WO2016065756A1 - 显示基板及其显示装置、制作方法 - Google Patents

显示基板及其显示装置、制作方法 Download PDF

Info

Publication number
WO2016065756A1
WO2016065756A1 PCT/CN2015/071636 CN2015071636W WO2016065756A1 WO 2016065756 A1 WO2016065756 A1 WO 2016065756A1 CN 2015071636 W CN2015071636 W CN 2015071636W WO 2016065756 A1 WO2016065756 A1 WO 2016065756A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
microcavity structure
microcavity
display substrate
Prior art date
Application number
PCT/CN2015/071636
Other languages
English (en)
French (fr)
Inventor
沈武林
李延钊
崔剑
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/503,230 priority Critical patent/US10074698B2/en
Priority to EP15855018.6A priority patent/EP3214651B1/en
Publication of WO2016065756A1 publication Critical patent/WO2016065756A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an array substrate, a display device thereof, and a method of fabricating the same.
  • OLED displays Due to the advantages of simple structure, high-quality dynamic picture, etc., OLED displays are gradually mass-produced, and have attracted more and more attention from flat panel display manufacturers in the display field, which has become the focus of the display industry.
  • an organic light emitting diode display realizes color pattern display by depositing an organic color film structure on an array substrate.
  • the use of organic color film to make the display has the disadvantages of high material cost, many process processes, expensive equipment, difficulty in refinement, and more particles.
  • an object of the technical solution of the present disclosure is to provide an array substrate, a display device thereof, and a manufacturing method thereof, wherein the display of the organic color film is not required, and thus the problem of high material cost of the OLED display in the prior art can be solved.
  • the present disclosure provides a display substrate including a plurality of pixel units on a substrate, wherein the display substrate further includes:
  • the filter function unit includes at least three microcavity structures, and the cavity length of the microcavity structure is different along a direction perpendicular to the substrate; the microcavity of different cavity lengths
  • the structure can only transmit light of a specific wavelength; the cavity length of the microcavity structure corresponding to the same sub-pixel unit of the pixel unit is the same.
  • the display substrate, the display substrate further includes:
  • a light emitting unit for emitting white light, the white light being emitted in a first direction
  • the reflective structure is disposed on a side opposite to the light emission of the light emitting unit, and the reflective structure is capable of reflecting light in a direction opposite to the first direction toward the first direction.
  • the microcavity structure is disposed on a light exiting side of the light emitting unit, and the microcavity structure of the at least three different cavity lengths comprises an isolation layer of different thickness, the isolation There is a space between the layer and the light emitting unit.
  • the cavity length of the microcavity structure is equal to a distance between the isolation layer and a side surface of the light emitting unit to the reflective structure.
  • the cavity length of the microcavity structure can be adjusted by adjusting the thickness of the isolation layer in the filter function unit.
  • the cavity length of the microcavity structure has a corresponding relationship with the wavelength of the transmitted light, and satisfies the Fabry-Perot Fabry-Perot resonance equation.
  • the isolation layer comprises an Al material layer, a SiO x material layer or a spaced apart Al material layer and a SiO x material layer.
  • the isolation layers of the microcavity structure forming the different color lights are respectively composed of different layers of Al material layers and SiO x material layers which are arranged at intervals.
  • the light emitting unit comprises a cathode, an anode and a light emitting functional layer disposed between the cathode and the anode.
  • the light emitting functional layer may include a hole transporting layer, a light emitting layer, and an electron transporting layer.
  • the cathode is disposed on a side of the organic light-emitting function layer away from the microcavity structure, and the cathode is formed as the reflective structure.
  • the display substrate further includes a thin film transistor for driving the light emitting unit to emit light
  • the thin film transistor includes a gate electrode sequentially arranged from the substrate toward the light emitting unit, Insulation layer, semiconductor layer, source/drain, and protective layer.
  • the microcavity structures of three different cavity lengths respectively correspond to the blue pixel subunit, the red pixel subunit, and the green pixel subunit of the pixel unit.
  • the present disclosure also provides a display device comprising the display substrate of any of the above.
  • the present disclosure also provides a method for preparing a display substrate, comprising:
  • the filter function unit is disposed corresponding to the pixel unit, and includes at least three microcavity structures, and the cavity length of the microcavity structure is different along a direction perpendicular to the substrate, and the microcavity structure of different cavity lengths is Only the light of a specific wavelength can be transmitted, and the cavity length of the microcavity structure corresponding to the same sub-pixel unit of the pixel unit is the same.
  • the preparation method described above forms a pattern constituting the light emitting unit on the basis of forming a pattern of the filtering function unit; the light emitting unit is configured to emit white light;
  • the step of forming a pattern constituting the light-emitting unit includes the steps of sequentially forming an anode, an organic light-emitting function layer, and a cathode.
  • the preparation method described above further comprising the step of forming a thin film transistor for driving the light emitting unit to emit light on the substrate before forming the pattern of the filtering function unit.
  • the step of forming a pattern constituting the filtering function unit comprises: forming a different thickness of the isolation layer corresponding to the microcavity structures of three different cavity lengths, wherein the first microcavity structure
  • the isolation layer comprises three layers of Al material and two layers of SiO x material, wherein the Al material layer and the SiO x material layer are spaced apart
  • the second microcavity structure of the isolation layer comprises two layers, an Al material layer and A layer of SiO x material, wherein the layer of Al material and the layer of SiO x material are spaced apart
  • the layer of the third microcavity structure comprises a layer of Al material.
  • the step of forming the isolation layer of different thicknesses includes:
  • the photoresist on the first microcavity structure is stripped.
  • the step of forming a graphic constituting the filtering function unit further comprises: forming the After the isolation layer, a planarization layer is deposited.
  • the filtering function unit By making the filtering function unit, the correspondence between the cavity length of the microcavity structure of the filtering function unit and the wavelength of the light is utilized, so that a microcavity structure transmits only one color of light, thereby converting white light into colored light, thereby Achieve the RGB color display of the display.
  • color image display can be realized without making an organic color film, so that not only a high-resolution display can be produced, but also the process steps in the production of the display can be reduced, and the production cost can be reduced.
  • FIG. 1 is a schematic structural view of an array substrate according to a specific embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of the filtering function unit
  • 3a to 3e are schematic diagrams showing a manufacturing process of a spatial isolation layer in the filtering function unit.
  • the display substrate of the embodiment of the present disclosure includes a plurality of pixel units on the substrate, wherein the display substrate further includes:
  • the filter function unit includes at least three microcavity structures, and the cavity length of the microcavity structure is different along a direction perpendicular to the substrate; the microcavity of different cavity lengths
  • the structure can only transmit light of a specific wavelength; the cavity length of the microcavity structure corresponding to the same sub-pixel unit of the pixel unit is the same.
  • a homogeneous sub-pixel unit of a pixel unit refers to a sub-pixel unit that needs to present the same color, such as a blue sub-pixel unit, a red sub-pixel unit, or a green sub-pixel unit.
  • the display substrate is configured to use a filter function unit to utilize a correspondence between a cavity length of the microcavity structure of the filter function unit and a wavelength of the light, so that only one color (specific wavelength) of the light of the microcavity structure can be transmitted. Convert white light to colored light to achieve RGB color display of the display.
  • color image display can be realized without making an organic color film, so that not only a high-resolution display can be produced, but also the process steps in the production of the display can be reduced, and the production cost can be reduced.
  • the display substrate may be a substrate having the filtering function unit, and may be combined with an array substrate including a thin film transistor to form a display device.
  • the display substrate may be directly formed as an array substrate including a thin film transistor.
  • the display substrate according to the present disclosure can be applied to a display device that performs display using white light emitted from a light-emitting unit as a light source, and can also be applied to a display device that uses natural light as a light source.
  • the display substrate When applied to a display device that performs display by using white light emitted by the light emitting unit as a light source, the display substrate further includes:
  • a light emitting unit for emitting white light, the white light being emitted in a first direction
  • the reflective structure is disposed on a side opposite to the light emission of the light emitting unit, and the reflective structure is capable of reflecting light in a direction opposite to the first direction toward the first direction.
  • the microcavity structure is disposed on a light exiting side of the light emitting unit.
  • the microcavity structure of three different cavity lengths includes an isolation layer of different thickness, the isolation layer and the light emitting unit have a space between the cavity of the microcavity structure being equal to the isolation layer being close to the illumination The distance from one side surface of the unit to the reflective structure.
  • FIG. 1 is a schematic structural view of a display substrate according to an embodiment of the present disclosure.
  • the display substrate of the embodiment of the present disclosure includes:
  • the filter function unit includes at least three microcavity structures
  • the organic light emitting diode disposed on the filtering function unit comprises an anode 31, a light emitting function layer 32 and a cathode 33.
  • the structure of the organic light emitting diode may be a structure of a general OLED display; as can be understood by those skilled in the art, the light emitting function layer 32 A hole transport layer, a light emitting layer, and an electron transport layer may be included.
  • the organic light emitting diode is used to emit white light by being superposed by the gate electrode 21, the insulating layer 22, the semiconductor layer 23, the first protective layer 24, the source/drain layer 25, and the second protective layer 26.
  • Thin film transistor to control the output voltage and current of the organic light emitting diode causes the transmitted white light to form light of at least R (red), G (green), and B (blue) wavelengths.
  • the filtering function unit further includes a spatial isolation layer 42.
  • 2 is a schematic structural diagram of the filtering function unit, wherein the thickness of the spatial isolation layer 42 corresponding to the microcavity structure for forming different color lights is different along the direction of the white light emitted by the organic light emitting diode.
  • the thickness of the spatial isolation layer corresponding to the microcavity structure forming the blue light is A1
  • the thickness of the spatial isolation layer corresponding to the microcavity structure forming the green light is A2, corresponding to the microcavity structure forming the red light.
  • the thickness of the spatial isolation layer is A3, where A1>A2>A3.
  • the cavity length of the microcavity structure is equal to the distance between the surface of the spatial isolation layer away from the substrate 1 to the cathode. As shown in FIG. 2, the length of the cavity forming the blue light microcavity structure is L1, the length of the cavity forming the green light microcavity structure is L2, and the length of the cavity forming the red light microcavity structure is L3.
  • the wavelength of red light is between 630 nm and 700 nm
  • the wavelength of green light is between 490 nm and 560 nm
  • the wavelength of blue light is between 450 nm and 490 nm.
  • the microcavity The cavity length of the structure is proportional to the wavelength of the color light to be formed, ie, L3 > L2 > L1.
  • the correspondence between the cavity length of the microcavity structure and the wavelength of light satisfies the Fabry-Perot Fabry-Perot resonance equation.
  • the cavity length of the microcavity structure has a correspondence relationship with the wavelength of light.
  • n i and d i respectively represent the refractive index and thickness of the films in the cavity
  • ⁇ n i d i represents the total optical thickness of the films in the cavity.
  • the cavity length of the microcavity structure is proportional to the wavelength of the transmitted light, that is, the larger the wavelength value of the transmitted light, the larger the cavity length value of the microcavity structure.
  • the cavity length of the microcavity structure can be adjusted by adjusting the thickness of the spatial isolation layer 42 in the filter function unit.
  • the spatial isolation layer 42 of the filter function unit includes an Al material layer, a SiO x material layer or a spaced apart Al material layer and a SiO x material layer.
  • the Al material layer functions to reflect light and to etch the barrier during the manufacturing process. The light within the microcavity structure is reflected multiple times by the Al material layer and allows light having a specific vibration frequency to pass out.
  • SiOx acts to adjust the distance between the spaced apart layers of Al material.
  • the spatial isolation layer forming the blue light microcavity structure is formed in order from top to bottom: an Al material layer, a SiO x material layer, an Al material layer, a SiO x material layer, and an Al material layer; and a green light microcavity structure is formed.
  • the space isolation layer is formed with an Al material layer, a SiO x material layer, and an Al material layer in this order from top to top, and the space isolation layer forming the red light microcavity structure is formed only with the Al material layer. That is, the blue light microcavity structure and the green light microcavity structure are respectively composed of an Al material layer and a SiO x material layer which are disposed at intervals.
  • the cavity length of the microcavity structure corresponds to the wavelength of the light to be transmitted, so that the pixel region corresponding to the microcavity structure can only transmit light of the respective wavelengths.
  • the filtering function unit is a portion between the protective layer 26 of the thin film transistor and the cathode 33 of the organic light emitting diode, wherein the cathode 33 is made of a material having high reflectivity for using the organic light emitting diode The emitted light is reflected toward the direction of the filter function unit to form a reflective structure of the display substrate of the present disclosure.
  • the gate electrode 21 and the source/drain layer 25 may be made of a metal such as Cu, Al, Mo, Nd, Ag, or Ti, or an alloy material of these metals; the insulating layer 22 and the protective layers 24, 26 are made of Si. Made of oxide, nitride or oxynitride; the semiconductor layer 23 can be made of a-Si, p-Si or an oxide semiconductor, wherein the oxide semiconductor can be made of elements such as In, Ga, Zn, Sn, Tl, etc. It is made of an oxide or an oxynitride, and may also be made of an oxide or oxynitride material in which any of the elements is arbitrarily combined.
  • a HalfTone process For the fabrication of the filter function unit, a HalfTone process can be used. The following describes the process of fabricating the filter function unit in the display substrate of the present disclosure.
  • the steps of forming the filtering function unit include:
  • Step 1 depositing the space isolation layer on the pattern forming the thin film transistor, and coating the photoresist on the space isolation layer formed in the above step one;
  • the thickness of the spatial isolation layer corresponding to the microcavity structure (blue sub-pixel) for forming blue light is the largest, and the material deposition of the spatial isolation layer corresponding to the microcavity structure forming the blue light is formed.
  • Forming a thin film transistor shape in this embodiment, an Al material layer, a SiO x material layer, an Al material layer, a SiO x material layer, and an Al material layer are sequentially deposited on the protective layer 26 constituting the thin film transistor;
  • Step 2 in combination with FIG. 3b, further ashing the photoresist corresponding to the red sub-pixel unit, and ashing the photoresist corresponding to the green sub-pixel unit by a height of one-half;
  • Step 3 in conjunction with FIG. 3c, wet-etching the Al material layer of the spatial isolation layer corresponding to the red sub-pixel unit, and further drying the SiO x material layer of the spatial isolation layer corresponding to the red sub-pixel unit. Etching; at the same time, the photoresist corresponding to the green sub-pixel unit is etched away, and the photoresist corresponding to the blue sub-pixel unit is etched away by a part of the thickness;
  • Step 4 in combination with FIG. 3d, the Al material layer of the spatial isolation layer corresponding to the red sub-pixel unit is etched away, and the Al material layer of the spatial isolation layer corresponding to the green sub-pixel unit is etched away; Wherein the step is in a dry engraving manner;
  • Step 5 etching the SiO x material layer of the spatial isolation layer corresponding to the red sub-pixel unit and the green sub-pixel unit; wherein the step is performed by wet etching.
  • step six the photoresist on the blue sub-pixel unit is stripped to obtain the structure shown in FIG. 3e.
  • the thickness of the isolation functional layer corresponding to the red sub-pixel unit, the blue sub-pixel unit, and the green sub-pixel unit is different, wherein the red sub-pixel unit has the least stack of spatial isolation layers, blue The sub-pixel unit has the largest stack of spatial isolation layers.
  • a planarization layer 41 is deposited on the space isolation layer, as shown in FIG. 1, to form a filter function unit between the thin film transistor and the organic light emitting diode.
  • the fabrication of the organic light emitting diode includes the steps of sequentially forming an anode 31, a light emitting function layer 32, and a cathode 33 on the planarization layer 41, wherein the anode 31 is transparently conductive by ITO (indium tin oxide), IZO (indium zinc oxide) or the like.
  • the cathode 33 is made of a material having high reflectivity.
  • a microcavity structure having a filtering function is formed on the array back plate to replace the conventional color film structure, thereby realizing color image display without making an organic color film. This not only enables the production of higher resolution displays, but also reduces the number of process steps and reduces production costs.
  • Another aspect of the embodiments of the present disclosure provides a method for preparing a display substrate according to the above structure, the preparation method comprising:
  • the filtering function unit is disposed corresponding to the pixel unit, and includes at least three microcavity structures having different cavity lengths, and the cavity length of the microcavity structure is different along a direction perpendicular to the substrate;
  • the microcavity structure can only transmit light of a specific wavelength; the cavity length of the microcavity structure corresponding to the same sub-pixel unit of the pixel unit is the same.
  • preparation method further includes:
  • the light emitting unit is configured to emit white light
  • the step of forming a pattern constituting the light-emitting unit includes the steps of sequentially forming an anode, an organic light-emitting function layer, and a cathode.
  • the preparation method further includes the step of forming a thin film transistor for driving the light emitting unit to emit light on the substrate before forming the pattern of the filtering function unit.
  • the step of forming a pattern constituting the filter function unit includes the step of forming isolation layers of different thicknesses corresponding to the microcavity structures of three different cavity lengths, wherein the isolation layer of the first microcavity structure comprises three layers An Al material layer and a two-layer SiO x material layer, wherein the Al material layer and the SiO x material layer are spaced apart; the second microcavity structure of the isolation layer comprises two layers of Al material layer and one layer of SiO x material layer, wherein Al The material layer and the SiO x material layer are spaced apart; the isolation layer of the third microcavity structure comprises a layer of Al material.
  • the steps of forming the isolation layer of different thicknesses include:
  • the photoresist corresponding to the microcavity structure is etched away, and the photoresist corresponding to the first microcavity structure etches a part of the thickness;
  • the photoresist on the first microcavity structure is stripped.
  • the spatial isolation layer forming the blue light microcavity structure is sequentially formed from top to bottom: an Al material layer, a SiO x material layer, an Al material layer, a SiO x material layer, and an Al material layer;
  • the spatial isolation layer forming the green light microcavity structure is formed with an Al material layer, a Si material layer and an Al material layer in order from top to top, and the spatial isolation layer forming the red light microcavity structure is formed only with the Al material layer.
  • the steps of forming the spatial isolation layer on the filtering function unit include:
  • the spatial isolation layer corresponding to the blue pixel sub-unit includes a spaced Al material layer and a SiO x material Floor;
  • the Al material layer of the spatial isolation layer corresponding to the red sub-pixel unit is wet-etched, and further, the SiO x material layer of the spatial isolation layer corresponding to the red sub-pixel unit is dry-etched, and the green sub-pixel unit is Corresponding photoresist is etched away, and the photoresist corresponding to the blue sub-pixel unit etches a part of the thickness;
  • the photoresist on the blue sub-pixel unit is stripped.
  • the step of forming a graphic constituting the filtering function unit further includes:
  • a planarization layer is deposited on the basis of the formation of the spatial isolation layer.
  • the display device may be an organic light emitting diode display device or a liquid crystal display device, which should be understood by those skilled in the art.
  • the structure of the LED display device or the liquid crystal display device of the display substrate will not be described herein.
  • the display substrate and the display device of the embodiments of the present disclosure can be applied not only to the fabrication of RGB pixels but also to the fabrication of RGBW pixels.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板、OLED显示装置以及显示基板的制作方法。显示基板包括多个位于基板(1)上的像素单元和与像素单元对应设置的滤波功能单元。滤波功能单元包括至少三个微腔结构,且沿垂直基板的方向,三个微腔结构的腔长不同,不同腔长的微腔结构只能透过特定波长的光,像素单元的同类子像素单元对应的微腔结构的腔长相同。

Description

显示基板及其显示装置、制作方法
相关申请的交叉引用
本申请主张在2014年10月29日在中国提交的中国专利申请号No.201410594580.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种阵列基板及其显示装置、制作方法。
背景技术
由于OLED显示器具有结构简单、优质动态画面等优点,OLED显示器正逐渐量产化,在显示领域受到越来越多的平板显示器厂商的关注,已成为显示器产业的关注的重点。
目前,有机发光二极管显示器是通过在阵列基板上沉积有机彩膜结构的方式实现彩色图案显示。然而,采用有机彩膜制作显示器存在材料费用高、制程工艺多、设备昂贵、精细化困难、颗粒较多等缺点。
发明内容
鉴于此,本公开技术方案的目的是提供一种阵列基板及其显示装置、制作方法,其中,无需采用有机彩膜来制作显示器,因此能够解决现有技术中OLED显示器存在的材料费用高等问题。
本公开提供一种显示基板,包括多个位于基板上的像素单元,其中所述显示基板还包括:
滤波功能单元,与像素单元对应设置,所述滤波功能单元包括至少三个微腔结构,且沿垂直所述基板的方向,所述微腔结构的腔长不同;不同腔长的所述微腔结构只能透过特定波长的光;所述像素单元的同类子像素单元对应的所述微腔结构的腔长相同。
可选地,上述所述的显示基板,所述显示基板还包括:
用于发出白光的发光单元,所述白光沿第一方向出射;
反射结构,设置于所述发光单元的出光相反侧,所述反射结构能够将与第一方向相反方向的光朝第一方向反射。
可选地,上述所述的显示基板,所述微腔结构设置于所述发光单元的出光侧,所述至少三个不同腔长的所述微腔结构包括不同厚度的隔离层,所述隔离层与所述发光单元之间具有间隔空间。
可选地,所述微腔结构的腔长等于所述隔离层靠近所述发光单元的一侧表面到所述反射结构之间的距离。
可选地,微腔结构的腔长能够通过调节滤波功能单元中所述隔离层的厚度来进行调节。
可选地,上述所述的显示基板,所述微腔结构的腔长与所透过光的波长具有对应关系,满足法布里-珀罗Fabry-Perot谐振方程。
可选地,上述所述的显示基板,所述隔离层包括Al材料层、SiOx材料层或间隔设置的Al材料层和SiOx材料层。可选地,形成不同颜色光的微腔结构的隔离层分别由不同层数的依次间隔设置的Al材料层和SiOx材料层构成。
可选地,上述所述的显示基板,所述发光单元包括阴极、阳极和设置于所述阴极与所述阳极之间的发光功能层。所述发光功能层可以包括空穴传输层、发光层和电子传输层。
可选地,上述所述的显示基板,所述阴极较所述阳极设置于所述有机发光功能层远离所述微腔结构的一侧,且所述阴极形成为所述反射结构。
可选地,上述所述的显示基板,所述显示基板还包括用于驱动所述发光单元发光的薄膜晶体管,所述薄膜晶体管包括从所述基板依次朝所述发光单元方向排列的栅极、绝缘层、半导体层、源/漏极和保护层。
可选地,上述所述的显示基板,三个不同腔长的所述微腔结构分别与像素单元的蓝色像素子单元、红色像素子单元和绿色像素子单元相对应。
本公开还提供一种显示装置,包括如上一项所述的显示基板。
本公开还提供一种显示基板的制备方法,包括:
在基板上形成构成滤波功能单元的图形;
其中,所述滤波功能单元与像素单元对应设置,包括至少三个的微腔结构,且沿垂直所述基板的方向,所述微腔结构的腔长不同,不同腔长的所述微腔结构只能透过特定波长的光,所述像素单元的同类子像素单元对应的所述微腔结构的腔长相同。
可选地,上述所述的制备方法,在形成所述滤波功能单元的图形的基础上形成构成发光单元的图形;所述发光单元用于发出白光;
形成构成所述发光单元的图形的步骤包括依次形成阳极、有机发光功能层和阴极的步骤。
可选地,上述所述的制备方法,所述制备方法还包括在构成所述滤波功能单元的图形之前,在基板上形成用于驱动所述发光单元发光的薄膜晶体管的步骤。
可选地,上述所述的制备方法,形成构成滤波功能单元的图形的步骤包括:对应三个不同腔长的所述微腔结构形成不同厚度的隔离层的步骤,其中第一个微腔结构的所述隔离层包括三层Al材料层和二层SiOx材料层,其中Al材料层和SiOx材料层间隔设置;第二个微腔结构的所述隔离层包括二层、Al材料层和一层SiOx材料层,其中Al材料层和SiOx材料层间隔设置;第三个微腔结构的所述隔离层包括一层Al材料层。
可选地,上述所述的制备方法,形在不同厚度的所述隔离层的步骤包括:
将第一个微腔结构所对应隔离层的结构沉积于整个所述滤波功能单元的对应区域;
将光刻胶涂覆在所形成的所述隔离层上,并进一步将第三个微腔结构所对应的光刻胶全部灰化,将第二个微腔结构所对应的光刻胶灰化二分之一的高度;
对第三个微腔结构所对应所述隔离层的Al材料层进行刻蚀,并进一步对第三个微腔结构所对应所述隔离层的SiOx材料层进行刻蚀,同时将第二个微腔结构所对应的光刻胶刻蚀掉,第一个微腔结构所对应的光刻胶刻蚀掉厚度的一部分;
将第三个微腔结构所对应所述隔离层的Al材料层刻蚀掉,同时将第二个微腔结构所对应所述隔离层的Al材料层刻蚀掉;
将第三个微腔结构和第二个微腔结构所对应所述隔离层的SiOx材料层刻蚀掉;
剥离第一个微腔结构上的光刻胶。
可选地,形成构成所述滤波功能单元的图形的步骤还包括:在形成所述 隔离层后,沉积平坦化层。
本公开具体实施例上述技术方案中的至少一个具有以下有益效果:
通过制作滤波功能单元,利用滤波功能单元的微腔结构的腔长与光波长之间的对应关系,使得一个微腔结构只有一种颜色的光透过,将白色光转换为有颜色光,从而实现显示器的RGB颜色显示。采用本公开实施例所显示基板,无需制作有机彩膜即能够实现彩色图像显示,因此不仅可以制作高分辨率的显示器,而且可以减少显示器制作时的工艺步骤,达到降低生产成本的目的。
附图说明
图1表示本公开具体实施例所述阵列基板的结构示意图;
图2表示所述滤波功能单元的结构示意图;
图3a至图3e为所述滤波功能单元中空间隔离层的制作工艺过程示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本公开进行详细描述。
本公开具体实施例所述的显示基板,包括多个位于基板上的像素单元,其中所述显示基板还包括:
滤波功能单元,与像素单元对应设置,所述滤波功能单元包括至少三个微腔结构,且沿垂直所述基板的方向,所述微腔结构的腔长不同;不同腔长的所述微腔结构只能透过特定波长的光;所述像素单元的同类子像素单元对应的所述微腔结构的腔长相同。
具体地,像素单元的同类子像素单元是指需要呈现相同颜色的子像素单元,如蓝色子像素单元、红色子像素单元或绿色子像素单元。
所述显示基板通过制作滤波功能单元,利用滤波功能单元的微腔结构的腔长与光波长之间的对应关系,使得一个微腔结构只有一种颜色(特定波长)的光能够透过,以将白色光转换为有颜色光,从而实现显示器的RGB颜色显示。采用本公开实施例所显示基板,无需制作有机彩膜即能够实现彩色图像显示,因此不仅可以制作高分辨率的显示器,而且可以减少显示器制作时的工艺步骤,达到降低生产成本的目的。
所述显示基板可以为一具备上述滤波功能单元的基板,其可以与包括薄膜晶体管的阵列基板组合以构成一显示装置;另外,所述显示基板也可以直接形成为包括薄膜晶体管的阵列基板。
本公开所述显示基板可以应用于利用发光单元所发出白光作为光源进行显示的显示装置中,也可以应用于利用自然光作为光源的显示装置中。当应用于利用发光单元所发出白光作为光源进行显示的显示装置中时,所述显示基板还包括:
用于发出白光的发光单元,所述白光沿第一方向出射;
反射结构,设置于所述发光单元的出光相反侧,所述反射结构能够将与第一方向相反方向的光朝第一方向反射。
具体地,所述微腔结构设置于所述发光单元的出光侧。三个不同腔长的所述微腔结构包括不同厚度的隔离层,所述隔离层与所述发光单元之间具有间隔空间,所述微腔结构的腔长等于所述隔离层靠近所述发光单元的一侧表面到所述反射结构之间的距离。
图1为本公开具体实施例所述显示基板的结构示意图。参阅图1所示,本公开实施例所述显示基板包括:
基板1;
设置于基板1上、由下至上依次排列的栅极21、绝缘层22、半导体层23、第一保护层24、源/漏极层25和第二保护层26,该些层叠加组合以形成显示基板的薄膜晶体管;
设置于薄膜晶体管上的滤波功能单元,其中该滤波功能单元包括至少三个微腔结构;
设置于滤波功能单元上的有机发光二极管,包括阳极31、发光功能层32和阴极33,该有机发光二极管的结构可以为通常OLED显示器的结构;本领域技术人员可以理解的是,发光功能层32可以包括空穴传输层、发光层和电子传输层。
在上述结构的显示基板中,有机发光二极管用于发出白光,通过由栅极21、绝缘层22、半导体层23、第一保护层24、源/漏极层25和第二保护层26叠加形成的薄膜晶体管来控制有机发光二极管的电压和电流的输出,通过 滤波功能单元使透过的白光形成至少R(红)、G(绿)、B(蓝)三种波长的光。
进一步地,上述滤波功能单元中,还包括一空间隔离层42。图2为所述滤波功能单元的结构示意图,其中,沿所述有机发光二极管所发出的白光的方向,用于形成不同颜色光的微腔结构所对应的空间隔离层42的厚度不同。参阅图2,形成蓝色光的微腔结构所对应的空间隔离层的厚度为A1,形成绿色光的微腔结构所对应的空间隔离层的厚度为A2,形成红色光的微腔结构所对应的空间隔离层的厚度为A3,其中A1>A2>A3。
基于上述空间隔离层42的设置,微腔结构的腔长等于空间隔离层远离基板1的表面到阴极之间的距离。如图2所示,形成蓝色光微腔结构的腔长长度为L1,形成绿色光微腔结构的腔长长度为L2,形成红色光微腔结构的腔长长度为L3。
本领域技术人员所熟知的,红光的波长处于630nm-700nm之间,绿光的波长处于490nm至560nm之间,蓝光的波长处于450nm至490nm之间,本公开所述显示基板中,微腔结构的腔长与所要形成的颜色光的波长成正比,即,L3>L2>L1。
具体地,所述微腔结构的腔长与光的波长之间的对应关系满足法布里-珀罗Fabry-Perot谐振方程。
根据法布里-珀罗Fabry-Perot谐振腔的原理,对于由两块平行、且具备高反射率的玻璃板相对构成的谐振腔,当在谐振腔内的入射光的频率满足该谐振腔的共振条件时,透射频谱会出现很高的峰值,同时该频率的光具有很高的透射率。因此预定特性的谐振腔能够使相对应的波长的光透过,而谐振腔的腔长能够影响光在腔内部的传输特性,因此法布里-珀罗Fabry-Perot谐振腔(对应本公开的微腔结构)的腔长与光的波长之间具有对应关系。当所述微腔结构的腔长不同时,不同腔长的所述微腔结构只能透过特定波长的光。
法布里-珀罗Fabry-Perot谐振方程的具体公式为:
Figure PCTCN2015071636-appb-000001
其中:ni和di分别表示腔内各层薄膜的折射率和厚度,∑nidi表示腔内各层薄膜的总光学厚度,
Figure PCTCN2015071636-appb-000002
Figure PCTCN2015071636-appb-000003
表示两个反射镜即布拉格反射镜与阴极的反射 相移,m为模式级数,λ为波长。
根据以上公式,微腔结构的腔长与所透过光的波长成正比,即,所需要透过光的波长值越大,微腔结构的腔长值越大。
本公开实施例中,如图2所示,可以通过调节滤波功能单元中所述空间隔离层42的厚度调节微腔结构的腔长。结合图2,所述滤波功能单元的空间隔离层42包括Al材料层、SiOx材料层或间隔设置的Al材料层和SiOx材料层。其中,Al材料层起到反射光的作用以及在制作过程中刻蚀阻挡的作用。通过Al材料层使微腔结构内的光被多次反射并使得具有特定振动频率的光透出。SiOx起到调节相间隔的Al材料层之间距离的作用。
具体地,形成蓝色光微腔结构的空间隔离层从上至下依次形成有:Al材料层、SiOx材料层、Al材料层、SiOx材料层和Al材料层;形成绿色光微腔结构的空间隔离层从上至上依次形成有Al材料层、SiOx材料层和Al材料层,形成红色光微腔结构的空间隔离层只形成有Al材料层。也即蓝色光微腔结构和绿色光微腔结构分别由依次间隔设置的Al材料层和SiOx材料层构成。
通过上述各材料层的相互叠加,使微腔结构的腔长厚度与所需要透过光的波长对应,使微腔结构所对应的像素区只能够透过各自波长的光。
进一步地,本公开实施例中,滤波功能单元为薄膜晶体管的保护层26与有机发光二极管的阴极33之间的部分,其中阴极33由具有高反射率的材料制成,用于将有机发光二极管所发出的光朝滤波功能单元的方向反射,形成为本公开所述显示基板的反射结构。
此外,上述结构显示基板的制作中,对于薄膜晶体管:
栅极21和源/漏极层25可以由Cu、Al、Mo、Nd、Ag或Ti等金属制成,或者由这些金属的合金材料制成;绝缘层22和保护层24、26由Si的氧化物、氮化物或氮氧化物制成;半导体层23可以由a-Si、p-Si或氧化物半导体制成,其中氧化物半导体可以由In、Ga、Zn、Sn、Tl等元素单一的氧化物或者氮氧化物制成,也可以由该几种元素任意组合的氧化物或者氮氧化物材料制成。
对于滤波功能单元的制作,可以采用HalfTone工艺,以下对本公开所述显示基板中滤波功能单元的制作过程进行说明。
结合图3a至图3c,制成滤波功能单元的步骤包括:
步骤一,将所述空间隔离层沉积于构成所述薄膜晶体管的图形上,并将光刻胶涂覆在上述步骤一所形成的所述空间隔离层上;
具体地,如图3a所示,用于形成蓝色光的微腔结构(蓝色子像素)所对应空间隔离层的厚度最大,则将形成蓝色光的微腔结构所对应空间隔离层的材料沉积于构成薄膜晶体管形上;本实施例中,依次将Al材料层、SiOx材料层、Al材料层、SiOx材料层和Al材料层沉积于构成薄膜晶体管的保护层26上;
步骤二,结合图3b,进一步将所述红色子像素单元所对应的光刻胶全部灰化,将绿色子像素单元所对应的光刻胶灰化二分之一的高度;
步骤三,结合图3c,对红色子像素单元所对应的所述空间隔离层的Al材料层进行湿刻,并进一步对红色子像素单元所对应的所述空间隔离层的SiOx材料层进行干刻;同时将绿色子像素单元所对应的光刻胶刻蚀掉,蓝色子像素单元所对应的光刻胶刻蚀掉厚度的一部分;
步骤四,结合图3d,将红色子像素单元所对应的所述空间隔离层的Al材料层刻蚀掉,同时将绿色子像素单元所对应的所述空间隔离层的Al材料层刻蚀掉;其中该步骤采用干刻的方式;
步骤五,将红色子像素单元和绿色子像素单元所对应所述空间隔离层的SiOx材料层刻蚀掉;其中该步骤采用湿刻的方式。
步骤六,剥离蓝色子像素单元上的光刻胶,获得图3e所示结构。
经过上述的制作步骤,红色子像素单元、蓝色子像素单元和绿色子像素单元所对应的隔离功能层的厚度均不相同,其中红色子像素单元所对应空间隔离层的叠层最少,蓝色子像素单元所对应空间隔离层的叠层最多。
在制成上述的空间隔离层之后,在该空间隔离层上,沉积平坦化层41,如图1所示,形成薄膜晶体管与有机发光二极管之间的滤波功能单元。
有机发光二极管的制作,包括在平坦化层41上依次形成阳极31、发光功能层32和阴极33的步骤,其中所述阳极31由ITO(氧化铟锡)、IZO(氧化铟锌)等透明导电材料制成,阴极33由具有高反射率的材料制成。
在上述结构的显示基板中,在阵列背板上制作具有滤波功能的微腔结构来替代传统的彩膜结构,从而无需制作有机彩膜,也可以实现彩色图像显示, 这样不仅可以制作更高分辨率的显示器,而且可以达到减少工艺步骤、降低生产成本的目的。
本公开实施例的另一方面提供一种如上结构所述显示基板的制备方法,该制备方法包括:
在基板上形成构成滤波功能单元的图形;
其中,所述滤波功能单元与像素单元对应设置,包括至少三个不同腔长的微腔结构,且沿垂直所述基板的方向,所述微腔结构的腔长不同;不同腔长的所述微腔结构只能透过特定波长的光;所述像素单元的同类子像素单元对应的所述微腔结构的腔长相同。
进一步地,所述制备方法还包括:
在形成所述滤波功能单元的图形的基础上形成构成发光单元的图形;所述发光单元用于发出白光;
形成构成所述发光单元的图形的步骤包括依次形成阳极、有机发光功能层和阴极的步骤。
所述制备方法还包括在构成所述滤波功能单元的图形之前,在基板上形成用于驱动所述发光单元发光的薄膜晶体管的步骤。
进一步地,形成构成滤波功能单元的图形的步骤包括:对应三个不同腔长的所述微腔结构形成不同厚度的隔离层的步骤,其中第一个微腔结构的所述隔离层包括三层Al材料层和二层SiOx材料层,其中Al材料层和SiOx材料层间隔设置;第二个微腔结构的所述隔离层包括二层Al材料层和一层SiOx材料层,其中Al材料层和SiOx材料层间隔设置;第三个微腔结构的所述隔离层包括一层Al材料层。
可选地,形成不同厚度的所述隔离层的步骤包括:
将第一个微腔结构所对应隔离层的结构沉积于整个所述滤波功能单元的对应区域;
将光刻胶涂覆在所形成的所述隔离层上,并进一步将第三个微腔结构所对应的光刻胶全部灰化,将第二个微腔结构所对应的光刻胶灰化二分之一的高度;
对第三个微腔结构所对应所述隔离层的Al材料层进行刻蚀,并进一步对 第三个微腔结构所对应所述隔离层的SiOx材料层进行刻蚀;同时将第二个微腔结构所对应的光刻胶刻蚀掉,第一个微腔结构所对应的光刻胶刻蚀掉厚度的一部分;
将第三个微腔结构所对应所述隔离层的Al材料层刻蚀掉,同时将第二个微腔结构所对应所述隔离层的Al材料层刻蚀掉;
将第三个微腔结构和第二个微腔结构所对应所述隔离层的SiOx材料层刻蚀掉;
剥离第一个微腔结构上的光刻胶。
依据图2,本公开实施例中,形成蓝色光微腔结构的空间隔离层从上至下依次形成有:Al材料层、SiOx材料层、Al材料层、SiOx材料层和Al材料层;形成绿色光微腔结构的空间隔离层从上至上依次形成有Al材料层、Si材料层和Al材料层,形成红色光微腔结构的空间隔离层只形成有Al材料层。
具体地,参阅图3a至图3e,形成构成所述滤波功能单元上所述空间隔离层的步骤包括:
将蓝色像素子单元所对应所述空间隔离层的结构沉积于构成所述薄膜晶体管的图形上,其中蓝色像素子单元所对应所述空间隔离层包括间隔设置的Al材料层和SiOx材料层;
将光刻胶涂覆在所述空间隔离层上,并进一步将所述红色子像素单元所对应的光刻胶全部灰化,将绿色子像素单元所对应的光刻胶灰化二分之一的高度;
对红色子像素单元所对应所述空间隔离层的Al材料层进行湿刻,并进一步对红色子像素单元所对应所述空间隔离层的SiOx材料层进行干刻,同时将绿色子像素单元所对应的光刻胶刻蚀掉,蓝色子像素单元所对应的光刻胶刻蚀掉厚度的一部分;
将红色子像素单元所对应所述空间隔离层的Al材料层刻蚀掉,同时将绿色子像素单元所对应所述空间隔离层的Al材料层刻蚀掉;
将红色子像素单元和绿色子像素单元所对应所述空间隔离层的SiOx材料层刻蚀掉;
剥离蓝色子像素单元上的光刻胶。
进一步,形成构成所述滤波功能单元的图形的步骤还包括:
在形成所述空间隔离层的基础上,沉积平坦化层。
本公开具体实施例另一方面还提供一种具有上述结构显示基板的显示装置,所述显示装置可以为一有机发光二极管显示装置,也可以为一液晶显示装置,本领域技术人员应该能够理解具有该显示基板的发光二极管显示装置或液晶显示装置的结构,在此不再赘述。
本领域技术人员可以理解,本公开实施例的显示基板和显示装置,不仅能够应用于RGB像素的制作,还能够应用于RGBW像素的制作。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (20)

  1. 一种显示基板,包括多个位于基板上的像素单元,其中,所述显示基板还包括:
    滤波功能单元,与像素单元对应设置,所述滤波功能单元包括至少三个微腔结构,且沿垂直所述基板的方向,所述至少三个微腔结构的腔长不同;不同腔长的所述微腔结构只能透过特定波长的光;所述像素单元的同类子像素单元对应的所述微腔结构的腔长相同。
  2. 如权利要求1所述的显示基板,其中,所述显示基板还包括:
    用于发出白光的发光单元,所述白光沿第一方向出射;
    反射结构,设置于所述发光单元的出光相反侧,所述反射结构能够将与第一方向相反方向的光朝第一方向反射。
  3. 如权利要求2所述的显示基板,其中,
    所述微腔结构设置于所述发光单元的出光侧,所述至少三个不同腔长的所述微腔结构包括不同厚度的隔离层,所述隔离层与所述发光单元之间具有间隔空间。
  4. 如权利要求3所述的显示基板,其中,
    通过调节滤波功能单元中所述隔离层的厚度来调节微腔结构的腔长。
  5. 如权利要求1-4任一项所述的显示基板,其中,所述微腔结构的腔长等于所述隔离层靠近所述发光单元的一侧表面到所述反射结构之间的距离。
  6. 如权利要求1-5任一项所述的显示基板,其中,所述微腔结构的腔长与所透过光的波长具有对应关系,满足法布里-珀罗Fabry-Perot谐振方程。
  7. 如权利要求3所述的显示基板,其中,所述隔离层包括Al材料层、SiOx材料层或间隔设置的Al材料层和SiOx材料层。
  8. 如权利要求7所述的显示基板,其中,
    形成不同颜色光的微腔结构的隔离层分别由不同层数的依次间隔设置的Al材料层和SiOx材料层构成。
  9. 如权利要求3所述的显示基板,其中,所述发光单元包括阴极、阳极和设置于所述阴极与所述阳极之间的发光功能层。
  10. 如权利要求9所述的显示基板,其中,所述发光功能层包括空穴传输层、发光层和电子传输层。
  11. 如权利要求9所述的显示基板,其中,所述阴极较所述阳极设置于所述有机发光功能层远离所述微腔结构的一侧,且所述阴极形成为所述反射结构。
  12. 如权利要求9所述的显示基板,其中,所述显示基板还包括用于驱动所述发光单元发光的薄膜晶体管,所述薄膜晶体管包括从所述基板依次朝所述发光单元方向排列的栅极、绝缘层、半导体层、源/漏极和保护层。
  13. 如权利要求3所述的显示基板,其中,三个不同腔长的所述微腔结构分别与像素单元的蓝色像素子单元、红色像素子单元和绿色像素子单元相对应。
  14. 一种显示装置,包括如权利要求1至13任一项所述的显示基板。
  15. 一种显示基板的制备方法,包括:
    在基板上形成构成滤波功能单元的图形;
    其中,所述滤波功能单元与像素单元对应设置,包括至少三个的微腔结构,且沿垂直所述基板的方向,所述微腔结构的腔长不同,不同腔长的所述微腔结构只能透过特定波长的光,所述像素单元的同类子像素单元对应的所述微腔结构的腔长相同。
  16. 如权利要求15所述的制备方法,其中,在形成所述滤波功能单元的图形的基础上形成构成发光单元的图形;所述发光单元用于发出白光;
    形成构成所述发光单元的图形的步骤包括依次形成阳极、有机发光功能层和阴极的步骤。
  17. 如权利要求16所述的制备方法,其中,所述制备方法还包括在构成所述滤波功能单元的图形之前,在基板上形成用于驱动所述发光单元发光的薄膜晶体管的步骤。
  18. 如权利要求15所述的制备方法,其中,形成构成滤波功能单元的图形的步骤包括:对应三个不同腔长的所述微腔结构形成不同厚度的隔离层的步骤,其中第一个微腔结构的所述隔离层包括三层Al材料层和二层SiOx材料层,其中Al材料层和SiOx材料层间隔设置;第二个微腔结构的所述隔离 层包括二层、Al材料层和一层SiOx材料层,其中Al材料层和SiOx材料层间隔设置;第三个微腔结构的所述隔离层包括一层Al材料层。
  19. 如权利要求18所述的制备方法,其中,形在不同厚度的所述隔离层的步骤包括:
    将第一个微腔结构所对应隔离层的结构沉积于整个所述滤波功能单元的对应区域;
    将光刻胶涂覆在所形成的所述隔离层上,并进一步将第三个微腔结构所对应的光刻胶全部灰化,将第二个微腔结构所对应的光刻胶灰化二分之一的高度;
    对第三个微腔结构所对应所述隔离层的Al材料层进行刻蚀,并进一步对第三个微腔结构所对应所述隔离层的SiOx材料层进行刻蚀,同时将第二个微腔结构所对应的光刻胶刻蚀掉,第一个微腔结构所对应的光刻胶刻蚀掉厚度的一部分;
    将第三个微腔结构所对应所述隔离层的Al材料层刻蚀掉,同时将第二个微腔结构所对应所述隔离层的Al材料层刻蚀掉;
    将第三个微腔结构和第二个微腔结构所对应所述隔离层的SiOx材料层刻蚀掉;
    剥离第一个微腔结构上的光刻胶。
  20. 如权利要求18所述的制备方法,其中,形成构成所述滤波功能单元的图形的步骤还包括:
    在形成所述隔离层后,沉积平坦化层。
PCT/CN2015/071636 2014-10-29 2015-01-27 显示基板及其显示装置、制作方法 WO2016065756A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/503,230 US10074698B2 (en) 2014-10-29 2015-01-27 Display substrate, display device thereof, and manufacturing method therefor
EP15855018.6A EP3214651B1 (en) 2014-10-29 2015-01-27 Display substrate, display device thereof, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410594580.1A CN104409468B (zh) 2014-10-29 2014-10-29 显示基板及其显示装置、制作方法
CN201410594580.1 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016065756A1 true WO2016065756A1 (zh) 2016-05-06

Family

ID=52647083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071636 WO2016065756A1 (zh) 2014-10-29 2015-01-27 显示基板及其显示装置、制作方法

Country Status (4)

Country Link
US (1) US10074698B2 (zh)
EP (1) EP3214651B1 (zh)
CN (1) CN104409468B (zh)
WO (1) WO2016065756A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733506B (zh) * 2015-04-01 2017-10-24 京东方科技集团股份有限公司 一种电致发光显示器件及显示装置
CN107170786B (zh) * 2017-05-27 2019-12-27 广州新视界光电科技有限公司 阵列基板、显示面板、显示装置及阵列基板的制备方法
CN109390372B (zh) * 2017-08-08 2021-11-16 合肥视涯技术有限公司 像素结构及其形成方法、显示屏
CN108597386B (zh) 2018-01-08 2020-12-29 京东方科技集团股份有限公司 彩膜、微led器件及其制作方法、显示装置
CN108231857B (zh) * 2018-01-19 2021-04-06 京东方科技集团股份有限公司 Oled微腔结构及其制备方法、显示装置
CN108735788B (zh) 2018-05-30 2020-05-19 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN109638037B (zh) 2018-11-15 2021-04-02 武汉华星光电半导体显示技术有限公司 一种全彩化显示模块及其制作方法
CN109659349B (zh) 2019-01-11 2021-02-19 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN109786576B (zh) * 2019-01-28 2021-08-03 成都京东方光电科技有限公司 一种oled显示器件、显示面板及显示装置
CN110161698A (zh) * 2019-06-05 2019-08-23 上海视涯信息科技有限公司 一种虚像显示装置
KR20210019335A (ko) 2019-08-12 2021-02-22 삼성전자주식회사 유기 발광 소자 및 그 제조방법
KR20210031085A (ko) 2019-09-11 2021-03-19 삼성전자주식회사 발광 소자 및 그 제조방법
CN110649075B (zh) * 2019-09-27 2022-01-28 京东方科技集团股份有限公司 微腔阳极结构、显示基板及其制作方法
KR20220030361A (ko) * 2020-08-28 2022-03-11 삼성디스플레이 주식회사 유기발광 표시장치 및 이의 제조 방법
CN112635538A (zh) * 2020-12-29 2021-04-09 昆山梦显电子科技有限公司 一种显示面板及显示面板的制作方法
CN113571659A (zh) * 2021-07-06 2021-10-29 昆山梦显电子科技有限公司 彩色封装盖板、彩色封装盖板的制备方法及显示面板
CN116347965A (zh) * 2023-04-21 2023-06-27 南京国兆光电科技有限公司 一种有机发光显示器像素电极结构的制备方法
CN116390577B (zh) * 2023-04-28 2024-02-06 南京国兆光电科技有限公司 一种有机发光显示器像素微腔电极结构的制备方法
CN116249415B (zh) * 2023-05-11 2023-08-08 南京国兆光电科技有限公司 一种有机发光显示器像素电极结构的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661951A (zh) * 2008-08-29 2010-03-03 富士胶片株式会社 彩色显示装置及其制造方法
US20100053043A1 (en) * 2008-08-29 2010-03-04 Fujifilm Corporation Color display and method for producing the same
CN104078422A (zh) * 2013-03-27 2014-10-01 精工爱普生株式会社 有机电致发光装置的制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4439260B2 (ja) * 2003-12-26 2010-03-24 三洋電機株式会社 表示装置の製造方法
US7129634B2 (en) * 2004-04-07 2006-10-31 Eastman Kodak Company Color OLED with added color gamut pixels
US7180238B2 (en) * 2004-04-08 2007-02-20 Eastman Kodak Company Oled microcavity subpixels and color filter elements
US7859188B2 (en) * 2007-08-21 2010-12-28 Global Oled Technology Llc LED device having improved contrast
KR101448003B1 (ko) * 2008-04-04 2014-10-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101407309B1 (ko) * 2011-11-15 2014-06-16 엘지디스플레이 주식회사 유기 전계 발광 표시 패널 및 그의 제조 방법
KR101988217B1 (ko) * 2013-01-04 2019-06-12 엘지디스플레이 주식회사 유기 발광 다이오드 마이크로-캐비티 구조 및 그 제조 방법
TWI500146B (zh) * 2013-04-25 2015-09-11 Au Optronics Corp 電激發光顯示面板之畫素結構

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661951A (zh) * 2008-08-29 2010-03-03 富士胶片株式会社 彩色显示装置及其制造方法
US20100053043A1 (en) * 2008-08-29 2010-03-04 Fujifilm Corporation Color display and method for producing the same
CN104078422A (zh) * 2013-03-27 2014-10-01 精工爱普生株式会社 有机电致发光装置的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214651A4 *

Also Published As

Publication number Publication date
CN104409468A (zh) 2015-03-11
US10074698B2 (en) 2018-09-11
EP3214651B1 (en) 2020-03-04
US20170236881A1 (en) 2017-08-17
EP3214651A4 (en) 2018-06-13
EP3214651A1 (en) 2017-09-06
CN104409468B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
WO2016065756A1 (zh) 显示基板及其显示装置、制作方法
CN110911463B (zh) Oled显示背板及其制作方法和oled显示装置
US8058800B2 (en) Organic light emitting display including an optical path controller
KR100684243B1 (ko) 표시 장치 및 그 제조 방법
JP5535639B2 (ja) Oled型の発光デバイスの電極
US8883531B2 (en) Organic light emitting diode display device and method of manufacturing the same
US11289669B2 (en) Light-emitting device, pixel unit, manufacturing method for pixel unit and display device
KR101572519B1 (ko) 어레이 기판 및 그 제조 방법, 디스플레이 장치
JP4439260B2 (ja) 表示装置の製造方法
US7973470B2 (en) Led device having improved color
WO2020199651A1 (en) Display substrate, display apparatus, and method of fabricating display substrate
JP2008059791A (ja) 有機el素子アレイ
JP2008135373A (ja) 有機発光装置及びその製造方法
US10727451B2 (en) Display substrate and manufacturing method thereof, and display device
KR20200076635A (ko) Oled 마이크로-디스플레이의 픽셀을 제조하기 위한 프로세스
KR20150038982A (ko) 유기발광표시장치 및 그의 제조방법
WO2020118916A1 (zh) 有机电致发光器件的制备方法、有机电致发光器件及显示装置
CN110199402B (zh) 发光二极管及其制造方法、显示基板、显示设备
KR101520489B1 (ko) 유기발광다이오드 표시소자와 그 제조방법
CN110854160A (zh) 用于有机发光二极管微屏的像素
JP2012048992A (ja) 有機エレクトロルミネッセンス表示装置用電極基板の製造方法
KR101433589B1 (ko) 유기전계발광표시장치 및 그 제조방법
JP2010244848A (ja) 発光装置
JP2005026057A (ja) 有機発光表示装置
JP7403540B2 (ja) 有機マイクロスクリーンの画素の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855018

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015855018

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015855018

Country of ref document: EP

Ref document number: 15503230

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE