公开的实施例,多个亚层的材料包括同族元素的化合物或单质。本领域技术人员能够理解的是,相邻的亚层,由不同的材料构成。在本公开中,“同族元素的化合物或单质”指的是构成相邻的两个亚层的化合物或 单质含有位于同一族的元素。例如,相邻的亚层可以分别由铝和砷化镓构成,还可以分别由氧化硅和氮化硅构成。由此,可以利用上述来源广泛的材料构成分布式布拉格反射镜的亚层。
根据本公开的实施例,亚层材料的选择还应考虑到膜层与亚层之间的界面质量。也就是,膜层与亚层之间应该具有较少的界面缺陷和较高的匹配度。需要说明的是,“膜层”是指作为亚层的沉积基底的膜层。根据本公开的具体实施例,当面板为顶发射有机发光显示面板时,作为亚层的沉积基底的膜层为衬底100。如前所述,衬底100可以由非晶硅或多晶硅构成。为了使亚层与衬底100之间具有较高的界面质量,根据本公开的具体实施例,亚层可以由氧化硅或氮化硅构成。
根据本公开的实施例,亚层可以包括交替层叠的第一亚层211和第二亚层212。这里,第一亚层和第二亚层的层叠顺序不受特别限制,本领域技术人员可以根据具体情况进行设计。例如,当面板为顶发射有机发光显示面板时,第一亚层211可以设置在衬底100上,第二亚层212设置在第一亚层211远离衬底100的一侧,第一亚层211和第二亚层212按照该顺序交替层叠。或者,第二亚层212可以设置在衬底100上,第一亚层211可以设置在第二亚层212远离衬底100的一侧,第二亚层212和第一亚层211按照该顺序交替层叠。根据本公开的实施例,第一亚层211和第二亚层212可以分别由氮化硅和氧化硅构成。根据本公开的实施例,第一亚层的厚度可以为68~73nm(如图3中示出的D1),第二亚层的厚度可以为103~106nm(如图3中示出的D2)。根据本公开的具体实施例,第一亚层的厚度可以为71.3nm,第二亚层的厚度可以为105nm。由此,可以使分布式布拉格反射镜具有合适的厚度。
根据本公开的实施例,分布式布拉格反射镜210具有较高反射率的原理如图4所示,当光照射到亚层(例如,第二亚层)的表面时,第二亚层会对光进行第一次反射,未被反射的光透过第二亚层照射到第一亚层的表面,第一亚层对该部分光进行第二次反射,未被反射的光会继续透过第一 亚层照射到下方的第二亚层的表面,第二亚层对该部分光进行第三次反射,以此类推,使透过的光被反射出去。根据本公开的具体实施例,第一亚层211的折射率可以为2.0,第二亚层212的折射率可以为1.35,由此由第一亚层和第二亚层交替层叠形成的分布式布拉格反射镜具有较高的反射率。
根据本公开的实施例,偏振反射层200包括偏振光栅220。参考图3,偏振光栅220由位于分布式布拉格反射镜210的出光侧的至少一个亚层构成。由此,可以利用分布式布拉格反射镜形成偏振光栅,从而节省材料。关于偏振光栅220的参数,根据本公开的实施例,光栅周期可以为198~202nm(如图3中所示出的d),高度可以为0.9~1.1μm(如图3中所示出的H),占空比可以为0.5~0.7。根据本公开的具体实施例,偏振光栅220的光栅周期可以为200nm,高度可以为1μm,占空比可以为0.6。由于偏振方向垂直于和平行于偏振光栅220的出射光的等效折射率不同,导致两种偏振光的输出外量子效率不同,从而能够改善面板的偏振稳定性。
图5和图6分别示出了在偏振反射层包括彼此层叠的分布式布拉格反射镜和偏振光栅时的分别与图1和图2对应的截面示意图。
本领域技术人员能够理解的是,为了使有机发光显示面板获得更好的显示效果,有机发光显示面板还可以包括空穴传输层和空穴注入层、电子传输层和电子注入层以及盖板玻璃等结构。空穴传输层和空穴注入层位于阳极与发光层之间,电子传输层和电子注入层位于发光层与阴极之间,以便确保空穴和电子的注入和传输。在阴极远离发光层的一侧设置盖板玻璃,利用封框胶进行连接,对面板进行封装。
在本公开的另一方面,提出了一种显示装置。根据本公开的实施例,该显示装置包括如上所述的有机发光显示面板。由此,该显示装置具有如上所述的有机发光显示面板的全部特征以及优点,在此不再赘述。总的来说,该显示装置具有较高的亮度和较高的发光质量。
在本公开的另一方面,提出了一种制备有机发光显示面板的方法。根据本公开的实施例,该方法制备的有机发光显示面板可以为如上所述的有 机发光显示面板。由此,该方法制备的有机发光显示面板可以具有与如上所述的有机发光显示面板相同的特征以及优点,在此不再赘述。根据本公开的实施例,参考图7,该方法包括步骤S701至S704。
S701:提供衬底
S702:在衬底上形成第一电极
根据本公开的实施例,在该步骤中,在衬底上形成第一电极。根据本公开的实施例,第一电极可以为阳极。关于衬底和阳极的材料前面已经进行了详细的描述,在此不再赘述。例如,根据本公开的实施例,衬底可以由非晶硅或多晶硅构成,阳极可以由ITO/Ag/ITO构成。根据本公开的实施例,为了实现有机发光显示面板的使用,还需要在衬底上设置背板电路。具体的,可以通过沉积以及光刻等半导体工艺在衬底上获得背板电路。根据本公开的实施例,在具有背板电路的衬底上沉积ITO/Ag/ITO层,以便形成阳极。由此,可以通过背板电路控制有机发光显示面板的显示。
S703:在第一电极远离衬底的一侧形成发光层
根据本公开的实施例,在该步骤中,在第一电极远离衬底的一侧形成发光层。具体的,在阳极远离衬底的一侧,蒸镀有机发光材料,以便形成发光层。本领域技术人员能够理解的是,在蒸镀发光层之前,还可以在阳极远离衬底的一侧,通过蒸镀的方式形成空穴传输层和空穴注入层,即,空穴传输层和空穴注入层位于阳极与发光层之间。
S704:在发光层远离第一电极的一侧形成第二电极
根据本公开的实施例,在该步骤中,在发光层远离第一电极的一侧形成第二电极。根据本公开的实施例,第二电极可以为阴极。关于阴极的材料前面已经进行了详细的描述,在此不再赘述。例如,根据本公开的实施例,阴极可以由Mg/Ag合金构成。根据本公开的实施例,在发光层远离阳极的一侧,溅射Mg/Ag合金,以便形成阴极。本领域技术人员能够理解的是,在溅射阴极之前,还可以在发光层远离阳极的一侧,通过蒸镀的方式形成电子传输层和电子注入层,即,电子传输层和电子注入层位于阴极与 发光层之间。
此外,该方法还可以包括步骤S705或步骤S705’。根据本公开的实施例,当面板为底发射有机发光显示面板时,在步骤S701之后并且在步骤S702之前,所述方法还包括步骤S705,即,在衬底与第一电极之间形成偏振反射层。根据本公开的另一实施例,在步骤S704之后,所述方法还包括步骤S705’,即,当面板为顶发射有机发光显示面板时,在步骤S705’中,在第二电极远离发光层的一侧形成偏振反射层。
根据本公开的实施例,偏振反射层包括彼此层叠的分布式布拉格反射镜和偏振光栅。
根据本公开的实施例,分布式布拉格反射镜包括多个亚层。所述偏振光栅由位于所述分布式布拉格反射镜的出光侧的至少一个所述亚层构成。
根据本公开的实施例,当面板为顶发射有机发光显示面板时,在衬底上沉积阳极之前,可以在衬底上形成偏振反射层,最终的结构如图5所示。参考图8,步骤S705,即,在衬底与第一电极之间形成偏振反射层的步骤包括步骤S801和S802。
S801:形成分布式布拉格反射镜
根据本公开的实施例,在该步骤中,形成分布式布拉格反射镜。根据本公开的实施例,沉积多个亚层,以便形成分布式布拉格反射镜。根据本公开的具体实施例,分布式布拉格反射镜包括交替层叠的第一亚层和第二亚层,即,多个亚层包括交替层叠的第一亚层和第二亚层。根据本公开的实施例,第一亚层的厚度为68~73nm,第二亚层的厚度为103~106nm。根据本公开的具体实施例,第一亚层的厚度可以为71.3nm,第二亚层的厚度可以为105nm。这里,沉积的类型不受特别限制,例如,根据本公开的实施例,可以采用PECVD沉积的方式。这里,亚层的层数前面已经进行了详细描述,在此不再赘述。例如,根据本公开的实施例,第一亚层和第二亚层的总层数可以为10~30层。根据本公开的具体实施例,第一亚层和第二亚层的总层数还可以为15~25层。由此,在保证较高反射率的情况下, 使面板具有合适的厚度。这里,第一亚层和第二亚层的材料以及设置顺序前面也进行了详细描述,在此不再赘述。例如,根据本公开的实施例,第一亚层和第二亚层中的一者可以由氮化硅构成,另一者可以由氧化硅构成。由此,可以利用简单的生产工艺获得分布式布拉格反射镜。
S802:形成偏振光栅
根据本公开的实施例,在该步骤中,形成偏振光栅。根据本公开的实施例,利用分布式布拉格反射镜的出光侧的至少一个亚层形成偏振光栅。具体的,对分布式布拉格反射镜的出光侧的至少一个亚层进行刻蚀,以便形成多个等宽且等间距的凹槽,从而形成偏振光栅。根据本公开的实施例,需要被刻蚀的亚层的层数需要根据每层亚层的厚度以及偏振光栅的高度而定。这里,刻蚀的类型不受特别限制,例如,根据本公开的实施例,可以采用离子束辅助自由基刻蚀的方式。这里,偏振光栅的参数前面已经进行了详细描述,在此不再赘述。例如,根据本公开的具体实施例,偏振光栅的光栅周期可以为200nm,高度可以为1μm,占空比可以为0.6。由此,可以基于分布式布拉格反射镜形成偏振光栅,节省成本。
根据本公开的另一实施例,当面板为底发射有机发光显示面板时,在显示结构制备完成后,直接在阴极远离发光层的一侧形成偏振反射层,最终的结构如图6所示。参考图9,步骤S705’,即,在第二电极远离发光层的一侧形成偏振反射层的步骤包括步骤S901至S902。
在步骤S901中,在第二电极的一侧形成多个亚层中的第一组亚层。在步骤S902中,在第一组亚层中形成多个等宽且等间距的凹槽以形成偏振光栅。在步骤S903中,在第一组亚层上形成第二组亚层以形成分布式布拉格反射镜。
根据本公开的具体实施例,第一组亚层和第二组亚层都包括交替层叠的第一亚层和第二亚层。第一和第二亚层的厚度如上所述,在此不再赘述。第一和第二亚层的层数前面已经进行了详细描述,在此不再赘述。形成第一和第二组亚层的方法包括沉积。这里,沉积的类型不受特别限制,例如, 根据本公开的实施例,可以采用PECVD沉积的方式。这里,第一亚层和第二亚层的材料以及设置顺序前面也进行了详细描述,在此不再赘述。
形成偏振光栅具体地包括对第一组亚层进行刻蚀,以便形成多个等宽且等间距的凹槽。根据本公开的实施例,需要被刻蚀的亚层的层数需要根据每层亚层的厚度以及偏振光栅的高度而定。这里,刻蚀的类型如上所述这里,偏振光栅的参数前面已经进行了详细描述,在此不再赘述。
在本公开的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开而不是要求本公开必须以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种有机发光显示面板,包括:
    衬底;
    第一电极,其位于所述衬底上;
    发光层,其位于所述第一电极远离所述衬底的一侧;
    第二电极,其位于所述发光层远离所述第一电极的一侧;以及
    偏振反射层,其位于所述衬底与所述第一电极之间,或者位于所述第二电极远离所述发光层的一侧。
  2. 根据权利要求1所述的有机发光显示面板,其中,所述偏振反射层包括彼此层叠的分布式布拉格反射镜和偏振光栅。
  3. 根据权利要求2所述的有机发光显示面板,其中,所述分布式布拉格反射镜包括多个亚层;
    所述偏振光栅由位于所述分布式布拉格反射镜的出光侧的至少一个所述亚层构成。
  4. 根据权利要求3所述的有机发光显示面板,其中,所述多个亚层的总层数为10~30层。
  5. 根据权利要求3所述的有机发光显示面板,其中,所述多个亚层的材料包括同族元素的化合物或单质。
  6. 根据权利要求3所述的有机发光显示面板,其中,所述多个亚层包括交替层叠的第一亚层和第二亚层,
    其中,所述第一亚层和所述第二亚层中的一者的材料包括氮化硅,所述第一亚层和所述第二亚层中的另一者的材料包括氧化硅。
  7. 根据权利要求6所述的有机发光显示面板,其中,所述第一亚层的厚度为68~73nm,所述第二亚层的厚度为103~106nm。
  8. 根据权利要求2所述的有机发光显示面板,其中,所述偏振光栅的光栅周期为198~202nm,所述偏振光栅的高度为0.9~1.1μm,所述偏振光栅的占空比为0.5~0.7。
  9. 根据权利要求1所述的有机发光显示面板,其中,所述第一电极为阳极,所述第二电极为阴极。
  10. 一种显示装置,包括权利要求1-9中任一项所述的有机发光显示面板。
  11. 一种制备有机发光显示面板的方法,包括:
    提供衬底;
    在所述衬底上形成第一电极;
    在所述第一电极远离所述衬底的一侧形成发光层;以及
    在所述发光层远离所述第一电极的一侧形成第二电极,
    其中所述方法还包括:在所述衬底与所述第一电极之间或者在所述第二电极远离所述发光层的一侧形成偏振反射层。
  12. 根据权利要求11所述的方法,其中,所述偏振反射层包括彼此层叠的分布式布拉格反射镜和偏振光栅。
  13. 根据权利要求12所述的方法,其中,所述分布式布拉格反射镜包括多个亚层;
    所述偏振光栅由位于所述分布式布拉格反射镜的出光侧的至少一个所述亚层构成。
  14. 根据权利要求13所述的方法,其中,在所述衬底与所述第一电极之间形成所述偏振反射层,包括:
    在所述衬底上沉积所述多个亚层,以便形成所述分布式布拉格反射镜;以及
    在所述分布式布拉格反射镜的出光侧的至少一个所述亚层中形成多个等宽且等间距的凹槽以形成所述偏振光栅。
  15. 根据权利要求13所述的方法,其中,在所述第二电极远离所述发光层的一侧形成所述偏振反射层,包括:
    在所述第二电极的所述一侧形成所述多个亚层中的第一组亚层;
    在所述第一组亚层中形成多个等宽且等间距的凹槽以形成所述偏振 光栅;以及
    在所述第一组亚层上形成第二组亚层以形成所述分布式布拉格反射镜。
  16. 根据权利要求13所述的方法,其中,所述多个亚层包括交替层叠的第一亚层和第二亚层,
    其中,所述第一亚层的厚度为68~73nm,所述第二亚层的厚度为103~106nm;
    所述多个亚层的总层数为10~30层;
    所述第一亚层和所述第二亚层中的一者的材料包括氮化硅,所述第一亚层和所述第二亚层中的另一者的材料包括氧化硅。
PCT/CN2018/089932 2017-08-18 2018-06-05 有机发光显示面板及制备方法、显示装置 WO2019033830A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/330,324 US11158840B2 (en) 2017-08-18 2018-06-05 Organic light emitting display panel, method for manufacturing the same and display device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710710508.4 2017-08-18
CN201710710508.4A CN107528008B (zh) 2017-08-18 2017-08-18 有机发光显示器件及制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2019033830A1 true WO2019033830A1 (zh) 2019-02-21

Family

ID=60681438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089932 WO2019033830A1 (zh) 2017-08-18 2018-06-05 有机发光显示面板及制备方法、显示装置

Country Status (3)

Country Link
US (1) US11158840B2 (zh)
CN (1) CN107528008B (zh)
WO (1) WO2019033830A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528008B (zh) 2017-08-18 2020-03-06 京东方科技集团股份有限公司 有机发光显示器件及制备方法、显示装置
CN109686859B (zh) * 2018-12-26 2021-01-29 上海天马微电子有限公司 有机发光显示面板和显示装置
CN109728199A (zh) * 2019-01-03 2019-05-07 京东方科技集团股份有限公司 反射电极及其制备方法、有机发光二极管和显示装置
CN109728059B (zh) * 2019-01-04 2021-08-24 京东方科技集团股份有限公司 显示基板和显示装置
FI128701B (en) * 2019-04-03 2020-10-30 Aalto Univ Foundation Sr Organic light source that emits white light and a process for its production
CN110471499A (zh) * 2019-07-24 2019-11-19 武汉华星光电半导体显示技术有限公司 显示模组及显示装置
CN112740434B (zh) * 2019-08-23 2023-07-25 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN112581870B (zh) * 2020-12-25 2023-02-14 Oppo广东移动通信有限公司 显示面板及电子设备
CN112952024A (zh) * 2021-03-17 2021-06-11 京东方科技集团股份有限公司 有机电致发光器件及显示面板
WO2023043943A1 (en) * 2021-09-16 2023-03-23 Meta Platforms Technologies, Llc Light emission display element and device with polarized and angularly-controlled output
US11889717B2 (en) 2021-09-16 2024-01-30 Meta Platforms Technologies, Llc Light emission display element and device with polarized and angularly-controlled output

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704335B1 (en) * 1998-12-17 2004-03-09 Seiko Epson Corporation Light-emitting device
US20070085476A1 (en) * 2005-10-18 2007-04-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus
CN103928635A (zh) * 2014-04-18 2014-07-16 上海和辉光电有限公司 一种oled器件阳极结构
CN104466026A (zh) * 2014-12-29 2015-03-25 北京维信诺科技有限公司 一种具有颜色转换功能的光转换单元及其应用
CN107528008A (zh) * 2017-08-18 2017-12-29 京东方科技集团股份有限公司 有机发光显示器件及制备方法、显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060066220A1 (en) * 2004-09-27 2006-03-30 Choong Vi-En Reduction or elimination of color change with viewing angle for microcavity devices
KR100714016B1 (ko) * 2005-12-13 2007-05-04 삼성에스디아이 주식회사 유기 발광 표시장치
CN101222009A (zh) * 2007-01-12 2008-07-16 清华大学 发光二极管
US20090015142A1 (en) * 2007-07-13 2009-01-15 3M Innovative Properties Company Light extraction film for organic light emitting diode display devices
WO2014031421A1 (en) * 2012-08-22 2014-02-27 3M Innovative Properties Company Transparent oled light extraction
KR102596990B1 (ko) * 2012-11-30 2023-10-31 쓰리엠 이노베이티브 프로퍼티즈 컴파니 반사 편광기를 갖는 발광 디스플레이
KR101436441B1 (ko) * 2013-07-23 2014-09-02 동우 화인켐 주식회사 반사 방지용 편광판 및 이를 포함하는 화상표시장치
WO2015070217A1 (en) * 2013-11-11 2015-05-14 Konica Minolta Laboratory U.S.A., Inc. Broadband light emitting device with grating-structured electrode
CN105226197B (zh) * 2014-07-04 2018-01-16 上海和辉光电有限公司 一种oled结构
CN105118849B (zh) * 2015-09-22 2018-07-31 上海和辉光电有限公司 一种触控式有机发光显示面板
CN206179870U (zh) * 2016-10-19 2017-05-17 深圳市奇彩液晶显示技术有限公司 一种新型oled显示屏模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704335B1 (en) * 1998-12-17 2004-03-09 Seiko Epson Corporation Light-emitting device
US20070085476A1 (en) * 2005-10-18 2007-04-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus
CN103928635A (zh) * 2014-04-18 2014-07-16 上海和辉光电有限公司 一种oled器件阳极结构
CN104466026A (zh) * 2014-12-29 2015-03-25 北京维信诺科技有限公司 一种具有颜色转换功能的光转换单元及其应用
CN107528008A (zh) * 2017-08-18 2017-12-29 京东方科技集团股份有限公司 有机发光显示器件及制备方法、显示装置

Also Published As

Publication number Publication date
CN107528008A (zh) 2017-12-29
CN107528008B (zh) 2020-03-06
US20190229295A1 (en) 2019-07-25
US11158840B2 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2019033830A1 (zh) 有机发光显示面板及制备方法、显示装置
US10727446B2 (en) OLED array substrate with microcavity structure, and OLED display panel
US9337249B2 (en) OLED display panel and method of manufacturing the same and display apparatus
JP4951130B2 (ja) 有機発光素子及びその製造方法
WO2016062240A1 (zh) 一种顶发射oled器件及其制作方法、显示设备
US11289669B2 (en) Light-emitting device, pixel unit, manufacturing method for pixel unit and display device
JP4769068B2 (ja) 有機発光素子及びその製造方法
WO2016065756A1 (zh) 显示基板及其显示装置、制作方法
WO2020056865A1 (zh) 显示面板及显示装置
JP2007248484A (ja) 表示装置
JP2005197010A (ja) 表示装置の製造方法
US9660219B2 (en) Methods of manufacturing display devices
US7667387B2 (en) Organic electroluminescent device and method manufacturing the same
WO2019184346A1 (zh) 有机发光二极管及其制备方法、显示面板
TW200536431A (en) Organic light-emitting diode and method of fabricating the same
WO2016184265A1 (zh) 显示基板及其制作方法和驱动方法以及显示装置
CN109285970B (zh) 显示基板及其制作方法、以及显示装置
JP2023179634A (ja) 画素構造、表示装置及び画素構造の製造方法
WO2019062229A1 (zh) 电致发光显示面板及其制作方法、显示装置
US7545096B2 (en) Trans-reflective organic electroluminescent panel and method of fabricating the same
JP2005209421A (ja) 表示装置の製造方法および表示装置
US20220407035A1 (en) Encapsulation structure, encapsulation method, electroluminescent device, and display device
KR102058053B1 (ko) 상부 방출 타입 유기 발광 다이오드 디스플레이 기판, 상부 방출 타입 유기 발광 다이오드 디스플레이 장치, 및 상부 방출 타입 유기 발광 다이오드 디스플레이 기판을 형성하는 방법
WO2016192479A1 (zh) 有机电致发光器件及其制备方法、显示装置
JP2009123511A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08-09-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18846541

Country of ref document: EP

Kind code of ref document: A1