WO2019017479A1 - Binder for electrode, binder composition for electrode, electrode material, electrode and power storage device - Google Patents

Binder for electrode, binder composition for electrode, electrode material, electrode and power storage device Download PDF

Info

Publication number
WO2019017479A1
WO2019017479A1 PCT/JP2018/027303 JP2018027303W WO2019017479A1 WO 2019017479 A1 WO2019017479 A1 WO 2019017479A1 JP 2018027303 W JP2018027303 W JP 2018027303W WO 2019017479 A1 WO2019017479 A1 WO 2019017479A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
mass
meth
structural unit
binder
Prior art date
Application number
PCT/JP2018/027303
Other languages
French (fr)
Japanese (ja)
Inventor
一博 高橋
大明 進藤
義広 諸岡
松尾 孝
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to CN201880044362.7A priority Critical patent/CN110832683B/en
Priority to JP2019530618A priority patent/JP7215420B2/en
Publication of WO2019017479A1 publication Critical patent/WO2019017479A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to storage devices such as primary batteries, secondary batteries such as lithium ion secondary batteries and nickel hydrogen secondary batteries, electrochemical capacitors, etc.
  • non-aqueous electrolyte storage batteries using non-aqueous electrolytes such as organic solvents as electrolytes.
  • the present invention relates to a binder for an electrode used in a device, a binder composition for an electrode including the binder for an electrode, an electrode material, an electrode, and a storage device including the electrode.
  • BACKGROUND Storage devices such as lithium ion secondary batteries and electrochemical capacitors are used in electronic devices such as mobile phones, notebook computers, camcorders and the like.
  • application to car applications such as electric vehicles and hybrid electric vehicles and storage batteries for household power storage has also been progressing due to rising awareness of environmental protection and maintenance of related laws.
  • An electrode used for such a storage device is usually obtained by applying and drying an electrode material composed of an active material, a conductive support agent, a binder, and a solvent on a current collector.
  • the binder is required to be excellent in binding property when used in an electrode and capable of imparting excellent electrical characteristics to an electricity storage device.
  • Patent Document 1 proposes a new binder.
  • This invention is made in view of the said situation, and it aims at providing the binder for electrodes which is excellent in the binding property at the time of using for an electrode.
  • a structural unit (A) derived from a monomer having a hydroxyl group represented by the following general formula (1) and an alkyl group having 4 to 6 carbon atoms A structural unit (B) derived from a (meth) acrylic acid ester monomer, having a structural unit (B-1) derived from a (meth) acrylic acid ester monomer containing a structural unit derived from a (meth) acrylic acid monomer
  • a polymer having 3.5 to 15% by mass of the structural unit (C) as a binder for an electrode, it is found that the polymer exhibits high binding property when used in an electrode, and the present invention is completed.
  • the present invention relates to the following.
  • R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms
  • x is an integer of 2 to 8
  • n is an integer of 2 to 30.
  • the present invention relates to the following.
  • Item 1 The following general formula (1): (Wherein, R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, x is an integer of 2 to 8 and n is an integer of 2 to 30) Structural unit (A) derived from the monomer having a hydroxyl group represented by A structural unit (B) derived from a (meth) acrylic acid ester monomer, having a structural unit (B-1) derived from a (meth) acrylic acid ester monomer having an alkyl group having 4 to 6 carbon atoms; A structural unit (C) derived from a (meth) acrylic acid monomer, A structural unit (D) derived from a polyfunctional (meth) acrylate monomer having a functionality of 5 or less; Including A binder for an electrode, comprising: a polymer having 80 to 95% by mass of the structural unit (B) and 3.5 to 15% by mass of the structural unit (C).
  • Item 2 The binder for an electrode according to item 1, wherein in the general formula (1), n is an integer of 4 to 20.
  • Item 3 the pentafunctional or less polyfunctional (meth) acrylate monomer is represented by the following general formula (3): Wherein R 11 is the same or different and is a hydrogen atom or a methyl group, R 12 is a pentavalent or less organic group having 2 to 100 carbon atoms, and m is an integer of 5 or less. ) The binder for electrodes as described in 1 or 2 which is a compound shown by these. Item 4.
  • Item 5 The binder for an electrode according to any one of Items 1 to 4, which has 50 to 95% by mass of the structural unit (B-1).
  • Item 6. The binder for an electrode according to any one of Items 1 to 5, which has 0.5 to 15% by mass of the structural unit (A).
  • a binder composition for an electrode comprising the binder for an electrode according to any one of Items 1 to 7.
  • Item 9. An electrode material comprising the binder for an electrode according to any one of Items 1 to 7.
  • Item 10. An electrode comprising the binder for an electrode according to any one of Items 1 to 7 and an active material.
  • Item 11. Item 9. A storage device comprising the electrode according to item 8.
  • the binder for electrodes which is excellent in the binding property at the time of using for an electrode can be provided. Further, according to the present invention, it is possible to provide a binder composition for an electrode including the binder for an electrode, an electrode material, an electrode, and an electricity storage device provided with the electrode.
  • the binder for an electrode of the present invention has excellent binding properties.
  • the binder for an electrode of the present invention exhibits excellent binding strength when used in a small battery (for example, a battery such as a mobile phone, a tablet terminal, a notebook computer, etc.) having a high density as compared with a large battery. can do.
  • a small battery for example, a battery such as a mobile phone, a tablet terminal, a notebook computer, etc.
  • the electrode using the binder for electrodes of this invention, and the electrical storage device provided with this electrode are especially useful to batteries, such as a mobile telephone, a tablet terminal, a notebook computer.
  • the power storage device includes a primary battery, a secondary battery (such as a lithium ion secondary battery and a nickel hydrogen secondary battery), and an electrochemical capacitor.
  • a secondary battery such as a lithium ion secondary battery and a nickel hydrogen secondary battery
  • an electrochemical capacitor such as a lithium ion secondary battery and a nickel hydrogen secondary battery
  • (meth) acrylate means “acrylate or methacrylate”, and the same applies to expressions similar thereto.
  • the binder for an electrode of the present invention is derived from a structural unit (A) derived from a monomer having a hydroxyl group represented by the following general formula (1) and a (meth) acrylic acid ester monomer having an alkyl group of 4 to 6 carbon atoms
  • Structural unit (B) derived from a (meth) acrylic acid ester monomer having a structural unit (B-1), a structural unit (C) derived from a (meth) acrylic acid monomer, and a pentafunctional or less polyfunctional functional group
  • R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms
  • x is an integer of 2 to 8
  • n is an integer of 2 to 30.
  • the structural unit (A) is derived from the monomer having a hydroxyl group represented by the general formula (1).
  • R 1 is selected from a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • R 1 examples include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • R 1 is a hydrogen atom or a methyl group.
  • the monomer having a hydroxyl group is preferably a (meth) acrylate monomer (R 1 is a hydrogen atom or a methyl group).
  • (C x H 2 x O) is a linear or branched alkyl ether group
  • x is an integer of 2 to 8, preferably an integer of 2 to 7, and more preferably Is an integer of 2 to 6.
  • n is an integer of 2 to 30, preferably an integer of 3 to 25, and more preferably an integer of 4 to 20.
  • the structural unit (A) is preferably derived from the monomer having a hydroxyl group represented by the general formula (2) below.
  • R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms
  • o is an integer of 0 to 30
  • p is an integer of 0 to 30, and o + p Is 2-30.
  • o and p only represent the compositional ratio of the constituent unit, and it is possible to use a block of repeating units of (C 2 H 4 O) and a block of repeating units of (C 3 H 6 O).
  • the repeating unit of (C 2 H 4 O) and the repeating unit of (C 3 H 6 O) are alternately or randomly arranged, or the random part and the block part are mixed. It may be a compound.
  • R 1 examples include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • R 1 is a hydrogen atom or a methyl group.
  • the monomer having a hydroxyl group is preferably a (meth) acrylate monomer (R 1 is a hydrogen atom or a methyl group).
  • o is an integer of 0 to 30
  • p is an integer of 0 to 30
  • o + p is 2 to
  • o is an integer of 0 to 25 and p is 0 to 25
  • o is preferably an integer of 0 to 20
  • o is an integer of 0 to 20
  • p is an integer of 0 to 20
  • o + p is particularly preferably 4 to 20.
  • hydroxyl group-containing monomer represented by the general formula (1) examples include diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, and polyethylene glycol mono (meth) acrylate.
  • tetraethylene glycol mono (meth) acrylate tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate are preferable.
  • the structural unit (A) may be of one type or of two or more types.
  • the lower limit of the ratio of the structural unit (A) is preferably 0.5% by mass or more, more preferably 1.5% by mass or more, particularly preferably 2.5% by mass or more preferable.
  • the upper limit of the ratio of the structural unit (A) in the polymer is preferably 15% by mass or less, more preferably 12% by mass or less, and particularly preferably 10% by mass or less.
  • the structural unit (B) is a structural unit derived from a (meth) acrylic acid ester monomer.
  • the polymer has 80 to 95% by mass of the structural unit (B).
  • the structural unit (B) has a structural unit (B-1) derived from a (meth) acrylic acid ester monomer having an alkyl group of 4 to 6 carbon atoms.
  • the structural unit (B) may be composed of only the structural unit (B-1), and a structural unit (B-1) and a (meth) acrylic acid ester monomer having an alkyl group of 4 to 6 carbon atoms May have structural units (B-2) derived from different (meth) acrylic acid ester monomers.
  • the preferred structural unit (B-1) include n-butyl acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, n- (meth) acrylate
  • Examples include structural units derived from (meth) acrylic acid alkyl esters such as hexyl and isohexyl (meth) acrylate, and n-butyl acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, It is more preferable that the structural unit is derived from a (meth) acrylic acid ester monomer having an alkyl group having 4 to 5 carbon atoms such as isopentyl (meth) acrylate.
  • the structural unit (B-1) of the structural unit (B) may be of one type or of two or more types.
  • the structural unit (B-2) contained in the structural unit (B) may be of one type or of two or more types.
  • the lower limit of the proportion of the structural unit (B) in the polymer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more.
  • the upper limit of the ratio of the structural unit (B) in the polymer is preferably 95% by mass or less, more preferably 94% by mass or less, and particularly preferably 92% by mass or less.
  • the lower limit of the proportion of the structural unit (B-1) in the polymer is preferably 50% by mass or more, more preferably 65% by mass or more, and particularly preferably 80% by mass or more.
  • the upper limit of the proportion of the structural unit (B-1) in the polymer is preferably 95% by mass or less, more preferably 94% by mass or less, and particularly preferably 92% by mass or less.
  • the mass ratio of the structural unit (B-1) to the structural unit (A) is preferably 7: 1 to 35: 1, and more preferably 7.5 to 30: 1. Particularly preferred is 8: 1 to 25: 1.
  • the upper limit of the proportion of the structural unit (B-2) in the polymer is preferably 35% by mass or less, more preferably 23% by mass or less, and particularly preferably 10% by mass or less. Further, the lower limit of the proportion of the structural unit (B-2) in the polymer is 0% by mass or more, and may be 3% by mass or more, or 5% by mass or more.
  • the structural unit (C) is a structural unit derived from a (meth) acrylic acid monomer.
  • the polymer has 3.5 to 15% by mass of the structural unit (C).
  • the structural unit (C) of the polymer may be of one type or of two or more types.
  • the lower limit of the proportion of the structural unit (C) in the polymer is preferably 3.5% by mass or more, more preferably 4% by mass or more, and particularly preferably 5% by mass or more.
  • the upper limit of the proportion of the structural unit (C) is preferably 15% by mass or less, more preferably 13% by mass or less, and particularly preferably 12% by mass or less.
  • the structural unit (D) is a structural unit derived from a polyfunctional (meth) acrylate monomer having a functionality of five or less.
  • the structural unit (D) is preferably a structural unit derived from the following general formula (3).
  • R 11 is the same or different and is a hydrogen atom or a methyl group
  • R 12 is a pentavalent or less organic group having 2 to 100 carbon atoms
  • m is an integer of 5 or less It is.
  • m is preferably 2 to 5 (that is, a constituent unit derived from a difunctional to pentafunctional (meth) acrylate as the constituent unit (D)), and 3 to 5 (that is, a constituent unit More preferably, (D) is a structural unit derived from trifunctional to pentafunctional (meth) acrylate, and 3 to 4 (that is, structural unit (D) is derived from trifunctional to tetrafunctional (meth) acrylate) Particularly preferred is the structural unit).
  • the structural unit derived from bifunctional (meth) acrylate in the structural unit (D) include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, Tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, dioxane glycol di (meth) acrylate, bis (meth) acryloyloxy
  • the structural unit derived from bifunctional (meth) acrylates, such as ethyl phosphate, is mentioned.
  • the structural unit derived from trifunctional (meth) acrylate in the structural unit (D) include trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-added tri (meth) acrylate, and trimethylolpropane PO-added tri (Meth) acrylate, pentaerythritol tri (meth) acrylate, 2,2,2-tris (meth) acryloyloxymethylethyl succinic acid, ethoxylated isocyanurate tri (meth) acrylate, ⁇ -caprolactone modified tris- (2-) Trifunctional (meth) acrylates such as (meth) acryloxyethyl) isocyanurate, glycerin EO-added tri (meth) acrylate, glycerol PO-added tri (meth) acrylate and tris (meth) acryloyloxyethyl phosphate Structural units and the like.
  • structural units derived from a trifunctional (meth) acrylate selected from trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-added tri (meth) acrylate, and pentaerythritol tri (meth) acrylate are preferable.
  • structural unit derived from tetrafunctional (meth) acrylate in the structural unit (D) include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and pentaerythritol EO-added tetra (meth) acrylate And structural units derived from tetrafunctional (meth) acrylates such as
  • structural units derived from pentafunctional (meth) acrylate include structural units derived from dipentaerythritol penta (meth) acrylate.
  • the lower limit of the ratio of the structural unit (D) in the polymer is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 0.2% by mass or more .
  • the upper limit of the proportion of the structural unit (D) is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • the mass ratio of the structural unit (D) to the structural unit (A) in the polymer is preferably 0.03: 1 to 1.5: 1, and more preferably 0.05: 1 to 1: 1.
  • the ratio is preferably 0.08: 1 to 0.3: 1.
  • the polymer as structural units derived from other monomers besides the above, fumaric acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, crotononitrile It can have a structural unit derived from a monomer selected from ⁇ -ethylacrylonitrile, ⁇ -cyanoacrylate, vinylidene cyanide and fumaronitrile.
  • a general emulsion polymerization method As a method of obtaining a polymer, a general emulsion polymerization method, a soap-free emulsion polymerization method, etc. can be used. Specifically, a closed container equipped with a stirrer and a heating device is inert at room temperature and is inert to a composition containing a monomer, an emulsifier, a polymerization initiator, water, if necessary, a dispersant, a chain transfer agent, a pH adjuster, etc. The monomers and the like are emulsified in water by stirring under a gas atmosphere.
  • a method of emulsification methods such as stirring, shearing, ultrasonic waves and the like can be applied, and a stirring blade, a homogenizer and the like can be used. Then, the temperature is raised while stirring to initiate polymerization, whereby a spherical polymer latex in which the polymer is dispersed in water can be obtained.
  • the monomer addition method during polymerization may be monomer dropping, pre-emulsion dropping, etc. in addition to batch feeding, and two or more of these methods may be used in combination.
  • pre-emulsion dropping refers to an addition method in which a monomer, an emulsifying agent, water and the like are previously emulsified in advance and the emulsion is dropped.
  • the emulsifier used in the present invention is not particularly limited.
  • the emulsifying agent is a surfactant, and the surfactant includes a reactive surfactant having a reactive group.
  • Nonionic surfactants and anionic surfactants which are generally used in the emulsion polymerization method can be used.
  • nonionic surfactant for example, polyoxyethylene alkyl ether, polyoxyethylene alcohol ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene
  • examples thereof include fatty acid esters and polyoxyethylene sorbitan fatty acid esters
  • examples of the reactive nonionic surfactants include Latemul PD-420, 430, 450 (manufactured by Kao Corporation), Adekaria Soap ER (manufactured by Adeka), Aqualon. RN (made by Dai-ichi Kogyo Seiyaku Co., Ltd.), Antox LMA (made by Nippon Emulsifier), Antox EMH (made by Nippon Emulsifier), etc. are mentioned.
  • anionic surfactant examples include metal salts of sulfuric acid ester type, carboxylic acid type or sulfonic acid type, ammonium salts, triethanol ammonium salts, surfactants of phosphoric acid ester type and the like.
  • the sulfuric acid ester type, the sulfonic acid type and the phosphoric acid ester type are preferable, and the sulfuric acid ester type is particularly preferable.
  • anionic surfactants of sulfuric acid ester type include metal alkyl sulfates such as dodecyl sulfate, ammonium, or alkyl sulfate triethanolamine, polyoxyethylene dodecyl ether sulfate, polyoxyethylene isodecyl ether sulfate, polyoxyethylene Examples thereof include metal salts of polyoxyethylene alkyl ether sulfuric acid such as tridecyl ether sulfuric acid, ammonium salts, and triethanolamine etc.
  • Latemul PD-104, 105 manufactured by Kao Corporation
  • Adekaria Soap SR manufactured by Adeka
  • Aqualon HS manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • Aqualon KH manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • sodium dodecyl sulfate, ammonium dodecyl sulfate, triethanolamine dodecyl sulfate, sodium dodecyl benzene sulfonate, Latem PD-104 and the like can be mentioned.
  • nonionic surfactants and / or anionic surfactants may be used.
  • the reactivity of the reactive surfactant means that it contains a reactive double bond and undergoes a polymerization reaction with the monomer during polymerization. That is, the reactive surfactant acts as an emulsifier for the monomer during polymerization for producing the polymer, and after polymerization, it is covalently bonded to a part of the polymer to be incorporated. Therefore, the emulsion polymerization and the dispersion of the produced polymer are good, and the physical properties (flexibility, binding property) as a binder for an electrode are excellent.
  • the amount of the constituent unit of the emulsifier may be an amount generally used in the emulsion polymerization method. Specifically, it is in the range of 0.01 to 25% by mass, preferably 0.05 to 20% by mass, and more preferably 0.1 to 20% by mass, based on the amount of monomers (100% by mass) of the charge. It is.
  • the polymerization initiator used in the present invention is not particularly limited, and polymerization initiators generally used in the emulsion polymerization method and suspension polymerization method can be used. Preferably, it is an emulsion polymerization method. In the emulsion polymerization method, a water-soluble polymerization initiator is used, and in the suspension polymerization method, an oil-soluble polymerization initiator is used.
  • water-soluble polymerization initiator examples include water-soluble polymerization initiators represented by persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate, 2-2′-azobis [2- (2) -Imidazolin-2-yl) propane], or a hydrochloride or sulfate thereof, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis (2- Methylpropanamidine), or a hydrochloride or sulfate thereof, 3,3 ′-[azobis [(2,2-dimethyl-1-iminoethane-2,1-diyl) imino]] bis (propanoic acid), 2,2 Preferred are polymerization initiators of water-soluble azo compounds such as'-[azobis (dimethylmethylene)] bis (2-imidazoline).
  • persulfates such as potassium persulfate, sodium persulfate and ammoni
  • oil-soluble polymerization initiators examples include cumene hydroperoxide, benzoyl peroxide, organic peroxides such as acetyl peroxide and t-butyl hydroperoxide, azobisisobutyronitrile, 1,1'-azobis (cyclohexane Polymerization initiators of oil-soluble azo compounds such as carbonitriles) and redox initiators are preferred. These polymerization initiators may be used alone or in combination of two or more.
  • the amount of polymerization initiator used may be an amount generally used in emulsion polymerization or suspension polymerization. Specifically, it is in the range of 0.01 to 10% by mass, preferably 0.01 to 5% by mass, and more preferably 0.02 to 3% by mass, with respect to the amount of monomer (100% by mass) to be charged. It is.
  • Chain transfer agents can be used as needed.
  • specific examples of the chain transfer agent include alkyl mercaptan such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan and n-stearyl mercaptan, and 2,4-diphenyl-4.
  • Xanthogen compounds such as -methyl-1-pentene, 2,4-diphenyl-4-methyl-2-pentene, dimethylxanthogen disulfide, diisopropyl xanthogen disulfide, terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram mono Thiuram compounds such as sulfide, phenol compounds such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol, allyl compounds such as allyl alcohol Halogenated hydrocarbon compounds such as ololmethane, dibromomethane and carbon tetrabromide, ⁇ -benzyloxystyrene, vinyl ethers such as ⁇ -benzyloxyacrylonitrile and ⁇ -benzyloxyacrylamide, triphenylethane, pentaphenylethane, acrolein and meth
  • the polymerization time and polymerization temperature of the polymer are not particularly limited.
  • the temperature can be appropriately selected depending on the type of polymerization initiator to be used, etc., but generally, the polymerization temperature is 20 to 100 ° C., and the polymerization time is 0.5 to 100 hours.
  • the polymer obtained by the above-mentioned method can be adjusted in pH by using a base as a pH adjuster as necessary.
  • a base include alkali metal (Li, Na, K, Rb, Cs) hydroxide, ammonia, an inorganic ammonium compound, an organic amine compound and the like.
  • the pH range is pH 2-11, preferably pH 3-10, more preferably pH 4-9.
  • the binder for an electrode of the present invention has a polymer, but water or other substance such as an emulsifier may be contained in the inside of the polymer or attached to the outside.
  • the amount of the substance contained inside or attached to the outside is preferably 7 parts by mass or less, more preferably 5 parts by mass or less, and 3 parts by mass with respect to 100 parts by mass of the polymer. It is particularly preferred that
  • Binder composition for electrode> The binder composition for electrodes of the present invention may contain the aforementioned “1. binder for electrodes” together with a solvent, and the binder for electrodes may be dispersed in the solvent.
  • the solvent may be water or an organic solvent.
  • Organic solvents include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, alcohols such as amyl alcohol, acetone, methyl ethyl ketone, Ketones such as cyclohexanone, esters such as ethyl acetate and butyl acetate, ethers such as diethyl ether, dioxane, and tetrahydrofuran, amide-based polar organic compounds such as N, N-dimethylformamide, N-methyl-2-pyrrolidone (NMP) Examples thereof include solvents, aromatic hydrocarbons such as toluene, xylene, chlorobenzene, ortho-dichlorobenzene, and para-dichlorobenzen
  • the binder composition for electrodes of the present invention is preferably an aqueous binder composition in which the binder for electrodes is dispersed in water.
  • the binder composition for electrodes of the present invention may be an emulsion using an emulsion produced in obtaining a polymer.
  • the content of the binder for the electrode in the binder composition for an electrode of the present invention is not particularly limited, but the content of the binder for the electrode is preferably 0.2 to 80% by mass, preferably 0.5
  • the content is more preferably 70 to 70% by mass, and particularly preferably 0.5 to 60% by mass.
  • the solid content of the binder composition is generally considered to be a polymer and an emulsifier (only when the polymer is used in emulsion polymerization).
  • Electrode material contains at least an active material and the binder for an electrode of the present invention described in the section of “1. Binder for electrode” described above, and may further contain a conductive auxiliary. In the production of the electrode material of the present invention, the binder composition for an electrode of the present invention described in the section of "2. Binder composition for electrode” containing the binder for an electrode of the present invention together with a solvent can also be used.
  • the positive electrode material used for the positive electrode contains a positive electrode active material and the binder for an electrode of the present invention, and may further contain a conductive aid, and a negative electrode active material, a negative electrode material used for the negative electrode
  • the binder for an electrode of the present invention may be contained, and further, a conductive auxiliary may be contained.
  • the positive electrode active material is an alkali metal-containing composite oxide having a composition of any of AMO 2 , AM 2 O 4 , A 2 MO 3 , and AMBO 4 .
  • A may be an alkali metal
  • M may be a single or two or more transition metals, and part of them may include non-transition metals.
  • B consists of P, Si or a mixture thereof.
  • the positive electrode active material is preferably a powder, and the particle diameter thereof is preferably 50 microns or less, more preferably 20 microns or less. These active materials have an electromotive force of 3 V (vs. Li / Li +) or more.
  • the cathode active material Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x CrO 2, Li x FeO 2, Li x Co a Mn 1-a O 2, Li x Co a Ni 1-a O 2, Li x Co a Cr 1-a O 2, Li x Co a Fe 1-a O 2, Li x Co a Ti 1-a O 2, Li x Mn a Ni 1-a O 2 , Li x Mn a Cr 1 -a O 2 , Li x Mn a Fe 1 -a O 2 , Li x Mn a Ti 1 -a O 2 , Li x Ni a Cr 1 -a O 2 , Li x Ni a Fe 1-a O 2 , Li x Ni a Ti 1-a O 2 , Li x Cr a Fe 1-a O 2 , Li x Cr a Ti 1-a O 2 , Li x Fe a Ti 1-a O 2 , Li x Co b Mn c Ni 1-bc
  • the positive electrode active material include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x CrO 2 , Li x Co a Ni 1 -a O 2, Li x Mn a Ni 1-a O 2, Li x Co b Mn c Ni 1-bc O 2, Li x Ni a Co b Al c O 2, Li x Mn 2 O 4, Li y MnO 3 , Li y Mn e Fe 1-e O 3 , Li y Mn e Ti 1-e O 3 , Li x CoPO 4 , Li x MnPO 4 , Li x NiPO 4 , Li x FePO 4 , Li x Mn f Fe 1 -f PO 4 can be mentioned.
  • a negative electrode active material a carbon material (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (porous structure) capable of absorbing and desorbing lithium ions or lithium and aluminum-based materials capable of absorbing and desorbing lithium ions It is a powder made of a metal such as a compound, a tin-based compound, a silicon-based compound, and a titanium-based compound.
  • the particle diameter is preferably 10 nm or more and 100 ⁇ m or less, and more preferably 20 nm or more and 20 ⁇ m or less.
  • the negative electrode active material has a porosity of about 70%.
  • the content of the active material in the electrode material is not particularly limited, and is, for example, about 99.9 to 50% by mass, more preferably about 99.5 to 70% by mass, and still more preferably about 99 to 85% by mass.
  • Be One type of active material may be used alone, or two or more types may be used in combination.
  • conductive aid When using a conductive aid, known conductive aids can be used, and conductive carbon blacks such as graphite, furnace black, acetylene black and ketjen black, carbon fibers such as carbon nanotubes, metal powder, etc. It can be mentioned. These conductive aids may be used alone or in combination of two or more.
  • the content of the conductive auxiliary is not particularly limited, but preferably 20 parts by mass or less, more preferably 15 parts by mass or less, with respect to 100 parts by mass of the active material.
  • a conductive support agent is contained in positive electrode material, as a lower limit of content of a conductive support agent, 0.05 mass part or more, 0.1 mass part or more, 0.2 mass part or more, 0 normally .5 parts by mass or more, 2 parts by mass or more can be exemplified.
  • the electrode material of the present invention may optionally contain a thickener.
  • the type of the thickener is not particularly limited, but preferred are sodium salts of cellulose compounds, ammonium salts, polyvinyl alcohol, polyacrylic acid and salts thereof and the like.
  • sodium salts or ammonium salts of the cellulose-based compounds include sodium salts or ammonium salts of alkylcelluloses in which a cellulose-based polymer is substituted by various derivative groups. Specific examples thereof include methylcellulose, methylethylcellulose, ethylcellulose, sodium salt of carboxymethylcellulose (CMC), ammonium salt, triethanolammonium salt and the like. Particularly preferred is the sodium or ammonium salt of carboxymethylcellulose.
  • One of these thickeners may be used alone, or two or more thereof may be used in combination in any ratio.
  • the content of the thickener is not particularly limited, but preferably 5 parts by mass or less, more preferably 3 parts by mass or less, with respect to 100 parts by mass of the active material.
  • a thickener is contained, as a lower limit of content of a thickener, normally 0.05 mass part or more, 0.1 mass part or more, 0.2 mass part or more, 0.5 mass part Above, 1 mass part or more can be illustrated.
  • the electrode material of the present invention may contain water to form a slurry.
  • Water is not particularly limited, and generally used water can be used. Specific examples thereof include tap water, distilled water, ion exchanged water, and ultrapure water. Among them, preferred are distilled water, ion exchange water, and ultrapure water.
  • the solid content concentration of the slurry is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 30 to 80% by mass. Being particularly preferred.
  • the ratio of the amount of polymer in the solid content of the slurry is preferably 0.1 to 15% by mass, and 0.2 to 10% by mass. Is more preferable, and 0.3 to 7% by mass is particularly preferable.
  • the preparation method of the electrode material is not particularly limited, and the positive electrode active material or the negative electrode active material, the binder for the electrode of the present invention, the conductive additive, water and the like can be used as usual stirrers, dispersers, kneaders, planetary ball mills, homogenizers, etc. It may be used and dispersed. In order to increase the efficiency of dispersion, heating may be performed in a range that does not affect the material.
  • Electrode> The electrode of the present invention is characterized by including the electrode material of the present invention described in the above-mentioned section "3. Electrode material" and a current collector. The details of the electrode material of the present invention are as described above.
  • a known current collector can be used for the electrode of the present invention.
  • the positive electrode metals such as aluminum, nickel, stainless steel, gold, platinum, titanium and the like are used.
  • the negative electrode metals such as copper, nickel, stainless steel, gold, platinum and titanium are used.
  • the method for producing the electrode is not particularly limited, and a general method may be used. It is carried out by uniformly applying a battery material to a suitable thickness on the surface of a current collector (metal electrode substrate) by a doctor blade method, an applicator method, a silk screen method or the like.
  • the thickness is made uniform by a blade having a predetermined slit width.
  • the electrode is dried, for example, in a hot air at 100 ° C. or in a vacuum at 80 ° C. in order to remove excess organic solvent and water.
  • An electrode material is manufactured by press-molding the electrode after drying with a press apparatus. After pressing, heat treatment may be performed again to remove water, solvents, emulsifiers and the like.
  • the pressing of the electrode is preferably performed so that the density of the electrode material is preferably 3.2 g / cc or more.
  • the binder for an electrode of the present invention is excellent in binding ability when used for a small battery (for example, a battery such as a mobile phone, a tablet terminal, a laptop computer) having a high density as compared with a large battery. Can be demonstrated. Therefore, in the electrode of the present invention, when the electrode material density has such a value, particularly excellent binding strength can be exhibited.
  • the upper limit of the density of the electrode material is generally 4.5 g / cc or less.
  • the electricity storage device of the present invention is characterized by including the positive electrode, the negative electrode, and the electrolytic solution described in the section of “4. Electrode” described above. That is, the electrode used for the electrical storage device of the present invention contains the electrode material of the present invention, that is, the binder for the electrode of the present invention. The details of the electrode of the present invention are as described above. In addition, about the electrical storage device of this invention, the electrode using the electrode material containing the binder for electrodes of this invention should just be used for at least one of a positive electrode and a negative electrode, and the binder for electrodes of this invention is included. A known electrode can be used for the electrode not using the electrode material.
  • the electrolyte is not particularly limited, and a known electrolyte can be used.
  • a specific example of the electrolytic solution includes a solution containing an electrolyte and a solvent.
  • the electrolyte and the solvent may be used alone or in combination of two or more.
  • a lithium salt compound can be exemplified. Specifically, LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2) ) 2, LiN etc. [CF 3 SC (C 2 F 5 SO 2) 3] 2 , and the like, but not limited thereto.
  • electrolytes other than lithium salt compounds examples include tetraethylammonium tetrafluoroborate, triethylmonomethylammonium tetrafluoroborate, tetraethylammonium hexafluorophosphate and the like.
  • the organic solvent or a normal temperature molten salt can be illustrated.
  • organic solvent examples include an aprotic organic solvent, and specifically, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, dipropyl carbonate, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propyl nitrile, anisole, acetate, propionate, diethyl ether and the like linear ethers And two or more types may be mixed and used.
  • propylene carbonate ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane,
  • the room temperature molten salt is also called an ionic liquid, and is a "salt" composed only of ions (anion, cation), and in particular a liquid compound is called an ionic liquid.
  • the room temperature molten salt in the present invention refers to a salt in which at least a part is liquid at normal temperature
  • the normal temperature refers to a temperature range in which the battery is generally assumed to operate.
  • the upper limit of the temperature range in which the battery normally operates is about 120 ° C., sometimes about 80 ° C., and the lower limit is about ⁇ 40 ° C., sometimes about ⁇ 20 ° C.
  • quaternary ammonium organic cations As cationic species of the molten salt at room temperature, quaternary ammonium organic cations of pyridine type, aliphatic amine type and alicyclic amine type are known. Examples of quaternary ammonium organic cations include imidazolium ions such as dialkyl imidazolium and trialkyl imidazolium, tetraalkyl ammonium ions, alkyl pyridinium ions, pyrazolium ions, pyrrolidinium ions and piperidinium ions. In particular, imidazolium ion is preferred.
  • tetraalkyl ammonium ion examples include trimethylethyl ammonium ion, trimethylethyl ammonium ion, trimethylpropyl ammonium ion, trimethylhexyl ammonium ion, tetrapentyl ammonium ion, triethyl methyl ammonium ion and the like, but are limited thereto. is not.
  • alkyl pyridinium ion N-methyl pyridinium ion, N-ethyl pyridinium ion, N-propyl pyridinium ion, N-butyl pyridinium ion, 1-ethyl-2-methyl pyridinium ion, 1-butyl-4-methyl pyridinium
  • the ion include 1-butyl-2,4 dimethyl pyridinium ion and the like, but not limited thereto.
  • imidazolium ion 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1- Butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl- Examples include 2,3-dimethylimidazolium ion and the like, but not limited thereto.
  • the anion species of the molten salt at room temperature include chloride ion, bromide ion, halide ion such as iodide ion, perchlorate ion, thiocyanate ion, tetrafluoroborate ion, nitrate ion, AsF 6 ⁇ , PF 6 ⁇
  • Inorganic acid ion such as stearyl sulfonate ion, octyl sulfonate ion, dodecylbenzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion, 7,7,8,8-tetracyano-p-quinodimethane ion etc
  • a normal temperature molten salt may be used individually by 1 type, and may be used combining 2 or more types.
  • additives can be used in the electrolytic solution as required.
  • the additive include flame retardants, flame retardants, positive electrode surface treatment agents, negative electrode surface treatment agents, and overcharge inhibitors.
  • Flame retardants and flame retardants include brominated epoxy compounds, phosphazene compounds, halides such as tetrabromo bisphenol A, chlorinated paraffin, etc., antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, phosphoric acid ester, polyphosphate Examples include acid salts and zinc borate.
  • the positive electrode surface treatment agent include inorganic compounds such as carbon and metal oxides (MgO, ZrO 2 and the like) and organic compounds such as ortho-terphenyl and the like.
  • the negative electrode surface treatment agent include vinylene carbonate, fluoroethylene carbonate, polyethylene glycol dimethyl ether and the like.
  • the overcharge inhibitor include biphenyl and 1- (p-tolyl) adamantane.
  • the method for producing the electricity storage device of the present invention is not particularly limited, and is produced by a known method using a positive electrode, a negative electrode, an electrolytic solution, if necessary, a separator or the like.
  • a positive electrode a negative electrode
  • an electrolytic solution if necessary, a separator or the like.
  • the positive electrode, the separator if necessary, and the negative electrode are inserted into the outer can. Electrolyte is put into this and impregnated. Thereafter, the sealing body is joined to the sealing body by tab welding or the like, and the sealing body is sealed and crimped to obtain an electric storage device.
  • the shape of the storage device is not limited, examples thereof include coin, cylinder, and sheet.
  • the separator prevents the positive electrode and the negative electrode from being in direct contact with each other to short-circuit in the storage battery, and a known material can be used.
  • Specific examples of the separator include porous polymer films such as polyolefin and paper.
  • porous polymer film films of polyethylene, polypropylene and the like are preferable because they are less affected by the electrolytic solution.
  • an electrode was manufactured, and a binding test of the electrode was performed in the following experiment as evaluation of the electrode.
  • the binding test was conducted by a 180 ° peel test. Specifically, cut the electrode into a width 2 cm ⁇ length 5 cm, affix a tape (adhesive tape: made by Nichiban, width 1.8 cm, length 5 cm), and make one end of the electrode in the longitudinal direction a strograph E3-L While fixed, the tape was peeled off at a test speed of 50 mm / min and a load range of 5 N in the direction of 180 °. The test was conducted three times and the weighted average value was determined.
  • the average particle size of the polymer was measured under the following conditions.
  • Particle size distribution measuring device using dynamic light scattering Zetasizer Nano (Spectris Co., Ltd.) (measurement conditions) 1. 50 ⁇ L of the synthesized emulsion solution is sampled. 2. The sampled emulsion solution is diluted by adding 700 ⁇ L of ion-exchanged water three times. 3. Remove 2100 ⁇ L of solution from the dilution solution. 4. Add and dilute 700 ⁇ L ion-exchanged water to the remaining 50 ⁇ L sample and measure.
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.5 to 8.0 using a 28% aqueous ammonia solution, and a binder composition A (polymerization conversion rate 99% or more, solid content concentration 39.8 wt%) which is an emulsion solution Got). The average particle size of the obtained polymer was 0.273 ⁇ m. Polymer Synthesis The amounts of monomers used are shown in Table 1.
  • Examplementation Example 2 In a beaker, 72.34 parts by mass of n-butyl acrylate, 17.43 parts by mass of 2-ethylhexyl acrylate, 1.46 parts by mass of acrylic acid, 4.17 parts by mass of methacrylic acid, polyethylene glycol monomethacrylate (manufactured by NOF Corporation) : Brenmer PE-90 3.93 parts by mass, trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: A-TMPT) 0.67 parts by mass, 1 part by mass of sodium dodecyl sulfate as an emulsifier, 50.00 parts by mass of ion exchanged water And, 0.12 parts by mass of ammonium persulfate was added as a polymerization initiator, and the mixture was sufficiently stirred using an ultrasonic homogenizer to obtain an emulsion.
  • A-TMPT trimethylolpropane triacrylate
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.6 to 8.0 using a 28% aqueous ammonia solution, and a binder composition B (polymerization conversion ratio of 99% or more, solid content concentration 40 wt%), which is an emulsion solution, Obtained. The average particle size of the obtained polymer was 0.237 ⁇ m. Polymer Synthesis The amounts of monomers used are shown in Table 1.
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.5 to 7.8 using a 28% aqueous ammonia solution, and an emulsion solution, binder composition C (polymerization conversion ratio 98% or more, solid content concentration 39 wt%) Obtained. The average particle size of the obtained polymer was 0.225 ⁇ m. Polymer Synthesis The amounts of monomers used are shown in Table 1.
  • Examplementation Example 4 In a beaker, 82.59 parts by mass of acrylic acid, 1.52 parts by mass of acrylic acid, 4.32 parts by mass of methacrylic acid, 10.88 parts by mass of polyethylene glycol monomethacrylate (manufactured by NOF Corporation: Blenmer PE-90) Part, 0.69 parts by mass of trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical: A-TMPT), 1 part by mass of sodium dodecyl sulfate as an emulsifier, 50.00 parts by mass of ion exchanged water, and ammonium persulfate 0.12 as a polymerization initiator The parts by mass were added, and the mixture was sufficiently stirred using an ultrasonic homogenizer to give an emulsion.
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.4 to 7.8 using a 28% aqueous ammonia solution, and an emulsion solution, binder composition D (polymerization conversion ratio 98% or more, solid content concentration 39 wt%) Obtained. The average particle size of the obtained polymer was 0.230 ⁇ m.
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted from 2.6 to 8.0 using a 28% aqueous ammonia solution, and a binder composition F (polymerization conversion rate: 99% or more, solid content concentration: 39 wt%) which is an emulsion solution Obtained. The average particle size of the obtained polymer was 0.205 ⁇ m.
  • Polymer Synthesis The amounts of monomers used are shown in Table 1.
  • Example 3 95 parts by mass of nickel.cobalt.manganate lithium as a positive electrode active material, 3 parts by mass of acetylene black as a conduction aid, 1 part by mass of carboxymethyl cellulose, and a binder composition. 1 part by mass was added as a portion, water was further added so that the solid content concentration of the slurry was 72% by mass, and sufficient mixing was performed using a planetary mill to obtain a slurry for a positive electrode.
  • the obtained positive electrode slurry is applied on a 20 ⁇ m thick aluminum current collector using a 100 ⁇ m gap Baker applicator, dried at 110 ° C. for 12 hours or more in a vacuum, and pressed using a roll press.
  • a positive electrode having a thickness of 36 ⁇ m and a density of 3.5 g / cc of the electrode material was produced.
  • the evaluation results of the binding test are shown in Example 1 of Table 1.
  • Example 4 of practical preparation of electrode Example 3 95 parts by mass of lithium cobalt cobalt lithium manganate as a positive electrode active material, 3 parts by mass of acetylene black as a conductive support agent, 1 part by mass of carboxymethyl cellulose, and a binder composition 1 part by mass is added as a portion, water is further added so that the solid content concentration of the slurry is 72% by mass, and sufficient mixing is performed using a planetary mill to obtain a slurry for positive electrode except that a slurry for positive electrode is obtained A positive electrode was produced in the same manner as in 1. The thickness of the obtained positive electrode was 41 ⁇ m, and the density of the electrode material was 3.2 g / cc. The evaluation results of the binding test are shown in Example 4 in Table 1.
  • Table 1 shows the evaluation results of the physical properties of the electrodes of the example and the comparative example.
  • the binder for electrodes of the present invention has excellent binding properties, and is usefully used in in-vehicle applications such as electric vehicles and hybrid electric vehicles, and storage devices such as storage batteries for household power storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Provided is a binder for an electrode, which exhibits excellent binding properties when used in an electrode. The binder for an electrode comprises a polymer which contains: constituent units (A) derived from a hydroxyl group-containing monomer represented by general formula (1) (in the formula, R1 denotes a hydrogen atom or a straight chain or branched alkyl group having 1-4 carbon atoms, x is an integer between 2 and 8, and n is an integer between 2 and 30); constituent units (B) derived from a (meth)acrylic acid ester monomer, which includes constituent units (B-1) derived from a (meth)acrylic acid ester monomer having an alkyl group having 4-6 carbon atoms; constituent units (C) derived from a (meth)acrylic acid monomer; and constituent units (D) derived from a pentafunctional or lower polyfunctional (meth)acrylate monomer. The polymer contains 80-95 mass% of the constituent units (B) and 3.5-15 mass% of the constituent units (C).

Description

電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイスBinder for electrode, binder composition for electrode, electrode material, electrode, and storage device
 本発明は、一次電池、リチウムイオン二次電池及びニッケル水素二次電池などの二次電池、電気化学キャパシタなどといった蓄電デバイス、特に電解質に有機溶媒などの非水電解質を用いた非水電解質系蓄電デバイスに用いる電極用バインダー、該電極用バインダーを含む電極用バインダー組成物、電極材料、及び電極、並びに該電極を備える蓄電デバイスに関する。 The present invention relates to storage devices such as primary batteries, secondary batteries such as lithium ion secondary batteries and nickel hydrogen secondary batteries, electrochemical capacitors, etc. In particular, non-aqueous electrolyte storage batteries using non-aqueous electrolytes such as organic solvents as electrolytes. The present invention relates to a binder for an electrode used in a device, a binder composition for an electrode including the binder for an electrode, an electrode material, an electrode, and a storage device including the electrode.
 リチウムイオン二次電池や電気化学キャパシタといった蓄電デバイスは、携帯電話やノートパソコン、カムコーダーなどの電子機器に用いられている。最近では環境保護への意識の高まりや関連法の整備により、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池としての応用も進んできている。 BACKGROUND Storage devices such as lithium ion secondary batteries and electrochemical capacitors are used in electronic devices such as mobile phones, notebook computers, camcorders and the like. In recent years, application to car applications such as electric vehicles and hybrid electric vehicles and storage batteries for household power storage has also been progressing due to rising awareness of environmental protection and maintenance of related laws.
 また、これらの応用が進むと同時に、蓄電デバイスに高性能化が求められており、電極等の部材の改良が進められている。このような蓄電デバイスに使用される電極は、通常、活物質と、導電助剤、バインダー、溶媒からなる電極材料を集電体上に塗布、乾燥して得られる。 In addition, at the same time as these applications progress, higher performance is required for power storage devices, and improvement of members such as electrodes is in progress. An electrode used for such a storage device is usually obtained by applying and drying an electrode material composed of an active material, a conductive support agent, a binder, and a solvent on a current collector.
 そこで、近年では、電極に用いられるバインダーの改良が試みられている。バインダーを改良することにより、活物質同士の結着性、活物質と導電助剤との結着性、及び活物質と集電体との結着性を向上させ、電気的特性(例えば、サイクル特性、低温での出力特性、低抵抗化)を向上させたりすることが提案されている。 Therefore, in recent years, attempts have been made to improve the binder used for the electrode. By improving the binder, the binding property between the active materials, the binding property between the active material and the conductive auxiliary agent, and the binding property between the active material and the current collector can be improved, and the electrical characteristics (for example, cycle) It has been proposed to improve the characteristics, the output characteristics at low temperatures, and the resistance reduction).
 バインダーには、電極に用いられた際の結着性に優れ、蓄電デバイスに優れた電気的特性を付与できることが求められており、例えば特許文献1には新たなバインダーが提案されている。 The binder is required to be excellent in binding property when used in an electrode and capable of imparting excellent electrical characteristics to an electricity storage device. For example, Patent Document 1 proposes a new binder.
 しかしながら、近年、特に結着性に優れるバインダーが求められており、更なる検討が必要となっている。 However, in recent years, binders having particularly excellent binding properties are required, and further studies are required.
国際公開第2013/180103号International Publication No. 2013/180103
 本発明は上記事情に鑑みてなされたものであり、電極に用いられた際の結着性に優れる電極用バインダーを提供することを目的とする。 This invention is made in view of the said situation, and it aims at providing the binder for electrodes which is excellent in the binding property at the time of using for an electrode.
 本発明者らは、上記目的を達成するために検討を重ねた結果、下記一般式(1)で表わされる水酸基を有するモノマーに由来する構成単位(A)と、炭素数4~6のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構成単位(B-1)を有する、(メタ)アクリル酸エステルモノマーに由来する構成単位(B)と、(メタ)アクリル酸モノマーに由来する構成単位(C)と、5官能以下の多官能(メタ)アクリレートモノマーに由来する構成単位(D)とを含む重合体であって、さらに、構成単位(B)を80~95質量%有し、かつ、構成単位(C)を3.5~15質量%有する重合体を電極用バインダーとして用いることにより、電極に用いられた際に高い結着性を発揮することを見出し、本発明を完成するに至った。すなわち本発明は以下に関する。 As a result of repeating studies to achieve the above object, the present inventors have found that a structural unit (A) derived from a monomer having a hydroxyl group represented by the following general formula (1) and an alkyl group having 4 to 6 carbon atoms A structural unit (B) derived from a (meth) acrylic acid ester monomer, having a structural unit (B-1) derived from a (meth) acrylic acid ester monomer containing a structural unit derived from a (meth) acrylic acid monomer A polymer comprising (C) and a structural unit (D) derived from a polyfunctional (meth) acrylate monomer having a functionality of five or less, further comprising 80 to 95% by mass of the structural unit (B), By using a polymer having 3.5 to 15% by mass of the structural unit (C) as a binder for an electrode, it is found that the polymer exhibits high binding property when used in an electrode, and the present invention is completed. Final . That is, the present invention relates to the following.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、R1は水素原子又は炭素数1~4の直鎖もしくは分岐のアルキル基であり、xは2~8の整数であり、nは2~30の整数である。 In the general formula (1), R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, x is an integer of 2 to 8 and n is an integer of 2 to 30.
 すなわち、本発明は、以下に関する。 That is, the present invention relates to the following.
項1. 下記一般式(1):
Figure JPOXMLDOC01-appb-C000004
(式中、R1は水素原子又は炭素数1~4の直鎖もしくは分岐のアルキル基であり、xは2~8の整数であり、nは2~30の整数である。)
で表わされる水酸基を有するモノマーに由来する構成単位(A)と、
 炭素数4~6のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構成単位(B-1)を有する、(メタ)アクリル酸エステルモノマーに由来する構成単位(B)と、
 (メタ)アクリル酸モノマーに由来する構成単位(C)と、
 5官能以下の多官能(メタ)アクリレートモノマーに由来する構成単位(D)と、
を含み、
 前記構成単位(B)を80~95質量%有し、かつ、前記構成単位(C)を3.5~15質量%有する重合体からなる、電極用バインダー。
項2. 前記一般式(1)において、nは4~20の整数である、項1に記載の電極用バインダー。
項3. 前記構成単位(D)において、前記5官能以下の多官能(メタ)アクリレートモノマーが、下記一般式(3):
Figure JPOXMLDOC01-appb-C000005
(式中、R11は、それぞれ同一または異なって、水素原子又はメチル基であり、R12は、5価以下の炭素数2~100の有機基であり、mは5以下の整数である。)
で示される化合物である、項1または2に記載の電極用バインダー。
項4. 前記構成単位(D)において、前記5官能以下の多官能(メタ)アクリレートモノマーが、3官能から5官能の(メタ)アクリレートである、項1~3のいずれかに記載の電極用バインダー。
項5. 前記構成単位(B-1)を50~95質量%有する、項1~4のいずれかに記載の電極用バインダー。
項6. 前記構成単位(A)を0.5~15質量%有する、項1~5のいずれかに記載の電極用バインダー。
項7. 前記構成単位(D)を0.1~10質量%有する、項1~6のいずれかに記載の電極用バインダー。
項8. 項1~7いずれかに記載の電極用バインダーを含む、電極用バインダー組成物。
項9. 項1~7いずれかに記載の電極用バインダーを含む、電極材料。
項10. 項1~7のいずれかに記載の電極用バインダーと、活物質とを含む、電極。
項11. 項8に記載の電極を備える、蓄電デバイス。
Item 1. The following general formula (1):
Figure JPOXMLDOC01-appb-C000004
(Wherein, R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, x is an integer of 2 to 8 and n is an integer of 2 to 30)
Structural unit (A) derived from the monomer having a hydroxyl group represented by
A structural unit (B) derived from a (meth) acrylic acid ester monomer, having a structural unit (B-1) derived from a (meth) acrylic acid ester monomer having an alkyl group having 4 to 6 carbon atoms;
A structural unit (C) derived from a (meth) acrylic acid monomer,
A structural unit (D) derived from a polyfunctional (meth) acrylate monomer having a functionality of 5 or less;
Including
A binder for an electrode, comprising: a polymer having 80 to 95% by mass of the structural unit (B) and 3.5 to 15% by mass of the structural unit (C).
Item 2. The binder for an electrode according to item 1, wherein in the general formula (1), n is an integer of 4 to 20.
Item 3. In the structural unit (D), the pentafunctional or less polyfunctional (meth) acrylate monomer is represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000005
Wherein R 11 is the same or different and is a hydrogen atom or a methyl group, R 12 is a pentavalent or less organic group having 2 to 100 carbon atoms, and m is an integer of 5 or less. )
The binder for electrodes as described in 1 or 2 which is a compound shown by these.
Item 4. The binder for an electrode according to any one of Items 1 to 3, wherein in the structural unit (D), the pentafunctional or less polyfunctional (meth) acrylate monomer is a trifunctional to pentafunctional (meth) acrylate.
Item 5. The binder for an electrode according to any one of Items 1 to 4, which has 50 to 95% by mass of the structural unit (B-1).
Item 6. The binder for an electrode according to any one of Items 1 to 5, which has 0.5 to 15% by mass of the structural unit (A).
Item 7. The binder for an electrode according to any one of Items 1 to 6, which has the structural unit (D) in an amount of 0.1 to 10% by mass.
Item 8. Item 8. A binder composition for an electrode, comprising the binder for an electrode according to any one of Items 1 to 7.
Item 9. Item 8. An electrode material comprising the binder for an electrode according to any one of Items 1 to 7.
Item 10. Item 8. An electrode comprising the binder for an electrode according to any one of Items 1 to 7 and an active material.
Item 11. Item 9. A storage device comprising the electrode according to item 8.
 本発明によれば、電極に用いられた際の結着性に優れる電極用バインダーを提供することができる。また、本発明によれば、該電極用バインダーを含む電極用バインダー組成物、電極材料、及び電極、並びに該電極を備える蓄電デバイスを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the binder for electrodes which is excellent in the binding property at the time of using for an electrode can be provided. Further, according to the present invention, it is possible to provide a binder composition for an electrode including the binder for an electrode, an electrode material, an electrode, and an electricity storage device provided with the electrode.
 本発明の電極用バインダーは、優れた結着性を備えている。特に、本発明の電極用バインダーは、大型電池と比較して高密度である小型電池(例えば、携帯電話、タブレット端末、ノートパソコンなどの電池)に使用された場合に、優れた結着力を発揮することができる。このため、本発明の電極用バインダーを用いてなる電極、及び該電極を備える蓄電デバイスは、携帯電話、タブレット端末、ノートパソコンなどの電池に、特に有用である。 The binder for an electrode of the present invention has excellent binding properties. In particular, the binder for an electrode of the present invention exhibits excellent binding strength when used in a small battery (for example, a battery such as a mobile phone, a tablet terminal, a notebook computer, etc.) having a high density as compared with a large battery. can do. For this reason, the electrode using the binder for electrodes of this invention, and the electrical storage device provided with this electrode are especially useful to batteries, such as a mobile telephone, a tablet terminal, a notebook computer.
 本明細書において、蓄電デバイスとは、一次電池、二次電池(リチウムイオン二次電池及びニッケル水素二次電池等)、電気化学キャパシタを包含するものである。また、本明細書において、「(メタ)アクリレート」とは、「アクリレートまたはメタクリレート」を意味し、これに類する表現についても同様である。 In the present specification, the power storage device includes a primary battery, a secondary battery (such as a lithium ion secondary battery and a nickel hydrogen secondary battery), and an electrochemical capacitor. Moreover, in the present specification, “(meth) acrylate” means “acrylate or methacrylate”, and the same applies to expressions similar thereto.
<1.電極用バインダー>
 本発明の電極用バインダーは、下記一般式(1)で表わされる水酸基を有するモノマーに由来する構成単位(A)と、炭素数4~6のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構成単位(B-1)を有する、(メタ)アクリル酸エステルモノマーに由来する構成単位(B)と、(メタ)アクリル酸モノマーに由来する構成単位(C)と、5官能以下の多官能(メタ)アクリレートモノマーに由来する構成単位(D)とを含む重合体であって、さらに、構成単位(B)を80~95質量%有し、かつ、前記構成単位(C)を3.5~15質量%有する重合体からなることを特徴とする。
<1. Electrode binder>
The binder for an electrode of the present invention is derived from a structural unit (A) derived from a monomer having a hydroxyl group represented by the following general formula (1) and a (meth) acrylic acid ester monomer having an alkyl group of 4 to 6 carbon atoms Structural unit (B) derived from a (meth) acrylic acid ester monomer having a structural unit (B-1), a structural unit (C) derived from a (meth) acrylic acid monomer, and a pentafunctional or less polyfunctional functional group A polymer comprising a structural unit (D) derived from a (meth) acrylate monomer, and further comprising 80 to 95% by mass of the structural unit (B), and 3.5 of the structural unit (C) It is characterized in that it comprises a polymer having a content of ~ 15% by mass.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(1)において、R1は水素原子又は炭素数1~4の直鎖もしくは分岐のアルキル基であり、xは2~8の整数であり、nは2~30の整数である。 In the general formula (1), R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, x is an integer of 2 to 8 and n is an integer of 2 to 30.
 以下に、本発明の重合体の構成単位について、詳細に説明する。 Below, the structural unit of the polymer of this invention is demonstrated in detail.
 構成単位(A)は、前記一般式(1)で表わされる水酸基を有するモノマーに由来する。一般式(1)において、R1は水素原子又は炭素数1~4の直鎖もしくは分岐のアルキル基から選ばれる。 The structural unit (A) is derived from the monomer having a hydroxyl group represented by the general formula (1). In the general formula (1), R 1 is selected from a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms.
 一般式(1)において、R1としては、好ましくは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、およびイソブチル基などが挙げられる。好ましくは水素原子またはメチル基である。すなわち、構成単位(A)において、水酸基を有するモノマーは、(R1が水素原子又はメチル基である)(メタ)アクリレートモノマーであることが好ましい。 In the general formula (1), preferred examples of R 1 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and an isobutyl group. Preferably it is a hydrogen atom or a methyl group. That is, in the structural unit (A), the monomer having a hydroxyl group is preferably a (meth) acrylate monomer (R 1 is a hydrogen atom or a methyl group).
 一般式(1)において、(Cx2xO)としては、直鎖もしくは分岐のアルキルエーテル基であり、xは2~8の整数であり、好ましくは2~7の整数であり、より好ましくは2~6の整数である。 In the general formula (1), (C x H 2 x O) is a linear or branched alkyl ether group, x is an integer of 2 to 8, preferably an integer of 2 to 7, and more preferably Is an integer of 2 to 6.
 一般式(1)において、nは2~30の整数であり、好ましくは3~25の整数であり、より好ましくは4~20の整数である。 In the general formula (1), n is an integer of 2 to 30, preferably an integer of 3 to 25, and more preferably an integer of 4 to 20.
 構成単位(A)は、以下、一般式(2)で表わされる水酸基を有するモノマーに由来することが好ましい。
Figure JPOXMLDOC01-appb-C000007
 一般式(2)において、R1は水素原子又は炭素数1~4の直鎖もしくは分岐のアルキル基であり、oは0~30の整数であり、pは0~30の整数であり、o+pは2~30である。ここで、o、およびpは、当該構成単位の構成比を表しているのみであって、(C24O)の繰り返し単位のブロックと(C36O)の繰り返し単位のブロックからなる化合物のみを意味するものではなく、(C24O)の繰り返し単位と、(C36O)の繰り返し単位が交互・ランダムに配置された、又はランダム部とブロック部が混在する化合物であってもよい。
The structural unit (A) is preferably derived from the monomer having a hydroxyl group represented by the general formula (2) below.
Figure JPOXMLDOC01-appb-C000007
In the general formula (2), R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, o is an integer of 0 to 30, p is an integer of 0 to 30, and o + p Is 2-30. Here, o and p only represent the compositional ratio of the constituent unit, and it is possible to use a block of repeating units of (C 2 H 4 O) and a block of repeating units of (C 3 H 6 O). And the repeating unit of (C 2 H 4 O) and the repeating unit of (C 3 H 6 O) are alternately or randomly arranged, or the random part and the block part are mixed. It may be a compound.
 一般式(2)において、R1としては、好ましくは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、およびイソブチル基などが挙げられる。好ましくは水素原子またはメチル基である。すなわち、構成単位(A)において、水酸基を有するモノマーは、(R1が水素原子又はメチル基である)(メタ)アクリレートモノマーであることが好ましい。 In the general formula (2), preferred examples of R 1 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and an isobutyl group. Preferably it is a hydrogen atom or a methyl group. That is, in the structural unit (A), the monomer having a hydroxyl group is preferably a (meth) acrylate monomer (R 1 is a hydrogen atom or a methyl group).
 一般式(2)において、oは0~30の整数であり、pは0~30の整数であり、o+pは2~30であり、oは0~25の整数であり、pは0~25の整数であり、o+pは3~25であることが好ましく、oは0~20の整数であり、pは0~20の整数であり、o+pは4~20であることが特に好ましい。 In the general formula (2), o is an integer of 0 to 30, p is an integer of 0 to 30, o + p is 2 to 30, o is an integer of 0 to 25 and p is 0 to 25 And o is preferably an integer of 0 to 20, o is an integer of 0 to 20, p is an integer of 0 to 20, and o + p is particularly preferably 4 to 20.
 一般式(1)で表わされる水酸基を有するモノマーの具体例としては、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、およびポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、およびポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコール-プロピレングリコール-モノ(メタ)アクリレート、ポリエチレングリコール-テトラメチレングリコール-モノ(メタ)アクリレートなどが挙げられる。これらは1種又は2種以上併用できる。これらの中でも、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートが好ましい。 Specific examples of the hydroxyl group-containing monomer represented by the general formula (1) include diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, and polyethylene glycol mono (meth) acrylate. Acrylate, dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate, polyethylene glycol-propylene glycol-mono (meth) acrylate, Polyethylene glycol-tetramethylene glycol-mono (meth) acrylate and the like can be mentioned. These can be used alone or in combination of two or more. Among these, tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate are preferable.
 構成単位(A)は、1種類であってもよいし、2種類以上であってもよい。 The structural unit (A) may be of one type or of two or more types.
 重合体において、構成単位(A)の比率の下限は0.5質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、2.5質量%以上であることが特に好ましい。重合体における構成単位(A)の比率の上限は、15質量%以下であることが好ましく、12質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。 In the polymer, the lower limit of the ratio of the structural unit (A) is preferably 0.5% by mass or more, more preferably 1.5% by mass or more, particularly preferably 2.5% by mass or more preferable. The upper limit of the ratio of the structural unit (A) in the polymer is preferably 15% by mass or less, more preferably 12% by mass or less, and particularly preferably 10% by mass or less.
 構成単位(B)は、(メタ)アクリル酸エステルモノマーに由来する構成単位である。重合体は、構成単位(B)を80~95質量%有している。 The structural unit (B) is a structural unit derived from a (meth) acrylic acid ester monomer. The polymer has 80 to 95% by mass of the structural unit (B).
 構成単位(B)は、炭素数4~6のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構成単位(B-1)を有している。構成単位(B)は、構成単位(B-1)のみで構成されていてもよく、構成単位(B-1)と、炭素数4~6のアルキル基を有する(メタ)アクリル酸エステルモノマーとは異なる(メタ)アクリル酸エステルモノマーに由来する構成単位(B-2)とを有していてもよい。 The structural unit (B) has a structural unit (B-1) derived from a (meth) acrylic acid ester monomer having an alkyl group of 4 to 6 carbon atoms. The structural unit (B) may be composed of only the structural unit (B-1), and a structural unit (B-1) and a (meth) acrylic acid ester monomer having an alkyl group of 4 to 6 carbon atoms May have structural units (B-2) derived from different (meth) acrylic acid ester monomers.
 好ましい構成単位(B-1)の具体例としては、アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸イソヘキシル等の(メタ)アクリル酸アルキルエステル由来の構成単位を例示することができ、アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸イソペンチル等の炭素数4~5のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構成単位であることがより好ましい。構成単位(B)が有する構成単位(B-1)は、1種類であってもよいし、2種類以上であってもよい。 Specific examples of the preferred structural unit (B-1) include n-butyl acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, n- (meth) acrylate Examples include structural units derived from (meth) acrylic acid alkyl esters such as hexyl and isohexyl (meth) acrylate, and n-butyl acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, It is more preferable that the structural unit is derived from a (meth) acrylic acid ester monomer having an alkyl group having 4 to 5 carbon atoms such as isopentyl (meth) acrylate. The structural unit (B-1) of the structural unit (B) may be of one type or of two or more types.
 構成単位(B-2)としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、及び(メタ)アクリル酸ラウリル等の(メタ)アクリル酸アルキルエステル由来の構成単位が挙げられ、炭素数7~12のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構成単位であることが好ましい。構成単位(B)が有する構成単位(B-2)は、1種類であってもよいし、2種類以上であってもよい。 As the structural unit (B-2), methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-heptyl (meth) acrylate, (meth) Structural units derived from (meth) acrylic acid alkyl esters such as n-octyl acrylate, 2-ethylhexyl (meth) acrylate, and lauryl (meth) acrylate, and having an alkyl group having 7 to 12 carbon atoms ( It is preferable that it is a structural unit derived from a (meth) acrylic acid ester monomer. The structural unit (B-2) contained in the structural unit (B) may be of one type or of two or more types.
 重合体における構成単位(B)の比率の下限は、80質量%以上であることが好ましく、82質量%以上であることがより好ましく、84質量%以上であることが特に好ましい。また、重合体における構成単位(B)の比率の上限は、95質量%以下であることが好ましく、94質量%以下であることがより好ましく、92質量%以下であることが特に好ましい。 The lower limit of the proportion of the structural unit (B) in the polymer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. The upper limit of the ratio of the structural unit (B) in the polymer is preferably 95% by mass or less, more preferably 94% by mass or less, and particularly preferably 92% by mass or less.
 また、重合体における構成単位(B-1)の比率の下限は、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、80質量%以上であることが特に好ましい。また、重合体における構成単位(B-1)の比率の上限は、95質量%以下であることが好ましく、94質量%以下であることがより好ましく、92質量%以下であることが特に好ましい。 The lower limit of the proportion of the structural unit (B-1) in the polymer is preferably 50% by mass or more, more preferably 65% by mass or more, and particularly preferably 80% by mass or more. The upper limit of the proportion of the structural unit (B-1) in the polymer is preferably 95% by mass or less, more preferably 94% by mass or less, and particularly preferably 92% by mass or less.
 重合体において、構成単位(B-1)と構成単位(A)との質量比は、7:1~35:1であることが好ましく、7.5~30:1であることがより好ましく、8:1~25:1であることが特に好ましい。 In the polymer, the mass ratio of the structural unit (B-1) to the structural unit (A) is preferably 7: 1 to 35: 1, and more preferably 7.5 to 30: 1. Particularly preferred is 8: 1 to 25: 1.
 重合体における構成単位(B-2)の比率の上限は、35質量%以下であることが好ましく、23質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。また、重合体における構成単位(B-2)の比率の下限は0質量%以上であり、3質量%以上であってもよく、5質量%以上であってもよい。 The upper limit of the proportion of the structural unit (B-2) in the polymer is preferably 35% by mass or less, more preferably 23% by mass or less, and particularly preferably 10% by mass or less. Further, the lower limit of the proportion of the structural unit (B-2) in the polymer is 0% by mass or more, and may be 3% by mass or more, or 5% by mass or more.
 構成単位(C)は、(メタ)アクリル酸モノマーに由来する構成単位である。重合体は、構成単位(C)を3.5~15質量%有する。 The structural unit (C) is a structural unit derived from a (meth) acrylic acid monomer. The polymer has 3.5 to 15% by mass of the structural unit (C).
 構成単位(C)としては、アクリル酸、メタクリル酸から選択される化合物に由来する構成単位を例示することができる。重合体が有する構成単位(C)は、1種類であってもよいし、2種類以上であってもよい。 As a structural unit (C), the structural unit derived from the compound selected from acrylic acid and methacrylic acid can be illustrated. The structural unit (C) of the polymer may be of one type or of two or more types.
 重合体における構成単位(C)の比率の下限は3.5質量%以上であることが好ましく、4質量%以上であることがより好ましく、5質量%以上であることが特に好ましい。また、構成単位(C)の比率の上限は、15質量%以下であることが好ましく、13質量%以下であることがより好ましく、12質量%以下であることが特に好ましい。 The lower limit of the proportion of the structural unit (C) in the polymer is preferably 3.5% by mass or more, more preferably 4% by mass or more, and particularly preferably 5% by mass or more. The upper limit of the proportion of the structural unit (C) is preferably 15% by mass or less, more preferably 13% by mass or less, and particularly preferably 12% by mass or less.
 構成単位(D)は、5官能以下の多官能(メタ)アクリレートモノマーに由来する構成単位である。構成単位(D)は、下記一般式(3)に由来する構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
The structural unit (D) is a structural unit derived from a polyfunctional (meth) acrylate monomer having a functionality of five or less. The structural unit (D) is preferably a structural unit derived from the following general formula (3).
Figure JPOXMLDOC01-appb-C000008
 一般式(3)において、R11は、それぞれ同一または異なって、水素原子又はメチル基であり、R12は、5価以下の炭素数2~100の有機基であり、mは5以下の整数である。 In the general formula (3), R 11 is the same or different and is a hydrogen atom or a methyl group, R 12 is a pentavalent or less organic group having 2 to 100 carbon atoms, and m is an integer of 5 or less It is.
 一般式(3)において、mは2~5(すなわち、構成単位(D)が2官能から5官能(メタ)アクリレートに由来する構成単位)であることが好ましく、3~5(すなわち、構成単位(D)が3官能から5官能(メタ)アクリレートに由来する構成単位)であることがより好ましく、3~4(すなわち、構成単位(D)が3官能から4官能(メタ)アクリレートに由来する構成単位)であることが特に好ましい。 In the general formula (3), m is preferably 2 to 5 (that is, a constituent unit derived from a difunctional to pentafunctional (meth) acrylate as the constituent unit (D)), and 3 to 5 (that is, a constituent unit More preferably, (D) is a structural unit derived from trifunctional to pentafunctional (meth) acrylate, and 3 to 4 (that is, structural unit (D) is derived from trifunctional to tetrafunctional (meth) acrylate) Particularly preferred is the structural unit).
 構成単位(D)において、2官能(メタ)アクリレートに由来する構成単位の具体例としては、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ビス(メタ)アクリロイルオキシエチルフォスフェート等の2官能(メタ)アクリレートに由来する構成単位が挙げられる。 Specific examples of the structural unit derived from bifunctional (meth) acrylate in the structural unit (D) include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, Tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, dioxane glycol di (meth) acrylate, bis (meth) acryloyloxy The structural unit derived from bifunctional (meth) acrylates, such as ethyl phosphate, is mentioned.
 構成単位(D)において、3官能(メタ)アクリレートに由来する構成単位の具体例としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、トリメチロールプロパンPO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2,2,2-トリス(メタ)アクリロイロキシメチルエチルコハク酸、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、グリセリンEO付加トリ(メタ)アクリレート、グリセリンPO付加トリ(メタ)アクリレート及びトリス(メタ)アクリロイルオキシエチルフォスフェート等の3官能(メタ)アクリレートに由来する構成単位が挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートから選択される3官能(メタ)アクリレートに由来する構成単位が好ましい。 Specific examples of the structural unit derived from trifunctional (meth) acrylate in the structural unit (D) include trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-added tri (meth) acrylate, and trimethylolpropane PO-added tri (Meth) acrylate, pentaerythritol tri (meth) acrylate, 2,2,2-tris (meth) acryloyloxymethylethyl succinic acid, ethoxylated isocyanurate tri (meth) acrylate, ε-caprolactone modified tris- (2-) Trifunctional (meth) acrylates such as (meth) acryloxyethyl) isocyanurate, glycerin EO-added tri (meth) acrylate, glycerol PO-added tri (meth) acrylate and tris (meth) acryloyloxyethyl phosphate Structural units and the like. Among these, structural units derived from a trifunctional (meth) acrylate selected from trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-added tri (meth) acrylate, and pentaerythritol tri (meth) acrylate are preferable.
 構成単位(D)において、4官能(メタ)アクリレートに由来する構成単位の具体例としては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート及びペンタエリスリトールEO付加テトラ(メタ)アクリレート等の4官能(メタ)アクリレートに由来する構成単位が挙げられる。 Specific examples of the structural unit derived from tetrafunctional (meth) acrylate in the structural unit (D) include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and pentaerythritol EO-added tetra (meth) acrylate And structural units derived from tetrafunctional (meth) acrylates such as
 構成単位(D)において、5官能(メタ)アクリレートに由来する構成単位の具体例としては、ジペンタエリスリトールペンタ(メタ)アクリレートに由来する構成単位が挙げられる。 In the structural unit (D), specific examples of structural units derived from pentafunctional (meth) acrylate include structural units derived from dipentaerythritol penta (meth) acrylate.
 重合体における構成単位(D)の比率の下限は0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることが特に好ましい。構成単位(D)の比率の上限は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが特に好ましい。 The lower limit of the ratio of the structural unit (D) in the polymer is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and particularly preferably 0.2% by mass or more . The upper limit of the proportion of the structural unit (D) is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less.
 重合体における構成単位(D)と構成単位(A)と質量比は、0.03:1~1.5:1であることが好ましく、0.05:1~1:1であることがより好ましく、0.08:1~0.3:1であることが特に好ましい。 The mass ratio of the structural unit (D) to the structural unit (A) in the polymer is preferably 0.03: 1 to 1.5: 1, and more preferably 0.05: 1 to 1: 1. The ratio is preferably 0.08: 1 to 0.3: 1.
 重合体としては、上記以外にも、その他のモノマー由来の構成単位として、フマル酸、マレイン酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、クロトンニトリル、α-エチルアクリロニトリル、α-シアノアクリレート、シアン化ビニリデン、フマロニトリルから選択されるモノマー由来の構成単位を有することできる。 As the polymer, as structural units derived from other monomers besides the above, fumaric acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, crotononitrile It can have a structural unit derived from a monomer selected from α-ethylacrylonitrile, α-cyanoacrylate, vinylidene cyanide and fumaronitrile.
 重合体を得る方法としては、一般的な乳化重合法、ソープフリー乳化重合法等を使用することができる。具体的には、攪拌機、及び加熱装置付きの密閉容器に室温でモノマー、乳化剤、重合開始剤、水、必要に応じて分散剤、連鎖移動剤、pH調整剤等を含んだ組成物を不活性ガス雰囲気下で攪拌することでモノマー等を水に乳化させる。乳化の方法は撹拌、剪断、超音波等による方法等が適用でき、撹拌翼、ホモジナイザー等を使用することができる。次いで、攪拌しながら温度を上昇させて重合を開始させることで、重合体が水に分散した球形の重合体のラテックスを得ることができる。重合時のモノマーの添加方法は、一括仕込みの他に、モノマー滴下やプレエマルジョン滴下等でもよく、これらの方法を2種以上併用してもよい。尚、プレエマルジョン滴下とは先にモノマー、乳化剤、水等を予め乳化させておき、その乳液を滴下していく添加方法を指す。 As a method of obtaining a polymer, a general emulsion polymerization method, a soap-free emulsion polymerization method, etc. can be used. Specifically, a closed container equipped with a stirrer and a heating device is inert at room temperature and is inert to a composition containing a monomer, an emulsifier, a polymerization initiator, water, if necessary, a dispersant, a chain transfer agent, a pH adjuster, etc. The monomers and the like are emulsified in water by stirring under a gas atmosphere. As a method of emulsification, methods such as stirring, shearing, ultrasonic waves and the like can be applied, and a stirring blade, a homogenizer and the like can be used. Then, the temperature is raised while stirring to initiate polymerization, whereby a spherical polymer latex in which the polymer is dispersed in water can be obtained. The monomer addition method during polymerization may be monomer dropping, pre-emulsion dropping, etc. in addition to batch feeding, and two or more of these methods may be used in combination. In addition, pre-emulsion dropping refers to an addition method in which a monomer, an emulsifying agent, water and the like are previously emulsified in advance and the emulsion is dropped.
 本発明で用いられる乳化剤は特に限定されない。乳化剤は界面活性剤であり、この界面活性剤には反応性基を有する反応性界面活性剤が含まれる。乳化重合法おいて一般的に用いられるノニオン性界面活性剤及びアニオン性界面活性剤等を使用することができる。 The emulsifier used in the present invention is not particularly limited. The emulsifying agent is a surfactant, and the surfactant includes a reactive surfactant having a reactive group. Nonionic surfactants and anionic surfactants which are generally used in the emulsion polymerization method can be used.
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル及びポリオキシエチレンソルビタン脂肪酸エステル等が挙げられ、反応性のノニオン性界面活性剤としては、ラテムルPD-420、430、450(花王社製)、アデカリアソープER(アデカ社製)、アクアロンRN(第一工業製薬社製)、アントックスLMA(日本乳化剤社製)、アントックスEMH(日本乳化剤社製)等が挙げられる。 As a nonionic surfactant, for example, polyoxyethylene alkyl ether, polyoxyethylene alcohol ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene Examples thereof include fatty acid esters and polyoxyethylene sorbitan fatty acid esters, and examples of the reactive nonionic surfactants include Latemul PD-420, 430, 450 (manufactured by Kao Corporation), Adekaria Soap ER (manufactured by Adeka), Aqualon. RN (made by Dai-ichi Kogyo Seiyaku Co., Ltd.), Antox LMA (made by Nippon Emulsifier), Antox EMH (made by Nippon Emulsifier), etc. are mentioned.
 アニオン性界面活性剤としては、硫酸エステル型、カルボン酸型、又はスルホン酸型の金属塩、アンモニウム塩、トリエタノールアンモニウム塩、リン酸エステル型の界面活性剤等を挙げることができる。硫酸エステル型、スルホン酸型、リン酸エステル型が好ましく、硫酸エステル型が特に好ましい。硫酸エステル型のアニオン性界面活性剤の代表例としてはドデシル硫酸等のアルキル硫酸金属塩、アンモニウム、又はアルキル硫酸トリエタノールアミン、ポリオキシエチレンドデシルエーテル硫酸、ポリオキシエチレンイソデシルエーテル硫酸、ポリオキシエチレントリデシルエーテル硫酸等のポリオキシエチレンアルキルエーテル硫酸金属塩、アンモニウム塩、又はポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等が挙げられ、硫酸エステル型の反応性アニオン性界面活性剤の具体例としては、ラテムルPD-104、105(花王社製)、アデカリアソープSR(アデカ社製)、アクアロンHS(第一工業製薬社製)、アクアロンKH(第一工業製薬社製)が挙げられる。好ましくは、ドデシル硫酸ナトリウム、ドデシル硫酸アンモニウム、ドデシル硫酸トリエタノールアミン、ドデシルベンゼンスルホン酸ナトリウム、ラテムルPD-104等が挙げられる。 Examples of the anionic surfactant include metal salts of sulfuric acid ester type, carboxylic acid type or sulfonic acid type, ammonium salts, triethanol ammonium salts, surfactants of phosphoric acid ester type and the like. The sulfuric acid ester type, the sulfonic acid type and the phosphoric acid ester type are preferable, and the sulfuric acid ester type is particularly preferable. Representative examples of anionic surfactants of sulfuric acid ester type include metal alkyl sulfates such as dodecyl sulfate, ammonium, or alkyl sulfate triethanolamine, polyoxyethylene dodecyl ether sulfate, polyoxyethylene isodecyl ether sulfate, polyoxyethylene Examples thereof include metal salts of polyoxyethylene alkyl ether sulfuric acid such as tridecyl ether sulfuric acid, ammonium salts, and triethanolamine etc. of polyoxyethylene alkyl ether sulfuric acid, and specific examples of reactive anionic surfactants of sulfuric acid ester type include: Latemul PD-104, 105 (manufactured by Kao Corporation), Adekaria Soap SR (manufactured by Adeka), Aqualon HS (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), Aqualon KH (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.). Preferably, sodium dodecyl sulfate, ammonium dodecyl sulfate, triethanolamine dodecyl sulfate, sodium dodecyl benzene sulfonate, Latem PD-104 and the like can be mentioned.
 これらノニオン性界面活性剤及び/又はアニオン性界面活性剤は1種または2種以上用いてもよい。 One or more of these nonionic surfactants and / or anionic surfactants may be used.
 反応性界面活性剤の反応性とは、反応性二重結合を含有し、重合時にモノマーと重合反応することを意味する。すなわち、反応性界面活性剤は、重合体を作製する重合の際にモノマーの乳化剤として働くと共に、重合後は重合体の一部に共有結合して取り込まれた状態となる。そのため、乳化重合及び作製した重合体の分散が良好であり、電極用バインダーとしての物性(屈曲性、結着性)が優れている。 The reactivity of the reactive surfactant means that it contains a reactive double bond and undergoes a polymerization reaction with the monomer during polymerization. That is, the reactive surfactant acts as an emulsifier for the monomer during polymerization for producing the polymer, and after polymerization, it is covalently bonded to a part of the polymer to be incorporated. Therefore, the emulsion polymerization and the dispersion of the produced polymer are good, and the physical properties (flexibility, binding property) as a binder for an electrode are excellent.
 乳化剤の構成単位の量は乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量(100質量%)に対して、0.01~25質量%の範囲であり、好ましくは0.05~20質量%、更に好ましくは0.1~20質量%である。 The amount of the constituent unit of the emulsifier may be an amount generally used in the emulsion polymerization method. Specifically, it is in the range of 0.01 to 25% by mass, preferably 0.05 to 20% by mass, and more preferably 0.1 to 20% by mass, based on the amount of monomers (100% by mass) of the charge. It is.
 本発明で用いられる重合開始剤は特に限定されず、乳化重合法、懸濁重合法おいて一般的に用いられる重合開始剤を使用することができる。好ましくは乳化重合法である。乳化重合法では水溶性の重合開始剤、懸濁重合法では油溶性の重合開始剤が使われる。 The polymerization initiator used in the present invention is not particularly limited, and polymerization initiators generally used in the emulsion polymerization method and suspension polymerization method can be used. Preferably, it is an emulsion polymerization method. In the emulsion polymerization method, a water-soluble polymerization initiator is used, and in the suspension polymerization method, an oil-soluble polymerization initiator is used.
 その水溶性の重合開始剤の具体例としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの過硫酸塩に代表される水溶性の重合開始剤、2-2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、またはその塩酸塩または硫酸塩、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロパンアミジン)、又はその塩酸塩又は硫酸塩、3,3’-[アゾビス[(2,2-ジメチル-1-イミノエタン-2,1-ジイル)イミノ]]ビス(プロパン酸)、2,2’‐[アゾビス(ジメチルメチレン)]ビス(2‐イミダゾリン)などの水溶性のアゾ化合物の重合開始剤が好ましい。 Specific examples of the water-soluble polymerization initiator include water-soluble polymerization initiators represented by persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate, 2-2′-azobis [2- (2) -Imidazolin-2-yl) propane], or a hydrochloride or sulfate thereof, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis (2- Methylpropanamidine), or a hydrochloride or sulfate thereof, 3,3 ′-[azobis [(2,2-dimethyl-1-iminoethane-2,1-diyl) imino]] bis (propanoic acid), 2,2 Preferred are polymerization initiators of water-soluble azo compounds such as'-[azobis (dimethylmethylene)] bis (2-imidazoline).
 油溶性の重合開始剤としては、クメンハイドロパーオキサイド、過酸化ベンゾイル、アセチルパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサンカルボニトリル)などの油溶性のアゾ化合物の重合開始剤、レドックス系開始剤が好ましい。これら重合開始剤は1種または2種以上組み合わせて用いてもよい。 Examples of oil-soluble polymerization initiators include cumene hydroperoxide, benzoyl peroxide, organic peroxides such as acetyl peroxide and t-butyl hydroperoxide, azobisisobutyronitrile, 1,1'-azobis (cyclohexane Polymerization initiators of oil-soluble azo compounds such as carbonitriles) and redox initiators are preferred. These polymerization initiators may be used alone or in combination of two or more.
 重合開始剤の使用量は乳化重合法または懸濁重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量(100質量%)に対して、0.01~10質量%の範囲であり、好ましくは0.01~5質量%、更に好ましくは0.02~3質量%である。 The amount of polymerization initiator used may be an amount generally used in emulsion polymerization or suspension polymerization. Specifically, it is in the range of 0.01 to 10% by mass, preferably 0.01 to 5% by mass, and more preferably 0.02 to 3% by mass, with respect to the amount of monomer (100% by mass) to be charged. It is.
 連鎖移動剤は、必要に応じて用いることができる。連鎖移動剤の具体例としては、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタン等のアルキルメルカプタン、2,4-ジフェニル-4-メチル-1-ペンテン、2,4-ジフェニル-4-メチル-2-ペンテン、ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物、ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物、2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のフェノール系化合物、アリルアルコール等のアリル化合物、ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物、α-ベンジルオキシスチレン、α-ベンジルオキシアクリロニトリル、α-ベンジルオキシアクリルアミド等のビニルエーテル、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート等が挙げられ、これらを1種または2種以上用いてもよい。これらの連鎖移動剤の量は特に限定されないが、通常、仕込モノマー量100質量部に対して0~5質量部にて使用される。 Chain transfer agents can be used as needed. Specific examples of the chain transfer agent include alkyl mercaptan such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan and n-stearyl mercaptan, and 2,4-diphenyl-4. Xanthogen compounds such as -methyl-1-pentene, 2,4-diphenyl-4-methyl-2-pentene, dimethylxanthogen disulfide, diisopropyl xanthogen disulfide, terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram mono Thiuram compounds such as sulfide, phenol compounds such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol, allyl compounds such as allyl alcohol Halogenated hydrocarbon compounds such as ololmethane, dibromomethane and carbon tetrabromide, α-benzyloxystyrene, vinyl ethers such as α-benzyloxyacrylonitrile and α-benzyloxyacrylamide, triphenylethane, pentaphenylethane, acrolein and methacrolein And thioglycolic acid, thiomalic acid, 2-ethylhexyl thioglycolate and the like, and one or more of these may be used. Although the amount of these chain transfer agents is not particularly limited, it is usually used in an amount of 0 to 5 parts by mass with respect to 100 parts by mass of the charged monomer.
 重合体の重合時間及び重合温度は特に限定されない。使用する重合開始剤の種類等から適宜選択できるが、一般的に、重合温度は20~100℃であり、重合時間は0.5~100時間である。 The polymerization time and polymerization temperature of the polymer are not particularly limited. The temperature can be appropriately selected depending on the type of polymerization initiator to be used, etc., but generally, the polymerization temperature is 20 to 100 ° C., and the polymerization time is 0.5 to 100 hours.
 さらに上記の方法によって得られた重合体は、必要に応じてpH調整剤として塩基を用いることでpHを調整することができる。塩基の具体例としては、アルカリ金属(Li、Na、K、Rb、Cs)水酸化物、アンモニア、無機アンモニウム化合物、有機アミン化合物等が挙げられる。pHの範囲はpH2~11、好ましくはpH3~10、更に好ましくはpH4~9の範囲である。 Furthermore, the polymer obtained by the above-mentioned method can be adjusted in pH by using a base as a pH adjuster as necessary. Specific examples of the base include alkali metal (Li, Na, K, Rb, Cs) hydroxide, ammonia, an inorganic ammonium compound, an organic amine compound and the like. The pH range is pH 2-11, preferably pH 3-10, more preferably pH 4-9.
 本発明の電極用バインダーは、重合体を有するが、水分、又は乳化剤等の他の物質が重合体の内部に含有され、又は外部に付着されていてもよい。内部に含有される、又は外部に付着される物質の量は、重合体100質量部に対して、7質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることが特に好ましい。 The binder for an electrode of the present invention has a polymer, but water or other substance such as an emulsifier may be contained in the inside of the polymer or attached to the outside. The amount of the substance contained inside or attached to the outside is preferably 7 parts by mass or less, more preferably 5 parts by mass or less, and 3 parts by mass with respect to 100 parts by mass of the polymer. It is particularly preferred that
<2.電極用バインダー組成物>
 本発明の電極用バインダー組成物は、先述の「1.電極用バインダー」を溶媒とともに含有するものであり、電極用バインダーが溶媒に分散されたものであってよい。溶媒は、水、有機溶媒を用いることができる。有機溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)などのアミド系極性有機溶媒、トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類を例示することができる。
<2. Binder composition for electrode>
The binder composition for electrodes of the present invention may contain the aforementioned “1. binder for electrodes” together with a solvent, and the binder for electrodes may be dispersed in the solvent. The solvent may be water or an organic solvent. Organic solvents include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, alcohols such as amyl alcohol, acetone, methyl ethyl ketone, Ketones such as cyclohexanone, esters such as ethyl acetate and butyl acetate, ethers such as diethyl ether, dioxane, and tetrahydrofuran, amide-based polar organic compounds such as N, N-dimethylformamide, N-methyl-2-pyrrolidone (NMP) Examples thereof include solvents, aromatic hydrocarbons such as toluene, xylene, chlorobenzene, ortho-dichlorobenzene, and para-dichlorobenzene.
 本発明の電極用バインダー組成物は、電極用バインダーが水に分散した水系バインダー組成物であることが好ましい。 The binder composition for electrodes of the present invention is preferably an aqueous binder composition in which the binder for electrodes is dispersed in water.
 本発明の電極用バインダー組成物は、重合体を得る際に製造されるエマルジョンを用いたエマルジョンであってもよい。 The binder composition for electrodes of the present invention may be an emulsion using an emulsion produced in obtaining a polymer.
 本発明の電極用バインダー組成物における、電極用バインダーの含有量は特に限定されないが、電極用バインダーの固形分濃度が0.2~80質量%となるように含有することが好ましく、0.5~70質量%となるように含有することがより好ましく、0.5~60質量%となるように含有することが特に好ましい。尚、バインダー組成物における固形分については、通常、重合体及び乳化剤(重合体が乳化重合で用いられた際のみ)と考えられる。 The content of the binder for the electrode in the binder composition for an electrode of the present invention is not particularly limited, but the content of the binder for the electrode is preferably 0.2 to 80% by mass, preferably 0.5 The content is more preferably 70 to 70% by mass, and particularly preferably 0.5 to 60% by mass. The solid content of the binder composition is generally considered to be a polymer and an emulsifier (only when the polymer is used in emulsion polymerization).
<3.電極材料>
 本発明の電極材料は、少なくとも活物質、及び先述の「1.電極用バインダー」の欄で説明した本発明の電極用バインダーを含有し、更に導電助剤を含有していてもよい。本発明の電極材料の製造には、本発明の電極用バインダーを溶媒とともに含有する「2.電極用バインダー組成物」の欄で説明した本発明の電極用バインダー組成物を用いることもできる。具体的には、正極に用いる正極材料としては正極活物質、及び本発明の電極用バインダーを含有し、更に導電助剤を含有していてもよく、負極に用いる負極材料としては負極活物質、本発明の電極用バインダーを含有し、更に導電助剤を含有していてもよい。
<3. Electrode material>
The electrode material of the present invention contains at least an active material and the binder for an electrode of the present invention described in the section of “1. Binder for electrode” described above, and may further contain a conductive auxiliary. In the production of the electrode material of the present invention, the binder composition for an electrode of the present invention described in the section of "2. Binder composition for electrode" containing the binder for an electrode of the present invention together with a solvent can also be used. Specifically, the positive electrode material used for the positive electrode contains a positive electrode active material and the binder for an electrode of the present invention, and may further contain a conductive aid, and a negative electrode active material, a negative electrode material used for the negative electrode The binder for an electrode of the present invention may be contained, and further, a conductive auxiliary may be contained.
 正極活物質は、AMO2、AM24、A2MO3、AMBO4のいずれかの組成からなるアルカリ金属含有複合酸化物である。Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい。BはP、Siまたはその混合物からなる。なお正極活物質は粉末が好ましく、その粒子径には、好ましくは50ミクロン以下、より好ましくは20ミクロン以下のものを用いる。これらの活物質は、3V(vs. Li/Li+)以上の起電力を有するものである。 The positive electrode active material is an alkali metal-containing composite oxide having a composition of any of AMO 2 , AM 2 O 4 , A 2 MO 3 , and AMBO 4 . A may be an alkali metal, M may be a single or two or more transition metals, and part of them may include non-transition metals. B consists of P, Si or a mixture thereof. The positive electrode active material is preferably a powder, and the particle diameter thereof is preferably 50 microns or less, more preferably 20 microns or less. These active materials have an electromotive force of 3 V (vs. Li / Li +) or more.
 正極活物質の好ましい具体例としては、LixCoO2, LixNiO2, LixMnO2, LixCrO2, LixFeO2, LixCoaMn1-a2, LixCoaNi1-a2, LixCoaCr1-a2, LixCoaFe1-a2, LixCoaTi1-a2, LixMnaNi1-a2, LixMnaCr1-a2, LixMnaFe1-a2, LixMnaTi1-a2, LixNiaCr1-a2, LixNiaFe1-a2, LixNiaTi1-a2, LixCraFe1-a2, LixCraTi1-a2, LixFeaTi1-a2, LixCobMncNi1-b-c2, LixNiaCobAlc2, LixCrbMncNi1-b-c2, LixFebMncNi1-b-c2, LixTibMncNi1-b-c2, LixMn24, LixMndCo2-d4, LixMndNi2-d4, LixMndCr2-d4, LixMndFe2-d4, LixMndTi2-d4, LiyMnO3, LiyMneCo1-e3, LiyMneNi1-e3, LiyMneFe1-e3, LiyMneTi1-e3, LixCoPO4, LixMnPO4, LixNiPO4, LixFePO4, LixCofMn1-fPO4, LixCofNi1-fPO4, LixCofFe1-fPO4, LixMnfNi1-fPO4, LixMnfFe1-fPO4, LixNifFe1-fPO4,LiyCoSiO4, LiyMnSiO4, LiyNiSiO4, LiyFeSiO4, LiyCogMn1-gSiO4, LiyCogNi1-gSiO4, LiyCogFe1-gSiO4, LiyMngNi1-gSiO4, LiyMngFe1-gSiO4, LiyNigFe1-gSiO4, LiyCoPhSi1-h4, LiyMnPhSi1-h4, LiyNiPhSi1-h4, LiyFePhSi1-h4, LiyCogMn1-ghSi1-h4, LiyCogNi1-ghSi1-h4, LiyCogFe1-ghSi1-h4, LiyMngNi1-ghSi1-h4, LiyMngFe1-ghSi1-h4, LiyNigFe1-ghSi1-h4などのリチウム含有複合酸化物をあげることができる。(ここで、x=0.01~1.2, y=0.01~2.2, a=0.01~0.99, b=0.01~0.98, c=0.01~0.98 但し、b+c=0.02~0.99, d=1.49~1.99, e=0.01~0.99, f=0.01~0.99, g=0.01~0.99, h=0.01~0.99である。) Specific preferred examples of the cathode active material, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x CrO 2, Li x FeO 2, Li x Co a Mn 1-a O 2, Li x Co a Ni 1-a O 2, Li x Co a Cr 1-a O 2, Li x Co a Fe 1-a O 2, Li x Co a Ti 1-a O 2, Li x Mn a Ni 1-a O 2 , Li x Mn a Cr 1 -a O 2 , Li x Mn a Fe 1 -a O 2 , Li x Mn a Ti 1 -a O 2 , Li x Ni a Cr 1 -a O 2 , Li x Ni a Fe 1-a O 2 , Li x Ni a Ti 1-a O 2 , Li x Cr a Fe 1-a O 2 , Li x Cr a Ti 1-a O 2 , Li x Fe a Ti 1-a O 2 , Li x Co b Mn c Ni 1-bc O 2 , Li x Ni a Co b Al c O 2 , Li x Cr b Mn c Ni 1-bc O 2 , Li x Fe b Mn c Ni 1-bc O 2 , Li x Ti b Mn c Ni 1-bc O 2 , Li x Mn 2 O 4 , Li x Mn d Co 2 -d O 4 , Li x Mn d Ni 2 -d O 4 , Li x Mn d Cr 2-d O 4 , Li x Mn d Fe 2-d O 4 , Li x Mn d Ti 2-d O 4 , Li y MnO 3 , Li y Mn e Co 1-e O 3 , Li y Mn e Ni 1-e O 3 , Li y Mn e Fe 1-e O 3 , Li y Mn e Ti 1-e O 3 , Li x CoPO 4 , Li x MnPO 4 , Li x NiPO 4 , Li x FePO 4 , Li x Co f Mn 1-f PO 4 , Li x Co f Ni 1 -f PO 4 , Li x Co f Fe 1-f PO 4 , Li x Mn f Ni 1-f PO 4 , Li x Mn f Fe 1-f PO 4 , Li x Ni f Fe 1-f PO 4 , Li y CoSiO 4, Li y MnSiO 4 , Li y NiSiO 4, Li y FeSiO 4, Li y Co g Mn 1-g SiO 4, Li y Co g Ni 1-g SiO 4, Li y C g Fe 1-g SiO 4, Li y Mn g Ni 1-g SiO 4, Li y Mn g Fe 1-g SiO 4, Li y Ni g Fe 1-g SiO 4, Li y CoP h Si 1-h O 4 , Li y MnP h Si 1-h O 4 , Li y NiP h Si 1-h O 4 , Li y FeP h Si 1-h O 4 , Li y Co g Mn 1-g P h Si 1-h O 4, Li y Co g Ni 1 -g P h Si 1-h O 4, Li y Co g Fe 1-g P h Si 1-h O 4, Li y Mn g Ni 1-g P h Si 1-h Lithium-containing composite oxides such as O 4 , Li y Mn g Fe 1-g P h Si 1-h O 4 , Li y Ni g Fe 1-g P h Si 1-h O 4 can be mentioned. (Here, x = 0.01 to 1.2, y = 0.01 to 2.2, a = 0.01 to 0.99, b = 0.01 to 0.98, c = 0.01 to 0.98 where b + c = 0.02 to 0.99, d = 1.49 to 1.99, e = 0.01 to 0.99, f = 0.01 to 0.99, g = 0.01 ~ 0.99, h = 0.01 to 0.99.)
 また、前記の好ましい正極活物質のうち、より好ましい正極活物質としては、具体的には、LixCoO2, LixNiO2, LixMnO2, LixCrO2, LixCoaNi1-a2, LixMnaNi1-a2, LixCobMncNi1-b-c2, LixNiaCobAlc2, LixMn24, LiyMnO3, LiyMneFe1-e3, LiyMneTi1-e3, LixCoPO4, LixMnPO4, LixNiPO4, LixFePO4, LixMnfFe1-fPO4を挙げることができる。(ここで、x=0.01~1.2, y=0.01~2.2, a=0.01~0.99, b=0.01~0.98, c=0.01~0.98 但し、b+c=0.02~0.99, d=1.49~1.99, e=0.01~0.99, f=0.01~0.99である。なお、上記のx,yの値は充放電によって増減する。) Further, among the above-mentioned preferable positive electrode active materials, more preferable examples of the positive electrode active material include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x CrO 2 , Li x Co a Ni 1 -a O 2, Li x Mn a Ni 1-a O 2, Li x Co b Mn c Ni 1-bc O 2, Li x Ni a Co b Al c O 2, Li x Mn 2 O 4, Li y MnO 3 , Li y Mn e Fe 1-e O 3 , Li y Mn e Ti 1-e O 3 , Li x CoPO 4 , Li x MnPO 4 , Li x NiPO 4 , Li x FePO 4 , Li x Mn f Fe 1 -f PO 4 can be mentioned. (Here, x = 0.01 to 1.2, y = 0.01 to 2.2, a = 0.01 to 0.99, b = 0.01 to 0.98, c = 0.01 to 0.98 where b + c = 0.02 to 0.99, d = 1.49 to 1.99, e = 0.01 to 0.99, f = 0.01 to 0.99 The values of x and y increase or decrease due to charge and discharge.)
 負極活物質としてはリチウムイオンを吸蔵・放出可能な構造(多孔質構造)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物、チタン系化合物等の金属からなる粉末である。粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。なお負極活物質にはその気孔率が、70%程度のものを用いるのが望ましい。 As a negative electrode active material, a carbon material (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (porous structure) capable of absorbing and desorbing lithium ions or lithium and aluminum-based materials capable of absorbing and desorbing lithium ions It is a powder made of a metal such as a compound, a tin-based compound, a silicon-based compound, and a titanium-based compound. The particle diameter is preferably 10 nm or more and 100 μm or less, and more preferably 20 nm or more and 20 μm or less. Moreover, you may use as a mixed active material of a metal and a carbon material. Preferably, the negative electrode active material has a porosity of about 70%.
 電極材料中の活物質の含有量としては、特に制限されず、例えば99.9~50質量%程度、より好ましくは99.5~70質量%程度、さらに好ましくは99~85質量%程度が挙げられる。活物質は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The content of the active material in the electrode material is not particularly limited, and is, for example, about 99.9 to 50% by mass, more preferably about 99.5 to 70% by mass, and still more preferably about 99 to 85% by mass. Be One type of active material may be used alone, or two or more types may be used in combination.
 導電助剤を用いる場合には、公知の導電助剤を用いることができ、黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック、カーボンナノチューブなどの炭素繊維、または金属粉末等が挙げられる。これら導電助剤は1種または2種以上用いてもよい。 When using a conductive aid, known conductive aids can be used, and conductive carbon blacks such as graphite, furnace black, acetylene black and ketjen black, carbon fibers such as carbon nanotubes, metal powder, etc. It can be mentioned. These conductive aids may be used alone or in combination of two or more.
 導電助剤を用いる場合には、導電助剤の含有量は特に制限されないが、活物質100質量部に対して、好ましくは20質量部以下、より好ましくは15質量部以下が挙げられる。なお、正極材料中に導電助剤が含まれる場合、導電助剤の含有量の下限値としては、通常、0.05質量部以上、0.1質量部以上、0.2質量部以上、0.5質量部以上、2質量部以上を例示することができる。 When the conductive auxiliary is used, the content of the conductive auxiliary is not particularly limited, but preferably 20 parts by mass or less, more preferably 15 parts by mass or less, with respect to 100 parts by mass of the active material. In addition, when a conductive support agent is contained in positive electrode material, as a lower limit of content of a conductive support agent, 0.05 mass part or more, 0.1 mass part or more, 0.2 mass part or more, 0 normally .5 parts by mass or more, 2 parts by mass or more can be exemplified.
 本発明の電極材料は、必要に応じて増粘剤を含有させても良い。増粘剤の種類は、特に限定されないが、好ましくは、セルロース系化合物のナトリウム塩、アンモニウム塩、ポリビニルアルコール、ポリアクリル酸およびその塩等である。 The electrode material of the present invention may optionally contain a thickener. The type of the thickener is not particularly limited, but preferred are sodium salts of cellulose compounds, ammonium salts, polyvinyl alcohol, polyacrylic acid and salts thereof and the like.
 セルロース系化合物のナトリウム塩もしくはアンモニウム塩としては、セルロース系高分子を各種誘導基により置換されたアルキルセルロースのナトリウム塩もしくはアンモニウム塩などが挙げられる。具体例としては、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)のナトリウム塩、アンモニウム塩、トリエタノールアンモニウム塩等が挙げられる。カルボキシメチルセルロースのナトリウム塩もしくはアンモニウム塩が特に好ましい。これらの増粘剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of sodium salts or ammonium salts of the cellulose-based compounds include sodium salts or ammonium salts of alkylcelluloses in which a cellulose-based polymer is substituted by various derivative groups. Specific examples thereof include methylcellulose, methylethylcellulose, ethylcellulose, sodium salt of carboxymethylcellulose (CMC), ammonium salt, triethanolammonium salt and the like. Particularly preferred is the sodium or ammonium salt of carboxymethylcellulose. One of these thickeners may be used alone, or two or more thereof may be used in combination in any ratio.
 増粘剤を用いる場合には、増粘剤の含有量は特に制限されないが、活物質100質量部に対して、好ましくは5質量部以下、より好ましくは3質量部以下が挙げられる。なお、増粘剤が含まれる場合、増粘剤の含有量の下限値としては、通常、0.05質量部以上、0.1質量部以上、0.2質量部以上、0.5質量部以上、1質量部以上を例示することができる。 When a thickener is used, the content of the thickener is not particularly limited, but preferably 5 parts by mass or less, more preferably 3 parts by mass or less, with respect to 100 parts by mass of the active material. In addition, when a thickener is contained, as a lower limit of content of a thickener, normally 0.05 mass part or more, 0.1 mass part or more, 0.2 mass part or more, 0.5 mass part Above, 1 mass part or more can be illustrated.
 本発明の電極材料は、スラリー状とするために水を含有してもよい。水は特に限定されず、一般的に用いられる水を使用することができる。その具体例としては水道水、蒸留水、イオン交換水、及び超純水などが挙げられる。その中でも、好ましくは蒸留水、イオン交換水、及び超純水である。 The electrode material of the present invention may contain water to form a slurry. Water is not particularly limited, and generally used water can be used. Specific examples thereof include tap water, distilled water, ion exchanged water, and ultrapure water. Among them, preferred are distilled water, ion exchange water, and ultrapure water.
 本発明の電極材料をスラリー状として用いる場合には、スラリーの固形分濃度は、10~90質量%であることが好ましく、20~85質量%であることがより好ましく、30~80質量%であることが特に好ましい。 When the electrode material of the present invention is used as a slurry, the solid content concentration of the slurry is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 30 to 80% by mass. Being particularly preferred.
 本発明の電極材料をスラリー状として用いる場合には、スラリーの固形分中の重合体量の割合は、0.1~15質量%であることが好ましく、0.2~10質量%であることがより好ましく、0.3~7質量%であることが特に好ましい。 When the electrode material of the present invention is used as a slurry, the ratio of the amount of polymer in the solid content of the slurry is preferably 0.1 to 15% by mass, and 0.2 to 10% by mass. Is more preferable, and 0.3 to 7% by mass is particularly preferable.
 電極材料の調製方法としては特に限定されず、正極活物質あるいは負極活物質、本発明の電極用バインダー、導電助剤、水等を通常の攪拌機、分散機、混練機、遊星型ボールミル、ホモジナイザーなど用いて分散させればよい。分散の効率を上げるために材料に影響を与えない範囲で加温してもよい。 The preparation method of the electrode material is not particularly limited, and the positive electrode active material or the negative electrode active material, the binder for the electrode of the present invention, the conductive additive, water and the like can be used as usual stirrers, dispersers, kneaders, planetary ball mills, homogenizers, etc. It may be used and dispersed. In order to increase the efficiency of dispersion, heating may be performed in a range that does not affect the material.
<4.電極>
 本発明の電極は、前述の「3.電極材料」の欄で説明した本発明の電極材料と、集電体とを備えることを特徴とする。本発明の電極材料の詳細については、前述の通りである。
<4. Electrode>
The electrode of the present invention is characterized by including the electrode material of the present invention described in the above-mentioned section "3. Electrode material" and a current collector. The details of the electrode material of the present invention are as described above.
 本発明の電極については、公知の集電体を用いることができる。具体的には、正極としては、アルミニウム、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。負極としては、銅、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。 A known current collector can be used for the electrode of the present invention. Specifically, as the positive electrode, metals such as aluminum, nickel, stainless steel, gold, platinum, titanium and the like are used. As the negative electrode, metals such as copper, nickel, stainless steel, gold, platinum and titanium are used.
 電極の作製方法は、特に限定されず一般的な方法が用いられる。電池材料をドクターブレード法やアプリケーター法、シルクスクリーン法などにより集電体(金属電極基板)表面上に適切な厚さに均一に塗布することより行われる。 The method for producing the electrode is not particularly limited, and a general method may be used. It is carried out by uniformly applying a battery material to a suitable thickness on the surface of a current collector (metal electrode substrate) by a doctor blade method, an applicator method, a silk screen method or the like.
 例えばドクターブレード法では、電池電極用スラリーを金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。電極は活物質塗布後、余分な有機溶剤及び水を除去するため、例えば、100℃の熱風や80℃真空状態で乾燥する。乾燥後の電極はプレス装置によってプレス成型することで電極材が製造される。プレス後に再度熱処理を施して水、溶剤、乳化剤等を除去してもよい。 For example, in the doctor blade method, after a slurry for battery electrode is applied to a metal electrode substrate, the thickness is made uniform by a blade having a predetermined slit width. After applying the active material, the electrode is dried, for example, in a hot air at 100 ° C. or in a vacuum at 80 ° C. in order to remove excess organic solvent and water. An electrode material is manufactured by press-molding the electrode after drying with a press apparatus. After pressing, heat treatment may be performed again to remove water, solvents, emulsifiers and the like.
 電極のプレスは、電極材料の密度が好ましくは3.2g/cc以上となるように行うことが好ましい。前述の通り、本発明の電極用バインダーは、大型電池と比較して高密度である小型電池(例えば、携帯電話、タブレット端末、ノートパソコンなどの電池)に使用された場合に、優れた結着力を発揮することができる。したがって、本発明の電極において、電極材料密度が、このような値を有している場合に、特に優れた結着力を発揮することができる。なお、電極材料の密度の上限は、一般に、4.5g/cc以下が挙げられる。 The pressing of the electrode is preferably performed so that the density of the electrode material is preferably 3.2 g / cc or more. As described above, the binder for an electrode of the present invention is excellent in binding ability when used for a small battery (for example, a battery such as a mobile phone, a tablet terminal, a laptop computer) having a high density as compared with a large battery. Can be demonstrated. Therefore, in the electrode of the present invention, when the electrode material density has such a value, particularly excellent binding strength can be exhibited. The upper limit of the density of the electrode material is generally 4.5 g / cc or less.
<5.蓄電デバイス>
 本発明の蓄電デバイスは、前述の「4.電極」の欄で説明した正極と、負極と、電解液とを備えることを特徴としている。すなわち、本発明の蓄電デバイスに用いられる電極は、本発明の電極材料、即ち本発明の電極用バインダーを含んでいる。本発明の電極の詳細については、前述の通りである。尚、本発明の蓄電デバイスについては、正極と、負極の少なくとも一方に、本発明の電極用バインダーを含んだ電極材料を用いた電極を使用していればよく、本発明の電極用バインダーを含んだ電極材料を用いていない電極については、公知の電極を用いることができる。
<5. Power storage device>
The electricity storage device of the present invention is characterized by including the positive electrode, the negative electrode, and the electrolytic solution described in the section of “4. Electrode” described above. That is, the electrode used for the electrical storage device of the present invention contains the electrode material of the present invention, that is, the binder for the electrode of the present invention. The details of the electrode of the present invention are as described above. In addition, about the electrical storage device of this invention, the electrode using the electrode material containing the binder for electrodes of this invention should just be used for at least one of a positive electrode and a negative electrode, and the binder for electrodes of this invention is included. A known electrode can be used for the electrode not using the electrode material.
 電解液としては、特に制限されず、公知の電解液を用いることができる。電解液の具体例としては、電解質と溶媒とを含む溶液が挙げられる。電解質及び溶媒は、それぞれ、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The electrolyte is not particularly limited, and a known electrolyte can be used. A specific example of the electrolytic solution includes a solution containing an electrolyte and a solvent. The electrolyte and the solvent may be used alone or in combination of two or more.
 電解質としては、リチウム塩化合物を例示することができ、具体的には、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22,LiN(C25SO22,LiN[CF3SC(C25SO232などが挙げられるが、これらに限定されるものではない。 As the electrolyte, a lithium salt compound can be exemplified. Specifically, LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2) ) 2, LiN etc. [CF 3 SC (C 2 F 5 SO 2) 3] 2 , and the like, but not limited thereto.
 リチウム塩化合物以外の電解質としては、テトラエチルアンモニウムテトラフルオロボレート、トリエチルモノメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロフォスフェート等が挙げられる。 Examples of electrolytes other than lithium salt compounds include tetraethylammonium tetrafluoroborate, triethylmonomethylammonium tetrafluoroborate, tetraethylammonium hexafluorophosphate and the like.
 電解液に用いる溶媒としては、有機溶剤、又は常温溶融塩を例示することができる。 As a solvent used for electrolyte solution, the organic solvent or a normal temperature molten salt can be illustrated.
 有機溶剤としては、非プロトン性有機溶剤を挙げることができ、具体的にはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、ジプロピルカーボネート、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル、ジエチルエーテルなどの直鎖エーテルを使用することができ、2種類以上混合して使用してもよい。 Examples of the organic solvent include an aprotic organic solvent, and specifically, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane Γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, dipropyl carbonate, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propyl nitrile, anisole, acetate, propionate, diethyl ether and the like linear ethers And two or more types may be mixed and used.
 常温溶融塩はイオン液体とも呼ばれており、イオンのみ(アニオン、カチオン)から構成される「塩」であり、特に液体化合物をイオン液体という。 The room temperature molten salt is also called an ionic liquid, and is a "salt" composed only of ions (anion, cation), and in particular a liquid compound is called an ionic liquid.
 本発明での常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電池が一般的に作動すると想定される温度範囲をいう。電池が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては80℃程度であり、下限は-40℃程度、場合によっては-20℃程度である。 The room temperature molten salt in the present invention refers to a salt in which at least a part is liquid at normal temperature, and the normal temperature refers to a temperature range in which the battery is generally assumed to operate. The upper limit of the temperature range in which the battery normally operates is about 120 ° C., sometimes about 80 ° C., and the lower limit is about −40 ° C., sometimes about −20 ° C.
 常温溶融塩のカチオン種としては、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムイオンが好ましい。 As cationic species of the molten salt at room temperature, quaternary ammonium organic cations of pyridine type, aliphatic amine type and alicyclic amine type are known. Examples of quaternary ammonium organic cations include imidazolium ions such as dialkyl imidazolium and trialkyl imidazolium, tetraalkyl ammonium ions, alkyl pyridinium ions, pyrazolium ions, pyrrolidinium ions and piperidinium ions. In particular, imidazolium ion is preferred.
 なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。 Examples of the tetraalkyl ammonium ion include trimethylethyl ammonium ion, trimethylethyl ammonium ion, trimethylpropyl ammonium ion, trimethylhexyl ammonium ion, tetrapentyl ammonium ion, triethyl methyl ammonium ion and the like, but are limited thereto. is not.
 また、アルキルピリジニウムイオンとしては、N-メチルピリジウムイオン、N-エチルピリジニウムイオン、N-プロピルピリジニウムイオン、N-ブチルピリジニウムイオン、1-エチル-2メチルピリジニウムイオン、1-ブチル-4-メチルピリジニウムイオン、1-ブチル-2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。 Also, as the alkyl pyridinium ion, N-methyl pyridinium ion, N-ethyl pyridinium ion, N-propyl pyridinium ion, N-butyl pyridinium ion, 1-ethyl-2-methyl pyridinium ion, 1-butyl-4-methyl pyridinium Examples of the ion include 1-butyl-2,4 dimethyl pyridinium ion and the like, but not limited thereto.
 イミダゾリウムイオンとしては、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-エチルイミダゾリウムイオン、1-メチル-3-ブチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-エチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。 As the imidazolium ion, 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1- Butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl- Examples include 2,3-dimethylimidazolium ion and the like, but not limited thereto.
 常温溶融塩のアニオン種としては、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF6 -、PF6 -などの無機酸イオン、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8-テトラシアノ-p-キノジメタンイオンなどの有機酸イオンなどが例示される。 The anion species of the molten salt at room temperature include chloride ion, bromide ion, halide ion such as iodide ion, perchlorate ion, thiocyanate ion, tetrafluoroborate ion, nitrate ion, AsF 6 , PF 6 Inorganic acid ion such as stearyl sulfonate ion, octyl sulfonate ion, dodecylbenzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion, 7,7,8,8-tetracyano-p-quinodimethane ion etc And organic acid ions of
 なお、常温溶融塩は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In addition, a normal temperature molten salt may be used individually by 1 type, and may be used combining 2 or more types.
 電解液には必要に応じて種々の添加剤を使用することができる。添加剤としては、難燃剤、不燃剤、正極表面処理剤、負極表面処理剤、過充電防止剤などが挙げられる。難燃剤、不燃剤としては、臭素化エポキシ化合物、ホスファゼン化合物、テトラブロムビスフェノールA、塩素化パラフィン等のハロゲン化物、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、リン酸エステル、ポリリン酸塩、及びホウ酸亜鉛等が例示できる。正極表面処理剤としては、炭素や金属酸化物(MgОやZrO2等)の無機化合物やオルト-ターフェニル等の有機化合物等が例示できる。負極表面処理剤としては、ビニレンカーボネート、フルオロエチレンカーボネート、ポリエチレングリコールジメチルエーテル等が例示できる。過充電防止剤としては、ビフェニルや1-(p-トリル)アダマンタン等が例示できる。 Various additives can be used in the electrolytic solution as required. Examples of the additive include flame retardants, flame retardants, positive electrode surface treatment agents, negative electrode surface treatment agents, and overcharge inhibitors. Flame retardants and flame retardants include brominated epoxy compounds, phosphazene compounds, halides such as tetrabromo bisphenol A, chlorinated paraffin, etc., antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, phosphoric acid ester, polyphosphate Examples include acid salts and zinc borate. Examples of the positive electrode surface treatment agent include inorganic compounds such as carbon and metal oxides (MgO, ZrO 2 and the like) and organic compounds such as ortho-terphenyl and the like. Examples of the negative electrode surface treatment agent include vinylene carbonate, fluoroethylene carbonate, polyethylene glycol dimethyl ether and the like. Examples of the overcharge inhibitor include biphenyl and 1- (p-tolyl) adamantane.
 本発明の蓄電デバイスの製造方法は、特に限定されず、正極、負極、電解液、必要に応じて、セパレータなどを用いて、公知の方法にて製造される。例えば、コイン型の場合、正極、必要に応じてセパレータ、負極を外装缶に挿入する。これに電解液を入れ含浸する。その後、封口体とタブ溶接などで接合して、封口体を封入し、カシメることで蓄電デバイスが得られる。蓄電デバイスの形状は限定されないが、例としてはコイン型、円筒型、シート型などが挙げられる。 The method for producing the electricity storage device of the present invention is not particularly limited, and is produced by a known method using a positive electrode, a negative electrode, an electrolytic solution, if necessary, a separator or the like. For example, in the case of coin type, the positive electrode, the separator if necessary, and the negative electrode are inserted into the outer can. Electrolyte is put into this and impregnated. Thereafter, the sealing body is joined to the sealing body by tab welding or the like, and the sealing body is sealed and crimped to obtain an electric storage device. Although the shape of the storage device is not limited, examples thereof include coin, cylinder, and sheet.
 セパレータは、正極と負極が直接接触して蓄電池内でショートすることを防止するものであり、公知の材料を用いることができる。セパレータとしては、具体的には、ポリオレフィンなどの多孔質高分子フィルム、紙等が挙げられる。多孔質高分子フィルムとしては、ポリエチレン、ポリプロピレンなどのフィルムが、電解液による影響が少ないため、好ましい。 The separator prevents the positive electrode and the negative electrode from being in direct contact with each other to short-circuit in the storage battery, and a known material can be used. Specific examples of the separator include porous polymer films such as polyolefin and paper. As the porous polymer film, films of polyethylene, polypropylene and the like are preferable because they are less affected by the electrolytic solution.
 本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。 Specific modes for carrying out the present invention will be described below with reference to examples. However, the present invention is not limited to the following examples unless it deviates from the gist thereof.
 本実施例では、電極を作製し、電極の評価として電極の結着性試験を以下の実験にて行った。 In this example, an electrode was manufactured, and a binding test of the electrode was performed in the following experiment as evaluation of the electrode.
[作製した電極の物性評価]
 作製した電極の物性評価としては、結着性試験を行った。評価結果を表1にまとめて示した。
[Physical evaluation of prepared electrode]
As evaluation of physical properties of the produced electrode, a binding test was conducted. The evaluation results are summarized in Table 1 and shown.
<結着性試験>
(測定装置)
 剥離強度試験機:ストログラフE3-L(東洋精機株式会社)
<Cohesion test>
(measuring device)
Peeling strength tester: Strograph E3-L (Toyo Seiki Co., Ltd.)
(結着性試験方法)
 結着性試験は180°剥離試験にて行った。具体的には電極を幅2cm×長さ5cmに切り、テープ(粘着テープ:ニチバン製、幅1.8cm、長さ5cm)を貼り付け、電極の長さ方向の片端をストログラフE3-Lに固定した状態でテープを180°方向に試験速度50mm/min、荷重レンジ5Nで引き剥がした。試験は3回実施し、その加重平均値を求めた。
(Connection test method)
The binding test was conducted by a 180 ° peel test. Specifically, cut the electrode into a width 2 cm × length 5 cm, affix a tape (adhesive tape: made by Nichiban, width 1.8 cm, length 5 cm), and make one end of the electrode in the longitudinal direction a strograph E3-L While fixed, the tape was peeled off at a test speed of 50 mm / min and a load range of 5 N in the direction of 180 °. The test was conducted three times and the weighted average value was determined.
<平均粒子径の測定>
 重合体の平均粒子径は以下の条件で測定した。
(測定装置)
 動的光散乱を用いた粒度分布測定装置:ゼータサイザーナノ(スペクトリス株式会社)(測定条件)
1.合成したエマルジョン溶液50μLをサンプリングする。
2.サンプリングしたエマルジョン溶液にイオン交換水700μLを3回添加して希釈する。
3.希釈液から液を2100μL抜き取る。
4.残った50μLのサンプルに700μLイオン交換水を添加・希釈して測定する。
<Measurement of average particle size>
The average particle size of the polymer was measured under the following conditions.
(measuring device)
Particle size distribution measuring device using dynamic light scattering: Zetasizer Nano (Spectris Co., Ltd.) (measurement conditions)
1. 50 μL of the synthesized emulsion solution is sampled.
2. The sampled emulsion solution is diluted by adding 700 μL of ion-exchanged water three times.
3. Remove 2100 μL of solution from the dilution solution.
4. Add and dilute 700 μL ion-exchanged water to the remaining 50 μL sample and measure.
[実施合成例1]
 ビーカーに、アクリル酸n-ブチル89.20質量部、アクリル酸1.55質量部、メタクリル酸4.4質量部、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーPE-90)4.15質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)0.70質量部、乳化剤としてドデシル硫酸ナトリウム1質量部、イオン交換水50.00質量部及び重合開始剤として過硫酸アンモニウム0.12質量部を入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.5から8.0に調整し、エマルジョン溶液であるバインダー組成物A(重合転化率99%以上、固形分濃度39.8wt%)を得た。得られた重合体の平均粒子径は0.273μmであった。重合体の合成用いたモノマーの量を表1に示す。
Implementation Synthesis Example 1
In a beaker, 89.20 parts by mass of n-butyl acrylate, 1.55 parts by mass of acrylic acid, 4.4 parts by mass of methacrylic acid, 4.15 parts by mass of polyethylene glycol monomethacrylate (manufactured by NOF: Blenmer PE-90) , Trimethylolpropane triacrylate (Shin-Nakamura Chemical Co., Ltd .: A-TMPT) 0.70 parts by mass, 1 part by mass of sodium dodecyl sulfate as an emulsifier, 50.00 parts by mass of ion exchanged water, and 0.12 parts by mass of ammonium persulfate as a polymerization initiator The solution was put into an emulsion, and the mixture was sufficiently stirred using an ultrasonic homogenizer to obtain an emulsion. The reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.5 to 8.0 using a 28% aqueous ammonia solution, and a binder composition A (polymerization conversion rate 99% or more, solid content concentration 39.8 wt%) which is an emulsion solution Got). The average particle size of the obtained polymer was 0.273 μm. Polymer Synthesis The amounts of monomers used are shown in Table 1.
[実施合成例2]
 ビーカーに、アクリル酸n-ブチル72.34質量部、アクリル酸2-エチルヘキシル17.43質量部、アクリル酸1.46質量部、メタクリル酸4.17質量部、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーPE-90)3.93質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)0.67質量部、乳化剤としてドデシル硫酸ナトリウム1質量部、イオン交換水50.00質量部及び重合開始剤として過硫酸アンモニウム0.12質量部を入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.6から8.0に調整し、エマルジョン溶液であるバインダー組成物B(重合転化率99%以上、固形分濃度40wt%)を得た。得られた重合体の平均粒子径は0.237μmであった。重合体の合成用いたモノマーの量を表1に示す。
[Implementation Example 2]
In a beaker, 72.34 parts by mass of n-butyl acrylate, 17.43 parts by mass of 2-ethylhexyl acrylate, 1.46 parts by mass of acrylic acid, 4.17 parts by mass of methacrylic acid, polyethylene glycol monomethacrylate (manufactured by NOF Corporation) : Brenmer PE-90 3.93 parts by mass, trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: A-TMPT) 0.67 parts by mass, 1 part by mass of sodium dodecyl sulfate as an emulsifier, 50.00 parts by mass of ion exchanged water And, 0.12 parts by mass of ammonium persulfate was added as a polymerization initiator, and the mixture was sufficiently stirred using an ultrasonic homogenizer to obtain an emulsion. The reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.6 to 8.0 using a 28% aqueous ammonia solution, and a binder composition B (polymerization conversion ratio of 99% or more, solid content concentration 40 wt%), which is an emulsion solution, Obtained. The average particle size of the obtained polymer was 0.237 μm. Polymer Synthesis The amounts of monomers used are shown in Table 1.
[実施合成例3]
 ビーカーに、アクリル酸n-ブチル54.42質量部、アクリル酸2-エチルヘキシル35.96質量部、アクリル酸1.38質量部、メタクリル酸3.92質量部、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーPE-90)3.70質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)0.62、乳化剤としてドデシル硫酸ナトリウム1質量部、イオン交換水50.00質量部及び重合開始剤として過硫酸アンモニウム0.12質量部を入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.5から7.8に調整し、エマルジョン溶液であるバインダー組成物C(重合転化率98%以上、固形分濃度39wt%)を得た。得られた重合体の平均粒子径は0.225μmであった。重合体の合成用いたモノマーの量を表1に示す。
Implementation Synthesis Example 3
In a beaker, 54.42 parts by mass of n-butyl acrylate, 35.96 parts by mass of 2-ethylhexyl acrylate, 1.38 parts by mass of acrylic acid, 3.92 parts by mass of methacrylic acid, polyethylene glycol monomethacrylate (manufactured by NOF Corporation) : Brenmer PE-90) 3.70 parts by mass, trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: A-TMPT) 0.62, 1 part by mass of sodium dodecyl sulfate as an emulsifier, 50.00 parts by mass of ion exchanged water and polymerization 0.12 parts by mass of ammonium persulfate was added as an initiator, and the mixture was sufficiently stirred using an ultrasonic homogenizer to obtain an emulsion. The reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.5 to 7.8 using a 28% aqueous ammonia solution, and an emulsion solution, binder composition C (polymerization conversion ratio 98% or more, solid content concentration 39 wt%) Obtained. The average particle size of the obtained polymer was 0.225 μm. Polymer Synthesis The amounts of monomers used are shown in Table 1.
[実施合成例4]
 ビーカーに、アクリル酸n-ブチル82.59質量部、アクリル酸1.52質量部、メタアクリル酸4.32質量部、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーPE-90)10.88質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)0.69質量部、乳化剤としてドデシル硫酸ナトリウム1質量部、イオン交換水50.00質量部及び重合開始剤として過硫酸アンモニウム0.12質量部を入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.4から7.8に調整し、エマルジョン溶液であるバインダー組成物D(重合転化率98%以上、固形分濃度39wt%)を得た。得られた重合体の平均粒子径は0.230μmであった。
[Implementation Example 4]
In a beaker, 82.59 parts by mass of acrylic acid, 1.52 parts by mass of acrylic acid, 4.32 parts by mass of methacrylic acid, 10.88 parts by mass of polyethylene glycol monomethacrylate (manufactured by NOF Corporation: Blenmer PE-90) Part, 0.69 parts by mass of trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical: A-TMPT), 1 part by mass of sodium dodecyl sulfate as an emulsifier, 50.00 parts by mass of ion exchanged water, and ammonium persulfate 0.12 as a polymerization initiator The parts by mass were added, and the mixture was sufficiently stirred using an ultrasonic homogenizer to give an emulsion. The reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.4 to 7.8 using a 28% aqueous ammonia solution, and an emulsion solution, binder composition D (polymerization conversion ratio 98% or more, solid content concentration 39 wt%) Obtained. The average particle size of the obtained polymer was 0.230 μm.
[比較合成例1]
 ビーカーに、アクリル酸n-ブチル89.86質量部、アクリル酸1.55質量部、メタクリル酸4.42質量部、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーPE-90)4.17質量部、乳化剤としてドデシル硫酸ナトリウム1質量部、イオン交換水50.00質量部及び重合開始剤として過硫酸アンモニウム0.12質量部を入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.6から7.8に調整し、エマルジョン溶液であるバインダー組成物E(重合転化率99%以上、固形分濃度39wt%)を得た。得られた重合体の平均粒子径は0.240μmであった。重合体の合成用いたモノマーの量を表1に示す。
[Comparative Example 1]
In a beaker, 89.86 parts by mass of n-butyl acrylate, 1.55 parts by mass of acrylic acid, 4.42 parts by mass of methacrylic acid, 4.17 parts by mass of polyethylene glycol monomethacrylate (manufactured by NOF Corporation: Blenmer PE-90) 1 part by mass of sodium dodecyl sulfate as an emulsifier, 50.00 parts by mass of ion exchange water, and 0.12 parts by mass of ammonium persulfate as a polymerization initiator were added, and the mixture was sufficiently stirred using an ultrasonic homogenizer to obtain an emulsion. The reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.6 to 7.8 using a 28% aqueous ammonia solution, and a binder composition E (polymerization conversion ratio of 99% or more, solid content concentration of 39 wt%) which is an emulsion solution is obtained. Obtained. The average particle size of the obtained polymer was 0.240 μm. Polymer Synthesis The amounts of monomers used are shown in Table 1.
[比較合成例2]
 ビーカーに、アクリル酸n-ブチル43.35質量部、アクリル酸2-エチルヘキシル28.10質量部、アクリル酸1.29質量部、メタクリル酸5.50質量部、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーPE-90)6.92質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)14.87質量部、乳化剤としてドデシル硫酸ナトリウム1質量部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(花王社製:ラテムルPD-104)2質量部、イオン交換水50.00質量部及び重合開始剤として過硫酸アンモニウム0.12質量部を入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.6から8.0に調整し、エマルジョン溶液であるバインダー組成物F(重合転化率99%以上、固形分濃度39wt%)を得た。得られた重合体の平均粒子径は0.205μmであった。重合体の合成用いたモノマーの量を表1に示す。
[Comparison Example 2]
In a beaker, 43.35 parts by mass of n-butyl acrylate, 28.10 parts by mass of 2-ethylhexyl acrylate, 1.29 parts by mass of acrylic acid, 5.50 parts by mass of methacrylic acid, polyethylene glycol monomethacrylate (manufactured by NOF Corporation) : Brenmer PE-90 6.29 parts by mass, trimethylolpropane triacrylate (Shin-Nakamura Chemical: A-TMPT) 14.87 parts by mass, emulsifier 1 part by mass of sodium dodecyl sulfate, polyoxyalkylene alkenyl ether ammonium sulfate (Kao Made: 2 parts by mass of Latemul PD-104), 50.00 parts by mass of ion exchange water, and 0.12 parts by mass of ammonium persulfate as a polymerization initiator, and thoroughly stirred using an ultrasonic homogenizer to obtain a milky lotion. The reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted from 2.6 to 8.0 using a 28% aqueous ammonia solution, and a binder composition F (polymerization conversion rate: 99% or more, solid content concentration: 39 wt%) which is an emulsion solution Obtained. The average particle size of the obtained polymer was 0.205 μm. Polymer Synthesis The amounts of monomers used are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<電極の作製例>
[電極の実施作製例1]
 正極活物質としてニッケル・コバルト・マンガン酸リチウム95質量部に、導電助剤としてアセチレンブラック3質量部、カルボキシメチルセルロース1質量部、バインダー組成物の実施合成例1で得られたバインダー組成物Aの固形分として1質量部を加え、さらにスラリーの固形分濃度が72質量%となるように水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た。
<Example of preparation of electrode>
[Example 1 of practical production of electrode]
Example 3 95 parts by mass of nickel.cobalt.manganate lithium as a positive electrode active material, 3 parts by mass of acetylene black as a conduction aid, 1 part by mass of carboxymethyl cellulose, and a binder composition. 1 part by mass was added as a portion, water was further added so that the solid content concentration of the slurry was 72% by mass, and sufficient mixing was performed using a planetary mill to obtain a slurry for a positive electrode.
 得られた正極用スラリーを厚さ20μmのアルミニウム集電体上に100μmギャップのベーカー式アプリケーターを用いて塗布し、110℃真空状態で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ36μm、電極材料の密度3.5g/ccの正極を作製した。結着性試験の評価結果を表1の実施例1に示す。 The obtained positive electrode slurry is applied on a 20 μm thick aluminum current collector using a 100 μm gap Baker applicator, dried at 110 ° C. for 12 hours or more in a vacuum, and pressed using a roll press. A positive electrode having a thickness of 36 μm and a density of 3.5 g / cc of the electrode material was produced. The evaluation results of the binding test are shown in Example 1 of Table 1.
[電極の実施作製例2]
 正極活物質としてニッケル・コバルト・マンガン酸リチウム95質量部に、導電助剤としてアセチレンブラック3質量部、カルボキシメチルセルロース1質量部、バインダー組成物の実施合成例2で得られたバインダー組成物Bの固形分として1質量部を加え、さらにスラリーの固形分濃度が72質量%となるように水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た以外は電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは43μm、電極材料の密度3.5g/ccであった。結着性試験の評価結果を表1の実施例2に示す。
[Practical production example 2 of electrode]
Example of 95 parts by mass of nickel.cobalt.manganate lithium as a positive electrode active material, 3 parts by mass of acetylene black as a conduction aid, 1 part by mass of carboxymethyl cellulose, and a binder composition 1 part by mass is added as a portion, water is further added so that the solid content concentration of the slurry is 72% by mass, and sufficient mixing is performed using a planetary mill to obtain a slurry for positive electrode except that a slurry for positive electrode is obtained A positive electrode was produced in the same manner as in 1. The thickness of the obtained positive electrode was 43 μm, and the density of the electrode material was 3.5 g / cc. The evaluation results of the binding test are shown in Example 2 of Table 1.
[電極の実施作製例3]
 正極活物質としてニッケル・コバルト・マンガン酸リチウム95質量部に、導電助剤としてアセチレンブラック3質量部、カルボキシメチルセルロース1質量部、バインダー組成物の実施合成例3で得られたバインダー組成物Cの固形分として1質量部を加え、さらにスラリーの固形分濃度が72質量%となるように水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た以外は電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは42μm、電極材料の密度3.5g/ccであった。結着性試験の評価結果を表1の実施例3に示す。
[Practical production example 3 of electrode]
Example of 95 parts by mass of nickel.cobalt.manganate lithium as a positive electrode active material, 3 parts by mass of acetylene black as a conductive additive, 1 part by mass of carboxymethyl cellulose, and a binder composition 1 part by mass is added as a portion, water is further added so that the solid content concentration of the slurry is 72% by mass, and sufficient mixing is performed using a planetary mill to obtain a slurry for positive electrode except that a slurry for positive electrode is obtained A positive electrode was produced in the same manner as in 1. The thickness of the obtained positive electrode was 42 μm, and the density of the electrode material was 3.5 g / cc. The evaluation results of the binding test are shown in Example 3 of Table 1.
[電極の実施作製例4]
 正極活物質としてニッケル・コバルト・マンガン酸リチウム95質量部に、導電助剤としてアセチレンブラック3質量部、カルボキシメチルセルロース1質量部、バインダー組成物の実施合成例4で得られたバインダー組成物Dの固形分として1質量部を加え、さらにスラリーの固形分濃度が72質量%となるように水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た以外は電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは41μm、電極材料の密度3.2g/ccであった。結着性試験の評価結果を表1の実施例4に示す。
[Example 4 of practical preparation of electrode]
Example 3 95 parts by mass of lithium cobalt cobalt lithium manganate as a positive electrode active material, 3 parts by mass of acetylene black as a conductive support agent, 1 part by mass of carboxymethyl cellulose, and a binder composition 1 part by mass is added as a portion, water is further added so that the solid content concentration of the slurry is 72% by mass, and sufficient mixing is performed using a planetary mill to obtain a slurry for positive electrode except that a slurry for positive electrode is obtained A positive electrode was produced in the same manner as in 1. The thickness of the obtained positive electrode was 41 μm, and the density of the electrode material was 3.2 g / cc. The evaluation results of the binding test are shown in Example 4 in Table 1.
[電極の比較作製例1]
 正極活物質としてニッケル・コバルト・マンガン酸リチウム95質量部に、導電助剤としてアセチレンブラック3質量部、カルボキシメチルセルロース1質量部、バインダー組成物の比較合成例1で得られたバインダー組成物Eの固形分として1質量部を加え、さらにスラリーの固形分濃度が72質量%となるように水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た以外は電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは44μm、電極材料の密度3.5g/ccであった。結着性試験の評価結果を表1の比較例1に示す。
[Comparative Example of Electrode Preparation 1]
The solid content of the binder composition E obtained in Comparative Synthesis Example 1 of 3 parts by mass of acetylene black as a conduction aid, 1 part by mass of carboxymethyl cellulose, and 95 parts by mass of lithium cobalt, lithium manganese oxide as a positive electrode active material 1 part by mass is added as a portion, water is further added so that the solid content concentration of the slurry is 72% by mass, and sufficient mixing is performed using a planetary mill to obtain a slurry for positive electrode except that a slurry for positive electrode is obtained A positive electrode was produced in the same manner as in 1. The thickness of the obtained positive electrode was 44 μm, and the density of the electrode material was 3.5 g / cc. The evaluation results of the binding test are shown in Comparative Example 1 of Table 1.
[電極の比較作製例2]
 正極活物質としてニッケル・コバルト・マンガン酸リチウム95質量部に、導電助剤としてアセチレンブラック3質量部、カルボキシメチルセルロース1質量部、バインダー組成物の比較合成例2で得られたバインダー組成物Fの固形分として1質量部を加え、さらにスラリーの固形分濃度が72質量%となるように水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た以外は電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは43μm、電極材料の密度3.5g/ccであった。結着性試験の評価結果を表1の比較例2に示す。
[Comparative Preparation Example 2 of Electrode]
The solid content of the binder composition F obtained in Comparative Synthesis Example 2 of 3 parts by mass of acetylene black as a conductive additive, 1 part by mass of carboxymethyl cellulose, and 95 parts by mass of lithium cobalt, lithium manganate as a positive electrode active material 1 part by mass is added as a portion, water is further added so that the solid content concentration of the slurry is 72% by mass, and sufficient mixing is performed using a planetary mill to obtain a slurry for positive electrode except that a slurry for positive electrode is obtained A positive electrode was produced in the same manner as in 1. The thickness of the obtained positive electrode was 43 μm, and the density of the electrode material was 3.5 g / cc. The evaluation results of the binding test are shown in Comparative Example 2 of Table 1.
 表1に実施例及び比較例の電極の物性評価結果を示す。
Figure JPOXMLDOC01-appb-T000010
Table 1 shows the evaluation results of the physical properties of the electrodes of the example and the comparative example.
Figure JPOXMLDOC01-appb-T000010
 本発明の電極用バインダーは、優れた結着性を備えており、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池等の蓄電デバイスにおいて、有用に用いられる。 INDUSTRIAL APPLICABILITY The binder for electrodes of the present invention has excellent binding properties, and is usefully used in in-vehicle applications such as electric vehicles and hybrid electric vehicles, and storage devices such as storage batteries for household power storage.

Claims (11)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子又は炭素数1~4の直鎖もしくは分岐のアルキル基であり、xは2~8の整数であり、nは2~30の整数である。)
    で表わされる水酸基を有するモノマーに由来する構成単位(A)と、
     炭素数4~6のアルキル基を有する(メタ)アクリル酸エステルモノマーに由来する構成単位(B-1)を有する、(メタ)アクリル酸エステルモノマーに由来する構成単位(B)と、
     (メタ)アクリル酸モノマーに由来する構成単位(C)と、
     5官能以下の多官能(メタ)アクリレートモノマーに由来する構成単位(D)と、
    を含み、
     前記構成単位(B)を80~95質量%有し、かつ、前記構成単位(C)を3.5~15質量%有する重合体からなる、電極用バインダー。
    The following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, x is an integer of 2 to 8 and n is an integer of 2 to 30)
    Structural unit (A) derived from the monomer having a hydroxyl group represented by
    A structural unit (B) derived from a (meth) acrylic acid ester monomer, having a structural unit (B-1) derived from a (meth) acrylic acid ester monomer having an alkyl group having 4 to 6 carbon atoms;
    A structural unit (C) derived from a (meth) acrylic acid monomer,
    A structural unit (D) derived from a polyfunctional (meth) acrylate monomer having a functionality of 5 or less;
    Including
    A binder for an electrode, comprising: a polymer having 80 to 95% by mass of the structural unit (B) and 3.5 to 15% by mass of the structural unit (C).
  2.  前記一般式(1)において、nは4~20の整数である、請求項1に記載の電極用バインダー。 The electrode binder according to claim 1, wherein n is an integer of 4 to 20 in the general formula (1).
  3.  前記構成単位(D)において、前記5官能以下の多官能(メタ)アクリレートモノマーが、下記一般式(3):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R11は、それぞれ同一または異なって、水素原子又はメチル基であり、R12は、5価以下の炭素数2~100の有機基であり、mは5以下の整数である。)
    で示される化合物である、請求項1または2に記載の電極用バインダー。
    In the structural unit (D), the pentafunctional or less polyfunctional (meth) acrylate monomer is represented by the following general formula (3):
    Figure JPOXMLDOC01-appb-C000002
    Wherein R 11 is the same or different and is a hydrogen atom or a methyl group, R 12 is a pentavalent or less organic group having 2 to 100 carbon atoms, and m is an integer of 5 or less. )
    The binder for electrodes of Claim 1 or 2 which is a compound shown by these.
  4.  前記構成単位(D)において、前記5官能以下の多官能(メタ)アクリレートモノマーが、3官能から5官能の(メタ)アクリレートである、請求項1~3のいずれかに記載の電極用バインダー。 The binder for an electrode according to any one of claims 1 to 3, wherein in the structural unit (D), the pentafunctional or less polyfunctional (meth) acrylate monomer is a trifunctional to pentafunctional (meth) acrylate.
  5.  前記構成単位(B-1)を50~95質量%有する、請求項1~4のいずれかに記載の電極用バインダー。 The electrode binder according to any one of claims 1 to 4, having 50 to 95% by mass of the structural unit (B-1).
  6.  前記構成単位(A)を0.5~15質量%有する、請求項1~5のいずれかに記載の電極用バインダー。 The electrode binder according to any one of claims 1 to 5, having 0.5 to 15% by mass of the constituent unit (A).
  7.  前記構成単位(D)を0.1~10質量%有する、請求項1~6のいずれかに記載の電極用バインダー。 The binder for an electrode according to any one of claims 1 to 6, wherein the structural unit (D) is contained in an amount of 0.1 to 10% by mass.
  8.  請求項1~7いずれかに記載の電極用バインダーを含む、電極用バインダー組成物。 A binder composition for an electrode, comprising the binder for an electrode according to any one of claims 1 to 7.
  9.  請求項1~7いずれかに記載の電極用バインダーを含む、電極材料。 An electrode material comprising the binder for an electrode according to any one of claims 1 to 7.
  10.  請求項1~7のいずれかに記載の電極用バインダーと、活物質とを含む、電極。 An electrode comprising the binder for an electrode according to any one of claims 1 to 7 and an active material.
  11.  請求項8に記載の電極を備える、蓄電デバイス。 A storage device comprising the electrode according to claim 8.
PCT/JP2018/027303 2017-07-20 2018-07-20 Binder for electrode, binder composition for electrode, electrode material, electrode and power storage device WO2019017479A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880044362.7A CN110832683B (en) 2017-07-20 2018-07-20 Binder for electrode, binder composition for electrode, electrode material, electrode, and electricity storage device
JP2019530618A JP7215420B2 (en) 2017-07-20 2018-07-20 Electrode binder, electrode binder composition, electrode material, electrode, and power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017141020 2017-07-20
JP2017-141020 2017-07-20

Publications (1)

Publication Number Publication Date
WO2019017479A1 true WO2019017479A1 (en) 2019-01-24

Family

ID=65016241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027303 WO2019017479A1 (en) 2017-07-20 2018-07-20 Binder for electrode, binder composition for electrode, electrode material, electrode and power storage device

Country Status (3)

Country Link
JP (1) JP7215420B2 (en)
CN (1) CN110832683B (en)
WO (1) WO2019017479A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467133B (en) * 2020-03-30 2022-03-18 万向一二三股份公司 Lithium ion battery cathode slurry and preparation method thereof
US20230114903A1 (en) * 2020-06-17 2023-04-13 Grst International Limited Binder composition for secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086215A1 (en) * 2015-11-19 2017-05-26 旭化成株式会社 Binder for electricity storage device and binder composition for electricity storage device
WO2017110901A1 (en) * 2015-12-21 2017-06-29 株式会社大阪ソーダ Binder for battery electrode, electrode, and battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473921A (en) * 2009-08-07 2012-05-23 Jsr株式会社 Electrochemical device and binder composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086215A1 (en) * 2015-11-19 2017-05-26 旭化成株式会社 Binder for electricity storage device and binder composition for electricity storage device
WO2017110901A1 (en) * 2015-12-21 2017-06-29 株式会社大阪ソーダ Binder for battery electrode, electrode, and battery

Also Published As

Publication number Publication date
CN110832683B (en) 2023-03-14
JPWO2019017479A1 (en) 2020-07-30
JP7215420B2 (en) 2023-01-31
CN110832683A (en) 2020-02-21

Similar Documents

Publication Publication Date Title
JP5447720B1 (en) Battery electrode binder, and electrode and battery using the same
JP6341271B2 (en) Battery electrode binder, and electrode and battery using the same
JP6269510B2 (en) Battery electrode binder, and electrode and battery using the same
WO2017110901A1 (en) Binder for battery electrode, electrode, and battery
JP6164303B2 (en) Battery electrode binder, and electrode and battery using the same
JP6268988B2 (en) Battery electrode binder, and electrode and battery using the same
JP6300078B2 (en) Slurry composition for battery electrode, and electrode and battery using the same
WO2019131771A1 (en) Binder for electrodes, electrode and electricity storage device
JP6395107B2 (en) Binder composition for battery electrode, and electrode and battery using the same
WO2019017479A1 (en) Binder for electrode, binder composition for electrode, electrode material, electrode and power storage device
JP2016046231A (en) Binder composition for battery positive electrode, and electrode arranged by use thereof, and battery
CN110139881B (en) Binder for electrode
JP2016192267A (en) Battery electrode binder, electrode and battery employing the same
JP2019021575A (en) Electrode binder, electrode binder composition, electrode material, electrode, and power storage device
JP2018174044A (en) Binder for electrode, electrode, and power storage device
JP7088171B2 (en) Binders for electrodes, electrode materials, electrodes, and power storage devices
JP7180595B2 (en) Electrodes and storage devices
JP7314751B2 (en) AQUEOUS BINDER COMPOSITION, ELECTRODE, AND ELECTRICITY STORAGE DEVICE
JP2017091789A (en) Positive electrode, secondary battery, and method of manufacturing the same
JP2017069006A (en) Binder composition for battery electrode and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530618

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835406

Country of ref document: EP

Kind code of ref document: A1