WO2019024302A1 - Oled显示面板的柔性基底及其制备方法 - Google Patents

Oled显示面板的柔性基底及其制备方法 Download PDF

Info

Publication number
WO2019024302A1
WO2019024302A1 PCT/CN2017/109461 CN2017109461W WO2019024302A1 WO 2019024302 A1 WO2019024302 A1 WO 2019024302A1 CN 2017109461 W CN2017109461 W CN 2017109461W WO 2019024302 A1 WO2019024302 A1 WO 2019024302A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon oxide
preparing
flexible substrate
polyimide layer
Prior art date
Application number
PCT/CN2017/109461
Other languages
English (en)
French (fr)
Inventor
秦学思
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to JP2020504665A priority Critical patent/JP7130028B2/ja
Priority to US15/580,236 priority patent/US10263202B2/en
Priority to EP17920328.6A priority patent/EP3664178B1/en
Priority to KR1020207006227A priority patent/KR102362552B1/ko
Publication of WO2019024302A1 publication Critical patent/WO2019024302A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/07Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 buffer layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a GOA circuit and a liquid crystal display panel having the GOA circuit.
  • OLED Organic Light-Emitting Diode
  • Organic electroluminescent display also known as organic electroluminescent display
  • An important research direction is to select a flexible substrate instead of a conventional glass substrate to achieve the flexibility of the panel.
  • Flexible OLED panels have become the new direction of panel development.
  • the next generation of flexible OLED panels is based on flexible PI (Polyimide), which requires high performance of PI, minimizes PI defects, and improves flexible OLED panels.
  • the yield is prepared, so the damage of PI should be reduced during the preparation of the OLED panel.
  • a Buffer layer is conventionally used to solve the problem, in which SiNx (silicon nitride) blocks Al/Ba/Na (aluminum/niobium/sodium) plasma diffusion in the glass substrate.
  • SiNx silicon nitride
  • SiOx silicon oxide
  • SiNx has strong ability to isolate ions.
  • the stress in contact with the glass is small, and the interface wetting angle between SiOx and polysilicon is better, so the stacking method of SiNx/SiOx is adopted.
  • the SiNx layer does not directly contact the glass substrate, and its effect is limited to the insulation buffering effect.
  • the thermal insulation effect of SiOx in the ELA (laser annealing) process is insufficient, which easily leads to the destruction of the PI layer.
  • the buffer layer of the flexible substrate of the OLED display panel of the prior art has no obvious effect on the protection of the PI layer, and is likely to cause damage of the PI layer, thereby affecting the quality of the OLED display panel.
  • the invention provides a flexible substrate preparation method for an OLED display panel.
  • the buffer layer of the flexible substrate can reduce damage of the PI layer by the laser to solve the buffer layer of the flexible substrate of the OLED display panel of the prior art, and the protection effect on the PI layer. Not obvious, it is easy to cause damage to the PI layer, which in turn affects the quality of the OLED display panel.
  • the invention provides a method for preparing a flexible substrate of an OLED display panel, the method comprising the following steps:
  • Step S10 providing a glass substrate
  • the step S10 includes:
  • Step S101 preparing a photoresist layer on the surface of the glass substrate
  • Step S20 preparing a first polyimide layer on the surface of the glass substrate
  • Step S30 preparing a buffer layer on the surface of the first polyimide layer
  • the step S30 includes:
  • Step S301 preparing a silicon oxide layer on the surface of the first polyimide layer
  • Step S302 performing titanium on the silicon oxide layer by using an ion implantation technique.
  • Step S40 preparing a polysilicon layer on the surface of the buffer layer.
  • the side from the silicon oxide layer away from the first polyimide layer to the silicon oxide layer is close to the first polyimide layer.
  • the titanium ion concentration distribution is gradually reduced.
  • the relative content of titanium ions on the side of the silicon oxide layer close to the first polyimide layer is zero.
  • the method further includes:
  • Step S50 preparing a second polyimide layer on the surface of the polysilicon layer.
  • the method further includes:
  • step S60 the glass substrate is peeled off by laser.
  • the present invention also provides a flexible substrate preparation method for another OLED display panel, the method comprising the following steps:
  • Step S10 providing a glass substrate
  • Step S20 preparing a first polyimide layer on the surface of the glass substrate
  • Step S30 preparing a buffer layer on the surface of the first polyimide layer
  • the step S30 includes:
  • Step S301 preparing a silicon oxide layer on the surface of the first polyimide layer
  • Step S302 performing titanium on the silicon oxide layer by using an ion implantation technique.
  • Step S40 preparing a polysilicon layer on the surface of the buffer layer.
  • the side from the silicon oxide layer away from the first polyimide layer to the silicon oxide layer is close to the first polyimide layer.
  • the titanium ion concentration distribution is gradually reduced.
  • the relative content of titanium ions on the side of the silicon oxide layer close to the first polyimide layer is zero.
  • the method further includes:
  • Step S50 preparing a second polyimide layer on the surface of the polysilicon layer.
  • the method further includes:
  • step S60 the glass substrate is peeled off by laser.
  • a flexible substrate prepared using the above-described preparation method comprising:
  • a buffer layer is prepared on the surface of the first polyimide layer, the buffer layer comprising:
  • a polysilicon layer is prepared on the surface of the buffer layer.
  • the titanium is from a side of the silicon oxide layer away from the first polyimide layer to a side of the silicon oxide layer close to the first polyimide layer.
  • the ion concentration distribution is gradually reduced.
  • the silicon oxide layer has a relative content of titanium ions of 0 near one side of the first polyimide layer.
  • a surface of the polysilicon layer is prepared with a second polyimide layer.
  • the buffer layer has a film thickness of about 3 times the film thickness of the first polyimide layer.
  • the flexible substrate of the OLED provided by the present invention has a buffer layer which increases the absorption amount of the ultraviolet laser and reduces the transmittance of the ultraviolet laser.
  • the buffer layer of the flexible substrate of the prior art OLED display panel is solved, the protection effect on the PI layer is not obvious, and the damage of the PI layer is easily caused, thereby affecting the OLED.
  • FIG. 2 is a schematic view showing the structure of a flexible substrate prepared by the preparation method of the present invention.
  • the present invention is directed to the buffer layer of the flexible substrate of the existing OLED display panel, the protection effect on the PI layer is not obvious, and the damage of the PI layer is easily caused, thereby affecting the quality of the OLED display panel.
  • This embodiment can solve the defect.
  • a method for preparing a flexible substrate for an OLED display panel includes the following steps:
  • step S10 a glass substrate is provided.
  • Step S20 preparing a first polyimide layer on the surface of the glass substrate.
  • Step S30 preparing a buffer layer on the surface of the first polyimide layer. Further, the step S30 includes: step S301, preparing a silicon oxide layer on the surface of the first polyimide layer; and step S302, performing titanium ion implantation on the silicon oxide layer by ion implantation to form titanium oxide and oxidizing A mixed layer of silicon.
  • Step S40 preparing a polysilicon layer on the surface of the buffer layer.
  • the first polyimide layer has high bending property and impact resistance as a protective layer of the flexible substrate and the OLED display panel.
  • the buffer layer prepared in the step S30 when the OLED display panel is in the laser annealing process, the buffer layer can reduce the transmittance of the ultraviolet laser, thereby reducing the damage of the ultraviolet laser to the first polyimide layer.
  • a TFT (thin film transistor) layer and an OLED light emitting layer are prepared on the surface of the flexible substrate.
  • the glass lining provided in step S10 is performed by using an ultraviolet laser. The bottom peeling, at this time, the buffer layer reduces the transmittance of the ultraviolet laser to prevent the ultraviolet laser from injuring the TFT layer through the flexible substrate.
  • the method further includes: Step S101, preparing a photoresist layer on the surface of the glass substrate; the first polyimide layer is prepared on the surface of the photoresist layer.
  • Step S101 preparing a photoresist layer on the surface of the glass substrate; the first polyimide layer is prepared on the surface of the photoresist layer.
  • the photoresist layer can prevent damage caused by the ultraviolet laser light passing through the glass substrate on the first polyimide layer; after the glass substrate is peeled off, The photoresist layer is peeled off.
  • a thick silicon oxide layer is prepared on the surface of the first polyimide layer, and the silicon oxide layer has a better heat preservation effect, which can reduce the crystallization process of the polysilicon in the step S40. The heat is lost, which is conducive to the formation of relatively large grains.
  • the silicon oxide layer is implanted with titanium ions by an ion implantation technique to form a mixed layer of titanium oxide and silicon oxide.
  • the grain size of titanium dioxide is controlled within the nanometer range, which has a strong barrier effect on ultraviolet light.
  • the lateral area of the ion implantation and the implantation depth are controlled by controlling the energy of the ion beam.
  • the distribution of the titanium ions in the lateral distribution is infinitely close to the range of the silicon oxide layer, and the titanium ions are in the longitudinal distribution, away from the first polyglycan from the silicon oxide layer. From one side of the imide layer to the side of the silicon oxide layer adjacent to the first polyimide layer, the titanium ion concentration distribution is gradually reduced, thereby reducing the possibility of conduction of the silicon oxide layer.
  • a relatively low content of titanium ions on a side of the silicon oxide layer adjacent to the first polyimide layer is 0; an undoped region is included in the silicon oxide layer, and the undoped region is located in the silicon oxide layer a position in the layer close to the first polyimide layer; no titanium ions are implanted into the undoped region, and the undoped region serves as an isolation region to prevent titanium dioxide from affecting the insulating effect of the silicon oxide layer.
  • a polysilicon layer is prepared on the surface of the buffer layer, and the polysilicon may be replaced by amorphous silicon.
  • the method further includes a step S50, preparing a second polyimide layer on the surface of the polysilicon layer, the second polyimide layer and the second polyimide layer being used together as the a protective layer of the flexible substrate; the polysilicon layer in the step S40 is used as a bonding layer of the second polyimide layer and the buffer layer.
  • the method further includes: S60, peeling off the glass substrate by using a laser to form the flexible substrate; wherein, after the step S50, before the step S60, the step S501 is further included.
  • the flexible substrate comprises: a first polyimide layer 101; a buffer layer 102, which is prepared from the first polyimide.
  • the surface of the imide layer 101, the buffer layer 102 includes: a silicon oxide layer 1021 prepared on the surface of the first polyimide layer 101; wherein the silicon oxide layer 1021 is implanted with titanium ions 1022; the polysilicon layer 103 Prepared on the surface of the buffer layer 102.
  • the concentration distribution of the titanium ion 1022 is gradually reduced.
  • the relative content of the titanium ions 1022 of the silicon oxide layer 1021 near one side of the first polyimide layer 101 is 0; the silicon oxide layer 1021 includes an undoped region. 104, the undoped region 104 is located in the silicon oxide layer 1021 near the first polyimide layer 101; the undoped region 104 is not implanted with titanium ions 1022, the undoped The region 104 serves as an isolation region to prevent titanium dioxide from affecting the insulating effect of the silicon oxide layer 1021.
  • a surface of the polysilicon layer 103 is prepared with a second polyimide layer.
  • the buffer layer 102 has a film thickness of about 3 times the film thickness of the first polyimide layer 101.
  • the flexible substrate of the preferred embodiment is produced by the flexible substrate preparation method of the OLED display panel of the above preferred embodiment, and the specific principle is the same as the preparation method of the above preferred embodiment, and details are not described herein.
  • the flexible substrate of the OLED provided by the present invention has a buffer layer which increases the absorption amount of the ultraviolet laser and reduces the transmittance of the ultraviolet laser.
  • the buffer layer of the flexible substrate of the prior art OLED display panel is solved, the protection effect on the PI layer is not obvious, and the damage of the PI layer is easily caused, thereby affecting the OLED.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

一种OLED显示面板的柔性基底制备方法,包括:步骤S10,提供一玻璃衬底;步骤S20,在玻璃衬底表面制备第一聚酰亚胺层;步骤S30,在第一聚酰亚胺层表面制备缓冲层;步骤S30包括:步骤S301,在第一聚酰亚胺层表面制备氧化硅层;步骤S302,利用离子注入技术,对氧化硅层进行钛离子注入,形成二氧化钛与氧化硅的混合层。

Description

OLED显示面板的柔性基底及其制备方法 技术领域
本发明涉及液晶显示技术领域,尤其涉及一种GOA电路及具有所述GOA电路的液晶显示面板。
背景技术
OLED( Organic Light-Emitting Diode,有机发光二极管)显示器,也称为有机电致发光显示器,是一种新兴的平板显示装置,由于其具有制作工艺简单、成本低、功耗低、发光亮度高、工作温度适应范围广、体积轻薄、响应速度快,而且易于实现彩色显示和大屏幕显示、易于实现和集成电路驱动器相匹配、易于实现柔性显示等优点,因而具有广阔的应用前景;如今,柔性OLED面板成为有机发光器件的重要研究方向,选择柔性基底替代传统的玻璃衬底以实现面板的可弯曲性。
柔性OLED面板成为面板发展的新方向,下一代柔性OLED面板是以柔性PI(Polyimide,聚酰亚胺)为基板,这就要求PI具有高的性能,尽量减少PI的缺陷,提高柔性OLED面板的制备良率,所以在OLED面板的制备过程中应该减少PI的损伤。
然而,在柔性OLED面板的制备过程中,激光退火以及激光剥离玻璃衬底时,都会对PI造成一定的伤害,甚至会出现PI破孔的现象。
为了减少制程中激光对PI造成伤害,传统上使用Buffer(缓冲)层以解决该问题,其中SiNx(氮化硅)阻挡玻璃衬底中的Al/Ba/Na(铝/钡/钠)等离子扩散到PI中,降低漏电流;SiOx(氧化硅)保温效果较好,可降低a-Si(非晶硅)结晶过程中的热量散失,利于形成比较大的晶粒;SiNx隔绝离子的能力较强与玻璃接触的应力较小,SiOx与多晶硅界面润湿角比较好,故采用SiNx/SiOx的堆叠方式。但是在柔性OLED面板的基底中,SiNx层并不直接与玻璃衬底相接处,其作用效果仅限于绝缘缓冲作用。SiOx在ELA(激光退火)过程中的保温效果不足,易导致PI层的破坏。
综上所示,现有技术的OLED显示面板的柔性基底的缓冲层,对PI层的保护效果不明显,易造成PI层的破坏,进而影响OLED显示面板的品质。
技术问题
本发明提供一种OLED显示面板的柔性基底制备方法,柔性基底的缓冲层能够减弱激光对PI层的伤害,以解决现有技术的OLED显示面板的柔性基底的缓冲层,对PI层的保护效果不明显,易造成PI层的破坏,进而影响OLED显示面板的品质。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明提供一种OLED显示面板的柔性基底制备方法,所述方法包括以下步骤:
步骤S10,提供一玻璃衬底;
所述步骤S10包括:
步骤S101,在所述玻璃衬底表面制备光阻层;
步骤S20,在所述玻璃衬底表面制备第一聚酰亚胺层;
步骤S30,在所述第一聚酰亚胺层表面制备缓冲层;
所述步骤S30包括:
步骤S301,在所述第一聚酰亚胺层表面制备氧化硅层;
步骤S302,利用离子注入技术,对所述氧化硅层进行钛
离子注入,形成二氧化钛与氧化硅的混合层;
步骤S40,在所述缓冲层表面制备多晶硅层。
根据本发明一优选实施例,在所述步骤S302中,自所述氧化硅层远离所述第一聚酰亚胺层的一侧至所述氧化硅层靠近所述第一聚酰亚胺层的一侧,所述钛离子浓度分布逐渐减少。
根据本发明一优选实施例,在所述步骤S302中,所述氧化硅层靠近所述第一聚酰亚胺层的一侧的钛离子相对含量为0。
根据本发明一优选实施例,在所述步骤S40之后,还包括:
步骤S50,在所述多晶硅层表面制备第二聚酰亚胺层。
根据本发明一优选实施例,在所述步骤S50之后,还包括:
步骤S60,利用激光剥离所述玻璃衬底。
本发明还提供另一种OLED显示面板的柔性基底制备方法,所述方法包括以下步骤:
步骤S10,提供一玻璃衬底;
步骤S20,在所述玻璃衬底表面制备第一聚酰亚胺层;
步骤S30,在所述第一聚酰亚胺层表面制备缓冲层;
所述步骤S30包括:
步骤S301,在所述第一聚酰亚胺层表面制备氧化硅层;
步骤S302,利用离子注入技术,对所述氧化硅层进行钛
离子注入,形成二氧化钛与氧化硅的混合层;
步骤S40,在所述缓冲层表面制备多晶硅层。
根据本发明一优选实施例,在所述步骤S302中,自所述氧化硅层远离所述第一聚酰亚胺层的一侧至所述氧化硅层靠近所述第一聚酰亚胺层的一侧,所述钛离子浓度分布逐渐减少。
根据本发明一优选实施例,在所述步骤S302中,所述氧化硅层靠近所述第一聚酰亚胺层的一侧的钛离子相对含量为0。
根据本发明一优选实施例,在所述步骤S40之后,还包括:
步骤S50,在所述多晶硅层表面制备第二聚酰亚胺层。
根据本发明一优选实施例,在所述步骤S50之后,还包括:
步骤S60,利用激光剥离所述玻璃衬底。
依据本发明的上述目的,提出使用上述制备方法制备的柔性基底,所述柔性基底包括:
第一聚酰亚胺层;
缓冲层,制备于所述第一聚酰亚胺层表面,所述缓冲层包括:
氧化硅层,制备于所述第一聚酰亚胺层表面;其中,所
述氧化硅层内注入有钛离子;
多晶硅层,制备于所述缓冲层表面。
根据本发明一优选实施例,自所述氧化硅层远离所述第一聚酰亚胺层的一侧至所述氧化硅层靠近所述第一聚酰亚胺层的一侧,所述钛离子浓度分布逐渐减少。
根据本发明一优选实施例,所述氧化硅层靠近所述第一聚酰亚胺层的一侧的钛离子相对含量为0。
根据本发明一优选实施例,所述多晶硅层表面制备有第二聚酰亚胺层。
根据本发明一优选实施例,所述缓冲层的膜层厚度约为所述第一聚酰亚胺层的膜层厚度的3倍。
有益效果
本发明的有益效果为:相较于现有的OLED显示面板的柔性基底,本发明提供的OLED显示的柔性基底,其缓冲层增加了对紫外激光的吸收量,降低紫外激光的透过率,以减少激光退火对PI层的伤害,提升产品良率;解决了现有技术的OLED显示面板的柔性基底的缓冲层,对PI层的保护效果不明显,易造成PI层的破坏,进而影响OLED显示面板的品质的技术问题。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明OLED显示面板的柔性基底制备方法;
图2为通过本发明制备方法制得的柔性基底结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有的OLED显示面板的柔性基底的缓冲层,对PI层的保护效果不明显,易造成PI层的破坏,进而影响OLED显示面板的品质,本实施例能够解决该缺陷。
如图1所示,本发明所提供的OLED显示面板的柔性基底制备方法,包括如下步骤:
步骤S10,提供一玻璃衬底。
步骤S20,在所述玻璃衬底表面制备第一聚酰亚胺层。
步骤S30,在所述第一聚酰亚胺层表面制备缓冲层。进一步,所述步骤S30包括:步骤S301,在所述第一聚酰亚胺层表面制备氧化硅层;步骤S302,利用离子注入技术,对所述氧化硅层进行钛离子注入,形成二氧化钛与氧化硅的混合层。
步骤S40,在所述缓冲层表面制备多晶硅层。
在所述步骤S20中,所述第一聚酰亚胺层具有高弯曲性能与抗冲击能力,作为所述柔性基底以及OLED显示面板的保护层。
在所述步骤S30中制备的缓冲层,当OLED显示面板在激光退火制程中,所述缓冲层能够降低紫外激光的透过率,进而减少紫外激光对所述第一聚酰亚胺层的伤害;另外,在所述柔性基底制备完成后,会在所述柔性基底表面制备TFT(薄膜晶体管)层以及OLED发光层,待OLED显示面板制备完成,利用紫外激光将步骤S10中所提供的玻璃衬底剥离,此时,所述缓冲层降低紫外激光的透过率,避免紫外激光穿过所述柔性基板对所述TFT层造成伤害。
例如,在所述步骤S10之后,还包括:步骤S101,在所述玻璃衬底表面制备光阻层;所述第一聚酰亚胺层制备于所述光阻层表面。在使用紫外激光剥离所述玻璃衬底时,所述光阻层能够避免紫外激光穿过玻璃衬底对所述第一聚酰亚胺层造成的伤害;所述玻璃衬底剥离完成后,对所述光阻层进行剥离。
在所述步骤S301中,在所述第一聚酰亚胺层表面制备较厚的氧化硅层,所述氧化硅层具有较好的保温效果,可降低所述步骤S40中的多晶硅结晶过程中的热量散失,利于形成比较大的晶粒。
在所述步骤S302中,利用离子注入技术,对所述氧化硅层进行钛离子注入,形成二氧化钛与氧化硅的混合层。将二氧化钛晶粒大小控制在纳米级范围内,对紫外光有较强的阻隔作用。
在使用离子注入设备对所述氧化硅层进行钛离子注入时,通过控制离子束的能量来控制离子注入的横向面积及注入深度。通过对离子束的控制,使得所述钛离子在横向分布中,分布范围无限接近所述氧化硅层的范围,所述钛离子在纵向分布中,自所述氧化硅层远离所述第一聚酰亚胺层的一侧至所述氧化硅层靠近所述第一聚酰亚胺层的一侧,钛离子浓度分布逐渐减少,进而减少所述氧化硅层导电的可能。
所述氧化硅层靠近所述第一聚酰亚胺层的一侧的钛离子相对含量为0;所述氧化硅层内包括有非掺杂区域,所述非掺杂区域位于所述氧化硅层内接近所述第一聚酰亚胺层的位置;所述非掺杂区域内未注入钛离子,所述非掺杂区域作为隔离区域,以避免二氧化钛影响所述氧化硅层的绝缘效果。
在所述步骤S40中,在所述缓冲层表面制备多晶硅层,所述多晶硅可替换为非晶硅。
在所述步骤S40之后,还包括步骤S50,在所述多晶硅层表面制备第二聚酰亚胺层,所述第二聚酰亚胺层与所述第二聚酰亚胺层共同作为所述柔性基底的保护层;所述步骤S40中的所述多晶硅层用作所述第二聚酰亚胺层与所述缓冲层的粘接层。
在所述步骤S50之后,还包括S60,利用激光剥离所述玻璃衬底,以形成可弯折的所述柔性基底;其中,所述步骤S50之后、所述步骤S60之前,还包括步骤S501,在所述第二聚酰亚胺层表面制备TFT层;步骤S502,在所述TFT层表面制备OLED发光层。
依据本发明的上述目的,提出使用上述制备方法制备的柔性基底,如图2所示,所述柔性基底包括:第一聚酰亚胺层101;缓冲层102,制备于所述第一聚酰亚胺层101表面,所述缓冲层102包括:氧化硅层1021,制备于所述第一聚酰亚胺层101表面;其中,所述氧化硅层1021内注入有钛离子1022;多晶硅层103,制备于所述缓冲层102表面。
根据本发明一优选实施例,自所述氧化硅层1021远离所述第一聚酰亚胺层101的一侧至所述氧化硅层1021靠近所述第一聚酰亚胺层101的一侧,所述钛离子1022浓度分布逐渐减少。
根据本发明一优选实施例,所述氧化硅层1021靠近所述第一聚酰亚胺层101的一侧的钛离子1022相对含量为0;所述氧化硅层1021内包括有非掺杂区域104,所述非掺杂区域104位于所述氧化硅层1021内接近所述第一聚酰亚胺层101的位置;所述非掺杂区域104内未注入钛离子1022,所述非掺杂区域104作为隔离区域,以避免二氧化钛影响所述氧化硅层1021的绝缘效果。
根据本发明一优选实施例,所述多晶硅层103表面制备有第二聚酰亚胺层。
根据本发明一优选实施例,所述缓冲层102的膜层厚度约为所述第一聚酰亚胺层101的膜层厚度的3倍。
本优选实施例的柔性基底由上述优选实施例的OLED显示面板的柔性基板制备方法制得,具体原理与上述优选实施例的制备方法一致,此处不再做赘述。
本发明的有益效果为:相较于现有的OLED显示面板的柔性基底,本发明提供的OLED显示的柔性基底,其缓冲层增加了对紫外激光的吸收量,降低紫外激光的透过率,以减少激光退火对PI层的伤害,提升产品良率;解决了现有技术的OLED显示面板的柔性基底的缓冲层,对PI层的保护效果不明显,易造成PI层的破坏,进而影响OLED显示面板的品质的技术问题。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (15)

  1. OLED显示面板的柔性基底制备方法,其中,所述方法包括以下步骤:
    步骤S10,提供一玻璃衬底;
    所述步骤S10包括:
    步骤S101,在所述玻璃衬底表面制备光阻层;
    步骤S20,在所述玻璃衬底表面制备第一聚酰亚胺层;
    步骤S30,在所述第一聚酰亚胺层表面制备缓冲层;
    所述步骤S30包括:
    步骤S301,在所述第一聚酰亚胺层表面制备氧化硅层;
    步骤S302,利用离子注入技术,对所述氧化硅层进行钛
    离子注入,形成二氧化钛与氧化硅的混合层;
    步骤S40,在所述缓冲层表面制备多晶硅层。
  2. 根据权利要求1所述的柔性基底制备方法,其中,在所述步骤S302中,自所述氧化硅层远离所述第一聚酰亚胺层的一侧至所述氧化硅层靠近所述第一聚酰亚胺层的一侧,所述钛离子浓度分布逐渐减少。
  3. 根据权利要求2所述的柔性基底制备方法,其中,在所述步骤S302中,所述氧化硅层靠近所述第一聚酰亚胺层的一侧的钛离子相对含量为0。
  4. 根据权利要求1所述的柔性基底制备方法,其中,在所述步骤S40之后,还包括:
    步骤S50,在所述多晶硅层表面制备第二聚酰亚胺层。
  5. 根据权利要求4所述的柔性基底制备方法,其中,在所述步骤S50之后,还包括:
    步骤S60,利用激光剥离所述玻璃衬底。
  6. OLED显示面板的柔性基底制备方法,其中,所述方法包括以下步骤:
    步骤S10,提供一玻璃衬底;
    步骤S20,在所述玻璃衬底表面制备第一聚酰亚胺层;
    步骤S30,在所述第一聚酰亚胺层表面制备缓冲层;
    所述步骤S30包括:
    步骤S301,在所述第一聚酰亚胺层表面制备氧化硅层;
    步骤S302,利用离子注入技术,对所述氧化硅层进行钛
    离子注入,形成二氧化钛与氧化硅的混合层;
    步骤S40,在所述缓冲层表面制备多晶硅层。
  7. 根据权利要求6所述的柔性基底制备方法,其中,在所述步骤S302中,自所述氧化硅层远离所述第一聚酰亚胺层的一侧至所述氧化硅层靠近所述第一聚酰亚胺层的一侧,所述钛离子浓度分布逐渐减少。
  8. 根据权利要求7所述的柔性基底制备方法,其中,在所述步骤S302中,所述氧化硅层靠近所述第一聚酰亚胺层的一侧的钛离子相对含量为0。
  9. 根据权利要求6所述的柔性基底制备方法,其中,在所述步骤S40之后,还包括:
    步骤S50,在所述多晶硅层表面制备第二聚酰亚胺层。
  10. 根据权利要求9所述的柔性基底制备方法,其中,在所述步骤S50之后,还包括:
    步骤S60,利用激光剥离所述玻璃衬底。
  11. 一种如权利要求6所述的制备方法制备的柔性基底,其中,所述柔性基底包括:
    第一聚酰亚胺层;
    缓冲层,制备于所述第一聚酰亚胺层表面,所述缓冲层包括:
    氧化硅层,制备于所述第一聚酰亚胺层表面;其中,所
    述氧化硅层内注入有钛离子;
    多晶硅层,制备于所述缓冲层表面。
  12. 根据权利要求11所述的柔性基底,其中,自所述氧化硅层远离所述第一聚酰亚胺层的一侧至所述氧化硅层靠近所述第一聚酰亚胺层的一侧,所述钛离子浓度分布逐渐减少。
  13. 根据权利要求12所述的柔性基底,其中,所述氧化硅层靠近所述第一聚酰亚胺层的一侧的钛离子相对含量为0。
  14. 根据权利要求11所述的柔性基底,其中,所述多晶硅层表面制备有第二聚酰亚胺层。
  15. 根据权利要求11所述的柔性基底,其中,所述缓冲层的膜层厚度约为所述第一聚酰亚胺层的膜层厚度的3倍。
PCT/CN2017/109461 2017-08-04 2017-11-06 Oled显示面板的柔性基底及其制备方法 WO2019024302A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020504665A JP7130028B2 (ja) 2017-08-04 2017-11-06 Oled表示パネルのフレキシブル基板及びその製造方法
US15/580,236 US10263202B2 (en) 2017-08-04 2017-11-06 Flexible base plate of OLED display panel and method for manufacturing the same
EP17920328.6A EP3664178B1 (en) 2017-08-04 2017-11-06 Flexible substrate of oled display panel and method for preparing same
KR1020207006227A KR102362552B1 (ko) 2017-08-04 2017-11-06 Oled 디스플레이 패널의 가요성 기판 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710660404.7A CN107507929B (zh) 2017-08-04 2017-08-04 Oled显示面板的柔性基底及其制备方法
CN201710660404.7 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019024302A1 true WO2019024302A1 (zh) 2019-02-07

Family

ID=60690426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109461 WO2019024302A1 (zh) 2017-08-04 2017-11-06 Oled显示面板的柔性基底及其制备方法

Country Status (5)

Country Link
EP (1) EP3664178B1 (zh)
JP (1) JP7130028B2 (zh)
KR (1) KR102362552B1 (zh)
CN (1) CN107507929B (zh)
WO (1) WO2019024302A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430301A (zh) * 2020-04-01 2020-07-17 深圳市华星光电半导体显示技术有限公司 柔性显示面板的制作方法
CN111863927A (zh) * 2020-08-21 2020-10-30 京东方科技集团股份有限公司 柔性显示基板和柔性显示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522770B2 (en) 2017-12-28 2019-12-31 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Fabricating method of flexivle panel and flexible display device
CN108230904A (zh) * 2017-12-28 2018-06-29 武汉华星光电半导体显示技术有限公司 一种柔性面板的制备方法及柔性显示装置
CN108831911B (zh) * 2018-06-12 2019-08-13 武汉华星光电半导体显示技术有限公司 一种柔性有机发光二极管显示器及其制作方法
CN108807484A (zh) * 2018-06-22 2018-11-13 武汉华星光电半导体显示技术有限公司 柔性显示面板及其制造方法
CN109616575A (zh) * 2018-12-10 2019-04-12 武汉华星光电半导体显示技术有限公司 柔性显示面板及其制作方法
CN109904106B (zh) * 2019-02-28 2021-12-14 云谷(固安)科技有限公司 柔性显示面板及柔性显示面板的制备方法
CN112071796B (zh) * 2020-09-03 2023-06-02 深圳市华星光电半导体显示技术有限公司 柔性基板及其制作方法、柔性显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576970A (zh) * 2013-10-12 2015-04-29 昆山工研院新型平板显示技术中心有限公司 一种柔性显示装置的制备方法及其制备的柔性显示装置
CN104867872A (zh) * 2015-04-24 2015-08-26 京东方科技集团股份有限公司 柔性显示基板的制作方法及柔性显示面板的制作方法
CN105315465A (zh) * 2015-11-17 2016-02-10 陕西理工学院 一种具有防紫外线功能的聚酰亚胺塑料的制备方法
CN106206945A (zh) * 2016-09-08 2016-12-07 京东方科技集团股份有限公司 一种柔性基板及其制备方法、柔性显示装置
CN106585015A (zh) * 2016-12-30 2017-04-26 东莞市尼的科技股份有限公司 一种抗紫外线的保护膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69207338T2 (de) * 1991-10-23 1996-07-25 Philips Electronics Nv Antireflektive und antistatische Verkleidungsschicht insbesonder für eine Elektronenstrahlröhre
KR20110058123A (ko) * 2009-11-25 2011-06-01 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조 방법
WO2012032907A1 (ja) * 2010-09-07 2012-03-15 リンテック株式会社 粘着シート、及び電子デバイス
KR102023945B1 (ko) * 2012-12-28 2019-11-04 엘지디스플레이 주식회사 플렉서블 유기발광 디스플레이 장치
US9828469B2 (en) * 2013-09-27 2017-11-28 Toray Industries, Inc. Polyimide precursor, polyimide resin film produced from said polyimide precursor, display element, optical element, light-receiving element, touch panel and circuit board each equipped with said polyimide resin film, organic EL display, and methods respectively for producing organic EL element and color filter
KR102367682B1 (ko) * 2014-03-12 2022-02-25 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 표시장치 및 그 제조방법, 및 표시 장치용 폴리이미드 필름
CN105552247B (zh) * 2015-12-08 2018-10-26 上海天马微电子有限公司 复合基板、柔性显示装置及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576970A (zh) * 2013-10-12 2015-04-29 昆山工研院新型平板显示技术中心有限公司 一种柔性显示装置的制备方法及其制备的柔性显示装置
CN104867872A (zh) * 2015-04-24 2015-08-26 京东方科技集团股份有限公司 柔性显示基板的制作方法及柔性显示面板的制作方法
CN105315465A (zh) * 2015-11-17 2016-02-10 陕西理工学院 一种具有防紫外线功能的聚酰亚胺塑料的制备方法
CN106206945A (zh) * 2016-09-08 2016-12-07 京东方科技集团股份有限公司 一种柔性基板及其制备方法、柔性显示装置
CN106585015A (zh) * 2016-12-30 2017-04-26 东莞市尼的科技股份有限公司 一种抗紫外线的保护膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3664178A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430301A (zh) * 2020-04-01 2020-07-17 深圳市华星光电半导体显示技术有限公司 柔性显示面板的制作方法
CN111863927A (zh) * 2020-08-21 2020-10-30 京东方科技集团股份有限公司 柔性显示基板和柔性显示装置
CN111863927B (zh) * 2020-08-21 2023-11-24 京东方科技集团股份有限公司 柔性显示基板和柔性显示装置

Also Published As

Publication number Publication date
EP3664178B1 (en) 2022-08-10
KR102362552B1 (ko) 2022-02-14
JP7130028B2 (ja) 2022-09-02
EP3664178A1 (en) 2020-06-10
CN107507929A (zh) 2017-12-22
CN107507929B (zh) 2019-04-16
EP3664178A4 (en) 2021-05-05
JP2020529045A (ja) 2020-10-01
KR20200034792A (ko) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2019024302A1 (zh) Oled显示面板的柔性基底及其制备方法
WO2016201729A1 (zh) 一种阵列基板及其制作方法、液晶显示器
WO2019000493A1 (zh) 薄膜晶体管阵列基板及其制备方法、oled显示装置
WO2019085065A1 (zh) 柔性 oled 显示面板及其制备方法
WO2017054191A1 (zh) 一种tft阵列基板及其制作方法
US10566401B2 (en) Thin film transistor array substrate and preparing method therefor, and OLED display device
WO2020082426A1 (zh) 薄膜晶体管的制备方法、薄膜晶体管及显示面板
WO2016008184A1 (zh) 一种显示面板及显示装置
WO2016119280A1 (zh) 氧化物薄膜晶体管及其制作方法
WO2018120309A1 (zh) Oled显示装置的阵列基板及其制作方法
WO2017210942A1 (zh) 一种柔性oled器件的封装结构及显示装置
US20200168456A1 (en) Low-temperature polysilicon (ltps), thin film transistor (tft), and manufacturing method of array substrate
WO2019033578A1 (zh) 柔性oled显示面板的柔性基底及其制备方法
WO2018094815A1 (zh) Oled器件的制作方法及oled器件
WO2017140015A1 (zh) 双栅极tft阵列基板及制作方法
WO2016149958A1 (zh) 液晶显示面板、阵列基板及其薄膜晶体管的制造方法
CN108364958A (zh) Tft基板及其制作方法与oled基板
WO2016058151A1 (zh) 一种准分子激光退火装置及该装置的使用方法
WO2019056524A1 (zh) 一种oled显示面板及其制作方法
WO2016033845A1 (zh) 一种有机发光二极管封装结构及显示装置
WO2016090690A1 (zh) 一种ltps像素单元及其制造方法
WO2018176541A1 (zh) 柔性有机发光二极管显示器及其制作方法
US10263202B2 (en) Flexible base plate of OLED display panel and method for manufacturing the same
WO2017152522A1 (zh) 金属氧化物薄膜晶体管及其制作方法、阵列基板
WO2017152451A1 (zh) Ffs模式的阵列基板及制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207006227

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017920328

Country of ref document: EP

Effective date: 20200304