WO2019015275A1 - 双线逆f类功率放大器 - Google Patents

双线逆f类功率放大器 Download PDF

Info

Publication number
WO2019015275A1
WO2019015275A1 PCT/CN2018/072375 CN2018072375W WO2019015275A1 WO 2019015275 A1 WO2019015275 A1 WO 2019015275A1 CN 2018072375 W CN2018072375 W CN 2018072375W WO 2019015275 A1 WO2019015275 A1 WO 2019015275A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
wire
output
input
power amplifier
Prior art date
Application number
PCT/CN2018/072375
Other languages
English (en)
French (fr)
Inventor
黄航
邓力
李书芳
张贯京
葛新科
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2019015275A1 publication Critical patent/WO2019015275A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers

Definitions

  • the utility model relates to the technical field of wireless communication, in particular to a two-wire inverse class F power amplifier.
  • the main object of the present invention is to provide a two-wire inverse class F power amplifier, which aims to solve the problem that the existing inverse class F power amplifier can only achieve third harmonic control, and the control of higher harmonics will lead to circuit size.
  • the present invention provides a two-wire inverse class F power amplifier, a two-wire inverse class F power amplifier including an input port, a stabilizing circuit, an input matching circuit, a GaN tube, and an output port, the input port being connected To the input of the stabilizing circuit, the output of the stabilizing circuit is connected to the input of the input matching circuit, and the output of the input matching circuit is connected to the input of the GaN tube, the two-wire inverse class F power amplifier further comprising a two-wire output A matching network, the two-wire output matching network includes a pre-matching circuit and a two-wire matching circuit, wherein:
  • the pre-matching circuit includes a first microstrip line and a second microstrip line, the first microstrip line is connected in series with the second microstrip line, and the connection line between the first microstrip line and the second microstrip line is connected There is a third microstrip line as an open branch, and the input end of the first microstrip line is an input end of the two-wire matching circuit;
  • the two-wire matching circuit includes a fourth microstrip line and a fifth microstrip line, the fourth microstrip line is connected in parallel on the fifth microstrip line, and the output end of the second microstrip line is connected to the input of the fifth microstrip line.
  • the output end of the fifth microstrip line is the output end of the two-wire output matching network;
  • An output of the GaN tube is coupled to an input of a two-wire output matching network, and an output of the two-wire output matching network is coupled to an output port.
  • the input end of the first microstrip line is connected to the output end of the GaN tube, and the input end of the second microstrip line is connected to the output end of the first microstrip line, the second microstrip line The output is connected to the input of the fifth microstrip line.
  • the input matching circuit is further connected with an input feeding network, and the input feeding network supplies a gate voltage to the GaN tube by the gate power source V GS .
  • the two-wire output matching network is connected with an output feeding network, and the output feeding network supplies a drain voltage to the GaN tube by the drain power source V DS .
  • the output feed network includes an inductor L and a decoupling capacitor C.
  • One end of the decoupling capacitor C is connected to a connection line between the inductor L and the drain power source V DS , and the other end of the decoupling capacitor C is grounded.
  • the two-wire inverse class F power amplifier of the present invention adopts an output matching network based on a microstrip line two-wire structure, and has harmonic control and impedance matching functions, and solves the existing inverse F power.
  • the circuit of the amplifier is bulky and the harmonic control is only to the third harmonic. It not only enables the inverse class F power amplifier to achieve higher harmonic control, but also greatly saves the amplifier circuit space and makes the amplifier circuit structure more compact. Further improve the efficiency of the inverse class F power amplifier.
  • FIG. 1 is a block diagram showing the circuit structure of a preferred embodiment of a two-wire inverse class F power amplifier of the present invention
  • FIG. 2 is a schematic diagram of a two-wire output matching circuit in the two-wire inverse class F power amplifier of the present invention
  • FIG. 3 is a schematic diagram showing performance test results of a two-wire inverse class F power amplifier
  • Figure 4 is a schematic diagram showing the linearity test results of a two-wire inverse class F power amplifier.
  • FIG. 1 is a block diagram showing the circuit structure of a preferred embodiment of a two-wire inverse class F power amplifier of the present invention.
  • the two-wire inverse class F power amplifier 10 is integrated on a PCB.
  • the two-wire inverse class F power amplifier 10 is an inverse class F power amplifier based on a microstrip line two-wire structure, including an input port. P1, stabilization circuit 4, input matching circuit 3, GaN tube (GaN high electron mobility transistor) 2, two-line output matching network 1 and output port P2.
  • the input port P1 is connected to the input end of the stabilizing circuit 4, the output end of the stabilizing circuit 4 is connected to the input end of the input matching circuit 3, and the output end of the input matching circuit 3 is connected to the input end of the GaN tube 2, the GaN tube 2
  • the output is connected to the input of the two-wire output matching network 1, and the output of the two-wire output matching network 1 is connected to the output port P2.
  • the input port P1 is for receiving a signal input by an external component
  • the stabilization circuit 4 is for preventing a signal from being oscillated to generate a self-excitation phenomenon
  • the input matching circuit 3 performs impedance matching on an input end of the GaN tube 2.
  • the stabilization circuit 4 and the input matching circuit 3 are both a stable circuit module and an input matching circuit module of the existing inverse F-type power amplifier, and the present invention will not be described in detail.
  • the GaN tube 2 is a gallium nitride tube, and the utility model adopts a high electron mobility transistor of CREE Company, and the specific model is CGH40025F, and the GaN tube 2 inputs a signal to the two-wire output matching network 1, which can be used for realizing 6 Subharmonic controlled two-wire inverse Class F power amplifier 10.
  • the two-wire output matching network 1 is also connected to an output feed network 5, and the output feed network 5 supplies a drain voltage from the drain power source V DS to feed the GaN tube 2.
  • the input matching circuit 3 is also connected to an input feed network 6, which supplies a gate voltage from the gate power source V GS to feed the GaN tube 2.
  • the input feed network 6 is an input feed circuit module of an existing inverse F-type power amplifier, and the present invention does not describe it in detail.
  • FIG. 2 is a schematic diagram of a two-wire output matching circuit in a two-wire inverse class F power amplifier of the present invention.
  • the main innovation of the utility model lies in the circuit structure of the two-wire output matching network 1.
  • the two-wire output matching network 1 is an output matching network based on a microstrip line two-wire structure, and has harmonic control and impedance matching functions.
  • the two-wire output matching network 1 includes a pre-matching circuit 11 and a two-wire matching circuit 12, and the pre-matching circuit 11 is a first-stage matching circuit composed of three microstrip lines.
  • the pre-matching circuit 11 includes a first microstrip line 111 and a second microstrip line 112.
  • the first microstrip line 111 is connected in series with the second microstrip line 112, and the input end of the first microstrip line 111 is a double line.
  • the output matches the input of the network 1 and is connected to the output of the GaN tube 2.
  • the input of the second microstrip line 112 is connected to the output of the first microstrip line 111, and the output of the second microstrip line 112 is the output of the pre-matching circuit 11.
  • a third microstrip line 113 as an open stub is connected to the connection line between the first microstrip line 111 and the second microstrip line 112.
  • the width of each microstrip line is the impedance of the microstrip line, and the length of each microstrip line is determined by the electrical length of the microstrip line.
  • the two-wire matching circuit 12 is a second-stage matching circuit, and includes a fourth microstrip line 121 and a fifth microstrip line 122.
  • the fourth microstrip line 121 is connected in parallel to the fifth microstrip line 122, the output end of the second microstrip line 112 is connected to the input end of the fifth microstrip line 122, and the output end of the fifth microstrip line 122 is a two-line output. Match the output of network 1.
  • One end of the decoupling capacitor C is connected to the connection line between the inductor L and the drain power source V DS , and the other end of the decoupling capacitor C is grounded.
  • the pre-matching circuit 11 is a first-stage matching circuit, and its main function is to perform pre-matching and generating a short-circuit point of the third harmonic, and can sequentially reverse the impedance point of the higher-order harmonic according to F
  • the requirements of the class theory are matched to the corresponding open and short points of the two-wire matching circuit 12 (second-stage matching circuit).
  • the input impedance at the input of the two-wire matching circuit 12 can be expressed as follows:
  • Z 4 is the impedance of the fourth microstrip line 121
  • f represents the input frequency
  • f 0 represents the center frequency
  • Z L is the impedance of the load
  • ⁇ 4 is the electric power of the fourth microstrip line 121 in the two-line matching circuit 12 length.
  • the two-stage matching circuit 12 of the second stage is equivalent to a quarter-wave impedance converter having a characteristic impedance of Z 4 ⁇ (sin ⁇ 4 / 2). Therefore, the two-wire matching circuit 12 has not only the function of harmonic control but also the impedance matching function of the fundamental frequency. Therefore, in the output matching design of the inverse class F power amplifier, not only the control of the higher harmonics but also the space of the amplifier circuit is saved, and the amplifier circuit is more compact.
  • Figure 3 is a schematic diagram showing the performance test results of the two-wire inverse class F power amplifier of the present invention
  • Figure 4 is a schematic diagram showing the linearity test results of the two-wire inverse class F power amplifier of the present invention.
  • the two-wire output matching network 1 of the present embodiment can be used to implement the inverse harmonic power amplifier 10 of the sixth harmonic control, and the 2.4 GHz inverse class F power amplifier is successfully realized by the CREE GaN tube 2.
  • the test results show that the two-wire inverse class F power amplifier 10 has a maximum drain efficiency of 87.4% (for example, at a frequency of 2.375 GHz), and achieves an output power of 44.5 dBm.
  • the two-wire inverse class F power amplifier 10 has a forward signal to noise ratio of -50.8 and -51.6 dBc, which characterizes the actual use of the two-wire inverse class F power amplifier 10. High linearity. In the 2.225 GHz to 2.6 GHz band, the inverse class F power amplifier 10 has a high drain efficiency of 60% or more.
  • the two-wire inverse class F power amplifier proposed by the utility model adopts an output matching network based on a microstrip line two-wire structure, and has harmonic control and impedance matching functions, and solves the problem that the circuit of the existing inverse F power amplifier 10 is bulky and Only the defects of the third harmonic control can be realized.
  • the two-wire inverse class F power amplifier 10 of the present invention not only realizes the control of higher harmonics, but also saves the circuit space of the amplifier, makes the circuit structure of the amplifier more compact, and further improves the efficiency of the inverse class F power amplifier.
  • the two-wire inverse class F power amplifier of the present invention adopts an output matching network based on a microstrip line two-wire structure, and has harmonic control and impedance matching functions, and solves the existing inverse F power.
  • the circuit of the amplifier is bulky and the harmonic control is only to the third harmonic. It not only enables the inverse class F power amplifier to achieve higher harmonic control, but also greatly saves the amplifier circuit space and makes the amplifier circuit structure more compact. Further improve the efficiency of the inverse class F power amplifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

一种双线逆F类功率放大器,包括输入端口(P1)、稳定电路(4)、输入匹配电路(3)、GaN管(2)、双线输出匹配网路(1)和输出端口(P2)。双线输出匹配网路(1)包括预匹配电路(11)和双线匹配电路(12),预匹配电路(11)包括第一微带线(111)和第二微带线(112),第一微带线(111)与第二微带线(112)串接,第一微带线(111)与第二微带线(112)之间的连接线上连接有作为开路枝节的第三微带线(113),第一微带线(111)的输入端为双线输出匹配网路(1)的输入端;双线匹配电路(12)包括第四微带线(121)和第五微带线(122),第四微带线(121)并联在第五微带线(122)上,第二微带线(112)的输出端连接至第五微带线(122)的输入端,第五微带线(122)的输出端为双线输出匹配网路(1)的输出端。所述逆F类功率放大器不仅具有高次谐波控制和阻抗匹配功能,而且电路结构更紧凑。

Description

双线逆F类功率放大器 技术领域
本实用新型涉及无线通信技术领域,尤其涉及一种双线逆F类功率放大器。
背景技术
随着现代无线通信的发展,无线通信***对高效率微波器件,尤其是功率放大器的要求越来越高。现有的通过传统开路或短路枝节设计的高效率逆F功率放大器往往只能实现三次谐波的控制,然而,更高次谐波的控制将导致电路尺寸过大而影响功率放大器的性能,而且传统的谐波网络与阻抗变换网络相独立,增加了功率放大器的电路设计步骤和电路设计尺寸。
技术问题
本实用新型的主要目的提供一种双线逆F类功率放大器,旨在解决现有的逆F类功率放大器仅能实现三次谐波控制,而实现更高次谐波的控制会导致电路尺寸过大而影响功率放大器性能的技术问题。
技术解决方案
为实现上述目的,本实用新型提供了一种双线逆F类功率放大器,双线逆F类功率放大器,包括输入端口、稳定电路、输入匹配电路、GaN管以及输出端口,所述输入端口连接至稳定电路的输入端,稳定电路的输出端连接至输入匹配电路的输入端,输入匹配电路的输出端连接至GaN管的输入端,所述的双线逆F类功率放大器还包括双线输出匹配网路,该双线输出匹配网路包括预匹配电路和双线匹配电路,其中:
所述预匹配电路包括第一微带线和第二微带线,第一微带线与第二微带线串接,第一微带线与第二微带线之间的连接线上连接有作为开路枝节的第三微带线,第一微带线的输入端为双线匹配电路的输入端;
所述双线匹配电路包括第四微带线和第五微带线,第四微带线并联在第五微带线上,第二微带线的输出端连接至第五微带线的输入端,第五微带线的输出端为双线输出匹配网路的输出端;
所述GaN管的输出端连接至双线输出匹配网路的输入端,所述双线输出匹配网路的输出端连接至输出端口。
优选的,所述第一微带线的输入端连接至GaN管的输出端,所述第二微带线的输入端连接至第一微带线的输出端,所述第二微带线的输出端连接至第五微带线的输入端。
优选的,所述双线匹配电路的输出端连接有负载,负载的阻抗Z L=50Ω。
优选的,所述输入匹配电路还连接有输入馈电网络,该输入馈电网络由栅极电源V GS提供栅极电压对GaN管进行馈电。
优选的,所述双线输出匹配网路连接有输出馈电网络,该输出馈电网络由漏极电源V DS提供漏极电压对GaN管进行馈电。
优选的,所述输出馈电网络包括电感L和去耦电容C,去耦电容C的一端连接在电感L和漏极电源V DS之间的连接线上,去耦电容C的另一端接地。
优选的,所述第一微带线的阻抗Z 1=15Ω,电长度θ 1=30°;所述第二微带线的阻抗Z 2=40Ω,电长度θ 2=5°;所述第三微带线的阻抗Z 3=20Ω,电长度θ 3=30°。
优选的,所述第四微带线的阻抗Z 4=35Ω,电长度θ 4=72°;所述第五微带线的阻抗Z 5=35Ω,电长度θ 5=108°。
有益效果
相较于现有技术,本实用新型所述双线逆F类功率放大器采用基于微带线双线结构的输出匹配网络,同时具有谐波控制和阻抗匹配功能,解决了现有的逆F功率放大器的电路体积庞大且谐波控制仅到三次谐波的缺陷,不仅使逆F类功率放大器实现了高次谐波的控制,而且极大的节省了放大器电路空间,使放大器电路结构更紧凑,进一步提高逆F类功率放大器的效率。
附图说明
图1是本实用新型双线逆F类功率放大器优选实施例的电路结构方框示意图;
图2是本实用新型双线逆F类功率放大器中双线输出匹配电路的示意图;
图3是双线逆F类功率放大器的性能测试结果示意图;
图4是双线逆F类功率放大器的线性度测试结果示意图。
本实用新型目的实现、功能特点及优点将结合实施例,将在具体实施方式部分一并参照附图做进一步说明。
本发明的最佳实施方式
为更进一步阐述本实用新型为达成上述目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本实用新型的具体实施方式、结构、特征及其功效进行详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
参照图1所示,图1是本实用新型双线逆F类功率放大器优选实施例的电路结构方框示意图。在本实施例中,所述的双线逆F类功率放大器10集成于PCB板上,该双线逆F类功率放大器10为基于微带线双线结构的逆F类功率放大器,包括输入端口P1、稳定电路4、输入匹配电路3、GaN管(GaN高电子迁移率晶体管)2、双线输出匹配网路1以及输出端口P2。所述输入端口P1连接至稳定电路4的输入端,稳定电路4的输出端连接至输入匹配电路3的输入端,输入匹配电路3的输出端连接至GaN管2的输入端,GaN管2的输出端连接至双线输出匹配网路1的输入端,双线输出匹配网路1的输出端连接至输出端口P2。
所述输入端口P1用于接收外界元器件输入的信号,所述稳定电路4用于防止信号震荡而产生自激现象;所述输入匹配电路3对GaN管2的输入端进行阻抗匹配。所述稳定电路4和输入匹配电路3均为现有逆F类功率放大器的稳定电路模块和输入匹配电路模块,本实用新型不作详细赘述。所述GaN管2为一种氮化镓管,本实用新型采用CREE公司的高电子迁移率晶体管,具体型号为CGH40025F,GaN管2将信号输入至双线输出匹配网路1,可用于实现6次谐波控制的双线逆F类功率放大器10。
在本实施例中,所述双线输出匹配网路1还连接有输出馈电网络5,输出馈电网络5由漏极电源V DS提供漏极电压对GaN管2进行馈电。所述输入匹配电路3还连接有输入馈电网络6,输入馈电网络6由栅极电源V GS提供栅极电压对GaN管2进行馈电。所述输入馈电网络6为现有逆F类功率放大器的输入馈电电路模块,本实用新型不作详细赘述。
 
参考图2所示,图2为本实用新型双线逆F类功率放大器中双线输出匹配电路的示意图。本实用新型的主要创新点在于双线输出匹配网路1的电路结构,该双线输出匹配网路1是基于微带线双线结构的输出匹配网络,同时具有谐波控制和阻抗匹配功能。在本实施例中,所述双线输出匹配网路1包括预匹配电路11和双线匹配电路12,所述预匹配电路11为第一级匹配电路,其由三根微带线组成。具体地,预匹配电路11包括第一微带线111和第二微带线112,第一微带线111与第二微带线112串接,第一微带线111的输入端为双线输出匹配网路1的输入端且连接至GaN管2的输出端。第二微带线112的输入端连接至第一微带线111的输出端,第二微带线112的输出端为预匹配电路11的输出端。第一微带线111与第二微带线112之间的连接线上连接有作为开路枝节的第三微带线113。每一根微带线的宽度由微带线的阻抗,每一根微带线的长度由微带线的电长度决定。在本实施例中,第一微带线111的阻抗Z 1=15Ω,电长度θ 1=30°;第二微带线112的阻抗Z 2=40Ω,电长度θ 2=5°;第三微带线113的阻抗Z 3=20Ω,电长度θ 3=30°。
所述双线匹配电路12为第二级匹配电路,包括第四微带线121和第五微带线122。第四微带线121并联在第五微带线122上,第二微带线112的输出端连接至第五微带线122的输入端,第五微带线122的输出端为双线输出匹配网路1的输出端。在本实施例中,第四微带线121的阻抗Z 4=35Ω,电长度θ 4=72°;第五微带线122的阻抗Z 5=35Ω,电长度θ 5=108°。
所述双线匹配电路12的输出端(即第五微带线122的输出端)连接至输出馈电网络5,该输出馈电网络5包括电感L和去耦电容C,该电感的电感值为L=20nH,去耦电容C的电容值达到μF数量级即可,具体大小不作限定。去耦电容C的一端连接在电感L和漏极电源V DS之间的连接线上,去耦电容C的另一端接地。双线匹配电路12的输出端连接至输出端口P2(如图1所示),并可直接连接有外接负载Z L,该负载Z L的阻抗值Z L=50Ω。
在本实施例中,所述预匹配电路11为第一级匹配电路,其主要作用是进行预匹配和产生3次谐波的短路点,并且能够依次将高次谐波的阻抗点按照逆F类理论的要求匹配到双线匹配电路12(第二级匹配电路)相应的开路点和短路点。根据双线微带线的理论,则双线匹配电路12输入端的输入阻抗可以表示为如下公式:
 
Figure dest_path_image001
其中,Z 4为第四微带线121的阻抗,f代表输入频率,f 0代表中心频率,Z L为负载的阻抗,θ 4为双线匹配电路12中的第四微带线121的电长度。在本实施例中,取双线匹配电路12(第二级匹配电路)的第四微带线121和第五微带线122的电长度分别为θ 4=72°和θ 5=108°,阻抗Z 4=Z 5=35Ω,负载的阻抗Z L=50Ω,则在双线匹配电路12的输入端可以产生5次谐波的开路以及2、4、6、8次谐波的短路点。同时,当f=f 0时,第二级的双线匹配电路12等效为一个特征阻抗为Z 4·(sinθ4/2)的四分之一波长阻抗变换器。因此,该双线匹配电路12不仅有谐波控制的功能,还具有基频的阻抗匹配功能。因此在逆F类功率放大器的输出匹配设计中,不仅实现了高次谐波的控制,而且节省了放大器电路空间,使放大器电路更紧凑。
参考图3和4所示,图3是本实用新型双线逆F类功率放大器的性能测试结果示意图;图4是本实用新型双线逆F类功率放大器的线性度测试结果示意图。本实施例所述双线输出匹配网络1可用于实现六次谐波控制的逆F类功率放大器10,采用CREE公司的GaN管2成功实现了2.4GHz逆F类功率放大器。参考图3所示,测试结果显示该双线逆F类功率放大器10具有87.4%的最高漏极效率(例如2.375GHz频率下),实现了44.5dBm的输出功率。参考图4所示,在数字预失真情况下,该双线逆F类功率放大器10具有-50.8和-51.6dBc的临道信噪比,表征了该双线逆F类功率放大器10在实际使用中的高线性度。在2.225GHz~2.6GHz频带下,该逆F类功率放大器10都具有60%以上的高漏极效率。
本实用新型提出的双线逆F类功率放大器采用基于微带线双线结构的输出匹配网络,同时具有谐波控制和阻抗匹配功能,解决了现有的逆F功率放大器10的电路体积庞大且仅能实现三次谐波控制的缺陷。本实用新型所述双线逆F类功率放大器10不仅实现了高次谐波的控制,而且节省了放大器电路空间,使放大器电路结构更紧凑,进一步提高逆F类功率放大器的效率。
以上仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效功能变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。
工业实用性
相较于现有技术,本实用新型所述双线逆F类功率放大器采用基于微带线双线结构的输出匹配网络,同时具有谐波控制和阻抗匹配功能,解决了现有的逆F功率放大器的电路体积庞大且谐波控制仅到三次谐波的缺陷,不仅使逆F类功率放大器实现了高次谐波的控制,而且极大的节省了放大器电路空间,使放大器电路结构更紧凑,进一步提高逆F类功率放大器的效率。

Claims (8)

  1. 一种双线逆F类功率放大器,包括输入端口、稳定电路、输入匹配电路、GaN管以及输出端口,所述输入端口连接至稳定电路的输入端,稳定电路的输出端连接至输入匹配电路的输入端,输入匹配电路的输出端连接至GaN管的输入端,其特征在于,所述的双线逆F类功率放大器还包括双线输出匹配网路,该双线输出匹配网路包括预匹配电路和双线匹配电路,其中:所述预匹配电路包括第一微带线和第二微带线,第一微带线与第二微带线串接,第一微带线与第二微带线之间的连接线上连接有作为开路枝节的第三微带线,第一微带线的输入端为双线匹配电路的输入端;所述双线匹配电路包括第四微带线和第五微带线,第四微带线并联在第五微带线上,第二微带线的输出端连接至第五微带线的输入端,第五微带线的输出端为双线输出匹配网路的输出端;所述GaN管的输出端连接至双线输出匹配网路的输入端,所述双线输出匹配网路的输出端连接至输出端口。
  2. 如权利要求1所述的双线逆F类功率放大器,其特征在于,所述第一微带线的输入端连接至GaN管的输出端,所述第二微带线的输入端连接至第一微带线的输出端,所述第二微带线的输出端连接至第五微带线的输入端。
  3. 如权利要求1所述的双线逆F类功率放大器,其特征在于,所述双线匹配电路的输出端连接有负载,该负载的阻抗Z L=50Ω。
  4. 如权利要求1所述的双线逆F类功率放大器,其特征在于,所述输入匹配电路还连接有输入馈电网络,该输入馈电网络由栅极电源V GS提供栅极电压对GaN管进行馈电。
  5. 如权利要求1所述的双线逆F类功率放大器,其特征在于,所述双线输出匹配网路连接有输出馈电网络,该输出馈电网络由漏极电源V DS提供漏极电压对GaN管进行馈电。
  6. 如权利要求5所述的双线逆F类功率放大器,其特征在于,所述输出馈电网络包括电感L和去耦电容C,去耦电容C的一端连接在电感L和漏极电源V DS之间的连接线上,去耦电容C的另一端接地。
  7. 如权利要求1所述的双线逆F类功率放大器,其特征在于,所述第一微带线的阻抗Z 1=15Ω,电长度θ 1=30°;第二微带线的阻抗Z 2=40Ω,电长度θ 2=5°;第三微带线的阻抗Z 3=20Ω,电长度θ 3=30°。
  8. 如权利要求1所述的双线逆F类功率放大器,其特征在于,所述第四微带线的阻抗Z 4=35Ω,电长度θ 4=72°;第五微带线的阻抗Z 5=35Ω,电长度θ 5=108°。
PCT/CN2018/072375 2017-07-21 2018-01-12 双线逆f类功率放大器 WO2019015275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720892876.0 2017-07-21
CN201720892876.0U CN207124611U (zh) 2017-07-21 2017-07-21 双线逆f类功率放大器

Publications (1)

Publication Number Publication Date
WO2019015275A1 true WO2019015275A1 (zh) 2019-01-24

Family

ID=61612905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072375 WO2019015275A1 (zh) 2017-07-21 2018-01-12 双线逆f类功率放大器

Country Status (2)

Country Link
CN (1) CN207124611U (zh)
WO (1) WO2019015275A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207124609U (zh) * 2017-07-21 2018-03-20 深圳市景程信息科技有限公司 逆f类功率放大器的双线输出匹配电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080107059A (ko) * 2007-06-05 2008-12-10 삼성전자주식회사 신호 크기 정보 제거와 복원 기술을 사용한 전력송신기에서의 전력 증폭을 위한 장치 및 방법
CN101789767A (zh) * 2010-01-25 2010-07-28 北京邮电大学 用于双频放大器的谐波抑制型枝节匹配网络
CN104617896A (zh) * 2015-02-28 2015-05-13 东南大学 一种宽带高效率的连续逆f类功率放大器及其设计方法
CN104953961A (zh) * 2015-06-17 2015-09-30 深圳市华讯方舟微电子科技有限公司 一种双级逆d类功率放大电路及射频功率放大器
CN107547057A (zh) * 2017-07-21 2018-01-05 深圳市景程信息科技有限公司 基于双线结构的逆f类功率放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080107059A (ko) * 2007-06-05 2008-12-10 삼성전자주식회사 신호 크기 정보 제거와 복원 기술을 사용한 전력송신기에서의 전력 증폭을 위한 장치 및 방법
CN101789767A (zh) * 2010-01-25 2010-07-28 北京邮电大学 用于双频放大器的谐波抑制型枝节匹配网络
CN104617896A (zh) * 2015-02-28 2015-05-13 东南大学 一种宽带高效率的连续逆f类功率放大器及其设计方法
CN104953961A (zh) * 2015-06-17 2015-09-30 深圳市华讯方舟微电子科技有限公司 一种双级逆d类功率放大电路及射频功率放大器
CN107547057A (zh) * 2017-07-21 2018-01-05 深圳市景程信息科技有限公司 基于双线结构的逆f类功率放大器

Also Published As

Publication number Publication date
CN207124611U (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2019015274A1 (zh) 基于双线结构的逆 f 类功率放大器
TWI483543B (zh) 寬帶功率放大器
WO2016201897A1 (zh) 一种双级逆d类功率放大电路及射频功率放大器
CN107547050B (zh) 一种双级双频带高效功率放大器
CN105811895B (zh) 基于谐波终端优化高效率k波段mmic功率放大器
WO2016201894A1 (zh) 一种基于寄生补偿的j类功率放大电路及射频功率放大器
WO2016201895A1 (zh) 一种高阶f类功率放大电路及射频功率放大器
JP2513146B2 (ja) 高効率増幅回路
CN109167582B (zh) 基于频率选择性耦合的宽带带通滤波功率放大器
CN111510076B (zh) 一种class-AB驱动的Doherty功率放大器、基站和移动终端
JP2013187773A (ja) 高周波半導体増幅器
EP2704317A1 (en) Power amplifier device and power amplifier circuit
CN114499419B (zh) 一种晶体管合路结构放大器
WO2019015276A1 (zh) 用于逆 f 类功率放大器的双线输出匹配网路
WO2024149296A1 (zh) 射频功率放大器及射频功放模组
WO2019015275A1 (zh) 双线逆f类功率放大器
WO2019015277A1 (zh) 逆f类功率放大器的双线输出匹配电路
CN114978045A (zh) 一种双频Doherty功率放大器及射频分立器件
Zhang et al. Design of broadband inverse class-F power amplifier based on resistive-reactive series of inverse continuous modes
US20210288616A1 (en) Power amplifier circuit
CN113271067B (zh) 基于去匹配结构的Doherty功率放大器及电子设备
CN110380691A (zh) 一种基于Doherty功放的功率放大电路及装置
CN110971200B (zh) 一种新型双频带高效f类功率放大器
CN113258889A (zh) 一种宽带功率放大器
CN105897200B (zh) 一种基于基片集成波导的f类功率放大器输出匹配电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834998

Country of ref document: EP

Kind code of ref document: A1