WO2019013039A1 - Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article - Google Patents

Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article Download PDF

Info

Publication number
WO2019013039A1
WO2019013039A1 PCT/JP2018/025166 JP2018025166W WO2019013039A1 WO 2019013039 A1 WO2019013039 A1 WO 2019013039A1 JP 2018025166 W JP2018025166 W JP 2018025166W WO 2019013039 A1 WO2019013039 A1 WO 2019013039A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mass
acid
laminate
plating
Prior art date
Application number
PCT/JP2018/025166
Other languages
French (fr)
Japanese (ja)
Inventor
亘 冨士川
深澤 憲正
憲一 平林
白髪 潤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2019013039A1 publication Critical patent/WO2019013039A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a laminate that can be used for printed wiring boards, flexible printed wiring boards, molded articles, and the like.
  • a coating agent containing a conductive substance is applied to the surface of a support and fired to form a conductive layer on the surface of the support, and then
  • the electroconductive pattern by which the metal layer was provided in the surface of the said conductive layer is known by plating the surface of the said conductive layer (for example, refer patent document 1 and 2).
  • an organic substance such as a dispersant derived from a conductive substance on the surface of the conductive layer or an organic solvent inhibits the adsorption of the plating at the time of forming the electrolytic plating layer, and there is a problem that the adhesion between the conductive layer and the plating layer is reduced.
  • a laminate that can be used as a conductive pattern a laminate excellent in adhesion at each interface between a support, a conductive layer, and a plating layer is required, and in particular, the conductive layer and the plating layer The laminated body which is excellent in the adhesiveness of was not found yet.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • ABS-PC polymer alloy of ABS and polycarbonate
  • hexavalent chromic acid and the like are preferably environmentally unfriendly substances, so it is preferable not to use them, and alternative methods have been developed (see, for example, Patent Document 3).
  • the base material is not limited to ABS or ABS-PC, and a plated film having excellent adhesion can be obtained even with other types of plastic, and It has been required to reduce the use of environmentally hazardous substances.
  • the problem to be solved by the present invention is a laminate excellent in adhesion between a support and a metal layer (metal plating layer) without roughening the surface of the support, and a printed wiring board using the same It is providing a flexible printed wiring board and a molded article.
  • the present inventors have intensively studied to solve the above problems, and as a result, it is a laminate in which a silver nanoparticle layer and a metal plating layer are sequentially laminated on a support, and the metal plating layer is laminated.
  • the above-mentioned problem is achieved by setting the value of the normalized photoelectron yield (1/2 power) at a specific excitation energy to a certain range.
  • the present invention has been completed.
  • the present invention is a laminate in which a silver nanoparticle layer (B) and a metal plating layer (C) are sequentially laminated on a support (A), and the metal plating layer (C) is laminated.
  • the value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV is 0.1 or more and 20 or less.
  • the laminate of the present invention is excellent in adhesion between the support and the metal plating layer without roughening the surface of the support, and a metal layer is provided on the smooth surface of various supports. , It is a material that makes use of the metallic luster of the metal layer.
  • the laminate of the present invention is, for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, an organic EL element, an organic transistor, by patterning a metal layer.
  • a metal layer for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, an organic EL element, an organic transistor, by patterning a metal layer.
  • It can be suitably used as an RFID such as a noncontact IC card, an electromagnetic wave shield, an LED illumination base, an electronic member such as a digital signage.
  • FCCL flexible printed wiring board applications
  • connectors for connecting wires for optical communication lamp reflectors, electrical components, electric motor peripheral components, battery components, automotive parts, mobile phones, personal computers, mirrors, containers, home appliances, switches, water faucet parts, showers It can be suitably used for molded articles such as heads.
  • the laminate of the present invention is a laminate in which a silver nanoparticle layer (B) and a metal plating layer (C) are sequentially laminated on a support (A), and the metal plating layer (C) is laminated.
  • a silver nanoparticle layer (B) before measurement is measured with a photoelectron spectrometer, the value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV is 0.1 or more and 20 or less It is.
  • Examples of the support (A) include polyimide, polyamideimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (hereinafter abbreviated as "ABS”) resin, ABS and polycarbonate.
  • ABS acrylonitrile-butadiene-styrene
  • Polymer alloy acrylic resin such as methyl poly (meth) acrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polycarbonate, polyethylene, polypropylene, polyurethane, liquid crystal polymer (LCP), poly Ether ether ketone (PEEK), polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), epoxy resin, cellulose nanofiber, sili Supports made of iron, ceramics, glass, etc., porous supports made of them, steel plates, supports made of metal such as copper, their surfaces are silicon carbide, diamond like carbon, aluminum, copper, titanium, stainless steel etc. And the like.
  • acrylic resin such as methyl poly (meth) acrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polycarbonate, polyethylene
  • the laminate of the present invention is used for a printed wiring board etc.
  • polyimide polyethylene terephthalate, polyethylene naphthalate, liquid crystal polymer (LCP), polyetheretherketone (PEEK), epoxy resin as the support (A)
  • LCP liquid crystal polymer
  • PEEK polyetheretherketone
  • epoxy resin epoxy resin
  • the film-form or sheet-like support which has the bendable softness
  • the thickness is generally preferably 1 ⁇ m to 5,000 ⁇ m, more preferably 1 ⁇ m to 300 ⁇ m, and still more preferably 1 ⁇ m to 200 ⁇ m.
  • the surface of the support (A) can be smooth as required. May form fine irregularities that do not lose their properties, or clean the dirt attached to the surface, or surface-treat for the introduction of functional groups such as hydroxyl, carbonyl and carboxyl groups. .
  • methods such as plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet light treatment, wet treatment using an aqueous solution of water, acid or alkali, an organic solvent or the like may be mentioned.
  • the method of ozone nano bubble processing is mentioned.
  • a primer layer (X) may be formed on the surface of the support (A) as required.
  • the primer resin used for the primer layer (X) is, for example, urethane resin, acrylic resin, urethane-vinyl composite resin, epoxy resin, imide resin, amide resin, amide resin, melamine resin, phenol resin, urea formaldehyde resin, and phenol block
  • the block polyisocyanate used as an agent, polyvinyl alcohol, polyvinyl pyrrolidone etc. are mentioned. These resins can be used alone or in combination of two or more. Moreover, the value of the normalized photoelectron yield (1/2 power) mentioned later can be controlled by the kind of said primer layer (X).
  • primer resins used for the primer layer (X) those using an aminotriazine-modified novolak resin and an epoxy resin in combination, an epoxy resin having an epoxy group and a hydroxyl group, and an acrylic resin having an epoxy group and a hydroxyl group It is preferable because it can be improved.
  • polyvalent carboxylic acid when using the epoxy resin which has an epoxy group and a hydroxyl group, or the acrylic resin which has an epoxy group and a hydroxyl group as primer resin used for the said primer layer (X), it is preferable to use polyvalent carboxylic acid together as a crosslinking agent.
  • the polyvalent carboxylic acid may also be an anhydride.
  • Specific examples of the polyvalent carboxylic acid include aromatic polyvalent carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, mellitic acid, biphenyldicarboxylic acid, biphenyltetracarboxylic acid and naphthalenedicarboxylic acid.
  • Acids and their anhydrides Oxalic acid, malonic acid, succinic acid, methylsuccinic anhydride, ethylsuccinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, maleic acid
  • aliphatic polyvalent carboxylic acids such as fumaric acid and anhydrides thereof.
  • trimellitic anhydride is preferable because adhesion can be further improved.
  • These polyvalent carboxylic acids can be used alone or in combination of two or more.
  • a solvent with the said primer resin, in order to make it the viscosity which is easy to apply, when coating on the surface of the said support body (A), and to use as a primer composition.
  • the solvent include various organic solvents and aqueous media.
  • the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, cyclohexanone and the like, and examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
  • organic solvent miscible with water examples include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol, propylene And alkylene glycol solvents such as glycol; polyalkylene glycol solvents such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and lactam solvents such as N-methyl-2-pyrrolidone.
  • alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve
  • ketone solvents such as acetone and methyl ethyl ketone
  • the amount of the organic solvent used be appropriately adjusted according to the coating method used when coating on the support (A) described later, and the desired film thickness of the primer layer (X).
  • the primer layer (X) may be formed by applying the primer composition to a part or all of the surface of the support (A) and removing the organic solvent contained in the primer composition. it can.
  • the drying temperature at the time of formation of the said primer layer (X) although based also on the kind of primer resin to be used, 80 degreeC or more is preferable normally. Moreover, as an upper limit of drying temperature, 300 degrees C or less is preferable, 250 degrees C or less is more preferable, and 200 degrees C or less is more preferable.
  • the drying time is usually preferably 1 second or more, more preferably 10 seconds or more, and still more preferably 30 seconds or more. Moreover, as an upper limit of drying time, 24 hours or less are preferable, 4 hours or less are more preferable, and 1 hour or less is more preferable.
  • the range of the drying time is preferably 30 seconds to 30 minutes, more preferably 30 seconds to 300 seconds, and still more preferably 30 seconds to 60 seconds.
  • the film thickness of the primer layer (X) varies depending on the use of the laminate of the present invention, but a range in which the adhesion between the support (A) and the silver nanoparticle layer (B) is further improved is preferable.
  • the thickness of the primer layer is preferably 10 nm or more and 30 ⁇ m or less, more preferably 10 nm or more and 1 ⁇ m or less, and still more preferably 50 nm or more and 500 nm or less.
  • the surface of the primer layer (X) can further improve the adhesion to the metal nanoparticle layer (B), and therefore, if necessary, it can be a dry process such as a plasma discharge treatment method such as corona discharge treatment method or an ultraviolet treatment method
  • the surface treatment may be performed by a treatment method, a wet treatment method using water, an acidic or alkaline chemical solution, an organic solvent or the like. Alternatively, ozone nanobubble treatment may be performed.
  • a primer layer (X) is formed on a support (A) as required, and then a flow containing nano-sized silver nanoparticles (b) After the silver nanoparticle layer (B) is formed by coating the body and removing the organic solvent and the like contained in the fluid by drying, the metal plating is performed by electrolytic plating, electroless plating, or both.
  • the method of forming layer (C) is mentioned.
  • the shape of the silver nanoparticles (b) used for forming the silver nanoparticle layer (B) is preferably particulate or fibrous.
  • the size of the silver nanoparticles (b) is nano-sized, specifically, when the shape of the silver nanoparticles (b) is particulate, a fine conductive pattern can be formed.
  • the average particle diameter is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 50 nm or less because the resistance value can be further reduced.
  • the “average particle diameter” is a volume average value measured by dynamic light scattering method after diluting the conductive substance with a dispersion good solvent. For this measurement, "Nanotrack UPA-150" manufactured by Microtrac, Inc. can be used.
  • the diameter of the fiber is preferably 5 nm or more and 100 nm or less, and 5 nm or more and 50 nm or less Is more preferred.
  • the length of the fiber is preferably 0.1 ⁇ m to 100 ⁇ m, and more preferably 0.1 ⁇ m to 30 ⁇ m.
  • the content of the metal nanoparticles (b) in the fluid is preferably 1% by mass to 90% by mass, more preferably 1% by mass to 60% by mass, and still more preferably 1% by mass to 10% by mass Is more preferred.
  • a dispersant or solvent for dispersing the silver nanoparticles (b) in a solvent and, if necessary, a surfactant, a leveling agent, a viscosity modifier, which will be described later, Film forming aids, antifoaming agents, preservatives and the like can be mentioned.
  • the value of the normalized photoelectron yield (1/2 power) described later can also be controlled by the types and amounts of the components to be blended into the fluid.
  • a low molecular weight or high molecular weight dispersant examples include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinyl pyrrolidone, polyethylene imine, polyvinyl pyrrolidone; fatty acids such as myristic acid, octanoic acid and stearic acid; cholic acid, Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and aventic acid.
  • a polymer dispersant is preferable because the adhesion between the silver nanoparticle layer (B) and the metal plating layer (C) can be improved, and examples of the polymer dispersant include polyethylene imine, polypropylene imine, and the like. And a compound obtained by adding a polyoxyalkylene to the polyalkyleneimine, a urethane resin, an acrylic resin, the urethane resin, a compound having a phosphoric acid group in the acrylic resin, and the like.
  • the amount of the dispersing agent used to disperse the silver nanoparticles (b) is preferably 0.01 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the silver nanoparticles (b), and 0. More than 01 mass parts and below 10 mass parts are more preferred.
  • an aqueous medium and an organic solvent can be used as a solvent used for the said fluid.
  • the aqueous medium include distilled water, ion exchanged water, pure water, ultrapure water and the like.
  • an alcohol compound, an ether compound, an ester compound, a ketone compound etc. are mentioned as said organic solvent.
  • Examples of the alcohol compound include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and the like.
  • ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used as the fluid in addition to the silver nanoparticles (b) and the solvent.
  • a common surfactant can be used as the surfactant, and examples thereof include di-2-ethylhexyl sulfosuccinate, dodecylbenzene sulfonate, alkyl diphenyl ether disulfonate, alkyl naphthalene sulfonate, hexametaphosphoric acid Salt etc. are mentioned.
  • a general leveling agent can be used as the leveling agent, and examples thereof include silicone compounds, acetylene diol compounds, and fluorine compounds.
  • a general thickener can be used as the viscosity modifier.
  • an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to alkalinity, or a urethane that can be thickened by association of molecules Resin, hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, polyvinyl alcohol, castor oil with water, amide wax, polyethylene oxide, metal soap, dibenzylidene sorbitol and the like.
  • a general film forming aid can be used, and examples thereof include anionic surfactants (such as dioctyl sulfosuccinic acid ester soda salt) and hydrophobic nonionic surfactants (sorbitan monooleate).
  • anionic surfactants such as dioctyl sulfosuccinic acid ester soda salt
  • hydrophobic nonionic surfactants sorbitan monooleate
  • Etc. polyether-modified siloxane, silicone oil and the like.
  • antifoaming agent a general antifoaming agent can be used, and examples thereof include silicone antifoaming agents, nonionic surfactants, polyethers, higher alcohols, and polymer surfactants.
  • a general preservative can be used, for example, isothiazoline preservative, triazine preservative, imidazole preservative, pyridine preservative, azole preservative, iodine preservative, pyrithione Examples include antiseptics and the like.
  • the viscosity of the fluid (value measured with a B-type viscometer at 25 ° C.) is preferably in the range of 0.1 to 500,000 mPa ⁇ s, and more preferably in the range of 0.2 to 10,000 mPa ⁇ s .
  • the viscosity is preferably in the range of 5 to 20 mPa ⁇ s.
  • a method of coating or printing the fluid on the support (A) or the primer layer (X) for example, an inkjet printing method, a reverse printing method, a screen printing method, an offset printing method, a spin coating method And spray coating, bar coating, die coating, slit coating, roll coating, dip coating, pad printing, flexographic printing, and the like.
  • the silver nanoparticle layer (B) patterned in the shape of a thin line of about 0.01 to 100 ⁇ m which is required when realizing high density of an electronic circuit or the like. It is preferable to use an inkjet printing method or a reverse printing method.
  • an inkjet printer As the inkjet printing method, one generally referred to as an inkjet printer can be used. Specifically, Konica Minolta EB 100, XY 100 (manufactured by Konica Minolta IJ Co., Ltd.), Dymatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), etc. may be mentioned.
  • the reverse printing method the letterpress reverse printing method and the intaglio reverse printing method are known, and for example, the fluid is coated on the surface of various blankets and brought into contact with a plate in which non-image areas are projected;
  • the pattern is formed on the surface of the blanket or the like by selectively transferring the fluid corresponding to the non-image area onto the surface of the plate, and then the pattern is formed on the support (A).
  • a method of transferring to (surface) may be mentioned.
  • the pad printing method is known about printing of the pattern to a three-dimensional molded article. This is done by placing the ink on the intaglio plate, filling the ink uniformly into the recess by writing with the squeegee, pressing the pad made of silicone rubber or urethane rubber onto the plate loaded with the ink, the pattern on the pad It is a method of transferring and transferring to a three-dimensional molded product.
  • drying temperature at the time of formation of the said silver nanoparticle layer (B) 80 degreeC or more is preferable normally.
  • 300 degrees C or less is preferable, 250 degrees C or less is more preferable, and 200 degrees C or less is more preferable.
  • the drying time is usually preferably 1 second or more, more preferably 10 seconds or more, and still more preferably 30 seconds or more.
  • 24 hours or less are preferable, 4 hours or less are more preferable, and 1 hour or less is more preferable.
  • the range of the drying time is preferably 30 seconds to 30 minutes, more preferably 30 seconds to 300 seconds, and still more preferably 30 seconds to 60 seconds.
  • Mass per unit area of the silver nanoparticle layer (B) is preferably from 1 mg / m 2 or more 30,000 / m 2 or less, 1 mg / m 2 or more 5,000 mg / m 2 or less.
  • the thickness of the silver nanoparticle layer (B) is adjusted by controlling the processing time, the current density, the amount of use of the additive for plating, etc. in the plating process when the metal plating layer (C) is formed. be able to.
  • the value of the normalized photoelectron yield (1/2 power) of the surface of the silver nanoparticle layer (B) can be measured by a photoelectron spectrometer.
  • excitation energy ultraviolet light (for example, a wavelength of 310 to 177 nm) can be used.
  • photoelectron spectrometer for example, “AC-3” manufactured by Riken Keiki Co., Ltd. can be used.
  • the silver nanoparticle layer (B) is formed on a support (A) or the primer layer (X).
  • the surface of the silver nanoparticle layer (B) before laminating the metal plating layer (C) described later is used.
  • the value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV is 0.1 or more and 20 or less, preferably 1 or more and 18 or less, and 3 or more and 15 or less. Is more preferably 5 or more and 12 or less.
  • the value of the normalized photoelectron yield (1/2 power) is an indicator of the ease of emission of electrons from the surface of the silver nanoparticle layer (B) at the time of irradiation with excitation energy (ultraviolet light). It correlates with the density of silver nanoparticles on the surface of the nanoparticle layer (B). For example, when the density of silver nanoparticles is high, the value of the normalized photoelectron yield (1/2 power) is high.
  • the present invention provides an optimum silver nano particle by setting the value of normalized photoelectron yield (1/2 power) at excitation energy of 5.5 eV on the surface of the silver nanoparticle layer (B) to 0.1 or more and 20 or less. The density of the particles is used to make the adhesion between the support (A) and the metal plating layer (C) extremely excellent.
  • the metal plating layer (C) constituting the laminate of the present invention is, for example, a reliability capable of maintaining good conductivity without causing disconnection or the like for a long period of time when the laminate is used for a printed wiring board or the like. It is a layer provided for the purpose of forming a highly conductive wiring pattern.
  • metal which comprises the said metal plating layer (C)
  • money, silver, platinum etc. are mentioned.
  • copper is preferable because a laminate can be obtained which has a low electrical resistance and is resistant to corrosion.
  • the method of forming by the plating process is preferable as the formation method.
  • wet plating methods such as an electrolytic plating method which can form the said metal plating layer (C) simply, and an electroless plating method, are mentioned. Also, two or more of these plating methods may be combined. For example, after the electroless plating is performed, electrolytic plating may be performed to form the metal plating layer (C).
  • a metal such as copper contained in the electroless plating solution is deposited by bringing the electroless plating solution into contact with the silver nanoparticles constituting the silver nanoparticle layer (B).
  • Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, tin, gold, silver and the like, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
  • reducing agent examples include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
  • monocarboxylic acids such as acetic acid and formic acid
  • dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid
  • malic acid lactic acid and glycol Hydroxycarboxylic acid compounds such as gluconic acid and citric acid
  • amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamic acid
  • iminodiacetic acid nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, etc.
  • a complexing agent such as an organic acid such as aminopolycarboxylic acid compound of the above or a soluble salt of such an organic acid (sodium salt, potassium salt, ammonium salt etc.), an amine compound such as ethylenediamine, diethylenetriamine, triethylenetetramine etc. Also It can be used.
  • the electroless plating solution is preferably used in a range of 20 ° C. or more and 98 ° C. or less.
  • the electrolytic plating method is carried out, for example, in a state in which an electrolytic plating solution is in contact with the metal constituting the silver nanoparticle layer (B) or the surface of the electroless plating layer (film) formed by the electroless treatment.
  • a conductive substance constituting the silver nanoparticle layer (B) in which a metal such as copper contained in the electrolytic plating solution is disposed at the cathode by energization, or an electroless plating layer formed by the electroless treatment It is a method of depositing on the surface of (coating) to form an electrolytic plating layer (metal coating).
  • Examples of the electrolytic plating solution include those containing sulfides of metals such as copper, nickel, chromium, cobalt and tin, sulfuric acid, and an aqueous medium. Specifically, those containing copper sulfate, sulfuric acid and an aqueous medium can be mentioned.
  • the electrolytic plating solution is preferably used in the range of 20 ° C. or more and 98 ° C. or less.
  • the metal plating layer (C) As a method of forming the metal plating layer (C), after electroless plating is performed because the film thickness of the metal plating layer (C) can be easily controlled to a desired film thickness from thin film to thick film, The method of electrolytic plating is preferred.
  • the thickness of the metal plating layer (C) is preferably in the range of 1 to 50 ⁇ m.
  • the film thickness of the metal plating layer (C) is adjusted by controlling the processing time, the current density, the use amount of the additive for plating, and the like in the plating treatment step in forming the metal plating layer (C). Can.
  • the laminate of the present invention obtained by the above method can be used as a conductive pattern.
  • a fluid containing silver nanoparticles is used.
  • a conductive pattern having a desired pattern can be manufactured.
  • the conductive pattern can be manufactured by, for example, a photolithographic method such as a subtractive method or a semi-additive method, or a method of plating on a print pattern of a silver nanoparticle layer (B).
  • an etching resist layer having a shape corresponding to a desired pattern shape is formed on the plating layer (C) constituting the laminate of the present invention manufactured in advance, and the development processing thereafter is carried out.
  • This is a method of forming a desired pattern by dissolving and removing the plating layer (C) and the silver nanoparticle layer (B) of the removed portion of the resist with a chemical solution.
  • a chemical solution a chemical solution containing copper chloride, iron chloride or the like can be used.
  • the silver nanoparticle layer (B) is formed on the support (A), surface-treated as necessary, and then the surface has a shape corresponding to a desired pattern.
  • a plating resist layer is formed, and then a metal plating layer (C) is formed by electrolytic plating method and electroless plating method, and then the plating resist layer and the silver nanoparticle layer (B) in contact therewith are used as a chemical solution or the like. It is a method of forming a desired pattern by dissolving and removing.
  • the pattern of the silver nanoparticle layer (B) is printed on the support (A) by an inkjet method, reverse printing method, etc.
  • the metal plating layer (C) is formed on the surface of the obtained silver nanoparticle layer (B) by electrolytic plating method and electroless plating method Is a method of forming a desired pattern.
  • the measurement conditions of the normalized photoelectron yield (1/2 power) of the surface of the silver nanoparticle layer (B) are as follows. Using a photoelectron spectrometer ("AC-3" manufactured by Riken Keiki Co., Ltd.), the measurement conditions are an energy scanning range of 4.0 to 7.0 eV (ultraviolet excitation of wavelength 310 to 177 nm), a set light amount of 10 nm, and a measurement time The measurement was performed at an anode voltage of 2,990 V and a step of 0.1 eV for 10 seconds. The value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was read out of the measured normalized photoelectron yield (1/2 power of the photoelectron yield per unit light quantity).
  • AC-3 photoelectron spectrometer
  • Preparation Example 1 Preparation of Primer Composition (1) Add 750 parts by mass of phenol, 75 parts by mass of melamine, 346 parts by mass of 41.5% by mass formalin, and 1.5 parts by mass of triethylamine to a flask equipped with a thermometer, a condenser, a distillation pipe and a stirrer, The temperature was raised to 100 ° C. with caution. After reacting for 2 hours at 100 ° C. under reflux, the temperature was raised to 180 ° C. over 2 hours while removing water under normal pressure. Then, unreacted phenol was removed under reduced pressure to obtain an aminotriazine-modified novolak resin.
  • primer composition (1) 70 parts by mass of aminotriazine novolak resin and 30 parts by mass of epoxy resin ("EPICLON 850-S" manufactured by DIC Corporation; bisphenol A epoxy resin) are mixed, and then the methyl ethyl ketone has a nonvolatile content of 2% by mass. It diluted and mixed uniformly, and obtained primer composition (1).
  • Preparation Example 2 Preparation of Primer Composition (2) In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, 200 parts by mass of ethyl acetate is added, and nitrogen is blown up to 90 ° C. The temperature rose. A monomer mixture containing 30 parts by mass of glycidyl methacrylate, 15 parts by mass of 2-hydroxyethyl methacrylate, 40 parts by mass of styrene and 15 parts by mass of methyl methacrylate under stirring in a reaction vessel heated to 90 ° C.
  • a polymerization initiator solution containing 1 part by mass of azoisobutyronitrile and 20 parts by mass of ethyl acetate was added dropwise over 240 minutes while maintaining the temperature in the reaction vessel at 90 ⁇ 1 ° C. from separate dropping funnels. . After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Subsequently, ethyl acetate was added to obtain a resin solution having a nonvolatile content of 2% by mass.
  • Preparation Example 3 Preparation of Primer Composition (3)
  • Epoxy resin (“EPICLON 1050” manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy equivalent 475 g / equivalent) diluted with methyl ethyl ketone to make the non-volatile content 2 mass% solution 11.5 parts by mass of a 2% by mass methyl ethyl ketone solution of acid was uniformly mixed to obtain a primer composition (3).
  • Preparation Example 4 Preparation of Primer Composition (4) 830 parts by mass of terephthalic acid, 830 parts by mass of isophthalic acid, 685 parts by mass of 1,6-hexanediol, neopentyl glycol 604 while introducing nitrogen gas in a reaction vessel equipped with a thermometer, a nitrogen gas introduction pipe, and a stirrer Prepare a mass part and 0.5 mass parts of dibutyltin oxide and carry out a polycondensation reaction at 180 ° C to 230 ° C for 15 hours at 230 ° C until the acid value becomes 1 or less. A polyester polyol was obtained.
  • reaction solution was cooled to 40 ° C., and 60 parts by mass of triethylamine was added for neutralization, followed by mixing with 4700 parts by mass of water to obtain a transparent reaction product.
  • the methyl ethyl ketone is removed from the reaction product under reduced pressure at 40 to 60 ° C., and then water is mixed to make the non-volatile content 2% by mass, and a primer composition (4) having a weight average molecular weight of 50,000 is obtained. Obtained.
  • Preparation Example 5 Preparation of Primer Composition (5) In a nitrogen-substituted reaction vessel equipped with a thermometer, a nitrogen gas inlet tube, and a stirrer, 6.3 parts by mass of 2,2-dimethylol propionic acid and a nurate of 4,4'-diphenylmethane diisocyanate 71.1 After preparing an isocyanate compound by reacting with a mass part in methyl ethyl ketone, a solvent solution of a block polyisocyanate was prepared by supplying 17.8 mass parts of phenol as a blocking agent to the reaction vessel and reacting. Thereafter, methyl ethyl ketone was added to obtain a primer composition (5) having a nonvolatile content of 2% by mass.
  • Polyester polyol obtained by reacting 1,4-cyclohexanedimethanol, neopentyl glycol and adipic acid in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas inlet tube, and a stirrer, hydroxyl group Equivalent of 1,000 g / equivalent), 100 parts by mass, 49.7 parts by mass of 2,2-dimethylol propionic acid, 127.1 parts by mass of 1,4-cyclohexanedimethanol, and 416.8 parts by mass of dicyclohexylmethane diisocyanate; The reaction was carried out in a mixed solvent of 492 parts by mass of methyl ethyl ketone to obtain an organic solvent solution of a urethane prepolymer having an isocyanate group at the molecular end.
  • aqueous urethane resin dispersion was obtained.
  • the urethane resin obtained here had an acid value of 30 and a weight average molecular weight of 70,000.
  • a vinyl monomer mixture comprising 60 parts by mass of methyl methacrylate, 38 parts by mass of n-butyl acrylate and 2 parts by mass of methacrylic acid in a reaction vessel, and an emulsifier (Aqualon KH- manufactured by Daiichi Kogyo Seiyaku Co., Ltd. 1025 ′ ′, 25 parts by weight of the active ingredient) and a part (5 parts by weight) of a monomer pre-emulsion obtained by mixing 15 parts by weight of deionized water with subsequent addition of potassium persulfate 0.1 The parts by mass were added, and polymerization was carried out for 60 minutes while maintaining the temperature in the reaction vessel at 75 ° C.
  • Preparation Example 7 Preparation of Primer Composition (7)
  • a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst 200 parts by mass of ethyl acetate is added, and nitrogen is blown up to 90 ° C. The temperature rose.
  • a polymerization initiator solution containing 1 part by mass of azoisobutyronitrile and 20 parts by mass of ethyl acetate was added dropwise over 240 minutes while maintaining the temperature in the reaction vessel at 90 ⁇ 1 ° C. from separate dropping funnels. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Next, ethyl acetate was added to adjust the non-volatile content to 2% by mass to obtain a primer composition (7).
  • Example 1 described in Japanese Patent No. 4573138, a cationic silver nano consisting of a flake-like lump having an ash green color which is a complex of silver nanoparticles and an organic compound having a cationic group (amino group) I got the particles. Thereafter, the powder of silver nanoparticles was dispersed in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water to prepare a fluid (1) having 5% by mass of cationic silver nanoparticles. .
  • Example 1 On the surface of a polyimide film ("Kapton 150 EN-C" manufactured by Toray DuPont Co., Ltd .; thickness 38 ⁇ m), the primer composition (1) obtained in Preparation Example 1 was used as a tabletop small coater (RK Print Coat Instrument Co., Ltd.) It applied so that the thickness after the drying might be set to 100 nm using the product made from "K printing prober". Then, a primer layer was formed on the surface of the polyimide film by drying at 150 ° C. for 5 minutes using a hot air drier.
  • a tabletop small coater RK Print Coat Instrument Co., Ltd.
  • the fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said silver nanoparticle layer (B) was formed by drying at 150 degreeC for 5 minutes. The surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, and the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 11.
  • the silver layer formed above is immersed in a pre-plating agent (an aqueous solution prepared by mixing 3 parts by mass of palladium chloride, 17 parts by mass of 36 mass% hydrochloric acid, and 80 parts by mass of ion exchange water)
  • a pre-plating agent an aqueous solution prepared by mixing 3 parts by mass of palladium chloride, 17 parts by mass of 36 mass% hydrochloric acid, and 80 parts by mass of ion exchange water
  • Electroless copper plating is performed by immersing in a copper plating solution ("OIC Kappa” manufactured by Okuno Pharmaceutical Co., Ltd., "OIC Kappa", pH 12.5) for 12 minutes, and a copper plating layer (film thickness 0.2 ⁇ m) by electroless plating Formed.
  • the copper plating layer by electroless copper plating obtained above is set on the cathode side, phosphorus-containing copper is set on the anode side, and an electrolytic plating solution containing copper sulfate is used at a current density of 2.5 A / dm 2 By performing electrolytic plating for 30 minutes, a copper plating layer (film thickness 15 ⁇ m) by electrolytic copper plating was formed on the surface of the copper plating layer by electroless copper plating.
  • the electrolytic plating solution 70 g / L of copper sulfate, 200 g / L of sulfuric acid, 50 mg / L of chlorine ion, and 5 ml / L of an additive (“Top Rutina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used.
  • a combination of a copper plating layer by electroless copper plating and a copper plating layer by electrolytic copper plating formed thereon corresponds to the metal plating layer (C).
  • a laminate (1) in which a support (A), a primer layer (X), a metal nanoparticle layer (B) and a metal plating layer (C) were sequentially laminated was obtained.
  • Example 2 On the surface of a polyimide film (“Kapton 150 EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 38 ⁇ m), the primer composition (2) obtained in Preparation Example 2 was used as a desktop small-sized coater (RK print coat instrument company) It applied so that the thickness after the drying might be set to 100 nm using the product made from "K printing prober". Then, a primer layer was formed on the surface of the polyimide film by drying at 120 ° C. for 5 minutes using a hot air drier.
  • the fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Then, by drying for 5 minutes at 150 ° C., a silver layer (film thickness 20 nm) corresponding to the metal nanoparticle layer (C) was formed.
  • the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 7.
  • electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( A laminate (2) was obtained in which C) was sequentially laminated.
  • Example 3 On the surface of a polyimide film ("Kapton 150 EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 38 ⁇ m), the primer composition (3) obtained in Preparation Example 3 was used as a tabletop small coater (RK Print Coat Instrument Co., Ltd.) It applied so that the thickness after the drying might be set to 100 nm using the product made from "K printing prober". Then, a primer layer was formed on the surface of the polyimide film by drying at 120 ° C. for 5 minutes using a hot air drier.
  • the fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said metal nanoparticle layer (C) was formed by drying at 250 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 1.
  • electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( C) obtained a laminate (3) sequentially laminated.
  • Example 4 The fluid (1) obtained above was coated on the surface of a polyimide film ("Kapton 150 EN-C" manufactured by Toray DuPont Co., Ltd .; thickness 38 ⁇ m) using a bar coater. Subsequently, the silver layer (film thickness of 100 nm) corresponded to the said metal nanoparticle layer (C) was formed by drying at 200 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 19.
  • the support (A), the metal nanoparticle layer (B), and the metal plating layer (C) are sequentially laminated by performing electroless copper plating and electrolytic copper plating.
  • the resulting laminate (4) was obtained.
  • the fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said metal nanoparticle layer (B) was formed by drying at 120 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 24.
  • electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( A laminate (R1) was obtained in which C) was sequentially laminated.
  • the fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said metal nanoparticle layer (C) was formed by drying at 100 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 35.
  • electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( A laminate (R2) was obtained in which C) was sequentially laminated.
  • the fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said metal nanoparticle layer (C) was formed by drying at 110 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 36.
  • electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( A laminate (R3) was obtained in which C) was sequentially laminated.
  • the fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said metal nanoparticle layer (C) was formed by drying at 120 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 43.
  • electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( A laminate (R4) in which C) was sequentially laminated was obtained.
  • the peel strength of each of the obtained laminates was measured using "Autograph AGS-X 500N" manufactured by Shimadzu Corporation.
  • the lead width used for measurement was 5 mm, and the peel angle was 90 °.
  • the measurement of the peel strength in the present invention was performed based on the measurement value at a thickness of 15 ⁇ m of the metal plating layer.
  • the adhesion was evaluated according to the following criteria from the value of the peel strength before heating measured above.
  • the retention ratio before and after heating was calculated, and heat resistance was evaluated according to the following criteria.
  • the normalized photoelectron yield (1/2 power) of the surface of the silver nanoparticle layer of Examples 1 to 4 and the measurement results of peel strength before and after heating, and the evaluation results of adhesion and heat resistance are shown in Table 1.
  • the results of measurement of the normalized photoelectron yield (1/2 power) of the surface of the silver nanoparticle layer of Comparative Examples 1 to 4 and the peel strength before and after heating, and the evaluation results of adhesion and heat resistance are shown in Table 2.
  • the laminates (1) to (4) obtained in Examples 1 to 4, which are laminates of the present invention, have normalized photoelectron yield (1/2 power) of the silver nanoparticle layer at an excitation energy of 5.5 eV. Since the value of is 0.1 or more and 20 or less, the initial (pre-heating) adhesion is sufficiently high, and it can be confirmed that the decrease in peel strength after heating is slight and the heat resistance is also excellent. .
  • the laminates (R1) to (R4) obtained in Comparative Examples 1 to 4 are examples in which the value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV exceeds 20. However, it was confirmed that the initial adhesion (before heating) and the peel strength after heating were low.

Abstract

The present invention provides: a laminate in which a silver nanoparticle layer (B) and a metal plating layer (C) are laminated in the stated order on a support body (A), the laminate being characterized in that, when the surface of the silver nanoparticle layer (B) prior to lamination of the metal plating layer (C) is measured by a photoelectron spectroscopy device, the value of the normalized photoelectron yield (1/2 power) during an excitation energy of 5.5 eV is 0.1-20; a printed wiring board in which the laminate is used; a flexible printed wiring board; and a molded article. This laminate exhibits sufficient adhesion between the support body and the plating film without the surface of the support body having been roughened.

Description

積層体、それを用いたプリント配線板、フレキシブルプリント配線板及び成形品Laminate, printed wiring board using it, flexible printed wiring board and molded article
 本発明は、プリント配線板、フレキシブルプリント配線板、成形品等に用いることのできる積層体に関するものである。 The present invention relates to a laminate that can be used for printed wiring boards, flexible printed wiring boards, molded articles, and the like.
 近年、電子機器の高性能化、小型化及び薄型化にともなって、それに使用される電子回路や集積回路の高密度化、小型化及び薄型化が強く求められている。 2. Description of the Related Art In recent years, with the trend toward higher performance, smaller size, and thinner electronic devices, there is a strong demand for higher density, smaller size, and thinner electronic circuits and integrated circuits used therein.
 上記の電子回路等に用いることのできる導電性パターンとしては、例えば、支持体の表面に、導電性物質を含有する塗剤を塗布し焼成することによって導電層を支持体表面に形成し、次いで、前記導電層の表面をめっき処理することによって、前記導電層の表面に金属層が設けられた導電性パターンが知られている(例えば、特許文献1及び2参照。)。しかしながら、導電層の表面の導電性物質由来の分散剤や有機溶媒などの有機物が、電解めっき層形成時にめっきの吸着を阻害し、導電層とめっき層の密着性が低下する問題があった。 As a conductive pattern that can be used for the above electronic circuit etc., for example, a coating agent containing a conductive substance is applied to the surface of a support and fired to form a conductive layer on the surface of the support, and then The electroconductive pattern by which the metal layer was provided in the surface of the said conductive layer is known by plating the surface of the said conductive layer (for example, refer patent document 1 and 2). However, an organic substance such as a dispersant derived from a conductive substance on the surface of the conductive layer or an organic solvent inhibits the adsorption of the plating at the time of forming the electrolytic plating layer, and there is a problem that the adhesion between the conductive layer and the plating layer is reduced.
 このように、導電性パターンとして用いることのできる積層体としては、支持体と、導電層と、めっき層との各界面における密着性に優れたものが求められており、特に導電層とめっき層の密着性に優れる積層体は未だ見出されていなかった。 Thus, as a laminate that can be used as a conductive pattern, a laminate excellent in adhesion at each interface between a support, a conductive layer, and a plating layer is required, and in particular, the conductive layer and the plating layer The laminated body which is excellent in the adhesiveness of was not found yet.
 また従来、プラスチック成形品への装飾めっきとしては、携帯電話、パソコン、鏡、容器、各種スイッチ、シャワーヘッド等に用いられてきた。これらの用途の支持体は、アクリロニトリル-ブタジエン-スチレン共重合体(以下、「ABS」と略記する。)やABSとポリカーボネートとのポリマーアロイ(以下、「ABS-PC」と略記する。)にのみ限定されてきた。この理由として、基材とめっき膜の密着性を確保するため基材表面を粗化する必要があり、例えばABSであれば、ポリブタジエン成分を六価クロム酸、過マンガン酸塩等の強力な酸化剤でエッチングし、除去することで表面粗化が可能である。しかしながら、六価クロム酸などは、環境負荷物質であるため、使用しないことが好ましく、代替方法が開発されてきた(例えば、特許文献3参照。)。 In addition, conventionally, as decorative plating on a plastic molded product, it has been used for mobile phones, personal computers, mirrors, containers, various switches, shower heads, and the like. The support for these uses is limited to acrylonitrile-butadiene-styrene copolymer (hereinafter abbreviated as "ABS") or polymer alloy of ABS and polycarbonate (hereinafter abbreviated as "ABS-PC"). It has been limited. For this reason, it is necessary to roughen the substrate surface in order to secure the adhesion between the substrate and the plating film. For example, in the case of ABS, the polybutadiene component is a strong oxidation such as hexavalent chromic acid or permanganate. Surface roughening is possible by etching with an agent and removing. However, hexavalent chromic acid and the like are preferably environmentally unfriendly substances, so it is preferable not to use them, and alternative methods have been developed (see, for example, Patent Document 3).
 このように、プラスチック成形品への装飾などを目的としためっきでは、基材がABS又はABS-PCに限定されることなく、他の種類のプラスチックでも密着性に優れるめっき膜が得られ、また環境負荷物質の使用量を低減することが求められていた。 Thus, in the plating for the purpose of decoration to a plastic molded product, etc., the base material is not limited to ABS or ABS-PC, and a plated film having excellent adhesion can be obtained even with other types of plastic, and It has been required to reduce the use of environmentally hazardous substances.
特開昭60-246695号公報Japanese Patent Application Laid-Open No. 60-246695 特開2005-286158号公報JP, 2005-286158, A 特許第5830807号公報Patent No. 5830807 gazette
 本発明が解決しようとする課題は、支持体表面を粗化することなく、支持体と金属層(金属めっき層)との間の密着性に優れた積層体、それを用いたプリント配線板、フレキシブルプリント配線板及び成形品を提供することである。 The problem to be solved by the present invention is a laminate excellent in adhesion between a support and a metal layer (metal plating layer) without roughening the surface of the support, and a printed wiring board using the same It is providing a flexible printed wiring board and a molded article.
 本発明者らは、上記の課題を解決するため鋭意研究した結果、支持体の上に、銀ナノ粒子層と、金属めっき層とを順次積層した積層体であって、前記金属めっき層を積層する前の前記銀ナノ粒子層の表面を光電子分光装置で測定した際に、特定の励起エネルギーでの規格化光電子収率(1/2乗)の値を一定の範囲にすることで、上記課題を解決できることを見出し、本発明を完成させた。 The present inventors have intensively studied to solve the above problems, and as a result, it is a laminate in which a silver nanoparticle layer and a metal plating layer are sequentially laminated on a support, and the metal plating layer is laminated. When the surface of the silver nanoparticle layer before being measured is measured by a photoelectron spectrometer, the above-mentioned problem is achieved by setting the value of the normalized photoelectron yield (1/2 power) at a specific excitation energy to a certain range. The present invention has been completed.
 すなわち、本発明は、支持体(A)の上に、銀ナノ粒子層(B)及び金属めっき層(C)が順次積層された積層体であって、前記金属めっき層(C)を積層する前の前記銀ナノ粒子層(B)の表面を光電子分光装置で測定した際に、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)の値が0.1以上20以下であることを特徴とする積層体、それを用いたプリント配線板及びフレキシブルプリント配線板、成形品を提供するものである。 That is, the present invention is a laminate in which a silver nanoparticle layer (B) and a metal plating layer (C) are sequentially laminated on a support (A), and the metal plating layer (C) is laminated. When the surface of the previous silver nanoparticle layer (B) is measured by a photoelectron spectrometer, the value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV is 0.1 or more and 20 or less A laminate, a printed wiring board using the same, a flexible printed wiring board, and a molded article characterized by the present invention.
 本発明の積層体は、支持体表面を粗化しなくても、支持体と金属めっき層との間に密着性に優れるものであり、各種支持体の平滑な表面に金属層を設けたものとなり、金属層の金属光沢を活かした材料となる。 The laminate of the present invention is excellent in adhesion between the support and the metal plating layer without roughening the surface of the support, and a metal layer is provided on the smooth surface of various supports. , It is a material that makes use of the metallic luster of the metal layer.
 また、本発明の積層体は、金属層をパターニングすることにより、例えば、プリント配線板、フレキシブルプリント配線板、タッチパネル向け導電性フィルム、タッチパネル用メタルメッシュ、有機太陽電池、有機EL素子、有機トランジスタ、非接触ICカード等のRFID、電磁波シールド、LED照明基材、デジタルサイネージなどの電子部材として好適に用いることができる。特に、FCCL等のフレキシブルプリント配線板用途に最適である。また、光通信等の配線を接続するコネクター、ランプリフレクター、電装部材、電気モーター周辺部材、電池部材、自動車用装飾部品、携帯電話、パソコン、鏡、容器、家電、スイッチ類、水栓部品、シャワーヘッド等の成形品に好適に用いることができる。 In addition, the laminate of the present invention is, for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, an organic EL element, an organic transistor, by patterning a metal layer. It can be suitably used as an RFID such as a noncontact IC card, an electromagnetic wave shield, an LED illumination base, an electronic member such as a digital signage. In particular, it is most suitable for flexible printed wiring board applications such as FCCL. In addition, connectors for connecting wires for optical communication, lamp reflectors, electrical components, electric motor peripheral components, battery components, automotive parts, mobile phones, personal computers, mirrors, containers, home appliances, switches, water faucet parts, showers It can be suitably used for molded articles such as heads.
 本発明の積層体は、支持体(A)の上に、銀ナノ粒子層(B)及び金属めっき層(C)が順次積層された積層体であって、前記金属めっき層(C)を積層する前の前記銀ナノ粒子層(B)の表面を光電子分光装置で測定した際に、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)の値が0.1以上20以下であるものである。 The laminate of the present invention is a laminate in which a silver nanoparticle layer (B) and a metal plating layer (C) are sequentially laminated on a support (A), and the metal plating layer (C) is laminated. When the surface of the silver nanoparticle layer (B) before measurement is measured with a photoelectron spectrometer, the value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV is 0.1 or more and 20 or less It is.
 前記支持体(A)としては、例えば、ポリイミド、ポリアミドイミド、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン(以下、「ABS」と略記する。)樹脂、ABSとポリカーボネートとのポリマーアロイ、ポリ(メタ)アクリル酸メチル等のアクリル樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリウレタン、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルホン(PPSU)、エポキシ樹脂、セルロースナノファイバー、シリコン、セラミックス、ガラス等からなる支持体、それらからなる多孔質の支持体、鋼板、銅等の金属からなる支持体、それらの表面をシリコンカーバイド、ダイヤモンドライクカーボン、アルミニウム、銅、チタン、ステンレス等を蒸着処理した支持体などが挙げられる。 Examples of the support (A) include polyimide, polyamideimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (hereinafter abbreviated as "ABS") resin, ABS and polycarbonate. Polymer alloy, acrylic resin such as methyl poly (meth) acrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polycarbonate, polyethylene, polypropylene, polyurethane, liquid crystal polymer (LCP), poly Ether ether ketone (PEEK), polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), epoxy resin, cellulose nanofiber, sili Supports made of iron, ceramics, glass, etc., porous supports made of them, steel plates, supports made of metal such as copper, their surfaces are silicon carbide, diamond like carbon, aluminum, copper, titanium, stainless steel etc. And the like.
 また、本発明の積層体をプリント配線板等に用いる場合は、前記支持体(A)として、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、エポキシ樹脂、ガラス、セルロースナノファイバーなどからなる支持体を用いることが好ましい。 When the laminate of the present invention is used for a printed wiring board etc., polyimide, polyethylene terephthalate, polyethylene naphthalate, liquid crystal polymer (LCP), polyetheretherketone (PEEK), epoxy resin as the support (A) It is preferable to use a support made of glass, cellulose nanofibers or the like.
 さらに、本発明の積層体をフレキシブルプリント配線板等に用いる場合は、前記支持体(A)として、折り曲げ可能な柔軟性を有するフィルム状又はシート状の支持体が好ましい。 Furthermore, when using the laminated body of this invention for a flexible printed wiring board etc., the film-form or sheet-like support which has the bendable softness | flexibility as said support body (A) is preferable.
 前記支持体(A)の形状がフィルム状又はシート状の場合、その厚さは、通常、1μm以上5,000μm以下が好ましく、1μm以上300μm以下がより好ましく、1μm以上200μm以下がさらに好ましい。 When the shape of the support (A) is a film or sheet, the thickness is generally preferably 1 μm to 5,000 μm, more preferably 1 μm to 300 μm, and still more preferably 1 μm to 200 μm.
 また、前記支持体(A)と後述するプライマー層(X)や銀ナノ粒子層(B)との密着性をより向上できることから、必要に応じて、前記支持体(A)の表面に、平滑性を失わない程度の微細な凹凸を形成したり、その表面に付着した汚れを洗浄したり、ヒドロキシル基、カルボニル基、カルボキシル基等の官能基の導入のために表面処理したりしてもよい。具体的には、コロナ放電処理等のプラズマ放電処理、紫外線処理等の乾式処理、水、酸・アルカリ等の水溶液又は有機溶剤等を用いる湿式処理等の方法が挙げられる。また、オゾンナノバブル処理の方法が挙げられる。 In addition, since the adhesion between the support (A) and the primer layer (X) or the silver nanoparticle layer (B) described later can be further improved, the surface of the support (A) can be smooth as required. May form fine irregularities that do not lose their properties, or clean the dirt attached to the surface, or surface-treat for the introduction of functional groups such as hydroxyl, carbonyl and carboxyl groups. . Specifically, methods such as plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet light treatment, wet treatment using an aqueous solution of water, acid or alkali, an organic solvent or the like may be mentioned. Moreover, the method of ozone nano bubble processing is mentioned.
 本発明では、さらに密着性を向上するために、前記支持体(A)に表面に、必要に応じてプライマー層(X)を形成してもよい。 In the present invention, in order to further improve the adhesion, a primer layer (X) may be formed on the surface of the support (A) as required.
 前記プライマー層(X)に用いるプライマー樹脂としては、例えば、ウレタン樹脂、アクリル樹脂、ウレタン-ビニル複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、フェノールをブロック化剤として用いたブロックポリイソシアネート、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。これらの樹脂は、1種で用いることも2種以上併用することもできる。また、前記プライマー層(X)の種類により、後述する規格化光電子収率(1/2乗)の値を制御することができる。 The primer resin used for the primer layer (X) is, for example, urethane resin, acrylic resin, urethane-vinyl composite resin, epoxy resin, imide resin, amide resin, amide resin, melamine resin, phenol resin, urea formaldehyde resin, and phenol block The block polyisocyanate used as an agent, polyvinyl alcohol, polyvinyl pyrrolidone etc. are mentioned. These resins can be used alone or in combination of two or more. Moreover, the value of the normalized photoelectron yield (1/2 power) mentioned later can be controlled by the kind of said primer layer (X).
 前記プライマー層(X)に用いるプライマー樹脂の中でも、アミノトリアジン変性ノボラック樹脂とエポキシ樹脂とを併用したもの、エポキシ基及び水酸基を有するエポキシ樹脂、エポキシ基及び水酸基を有するアクリル樹脂は、密着性をより向上できることから好ましい。 Among the primer resins used for the primer layer (X), those using an aminotriazine-modified novolak resin and an epoxy resin in combination, an epoxy resin having an epoxy group and a hydroxyl group, and an acrylic resin having an epoxy group and a hydroxyl group It is preferable because it can be improved.
 また、前記プライマー層(X)に用いるプライマー樹脂として、エポキシ基及び水酸基を有するエポキシ樹脂、又はエポキシ基及び水酸基を有するアクリル樹脂を用いる場合、架橋剤として多価カルボン酸を併用することが好ましい。前記多価カルボン酸は、無水物のものも用いることができる。前記多価カルボン酸の具体例としては、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、メリト酸、ビフェニルジカルボン酸、ビフェニルテトラカルボン酸、ナフタレンジカルボン酸等の芳香族多価カルボン酸及びこれらの無水物;シュウ酸、マロン酸、コハク酸、メチルコハク酸無水物、エチルコハク酸無水物、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、マレイン酸、フマル酸等の脂肪族多価カルボン酸及びこれらの無水物などが挙げられる。これらの多価カルボン酸の中でも、密着性がより向上できることから、トリメリット酸無水物が好ましい。これらの多価カルボン酸は、1種で用いることも2種以上併用することもできる。 Moreover, when using the epoxy resin which has an epoxy group and a hydroxyl group, or the acrylic resin which has an epoxy group and a hydroxyl group as primer resin used for the said primer layer (X), it is preferable to use polyvalent carboxylic acid together as a crosslinking agent. The polyvalent carboxylic acid may also be an anhydride. Specific examples of the polyvalent carboxylic acid include aromatic polyvalent carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, mellitic acid, biphenyldicarboxylic acid, biphenyltetracarboxylic acid and naphthalenedicarboxylic acid. Acids and their anhydrides; Oxalic acid, malonic acid, succinic acid, methylsuccinic anhydride, ethylsuccinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, maleic acid And aliphatic polyvalent carboxylic acids such as fumaric acid and anhydrides thereof. Among these polyvalent carboxylic acids, trimellitic anhydride is preferable because adhesion can be further improved. These polyvalent carboxylic acids can be used alone or in combination of two or more.
 また、前記プライマー樹脂には、前記支持体(A)の表面へ塗工する際に、塗工しやすい粘度とするため溶媒を配合して、プライマー組成物として用いることが好ましい。前記溶媒としては、各種有機溶剤、水性媒体が挙げられる。前記有機溶剤としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、シクロヘキサノン等が挙げられ、前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。 Moreover, it is preferable to mix | blend a solvent with the said primer resin, in order to make it the viscosity which is easy to apply, when coating on the surface of the said support body (A), and to use as a primer composition. Examples of the solvent include various organic solvents and aqueous media. Examples of the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, cyclohexanone and the like, and examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
 前記の水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルキレングリコール溶剤;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール溶剤;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。 Examples of the organic solvent miscible with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol, propylene And alkylene glycol solvents such as glycol; polyalkylene glycol solvents such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and lactam solvents such as N-methyl-2-pyrrolidone.
 前記有機溶剤の使用量は、後述する前記支持体(A)へ塗工する際に用いる塗工方法、前記プライマー層(X)の所望とする膜厚により、適宜調整することが好ましい。 It is preferable that the amount of the organic solvent used be appropriately adjusted according to the coating method used when coating on the support (A) described later, and the desired film thickness of the primer layer (X).
 また、前記プライマー組成物には、必要に応じて、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤、酸化防止剤、等の公知の添加剤を適宜添加して使用してもよい。 In addition, known additives such as a film forming aid, a leveling agent, a thickener, a water repellent, an antifoaming agent, an antioxidant, etc. are appropriately added to the primer composition, if necessary. You may
 前記プライマー層(X)は、前記支持体(A)の表面の一部又は全部に前記プライマー組成物を塗工し、前記プライマー組成物中に含まれる有機溶剤を除去することによって形成することができる。 The primer layer (X) may be formed by applying the primer composition to a part or all of the surface of the support (A) and removing the organic solvent contained in the primer composition. it can.
 前記プライマー組成物を前記支持体(A)の表面に塗工する方法としては、例えば、グラビア方式、コーティング方式、スクリーン方式、ローラー方式、ロータリー方式、スプレー方式、キャピラリー方式等の方法が挙げられる。 As a method of coating the said primer composition on the surface of the said support body (A), methods, such as a gravure system, a coating system, a screen system, a roller system, a rotary system, a spray system, a capillary system, are mentioned, for example.
 前記プライマー組成物を前記支持体(A)の表面に塗工した後、その塗工層に含まれる有機溶剤を除去する方法としては、例えば、乾燥機を用いて乾燥させ、有機溶剤を揮発させる方法が一般的である。 As a method of removing the organic solvent contained in the coating layer after applying the said primer composition on the surface of the said support body (A), it is made to dry using a dryer, for example, and an organic solvent is volatilized. The method is common.
 前記プライマー層(X)の形成時の乾燥温度としては、用いるプライマー樹脂の種類にもよるが、通常は、80℃以上が好ましい。また、乾燥温度の上限としては、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。一方、乾燥時間としては、乾燥温度にもよるが、通常は、1秒以上が好ましく、10秒以上がより好ましく、30秒以上がさらに好ましい。また、乾燥時間の上限としては、24時間以下が好ましく、4時間以下がより好ましく、1時間以下がさらに好ましい。さらに、乾燥温度を100℃以上に設定した場合の乾燥時間の範囲は、30秒~30分が好ましく、30秒~300秒がより好ましく、30秒~60秒がさらに好ましい。 As a drying temperature at the time of formation of the said primer layer (X), although based also on the kind of primer resin to be used, 80 degreeC or more is preferable normally. Moreover, as an upper limit of drying temperature, 300 degrees C or less is preferable, 250 degrees C or less is more preferable, and 200 degrees C or less is more preferable. On the other hand, although depending on the drying temperature, the drying time is usually preferably 1 second or more, more preferably 10 seconds or more, and still more preferably 30 seconds or more. Moreover, as an upper limit of drying time, 24 hours or less are preferable, 4 hours or less are more preferable, and 1 hour or less is more preferable. Furthermore, when the drying temperature is set to 100 ° C. or more, the range of the drying time is preferably 30 seconds to 30 minutes, more preferably 30 seconds to 300 seconds, and still more preferably 30 seconds to 60 seconds.
 前記プライマー層(X)の膜厚は、本発明の積層体を用いる用途によって異なるが、前記支持体(A)と前記銀ナノ粒子層(B)との密着性をより向上する範囲が好ましく、前記プライマー層の膜厚は、10nm以上30μm以下が好ましく、10nm以上1μm以下がより好ましく、50nm以上500nm以下がさらに好ましい。 The film thickness of the primer layer (X) varies depending on the use of the laminate of the present invention, but a range in which the adhesion between the support (A) and the silver nanoparticle layer (B) is further improved is preferable. The thickness of the primer layer is preferably 10 nm or more and 30 μm or less, more preferably 10 nm or more and 1 μm or less, and still more preferably 50 nm or more and 500 nm or less.
 前記プライマー層(X)の表面は、前記金属ナノ粒子層(B)との密着性をより向上できることから、必要に応じて、コロナ放電処理法等のプラズマ放電処理法、紫外線処理法等の乾式処理法、水や酸性又はアルカリ性薬液、有機溶剤等を用いた湿式処理法によって、表面処理してもよい。またオゾンナノバブル処理を行っても良い。 The surface of the primer layer (X) can further improve the adhesion to the metal nanoparticle layer (B), and therefore, if necessary, it can be a dry process such as a plasma discharge treatment method such as corona discharge treatment method or an ultraviolet treatment method The surface treatment may be performed by a treatment method, a wet treatment method using water, an acidic or alkaline chemical solution, an organic solvent or the like. Alternatively, ozone nanobubble treatment may be performed.
 本発明の積層体の製造方法としては、まず、支持体(A)の上に、必要に応じてプライマー層(X)を形成し、その後、ナノサイズの銀ナノ粒子(b)を含有する流動体を塗工し、流動体中に含まれる有機溶剤等を乾燥により除去することによって、銀ナノ粒子層(B)を形成した後、電解めっきもしく無電解めっき、又はその両方により前記金属めっき層(C)を形成する方法が挙げられる。 As a method for producing the laminate of the present invention, first, a primer layer (X) is formed on a support (A) as required, and then a flow containing nano-sized silver nanoparticles (b) After the silver nanoparticle layer (B) is formed by coating the body and removing the organic solvent and the like contained in the fluid by drying, the metal plating is performed by electrolytic plating, electroless plating, or both. The method of forming layer (C) is mentioned.
 前記銀ナノ粒子層(B)の形成に用いる前記銀ナノ粒子(b)の形状は、粒子状又繊維状のものが好ましい。また、前記銀ナノ粒子(b)の大きさはナノサイズのものを用いるが、具体的には、前記銀ナノ粒子(b)の形状が粒子状の場合は、微細な導電性パターンを形成でき、抵抗値をより低減できることから、平均粒子径が1nm以上100nm以下好ましく、1nm以上50nm以下がより好ましい。なお、前記「平均粒子径」は、前記導電性物質を分散良溶媒にて希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。 The shape of the silver nanoparticles (b) used for forming the silver nanoparticle layer (B) is preferably particulate or fibrous. In addition, although the size of the silver nanoparticles (b) is nano-sized, specifically, when the shape of the silver nanoparticles (b) is particulate, a fine conductive pattern can be formed. The average particle diameter is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 50 nm or less because the resistance value can be further reduced. The “average particle diameter” is a volume average value measured by dynamic light scattering method after diluting the conductive substance with a dispersion good solvent. For this measurement, "Nanotrack UPA-150" manufactured by Microtrac, Inc. can be used.
 一方、前記銀ナノ粒子(b)の形状が繊維状の場合も、微細な導電性パターンを形成でき、抵抗値をより低減できることから、繊維の直径が5nm以上100nm以下が好ましく、5nm以上50nm以下がより好ましい。また、繊維の長さは、0.1μm以上100μm以下が好ましく、0.1μm以上30μm以下がより好ましい。 On the other hand, even when the shape of the silver nanoparticles (b) is fibrous, a fine conductive pattern can be formed, and the resistance value can be further reduced. Therefore, the diameter of the fiber is preferably 5 nm or more and 100 nm or less, and 5 nm or more and 50 nm or less Is more preferred. The length of the fiber is preferably 0.1 μm to 100 μm, and more preferably 0.1 μm to 30 μm.
 前記流動体中の前記金属ナノ粒子(b)の含有率は、1質量%以上90質量%以下が好ましく、1質量%以上60質量%以下がより好ましく、さらに1質量%以上~10質量%以下がより好ましい。 The content of the metal nanoparticles (b) in the fluid is preferably 1% by mass to 90% by mass, more preferably 1% by mass to 60% by mass, and still more preferably 1% by mass to 10% by mass Is more preferred.
 前記流動体に配合される成分としては、前記銀ナノ粒子(b)を溶媒中に分散させるための分散剤や溶媒、また必要に応じて、後述する界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤等が挙げられる。これらの前記流動体に配合される成分の種類や量によっても後述する規格化光電子収率(1/2乗)の値を制御することができる。 As components to be blended in the fluid, a dispersant or solvent for dispersing the silver nanoparticles (b) in a solvent, and, if necessary, a surfactant, a leveling agent, a viscosity modifier, which will be described later, Film forming aids, antifoaming agents, preservatives and the like can be mentioned. The value of the normalized photoelectron yield (1/2 power) described later can also be controlled by the types and amounts of the components to be blended into the fluid.
 前記銀ナノ粒子(b)を溶媒中に分散させるため、低分子量又は高分子量の分散剤を用いることが好ましい。前記分散剤としては、例えば、ドデカンチオール、1-オクタンチオール、トリフェニルホスフィン、ドデシルアミン、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルピロリドン;ミリスチン酸、オクタン酸、ステアリン酸等の脂肪酸;コール酸、グリシルジン酸、アビンチン酸等のカルボキシル基を有する多環式炭化水素化合物などが挙げられる。これらの中でも、前記銀ナノ粒子層(B)と前記金属めっき層(C)との密着性を向上できることから、高分子分散剤が好ましく、この高分子分散剤としては、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物、ウレタン樹脂、アクリル樹脂、前記ウレタン樹脂や前記アクリル樹脂にリン酸基を含有する化合物等が挙げられる。 In order to disperse the silver nanoparticles (b) in a solvent, it is preferable to use a low molecular weight or high molecular weight dispersant. Examples of the dispersant include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinyl pyrrolidone, polyethylene imine, polyvinyl pyrrolidone; fatty acids such as myristic acid, octanoic acid and stearic acid; cholic acid, Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and aventic acid. Among these, a polymer dispersant is preferable because the adhesion between the silver nanoparticle layer (B) and the metal plating layer (C) can be improved, and examples of the polymer dispersant include polyethylene imine, polypropylene imine, and the like. And a compound obtained by adding a polyoxyalkylene to the polyalkyleneimine, a urethane resin, an acrylic resin, the urethane resin, a compound having a phosphoric acid group in the acrylic resin, and the like.
 前記銀ナノ粒子(b)を分散させるために必要な前記分散剤の使用量は、前記銀ナノ粒子(b)100質量部に対し、0.01質量部以上50質量部以下が好ましく、0.01質量部以上10質量部以下がより好ましい。 The amount of the dispersing agent used to disperse the silver nanoparticles (b) is preferably 0.01 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the silver nanoparticles (b), and 0. More than 01 mass parts and below 10 mass parts are more preferred.
 前記流動体に用いる溶媒としては、水性媒体や有機溶剤を用いることができる。前記水性媒体としては、例えば、蒸留水、イオン交換水、純水、超純水等が挙げられる。また、前記有機溶剤としては、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物等が挙げられる。 As a solvent used for the said fluid, an aqueous medium and an organic solvent can be used. Examples of the aqueous medium include distilled water, ion exchanged water, pure water, ultrapure water and the like. Moreover, an alcohol compound, an ether compound, an ester compound, a ketone compound etc. are mentioned as said organic solvent.
 前記アルコール化合物としては、例えば、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。 Examples of the alcohol compound include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and the like. Tetradecanol, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol The Butyl ether, tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tri Propylene glycol monobutyl ether and the like can be mentioned.
 また、前記流動体には、前記銀ナノ粒子(b)、溶媒の他に、必要に応じてエチレングリコール、ジエチレングリコール、1,3-ブタンジオール、イソプレングリコール等を用いることができる。 In addition to the silver nanoparticles (b) and the solvent, ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used as the fluid in addition to the silver nanoparticles (b) and the solvent.
 前記界面活性剤としては、一般的な界面活性剤を用いることができ、例えば、ジ-2-エチルヘキシルスルホコハク酸塩、ドデシルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルナフタレンスルホン酸塩、ヘキサメタリン酸塩等が挙げられる。 A common surfactant can be used as the surfactant, and examples thereof include di-2-ethylhexyl sulfosuccinate, dodecylbenzene sulfonate, alkyl diphenyl ether disulfonate, alkyl naphthalene sulfonate, hexametaphosphoric acid Salt etc. are mentioned.
 前記レベリング剤としては、一般的なレベリング剤を用いることができ、例えば、シリコーン系化合物、アセチレンジオール系化合物、フッ素系化合物等が挙げられる。 A general leveling agent can be used as the leveling agent, and examples thereof include silicone compounds, acetylene diol compounds, and fluorine compounds.
 前記粘度調整剤としては、一般的な増粘剤を用いることができ、例えば、アルカリ性に調整することによって増粘可能なアクリル重合体や合成ゴムラテックス、分子が会合することによって増粘可能なウレタン樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、水添加ヒマシ油、アマイドワックス、酸化ポリエチレン、金属石鹸、ジベンジリデンソルビトールなどが挙げられる。 As the viscosity modifier, a general thickener can be used. For example, an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to alkalinity, or a urethane that can be thickened by association of molecules Resin, hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, polyvinyl alcohol, castor oil with water, amide wax, polyethylene oxide, metal soap, dibenzylidene sorbitol and the like.
 前記成膜助剤としては、一般的な成膜助剤を用いることができ、例えば、アニオン系界面活性剤(ジオクチルスルホコハク酸エステルソーダ塩など)、疎水性ノニオン系界面活性剤(ソルビタンモノオレエートなど)、ポリエーテル変性シロキサン、シリコーンオイル等が挙げられる。 As the film forming aid, a general film forming aid can be used, and examples thereof include anionic surfactants (such as dioctyl sulfosuccinic acid ester soda salt) and hydrophobic nonionic surfactants (sorbitan monooleate). Etc., polyether-modified siloxane, silicone oil and the like.
 前記消泡剤としては、一般的な消泡剤を用いることができ、例えば、シリコーン系消泡剤、ノニオン系界面活性剤、ポリエーテル,高級アルコール、ポリマー系界面活性剤等が挙げられる。 As the antifoaming agent, a general antifoaming agent can be used, and examples thereof include silicone antifoaming agents, nonionic surfactants, polyethers, higher alcohols, and polymer surfactants.
 前記防腐剤としては、一般的な防腐剤を用いることができ、例えば、イソチアゾリン系防腐剤、トリアジン系防腐剤、イミダゾール系防腐剤、ピリジン系防腐剤、アゾール系防腐剤、ヨード系防腐剤、ピリチオン系防腐剤等が挙げられる。 As the preservative, a general preservative can be used, for example, isothiazoline preservative, triazine preservative, imidazole preservative, pyridine preservative, azole preservative, iodine preservative, pyrithione Examples include antiseptics and the like.
 前記流動体の粘度(25℃でB型粘度計を用いて測定した値)は、0.1~500,000mPa・sの範囲が好ましく、0.2~10,000mPa・sの範囲がより好ましい。また、前記流動体を、後述するインクジェット印刷法、凸版反転印刷等の方法によって塗工(印刷)する場合には、その粘度は5~20mPa・sの範囲が好ましい。 The viscosity of the fluid (value measured with a B-type viscometer at 25 ° C.) is preferably in the range of 0.1 to 500,000 mPa · s, and more preferably in the range of 0.2 to 10,000 mPa · s . When the fluid is coated (printed) by a method such as inkjet printing or letterpress reverse printing described later, the viscosity is preferably in the range of 5 to 20 mPa · s.
 前記支持体(A)もしくは前記プライマー層(X)の上に前記流動体を塗工や印刷する方法としては、例えば、インクジェット印刷法、反転印刷法、スクリーン印刷法、オフセット印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法、パッド印刷、フレキソ印刷法等が挙げられる。 As a method of coating or printing the fluid on the support (A) or the primer layer (X), for example, an inkjet printing method, a reverse printing method, a screen printing method, an offset printing method, a spin coating method And spray coating, bar coating, die coating, slit coating, roll coating, dip coating, pad printing, flexographic printing, and the like.
 これらの塗工方法の中でも、電子回路等の高密度化を実現する際に求められる0.01~100μm程度の細線状でパターン化された前記銀ナノ粒子層(B)を形成する場合には、インクジェット印刷法、反転印刷法を用いることが好ましい。 Among these coating methods, in the case of forming the silver nanoparticle layer (B) patterned in the shape of a thin line of about 0.01 to 100 μm, which is required when realizing high density of an electronic circuit or the like. It is preferable to use an inkjet printing method or a reverse printing method.
 前記インクジェット印刷法としては、一般にインクジェットプリンターといわれるものを用いることができる。具体的には、コニカミノルタEB100、XY100(コニカミノルタIJ株式会社製)、ダイマティックス・マテリアルプリンターDMP-3000、ダイマティックス・マテリアルプリンターDMP-2831(富士フィルム株式会社製)等が挙げられる。 As the inkjet printing method, one generally referred to as an inkjet printer can be used. Specifically, Konica Minolta EB 100, XY 100 (manufactured by Konica Minolta IJ Co., Ltd.), Dymatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), etc. may be mentioned.
 また、反転印刷法としては、凸版反転印刷法、凹版反転印刷法が知られており、例えば、各種ブランケットの表面に前記流動体を塗工し、非画線部が突出した版と接触させ、前記非画線部に対応する流動体を前記版の表面に選択的に転写させることによって、前記ブランケット等の表面に前記パターンを形成し、次いで、前記パターンを、前記支持体(A)の上(表面)に転写させる方法が挙げられる。 Further, as the reverse printing method, the letterpress reverse printing method and the intaglio reverse printing method are known, and for example, the fluid is coated on the surface of various blankets and brought into contact with a plate in which non-image areas are projected; The pattern is formed on the surface of the blanket or the like by selectively transferring the fluid corresponding to the non-image area onto the surface of the plate, and then the pattern is formed on the support (A). A method of transferring to (surface) may be mentioned.
 また、立体成形品へのパターンの印刷については、パッド印刷法が知られている。これは、凹版の上にインクを載せ、スキージで書き取ることでインクを均質に凹部に充填し、インクを載せた版上に、シリコンゴムやウレタンゴム製のパッドを押し当て、パターンをパッド上に転写し、立体成形品へ転写させる方法である。 Moreover, the pad printing method is known about printing of the pattern to a three-dimensional molded article. This is done by placing the ink on the intaglio plate, filling the ink uniformly into the recess by writing with the squeegee, pressing the pad made of silicone rubber or urethane rubber onto the plate loaded with the ink, the pattern on the pad It is a method of transferring and transferring to a three-dimensional molded product.
 前記銀ナノ粒子層(B)の形成時の乾燥温度としては、通常は、80℃以上が好ましい。また、乾燥温度の上限としては、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。一方、乾燥時間としては、乾燥温度にもよるが、通常は、1秒以上が好ましく、10秒以上がより好ましく、30秒以上がさらに好ましい。また、乾燥時間の上限としては、24時間以下が好ましく、4時間以下がより好ましく、1時間以下がさらに好ましい。さらに、乾燥温度を100℃以上に設定した場合の乾燥時間の範囲は、30秒~30分が好ましく、30秒~300秒がより好ましく、30秒~60秒がさらに好ましい。 As a drying temperature at the time of formation of the said silver nanoparticle layer (B), 80 degreeC or more is preferable normally. Moreover, as an upper limit of drying temperature, 300 degrees C or less is preferable, 250 degrees C or less is more preferable, and 200 degrees C or less is more preferable. On the other hand, although depending on the drying temperature, the drying time is usually preferably 1 second or more, more preferably 10 seconds or more, and still more preferably 30 seconds or more. Moreover, as an upper limit of drying time, 24 hours or less are preferable, 4 hours or less are more preferable, and 1 hour or less is more preferable. Furthermore, when the drying temperature is set to 100 ° C. or more, the range of the drying time is preferably 30 seconds to 30 minutes, more preferably 30 seconds to 300 seconds, and still more preferably 30 seconds to 60 seconds.
 前記銀ナノ粒子層(B)の単位面積当たりの質量は、1mg/m以上30,000mg/m以下が好ましく、1mg/m以上5,000mg/m以下が好ましい。前記銀ナノ粒子層(B)の厚さは、前記金属めっき層(C)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 Mass per unit area of the silver nanoparticle layer (B) is preferably from 1 mg / m 2 or more 30,000 / m 2 or less, 1 mg / m 2 or more 5,000 mg / m 2 or less. The thickness of the silver nanoparticle layer (B) is adjusted by controlling the processing time, the current density, the amount of use of the additive for plating, etc. in the plating process when the metal plating layer (C) is formed. be able to.
 前記銀ナノ粒子層(B)表面の前記規格化光電子収率(1/2乗)の値は、光電子分光装置で測定することができる。励起エネルギーとしては、紫外線(例えば、波長310~177nm)を用いることができる。また、前記光電子分光装置としては、例えば、理研計器株式会社製「AC-3」を用いることができる。 The value of the normalized photoelectron yield (1/2 power) of the surface of the silver nanoparticle layer (B) can be measured by a photoelectron spectrometer. As excitation energy, ultraviolet light (for example, a wavelength of 310 to 177 nm) can be used. Further, as the photoelectron spectrometer, for example, “AC-3” manufactured by Riken Keiki Co., Ltd. can be used.
 前記銀ナノ粒子層(B)は、支持体(A)又は前記プライマー層(X)上に形成されたものである。ここで、支持体(A)と金属めっき層(C)との密着性を向上するためには、後述する金属めっき層(C)を積層する前の前記銀ナノ粒子層(B)の表面を光電子分光装置で測定した際、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)の値は0.1以上20以下であるが、1以上18以下が好ましく、3以上15以下がより好ましく、5以上12以下がさらに好ましい。 The silver nanoparticle layer (B) is formed on a support (A) or the primer layer (X). Here, in order to improve the adhesion between the support (A) and the metal plating layer (C), the surface of the silver nanoparticle layer (B) before laminating the metal plating layer (C) described later is used. When measured with a photoelectron spectrometer, the value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV is 0.1 or more and 20 or less, preferably 1 or more and 18 or less, and 3 or more and 15 or less. Is more preferably 5 or more and 12 or less.
 前記規格化光電子収率(1/2乗)の値は、励起エネルギー(紫外線)照射時の前記銀ナノ粒子層(B)表面からの電子の放出のし易さの指標となるため、前記銀ナノ粒子層(B)表面の銀ナノ粒子の密度と相関する。例えば、銀ナノ粒子の密度が高いと前記規格化光電子収率(1/2乗)の値は高くなる。本発明は、前記銀ナノ粒子層(B)表面の励起エネルギー5.5eV時の規格化光電子収率(1/2乗)の値を0.1以上20以下とすることで、最適な銀ナノ粒子の密度とし、支持体(A)と金属めっき層(C)との密着性を極めて優れたものとするものである。 The value of the normalized photoelectron yield (1/2 power) is an indicator of the ease of emission of electrons from the surface of the silver nanoparticle layer (B) at the time of irradiation with excitation energy (ultraviolet light). It correlates with the density of silver nanoparticles on the surface of the nanoparticle layer (B). For example, when the density of silver nanoparticles is high, the value of the normalized photoelectron yield (1/2 power) is high. The present invention provides an optimum silver nano particle by setting the value of normalized photoelectron yield (1/2 power) at excitation energy of 5.5 eV on the surface of the silver nanoparticle layer (B) to 0.1 or more and 20 or less. The density of the particles is used to make the adhesion between the support (A) and the metal plating layer (C) extremely excellent.
 本発明の積層体を構成する金属めっき層(C)は、例えば、前記積層体をプリント配線板等に用いる場合に、長期間にわたり断線等を生じることなく、良好な通電性を維持可能な信頼性の高い配線パターンを形成することを目的として設けられる層である。 The metal plating layer (C) constituting the laminate of the present invention is, for example, a reliability capable of maintaining good conductivity without causing disconnection or the like for a long period of time when the laminate is used for a printed wiring board or the like. It is a layer provided for the purpose of forming a highly conductive wiring pattern.
 また、前記金属めっき層(C)を構成する金属としては、銅、ニッケル、クロム、コバルト、スズ、金、銀、白金等が挙げられる。これらの中でも、電気抵抗が低く、腐食に強いプリント配線板に用いることができる積層体が得られることから銅が好ましい。 Moreover, as a metal which comprises the said metal plating layer (C), copper, nickel, chromium, cobalt, tin, gold | metal | money, silver, platinum etc. are mentioned. Among these, copper is preferable because a laminate can be obtained which has a low electrical resistance and is resistant to corrosion.
 前記金属めっき層(C)は、前記金属ナノ粒子層(B)の上に形成される層であるが、その形成方法としては、めっき処理によって形成する方法が好ましい。このめっき処理としては、簡便に前記金属めっき層(C)を形成できる電解めっき法、無電解めっき法等の湿式めっき法が挙げられる。また、これらのめっき法を2つ以上組み合わせてもよい。例えば、無電解めっきを施した後、電解めっきを施して、前記金属めっき層(C)を形成してもよい。 Although the said metal plating layer (C) is a layer formed on the said metal nanoparticle layer (B), the method of forming by the plating process is preferable as the formation method. As this plating process, wet plating methods, such as an electrolytic plating method which can form the said metal plating layer (C) simply, and an electroless plating method, are mentioned. Also, two or more of these plating methods may be combined. For example, after the electroless plating is performed, electrolytic plating may be performed to form the metal plating layer (C).
 上記の無電解めっき法は、例えば、前記銀ナノ粒子層(B)を構成する銀ナノ粒子に、無電解めっき液を接触させることで、無電解めっき液中に含まれる銅等の金属を析出させ金属皮膜からなる無電解めっき層(皮膜)を形成する方法である。 In the above electroless plating method, for example, a metal such as copper contained in the electroless plating solution is deposited by bringing the electroless plating solution into contact with the silver nanoparticles constituting the silver nanoparticle layer (B). This is a method of forming an electroless plating layer (coating) made of a metal coating.
 前記無電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ、金、銀等の金属と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものが挙げられる。 Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, tin, gold, silver and the like, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
 前記還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等が挙げられる。 Examples of the reducing agent include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
 また、前記無電解めっき液としては、必要に応じて、酢酸、蟻酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマル酸等のジカルボン酸化合物;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸化合物;グリシン、アラニン、イミノジ酢酸、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸化合物;イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸化合物などの有機酸、又はこれらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物等の錯化剤を含有するものを用いることができる。 In addition, as the electroless plating solution, if necessary, monocarboxylic acids such as acetic acid and formic acid; dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid; malic acid, lactic acid and glycol Hydroxycarboxylic acid compounds such as gluconic acid and citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamic acid; iminodiacetic acid, nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, etc. Containing a complexing agent such as an organic acid such as aminopolycarboxylic acid compound of the above or a soluble salt of such an organic acid (sodium salt, potassium salt, ammonium salt etc.), an amine compound such as ethylenediamine, diethylenetriamine, triethylenetetramine etc. Also It can be used.
 前記無電解めっき液は、20℃以上98℃以下の範囲で用いることが好ましい。 The electroless plating solution is preferably used in a range of 20 ° C. or more and 98 ° C. or less.
 前記電解めっき法は、例えば、前記銀ナノ粒子層(B)を構成する金属、又は、前記無電解処理によって形成された無電解めっき層(皮膜)の表面に、電解めっき液を接触した状態で通電することにより、前記電解めっき液中に含まれる銅等の金属を、カソードに設置した前記銀ナノ粒子層(B)を構成する導電性物質又は前記無電解処理によって形成された無電解めっき層(皮膜)の表面に析出させ、電解めっき層(金属皮膜)を形成する方法である。 The electrolytic plating method is carried out, for example, in a state in which an electrolytic plating solution is in contact with the metal constituting the silver nanoparticle layer (B) or the surface of the electroless plating layer (film) formed by the electroless treatment. A conductive substance constituting the silver nanoparticle layer (B) in which a metal such as copper contained in the electrolytic plating solution is disposed at the cathode by energization, or an electroless plating layer formed by the electroless treatment It is a method of depositing on the surface of (coating) to form an electrolytic plating layer (metal coating).
 前記電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属の硫化物と、硫酸と、水性媒体とを含有するもの等が挙げられる。具体的には、硫酸銅と硫酸と水性媒体とを含有するものが挙げられる。 Examples of the electrolytic plating solution include those containing sulfides of metals such as copper, nickel, chromium, cobalt and tin, sulfuric acid, and an aqueous medium. Specifically, those containing copper sulfate, sulfuric acid and an aqueous medium can be mentioned.
 前記電解めっき液は、20℃以上98℃以下の範囲で用いることが好ましい。 The electrolytic plating solution is preferably used in the range of 20 ° C. or more and 98 ° C. or less.
 前記金属めっき層(C)の形成方法としては、前記金属めっき層(C)の膜厚を、薄膜から厚膜まで所望とする膜厚に制御しやすいことから、無電解めっきを施した後、電解めっきを施す方法が好ましい。 As a method of forming the metal plating layer (C), after electroless plating is performed because the film thickness of the metal plating layer (C) can be easily controlled to a desired film thickness from thin film to thick film, The method of electrolytic plating is preferred.
 前記金属めっき層(C)の膜厚は、1~50μmの範囲が好ましい。前記金属めっき層(C)の膜厚は、前記金属めっき層(C)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 The thickness of the metal plating layer (C) is preferably in the range of 1 to 50 μm. The film thickness of the metal plating layer (C) is adjusted by controlling the processing time, the current density, the use amount of the additive for plating, and the like in the plating treatment step in forming the metal plating layer (C). Can.
 上記の方法により得られた本発明の積層体は、導電性パターンとして使用することが可能である。本発明の積層体を導電性パターンに使用する場合、形成しようとする所望のパターン形状に対応した位置に、前記銀ナノ粒子層(B)を形成するため、銀ナノ粒子を含有する流動体を塗布して焼成することによって、所望のパターンを有する導電性パターンを製造することができる。 The laminate of the present invention obtained by the above method can be used as a conductive pattern. When the laminate of the present invention is used for a conductive pattern, in order to form the silver nanoparticle layer (B) at a position corresponding to a desired pattern shape to be formed, a fluid containing silver nanoparticles is used. By applying and baking, a conductive pattern having a desired pattern can be manufactured.
 また、前記導電性パターンは、例えば、サブトラクティブ法、セミアディティブ法等のフォトリソ-エッチング法、または銀ナノ粒子層(B)の印刷パターン上にめっきする方法によって製造することができる。 In addition, the conductive pattern can be manufactured by, for example, a photolithographic method such as a subtractive method or a semi-additive method, or a method of plating on a print pattern of a silver nanoparticle layer (B).
 前記サブトラクティブ法は、予め製造した本発明の積層体を構成する前記めっき層(C)の上に、所望のパターン形状に対応した形状のエッチングレジスト層を形成し、その後の現像処理によって、前記レジストの除去された部分の前記めっき層(C)及び銀ナノ粒子層(B)を薬液で溶解し除去することによって、所望のパターンを形成する方法である。前記薬液としては、塩化銅、塩化鉄等を含有する薬液を使用することができる。 In the subtractive method, an etching resist layer having a shape corresponding to a desired pattern shape is formed on the plating layer (C) constituting the laminate of the present invention manufactured in advance, and the development processing thereafter is carried out. This is a method of forming a desired pattern by dissolving and removing the plating layer (C) and the silver nanoparticle layer (B) of the removed portion of the resist with a chemical solution. As the chemical solution, a chemical solution containing copper chloride, iron chloride or the like can be used.
 前記セミアディティブ法は、前記支持体(A)の上に前記銀ナノ粒子層(B)を形成し、必要に応じて表面処理を行った後、その表面に、所望のパターンに対応した形状のめっきレジスト層を形成し、次いで、電解めっき法、無電解めっき法によって金属めっき層(C)を形成した後、前記めっきレジスト層とそれに接触した前記銀ナノ粒子層(B)とを薬液等に溶解し除去することによって、所望のパターンを形成する方法である。 In the semi-additive method, the silver nanoparticle layer (B) is formed on the support (A), surface-treated as necessary, and then the surface has a shape corresponding to a desired pattern. A plating resist layer is formed, and then a metal plating layer (C) is formed by electrolytic plating method and electroless plating method, and then the plating resist layer and the silver nanoparticle layer (B) in contact therewith are used as a chemical solution or the like. It is a method of forming a desired pattern by dissolving and removing.
 また、前記銀ナノ粒子層(B)の印刷パターン上にめっきする方法は、前記支持体(A)に、インクジェット法、反転印刷法等で前記銀ナノ粒子層(B)のパターンを印刷し、必要に応じてプラズマ放電処理等により表面処理を行った後、得られた前記銀ナノ粒子層(B)の表面に、電解めっき法、無電解めっき法によって前記金属めっき層(C)を形成することによって、所望のパターンを形成する方法である。 In the method of plating on the printing pattern of the silver nanoparticle layer (B), the pattern of the silver nanoparticle layer (B) is printed on the support (A) by an inkjet method, reverse printing method, etc. After performing surface treatment by plasma discharge treatment etc. as needed, the metal plating layer (C) is formed on the surface of the obtained silver nanoparticle layer (B) by electrolytic plating method and electroless plating method Is a method of forming a desired pattern.
 以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
<規格化光電子収率(1/2乗)の測定方法>
 銀ナノ粒子層(B)表面の前記規格化光電子収率(1/2乗)の測定条件は次の通りである。光電子分光装置(理研計器株式会社製「AC-3」)を用い、測定条件としては、エネルギー走査範囲4.0~7.0eV(波長310~177nmの紫外線励起)とし、設定光量10nm、計測時間10秒、陽極電圧2,990V、ステップ0.1eVで測定を行った。測定した規格化光電子収率(単位光量当たりの光電子収率の1/2乗)のうち、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)の値を読み取った。
<Method of measuring normalized photoelectron yield (1/2 power)>
The measurement conditions of the normalized photoelectron yield (1/2 power) of the surface of the silver nanoparticle layer (B) are as follows. Using a photoelectron spectrometer ("AC-3" manufactured by Riken Keiki Co., Ltd.), the measurement conditions are an energy scanning range of 4.0 to 7.0 eV (ultraviolet excitation of wavelength 310 to 177 nm), a set light amount of 10 nm, and a measurement time The measurement was performed at an anode voltage of 2,990 V and a step of 0.1 eV for 10 seconds. The value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was read out of the measured normalized photoelectron yield (1/2 power of the photoelectron yield per unit light quantity).
(調製例1:プライマー組成物(1)の調製)
 温度計、冷却管、分留管、攪拌器を取り付けたフラスコに、フェノール750質量部、メラミン75質量部、41.5質量%ホルマリン346質量部、及びトリエチルアミン1.5質量部を加え、発熱に注意しながら100℃まで昇温した。還流下100℃にて2時間反応させた後、常圧下にて水を除去しながら180℃まで2時間かけて昇温した。次いで、減圧下で未反応のフェノールを除去し、アミノトリアジン変性ノボラック樹脂を得た。その後、アミノトリアジンノボラック樹脂70質量部、及びエポキシ樹脂(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂)30質量部を混合後、メチルエチルケトンで不揮発分が2質量%となるように希釈し、均一に混合して、プライマー組成物(1)を得た。
Preparation Example 1: Preparation of Primer Composition (1)
Add 750 parts by mass of phenol, 75 parts by mass of melamine, 346 parts by mass of 41.5% by mass formalin, and 1.5 parts by mass of triethylamine to a flask equipped with a thermometer, a condenser, a distillation pipe and a stirrer, The temperature was raised to 100 ° C. with caution. After reacting for 2 hours at 100 ° C. under reflux, the temperature was raised to 180 ° C. over 2 hours while removing water under normal pressure. Then, unreacted phenol was removed under reduced pressure to obtain an aminotriazine-modified novolak resin. After that, 70 parts by mass of aminotriazine novolak resin and 30 parts by mass of epoxy resin ("EPICLON 850-S" manufactured by DIC Corporation; bisphenol A epoxy resin) are mixed, and then the methyl ethyl ketone has a nonvolatile content of 2% by mass. It diluted and mixed uniformly, and obtained primer composition (1).
(調製例2:プライマー組成物(2)の調製)
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル200質量部を入れ、窒素を吹き込みながら90℃まで昇温した。90℃まで昇温した反応容器内に、攪拌下、メタクリル酸グリシジル30質量部、メタクリル酸2-ヒドロキシエチル15質量部、スチレン40質量部、メタクリル酸メチル15質量部を含有する単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を90±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却した。次いで、酢酸エチルを添加して不揮発分2質量%の樹脂溶液を得た。次いで、この不揮発分2質量%の樹脂溶液100質量部に、無水トリメリット酸をメチルエチルケトンで希釈した不揮発分2質量%の溶液11.6質量部を添加し、均一に混合してプライマー組成物(2)を得た。
Preparation Example 2 Preparation of Primer Composition (2)
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, 200 parts by mass of ethyl acetate is added, and nitrogen is blown up to 90 ° C. The temperature rose. A monomer mixture containing 30 parts by mass of glycidyl methacrylate, 15 parts by mass of 2-hydroxyethyl methacrylate, 40 parts by mass of styrene and 15 parts by mass of methyl methacrylate under stirring in a reaction vessel heated to 90 ° C. A polymerization initiator solution containing 1 part by mass of azoisobutyronitrile and 20 parts by mass of ethyl acetate was added dropwise over 240 minutes while maintaining the temperature in the reaction vessel at 90 ± 1 ° C. from separate dropping funnels. . After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Subsequently, ethyl acetate was added to obtain a resin solution having a nonvolatile content of 2% by mass. Subsequently, 11.6 parts by mass of a solution of 2% by mass of nonvolatile matter obtained by diluting trimellitic anhydride with methyl ethyl ketone is added to 100 parts by mass of the resin solution of 2% by mass of nonvolatile matter and uniformly mixed to obtain a primer composition ( I got 2).
(調製例3:プライマー組成物(3)の調製)
 エポキシ樹脂(DIC株式会社製「EPICLON 1050」;ビスフェノールA型エポキシ樹脂、エポキシ当量475g/当量)をメチルエチルケトンで希釈して不揮発分を2質量%にした溶液100質量部に、硬化剤として無水ピロメリット酸の2質量%メチルエチルケトン溶液11.5質量部を均一に混合して、プライマー組成物(3)を得た。
Preparation Example 3 Preparation of Primer Composition (3)
Epoxy resin ("EPICLON 1050" manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy equivalent 475 g / equivalent) diluted with methyl ethyl ketone to make the non-volatile content 2 mass% solution 11.5 parts by mass of a 2% by mass methyl ethyl ketone solution of acid was uniformly mixed to obtain a primer composition (3).
(調製例4:プライマー組成物(4)の調製)
 温度計、窒素ガス導入管、撹拌機を備えた反応容器中で窒素ガスを導入しながら、テレフタル酸830質量部、イソフタル酸830質量部、1,6-ヘキサンジオール685質量部、ネオペンチルグリコール604質量部及びジブチル錫オキサイド0.5質量部を仕込み、180~230℃で酸価が1以下になるまで230℃で15時間重縮合反応を行い、水酸基価55.9、酸価0.2のポリエステルポリオールを得た。
Preparation Example 4 Preparation of Primer Composition (4)
830 parts by mass of terephthalic acid, 830 parts by mass of isophthalic acid, 685 parts by mass of 1,6-hexanediol, neopentyl glycol 604 while introducing nitrogen gas in a reaction vessel equipped with a thermometer, a nitrogen gas introduction pipe, and a stirrer Prepare a mass part and 0.5 mass parts of dibutyltin oxide and carry out a polycondensation reaction at 180 ° C to 230 ° C for 15 hours at 230 ° C until the acid value becomes 1 or less. A polyester polyol was obtained.
 上記のポリエステルポリオール1000質量部を減圧下100℃で脱水し、80℃まで冷却した後、メチルエチルケトン883質量部を加え十分撹拌、溶解し、2,2-ジメチロールプロピオン酸80質量部を加え、次いでイソホロンジイソシアネート244質量部を加えて70℃で8時間反応させた。 Dehydrate 1000 parts by mass of the above polyester polyol at 100 ° C. under reduced pressure, cool to 80 ° C., add 883 parts by mass of methyl ethyl ketone, sufficiently stir and dissolve, add 80 parts by mass of 2,2-dimethylol propionic acid, and then 244 parts by mass of isophorone diisocyanate was added and allowed to react at 70 ° C. for 8 hours.
 前記反応終了後、40℃まで冷却し、トリエチルアミン60質量部加えて中和した後、水4700質量部と混合し透明な反応生成物を得た。 After completion of the reaction, the reaction solution was cooled to 40 ° C., and 60 parts by mass of triethylamine was added for neutralization, followed by mixing with 4700 parts by mass of water to obtain a transparent reaction product.
 前記反応生成物から、40~60℃の減圧下でメチルエチルケトンを除去し、次いで、水を混合することで、不揮発分を2質量%とし、重量平均分子量50,000のプライマー組成物(4)を得た。 The methyl ethyl ketone is removed from the reaction product under reduced pressure at 40 to 60 ° C., and then water is mixed to make the non-volatile content 2% by mass, and a primer composition (4) having a weight average molecular weight of 50,000 is obtained. Obtained.
(調製例5:プライマー組成物(5)の調製)
 温度計、窒素ガス導入管、攪拌器を備えた窒素置換された反応容器中で、2,2-ジメチロールプロピオン酸6.3質量部と、4,4’-ジフェニルメタンジイソシアネートのヌレート体71.1質量部とを、メチルエチルケトン中で反応させることによってイソシアネート化合物を調製した後、前記反応容器にブロック剤としてフェノール17.8質量部を供給し反応させることによって、ブロックポリイソシアネートの溶剤溶液を調製した。その後、メチルエチルケトンを添加して不揮発分2質量%のプライマー組成物(5)を得た。
Preparation Example 5 Preparation of Primer Composition (5)
In a nitrogen-substituted reaction vessel equipped with a thermometer, a nitrogen gas inlet tube, and a stirrer, 6.3 parts by mass of 2,2-dimethylol propionic acid and a nurate of 4,4'-diphenylmethane diisocyanate 71.1 After preparing an isocyanate compound by reacting with a mass part in methyl ethyl ketone, a solvent solution of a block polyisocyanate was prepared by supplying 17.8 mass parts of phenol as a blocking agent to the reaction vessel and reacting. Thereafter, methyl ethyl ketone was added to obtain a primer composition (5) having a nonvolatile content of 2% by mass.
(調製例6:プライマー樹脂組成物(6)の調製)
 温度計、窒素ガス導入管、攪拌器を備えた窒素置換された容器中で、ポリエステルポリオール(1,4-シクロヘキサンジメタノールとネオペンチルグリコールとアジピン酸とを反応させて得られたポリエステルポリオール、水酸基当量は1,000g/当量)を100質量部、2,2―ジメチロールプロピオン酸49.7質量部、1,4-シクロヘキサンジメタノール127.1質量部、ジシクロヘキシルメタンジイソシアネート416.8質量部を、メチルエチルケトン492質量部の混合溶剤中で反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
Preparation Example 6 Preparation of Primer Resin Composition (6)
Polyester polyol (polyester polyol obtained by reacting 1,4-cyclohexanedimethanol, neopentyl glycol and adipic acid in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas inlet tube, and a stirrer, hydroxyl group Equivalent of 1,000 g / equivalent), 100 parts by mass, 49.7 parts by mass of 2,2-dimethylol propionic acid, 127.1 parts by mass of 1,4-cyclohexanedimethanol, and 416.8 parts by mass of dicyclohexylmethane diisocyanate; The reaction was carried out in a mixed solvent of 492 parts by mass of methyl ethyl ketone to obtain an organic solvent solution of a urethane prepolymer having an isocyanate group at the molecular end.
 次いで、前記ウレタン樹脂の有機溶剤溶液にトリエチルアミンを37.5質量部加えることで、前記ウレタン樹脂が有するカルボキシル基の一部または全部を中和し、さらに水1,083質量部を加え十分に攪拌することにより、ウレタン樹脂の水性分散液を得た。 Next, 37.5 parts by mass of triethylamine is added to the organic solvent solution of the urethane resin to neutralize part or all of the carboxyl groups of the urethane resin, and 1,083 parts by mass of water is further added to sufficiently stir the solution. Thus, an aqueous dispersion of a urethane resin was obtained.
 次いで、前記水性分散液に、25質量%のエチレンジアミン水溶液を34.4質量部加え、攪拌することによって、粒子状のポリウレタン樹脂を鎖伸長させ、次いでエージング・脱溶剤することによって、不揮発分30質量%のウレタン樹脂の水性分散液を得た。ここで得られたウレタン樹脂は、酸価が30であり、重量平均分子量が70,000であった。 Next, 34.4 parts by mass of a 25% by mass aqueous solution of ethylenediamine is added to the aqueous dispersion, and stirring is carried out to chain-extend the particulate polyurethane resin, followed by aging and desolvation to obtain 30 parts of nonvolatile matter. % Aqueous urethane resin dispersion was obtained. The urethane resin obtained here had an acid value of 30 and a weight average molecular weight of 70,000.
 次いで、撹拌機、還流冷却管、窒素導入管、温度計、滴下漏斗を備えた反応容器に脱イオン水115質量部、乳化剤(花王株式会社製「ラテムルE-118B」、有効成分25質量%)4質量部を入れ、窒素を吹き込みながら75℃まで昇温した。 Then, 115 parts by mass of deionized water and a emulsifier (Kao Co., Ltd. "Latemul E-118B", active ingredient 25% by mass) in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introducing pipe, a thermometer and a dropping funnel 4 parts by mass was added, and the temperature was raised to 75 ° C. while blowing in nitrogen.
 撹拌下、反応容器中にメタクリル酸メチル60質量部、アクリル酸n-ブチル38質量部、メタクリル酸2質量部からなるビニル単量体混合物と、乳化剤(第一工業製薬株式会社製「アクアロンKH-1025」、有効成分25質量%)4質量部と脱イオン水15質量部とを混合して得られたモノマープレエマルジョンの一部(5質量部)を添加し、続いて過硫酸カリウム0.1質量部を添加し、反応容器内温度を75℃に保ちながら60分間で重合させた。 Under agitation, a vinyl monomer mixture comprising 60 parts by mass of methyl methacrylate, 38 parts by mass of n-butyl acrylate and 2 parts by mass of methacrylic acid in a reaction vessel, and an emulsifier (Aqualon KH- manufactured by Daiichi Kogyo Seiyaku Co., Ltd. 1025 ′ ′, 25 parts by weight of the active ingredient) and a part (5 parts by weight) of a monomer pre-emulsion obtained by mixing 15 parts by weight of deionized water with subsequent addition of potassium persulfate 0.1 The parts by mass were added, and polymerization was carried out for 60 minutes while maintaining the temperature in the reaction vessel at 75 ° C.
 次いで、反応容器内の温度を75℃に保ちながら、残りのモノマープレエマルジョン(114質量部)と、過硫酸カリウムの水溶液(有効成分1.0質量%)30質量部とを、各々別の滴下漏斗を使用して、180分間かけて滴下した。滴下終了後、同温度にて60分間撹拌した。 Then, while maintaining the temperature in the reaction vessel at 75 ° C., the remaining monomer pre-emulsion (114 parts by mass) and 30 parts by mass of an aqueous solution of potassium persulfate (1.0 mass% of active ingredient) are dropped separately It was added dropwise over 180 minutes using a funnel. After completion of the dropwise addition, the mixture was stirred at the same temperature for 60 minutes.
 前記反応容器内の温度を40℃に冷却し、反応容器中の水分散体のpHが8.5になるようにアンモニア水(有効成分10質量%)を添加した後、不揮発分が2質量%になるように脱イオン水を添加して、プライマー組成物(6)を得た。 After the temperature in the reaction vessel is cooled to 40 ° C. and ammonia water (10% by mass of the active ingredient) is added so that the pH of the aqueous dispersion in the reaction vessel becomes 8.5, the nonvolatile matter is 2% by mass Then, deionized water was added thereto to obtain a primer composition (6).
(調製例7:プライマー組成物(7)の調製)
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル200質量部を入れ、窒素を吹き込みながら90℃まで昇温した。90℃まで昇温した反応容器内に、攪拌下、メタクリル酸ヒドロキシエチル15質量部、スチレン38質量部、メタクリル酸メチル17質量部、アクリル酸ブチル30質量部を含有するビニル単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を90±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却した。次いで、酢酸エチルを添加し不揮発分を2質量%に調整して、プライマー組成物(7)を得た。
Preparation Example 7 Preparation of Primer Composition (7)
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, 200 parts by mass of ethyl acetate is added, and nitrogen is blown up to 90 ° C. The temperature rose. A vinyl monomer mixture containing 15 parts by mass of hydroxyethyl methacrylate, 38 parts by mass of styrene, 17 parts by mass of methyl methacrylate, and 30 parts by mass of butyl acrylate under stirring in a reaction vessel heated to 90 ° C .; A polymerization initiator solution containing 1 part by mass of azoisobutyronitrile and 20 parts by mass of ethyl acetate was added dropwise over 240 minutes while maintaining the temperature in the reaction vessel at 90 ± 1 ° C. from separate dropping funnels. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Next, ethyl acetate was added to adjust the non-volatile content to 2% by mass to obtain a primer composition (7).
[流動体(1)の調製]
 特許第4573138号公報記載の実施例1にしたがって、銀ナノ粒子とカチオン性基(アミノ基)を有する有機化合物の複合体である灰緑色の金属光沢があるフレーク状の塊からなるカチオン性銀ナノ粒子を得た。その後、この銀ナノ粒子の粉末を、エチレングリコール45質量部と、イオン交換水55質量部との混合溶媒に分散させて、カチオン性銀ナノ粒子が5質量%の流動体(1)を調製した。
[Preparation of fluid (1)]
According to Example 1 described in Japanese Patent No. 4573138, a cationic silver nano consisting of a flake-like lump having an ash green color which is a complex of silver nanoparticles and an organic compound having a cationic group (amino group) I got the particles. Thereafter, the powder of silver nanoparticles was dispersed in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water to prepare a fluid (1) having 5% by mass of cationic silver nanoparticles. .
(実施例1)
 ポリイミドフィルム(東レ・デュポン株式会社製「カプトン 150EN-C」;厚さ38μm)の表面に、調製例1で得られたプライマー組成物(1)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、その乾燥後の厚さが100nmとなるように塗工した。次いで、熱風乾燥機を用いて150℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
Example 1
On the surface of a polyimide film ("Kapton 150 EN-C" manufactured by Toray DuPont Co., Ltd .; thickness 38 μm), the primer composition (1) obtained in Preparation Example 1 was used as a tabletop small coater (RK Print Coat Instrument Co., Ltd.) It applied so that the thickness after the drying might be set to 100 nm using the product made from "K printing prober". Then, a primer layer was formed on the surface of the polyimide film by drying at 150 ° C. for 5 minutes using a hot air drier.
 上記で形成したプライマー層の表面に、上記で得られた流動体(1)を、バーコーターを用いて塗工した。次いで、150℃で5分間乾燥することによって、前記銀ナノ粒子層(B)に相当する銀層(膜厚20nm)を形成した。この銀ナノ粒子層の表面を光電子分光装置で測定したところ、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)は11であった。 The fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said silver nanoparticle layer (B) was formed by drying at 150 degreeC for 5 minutes. The surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, and the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 11.
 上記で形成した銀層を、めっき前処理剤(塩化パラジウム3質量部、36質量%の塩酸17質量部、イオン交換水80質量部を混合した水溶液)に常温で1分間浸漬した後、無電解銅めっき液(奥野製薬工業株式会社製「OICカッパー」、pH12.5)中に45℃で12分間浸漬し、無電解銅めっきを行い、無電解めっきによる銅めっき層(膜厚0.2μm)を形成した。 The silver layer formed above is immersed in a pre-plating agent (an aqueous solution prepared by mixing 3 parts by mass of palladium chloride, 17 parts by mass of 36 mass% hydrochloric acid, and 80 parts by mass of ion exchange water) Electroless copper plating is performed by immersing in a copper plating solution ("OIC Kappa" manufactured by Okuno Pharmaceutical Co., Ltd., "OIC Kappa", pH 12.5) for 12 minutes, and a copper plating layer (film thickness 0.2 μm) by electroless plating Formed.
 上記で得られた無電解銅めっきによる銅めっき層をカソード側に設定し、含リン銅をアノード側に設定し、硫酸銅を含有する電解めっき液を用いて電流密度2.5A/dmで30分間電解めっきを行うことによって、無電解銅めっきによる銅めっき層の表面に、電解銅めっきによる銅めっき層(膜厚15μm)を形成した。前記電解めっき液としては、硫酸銅70g/L、硫酸200g/L、塩素イオン50mg/L、添加剤(奥野製薬工業(株)製「トップルチナSF-M」)5ml/Lを用いた。なお、無電解銅めっきによる銅めっき層及びその上に形成した電解銅めっきによる銅めっき層を合わせたものが、前記金属めっき層(C)に相当する。 The copper plating layer by electroless copper plating obtained above is set on the cathode side, phosphorus-containing copper is set on the anode side, and an electrolytic plating solution containing copper sulfate is used at a current density of 2.5 A / dm 2 By performing electrolytic plating for 30 minutes, a copper plating layer (film thickness 15 μm) by electrolytic copper plating was formed on the surface of the copper plating layer by electroless copper plating. As the electrolytic plating solution, 70 g / L of copper sulfate, 200 g / L of sulfuric acid, 50 mg / L of chlorine ion, and 5 ml / L of an additive (“Top Rutina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used. A combination of a copper plating layer by electroless copper plating and a copper plating layer by electrolytic copper plating formed thereon corresponds to the metal plating layer (C).
 以上の方法によって、支持体(A)、プライマー層(X)、金属ナノ粒子層(B)、及び金属めっき層(C)が順次積層された積層体(1)を得た。 By the above method, a laminate (1) in which a support (A), a primer layer (X), a metal nanoparticle layer (B) and a metal plating layer (C) were sequentially laminated was obtained.
(実施例2)
 ポリイミドフィルム(東レ・デュポン株式会社製「カプトン 150EN-C」;厚さ38μm)の表面に、調製例2で得られたプライマー組成物(2)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、その乾燥後の厚さが100nmとなるように塗工した。次いで、熱風乾燥機を用いて120℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
(Example 2)
On the surface of a polyimide film (“Kapton 150 EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 38 μm), the primer composition (2) obtained in Preparation Example 2 was used as a desktop small-sized coater (RK print coat instrument company) It applied so that the thickness after the drying might be set to 100 nm using the product made from "K printing prober". Then, a primer layer was formed on the surface of the polyimide film by drying at 120 ° C. for 5 minutes using a hot air drier.
 上記で形成したプライマー層の表面に、上記で得られた流動体(1)を、バーコーターを用いて塗工した。次いで、150℃で5分間乾燥することによって、前記金属ナノ粒子層(C)に相当する銀層(膜厚20nm)を形成した。この銀ナノ粒子層の表面を光電子分光装置で測定したところ、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)は7であった。 The fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Then, by drying for 5 minutes at 150 ° C., a silver layer (film thickness 20 nm) corresponding to the metal nanoparticle layer (C) was formed. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 7.
 めっき工程については、実施例1と同様に、無電解銅めっきと電解銅めっきを行うことで、支持体(A)、プライマー層(X)、金属ナノ粒子層(B)、及び金属めっき層(C)が順次積層された積層体(2)を得た。 In the plating step, as in Example 1, electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( A laminate (2) was obtained in which C) was sequentially laminated.
(実施例3)
 ポリイミドフィルム(東レ・デュポン株式会社製「カプトン 150EN-C」;厚さ38μm)の表面に、調製例3で得られたプライマー組成物(3)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、その乾燥後の厚さが100nmとなるように塗工した。次いで、熱風乾燥機を用いて120℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
(Example 3)
On the surface of a polyimide film ("Kapton 150 EN-C" manufactured by Toray DuPont Co., Ltd .; thickness 38 μm), the primer composition (3) obtained in Preparation Example 3 was used as a tabletop small coater (RK Print Coat Instrument Co., Ltd.) It applied so that the thickness after the drying might be set to 100 nm using the product made from "K printing prober". Then, a primer layer was formed on the surface of the polyimide film by drying at 120 ° C. for 5 minutes using a hot air drier.
 上記で形成したプライマー層の表面に、上記で得られた流動体(1)を、バーコーターを用いて塗工した。次いで、250℃で5分間乾燥することによって、前記金属ナノ粒子層(C)に相当する銀層(膜厚20nm)を形成した。この銀ナノ粒子層の表面を光電子分光装置で測定したところ、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)は1であった。 The fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said metal nanoparticle layer (C) was formed by drying at 250 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 1.
 めっき工程については、実施例1と同様に、無電解銅めっきと電解銅めっきを行うことで、支持体(A)、プライマー層(X)、金属ナノ粒子層(B)、及び金属めっき層(C)が順次積層された積層体(3)を得た。 In the plating step, as in Example 1, electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( C) obtained a laminate (3) sequentially laminated.
(実施例4)
 ポリイミドフィルム(東レ・デュポン株式会社製「カプトン 150EN-C」;厚さ38μm)の表面に、上記で得られた流動体(1)を、バーコーターを用いて塗工した。次いで、200℃で5分間乾燥することによって、前記金属ナノ粒子層(C)に相当する銀層(膜厚100nm)を形成した。この銀ナノ粒子層の表面を光電子分光装置で測定したところ、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)は19であった。
(Example 4)
The fluid (1) obtained above was coated on the surface of a polyimide film ("Kapton 150 EN-C" manufactured by Toray DuPont Co., Ltd .; thickness 38 μm) using a bar coater. Subsequently, the silver layer (film thickness of 100 nm) corresponded to the said metal nanoparticle layer (C) was formed by drying at 200 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 19.
 めっき工程については、実施例1と同様に、無電解銅めっきと電解銅めっきを行うことで、支持体(A)、金属ナノ粒子層(B)、及び金属めっき層(C)が順次積層された積層体(4)を得た。 In the plating step, as in Example 1, the support (A), the metal nanoparticle layer (B), and the metal plating layer (C) are sequentially laminated by performing electroless copper plating and electrolytic copper plating. The resulting laminate (4) was obtained.
(比較例1)
 ポリイミドフィルム(東レ・デュポン株式会社製「カプトン 150EN-C」;厚さ38μm)の表面に、調製例4で得られたプライマー組成物(4)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、その乾燥後の厚さが100nmとなるように塗工した。次いで、熱風乾燥機を用いて200℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
(Comparative example 1)
On the surface of a polyimide film (“Kapton 150 EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 38 μm), the primer composition (4) obtained in Preparation Example 4 was used as a tabletop small coater (RK Print Coat Instrument Co., Ltd.) It applied so that the thickness after the drying might be set to 100 nm using the product made from "K printing prober". Then, a primer layer was formed on the surface of the polyimide film by drying at 200 ° C. for 5 minutes using a hot air drier.
 上記で形成したプライマー層の表面に、上記で得られた流動体(1)を、バーコーターを用いて塗工した。次いで、120℃で5分間乾燥することによって、前記金属ナノ粒子層(B)に相当する銀層(膜厚20nm)を形成した。この銀ナノ粒子層の表面を光電子分光装置で測定したところ、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)は24であった。 The fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said metal nanoparticle layer (B) was formed by drying at 120 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 24.
 めっき工程については、実施例1と同様に、無電解銅めっきと電解銅めっきを行うことで、支持体(A)、プライマー層(X)、金属ナノ粒子層(B)、及び金属めっき層(C)が順次積層された積層体(R1)を得た。 In the plating step, as in Example 1, electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( A laminate (R1) was obtained in which C) was sequentially laminated.
(比較例2)
 ポリイミドフィルム(東レ・デュポン株式会社製「カプトン 150EN-C」;厚さ38μm)の表面に、調製例5で得られたプライマー組成物(5)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、その乾燥後の厚さが100nmとなるように塗工した。次いで、熱風乾燥機を用いて200℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
(Comparative example 2)
On the surface of a polyimide film (“Kapton 150 EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 38 μm), the primer composition (5) obtained in Preparation Example 5 was used as a tabletop small-sized coater (RK print coat instrument company) It applied so that the thickness after the drying might be set to 100 nm using the product made from "K printing prober". Then, a primer layer was formed on the surface of the polyimide film by drying at 200 ° C. for 5 minutes using a hot air drier.
 上記で形成したプライマー層の表面に、上記で得られた流動体(1)を、バーコーターを用いて塗工した。次いで、100℃で5分間乾燥することによって、前記金属ナノ粒子層(C)に相当する銀層(膜厚20nm)を形成した。この銀ナノ粒子層の表面を光電子分光装置で測定したところ、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)は35であった。 The fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said metal nanoparticle layer (C) was formed by drying at 100 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 35.
 めっき工程については、実施例1と同様に、無電解銅めっきと電解銅めっきを行うことで、支持体(A)、プライマー層(X)、金属ナノ粒子層(B)、及び金属めっき層(C)が順次積層された積層体(R2)を得た。 In the plating step, as in Example 1, electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( A laminate (R2) was obtained in which C) was sequentially laminated.
(比較例3)
 ポリイミドフィルム(東レ・デュポン株式会社製「カプトン 150EN-C」;厚さ38μm)の表面に、調製例6で得られたプライマー組成物(6)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、その乾燥後の厚さが100nmとなるように塗工した。次いで、熱風乾燥機を用いて200℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
(Comparative example 3)
On the surface of a polyimide film (“Kapton 150 EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 38 μm), the primer composition (6) obtained in Preparation Example 6 was placed on a bench type small coater (RK Print Coat Instruments Inc. It applied so that the thickness after the drying might be set to 100 nm using the product made from "K printing prober". Then, a primer layer was formed on the surface of the polyimide film by drying at 200 ° C. for 5 minutes using a hot air drier.
 上記で形成したプライマー層の表面に、上記で得られた流動体(1)を、バーコーターを用いて塗工した。次いで、110℃で5分間乾燥することによって、前記金属ナノ粒子層(C)に相当する銀層(膜厚20nm)を形成した。この銀ナノ粒子層の表面を光電子分光装置で測定したところ、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)は36であった。 The fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said metal nanoparticle layer (C) was formed by drying at 110 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 36.
 めっき工程については、実施例1と同様に、無電解銅めっきと電解銅めっきを行うことで、支持体(A)、プライマー層(X)、金属ナノ粒子層(B)、及び金属めっき層(C)が順次積層された積層体(R3)を得た。 In the plating step, as in Example 1, electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( A laminate (R3) was obtained in which C) was sequentially laminated.
(比較例4)
 ポリイミドフィルム(東レ・デュポン株式会社製「カプトン 150EN-C」;厚さ38μm)の表面に、調製例7で得られたプライマー組成物(7)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、その乾燥後の厚さが100nmとなるように塗工した。次いで、熱風乾燥機を用いて220℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
(Comparative example 4)
On the surface of a polyimide film (“Kapton 150 EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 38 μm), the primer composition (7) obtained in Preparation Example 7 was used as a tabletop small coater (RK Print Coat Instrument Co., Ltd.) It applied so that the thickness after the drying might be set to 100 nm using the product made from "K printing prober". Then, a primer layer was formed on the surface of the polyimide film by drying at 220 ° C. for 5 minutes using a hot air drier.
 上記で形成したプライマー層の表面に、上記で得られた流動体(1)を、バーコーターを用いて塗工した。次いで、120℃で5分間乾燥することによって、前記金属ナノ粒子層(C)に相当する銀層(膜厚20nm)を形成した。この銀ナノ粒子層の表面を光電子分光装置で測定したところ、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)は43であった。 The fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Subsequently, the silver layer (film thickness of 20 nm) corresponded to the said metal nanoparticle layer (C) was formed by drying at 120 degreeC for 5 minutes. When the surface of this silver nanoparticle layer was measured by a photoelectron spectrometer, the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV was 43.
 めっき工程については、実施例1と同様に、無電解銅めっきと電解銅めっきを行うことで、支持体(A)、プライマー層(X)、金属ナノ粒子層(B)、及び金属めっき層(C)が順次積層された積層体(R4)を得た。 In the plating step, as in Example 1, electroless copper plating and electrolytic copper plating are performed to obtain a support (A), a primer layer (X), a metal nanoparticle layer (B), and a metal plating layer ( A laminate (R4) in which C) was sequentially laminated was obtained.
 上記の実施例1~4及び比較例1~4で得られた積層体(1)~(4)及び(R1)~(R4)について、下記の測定及び評価を行った。 The following measurements and evaluations were carried out on the laminates (1) to (4) and (R1) to (R4) obtained in the above Examples 1 to 4 and Comparative Examples 1 to 4.
[加熱前の剥離強度の測定]
 得られた各積層体について、株式会社島津製作所製「オートグラフAGS-X 500N」を用いて剥離強度を測定した。なお、測定に用いるリード幅は5mm、そのピールの角度は90°とした。また、ピール強度は、金属めっき層の厚さが厚くなるほど高い値を示す傾向にあるが、本発明でのピール強度の測定は、金属めっき層の厚さ15μmにおける測定値を基準として実施した。
[Measurement of peel strength before heating]
The peel strength of each of the obtained laminates was measured using "Autograph AGS-X 500N" manufactured by Shimadzu Corporation. The lead width used for measurement was 5 mm, and the peel angle was 90 °. Although the peel strength tends to increase as the thickness of the metal plating layer increases, the measurement of the peel strength in the present invention was performed based on the measurement value at a thickness of 15 μm of the metal plating layer.
[密着性の評価]
 上記で測定した加熱前の剥離強度の値から、下記の基準にしたがって密着性を評価した。
 A:剥離強度の値が650N/m以上である。
 B:剥離強度の値が450N/m以上、650N/m未満である。
 C:剥離強度の値が250N/m以上、450N/m未満である。
 D:剥離強度の値が250N/m未満である。
[Evaluation of adhesion]
The adhesion was evaluated according to the following criteria from the value of the peel strength before heating measured above.
A: The peel strength value is 650 N / m or more.
B: The value of peel strength is 450 N / m or more and less than 650 N / m.
C: The peel strength value is 250 N / m or more and less than 450 N / m.
D: The peel strength value is less than 250 N / m.
[加熱後の剥離強度の測定]
 上記で得られた各積層体について、それぞれ150℃に設定した乾燥機内に168時間保管して加熱した。加熱後、上記と同様の方法でピール強度を測定した。
[Measurement of peel strength after heating]
Each of the laminates obtained above was stored and heated in a dryer set at 150 ° C. for 168 hours. After heating, the peel strength was measured by the same method as described above.
[耐熱性の評価]
 上記で測定した加熱前後のピール強度値を用いて、加熱前後での保持率を算出し、下記の基準にしたがって耐熱性を評価した。
 A:保持率が85%以上である。
 B:保持率が70%以上85%未満である。
 C:保持率が55%以上70%未満である。
 D:保持率が55%未満である。
[Evaluation of heat resistance]
Using the peel strength values before and after heating measured above, the retention ratio before and after heating was calculated, and heat resistance was evaluated according to the following criteria.
A: The retention rate is 85% or more.
B: The retention rate is 70% or more and less than 85%.
C: The retention rate is 55% or more and less than 70%.
D: The retention rate is less than 55%.
 実施例1~4の銀ナノ粒子層表面の前記規格化光電子収率(1/2乗)、加熱前後の剥離強度の測定結果、密着性及び耐熱性の評価結果を表1に示す。また、比較例1~4の銀ナノ粒子層表面の前記規格化光電子収率(1/2乗)、加熱前後の剥離強度の測定結果、密着性及び耐熱性の評価結果を表2に示す。 The normalized photoelectron yield (1/2 power) of the surface of the silver nanoparticle layer of Examples 1 to 4 and the measurement results of peel strength before and after heating, and the evaluation results of adhesion and heat resistance are shown in Table 1. The results of measurement of the normalized photoelectron yield (1/2 power) of the surface of the silver nanoparticle layer of Comparative Examples 1 to 4 and the peel strength before and after heating, and the evaluation results of adhesion and heat resistance are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の積層体である実施例1~4で得られた積層体(1)~(4)は、励起エネルギー5.5eV時の銀ナノ粒子層の規格化光電子収率(1/2乗)の値が0.1以上20以下であるため、初期(加熱前)の密着性が充分に高く、また、加熱後の剥離強度の低下もわずかで耐熱性にも優れていることを確認できた。 The laminates (1) to (4) obtained in Examples 1 to 4, which are laminates of the present invention, have normalized photoelectron yield (1/2 power) of the silver nanoparticle layer at an excitation energy of 5.5 eV. Since the value of is 0.1 or more and 20 or less, the initial (pre-heating) adhesion is sufficiently high, and it can be confirmed that the decrease in peel strength after heating is slight and the heat resistance is also excellent. .
 一方、比較例1~4で得られた積層体(R1)~(R4)は、励起エネルギーが5.5eV時の規格化光電子収率(1/2乗)の値が20を超える例であるが、初期(加熱前)の密着性や加熱後の剥離強度が低いことが確認できた。 On the other hand, the laminates (R1) to (R4) obtained in Comparative Examples 1 to 4 are examples in which the value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV exceeds 20. However, it was confirmed that the initial adhesion (before heating) and the peel strength after heating were low.

Claims (5)

  1.  支持体(A)の上に、銀ナノ粒子層(B)及び金属めっき層(C)が順次積層された積層体であって、前記金属めっき層(C)を積層する前の前記銀ナノ粒子層(B)の表面を光電子分光装置で測定した際に、励起エネルギー5.5eV時の規格化光電子収率(1/2乗)の値が0.1以上20以下であることを特徴とする積層体。 It is a laminate in which a silver nanoparticle layer (B) and a metal plating layer (C) are sequentially laminated on a support (A), and the silver nanoparticles before laminating the metal plating layer (C) When the surface of the layer (B) is measured by a photoelectron spectrometer, the value of the normalized photoelectron yield (1/2 power) at an excitation energy of 5.5 eV is 0.1 or more and 20 or less. Stack.
  2.  前記支持体(A)と前記銀ナノ粒子層(B)とが、プライマー層(X)を介して積層されたものである請求項1記載の積層体。 The laminate according to claim 1, wherein the support (A) and the silver nanoparticle layer (B) are laminated via a primer layer (X).
  3.  請求項1又は2項記載の積層体を用いたことを特徴とするプリント配線板。 A printed wiring board using the laminate according to claim 1 or 2.
  4.  請求項1又は2記載の積層体であり、前記支持体(A)がフィルムである積層体を用いたことを特徴とするフレキシブルプリント配線板。 The flexible printed wiring board according to claim 1 or 2, wherein the support (A) is a film.
  5.  請求項1又は2記載の積層体を用いたことを特徴とする成形品。 A molded article characterized in that the laminate according to claim 1 or 2 is used.
PCT/JP2018/025166 2017-07-10 2018-07-03 Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article WO2019013039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017134604 2017-07-10
JP2017-134604 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019013039A1 true WO2019013039A1 (en) 2019-01-17

Family

ID=65001684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025166 WO2019013039A1 (en) 2017-07-10 2018-07-03 Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article

Country Status (2)

Country Link
TW (1) TW201909709A (en)
WO (1) WO2019013039A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231125A (en) * 2006-02-28 2007-09-13 Kaneka Corp Thermosetting resin composition and its use
WO2008105481A1 (en) * 2007-03-01 2008-09-04 Ajinomoto Co., Inc. Process for producing circuit board
WO2008105480A1 (en) * 2007-03-01 2008-09-04 Ajinomoto Co., Inc. Film for metal film transfer, method for transferring metal film, and method for manufacturing circuit board
JP2011025532A (en) * 2009-07-24 2011-02-10 Ajinomoto Co Inc Film with metal film
WO2013146195A1 (en) * 2012-03-28 2013-10-03 Dic株式会社 Electroconductive pattern, electric circuit, electromagnetic wave shield, and method for manufacturing electroconductive pattern
WO2014050657A1 (en) * 2012-09-28 2014-04-03 Dic株式会社 Laminate, electroconductive pattern, and electric circuit
WO2015037511A1 (en) * 2013-09-10 2015-03-19 Dic株式会社 Stacked body, conductive pattern, electronic circuit, and production method for stacked body
JP2015156459A (en) * 2014-02-21 2015-08-27 Dic株式会社 Laminate, conductive pattern, and electronic circuit
JP2016007797A (en) * 2014-06-25 2016-01-18 Dic株式会社 Laminate, electroconductive pattern, electronic circuit, and production method of laminate
WO2016098596A1 (en) * 2014-12-16 2016-06-23 株式会社カネカ Photocurable and thermosetting resin composition, cured product and laminate
JP2016112704A (en) * 2014-12-11 2016-06-23 Dic株式会社 Conductive laminate and method for manufacturing the same
JP2016120604A (en) * 2014-12-24 2016-07-07 Dic株式会社 Laminate, conductive pattern and electronic circuit
WO2016208672A1 (en) * 2015-06-26 2016-12-29 Dic株式会社 Laminated body, molded article, electroconductive pattern, electronic circuit, and electromagnetic shield

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231125A (en) * 2006-02-28 2007-09-13 Kaneka Corp Thermosetting resin composition and its use
WO2008105481A1 (en) * 2007-03-01 2008-09-04 Ajinomoto Co., Inc. Process for producing circuit board
WO2008105480A1 (en) * 2007-03-01 2008-09-04 Ajinomoto Co., Inc. Film for metal film transfer, method for transferring metal film, and method for manufacturing circuit board
JP2011025532A (en) * 2009-07-24 2011-02-10 Ajinomoto Co Inc Film with metal film
WO2013146195A1 (en) * 2012-03-28 2013-10-03 Dic株式会社 Electroconductive pattern, electric circuit, electromagnetic wave shield, and method for manufacturing electroconductive pattern
WO2014050657A1 (en) * 2012-09-28 2014-04-03 Dic株式会社 Laminate, electroconductive pattern, and electric circuit
WO2015037511A1 (en) * 2013-09-10 2015-03-19 Dic株式会社 Stacked body, conductive pattern, electronic circuit, and production method for stacked body
JP2015156459A (en) * 2014-02-21 2015-08-27 Dic株式会社 Laminate, conductive pattern, and electronic circuit
JP2016007797A (en) * 2014-06-25 2016-01-18 Dic株式会社 Laminate, electroconductive pattern, electronic circuit, and production method of laminate
JP2016112704A (en) * 2014-12-11 2016-06-23 Dic株式会社 Conductive laminate and method for manufacturing the same
WO2016098596A1 (en) * 2014-12-16 2016-06-23 株式会社カネカ Photocurable and thermosetting resin composition, cured product and laminate
JP2016120604A (en) * 2014-12-24 2016-07-07 Dic株式会社 Laminate, conductive pattern and electronic circuit
WO2016208672A1 (en) * 2015-06-26 2016-12-29 Dic株式会社 Laminated body, molded article, electroconductive pattern, electronic circuit, and electromagnetic shield

Also Published As

Publication number Publication date
TW201909709A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
JP6497571B2 (en) Laminate, metal mesh and touch panel
JP6579295B2 (en) Laminated body, printed wiring board, flexible printed wiring board and molded product using the same
WO2013147050A1 (en) Laminate body, conductive pattern, electrical circuit, and method for producing laminate body
JPWO2013047167A1 (en) RECEPTION LAYER FORMING RESIN COMPOSITION AND RECEPTION SUBSTRATE, PRINTED MATERIAL, CONDUCTIVE PATTERN AND ELECTRIC CIRCUIT OBTAINED USING THE SAME
KR20210023841A (en) Method for producing a molded article having a metal pattern
KR20210023828A (en) Manufacturing method of printed wiring board
JP2019014188A (en) Laminate, and printed wiring board, flexible printed wiring board and molded article using the same
JP6579293B2 (en) Laminated body, printed wiring board, flexible printed wiring board and molded product using the same
JP6296290B2 (en) Metal-based printed wiring board and manufacturing method thereof
JP5569662B1 (en) Laminate, conductive pattern and electrical circuit
WO2019013039A1 (en) Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
WO2020130071A1 (en) Method for manufacturing printed wiring board
JP7052927B2 (en) Laminates, printed wiring boards, flexible printed wiring boards, electromagnetic wave shields and molded products
JPWO2020003881A1 (en) Method for producing molded body having metal pattern
JP5622067B1 (en) RECEPTION LAYER FORMING COMPOSITION, RECEPTIVE SUBSTRATE, PRINTED MATERIAL, CONDUCTIVE PATTERN AND ELECTRIC CIRCUIT OBTAINED
JP2016120604A (en) Laminate, conductive pattern and electronic circuit
JP6892021B2 (en) Laminated body and method for manufacturing the laminated body
JP2017117931A (en) Laminate, conducting pattern, electronic circuit, transparent electrode and method for manufacturing electromagnetic wave shield material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP