WO2019029047A1 - 线性振动马达 - Google Patents

线性振动马达 Download PDF

Info

Publication number
WO2019029047A1
WO2019029047A1 PCT/CN2017/112164 CN2017112164W WO2019029047A1 WO 2019029047 A1 WO2019029047 A1 WO 2019029047A1 CN 2017112164 W CN2017112164 W CN 2017112164W WO 2019029047 A1 WO2019029047 A1 WO 2019029047A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnet
vibrator assembly
linear vibration
vibration motor
Prior art date
Application number
PCT/CN2017/112164
Other languages
English (en)
French (fr)
Inventor
毛东升
张新众
臧玮晔
朱跃光
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2019029047A1 publication Critical patent/WO2019029047A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the invention belongs to the technical field of electronic products. More specifically, it relates to a linear vibration motor.
  • a miniature linear vibration motor is usually used for feedback of the system, such as clicking the vibration feedback of the touch screen.
  • a linear vibration motor is a component that converts electrical energy into mechanical vibration using the principle of electromagnetic force.
  • a conventional linear vibration motor is usually installed in a mobile communication terminal, a portable terminal or the like, which is usually installed at an edge portion of the device, and receives vibrations. The object produces vibration in a vertical direction.
  • Existing linear vibration motors typically include a housing having a receiving chamber in which is disposed a stator assembly, a vibrator assembly, and an elastomeric support configured to suspend the vibrator assembly within the receiving chamber.
  • the stator assembly may be a magnet or a coil fixedly coupled to the housing, and the corresponding vibration assembly may be a coil or magnet that is supported by the elastic support for up and down vibration.
  • the existing magnets as the stator assembly or the vibrator assembly are all cylindrical solid core structures, and the coil is surrounded by the periphery of the magnet. After the coil is energized, the coil is subjected to the ampere force to generate electromagnetic force and between the magnetic field generated by the magnet. The interaction, in turn, causes the vibrator assembly to move up and down, which in turn results in vibration of the entire linear vibration motor.
  • the existing linear vibration motor has the following drawbacks: 1.
  • the magnetic flux utilization efficiency of the magnet is low, which affects the overall tactile sensation.
  • the existing motor assembly process is complicated, resulting in a large BOM cost and waste of process cost.
  • the existing linear vibration motor is only suitable for vibration experience under single frequency point, and does not meet the requirements of haptic feedback application for multi-frequency point vibration.
  • the technical problem to be solved by the present invention is to provide a linear vibration motor which can maximize the magnetic properties of the magnet, improve the utilization efficiency of the coil for the magnetic field lines of the magnet, and improve the electromagnetic driving force of the motor, thereby improving The tactile experience of the motor, and meet the requirements of the vibration provided by the motor at multiple frequencies, and improve the tactile experience of the motor.
  • the present invention adopts the following technical solutions:
  • a linear vibration motor comprising:
  • stator assembly including a housing having a receiving cavity, a magnet disposed within the receiving cavity and coupled to the housing, the magnet including a hollow portion;
  • the vibrator assembly includes a coil and a mass; the hollow portion extends along a vibration direction of the vibrator assembly, and when the vibrator assembly vibrates, the coil vibrates with the vibrator assembly and is inserted into a hollow portion of the magnet;
  • An elastic support configured to suspend the vibrator assembly within the receiving cavity of the housing.
  • a gap is formed between the coil and the mass for insertion of the magnet.
  • the vibrator assembly further includes a central core secured within the coil, the central core including a body portion that is inserted within the coil.
  • the central magnetic core further comprises:
  • the central magnetic core further comprises:
  • An upper end portion extending outward from the top upper surface of the body portion in the direction of the body portion axis.
  • the upper portion of the body portion of the center core extends outside the coil
  • the vibrator assembly further includes: a yoke surrounding an upper portion of the upper portion of the body portion;
  • the yoke and the body portion are coupled and fixed.
  • the vibrator assembly further includes a magnetic conductive plate, the coil, the body portion of the central magnetic core and the mass are fixedly fixed on an upper surface of the magnetic conductive plate;
  • the lower surface of the magnetic conductive plate is between the inner surface of the bottom wall of the housing and is configured to suspend the vibrator assembly within the receiving cavity of the housing.
  • the magnet be a segmented or continuous annular structure.
  • a vibration space for vibrating the vibrator assembly is provided between the top upper surface of the center core and the inner side surface of the top wall of the casing.
  • a vibration space for vibrating the vibrator assembly is provided between the top upper surface of the center core and the top upper surface of the yoke and the inner side surface of the housing top wall.
  • the linear vibration motor provided by the invention improves the structure of the magnet and its matching with the coil
  • the method can maximize the magnetism of the magnet, improve the utilization efficiency of the coil for the magnetic field line of the magnet, and improve the electromagnetic driving force of the motor.
  • the increase of the driving force increases the effective bandwidth of the motor, and is convenient for the dual-frequency or multi-frequency resonant frequency.
  • the application satisfies the requirements of the vibration provided by the motor under the multi-frequency point and improves the tactile experience of the motor.
  • the center core is placed inside the coil of the vibrator assembly, and the central core has various structures, which can maximize the number of magnetic lines passing through the coil and improve the utilization efficiency of the magnetic lines.
  • the first housing and the second housing are both magnetically conductive, and the central magnetic core is made of a magnetic conductive material, and the magnetic lines of the magnet are closed while the centering action is performed, so that the magnet The magnetic effect is maximized, and the electromagnetic driving force of the motor is easily increased, thereby improving the tactile experience of the motor.
  • the linear vibration motor provided by the invention has a motor vibration balance position, and the vibrator assembly and the stator assembly are mutually attractive, which reduces the micro vibration of the motor without current or weak current, so that the motor can quickly return to a stationary state.
  • the linear vibration motor structure provided by the invention has large electromagnetic driving force and shortens the motor vibration rising time; the static balance magnetic force of the motor balance position is large, and the motor vibration falling time is shortened; the overall motor response speed is improved.
  • the linear vibration motor structure provided by the invention reduces the difficulty of the motor manufacturing process and improves the overall assembly efficiency.
  • Fig. 1 is a view showing the structural assembly of a linear vibration motor according to a first embodiment of the present invention.
  • Fig. 2 is a cross-sectional view showing the structure of a linear vibration motor according to a first embodiment of the present invention.
  • FIG 3 is a schematic view showing the arrangement of a vibrator assembly and a magnet in a linear vibration motor according to a first embodiment of the present invention.
  • FIG. 4 is a schematic view showing a simplified configuration of a vibrator assembly and a magnet in a linear vibration motor according to a first embodiment of the present invention.
  • Fig. 5 is a view showing the arrangement of a vibrator assembly and a magnet in a linear vibration motor according to a second embodiment of the present invention.
  • Fig. 6 is a view showing the arrangement of a vibrator assembly and a magnet in a linear vibration motor according to a third embodiment of the present invention.
  • weights both of which refer to one of the components that cooperate with the magnet or coil to vibrate within the motor housing as a vibrator assembly.
  • present invention is mainly used for the improvement of the linear vibration motor used in the description, and may also be referred to as a Y-direction vibration motor.
  • a linear vibration motor will be specifically described as an example.
  • the invention provides a linear vibration motor with a novel structure, which improves the structure of the magnet and the arrangement of the coil, and effectively solves the problem that the magnetic line utilization efficiency of the current magnet is low, the motor assembly process is complicated, and the existing linearity
  • the vibration motor is only suitable for vibration experience under single frequency point and does not meet the requirements for haptic feedback applications for multi-frequency point vibration.
  • FIG. 1 is a structural assembly view of a linear vibration motor according to a first embodiment of the present invention.
  • Fig. 2 is a cross-sectional view showing the structure of a linear vibration motor according to a first embodiment of the present invention.
  • 3 is a schematic view showing the arrangement of a vibrator assembly and a magnet in a linear vibration motor according to a first embodiment of the present invention.
  • the linear vibration motor provided by the present embodiment includes a stator assembly including a housing 1 having a receiving cavity, and a magnet 2 located in the receiving cavity and fixed in combination with the housing 1, the magnet 2
  • the hollow portion 21 is extended along the vibration direction of the vibrator assembly.
  • the magnet 2 in the present invention may be a segmented or continuous annular structure, which is not limited in the present invention.
  • the vibrator assembly in the illustrated structure, the vibrator assembly includes a coil 3 disposed coaxially with the magnet 2 and a mass 4 disposed coaxially with the coil 3 around the periphery of the coil 3; when the vibrator assembly vibrates, The coil 3 vibrates with the vibrator assembly and is inserted into the hollow portion 21 of the magnet 2.
  • An elastic support member 5 is configured to suspend the vibrator assembly within the receiving cavity of the housing 1.
  • the housing 1 includes a first housing 11 having an opening at the bottom, and a second housing 12 fixedly coupled to the opening; the first housing 11 and the second housing 12 are configured to have a receiving cavity.
  • Shell Body 1 both the first housing 11 and the second housing 12 can be made of a material having magnetic permeability, so that the magnetic lines of force of the magnet can be closed, and the magnetic action of the magnet 2 can be maximized to enhance the motor. Electromagnetic driving force.
  • the housing 1 has a circular structure.
  • the housing 1 can also have a non-circular cross-section structure, for example, a rectangular parallelepiped shape and a rounded corner. Rectangular shape, etc.
  • the vibrator assembly has a magnetic conductive plate 6, and the coil 3 and the mass 4 are fixedly coupled to the upper surface of the magnetic conductive plate 6, and a magnet 2 is inserted between the coil 3 and the mass 4.
  • the gap is 7.
  • the elastic support member 5 is fixedly fixed between the lower surface of the magnetic conductive plate 6 and the inner side surface of the second casing 12, and is configured to suspend the vibrator assembly
  • the housing 1 is housed in a cavity.
  • the linear vibration motor of the present embodiment further includes a circuit 3 for electrically connecting the coil 3 to an external device;
  • the printed circuit board 8 includes: a lower surface of the magnetic conductive plate 6 And a fixing portion 81 electrically connected to the coil 3; a connecting portion 82 located outside the casing 1 and fixedly coupled to the upper surface of the second casing 12 for electrically connecting with an external device;
  • the fixing portion 81 and the connecting portion 82 are connected to a flexible connecting portion 83 of a unitary structure.
  • the flexible connecting portion 83 is located below the elastic arm of the elastic support member 6. When the vibrator assembly is vibrated, when the elastic arm is pressed or deformed, the flexible connecting portion 83 moves up and down, thereby avoiding the flexible connecting portion 83 and the elastic portion.
  • the magnet 2 having an annular structure fixed in combination with the inner surface of the top wall of the first casing 11 is used as a stator assembly, and the coil 3 is inserted as a part of the vibrator assembly into the hollow portion 21 of the magnet 2 with the vibrator assembly.
  • the magnet 2 as a stator having a ring structure and its arrangement with the coil 3 as a vibrator are compared with the columnar solid core magnet used in the conventional vibration motor, due to the magnetic field lines of the existing cylindrical solid magnet.
  • the radiation is dispersed outward from the central axis, and the magnetic lines of the ring-shaped structural magnet of the present invention are concentrated on the central axis, so that the magnetic field strength of the coil disposed on the central axis of the magnet of the annular structure is higher than that of the magnetic field.
  • the coil of the periphery of the cylindrical solid core magnet; and the coil of the present invention is disposed in the inner space of the magnet having the annular structure, and the diameter of the coil can be made smaller, so the effective number of turns of the coil is significantly higher than that of the outer core of the cylindrical solid magnet.
  • the effective number of turns of the large-diameter coil, and the linear vibration motor provided by the present invention can maximize the magnetism of the magnet and increase the magnetic field line of the coil for the magnet Efficiency, enhance the electromagnetic driving force of the motor, and the driving force
  • the increase makes the effective bandwidth of the motor increase, facilitates the application of dual-frequency or multi-frequency resonant frequency, and satisfies the requirements of the vibration provided by the motor under multiple frequency points, improves the tactile experience of the motor, and improves the linearity as a whole. Vibration motor comprehensive performance.
  • the vibrator assembly further includes a center core 9 fixed coaxially to the coil 3, the center core 9 including a body portion 91 inserted in the coil 3 and fixedly coupled to an upper surface of the magnetic conductive plate 6.
  • a vibration space for vibrating the vibrator assembly is provided between the top upper surface of the center core 9 and the inner side surface of the top wall of the first casing 11.
  • the central core 9 can be selected from a magnetic material with strong magnetic permeability, high magnetic permeability, easy to guide the magnetic lines, concentrated at the coil, and in the energized coil, can generate a large magnetic induction intensity, which is beneficial to reduce the coil. volume.
  • the magnetic conductive plate 6 is disposed under the magnet 2, so that the stator assembly including the magnet 2 has a large attraction force to the vibrator assembly, and the attractive force can provide a certain component to the vibrator assembly after the motor is powered off.
  • the vibration resistance in simple terms, is equivalent to providing a brake to the vibrator assembly, which enables the vibrator assembly in the motor to quickly stop vibrating, ie "shortening the motor vibration drop time”.
  • the center magnetic core 9 is included in the coil 3, the utilization ratio of the magnetic field lines of the magnet 2 is increased, so that the electromagnetic driving force of the motor is increased, thereby accelerating the starting process of the motor, that is, "shortening the motor vibration rising time".
  • the linear vibration motor provided by the present invention has an advantage over the prior art in that when the motor is in the vibration balance position, the vibrator assembly and the stator assembly are mutually attractive, and the micro vibration of the motor without current or weak current can be reduced. , so that the motor can quickly return to a standstill.
  • the linear vibration motor structure provided by the present invention has a large electromagnetic driving force, which can shorten the motor vibration rise time; and since the motor is in a balanced position, the static magnetic force is large, and the motor vibration fall time can be further shortened, so that the present invention can improve the motor as a whole. responding speed.
  • the center core 9 further includes a straight portion 92 extending outward from the outer surface of the side wall of the body portion 91 and located above the coil 3, the straight portion 92 and the body
  • the portion 91 is an integral structure.
  • the straight portion 92 can be used to provide a guiding path and direction for the magnetic lines of force, so that the magnetic lines of force are concentrated at the coil 3 to increase the strength of the magnetic field at the position where the coil 3 is located.
  • the circumferential outer edge of the straight portion 92 may be located inside, outside or flush with the circumferential outer edge of the coil 3.
  • the circumferential outer edge of the straight portion 92 is located outside the circumferential outer edge of the coil 3, making it as possible as possible Provide guidance for magnetic lines of force.
  • the outer wall surface of the body portion 91 and the inner wall surface of the coil 3 between the lower surface of the flat portion 92 and the top upper surface of the coil 3 between the center core 9 and the coil 3 is ensured. Under the condition of relative insulation, seams can be left Gap or both are fixed.
  • the outer wall surface of the body portion 91 and the inner wall surface of the coil 3 are straight. A gap is left between the lower surface of the portion 92 and the top upper surface of the coil 3.
  • FIG. 4 shows a first embodiment according to the present invention.
  • a simplified schematic diagram of a vibrator assembly and a magnet in a linear vibrating motor is provided, wherein the central core 9 includes only a body portion 91 that is inserted into the coil 3, and the structure is also capable of realizing the magnetic field lines of the present invention to be concentrated toward the central axis.
  • the other advantages of the motor provided by the first embodiment are the same as those of the prior art, and are not described herein again.
  • FIG. 5 is a schematic view showing the arrangement of the vibrator assembly and the magnet in the linear vibration motor according to the second embodiment of the present invention.
  • the central core 9 includes a body portion 91 inserted in the coil 3, a straight portion 92 extending outward from the outer surface of the side wall of the body portion 91 and located above the coil 3; An upper end portion 93 of the top surface of the main body portion 91 extending outward in the axial direction of the body portion 91.
  • the main body portion 91, the flat portion 92 and the upper end portion 93 are an integral structure, and the center core 9 is A vibration space for vibrating the vibrator assembly is provided between the top upper surface and the inner side surface of the top wall of the first casing 11. Similar to the central core structure provided by the first embodiment, in the present embodiment, the body portion 91 of the central core 9 can further increase the effect of the magnetic lines of the magnet 2 having the annular structure on the central axis to increase the coil 3
  • the magnetic field strength at the position increases the electromagnetic driving force of the motor, and the straight portion 92 and the upper end portion 93 can be used to provide a guiding path and a direction for the magnetic lines of force, so that the magnetic lines of force are concentrated at the coil 3 to increase the magnetic field strength at the position where the coil 3 is located.
  • the diameter of the upper end portion 93 may be selected according to actual needs within a range greater than, less than, or equal to the diameter of the body portion 91.
  • the circumferential outer edge of the straight portion 92 may be located inside, outside or flush with the circumferential outer edge of the coil 3. In the case where the interference between the straight portion 92 and the magnet 2 is ensured, preferably, the circumferential outer edge of the straight portion 92 is located outside the circumferential outer edge of the coil 3, making it as possible as possible Provide guidance for magnetic lines of force. In addition, under the condition of ensuring relative insulation between the central core 9 and the coil 3, in order to facilitate the coaxial and accurate assembly between the central core 9 and the coil 3, and to simplify the processing process and assembly difficulty of the central core 9, it is preferred.
  • Fig. 6 is a schematic view showing the arrangement of the vibrator assembly and the magnet in the linear vibration motor according to the third embodiment of the present invention.
  • the center core 9 includes a body portion 91 inserted in the coil 3, an upper portion of the body portion 91 of the center core 9 extends outside the coil 3;
  • the vibrator assembly further includes: The yoke 94 on the outer side of the upper portion of the main body portion 91; the yoke 94 and the main body portion 91 are coupled and fixed.
  • the yoke 94 is an annular structure that is sleeved on the outer side of the upper portion of the main body portion 91.
  • the yoke 94 in the present embodiment is In the above embodiment, the flat portion of the center core functions similarly, and also increases the effect of increasing the magnetic field lines of the magnet 2 having the annular structure toward the central axis, thereby increasing the magnetic field strength at the position where the coil 3 is located, and increasing the motor's position.
  • the role of electromagnetic driving force is that the advantage of the body portion and the flat portion disposed relative to the unitary structure is that it is convenient to set or not to provide a guiding path and a direction for the magnetic field to guide the magnetic field according to actual needs, and to simplify the central core. Processing technology.
  • the top upper surface of the center core 9 and the top surface of the top surface of the yoke 94 and the inner surface of the top wall of the first casing 11 are provided.
  • the circumferential outer edge of the yoke 94 is preferably located on the inner and outer sides of the circumferential outer edge of the coil 3; preferably, the top upper surface of the yoke 94 and the top of the center core 9
  • the upper surface is flush.
  • a gap for facilitating assembly is left between the lower surface of the yoke 94 and the top upper surface of the coil 3.
  • the linear vibration motor provided by the invention can maximize the magnetic property of the magnet, improve the utilization efficiency of the magnetic line of the magnet for the magnet, and improve the electromagnetic driving force of the motor, and the coil of the invention is disposed in the inner space of the magnet having the annular structure, and the diameter thereof
  • the size can be made smaller, the effective number of coils is significantly higher than the effective number of turns of the large-diameter coils around the existing cylindrical solid magnet; and the linear vibration motor provided by the present invention increases the electromagnetic driving force of the motor.
  • the effective bandwidth of the motor is large, which is convenient for the application of dual-frequency or multi-frequency resonant frequency, and meets the requirements of the vibration of the motor under the multi-frequency point, and improves the overall performance of the linear vibration motor as a whole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种线性振动马达,其包括:定子组件,所述定子组件包括具有容纳腔的壳体(1),位于所述容纳腔内且与所述壳体(1)结合固定的磁体(2),所述磁体(2)包括中空部(21);振子组件,所述振子组件包括线圈(3)及质量块(4);所述中空部沿振子组件振动方向延伸,所述振子组件振动时,所述线圈(3)随振子组件振动并***所述磁体(2)的中空部;弹性支撑件(5),配置为将所述振子组件悬置在所述壳体(1)的容纳腔内。上述线性振动马达,可最大化利用磁体的磁性,提升线圈对于磁体磁力线的利用效率,提升马达的电磁驱动力,便于双频或多频谐振频率的应用,满足多频点下对马达所提供振感的要求。

Description

线性振动马达 技术领域
本发明属于电子产品技术领域。更具体地,涉及一种线性振动马达。
背景技术
随着通信技术的发展,便携式电子设备,例如手机、平板电脑、智能穿戴设备、多媒体娱乐设备等已经成为人们的生活必须品。在这些电子设备中,通常使用微型的线性振动马达来做***的反馈,例如点击触摸屏的振动反馈等。
线性振动马达是一种利用电磁力原理将电能转化为机械振动的部件,常规的线性振动马达通常安装在移动通信终端、便携式终端等内,其通常安装在设备的边缘部分,并且在与接收振动的对象相垂直的方向上产生振动。
现有线性振动马达通常包括具有容纳腔的壳体,容纳腔内设置有定子组件、振子组件以及配置为将振子组件悬置在容纳腔内的弹性支撑件。定子组件可为与壳体固定连接的磁体或者线圈,与之对应的振动组件可为通过弹性支撑件支撑进行上、下振动的线圈或者磁体。其中现有的作为定子组件或者振子组件的磁体均为柱状实芯结构,线圈围绕在磁体***,在线圈通电后,线圈便会受到安培力作用产生电磁力,并与磁体所产生的磁场之间相互作用,进而使得振子组件向上和向下运动,进而会获得整个线性振动马达发生振动的效果。
然而现有的线性振动马达存在以下缺陷,1、磁体的磁力线利用效率低下,影响整体触觉感受。2、现有马达装配过程复杂,造成较大的BOM成本以及工艺制程成本浪费。3、现有线性振动马达只适用于单频点下振动体验,不满足对于多频点振动的触觉反馈应用要求。
因此,需要提供一种新型的线性振动马达,以解决现有技术中存在的缺陷。
发明内容
鉴于上述问题,本发明要解决的技术问题是提供一种线性振动马达,该振动马达结构可最大化利用磁体的磁性,提升线圈对于磁体磁力线的利用效率,提升了马达的电磁驱动力,从而提高马达的触觉体验,且满足多频点下对马达所提供振感的要求,提高马达的触觉体验。
为解决上述技术问题,本发明采用下述技术方案:
一种线性振动马达,所述马达包括:
定子组件,所述定子组件包括具有容纳腔的壳体,位于所述容纳腔内且与所述壳体结合固定的磁体,所述磁体包括中空部;
振子组件,所述振子组件包括线圈及质量块;所述中空部沿振子组件振动方向延伸,所述振子组件振动时,所述线圈随振子组件振动并***所述磁体的中空部;
弹性支撑件,配置为将所述振子组件悬置在所述壳体的容纳腔内。
此外,优选地方案是,所述线圈与质量块之间形成有供磁体***的间隙。
此外,优选地方案是,所述振子组件还包括固定到所述线圈内的中心磁芯,所述中心磁芯包括***在所述线圈内的本体部。
此外,优选地方案是,所述中心磁芯还包括:
由所述本体部侧壁外表面向外延伸出的且位于所述线圈上方的平直部。
此外,优选地方案是,所述中心磁芯还包括:
由所述本体部侧壁外表面向外延伸出的且位于所述线圈上方的平直部;及
由所述本体部的顶部上表面沿本体部轴线方向向外延伸出的上端部。
此外,优选地方案是,所述中心磁芯的本体部的上部延伸到所述线圈外;
所述振子组件还进一步包括:围绕在所述本体部的上部外侧的导磁轭;
所述导磁轭与本体部之间结合固定。
此外,优选地方案是,所述振子组件还包括导磁板,所述线圈、中心磁芯的本体部及质量块结合固定在所述导磁板的上表面;所述弹性支撑件结合固定在所述导磁板的下表面与壳体底壁的内侧表面之间,且配置为将所述振子组件悬置在所述壳体的容纳腔内。
此外,优选地方案是,所述磁体为分段的或者连续的环状结构。
此外,优选地方案是,所述中心磁芯的顶部上表面与壳体顶壁的内侧表面之间具有供振子组件振动的振动空间。
此外,优选地方案是,所述中心磁芯的顶部上表面及导磁轭的顶部上表面与所述壳体顶壁的内侧表面之间具有供振子组件振动的振动空间。
本发明的有益效果如下:
1、本发明所提供的线性振动马达,通过改进磁体结构及其与线圈的配 置方式,可最大化利用磁体的磁性,提升线圈对于磁体磁力线的利用效率,提升了马达的电磁驱动力,驱动力的增大使得马达有效频宽增大,便于双频或多频谐振频率的应用,满足多频点下对马达所提供振感的要求,提高了马达的触觉体验。
2、本发明所提供的线性振动马达结构中,振子组件线圈内部放置中心磁芯,中心磁芯结构多样,可使通过线圈的磁力线数量最大化,提升了磁力线的利用效率。
3、本发明所提供的线性振动马达结构中,第一壳体、第二壳体均有导磁性,中心磁芯由导磁性材料构成,在起定心作用的同时闭合磁体的磁力线,使磁体的磁性作用最大化发挥,便于提升马达的电磁驱动力,从而提高马达的触觉体验。
4、本发明所提供的线性振动马达,马达振动平衡位置,振子组件与定子组件相互吸引力较大,降低了马达无电流或弱电流状态下的微小振动,使马达可快速恢复到静止状态。
5、本发明所提供的线性振动马达结构,电磁驱动力大,缩短马达振动上升时间;马达平衡位置静磁力大,缩短马达振动下降时间;整体提高了马达响应速度。
6、本发明所提供的线性振动马达结构,降低了马达制程工艺难度,提高了整体装配效率。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出本发明第一实施方式所提供线性振动马达的结构装配图。
图2示出本发明第一实施方式所提供线性振动马达的结构剖视图。
图3示出本发明第一实施方式所提供线性振动马达中振子组件与磁体的配置示意图。
图4示出本发明第一实施方式所提供线性振动马达中振子组件与磁体的一种简化配置示意图。
图5示出本发明第二实施方式所提供线性振动马达中振子组件与磁体的配置示意图。
图6示出本发明第三实施方式所提供线性振动马达中振子组件与磁体的配置示意图。
具体实施方式
在下述的描述中,出于说明的目的,为了提供对一个或者多个实施方式的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施方式。在其它例子中,为了便于描述一个或者多个实施方式,公知的结构和设备以方框图的形式示出。
在下述具体实施方式的描述中所用到的“质量块”也可以称作“配重块”,均指与磁体或者线圈配合在马达壳体内作为振子组件发生振动的组件之一。另外,本发明主要用于描述中用到的线性振动马达的改进,也可以称作Y向振动马达。但是为了表述的方便,在以下的实施方式描述中,具体以线性振动马达为例进行说明。
为了更清楚地说明本发明,下面结合优选实施方式和附图对本发明做进一步的说明。但需要说明的是,为了便于理解,本发明中涉及的如“上表面”,“下表面”,“底部”,“顶部”等描述,仅是参照附图所提供样式的说明,其并非用于限制,本领域一般技术人员可以理解的是,当本发明中马达摆放位置发生变化时,文中所涉及的相应的描述及用词应当以其在马达中所起的实际作用为准。
本发明提供了一种新型结构的线性振动马达,该振动马达对磁体结构及其与线圈的配置方式进行了改进,有效解决了目前磁体的磁力线利用效率低下,马达装配过程复杂,且现有线性振动马达只适用于单频点下振动体验,不满足对于多频点振动的触觉反馈应用要求的问题。
具体的,结合图1至图3所示,图1示出本发明第一实施方式所提供线性振动马达的结构装配图。图2示出本发明第一实施方式所提供线性振动马达的结构剖视图。图3示出本发明第一实施方式所提供线性振动马达中振子组件与磁体的配置示意图。
本实施方式所提供的线性振动马达包括:定子组件,所述定子组件包括具有容纳腔的壳体1,位于所述容纳腔内且与所述壳体1结合固定的磁体2,所述磁体2包括中空部21,所述中空部21沿振子组件振动方向延伸;本发明中所述磁体2可为分段的或者连续的环状结构,本发明对此并不加以限制。
振子组件,图示结构中,所述振子组件包括与磁体2同轴设置的线圈3及围绕在所述线圈3***的与线圈3同轴设置的质量块4;当所述振子组件振动时,所述线圈3随振子组件振动并***所述磁体2的中空部21。
弹性支撑件5,配置为将所述振子组件悬置在所述壳体1的容纳腔内。
具体的,所述壳体1包括底部具有开口的第一壳体11,以及结合固定在所述开口处的第二壳体12;第一壳体11与第二壳体12构成具有容纳腔的壳 体1。需要说明的是,本发明中第一壳体11与第二壳体12均可由具有导磁性的材料制成,这样便于闭合磁体的磁力线,使磁体2的磁性作用最大化发挥,以提升马达的电磁驱动力。另外作为本发明一种具体的实施方式,如图1所示所述壳体1呈圆型结构,显然所述壳体1也可呈非圆形截面的结构,例如可以是长方体型、圆角长方体型等。本发明中所述振子组件具有导磁板6,所述线圈3及质量块4结合固定在所述导磁板6的上表面上,且线圈3与质量块4之间形成有供磁体2***的间隙7。其中与导磁板6对应的,所述弹性支撑件5结合固定在所述导磁板6的下表面与第二壳体12的内侧表面之间,且配置为将所述振子组件悬置在所述壳体1的容纳腔内。
进一步的,本实施方式中所述线性振动马达还包括使线圈3能够与外部设备电性连接印刷电路板8;所述印刷电路板8包括:结合固定在所述导磁板6的下表面,且与线圈3电性连接的固定部81;位于所述壳体1外,且与所述第二壳体12的上表面结合固定的用于与外部设备电性连接的连接部82;及将所述固定部81与所述连接部82连接成整体结构的柔性连接部83。其中所述柔性连接部83位于弹性支撑件6弹性臂的下方,当振子组件振动时,弹性臂受压或者受拉变形时,柔性连接部83随之上下运动,避免了柔性连接部83与弹性臂之间发生碰撞,影响振动马达振动性能的问题。且当弹性臂受压变形到极限位置时,可通过第二壳体上表面所设阻尼件的限位,以防止弹性臂挤压到柔性连接部,使柔性连接部损坏。本领域技术人员可以理解的是,马达中质量块和/或导磁板上应当设有连接线圈和印刷电路板的导线过孔,以实现线圈能够与外部设备电性连接,但对于过孔的具***置及结构形态,本发明在此不作限制。
本发明中与第一壳体11的顶壁内侧表面结合固定的呈环状结构的磁体2作为定子组件,线圈3作为振子组件的部分随振子组件振动***所述磁体2的中空部21,该种作为定子的呈环状结构的磁体2及其与作为振子的线圈3的配置方式,与现有的振动马达中所使用的柱状实芯结构磁体相比,由于现有柱状实芯磁体的磁力线是从中轴线向外辐射分散的,而本发明的呈环形结构磁体的磁力线是向中轴线上聚集的,因此设置在呈环形结构磁体中轴线上的线圈位置所处的磁场强度高于套设在柱状实芯磁体***的线圈处;并且本发明中线圈设置于呈环形结构磁体的内部空间,其直径尺寸可以做的比较小,故线圈有效圈数会显著高于设置于柱状实芯磁体***的大直径线圈的有效圈数,进而本发明所提供的线性振动马达,可最大化利用磁体的磁性,提升线圈对于磁体磁力线的利用效率,提升了马达的电磁驱动力,且驱动力的 增大使得马达有效频宽增大,便于双频或多频谐振频率的应用,并满足多频点下对马达所提供振感的要求,提高了马达的触觉体验,并从整体上提高了线性振动马达综合性能。
结合图2及图3,为了进一步增加呈环状结构的磁体2的磁力线向中轴线聚集的效果,以增加线圈3所处位置的磁场强度,增大马达的电磁驱动力,优选地,所述振子组件还包括以同轴方式固定到所述线圈3内的中心磁芯9,所述中心磁芯9包括***在所述线圈3内且结合固定在导磁板6的上表面的本体部91;所述中心磁芯9的顶部上表面与第一壳体11顶壁的内侧表面之间具有供振子组件振动的振动空间。所述中心磁芯9可选用导磁能力强的磁性材料,导磁率高,便于为磁力线进行导向,向线圈处集中,且在通电线圈中,可以产生较大的磁感应强度,利于减小线圈的体积。
另外,本发明中导磁板6设置在所述磁体2下方,故包含磁体2的定子组件对振子组件存在一个较大的吸引力,该吸引力在马达断电以后可为振子组件提供一定的振动阻力,简单来说就是相当于给振子组件提供了一个刹车,能够使马达中的振子组件快速停止振动,即“缩短马达振动下降时间”。进一步地,因线圈3内部包含中心磁芯9,增大了磁体2磁力线的利用率,故增大了马达的电磁驱动力,从而加速了马达的启动过程,即“缩短马达振动上升时间”。进而本发明所提供的线性振动马达与现有马达相比优势在于,当马达处于振动平衡位置时,振子组件与定子组件相互吸引力较大,可降低马达无电流或弱电流状态下的微小振动,使马达可快速恢复到静止状态。且本发明所提供的线性振动马达结构,电磁驱动力大,可缩短马达振动上升时间;并且由于马达处于平衡位置静磁力大,可进一步缩短马达振动下降时间,故本发明能够从整体上提高马达响应速度。
此外,优选地方案是,所述中心磁芯9还包括由所述本体部91侧壁外表面向外延伸出的且位于所述线圈3上方的平直部92,所述平直部92与本体部91为一体结构。平直部92可用于为磁力线提供导向路径及方向,便于磁力线在线圈3处聚集,以提高线圈3所处位置的磁场强度。进一步地,所述平直部92的周向外侧边缘可位于所述线圈3的周向外侧边缘的内侧、外侧或者齐平设置。在保证平直部92与磁体2之间不发生干涉的情况下,优选地,所述平直部92的周向外侧边缘位于所述线圈3的周向外侧边缘的外侧,使其尽可能的为磁力线提供导向作用。另外需要说明的是,所述本体部91外侧壁表面与线圈3内侧壁表面之间,平直部92的下表面与线圈3的顶部上表面之间在保证中心磁芯9与线圈3之间相对绝缘的条件下,可留有缝 隙或者二者固定贴合。但为了方便中心磁芯与线圈之间的同轴精确装配,及简化中心磁芯的加工工艺以及装配难度,优选地,所述本体部91外侧壁表面与线圈3内侧壁表面之间,平直部92的下表面与线圈3的顶部上表面之间留有缝隙。
另外,参见图4,作为一种变形,为了简化中心磁芯9的加工工艺,便于线圈3与中心磁芯9之间的装配定位,图4所示出的是根据本发明第一实施方式所提供线性振动马达中振子组件与磁体的一种简化配置示意图,其中所述中心磁芯9仅包括***在所述线圈3内的本体部91,该结构同样能够实现本发明磁体磁力线向中轴线聚集的效果,其所具有的其它优势与第一实施方式所提供马达相对现有技术的优势相同,在此不再赘述。
参照图5,针对振子组件与磁体的配置结构,图5示出本发明第二实施方式所提供线性振动马达中振子组件与磁体的配置示意图。其中,所述中心磁芯9包括***在所述线圈3内的本体部91,由所述本体部91侧壁外表面向外延伸出的且位于所述线圈3上方的平直部92;及由所述本体部91的顶部上表面沿本体部91轴线方向向外延伸出的上端部93,所述本体部91、平直部92和上端部93为一体结构,且所述中心磁芯9的顶部上表面与第一壳体11顶壁的内侧表面之间具有供振子组件振动的振动空间。与第一实施方式所提供中心磁芯结构类似,本实施方式中,中心磁芯9的本体部91可进一步增加呈环状结构的磁体2的磁力线向中轴线聚集的效果,以增加线圈3所处位置的磁场强度,增大马达的电磁驱动力,平直部92以及上端部93可用于为磁力线提供导向路径及方向,便于磁力线在线圈3处聚集,以提高线圈3所处位置的磁场强度。其中根据导磁效果的不同,所述上端部93直径可在大于、小于或者等于所述本体部91的直径的范围内根据实际的需要进行选择。
进一步地,所述平直部92的周向外侧边缘可位于所述线圈3的周向外侧边缘的内侧、外侧或者齐平设置。在保证平直部92与磁体2之间不发生干涉的情况下,优选地,所述平直部92的周向外侧边缘位于所述线圈3的周向外侧边缘的外侧,使其尽可能的为磁力线提供导向作用。另外,在保证中心磁芯9与线圈3之间相对绝缘的条件下,为了方便中心磁芯9与线圈3之间的同轴精确装配,及简化中心磁芯9的加工工艺以及装配难度,优选地,所述本体部91外侧壁表面与线圈3内侧壁表面之间,平直部92的下表面与线圈3的顶部上表面之间留有缝隙。该实施方式所具有的其它优势与第一实施方式所提供马达相对现有技术的优势相同,在此不再赘述。
参照图6,针对振子组件与磁体的配置结构,图6示出本发明第三实施方式所提供线性振动马达中振子组件与磁体的配置示意图。其中,所述中心磁芯9包括***在所述线圈3内的本体部91,所述中心磁芯9的本体部91的上部延伸到所述线圈3外;所述振子组件还进一步包括:围绕在所述本体部91的上部外侧的导磁轭94;所述导磁轭94与本体部91之间结合固定。本实施方式中,导磁轭94为环状结构,其套设在所述本体部91的上部外侧,与第一实施方式所提供中心磁芯结构类似,本实施方式中的导磁轭94与上述实施方式中中心磁芯的平直部的作用类似,同样起到增加呈环状结构的磁体2的磁力线向中轴线聚集的效果,以增加线圈3所处位置的磁场强度,增大马达的电磁驱动力的作用。但其相对于一体结构设置的本体部与平直部的优势在于,其便于根据实际需要设置或者不设置为磁力线提供导向路径及方向的用于导磁的部件,另外还可简化中心磁芯的加工工艺。
此外,本实施方式与上述第一实施方式相同的,所述中心磁芯9的顶部上表面及导磁轭94的顶部上表面与所述第一壳体11顶壁的内侧表面之间具有供振子组件振动的振动空间。所述导磁轭94的周向外侧边缘优选地位于所述线圈3的周向外侧边缘的内外侧;可优选地,所述导磁轭94的顶部上表面与所述中心磁芯9的顶部上表面齐平。另外,本体部91外侧壁表面与线圈3内侧壁表面之间,导磁轭94的下表面与线圈3的顶部上表面之间留有便于装配的缝隙。应该说该种结构配置方式的振子组件及磁体的同样能够实现本发明的发明目的,其所具有的其它优势与第一实施方式及或第二实施方式所提供马达相对现有技术的优势相同,在此不再赘述。
本发明所提供的线性振动马达,可最大化利用磁体的磁性,提升线圈对于磁体磁力线的利用效率,提升马达的电磁驱动力,并且本发明中线圈设置于呈环形结构磁体的内部空间,其直径尺寸可以做的比较小,线圈有效圈数会显著高于现有柱状实芯磁体***的大直径线圈的有效圈数;进而本发明所提供的线性振动马达,通过提升马达的电磁驱动力,增大了马达的有效频宽,便于双频或多频谐振频率的应用,并满足多频点下对马达所提供振感的要求,从整体上提高了线性振动马达综合性能。
显然,本发明的上述实施方式仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

  1. 一种线性振动马达,其特征在于,所述马达包括:
    定子组件,所述定子组件包括具有容纳腔的壳体,位于所述容纳腔内且与所述壳体结合固定的磁体,所述磁体包括中空部;
    振子组件,所述振子组件包括线圈及质量块;所述中空部沿振子组件振动方向延伸,所述振子组件振动时,所述线圈随振子组件振动并***所述磁体的中空部;
    弹性支撑件,配置为将所述振子组件悬置在所述壳体的容纳腔内。
  2. 根据权利要求1所述的线性振动马达,其特征在于,所述线圈与质量块之间形成有供磁体***的间隙。
  3. 根据权利要求1所述的线性振动马达,其特征在于,所述振子组件还包括固定到所述线圈内的中心磁芯,所述中心磁芯包括***在所述线圈内的本体部。
  4. 根据权利要求3所述的线性振动马达,其特征在于,
    所述中心磁芯还包括:
    由所述本体部侧壁外表面向外延伸出的且位于所述线圈上方的平直部。
  5. 根据权利要求3所述的线性振动马达,其特征在于,
    所述中心磁芯还包括:
    由所述本体部侧壁外表面向外延伸出的且位于所述线圈上方的平直部;及
    由所述本体部的顶部上表面沿本体部轴线方向向外延伸出的上端部。
  6. 根据权利要求3所述的线性振动马达,其特征在于,
    所述中心磁芯的本体部的上部延伸到所述线圈外;
    所述振子组件还进一步包括:围绕在所述本体部的上部外侧的导磁轭;
    所述导磁轭与本体部之间结合固定。
  7. 根据权利要求3至6任一项权利要求所述的线性振动马达,其特征在于,所述振子组件还包括导磁板,所述线圈、中心磁芯的本体部及质量块结合固定在所述导磁板的上表面;所述弹性支撑件结合固定在所述导磁板的下表面与壳体底壁的内侧表面之间,且配置为将所述振子组件悬置在所述壳体的容纳腔内。
  8. 根据权利要求1所述的线性振动马达,其特征在于,所述磁体为分段的或者连续的环状结构。
  9. 根据权利要求4或5所述的线性振动马达,其特征在于,所述中心磁芯的顶部上表面与壳体顶壁的内侧表面之间具有供振子组件振动的振动空间。
  10. 根据权利要求6所述的线性振动马达,其特征在于,所述中心磁芯的顶部上表面及导磁轭的顶部上表面与所述壳体顶壁的内侧表面之间具有供振子组件振动的振动空间。
PCT/CN2017/112164 2017-08-11 2017-11-21 线性振动马达 WO2019029047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721009741.1U CN207069865U (zh) 2017-08-11 2017-08-11 线性振动马达
CN201721009741.1 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019029047A1 true WO2019029047A1 (zh) 2019-02-14

Family

ID=61515337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112164 WO2019029047A1 (zh) 2017-08-11 2017-11-21 线性振动马达

Country Status (2)

Country Link
CN (1) CN207069865U (zh)
WO (1) WO2019029047A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218587058U (zh) * 2022-09-09 2023-03-07 瑞声光电科技(常州)有限公司 一种振动马达

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140159511A1 (en) * 2012-12-06 2014-06-12 Samsung Electro-Mechanics Co., Ltd. Linear vibration motor
CN103872875A (zh) * 2012-12-12 2014-06-18 三星电机株式会社 线性电机
CN103997181A (zh) * 2013-02-18 2014-08-20 日本电产科宝株式会社 线性振动致动器以及具有线性振动致动器的便携通信设备和游戏设备
CN205725402U (zh) * 2016-04-28 2016-11-23 绵阳博凡科技有限公司 一种线性振动器
CN205725403U (zh) * 2016-04-28 2016-11-23 绵阳博凡科技有限公司 一种线性振动电机
CN205753918U (zh) * 2016-05-30 2016-11-30 歌尔股份有限公司 线性振动马达
CN107257190A (zh) * 2017-08-11 2017-10-17 歌尔股份有限公司 线性振动马达
CN107276361A (zh) * 2017-08-11 2017-10-20 歌尔股份有限公司 一种线性振动马达
CN107317454A (zh) * 2017-08-11 2017-11-03 歌尔股份有限公司 线性振动马达

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140159511A1 (en) * 2012-12-06 2014-06-12 Samsung Electro-Mechanics Co., Ltd. Linear vibration motor
CN103872875A (zh) * 2012-12-12 2014-06-18 三星电机株式会社 线性电机
CN103997181A (zh) * 2013-02-18 2014-08-20 日本电产科宝株式会社 线性振动致动器以及具有线性振动致动器的便携通信设备和游戏设备
CN205725402U (zh) * 2016-04-28 2016-11-23 绵阳博凡科技有限公司 一种线性振动器
CN205725403U (zh) * 2016-04-28 2016-11-23 绵阳博凡科技有限公司 一种线性振动电机
CN205753918U (zh) * 2016-05-30 2016-11-30 歌尔股份有限公司 线性振动马达
CN107257190A (zh) * 2017-08-11 2017-10-17 歌尔股份有限公司 线性振动马达
CN107276361A (zh) * 2017-08-11 2017-10-20 歌尔股份有限公司 一种线性振动马达
CN107317454A (zh) * 2017-08-11 2017-11-03 歌尔股份有限公司 线性振动马达

Also Published As

Publication number Publication date
CN207069865U (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
WO2019029049A1 (zh) 线性振动马达
CN107257190B (zh) 线性振动马达
US10079531B2 (en) Linear vibration motor
US8937411B2 (en) Vibration generating device
US8941273B2 (en) Vibration generation device
KR101746007B1 (ko) 자계 폐회로 형성 케이스를 포함하는 리니어 타입 상하진동모터
KR101157985B1 (ko) 리니어 진동모터
CN105553217B (zh) 振动马达
US20140132089A1 (en) Linear vibration motor
US11245320B2 (en) Linear vibration motor
WO2018157509A1 (zh) 线性振动马达以及电子设备
KR20140125476A (ko) 선형 진동 발생장치
US11309782B2 (en) Linear vibration motor
CN106655695B (zh) 一种线性振动马达
US11515068B2 (en) Exciter
WO2019029050A1 (zh) 一种线性振动马达
US20200044537A1 (en) Vibration motor
US11349380B2 (en) Linear vibration motor
WO2018166090A1 (zh) 线性振动马达
WO2019029047A1 (zh) 线性振动马达
WO2019029055A1 (zh) 线性振动马达
US11025147B2 (en) Vibration motor
US10003245B2 (en) Linear vibrating motor
KR20150080673A (ko) 선형 진동 모터
WO2019029054A1 (zh) 线性振动马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921318

Country of ref document: EP

Kind code of ref document: A1