CN109167582B - 基于频率选择性耦合的宽带带通滤波功率放大器 - Google Patents

基于频率选择性耦合的宽带带通滤波功率放大器 Download PDF

Info

Publication number
CN109167582B
CN109167582B CN201810815617.7A CN201810815617A CN109167582B CN 109167582 B CN109167582 B CN 109167582B CN 201810815617 A CN201810815617 A CN 201810815617A CN 109167582 B CN109167582 B CN 109167582B
Authority
CN
China
Prior art keywords
microstrip line
resonator
band
power amplifier
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810815617.7A
Other languages
English (en)
Other versions
CN109167582A (zh
Inventor
李园春
陈钦创
薛泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earda Technologies Co ltd
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810815617.7A priority Critical patent/CN109167582B/zh
Priority to US16/191,409 priority patent/US10700651B2/en
Publication of CN109167582A publication Critical patent/CN109167582A/zh
Application granted granted Critical
Publication of CN109167582B publication Critical patent/CN109167582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20363Linear resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/082Microstripline resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2171Class D power amplifiers; Switching amplifiers with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/12Bandpass or bandstop filters with adjustable bandwidth and fixed centre frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/222A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/423Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microwave Amplifiers (AREA)

Abstract

本发明公开了一种基于频率选择性耦合的宽带带通滤波功率放大器,包括栅极直流偏置电路、输入端阻抗匹配电路、功率放大晶体管和输出端阻抗匹配电路,输出端阻抗匹配电路包括调谐微带线和带通滤波器,调谐微带线连接于功率放大晶体管和带通滤波器之间,带通滤波器由平行耦合的第一谐振器和第二谐振器组成。本发明利用了基于频率选择性耦合的宽带带通滤波器,并且考虑了扩展连续型理论和滤波器合成理论,从而有效提高了滤波功率放大器的工作效率和带宽,同时有效减小传统逆F类功率放大器中阻抗匹配电路的复杂度和面积。

Description

基于频率选择性耦合的宽带带通滤波功率放大器
技术领域
本发明涉及功率放大器技术领域,更具体地说,涉及一种基于频率选择性耦合的宽带带通滤波功率放大器和***。
背景技术
随着通信技术的进步,无线通讯***标准具有数据速率高、用户容量大、功耗低等特点。作为射频前端的关键部件,功率放大器对发射机的性能有很大的影响。因此,高效率和宽带工作的功率放大器得到了相当大的发展。
为了提高效率,提出了各种开关类功率放大器,例如,D类功率放大器、E类功率放大器和F类功率放大器,理论上上述功率放大器的效率能达到100%。多尔蒂(Doherty)功率放大器和包络跟踪结构被用来提升效率和线性度。为了在提升带宽的同时保持高效率,不断提出了各种不同的技术。在标准开关类功率放大器的基础上,提出了连续型功率放大器,例如,B/J类、连续型F类和连续型逆F类功率放大器;它们将所要求的谐波阻抗在史密斯圆图(Smith chart)上从一个固定的阻抗值放宽成一个连续的纯电抗区域,因此能够实现宽带;之后,扩展连续型功率放大器进一步放宽谐波阻抗的要求从纯电抗区域成电抗-电阻区域。
功率放大器通常与低***损耗带通滤波器级联以抑制带外干扰。虽然连续型功率放大器的带宽已经达到一个倍频程,但是由于滤波器的互连失配和***损耗,整体的带宽和效率降低了。为了克服这一问题,有人对功率放大器和带通滤波器的协同设计进行了深入的研究。它们主要集中在小型化、功率附加效率(PAE)增强和选择性改善方面。根据“L.Gao,X.Y.Zhang,S.Chen,and Q.Xue,Compact power amplifier with bandpassresponse and high efficiency,IEEE Microw.Wireless Compon.Lett.,vol.24,no.10,pp.707-709,Oct.2014”的研究,为了小型化,在输出匹配网络中嵌入了一个尺寸为0.65λg×0.48λg的小型宽带带通滤波器,虽然S参数的带宽很宽,但功率附加效率低于70%。根据“S.Chen,and Q.Xue,A class-F power amplifier with CMRC,IEEE Microw.WirelessCompon.Lett.,vol.21,no.1,pp.31-33,Jan.2011”和“X.Meng,C.Yu,Y.Liu,and Y.Wu,Design approach for implementation of class-J broadband power amplifiersusing synthesized band-pass and low-pass matching topology,IEEETrans.Microw.Theory Techn.,vol.65,no.12,pp.4984-4996,Dec.2017”的研究,对于功率附加效率增强,实现了基于紧凑型微带谐振单元(CMRC)的F类功率放大器和采用合成带通匹配拓扑结构的J类功率放大器。此外,在“S.Y.Zheng,Z.W.Liu,Y.M.Pan,Y.Wu,W.S.Chan,and Y.Liu,Bandpass filtering Doherty power amplifier with enhanced efficiencyand wideband harmonic suppression,IEEE Trans.Circuits Syst.I,Reg.Papers.,vol.63,no.3,pp.337-346,March.2016”的方法中,使用微带带通耦合器代替多尔蒂功率放大器中的传统输入功率分配器以获得高功率附加效率和带通响应,但是通带选择性不好。为了改善滤波器的滚降,在“J.X.Xu,X.Y.Zhang,and X.Q.Song,High-efficiency filter-integrated class-F power amplifier based on dielectric resonator,IEEEMicrow.Wireless Compon.Lett.,vol.27,no.9,pp.827-829,Sept.2017”的方法中,利用高质量因数介质谐振器(DR),在“Q.Y.Guo,X.Y.Zhang,J.X.Xu,Y.C.Li,and Q.Xue,Bandpassclass-F power amplifier based on multifunction hybrid cavity–microstripfilter,IEEE Trans.Circuits Syst.II,Express Briefs,vol.64,no.7,pp.742-746,July.2017”的方法中利用腔体谐振器来匹配功率放大器的基波和谐波。这两种设计都具有较高的选择性和超过68%的整体功率附加效率,但是功率附加效率大于60%的带宽仅为5.4%。
发明内容
为了克服上述技术中存在的问题,本发明提供了一种基于频率选择性耦合的宽带带通滤波功率放大器,基于频率选择性耦合的宽带带通滤波器,并且考虑了扩展连续型理论和滤波器合成理论,从而有效提高了滤波功率放大器的工作效率和带宽,同时有效减小传统逆F类功率放大器中阻抗匹配电路的复杂度和面积。
本发明解决其技术问题采用的技术方案是:提供一种基于频率选择性耦合的宽带带通滤波功率放大器,包括栅极直流偏置电路、输入端阻抗匹配电路、功率放大晶体管和输出端阻抗匹配电路,所述栅极直流偏置电路连接于所述输入端阻抗匹配电路,所述输入端阻抗匹配电路连接于所述功率放大晶体管,所述功率放大晶体管连接于所述输出端阻抗匹配电路,所述输出端阻抗匹配电路包括调谐微带线和带通滤波器,所述调谐微带线连接于所述功率放大晶体管和所述带通滤波器之间,所述带通滤波器由平行耦合的第一谐振器和第二谐振器组成。
在本发明提供的基于频率选择性耦合的宽带带通滤波功率放大器中,所述第一谐振器包括第一短路端和第一开路端,所述第二谐振器包括第二短路端和第二开路端,所述第一谐振器的耦合区域为从第一短路端开始占所述第一谐振器长度的三分之二,所述第二谐振器的耦合区域为从所述第二开路端开始占所述第二谐振器长度的三分之二,所述第一谐振器的所述第一短路端与所述第二谐振器的所述第二开路端对齐。
在本发明提供的基于频率选择性耦合的宽带带通滤波功率放大器中,所述第一谐振器和所述第二谐振器的长度分别为λg/4,λg为位于工作频率的波导波长。
在本发明提供的基于频率选择性耦合的宽带带通滤波功率放大器中,所述第一谐振器的所述第一短路端连接于直流电源,所述第一短路端还经电容接地。
在本发明提供的基于频率选择性耦合的宽带带通滤波功率放大器中,所述带通滤波器的输入端口连接于所述第一谐振器上,所述带通滤波器的输出端口连接于所述第二谐振器上。
在本发明提供的基于频率选择性耦合的宽带带通滤波功率放大器中,所述调谐微带线的输入端连接于所述功率放大晶体管的漏极,所述调谐微带线的输出端连接于所述带通滤波器的输入端口,所述带通滤波器的输出端口通过负载阻抗接地。
在本发明提供的基于频率选择性耦合的宽带带通滤波功率放大器中,所述调谐微带线的长度由最优基波阻抗匹配点的虚部大小决定。
在本发明提供的基于频率选择性耦合的宽带带通滤波功率放大器中,所述第一谐振器由依次连接的第一微带线、第二微带线、第三微带线和第四微带线组成,所述第二谐振器由依次连接的第五微带线、第六微带线、第七微带线和第八微带线组成,所述第一谐振器的所述第二微带线、所述第三微带线和所述第四微带线与所述第二谐振器的所述第五微带线、所述第六微带线和所述第七微带线分别平行耦合。
本发明的基于频率选择性耦合的宽带带通滤波功率放大器和***具有以下有益效果:本发明通过对基于频率选择性耦合的宽带带通滤波功率放大器的利用和直流偏置电路集成到滤波器中的方式,在满足滤波器的选择性前提下,有效地减少了传统逆F类功放谐波控制电路的复杂度和整体电路的面积,同时使用扩展连续型理论和滤波器合成理论来指导功率放大器匹配设计,从而有效提升了功率放大器的工作效率和工作带宽。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本实施例描述中所需要使用的附图作简要介绍。下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1是本发明一实施例提供的基于频率选择性耦合的宽带带通滤波功率放大器的原理框图;
图2是本发明一实施例提供的基于频率选择性耦合的宽带带通滤波功率放大器的电路原理图;
图3是理想扩展连续型的逆F类功率放大器漏极归一化电流和电压波形示意图;
图4是本发明一实施例提供的基于频率选择性耦合的带通滤波器示意图;
图5是本发明一实施例提供的宽带带通滤波功率放大器的S参数响应仿真结果和测试结果曲线图。
具体实施方式
为了使本技术领域的技术人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
以下结合附图和实施例对本发明做进一步的解释说明。
图1是本发明一实施例提供的基于频率选择性耦合的宽带带通滤波功率放大器的原理框图;如图1所示,本发明提供的本发明一实施例提供的基于频率选择性耦合的宽带带通滤波功率放大器包括栅极直流偏置电路10、输入端阻抗匹配电路20、功率放大晶体管30和输出端阻抗匹配电路40,所述栅极直流偏置电路10连接于所述输入端阻抗匹配电路20,所述输入端阻抗匹配电路20连接于所述功率放大晶体管30,所述功率放大晶体管30连接于所述输出端阻抗匹配电路40,其特征在于,所述输出端阻抗匹配电路40包括调谐微带线410和带通滤波器420,所述调谐微带线410连接于所述功率放大晶体管30和所述带通滤波器420之间,所述带通滤波器420由平行耦合的第一谐振器422和第二谐振器424组成。
具体地,在本发明中,功率放大晶体管30的输入端由栅极直流偏置电路10和输入端阻抗匹配电路20组成,主要实现通带边缘滚降(roll-off)的提升。其中,栅极直流偏置电路10和输入端阻抗匹配电路20均为现有逆F类功率放大器的栅极直流偏置电路模块和输入端阻抗匹配电路模块,本发明不作详细赘述。
具体地,在本发明中,功率放大晶体管30的输出端由一段调谐微带线410和具有谐波抑制和谐波控制作用的带通滤波器420构成。其中,所述带通滤波器420具有谐波抑制、谐波控制和直流偏置作用,带通滤波器由平行耦合的由平行耦合的第一谐振器422和第二谐振器424组成;所述第一谐振器422和所述第二谐振器424的长度分别为λg/4,λg为位于工作频率的波导波长,所以可以抑制二次谐波和四次谐波。
进一步地,如图1所示,所述调谐微带线410的输入端连接于所述功率放大晶体管30的漏极,所述调谐微带线410的输出端连接于所述带通滤波器420的输入端口,所述带通滤波器420的输出端口通过负载阻抗50接地。所述调谐微带线具有阻抗变换的作用,位于晶体管封装面的最优基波匹配阻抗通过调谐微带线变换成一个虚部较小的阻抗,然后通过带通滤波器匹配到负载阻抗。
图2是本发明一实施例提供的基于频率选择性耦合的宽带带通滤波功率放大器的电路原理图;如图2所示,所述第一谐振器422包括第一短路端和第一开路端,所述第二谐振器424包括第二短路端和第二开路端,所述第一谐振器422的耦合区域为从第一短路端开始占所述第一谐振器422长度的三分之二,所述第二谐振器424的耦合区域为从所述第二开路端开始占所述第二谐振器424长度的三分之二,所述第一谐振器422的所述第一短路端与所述第二谐振器424的所述第二开路端对齐。这样,通过合理地选择两个谐振器的耦合区间来达到抑制三次谐波的效果,使得所述带通滤波器能够抑制二次、三次和四次谐波,所述滤波器能提供二次谐波开路和三次谐波短路,从而使该滤波器具有谐波控制作用。
进一步地,如图2所述,所述第一谐振器422的所述第一短路端连接于直流电源426,所述第一短路端还经电容428接地。这样,所述带通滤波器在提供谐波抑制和谐波控制的同时,通过将短路端与直流电源相连,使其还具有直流偏置作用。
进一步地,如图2所述,所述带通滤波器420的输入端口连接于所述第一谐振器422上,所述带通滤波器420的输出端口连接于所述第二谐振器424上。连接位置根据微带线带通滤波器的输入匹配和输出匹配调整,这样,通过调节带通滤波器的谐振器的长度、输入和输出端口连接的位置以及两个谐振器的间距以满足扩展连续型的逆F类功率放大器的阻抗条件。
进一步地,如图2所示,所述第一谐振器422由依次连接的第一微带线1、第二微带线2、第三微带线3和第四微带线4组成,所述第二谐振器424由依次连接的第五微带线5、第六微带线6、第七微带线7和第八微带线8组成,所述第一谐振器422的所述第二微带线2、所述第三微带线3和所述第四微带线4与所述第二谐振器424的所述第五微带线5、所述第六微带线6和所述第七微带线7分别平行耦合。所述带通滤波器420的输入端口连接在第三微带线和第四微带线之间,所述带通滤波器420的输出端口连接在第六微带线和第七微带线之间。第二微带线2、第三微带线3和第四微带线4呈一条直线连接,第五微带线5、第六微带线6、第七微带线7呈一条直线连接,以保证第二微带线2、第三微带线3和第四微带线4与第五微带线5、第六微带线6、第七微带线7耦合。需要说明的是,第一微带线1与第二微带线2的连接方式以及第七微带线7与第八微带线8的连接方式本发明再此并不做限定,只要保证第一微带线1与第八微带线8不耦合即可,例如,如图2所示的,第二微带线2与第一微带线1垂直连接,第七微带线7与第八微带线8直线连接。通过这样的结构,可以保证两个谐振器的耦合区间可以实现抑制三次谐波的效果。
下面详细分析本发明提供的基于频率选择性耦合的宽带带通滤波功率放大器的工作原理。
图3是理想扩展连续型的逆F类功率放大器漏极归一化电流和电压波形示意图;现有的拓展连续型逆F类功率放大器通过谐波控制电路对晶体管的漏极电压和电流的谐波分量进行处理,其归一化电流和电压公式为:
Figure GDA0001790157160000091
ids(θ)=(iDC-i1 cosθ+i3 cos3θ)·(1-γsinθ)·(1+αcosθ) (2)
如图3所示,电流产生面的归一化漏极电流波形为方波的形式,归一化漏极电压波形为半正弦波的形式。当α增加,电流波形的幅度减小,这会导致效率和功率的轻微下降。通过拓展连续型逆F类功率放大器放宽阻抗条件,在保持效率和输出功率的情况下,提升了晶体管的工作带宽。需要说明的是,要达到这种理想的工作效率,漏极的各次谐波阻抗需要满足以下关系:
Figure GDA0001790157160000092
Y2=(0.37α+jγ(0.37α-0.49))·Gopt (3)
Y3=∞.
其中,Gopt为基波的最优电导,Yn为第n次谐波导纳。输出匹配网络在电流产生面将谐波匹配到相应的阻抗条件。
但是,如图2所示,在实际应用中,输出管脚和内部芯片的实际漏极之间存在许多寄生分量,例如,寄生电感Lout和寄生电容Cout等。所以设计输出匹配网路需考虑寄生分量的影响。
图4是基于频率选择性耦合的带通滤波器示意图。其中,谐振器1为上文提到的第一谐振器,谐振器2为上文提到的第二谐振器。谐振器1的耦合区域为从短路端开始占谐振器1长度的三分之二,谐振器2的耦合区域为从开路端开始占谐振器2长度的三分之二,谐振器1的短路端与谐振器2的开路端对齐。微带谐振器的电耦合系数表示成:
Figure GDA0001790157160000101
V1和V2是谐振器1和谐振器2上在耦合区域内的电压分布,p是一个常数。如图4,
Figure GDA0001790157160000102
是一个偶函数,同时
Figure GDA0001790157160000103
是一个奇函数在耦合区域内,所以(4)中的分子积分为零,这意味着在3f0处的电偶合系数
Figure GDA0001790157160000104
为零。同理在在3f0处的磁偶合系数
Figure GDA0001790157160000105
也为零。因此总的耦合系数
Figure GDA0001790157160000106
等于零,三次谐波得到抑制。
使用滤波器的耦合矩阵计算滤波器在3f0处的输入阻抗,耦合矩阵表示为:
Figure GDA0001790157160000107
如图2,在点A的输入阻抗表示为:
Figure GDA0001790157160000108
在公式(6)中,
Figure GDA0001790157160000109
同时令谐振器1和谐振器2的长度保持一致,所以
Figure GDA00017901571600001010
在3f0处的输入阻抗简化为:
Figure GDA00017901571600001011
因此,通过调节滤波器谐振器的长度和输入馈线的位置能够在点A处获得任意的三次谐波电抗,从而实现在电流产生面三次谐波短路。
对于二次谐波阻抗,点A处的阻抗
Figure GDA0001790157160000111
是一个纯电抗,通过调谐微带线转换为点B处的阻抗,点B处的阻抗
Figure GDA0001790157160000112
表示为:
Figure GDA0001790157160000113
ZT是调谐微带线的特性阻抗,通过调节调谐微带线的特性阻抗和长度来调整
Figure GDA0001790157160000118
从而在电流产生面实现拓展连续型逆F类功率放大器的二次谐波阻抗条件。同时,通过调节调谐微带线的长度,将点A处的基波复阻抗变换成点B处虚部较小的阻抗,减小滤波器对基波阻抗的匹配难度。
Figure GDA0001790157160000114
时,在滤波器的基波输入阻抗为:
Figure GDA0001790157160000115
为了实现滤波器对基波复阻抗的变换,需要对耦合矩阵进行修正,复数输入阻抗的耦合矩阵被修正为:
Figure GDA0001790157160000116
修正后的基波输入阻抗为:
Figure GDA0001790157160000117
令M′11=M′22,耦合分量M′S1、M′11和M′22可以通过(11)计算得到。滤波器的耦合系数和外部品质因数表示为:
Figure GDA0001790157160000121
Figure GDA0001790157160000122
通过调整谐振器的长度实现想要的耦合分量M′11和M′22,通过调整输入和输出馈线的位置实现想要外部品质因数
Figure GDA0001790157160000123
Figure GDA0001790157160000124
通过调着谐振器的间距实现想要的耦合系数
Figure GDA0001790157160000125
满足上述参数的滤波器可以实现所需要的基波阻抗条件和滤波响应。
图5所示为宽带带通滤波功率放大器的S参数仿真结果和测试结果示意图。实际设计中,输入匹配网络使用一个切比雪夫型带通滤波器实现输入匹配和通带边缘滚降的提升。
需要说明的是,晶体管选用型号为Cree CGH40010F的10W GaN HEMT晶体管,寄生分量的具体数值由制造商提供。
综上,本发明提供了基于频率选择性耦合的宽带带通滤波功率放大器;这个放大器具有宽带带宽,选择性好,高效率和小型化的优异性能,可应用于小型化数字发射机中。
以上实施例仅用以说明本发明技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,其中,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

1.一种基于频率选择性耦合的宽带带通滤波功率放大器,包括栅极直流偏置电路(10)、输入端阻抗匹配电路(20)、功率放大晶体管(30)和输出端阻抗匹配电路(40),所述栅极直流偏置电路(10)连接于所述输入端阻抗匹配电路(20),所述输入端阻抗匹配电路(20)连接于所述功率放大晶体管(30)的栅级,所述功率放大晶体管(30)的漏极连接于所述输出端阻抗匹配电路(40),所述功率放大晶体管的源极接地,其特征在于,所述输出端阻抗匹配电路(40)包括调谐微带线(410)和带通滤波器(420),所述调谐微带线(410)连接于所述功率放大晶体管(30)和所述带通滤波器(420)之间,所述带通滤波器(420)由平行耦合的第一谐振器(422)和第二谐振器(424)组成;所述第一谐振器(422)包括第一短路端和第一开路端,所述第二谐振器(424)包括第二短路端和第二开路端,所述第一谐振器(422)的耦合区域为从第一短路端开始占所述第一谐振器(422)长度的三分之二,所述第二谐振器(424)的耦合区域为从所述第二开路端开始占所述第二谐振器(424)长度的三分之二,所述第一谐振器(422)的所述第一短路端与所述第二谐振器(424)的所述第二开路端对齐。
2.根据权利要求1所述的基于频率选择性耦合的宽带带通滤波功率放大器,其特征在于,所述第一谐振器(422)和所述第二谐振器(424)的长度分别为λg/4,λg为位于工作频率的波导波长。
3.根据权利要求1所述的基于频率选择性耦合的宽带带通滤波功率放大器,其特征在于,所述第一谐振器(422)的所述第一短路端连接于直流电源(426),所述第一短路端还经电容(428)接地。
4.根据权利要求1所述的基于频率选择性耦合的宽带带通滤波功率放大器,其特征在于,所述带通滤波器(420)的输入端口连接于所述第一谐振器(422)上,所述带通滤波器(420)的输出端口连接于所述第二谐振器(424)上。
5.根据权利要求4所述的基于频率选择性耦合的宽带带通滤波功率放大器,其特征在于,所述调谐微带线(410)的输入端连接于所述功率放大晶体管(30)的漏极,所述调谐微带线(410)的输出端连接于所述带通滤波器(420)的输入端口,所述带通滤波器(420)的输出端口通过负载阻抗(50)接地。
6.根据权利要求5所述的基于频率选择性耦合的宽带带通滤波功率放大器,其特征在于,所述调谐微带线(410)的长度由最优基波阻抗匹配点的虚部大小决定。
7.根据权利要求1所述的基于频率选择性耦合的宽带带通滤波功率放大器,其特征在于,所述第一谐振器(422)由依次连接的第一微带线(1)、第二微带线(2)、第三微带线(3)和第四微带线(4)组成,所述第二谐振器(424)由依次连接的第五微带线(5)、第六微带线(6)、第七微带线(7)和第八微带线(8)组成,所述第一谐振器(422)的所述第二微带线(2)、所述第三微带线(3)和所述第四微带线(4)与所述第二谐振器(424)的所述第五微带线(5)、所述第六微带线(6)和所述第七微带线(7)分别平行耦合,所述第一微带线(1)与所述第八微带线(8)不耦合。
CN201810815617.7A 2018-07-23 2018-07-23 基于频率选择性耦合的宽带带通滤波功率放大器 Active CN109167582B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810815617.7A CN109167582B (zh) 2018-07-23 2018-07-23 基于频率选择性耦合的宽带带通滤波功率放大器
US16/191,409 US10700651B2 (en) 2018-07-23 2018-11-14 Wide bandpass filtering power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810815617.7A CN109167582B (zh) 2018-07-23 2018-07-23 基于频率选择性耦合的宽带带通滤波功率放大器

Publications (2)

Publication Number Publication Date
CN109167582A CN109167582A (zh) 2019-01-08
CN109167582B true CN109167582B (zh) 2021-09-03

Family

ID=64898191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810815617.7A Active CN109167582B (zh) 2018-07-23 2018-07-23 基于频率选择性耦合的宽带带通滤波功率放大器

Country Status (2)

Country Link
US (1) US10700651B2 (zh)
CN (1) CN109167582B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981059B (zh) * 2019-02-22 2023-11-17 昆山微电子技术研究院 一种功率放大器杂波抑制电路
CN110350874B (zh) * 2019-07-09 2023-03-21 电子科技大学 一种具有谐波抑制能力的微带功率放大器
CN111030617B (zh) * 2019-12-31 2024-02-23 京信网络***股份有限公司 一种功率放大器
CN113411062B (zh) 2021-08-19 2022-03-29 深圳飞骧科技股份有限公司 匹配电路、射频前端功率放大电路及移动通信设备
CN113904082A (zh) * 2021-09-17 2022-01-07 深圳飞骧科技股份有限公司 双微带线耦合器、功率放大器及相关设备和芯片
CN115295985B (zh) * 2022-07-18 2023-05-23 华南理工大学 一种适用于双频段通信***的双通带带通滤波器及***
CN116094887B (zh) * 2022-12-02 2024-04-26 宜宾四川大学产业技术研究院 基于谐波反向散射的整流电路集成上行链路调制器及方法
CN116886054B (zh) * 2023-09-05 2023-12-22 成都嘉纳海威科技有限责任公司 一种高谐波抑制倍频放大多功能芯片
CN117614412B (zh) * 2024-01-24 2024-05-14 广州市艾佛光通科技有限公司 一种具有优化电性能功能的混合声学滤波器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349681A (zh) * 1997-07-03 2002-05-15 艾利森公司 功率放大器的阻抗匹配电路
CN101174820A (zh) * 2006-10-30 2008-05-07 株式会社Ntt都科摩 匹配电路、多频带放大器
CN203722585U (zh) * 2014-02-24 2014-07-16 华南理工大学 一种具有带通滤波响应的高效率宽带功率放大器
US9112463B2 (en) * 2013-09-30 2015-08-18 Avago Technologies General Ip (Singapore) Pte. Ltd. Pulsed dynamic load modulation power amplifier circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758506A (ja) * 1993-08-09 1995-03-03 Oki Electric Ind Co Ltd Lc型誘電体フィルタ、およびこれを用いた空中線共用器
JP2009065637A (ja) * 2007-08-09 2009-03-26 Panasonic Corp 高周波電力増幅器及び高周波加熱装置
JP4450079B2 (ja) * 2008-01-31 2010-04-14 Tdk株式会社 高周波モジュール
JP5223008B2 (ja) * 2009-07-14 2013-06-26 パナソニック株式会社 高周波電力増幅器
CN103825564B (zh) * 2014-02-24 2017-01-18 华南理工大学 一种具有带通滤波响应的高效率宽带功率放大器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349681A (zh) * 1997-07-03 2002-05-15 艾利森公司 功率放大器的阻抗匹配电路
CN101174820A (zh) * 2006-10-30 2008-05-07 株式会社Ntt都科摩 匹配电路、多频带放大器
US9112463B2 (en) * 2013-09-30 2015-08-18 Avago Technologies General Ip (Singapore) Pte. Ltd. Pulsed dynamic load modulation power amplifier circuit
CN203722585U (zh) * 2014-02-24 2014-07-16 华南理工大学 一种具有带通滤波响应的高效率宽带功率放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Joon Hyung Kim等.Modeling and Design Methodology of High-Efficiency Class-F and Class-F-1 Power Amplifiers.《IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES》.2011,第59卷(第1期), *

Also Published As

Publication number Publication date
US20200028478A1 (en) 2020-01-23
CN109167582A (zh) 2019-01-08
US10700651B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
CN109167582B (zh) 基于频率选择性耦合的宽带带通滤波功率放大器
CN103490733B (zh) 一种频率比1.25至2.85的双频带Doherty功率放大器
CN102480272B (zh) 射频放大器
CN107332527B (zh) 一种基于紧凑型输出匹配网络的宽带高效j类功率放大器实现方法
US8164396B2 (en) Harmonic processing circuit and amplifying circuit using the same
CN104617896B (zh) 一种宽带高效率的连续逆f类功率放大器及其设计方法
Gao et al. Compact power amplifier with bandpass response and high efficiency
CN109714011A (zh) 一种应用在第五代移动通信28GHz的GaAs射频功率放大器
CN104518742A (zh) 一种高效率双频带f类功率放大器
CN110708701B (zh) 一种宽带射频功放设计方法及5g低频段射频功放
CN106982031B (zh) 一种基于介质谐振器的滤波f类功率放大器
CN111586896B (zh) 一种集成双频Doherty功率放大器、基站和移动终端
CN110890869A (zh) 一种高效率宽频功率放大器及射频收发机
CN112311339A (zh) 一种双频谐波调谐高效功率放大器
JP2013055405A (ja) F級増幅回路及びこれを用いた送信装置
CN108763640B (zh) 高效率高回退的Doherty功率放大器及其设计方法
CN101882910A (zh) 提高功放功率附加效率和线性度的输出匹配电路
CN106982038A (zh) 一种高效率滤波功率放大器
CN201733278U (zh) 提高功放功率附加效率和线性度的输出匹配电路
Wang et al. Single-and dual-band filtering power amplifiers
CN114123994A (zh) 一种基于开关e类模式功放的有源多电抗补偿输出拓扑结构
CN112838833A (zh) 基于发夹式微带带通滤波器的f类功率放大器及设计方法
CN204290894U (zh) 一种高效率双频带f类功率放大器
CN206620102U (zh) 一种提高高效e逆f类功率放大器载波频率的匹配电路
CN110971200B (zh) 一种新型双频带高效f类功率放大器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220829

Address after: Five 510641 mountain road, Guangzhou, Guangdong, Tianhe District

Patentee after: SOUTH CHINA University OF TECHNOLOGY

Patentee after: EARDA TECHNOLOGIES Co.,Ltd.

Address before: 510641 No. five, 381 mountain road, Guangzhou, Guangdong, Tianhe District

Patentee before: SOUTH CHINA University OF TECHNOLOGY