WO2019014969A1 - 一种基于silicalite-1分子筛的催化剂以及使用该催化剂制备1,2-戊二醇的方法 - Google Patents

一种基于silicalite-1分子筛的催化剂以及使用该催化剂制备1,2-戊二醇的方法 Download PDF

Info

Publication number
WO2019014969A1
WO2019014969A1 PCT/CN2017/095643 CN2017095643W WO2019014969A1 WO 2019014969 A1 WO2019014969 A1 WO 2019014969A1 CN 2017095643 W CN2017095643 W CN 2017095643W WO 2019014969 A1 WO2019014969 A1 WO 2019014969A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
alcohol
silicalite
molecular sieve
pentanediol
Prior art date
Application number
PCT/CN2017/095643
Other languages
English (en)
French (fr)
Inventor
胡江林
刘运海
边新建
黎源
姜庆梅
陈长生
宋延方
杨洋
曾伟
丁可
杨恒东
王坤
华卫琦
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Priority to EP17918290.2A priority Critical patent/EP3623046A4/en
Priority to US16/622,480 priority patent/US10898883B2/en
Priority to JP2020520693A priority patent/JP6824471B2/ja
Publication of WO2019014969A1 publication Critical patent/WO2019014969A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0354Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0356Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/12After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
    • B01J2229/123After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation in order to deactivate outer surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/52Gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/03Catalysts comprising molecular sieves not having base-exchange properties
    • C07C2529/035Crystalline silica polymorphs, e.g. silicalites

Definitions

  • the present invention relates to a catalyst.
  • it relates to a catalyst based on silicalite-1 molecular sieves.
  • the present invention also relates to a process for preparing 1,2-pentanediol using the catalyst from decyl alcohol as a starting material.
  • 1,2-pentanediol is a special dibasic primary alcohol and is widely used in many fields. For example, it is mainly used for the synthesis of the pesticide propiconazole (a highly effective, low toxicity and broad spectrum of fungicides).
  • 1,2-pentanediol has obvious polarity and non-polarity, and can be used for excellent moisturizing effect in cosmetics or personal care products.
  • 1,2-pentanediol also has antibacterial and antiseptic effects. Therefore, it can be used to formulate products without preservatives.
  • the conventional 1,2-pentanediol preparation method is obtained by reoxidizing epoxidation using n-pentene as a raw material, for example, patent documents US4605795, US4479021, and CN1552684, respectively.
  • Propionic acid or formic acid, hydrogen peroxide, and the like are used in the preparation thereof.
  • n-pentene is mainly derived from the C5 fraction in the petrochemical industry, and there are problems such as limited source of raw materials and high cost, potential safety hazards of peroxide oxidants used, and large amounts of alkali-neutralized wastewater, which greatly restricts 1, Development of 2-pentanediol.
  • Patent document US20080064905 uses n-butyraldehyde to react with hydrocyanic acid to form the corresponding cyanohydrin, and then hydrolyzes hydrogen to produce 1,2-pentanediol.
  • Patent document CN101857524 discloses that n-butanol and thioether are first reacted under strong acid catalysis to form a butyl phosphonium salt, followed by reaction of butyl phosphonium salt with formaldehyde to form the corresponding pentylene oxide, and finally hydrolysis to prepare 1,2-pentanediol.
  • Patent document CN102180769 discloses the reaction of n-butyraldehyde and paraformaldehyde under the catalysis of a thiazole salt to form 1-hydroxy-2-pentanone, followed by catalytic hydrogenation with Pd/C to form 1,2-pentanediol.
  • the above patent documents all reduce the reaction cost by replacing the C5 component with a relatively easy C4 component as a raw material source.
  • the above methods have problems in that highly toxic and polluting substances are used, the catalytic system is complicated, the process flow is long, and the product yield is not high.
  • the biomass derivative furfural can be obtained from crop waste such as corn cob and bagasse, and is produced in large quantities in North China and Shandong, with a wide range of sources and large reserves.
  • the synthesis of various chemicals from furfural and its derivative sterols has attracted more and more attention because of its low cost and greener environmental protection.
  • Patent document CN102924243 discloses a method for preparing 1,2-pentanediol by one-step hydrogenation of furfural, which is obtained by using a composite oxide containing CuO as a catalyst under the reaction conditions of 180 ° C, 8 MPa, 20% furfural methanol solution. 52.2% of 1,2-pentanediol selectivity, furfural conversion rate of 92.0%, but the reaction conditions are harsh, and furfural is easily polymerized at high temperatures.
  • the literature (Green Chem., 2012, 14, 3402) uses Ru/MnO x as a catalyst, adding 0.1M KOH to adjust the system to be alkaline to reduce the polymerization of sterol. Under 150 °C and 3 MPa, selective hydrogenolysis of decyl alcohol can obtain 42.1. % 1,2-pentanediol yield, but this method has higher activity and selectivity only for low concentration aqueous decyl alcohol solution (10 wt%), and the catalyst is used less frequently.
  • Patent document WO2012152849 uses decyl alcohol as a raw material, and hydrogenates at 230 ° C to obtain an intermediate 1-hydroxy-2-pentanone under the action of a Pt catalyst, and then hydrogenates to obtain 1,2-pentanediol under the action of a Ru catalyst.
  • the method steps are cumbersome and the reaction temperature is high, and the sterol polymerization is severe.
  • Patent document CN104016831 discloses a method for preparing 1,2-pentanediol by means of hydrogenation using decyl alcohol as a raw material, using Ru/Al 2 O 3 as a catalyst, adding Na 2 CO 3 to adjust the system in weakly alkaline (pH 7.6) 35% of 1,2-pentanediol selectivity can be obtained at 240 ° C and 10 MPa, and the concentration of the aqueous solution of decyl alcohol is less than 10% by weight, and the efficiency is low.
  • Patent document WO2015174249 reports the use of Cu-Zn catalyst, pure sterol as raw material, adding a small amount of NaOH (0.2% by weight of decyl alcohol), hydrogenation reaction at 170 ° C, 25 MPa, can obtain a maximum of 47.6% of 1,2-pentane Alcohol selectivity, the conversion of furfural was 89.2%, but the reaction conditions were extremely harsh.
  • Patent document CN104370702 discloses a method for preparing 1,2-pentanediol by liquid phase selective hydrogenolysis, using Cu-B/SiO 2 catalyst, hydrogenation reaction at 170 ° C, 8 MPa (pressure at room temperature) for 8 h, A selectivity of up to 41.4% of 1,2-pentanediol was obtained, and the conversion of furfural was 87.8%, but the residual furfural polymerization caused the catalyst to be deactivated.
  • the catalyst is thus quickly deactivated in the prior art, and the product yield is lowered.
  • the addition of the inorganic base KOH or NaOH can reduce the polymerization side reaction, but also inhibits the hydrogenolysis process, resulting in the selectivity of 1,2-pentanediol is not too high, and by-products such as tetrahydrofurfuryl alcohol are more The subsequent separation is difficult and the alkali cannot be reused.
  • MFI type molecular sieve refers to a type having an MFI structure type and composed of pure silicon or silicon aluminum.
  • a crystalline inorganic microporous compound in which pure silicon is called silicalite-1 (Si-MFI).
  • the MFI structure type has two intersecting ten-membered ring channel systems. One channel system is parallel to the crystallographic a-axis direction and has a sinusoidal shape with a channel size of about 0.53 nm ⁇ 0.56 nm. The other channel system is parallel to the crystal. The b-axis direction is linear, and the channel size is about 0.51 nm ⁇ 0.55 nm.
  • Silica-based silicalite-1 is usually prepared by hydrothermal method and has high thermal stability. It is widely used in separation, catalyst and other fields (Ind. Eng. Chem. Res., 2012, 51, 9492; Chem. Soc. Rev., 2015, 44, 7207).
  • One of the objects of the present invention is to provide a catalyst which can be used in the reaction for preparing 1,2-pentanediol from decyl alcohol.
  • it is capable of obtaining high hydrogenolysis activity and selectivity under milder conditions without producing a significant sterol polymer, which has good catalyst stability and long life.
  • a second object of the present invention is also to provide a process for producing 1,2-pentanediol using the catalyst from decyl alcohol as a raw material.
  • the present invention provides a catalyst based on silicalite-1 molecular sieve. Specifically, the present invention provides a catalyst for the hydrogenolysis of decyl alcohol to prepare 1,2-pentanediol, comprising a carrier and an active component, wherein the carrier is surface-modified with an organic alkali silane coupling agent.
  • a silicalite-1 molecular sieve, the active component being a metal nanoparticle encapsulated in the pores of the silicalite-1 molecular sieve.
  • organic alkali silane coupling agent is a compound represented by the following formula (1):
  • Base represents an organic basic group such as an amino group or a polyamine group, and the amino group may be a primary amino group, a secondary amino group or a tertiary amino group; and R 1 , R 2 and R 3 represent a C 1 -C 4 alkyl group, Same or different from each other; n is 1-10.
  • the organic base silane coupling agent is preferably 3-aminopropyltriethoxysilane, 3-(2-aminoethylamino)propyltrimethoxysilane, diethylenetriaminopropyltrimethoxysilane, and One or more of 3-(dimethylamino)propyltriethoxysilane.
  • the amount of the organic base silane coupling agent is 0.01 to 5 mmol/g, based on the mass of the surface-free silicalite-1 molecular sieve (ie, pure SiO 2 ) in the catalyst. 0.1 to 2 mmol/g.
  • the metal nanoparticles are nanoparticles of one or more of Ni, Co, Cu, Ru, Rh, Pd, Ir, Pt, and Au; from the viewpoint of catalytic performance, nanoparticles of Pt and/or Au are preferred.
  • the metal nanoparticles are supported in an amount of 0.01 to 5 wt%, preferably 0.1 to 2 wt%, based on the mass of the surface-free silicalite-1 molecular sieve (i.e., pure SiO 2 ) in the catalyst. %.
  • the invention provides a method of making the catalyst comprising the steps of:
  • step b) adding alcohol, ammonia water and tetraalkyl orthosilicate to the metal nanoparticle colloid obtained in step a), hydrolyzing, distilling off water and alcohol, drying to obtain silica gel supporting metal nanoparticles;
  • step b) crystallization of the metal nanoparticle-loaded silica gel obtained in step b) by hydrothermal method under the action of a templating agent, and calcination at a high temperature to obtain a silicalite-1 molecular sieve encapsulating the metal nanoparticles;
  • the metal soluble salt is one or more of a metal nitrate, acetate and chloride, preferably nickel nitrate, cobalt acetate, copper nitrate, barium chloride, barium chloride, One or more of palladium chloride, chlorodecanoic acid, chloroplatinic acid, and chloroauric acid; more preferably chloroplatinic acid and/or chloroauric acid.
  • the colloidal stabilizer is selected from one or more of polyvinylpyrrolidone (PVP), polyethylene glycol, polyvinyl alcohol, Tween 20, Tween 80, and Span 20, preferably PVP.
  • the reducing agent is selected from one or more of NaBH 4 , formaldehyde and hydrazine hydrate, preferably NaBH 4 .
  • the concentration of the metal-soluble salt aqueous solution is 0.1 to 2 mmol/L, and the ratio of the amount of the colloidal stabilizer, the metal-soluble salt and the reducing agent is 5 to 20 g: 1 mmol: 5 to 15 mmol.
  • the reducing condition is preferably a reaction in the air at -10 to 10 ° C for 0.5 to 4 hours.
  • the alcohol is a C 1 -C 4 linear alcohol or a C 3 -C 4 branched alcohol, preferably ethanol;
  • a tetraalkyl orthosilicate is a C 1 -C 4 linear alcohol Or a normal silicate of a branched alcohol of C 3 - C 4 , preferably tetraethyl orthosilicate (TEOS).
  • the concentration of the lysin ammonia in the aqueous ammonia is 1 to 25 wt%, preferably 20 to 25 wt%; the ratio of the solute ammonia in the alcohol and ammonia water to the tetraalkyl orthosilicate is 20 to 100 mL: 0.5 to 2.5 g: 1 g.
  • the hydrolysis conditions are preferably 1 to 10 hours at 0 to 50 ° C in air, and dried under air at 90 to 150 ° C for 4 to 24 hours.
  • the templating agent is one or more of tetrapropylammonium hydroxide (TPAOH), tetrapropylammonium bromide (TPABr) and tetrapropylammonium chloride (TPACl), preferably TPAOH.
  • TPAOH is used in the form of an aqueous solution of 25-40% by weight.
  • the metal nanoparticle-loaded silica gel and the templating agent have a molar ratio of 1:0.1 to 0.5, wherein the metal nanoparticle-loaded silica gel The number can be determined according to the number of moles of tetraalkyl orthosilicate used in step b).
  • the hydrothermal method is preferably a reaction in a hydrothermal kettle at 160 to 200 ° C for 3 to 5 days, and a high temperature calcination condition in which air is calcined at 400 to 600 ° C for 1 to 6 hours.
  • the solvent is one or more of a C 1 - C 4 linear alcohol, a C 3 - C 4 branched alcohol, benzene and toluene, preferably ethanol and/or toluene.
  • the organic base silane coupling agent which can be used is as described above.
  • the ratio of the organic base silane coupling agent, the silicalite-1 molecular sieve, and the solvent is 0.01 to 5 mmol: 1 g: 20 to 100 mL.
  • the reaction conditions are preferably carried out at 30 to 100 ° C for 4 to 24 hours.
  • the amount of the metal-soluble salt and the organic alkali silane coupling agent used is an amount of a catalyst theoretically capable of obtaining a content range of each component defined above.
  • FIG. 1 is a schematic view showing the flow of the above-mentioned catalyst preparation method and the structure of the intermediate product and the final product. It should be noted that any one, two or three of the -OR 1 , -OR 2 , and -OR 3 groups attached to Si in the molecule of the organic base silane coupling agent are in a solvent with the surface of the silicalite-1 molecular sieve. The silicon hydroxy groups react with each other to remove any one, two or three of R 1 , R 2 , and R 3 , thereby attaching the organic basic group of the organic base silane coupling agent to the surface of the silicalite-1 molecular sieve. Accordingly, those skilled in the art will appreciate that the connection structure shown in reference numeral 4 of FIG. 1 is merely illustrative and not limiting.
  • Another aspect of the present invention provides a method for producing 1,2-pentanediol by hydrogenolysis of decyl alcohol using the catalyst, wherein
  • an aqueous solution of sterol having a mass concentration of 20 to 100% is used (when the mass percentage is 100%, it is pure decyl alcohol, the same applies hereinafter), and the amount of the catalyst is sterol mass (in terms of Solute meter) 0.1 to 10% by weight, preferably 0.5 to 5% by weight, reaction temperature 50 to 200 ° C, preferably 60 to 120 ° C, hydrogen pressure 0.5 to 10 MPa (gauge pressure), preferably 1 to 5 MPa; reaction time 1 to 24 The hour is preferably 2 to 6 hours.
  • aqueous solution of sterol having a mass percentage of 20 to 100% is used, and the sterol (as solute) / catalyst mass space velocity is 0.5 to 4 h -1 , preferably 1 to 3 h. -1 ; hydrogen/catalyst volume space velocity is 500 to 1500 h -1 , preferably 800 to 1200 h -1 ; reaction temperature is 50 to 200 ° C, preferably 60 to 120 ° C; hydrogen pressure is 0.5 to 10 MPa (gauge pressure), preferably 1 to 5 MPa.
  • the catalyst is preferably subjected to in situ reduction in hydrogen before use, and the reducing condition may be, for example, a hydrogen pressure gauge pressure of 0.1 to 1 MPa, preferably 0.2 to 0.4 MPa;
  • the H 2 flow rate per 100 g of the catalyst is 0.5 to 20 L/min, preferably 1 to 15 L/min;
  • the reduction temperature is 50 to 250 ° C, preferably 100 to 200 ° C; and
  • the reduction time is 1 to 10 hours, preferably 2 to 6 hour.
  • the present invention also provides the use of the catalyst for the hydrogenolysis of furfuryl alcohol to prepare 1,2-pentanediol.
  • the catalyst of the present invention can bring the following beneficial effects:
  • the silicalite-1 molecular sieve has high thermal stability, and the metal nanoparticles are encapsulated therein to protect the metal nanoparticles from being covered by the possible polymer, so that the catalyst has good stability;
  • the silicalite-1 molecular sieve controls the diffusion of molecules in the pores through its regular pores, thereby exerting a good shape-selecting effect. Therefore, the catalyst of the present invention significantly improves the hydrogenolysis reaction of sterol to 1,2-pentane.
  • the raw material sterol is in an alkaline environment before contacting the active metal, inhibiting the side reaction (resinization) of the sterol polymerization, and contacting the metal after entering the channel.
  • the reaction is fast, thereby effectively solving the inhibition of the hydrogenolysis process of sterol in an alkaline environment, thereby reducing the selectivity of 1,2-pentanediol, and in the neutral environment, sterol is generated. Contradictions of more polymerization by-products;
  • the catalyst when used in a batch reactor, the catalyst can be recovered and reused by simple filtration after completion of the reaction; or it can also be used for a fixed bed reaction. In the device, the reaction cost and the separation difficulty of the catalyst and the product are greatly reduced.
  • the reaction conversion rate is more than 99%, and the selectivity of 1,2-pentanediol is up to 83.5%.
  • the catalytic performance of the catalyst can remain stable after multiple applications or long-term use.
  • FIG. 1 is a schematic view showing the flow of a process for preparing a catalyst of the present invention and the structure of an intermediate product and a final product.
  • Example 2 is a TEM photograph of Catalyst 1# prepared in Example 1 of the present invention.
  • Example 4 is a FTIR spectrum of a catalyst 1# prepared in Example 1 of the present invention.
  • the reagents in the present invention were mainly purchased from Sinopharm Group Reagent Co., Ltd., and the organic base silane coupling agent was purchased from Sigma-Aldrich Reagent Company.
  • TEM Transmission electron microscopy
  • FTIR Infrared spectroscopy
  • the pore structure was determined by N 2 isothermal adsorption desorption (77 K) using a Quantachrome Autosorb-1-CTCD-MS instrument.
  • the catalyst samples were degassed at 250 ° C for 12 h before testing.
  • the specific surface area (S BET ) is calculated from the relative pressure (P/P 0 ) of 0.05–0.20.
  • the pore volume (V p ) is the maximum relative pressure (P/P 0 0.99).
  • the pore size is determined by the adsorption branch. The data was calculated using the Barrett–Joyner–Halenda formula.
  • the test instrument used for the performance evaluation of the catalyst was analyzed by a Shimadzu GC-2010 gas chromatograph (hydrogen flame detector, nitrogen as a carrier gas) equipped with a DB-5 capillary column (fixed solution was 5% benzene). Phenyl Methyl Siloxane, 30 m x 0.32 mm x 0.25 ⁇ m, and a hydrogen flame detector (FID).
  • the temperature of the injector and detector were both 280 ° C; the column temperature was controlled by programmed temperature: the column temperature was initially maintained at 100 ° C for 0.5 minutes, and the temperature was raised to 260 ° C at 15 ° C / min for 5 minutes.
  • the column pressure was 8.5868 psi (approximately 59.2 kPa) with a flow rate of 1.5 mL/min. Injection volume: 0.2 ⁇ L. Conversion and selectivity were calculated using the area normalization method.
  • catalysts ##-9# were prepared by using the different metal soluble salts and organic base silane coupling agents, respectively, according to the following procedure.
  • TEOS tetraethyl orthosilicate
  • step b) The metal nanoparticle-loaded silica gel obtained in the step b) is uniformly mixed with a 40 wt% aqueous solution of TPAOH, and then transferred to a hydrothermal kettle, wherein the molar ratio of the silica nanoparticle-supporting silica gel to the TPAOH is 1:0.3; 180 ° C
  • the next treatment was carried out for 3 days, filtered, dried at 100 ° C overnight, and calcined at 550 ° C for 4 h to obtain a silicalite-1 molecular sieve encapsulating metal nanoparticles;
  • step c) adding an organic base silane coupling agent and the encapsulated metal nanoparticle-containing silicalite-1 molecular sieve obtained in the step c) to ethanol, wherein the ratio of the amount of ethanol to the amount of the silicalite-1 molecular sieve of the encapsulated metal nanoparticles is 50 ml: 1 g; reaction at 80 ° C for 8 h, filtration, and drying at 100 ° C overnight to obtain the catalysts 1# to 9# of the present invention.
  • Table 1 shows the types and contents of metal nanoparticles encapsulated per 100 g of the surface-modified silicalite-1 molecular sieve (ie, pure SiO 2 ) in the catalysts prepared in Examples 1 to 9, and Examples 1 to The amount of the metal soluble salt in the step a) and the kind and amount of the organic alkali silane coupling agent used in the step d), wherein the metal soluble salt used in each of the examples is the metal shown in Table 1 in the foregoing Corresponding metal soluble salts.
  • the content of the encapsulated metal nanoparticles can be calculated according to the following formula: (m c -m SiO2 ) / m SiO2 ⁇ 100%; wherein m c is the silicalite-1 molecular sieve encapsulated with the metal nanoparticles obtained in the step c)
  • the mass, m SiO2 is the mass of the converted pure SiO 2 calculated from the amount of alkyl orthosilicate used in step b).
  • Example 2 is a transmission electron microscopy (TEM) photograph of the catalyst 1# prepared in Example 1, and it can be seen that the metal nanoparticles (black dots on the image) are all inside the silicalite-1 molecular sieve instead of the edge, which indicates that the metal nanoparticles are well Encapsulated in molecular sieves.
  • TEM transmission electron microscopy
  • the apparent absorption peak wavelength of the catalyst 1# in the infrared spectrum (FTIR) diagram is 3500, 3400 cm -1 , which is -NH 2 characteristic absorption, and 2925, 2825 and 1470 cm -1 are -CH 2 - Characteristic absorption indicates that the organic base is grafted onto the silicalite-1 molecular sieve encapsulating the metal nanoparticles.
  • the N 2 isothermal adsorption desorption was characterized by the silicalite-1 molecular sieve encapsulating the metal Ni nanoparticles and the catalyst 1#.
  • the specific surface area, pore volume and pore diameter of the two were as shown in Table 2 below.
  • the catalyst evaluation of the present invention was carried out in a batch reactor having a volume of 3000 mL and a material of stainless steel. A quantity of catalyst is added to the batch reactor to reduce the catalyst in situ to activate it. The amount of catalyst added is shown in Table 3 relative to the mass percentage of decyl alcohol (as solute) to be hydrogenolyzed.
  • the reduction temperature was 200 ° C
  • the H 2 pressure was 0.3 MPa
  • the H 2 flow rate was 1.5 L/min
  • the reduction was carried out for 4 hours.
  • reaction vessel was lowered to a reaction temperature of sterol hydrogenolysis, a certain concentration of 2000 g of decyl alcohol aqueous solution was added, the temperature was again adjusted to the hydrogenolysis reaction temperature, and a certain pressure of hydrogen was charged to start the reaction. After a certain period of reaction, the pressure was released and the pressure was released.
  • a liquid sample was taken and analyzed by gas chromatography equipped with a DB-5 capillary column and a flame ion (FID) detector. The specific reaction conditions and performance evaluation of the catalyst are shown in Table 3.
  • the catalyst of the present invention is applied in a batch reactor by the following method: after the reaction of the last tank is completed, the reaction liquid is removed through a filter built in the reaction vessel, the catalyst is left in the reaction vessel, and 2000 g of a certain concentration of a sterol aqueous solution is added again to adjust The temperature is raised to the reaction temperature, and a certain pressure of hydrogen is charged to start the reaction. After a certain period of time, the specific conditions are the same as those in the previous one.
  • Table 3 Reaction conditions and catalyst performance evaluation results of the catalysts 1# to 9# of the present invention in a batch reactor
  • Catalysts 1#-9# prepared in Examples 1-9 of the present invention exhibited good activity and 1,2-pentanediol selectivity for the hydrogenolysis of sterols, in a relatively low reaction. High conversion rates are obtained at temperatures.
  • the catalyst of the present invention is extremely stable, and the activity is substantially maintained after 20 applications.
  • the catalyst evaluation of the present invention was carried out in a fixed bed reactor having a stainless steel tube having an outer diameter of 40 mm, an inner diameter of 20 mm and a length of 1000 mm.
  • 50 g of the catalyst was charged into the reactor, and the catalyst was reduced in situ before the reaction, the reduction temperature was 200 ° C, the H 2 pressure was 0.3 MPa, the H 2 flow rate was 1.5 L/min, and the reduction was carried out for 4 hours.
  • the temperature is lowered to the reaction temperature, and the hydrogen/catalyst volume space velocity is set to 1000 h -1 .
  • the flow rate of the decyl alcohol solution is adjusted to the desired sterol (as solute)/catalyst mass space velocity, and the pressure is adjusted to the required reaction pressure.
  • the reaction conditions are shown in Table 4.
  • a liquid sample was taken online and analyzed by gas chromatography with a DB-5 capillary column and a flame ion (FID) detector as described above.
  • catalysts in which metal nanoparticles were supported on the outer surface of an organic base-functionalized silicalite-1 molecular sieve were prepared as the comparative catalysts 1-1# to 1-9#, respectively.
  • a) Mixing ethanol and 25 wt% concentrated ammonia water with stirring, adding 346.67 g of tetraethyl orthosilicate (TEOS), the ratio of ethanol, concentrated ammonia and TEOS is 50 mL: 5 mL: 1 g; after 8 h, the water is distilled off and Ethanol, dried at 100 ° C overnight to obtain 100 g of silica gel;
  • TEOS tetraethyl orthosilicate
  • step b) The silica gel obtained in step a) is uniformly mixed with 40 wt% aqueous solution of TPAOH and transferred to a hydrothermal kettle, wherein the molar ratio of silica gel to TPAOH is 1:0.3; treatment at 180 ° C for 3 days, filtration, drying at 100 ° C After overnight, calcination at 550 ° C for 4 h to obtain a silicalite-1 molecular sieve;
  • step b) adding the organic base silane coupling agent and the silicalite-1 molecular sieve obtained in the step b) to ethanol, wherein the ratio of the amount of ethanol to the silicalite-1 molecular sieve is 50 ml: 1 g; the reaction at 80 ° C for 8 h, filtration, Drying at 100 ° C overnight to obtain an organic base functionalized silicalite-1 molecular sieve;
  • Table 5 shows the types of metal nanoparticles supported per 100 g of the surface-modified silicalite-1 molecular sieve (ie, pure SiO 2 ) in the catalysts 1-1 # to 1-9# prepared in Comparative Examples 1 to 9 and The content, the amount of the metal-soluble salt in the step a) in Comparative Example 1 to 9, and the kind and amount of the organic alkali silane coupling agent used in the step c) are shown in Table 5, wherein each of the comparative examples is used.
  • the metal soluble salts are the metal soluble salts corresponding to the metals shown in Table 5, respectively.
  • Figure 3 is a 1-1# transmission electron microscopy (TEM) photograph of the catalyst. It can be seen that the metal nanoparticles (black dots on the graph) are at the edge of the silicalite-1 molecular sieve, indicating that the metal nanoparticles are on the outer surface of the molecular sieve.
  • TEM transmission electron microscopy
  • Comparative catalysts 1-1# to 1-9# were used for the reaction of hydrogenolysis of decyl alcohol to prepare 1,2-pentanediol, and performance evaluation and application were carried out in the same manner as in Examples 1 to 9. The results of the performance evaluation are shown in Table 6 below.
  • Comparative Examples 10 to 18 the same preparation methods as in Examples 1 to 9 were carried out except that the step d) was not carried out, and a silicalite-1 molecular sieve-coated metal nanoparticle catalyst having no organic base functionalization was prepared as a comparative catalyst 2-1#. ⁇ 2-9#.
  • Comparative catalysts 2-1# to 2-9# were activated in a batch reactor, and the activation conditions were the same as in Examples 1 to 9. With After the reaction for the preparation of 1,2-pentanediol by hydrogenolysis of decyl alcohol, the performance evaluation of Comparative Catalysts 2-1# to 2-9# was carried out in the same manner as in Examples 1 to 9, and the results are shown in Table 7 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种有机碱功能化的silicalite-1分子筛封装金属纳米颗粒催化剂及其制备方法,以及使用所述催化剂由生物质衍生物糠醇氢解制备1,2-戊二醇的方法。催化剂当用于由糠醇氢解制备1,2戊二醇的反应中时,能够在较温和的反应条件下具有高的氢解活性,显著提高反应中的糠醇的转化率和1,2-戊二醇选择性,同时不产生明显的作为副产物的糠醇聚合物,催化剂稳定性好,寿命长,且反应完毕后通过简单过滤即可回收再利用,大大降低了反应成本和分离难度。

Description

一种基于silicalite-1分子筛的催化剂以及使用该催化剂制备1,2-戊二醇的方法 技术领域
本发明涉及一种催化剂。具体而言,涉及一种基于silicalite-1分子筛的催化剂。本发明还涉及一种使用所述催化剂以糠醇为原料制备1,2-戊二醇的方法。
背景技术
1,2-戊二醇是一种特殊的二元伯醇,在多个领域中均有广泛应用。例如,其主要用于合成农药丙环唑(一种高效、低毒和活性广谱的杀菌剂)。另外,1,2-戊二醇具有明显的极性和非极性,可用于化妆品或个人护理用品中起到优异的保湿效果,特别地,1,2-戊二醇还具有抑菌防腐作用,因此可用于配制不添加防腐剂的产品。
传统的1,2-戊二醇制备方法为以正戊烯为原料,通过环氧化再水合而得到,例如专利文献US4605795、US4479021和CN1552684等分别进行了报道。在其制备过程中使用了丙酸或甲酸以及双氧水等。其中,正戊烯主要来源于石油化工行业中的C5馏分,存在原料来源受限且成本高、使用的过氧化物氧化剂存在安全隐患、产生大量碱中和废水等问题,极大地制约了1,2-戊二醇的发展。
在此基础上,现已开发了各种制备1,2-戊二醇的方法。例如,专利文献US20080064905采用正丁醛与氢氰酸反应生成相应的氰醇,然后经水解加氢制备1,2-戊二醇。专利文献CN101857524公开了正丁醇和硫醚首先在强酸催化下反应生成丁基琉盐,随后丁基琉盐和甲醛反应生成相应的环氧戊烷,最后经水解制备1,2-戊二醇。专利文献CN102180769公开以正丁醛和多聚甲醛在噻唑盐的催化作用下反应生成1-羟基-2-戊酮,随后经Pd/C催化加氢生成1,2-戊二醇。上述专利文献均通过相对易得的C4组分替代C5组分作为原料来源,降低了反应成本。然而,上述方法存在使用高毒性和污染性物质、催化体系复杂且工艺流程长,以及产物收率不高等问题。
近年来,采用便宜的糠醛及其衍生物糠醇通过催化氢解制备1,2-戊二醇的工艺路线得到了较多的研究。生物质衍生物糠醛可由玉米芯和甘蔗渣等农作物废料制取,在我国华北及山东一带被大量生产,具有来源广泛、储量大等优势。以糠醛及其衍生物糠醇为原料合成各种化学品成本低且更为绿色环保,因此受到了越来越多的关注。
专利文献CN102134180和文献(Chem.Commun.,2011,47,3924-3926)报道了以糠醛为原料,使用贵金属Pt催化剂,在温和条件下加氢制备1,2-戊二醇的工艺。但是,该工艺对1,2-戊二醇的收率只有16%。
专利文献CN102924243公布了糠醛一步加氢制备1,2-戊二醇的方法,该方法采用含有CuO的复合氧化物为催化剂,在180℃、8MPa、20%的糠醛甲醇溶液反应条件下,可获得52.2%的1,2-戊二醇选择性,糠醛转化率为92.0%,但其反应条件苛刻,且在高温下糠醛容易聚合。
文献(Green Chem.,2012,14,3402)以Ru/MnOx为催化剂,加入0.1M的KOH调节体系为碱性以减少糠醇聚合,150℃、3MPa条件下,糠醇选择性氢解可取得42.1%的1,2-戊二醇收率,但该方法只对低浓度的糠醇水溶液(10wt%)具有较高的活性和选择性,催化剂套用次数较少。
专利文献WO2012152849采用糠醇为原料,在Pt催化剂的作用下,230℃氢解先得到中间体1-羟基-2-戊酮,再在Ru催化剂作用下加氢获得1,2-戊二醇,该方法步骤繁琐且反应温度很高,糠醇聚合严重。
专利文献CN104016831公开了一种以糠醇为原料通过加氢的手段制备1,2-戊二醇的方法,以Ru/Al2O3为催化剂,加入Na2CO3调节体系在弱碱性(pH 7.6)240℃、10MPa条件下可获得35%的1,2-戊二醇选择性,糠醇水溶液浓度低于10wt%,效率低。
专利文献WO2015174249报道了采用Cu-Zn催化剂,纯的糠醇为原料,加入少量NaOH(用量为糠醇的0.2%),170℃、25MPa下加氢反应,可获得最高47.6%的1,2-戊二醇选择性,糠醛转化率为89.2%,但反应条件极为苛刻。
专利文献CN104370702公开了一种液相选择性氢解制备1,2-戊二醇的方法,采用Cu-B/SiO2催化剂,170℃、8MPa(室温时压力)条件下加氢反应8h,可获得最高41.4%的1,2-戊二醇选择性,糠醛转化率为87.8%,但残余糠醛聚合导致催化剂失活。
综上,由于糠醛和糠醇在高温环境下很容易聚合(树脂化),在现有方法中催化剂因此很快失活,且产物收率下降。另外,无机碱KOH或NaOH的加入虽然可以减少聚合副反应,但同时也抑制了氢解过程,导致1,2-戊二醇选择性不会太高,副产物(如四氢糠醇)较多,后续分离困难,碱无法回用。
另一方面,MFI型分子筛是指具有MFI结构类型,组成为纯硅或硅铝的结 晶性无机微孔化合物,其中纯硅的称为silicalite-1(Si-MFI)。MFI结构类型具有两条相互交叉的十元环孔道体系,一种孔道体系平行于结晶学a轴方向,呈正弦曲线形状,孔道大小约为0.53nm×0.56nm,另一种孔道体系平行于结晶学b轴方向,呈直线型,孔道大小约为0.51nm×0.55nm。全硅的silicalite-1通常采用水热法进行制备,具有高的热稳定性,被广泛用于分离、催化剂等领域(Ind.Eng.Chem.Res.,2012,51,9492;Chem.Soc.Rev.,2015,44,7207)。
发明内容
本发明的目的之一提供一种催化剂,能够用于以糠醇为原料制备1,2-戊二醇的反应中。在具体的实施方式中其能够在较温和的条件下获得高的氢解活性和选择性,同时不产生明显的糠醇聚合物,催化剂稳定性好,寿命长。
本发明的第二个目的还在于,提供一种使用所述催化剂以糠醇为原料制备1,2-戊二醇的方法。
为达到以上目的,本发明的技术方案如下:
本发明提供了一种基于silicalite-1分子筛的催化剂。具体而言,本发明提供了一种用于糠醇氢解制备1,2-戊二醇的催化剂,包括载体与活性组分,其中,所述载体为经有机碱硅烷偶联剂进行表面修饰的silicalite-1分子筛,所述活性组分为封装在所述silicalite-1分子筛的孔道中的金属纳米颗粒。
其中,所述有机碱硅烷偶联剂为由以下通式(1)表示的化合物:
Figure PCTCN2017095643-appb-000001
其中,Base表示有机碱性基团,如氨基或多元胺基团,所述氨基可为伯氨基、仲氨基或叔氨基;R1、R2、R3表示C1-C4的烷基,彼此相同或不同;n为1-10。
所述有机碱硅烷偶联剂优选为3-氨丙基三乙氧基硅烷、3-(2-氨基乙基氨基)丙基三甲氧基硅烷、二乙烯三胺基丙基三甲氧基硅烷和3-(二甲氨基)丙基三乙氧基硅烷中的一种或多种。在所述催化剂中,以所述催化剂中的未经表面修饰的silicalite-1分子筛(即、纯SiO2)的质量计,所述有机碱硅烷偶联剂的量为0.01~5mmol/g,优选0.1~2mmol/g。
所述金属纳米颗粒为Ni、Co、Cu、Ru、Rh、Pd、Ir、Pt和Au中的一种或多种的纳米颗粒;从催化性能方面考虑,优选Pt和/或Au的纳米颗粒。在所述 催化剂中,以所述催化剂中未经表面修饰的silicalite-1分子筛(即、纯SiO2)的质量计,所述金属纳米颗粒的负载量为0.01~5wt%,优选为0.1~2wt%。
另一方面,本发明提供了制备所述催化剂的方法,包括以下步骤:
a)在胶体稳定剂存在下,用还原剂还原金属可溶性盐水溶液,得到金属纳米颗粒胶体;
b)将醇、氨水和正硅酸四烷基酯加入到步骤a)得到的金属纳米颗粒胶体中,水解后蒸馏除去水和醇,干燥得到负载金属纳米颗粒的硅胶;
c)在模板剂作用下,采用水热法将步骤b)中得到的负载金属纳米颗粒的硅胶晶化,高温煅烧后得到封装金属纳米颗粒的silicalite-1分子筛;
d)在溶剂中,采用有机碱硅烷偶联剂对步骤c)中得到的封装金属纳米颗粒的silicalite-1分子筛进行表面修饰,得到所述催化剂。
其中,步骤a)中,所述金属可溶性盐为金属的硝酸盐、醋酸盐和氯化物中的一种或多种,优选硝酸镍、醋酸钴、硝酸铜、氯化钌、氯化铑、氯化钯、氯铱酸、氯铂酸和氯金酸中的一种或多种;更优选氯铂酸和/或氯金酸。所述的胶体稳定剂选自聚乙烯基吡咯烷酮(PVP)、聚乙二醇、聚乙烯醇、吐温20、吐温80和司班20中的一种或多种,优选PVP。所述还原剂选自NaBH4、甲醛和水合肼中的一种或多种,优选NaBH4
步骤a)中,所述的金属可溶性盐水溶液的浓度为0.1~2mmol/L,胶体稳定剂、金属可溶性盐和还原剂用量的比为5~20g:1mmol:5~15mmol。还原条件优选为空气中-10~10℃下反应0.5~4h。
步骤b)中,所述的醇为C1~C4的直链醇或C3~C4的支链醇,优选乙醇;正硅酸四烷基酯为C1~C4的直链醇或C3~C4的支链醇的正硅酸酯,优选正硅酸四乙酯(TEOS)。所述氨水中溶质氨的浓度为1~25wt%,优选20~25wt%;醇、氨水中的溶质氨和正硅酸四烷基酯的用量比例为20~100mL:0.5~2.5g:1g。水解条件优选为空气中0~50℃下反应1~10h,干燥条件为空气中90~150℃下干燥4~24h。
步骤c)中,所述的模板剂为四丙基氢氧化铵(TPAOH)、四丙基溴化铵(TPABr)和四丙基氯化铵(TPACl)中的一种或多种,优选TPAOH。在一个实施方式中,以25~40wt%的水溶液的形式使用TPAOH。所述负载金属纳米颗粒的硅胶和模板剂的摩尔比为1:0.1~0.5,其中所述负载金属纳米颗粒的硅胶的摩 尔数可根据步骤b)中使用的正硅酸四烷基酯的摩尔数确定。水热法条件优选为水热釜中160~200℃下反应3~5天,高温煅烧条件为空气中400~600℃焙烧1~6h。
步骤d)中,所述溶剂为C1~C4的直链醇、C3~C4的支链醇、苯和甲苯中的一种或多种,优选乙醇和/或甲苯。可使用的所述有机碱硅烷偶联剂如前文所述。所述有机碱硅烷偶联剂、silicalite-1分子筛和溶剂的用量比例为0.01~5mmol:1g:20~100mL。反应条件优选为30~100℃下反应4~24h。
优选地,在上述制备方法中,使用的所述金属可溶性盐和所述有机碱硅烷偶联剂的量为理论上能够得到上文中限定的各成分含量范围的催化剂的用量。
图1示出了上述催化剂的制备方法的流程及中间产物和终产物结构的示意图。需要说明的是,有机碱硅烷偶联剂的分子中与Si相连的-OR1、-OR2、-OR3基团中任意的一个、两个或三个在溶剂中与silicalite-1分子筛表面的硅羟基相互反应,脱除R1、R2、R3中任意的一个、两个或三个,由此将有机碱硅烷偶联剂的有机碱性基团连接到silicalite-1分子筛表面上。因此,本领域技术人员可以理解的是,图1的附图标记4中所表示的连接结构仅是示意性的而并非仅限定于此。
本发明的另一方面提供了一种使用所述催化剂由糠醇氢解制备1,2-戊二醇的方法,其中,
当所述反应在间歇釜中进行时,使用质量百分浓度为20~100%的糠醇水溶液(当质量百分浓度为100%时即为纯糠醇,下同),催化剂用量为糠醇质量(以溶质计)的0.1~10wt%,优选0.5~5wt%,反应温度50~200℃,优选为60~120℃,氢气压力0.5~10MPa(表压),优选为1~5MPa;反应时间1~24小时,优选为2~6小时。
当所述反应在固定床反应器中进行时,使用质量百分浓度为20~100%的糠醇水溶液,糠醇(以溶质计)/催化剂质量空速为0.5~4h-1,优选为1~3h-1;氢气/催化剂体积空速为500~1500h-1,优选为800~1200h-1;反应温度50~200℃,优选为60~120℃;氢气压力0.5~10MPa(表压),优选为1~5MPa。
在所述制备1,2-戊二醇的方法中,所述催化剂在使用前优选在氢气中进行原位还原,还原条件例如可为氢气压力表压0.1~1MPa,优选为0.2~0.4MPa;每100g催化剂采用的H2流速为0.5~20L/min,优选为1~15L/min;还原温度50~250℃,优选为100~200℃;还原时间为1~10小时,优选为2~6小时。
进一步地,本发明还提供了所述催化剂在糠醇氢解制备1,2-戊二醇中的用途。
与现有技术相比,本发明的催化剂能够带来以下的有益效果:
(1)silicalite-1分子筛具有高的热稳定性,将金属纳米颗粒封装在其中,可以保护金属纳米颗粒不被可能产生的聚合物覆盖,使催化剂具有良好的稳定性;
(2)silicalite-1分子筛通过其具有的规则孔道控制孔道中分子的扩散,从而起到很好的择形作用,因此本发明的催化剂显著地提高了糠醇的氢解反应对1,2-戊二醇的选择性;
(3)silicalite-1分子筛表面通过有机碱硅烷偶联剂修饰后,原料糠醇在接触活性金属前处在碱性环境中,抑制了糠醇聚合副反应(树脂化),而进入孔道后与金属接触时处于近中性状态,反应快,从而有效解决了在碱性环境下糠醇的氢解过程被抑制,因而降低1,2-戊二醇的选择性,而在中性环境下糠醇又会生成较多聚合副产物的矛盾;
(4)由于金属纳米颗粒和有机碱被固定在silicalite-1分子筛上,因此当用于间歇式反应器时,反应完毕后通过简单过滤即可对催化剂回收再利用;或者也可用于固定床反应器中,大大降低了反应成本和催化剂与产物的分离难度。
在通过糠醇的氢解反应制备1,2-戊二醇的方法中,通过使用本发明所述的催化剂,反应转化率大于99%,1,2-戊二醇选择性最高可达83.5%,且在多次套用或长时间使用后催化剂的催化性能仍可保持稳定。
附图说明
图1为本发明的催化剂的制备方法的流程及中间产物和终产物结构的示意图。
图2为本发明的实施例1中制备的催化剂1#的TEM照片。
图3为对比例1中制备的催化剂1-1#的TEM照片。
图4为本发明的实施例1中制备的催化剂1#的FTIR谱图。
附图标记说明:
在图1中,
1.金属纳米颗粒胶体;
2.负载金属纳米颗粒的硅胶;
3.封装金属纳米颗粒的silicalite-1分子筛;
4.本发明的催化剂。
具体实施方式
下面结合实施例对本发明作进一步的说明,需要说明的是,实施例并不构成对本发明要求保护范围的限制。
本发明中的试剂主要购买于国药集团试剂有限公司,有机碱硅烷偶联剂购买于Sigma-Aldrich试剂公司。
在以下实施例和对比例中,如无特别注明,所采用的“%”均为“摩尔百分数”。
透射电镜(TEM)在JEM-2100F(JEOL,Japan)仪器上进行,使用的加速电压为200kV。
红外光谱(FTIR)在Bruker Equinox55傅里叶红外光谱仪上进行,采用KBr压片,扫描波长范围为4000–400cm-1
孔道结构通过N2等温吸脱附(77K)进行测定,使用Quantachrome Autosorb-1-CTCD-MS仪器。测试前,催化剂样品在250℃下脱气12h。比表面积(SBET)取相对压力(P/P0)of 0.05–0.20的数据进行计算,孔体积(Vp)为最大相对压力(P/P0 0.99)情况下吸附量,孔径由吸附支数据通过Barrett–Joyner–Halenda公式进行计算得到。
用于催化剂性能评价的测试仪器为岛津GC-2010型气相色谱仪(氢火焰检测器,氮气作为载气)进行分析,其配有DB-5型毛细管色谱柱(固定液为5%苯甲基硅氧烷(Phenyl Methyl Siloxane),30m×0.32mm×0.25μm)以及氢火焰检测器(FID)。进样器和检测器温度均为280℃;柱温采用程序升温控制:柱温初始100℃保持0.5分钟,15℃/min升温至260℃,保持5分钟。柱压力8.5868psi(约为59.2kPa),流速1.5mL/min。进样量:0.2μL。转化率和选择性采用面积归一法进行计算。
实施例1-9
1.催化剂制备
在实施例1-9中,分别采用不同的金属可溶性盐和有机碱硅烷偶联剂按照以下步骤制备得到催化剂1#-9#。
a)将聚乙烯基吡咯烷酮(PVP)加入到含有金属可溶性盐的水溶液(浓度1mmol/L)中,在0℃下搅拌30min,快速加入NaBH4水溶液(0.1mol/L),其中,PVP、金属可溶性盐用量和NaBH4水溶液用量的比为11.2g:1mmol:100mL, 搅拌2h得到金属纳米颗粒胶体;
b)搅拌下,将乙醇和25wt%的浓氨水加入到上述金属纳米颗粒胶体中,再加入346.67g正硅酸四乙酯(TEOS),乙醇、浓氨水和TEOS的用量比例为50mL:5mL:1g;8h后蒸馏除去水和乙醇,100℃干燥过夜,得到负载金属纳米颗粒的硅胶;
c)将步骤b)中得到的负载金属纳米颗粒的硅胶与40wt%的TPAOH水溶液混合均匀后转入水热釜,其中,负载金属纳米颗粒的硅胶和TPAOH的摩尔比为1:0.3;180℃下处理3天,过滤,100℃干燥过夜,在550℃下煅烧4h,得到封装金属纳米颗粒的silicalite-1分子筛;
d)将有机碱硅烷偶联剂和步骤c)中得到的封装金属纳米颗粒的silicalite-1分子筛加入到乙醇中,其中,乙醇与封装金属纳米颗粒的silicalite-1分子筛的量的比为50ml:1g;80℃下反应8h,过滤,100℃干燥过夜,得到本发明的催化剂1#~9#。
表1示出了实施例1~9中制备的催化剂中,每100g未经表面修饰的silicalite-1分子筛(即,纯SiO2)中封装的金属纳米颗粒的种类及其含量、实施例1~9中步骤a)中金属可溶性盐的用量以及步骤d)中使用的有机碱硅烷偶联剂的种类及其用量,其中各实施例中使用的金属可溶性盐为表1中所示金属在前文中分别对应的金属可溶性盐。所述封装的金属纳米颗粒的含量可按照以下的公式计算:(mc-mSiO2)/mSiO2×100%;其中mc是由步骤c)得到的封装了金属纳米颗粒的silicalite-1分子筛的质量,mSiO2为由步骤b)中使用的正硅酸烷基酯的量计算得到转化后的纯SiO2的质量。
表1催化剂1#~9#的制备条件
Figure PCTCN2017095643-appb-000002
Figure PCTCN2017095643-appb-000003
图2为实施例1中制备的催化剂1#透射电镜(TEM)照片,可见金属纳米颗粒(图上黑点)均处在silicalite-1分子筛内部而不是边缘,可以说明金属纳米颗粒被很好地封装在分子筛中。
如图4所示,催化剂1#的红外光谱(FTIR)图中明显的吸收峰的波长为3500、3400cm-1,为-NH2特征吸收,2925、2825和1470cm-1为-CH2-的特征吸收,表明有机碱接枝到封装金属纳米颗粒的silicalite-1分子筛上。
N2等温吸脱附对封装金属Ni纳米颗粒的silicalite-1分子筛和催化剂1#进行表征,二者的比表面积、孔体积和孔径如下表2所示。
表2 N2等温吸脱附的表征结果
Figure PCTCN2017095643-appb-000004
从上面结果可以看出,接枝有机碱后silicalite-1分子筛孔道结构无明显变化,说明有机碱接枝在silicalite-1分子筛外表面。
2.催化剂性能评价
2.1间歇釜
本发明的催化剂评价在间歇釜反应器中进行,间歇釜反应器容积为3000mL,材质为不锈钢。将一定量的催化剂加入所述的间歇釜反应器中,对催化剂原位还原,以使其活化。加入的催化剂的量相对于将要氢解的糠醇(以溶质计)的质量百分数示于表3。还原温度200℃,H2压力为0.3MPa,H2流速1.5L/min,还原4 小时。
上述还原结束后将反应釜内降至糠醇氢解的反应温度,加入一定浓度的2000g糠醇水溶液,再次调节温度至氢解反应温度,充入一定压力的氢气,开始反应。反应一定时间后,降温泄压,取液体样品,用上述配有DB-5毛细管柱且有火焰离子(FID)检测器的气相色谱进行分析。具体反应条件及催化剂的性能评价如表3所示。
本发明的催化剂在间歇釜反应器中按照以下方法进行套用:上一釜反应结束后,反应液通过反应釜内置过滤器除去,催化剂留在反应釜内,再次加入2000g一定浓度的糠醇水溶液,调节温度至反应温度,充入一定压力的氢气,开始反应,一定时间后结束,具体条件与上一釜反应相同。
表3使用本发明的催化剂1#~9#在间歇釜反应器中的反应条件及催化剂性能评价结果
Figure PCTCN2017095643-appb-000005
从表3可以看出,本发明的实施例1-9制备的催化剂1#-9#对糠醇氢解反应均表现出好的活性和1,2-戊二醇选择性,在相对低的反应温度下即可获得高的转化率。特别地,本发明的催化剂稳定性极好,20次套用后活性基本保持。
2.2固定床
本发明的催化剂评价在固定床反应器中进行,反应器为外径40mm,内径 20mm,长1000mm的不锈钢管。将50g催化剂装填至反应器中,反应前对催化剂原位还原,还原温度200℃,H2压力为0.3MPa,H2流速1.5L/min,还原4小时。还原结束后降至反应温度,设定氢气/催化剂体积空速为1000h-1,调节糠醇水溶液流速至所需的糠醇(以溶质计)/催化剂质量空速,调节压力至所需反应压力,具体反应条件如表4所示。在线取液体样品,用上述配有DB-5毛细管柱且有火焰离子(FID)检测器的气相色谱进行分析。
表4使用本发明的催化剂1#~9#在固定床反应器中反应的反应条件及催化剂性能评价结果
Figure PCTCN2017095643-appb-000006
从表4可以看出,固定床反应器中,催化剂1#~9#对糠醇氢解反应均表现出好的活性和1,2-戊二醇选择性,500h寿命考察显示出本发明的催化剂稳定性极好。
对比例1~9
作为对比例1~9,按照以下步骤制备金属纳米颗粒负载在有机碱功能化的silicalite-1分子筛外表面的催化剂,分别作为对比催化剂1-1#~1-9#。
a)搅拌下,将乙醇和25wt%的浓氨水混合,加入346.67g正硅酸四乙酯(TEOS),乙醇、浓氨水和TEOS的用量比例为50mL:5mL:1g;8h后蒸馏除去水和乙醇,100℃干燥过夜,得到硅胶100g;
b)将步骤a)中得到的硅胶与40wt%的TPAOH水溶液混合均匀后转入水热釜,其中,硅胶和TPAOH的摩尔比为1:0.3;180℃下处理3天,过滤,100℃干燥过夜,在550℃下煅烧4h,得到silicalite-1分子筛;
c)将有机碱硅烷偶联剂和步骤b)中得到的silicalite-1分子筛加入到乙醇中,其中,乙醇与silicalite-1分子筛的量的比为50ml:1g;80℃下反应8h,过滤,100℃干燥过夜,得到有机碱功能化的silicalite-1分子筛;
d)将聚乙烯基吡咯烷酮(PVP)加入到含有金属可溶性盐的水溶液(浓度1mmol/L)中,在0℃下搅拌30min,快速加入NaBH4水溶液(0.1mol/L),其中,PVP、金属可溶性盐用量和NaBH4水溶液用量的比为11.2g:1mmol:100mL,搅拌2h得到金属纳米颗粒胶体;
e)向步骤d)中得到的金属纳米颗粒胶体中加入步骤c)得到的有机碱功能化的silicalite-1分子筛,继续搅拌8h,过滤,100℃干燥过夜,得到对比催化剂1-1#~1-9#。
表5示出了对比例1~9制备的催化剂1-1#~1-9#中每100g未经表面修饰的silicalite-1分子筛(即、纯SiO2)负载的金属纳米颗粒的种类及其含量、对比例1~9中步骤a)中金属可溶性盐的用量,以及步骤c)中使用的有机碱硅烷偶联剂的种类及其用量如表5所示,其中,各对比例中使用的金属可溶性盐为表5中所示金属在前文中分别对应的金属可溶性盐。
表5对比催化剂1-1#~1-9#制备条件
Figure PCTCN2017095643-appb-000007
图3为催化剂1-1#透射电镜(TEM)照片,可以看出金属纳米颗粒(图上黑点)均处在silicalite-1分子筛的边缘,可以说明金属纳米颗粒处在分子筛的外表面。
对比催化剂1-1#~1-9#进行活化后用于糠醇氢解制备1,2-戊二醇的反应,进行性能评价以及套用,方法同于实施例1~9。性能评价的结果见下表6。
表6对比催化剂1-1#~1-9#性能评价结果
Figure PCTCN2017095643-appb-000008
从表6可以看出,由于金属纳米颗粒在有机碱功能化的silicalite-1分子筛的外表面,糠醇分子和金属纳米颗粒都处于碱性环境中,silicalite-1分子筛孔道择形性没能被利用,因此对比催化剂1-1#~1-9#对糠醇氢解反应的活性和1,2-戊二醇选择性明显低于1#~9#;另外,虽然在反应过程中糠醇的聚合明显减少,但金属纳米颗粒由于缺少silicalite-1分子筛的封装保护,因此不可避免的会有部分活性位被覆盖,稳定性不好,仅套用5次后活性下降明显。
对比例10~18
作为对比例10~18,除了不实施步骤d)以外,进行与实施例1~9相同的制备方法,制备无有机碱功能化的silicalite-1分子筛封装金属纳米颗粒催化剂作为对比催化剂2-1#~2-9#。
将对比催化剂2-1#~2-9#在间歇釜中进行活化,活化条件同实施例1~9。随 后用于糠醇氢解制备1,2-戊二醇的反应,对对比催化剂2-1#~2-9#进行性能评价,方法同于实施例1~9,结果见下表7。
表7对比催化剂2-1#~2-9#性能评价结果
Figure PCTCN2017095643-appb-000009
从表7可以看出,由于没有有机碱存在于silicalite-1分子筛的外表面,糠醇分子受热后发生较为明显的聚合,因此转化率在较高的水平。但是,即使金属纳米颗粒封装在silicalite-1分子筛中,由于聚合副反应使得到达金属纳米颗粒的糠醇减少,因此最终1,2-戊二醇选择性较低,并且较多的糠醇聚合也带来了催化剂稳定性不好的问题,催化剂套用5次后活性有一定下降。
可见,要保证催化剂既具有高的活性和1,2-戊二醇选择性,又有好的稳定性,在分子筛内部封装金属纳米颗粒和在外表面进行有机碱功能化二者缺一不可。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (15)

  1. 一种用于糠醇氢解制备1,2-戊二醇的催化剂,其特征在于,包括载体与活性组分,其中,所述载体为经有机碱硅烷偶联剂进行表面修饰的silicalite-1分子筛,所述活性组分为封装在所述silicalite-1分子筛的孔道中的金属纳米颗粒。
  2. 根据权利要求1所述催化剂,其特征在于,所述有机碱硅烷偶联剂为由以下通式(1)表示的化合物:
    Figure PCTCN2017095643-appb-100001
    其中,Base表示有机碱性基团,优选为氨基或多元胺基团,所述氨基选自伯氨基、仲氨基或叔氨基;R1、R2、R3表示C1-C4的烷基,彼此相同或不同;n为1-10;
    所述有机碱硅烷偶联剂优选为3-氨丙基三乙氧基硅烷、3-(2-氨基乙基氨基)丙基三甲氧基硅烷、二乙烯三胺基丙基三甲氧基硅烷和3-(二甲氨基)丙基三乙氧基硅烷中的一种或多种。
  3. 根据权利要求1所述的催化剂,其特征在于,所述金属纳米颗粒为Ni、Co、Cu、Ru、Rh、Pd、Ir、Pt和Au中的一种或多种,优选Pt和/或Au。
  4. 根据权利要求1-3中任意一项所述的催化剂,其特征在于,以所述催化剂中的未经表面修饰的silicalite-1分子筛的质量计,所述金属纳米颗粒的负载量为0.01~5wt%,优选为0.1~2wt%。
  5. 根据权利要求4所述的催化剂,其特征在于,以所述催化剂中的未经表面修饰的silicalite-1分子筛的质量计,所述有机碱硅烷偶联剂的量为0.01~5mmol/g,优选0.1~2mmol/g。
  6. 一种制备权利要求1-5中任意一项所述催化剂的方法,其特征在于,包括以下步骤:
    a)在胶体稳定剂存在下,用还原剂还原金属可溶性盐水溶液,得到金属纳米颗粒胶体;
    b)将醇、氨水和正硅酸四烷基酯加入到步骤a)得到的金属纳米颗粒胶体中,水解后蒸馏除去水和醇,干燥得到负载金属纳米颗粒的硅胶;
    c)在模板剂作用下,采用水热法将步骤b)中得到的负载金属纳米颗粒的硅胶晶化,高温煅烧后得到封装金属纳米颗粒的silicalite-1分子筛;
    d)在溶剂中,采用有机碱硅烷偶联剂对步骤c)中得到的封装金属纳米颗粒的silicalite-1分子筛进行表面修饰,得到所述催化剂。
  7. 根据权利要求6所述的方法,其特征在于,步骤a)中,
    所述金属可溶性盐为金属的硝酸盐、醋酸盐和氯化物中的一种或多种,优选硝酸镍、醋酸钴、硝酸铜、氯化钌、氯化铑、氯化钯、氯铱酸、氯铂酸和氯金酸中的一种或多种,更优选氯铂酸和/或氯金酸;
    所述的胶体稳定剂选自聚乙烯基吡咯烷酮、聚乙二醇、聚乙烯醇、吐温20、吐温80和司班20中的一种或多种,优选聚乙烯基吡咯烷酮;
    所述还原剂选自NaBH4、甲醛和水合肼中的一种或多种,优选NaBH4
  8. 根据权利要求6或7所述的方法,其特征在于,步骤a)中,所述金属可溶性盐水溶液的浓度为0.1~2mmol/L,所述胶体稳定剂、金属可溶性盐和还原剂用量的比为5~20g:1mmol:5~15mmol。
  9. 根据权利要求6或7所述的方法,其特征在于,步骤b)中,所述醇为C1~C4的直链醇或C3~C4的支链醇,优选乙醇;所述正硅酸四烷基酯为C1~C4的直链醇或C3~C4的支链醇的正硅酸酯,优选正硅酸四乙酯(TEOS);所述氨水中溶质氨的浓度为1~25wt%,优选20~25wt%;所述醇、氨水中的溶质氨和正硅酸四烷基酯的用量比例为20~100mL:0.5~2.5g:1g。
  10. 根据权利要求6或7所述的方法,其特征在于,步骤c)中,所述模板剂为四丙基氢氧化铵、四丙基溴化铵和四丙基氯化铵中的一种或多种,优选四丙基氢氧化铵,更优选为25~40wt%的水溶液的形式的四丙基氢氧化铵;所述负载金属纳米颗粒的硅胶和模板剂的摩尔比为1:0.1~0.5。
  11. 根据权利要求6或7所述的方法,其特征在于,步骤d)中,所述溶剂为C1~C4的直链醇、C3~C4的支链醇、苯和甲苯中的一种或多种,优选乙醇和/或甲苯;所述有机碱硅烷偶联剂、silicalite-1分子筛和溶剂的用量比例为0.01~5mmol:1g:20~100mL,反应条件为30~100℃下4~24h。
  12. 一种使用权利要求1-5中任意一项所述的催化剂进行糠醇氢解制备1,2-戊二醇的方法,其特征在于,在间歇釜中,使用质量百分浓度为20~100%的糠醇水溶液,催化剂用量为溶质糠醇质量的0.1~10wt%,优选0.5~5wt%;反应温度为50~200℃,优选为60~120℃;氢气压力表压为0.5~10MPa,优选为1~5MPa;反应时间为1~24小时,优选为2~6小时。
  13. 一种使用权利要求1-5中任意一项所述的催化剂进行糠醇氢解制备1,2-戊二醇的方法,其特征在于,在固定床反应器中,使用质量百分浓度为20~100%的糠醇水溶液,溶质糠醇质量/催化剂质量空速为0.5~4h-1,优选为1~3h-1;氢气/催化剂体积空速为500~1500h-1,优选为800~1200h-1;反应温度为50~200℃,优选为60~120℃;氢气压力表压为0.5~10MPa,优选为1~5MPa。
  14. 根据权利要求12或13所述的方法,其特征在于,所述催化剂在使用前需要在氢气中进行原位还原,还原条件为氢气压力表压0.1~1MPa,优选为0.2~0.4MPa;每100g催化剂采用的H2流速为0.5~20L/min,优选为1~15L/min;还原温度为50~250℃,优选为100~200℃;还原时间为1~10小时,优选为2~6小时。
  15. 权利要求1-5中任意一项所述的催化剂在糠醇氢解制备1,2-戊二醇中的用途。
PCT/CN2017/095643 2017-07-20 2017-08-02 一种基于silicalite-1分子筛的催化剂以及使用该催化剂制备1,2-戊二醇的方法 WO2019014969A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17918290.2A EP3623046A4 (en) 2017-07-20 2017-08-02 SILICALITE-1 MOLECULAR SIEVE CATALYST AND PROCESS FOR PREPARING 1,2-PENTANEDIOL USING THE SAID CATALYST
US16/622,480 US10898883B2 (en) 2017-07-20 2017-08-02 Silicalite-1 molecular sieve-based catalyst and preparation method for 1,2-pentanediol using said catalyst
JP2020520693A JP6824471B2 (ja) 2017-07-20 2017-08-02 silicalite−1分子篩をベースとする触媒、および、当該触媒を用いて1,2−ペンタンジオールを調製する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710595213.7A CN109277112B (zh) 2017-07-20 2017-07-20 一种基于silicalite-1分子筛的催化剂及用其制备1,2-戊二醇的方法
CN201710595213.7 2017-07-20

Publications (1)

Publication Number Publication Date
WO2019014969A1 true WO2019014969A1 (zh) 2019-01-24

Family

ID=65015245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095643 WO2019014969A1 (zh) 2017-07-20 2017-08-02 一种基于silicalite-1分子筛的催化剂以及使用该催化剂制备1,2-戊二醇的方法

Country Status (5)

Country Link
US (1) US10898883B2 (zh)
EP (1) EP3623046A4 (zh)
JP (1) JP6824471B2 (zh)
CN (1) CN109277112B (zh)
WO (1) WO2019014969A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021062362A (ja) * 2019-10-15 2021-04-22 日揮触媒化成株式会社 マイクロ孔を有する物質で被覆された遷移金属担持体およびその製造方法
CN114433172A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种选择性加氢催化剂、其制备方法及应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112742445B (zh) * 2019-10-30 2024-04-19 中国石油化工股份有限公司 一种选择性加氢分子筛材料及其制备方法
CN111298826B (zh) * 2019-12-04 2022-02-22 中国科学院过程工程研究所 一种小晶粒的Ni@Silicalite-1封装催化剂及其合成方法和用途
CN114790168B (zh) * 2021-05-18 2024-02-09 上海素馨化工科技有限公司 一种2-氨基-4-三氟甲基吡啶的制备方法及2-氨基-4-三氟甲基吡啶
CN113875775B (zh) * 2021-10-08 2023-04-28 中山大学 一种全硅分子筛封装纳米银杀菌剂的制备方法
CN114505072B (zh) * 2022-03-12 2023-04-25 福州大学 一种大孔氧化硅材料的制备方法及其在不饱和聚合物非均相加氢中的应用
CN115974097B (zh) * 2023-02-17 2023-12-19 四川轻化工大学 一种分子筛及其在降低白酒中杂醛含量中的应用
CN116351414B (zh) * 2023-04-06 2024-05-24 中国科学院广州能源研究所 一种介孔二氧化硅双金属催化剂催化糠醛加氢转化制备戊二醇的方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479021A (en) 1983-08-30 1984-10-23 Ciba-Geigy Corporation Continuous process for producing 1,2-alkanediols
US4605795A (en) 1984-11-24 1986-08-12 Degussa Aktiengesellschaft Continuous process for the production of pentanediol-1,2
CN1552684A (zh) 2003-05-29 2004-12-08 浙江联盛化学工业有限公司 一种1,2-戊二醇的制备方法
US20080064905A1 (en) 2006-09-07 2008-03-13 Degussa Gmbh Process for preparing 1,2-diols from carbonyl compounds
CN101857524A (zh) 2010-06-11 2010-10-13 王永军 从正丁醇合成1,2-戊二醇的方法
CN102134180A (zh) 2011-01-06 2011-07-27 华东理工大学 一种呋喃衍生物的开环加氢反应新方法
CN102180769A (zh) 2011-03-18 2011-09-14 湖北工业大学 一种1,2-戊二醇的合成方法
WO2012152849A1 (de) 2011-05-09 2012-11-15 Symrise Ag Verfahren zur herstellung von 1,2 pentandiol
CN102924243A (zh) 2012-03-27 2013-02-13 石家庄诚志永华显示材料有限公司 含有环戊基及二氟亚甲氧基连接基团的液晶化合物及其制备方法与应用
JP2013044579A (ja) * 2011-08-23 2013-03-04 Nagoya Institute Of Technology 金属錯体内包ゼオライトの疎水化方法およびそれによって得られたセンサー
CN104016831A (zh) 2013-02-28 2014-09-03 赢创工业集团股份有限公司 糠醇氢解成1,2-戊二醇
CN104370702A (zh) 2013-08-16 2015-02-25 中国科学院兰州化学物理研究所 一种糠醇液相选择氢解制备1,2-戊二醇的方法
WO2015174249A1 (ja) 2014-05-16 2015-11-19 宇部興産株式会社 バイオマス原料を用いた1,2-ペンタンジオールの製造方法、及びその使用
CN106000449A (zh) * 2016-05-20 2016-10-12 浙江大学 固相制备金属@沸石单晶胶囊催化材料的方法
CN106540662A (zh) * 2016-11-24 2017-03-29 陕西科技大学 一种氨基功能化疏水性沸石及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010097108A1 (en) * 2009-02-27 2010-09-02 Haldor Topsøe A/S Process for the preparation of hybrid zeolite or zeolite-like materials
CN101664673B (zh) * 2009-09-25 2011-08-03 天津大学 用于脱除喷气燃料中金属离子的分子筛吸附剂和制备方法
JP5751625B2 (ja) * 2011-07-13 2015-07-22 国立研究開発法人産業技術総合研究所 水素化反応によるエーテル結合の還元によるアルコールの合成方法
CN103011189B (zh) * 2012-12-17 2014-09-17 吉林大学 一种含贵金属的微孔-介孔分子筛、制备方法及用于对硝基苯酚的催化还原
JP6143057B2 (ja) * 2013-02-12 2017-06-07 株式会社ダイセル 1,2−ペンタンジオールの製造方法
CN103265400B (zh) * 2013-05-28 2016-04-06 华东理工大学 一种由呋喃或四氢呋喃衍生物制备伯醇的绿色新方法
CN105377424B (zh) * 2013-07-05 2017-07-18 丹麦技术大学 生产沸石包封的纳米颗粒的方法
US20170036197A1 (en) * 2014-04-10 2017-02-09 Danmarks Tekniske Universitet General method to incorporate metal nanoparticles in zeolites and zeotypes
CN107442155B (zh) * 2017-06-29 2019-10-11 大连理工大学 一种Silicalite-1单晶包覆纳米钯核壳催化剂的制备方法及其催化应用

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479021A (en) 1983-08-30 1984-10-23 Ciba-Geigy Corporation Continuous process for producing 1,2-alkanediols
US4605795A (en) 1984-11-24 1986-08-12 Degussa Aktiengesellschaft Continuous process for the production of pentanediol-1,2
CN1552684A (zh) 2003-05-29 2004-12-08 浙江联盛化学工业有限公司 一种1,2-戊二醇的制备方法
US20080064905A1 (en) 2006-09-07 2008-03-13 Degussa Gmbh Process for preparing 1,2-diols from carbonyl compounds
CN101857524A (zh) 2010-06-11 2010-10-13 王永军 从正丁醇合成1,2-戊二醇的方法
CN102134180A (zh) 2011-01-06 2011-07-27 华东理工大学 一种呋喃衍生物的开环加氢反应新方法
CN102180769A (zh) 2011-03-18 2011-09-14 湖北工业大学 一种1,2-戊二醇的合成方法
WO2012152849A1 (de) 2011-05-09 2012-11-15 Symrise Ag Verfahren zur herstellung von 1,2 pentandiol
JP2013044579A (ja) * 2011-08-23 2013-03-04 Nagoya Institute Of Technology 金属錯体内包ゼオライトの疎水化方法およびそれによって得られたセンサー
CN102924243A (zh) 2012-03-27 2013-02-13 石家庄诚志永华显示材料有限公司 含有环戊基及二氟亚甲氧基连接基团的液晶化合物及其制备方法与应用
CN104016831A (zh) 2013-02-28 2014-09-03 赢创工业集团股份有限公司 糠醇氢解成1,2-戊二醇
CN104370702A (zh) 2013-08-16 2015-02-25 中国科学院兰州化学物理研究所 一种糠醇液相选择氢解制备1,2-戊二醇的方法
WO2015174249A1 (ja) 2014-05-16 2015-11-19 宇部興産株式会社 バイオマス原料を用いた1,2-ペンタンジオールの製造方法、及びその使用
CN106000449A (zh) * 2016-05-20 2016-10-12 浙江大学 固相制备金属@沸石单晶胶囊催化材料的方法
CN106540662A (zh) * 2016-11-24 2017-03-29 陕西科技大学 一种氨基功能化疏水性沸石及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEM. COMMUN., vol. 47, 2011, pages 3924 - 3926
CHEM. SOC. REV., vol. 44, 2015, pages 7207
GREEN CHEM., vol. 14, 2012, pages 3402
IND. ENG. CHEM. RES., vol. 51, 2012, pages 9492
See also references of EP3623046A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021062362A (ja) * 2019-10-15 2021-04-22 日揮触媒化成株式会社 マイクロ孔を有する物質で被覆された遷移金属担持体およびその製造方法
JP7449123B2 (ja) 2019-10-15 2024-03-13 日揮触媒化成株式会社 マイクロ孔を有する物質で被覆された遷移金属担持体およびその製造方法
CN114433172A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种选择性加氢催化剂、其制备方法及应用
CN114433172B (zh) * 2020-10-31 2023-09-01 中国石油化工股份有限公司 一种选择性加氢催化剂、其制备方法及应用

Also Published As

Publication number Publication date
JP2020525280A (ja) 2020-08-27
EP3623046A1 (en) 2020-03-18
CN109277112A (zh) 2019-01-29
JP6824471B2 (ja) 2021-02-03
EP3623046A4 (en) 2021-02-24
US10898883B2 (en) 2021-01-26
CN109277112B (zh) 2020-05-08
US20200139353A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2019014969A1 (zh) 一种基于silicalite-1分子筛的催化剂以及使用该催化剂制备1,2-戊二醇的方法
Goda et al. Zirconium oxide sulfate-carbon (ZrOSO4@ C) derived from carbonized UiO-66 for selective production of dimethyl ether
CN106457229A (zh) 在沸石和类沸石中引入金属纳米粒子的通用方法
CN106944065B (zh) 石墨烯负载镍加氢催化剂的制备方法和应用
WO2010127997A3 (en) Preparation of precipitated zn pp catalysts with internal pore structure using nanoparticles
TWI399242B (zh) Method for preparing large-diameter titanium-silicon molecular sieve and method for producing cyclohexanone oxime using the molecular sieve
US20160059219A1 (en) Hydrogenation catalyst and method of manufacturing the same
CN101195579A (zh) 醇水体系中氯代硝基苯选择加氢合成氯代苯胺的方法
WO2008118097A1 (en) Palladium catalysts
CN102295524B (zh) 一种环己烷选择氧化制环己醇和环己酮的方法
JP7368813B2 (ja) アミド化合物の水素化に用いる水素添加反応用触媒およびこれを用いたアミン化合物の製造方法
Long et al. Selective hydrogenation of nitriles to imines over a multifunctional heterogeneous Pt catalyst
Feng et al. New efficient visible light photocatalyst based on heterojunction of BiOCl–bismuth oxyhydrate
CN101940945A (zh) 一种用于合成苯甲醛的纳米金催化剂的植物还原制备方法
CN103360344B (zh) 一种催化丙烯环氧化的方法
Carrillo et al. A versatile, immobilized gold catalyst for the reductive amination of aldehydes in batch and flow
WO2012095863A2 (en) A process to prepare novel platinum nanoparticls and nanoparticles thereof
CN109718826B (zh) 微球Silicate-1分子筛催化剂及其制备方法和制备己内酰胺的方法
CN105148912A (zh) 一种合成气一步法制取二甲醚催化剂的制备方法
CN112717937A (zh) 糠醛气相加氢一步制2-mthf反应的催化剂制备方法
KR100525209B1 (ko) 나노 세공을 갖는 금속 함유 vsb-5 분자체 조성물과이의 제조방법
KR101263918B1 (ko) 담지촉매 및 이 촉매의 존재하에 진행되는 셀룰로오스의 소르비톨로의 선택적 촉매 전환 방법
JP6821151B2 (ja) アルカリ性担体に担持された金−セリウム酸化物担持複合体触媒およびその製造方法
Zou et al. Synthesis of bimetallic Pd-Based/activated carbon catalyst by biomass-reduction method for highly efficient hydrogen storage system based on CO2/formate
JP6531327B2 (ja) アルカリ性担体に担持された銀−セリウム酸化物複合体触媒およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017918290

Country of ref document: EP

Effective date: 20191213

ENP Entry into the national phase

Ref document number: 2020520693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE