WO2015037511A1 - Stacked body, conductive pattern, electronic circuit, and production method for stacked body - Google Patents

Stacked body, conductive pattern, electronic circuit, and production method for stacked body Download PDF

Info

Publication number
WO2015037511A1
WO2015037511A1 PCT/JP2014/073382 JP2014073382W WO2015037511A1 WO 2015037511 A1 WO2015037511 A1 WO 2015037511A1 JP 2014073382 W JP2014073382 W JP 2014073382W WO 2015037511 A1 WO2015037511 A1 WO 2015037511A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
metal
layer
support
laminate
Prior art date
Application number
PCT/JP2014/073382
Other languages
French (fr)
Japanese (ja)
Inventor
亘 冨士川
白髪 潤
村川 昭
公恵 斉藤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2015530185A priority Critical patent/JP5843123B2/en
Priority to KR1020167002592A priority patent/KR20160018843A/en
Priority to CN201480049643.3A priority patent/CN105517788A/en
Publication of WO2015037511A1 publication Critical patent/WO2015037511A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • B32B2266/045Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature

Definitions

  • the present invention relates to a laminate that can be used as a conductive pattern provided in a wired electronic circuit such as a printed circuit board, an electromagnetic wave shield, an integrated circuit, and an organic transistor, and a method for manufacturing the same.
  • a conductive material layer is formed on the support surface by applying a coating material containing a conductive material to the support surface and baking it. Then, a conductive pattern in which a plating layer is provided on the surface of the conductive material layer by plating the surface of the conductive material layer is known (see, for example, Patent Documents 1 and 2). .
  • the conductive pattern has insufficient adhesion between the conductive material layer and the plating layer, and the plating layer is peeled off over time, resulting in a problem that the conductivity is lowered or disconnected.
  • a laminate that can be used as a conductive pattern is required to have excellent adhesion at each interface between a support, a conductive material layer, and a plating layer.
  • a laminate having excellent adhesion at the interface between the layer and the plating layer has not yet been found.
  • the problem to be solved by the present invention is a laminate in which two kinds of metal layers are formed on a support, and a laminate having excellent adhesion between the two kinds of metal layers and a method for producing the same. Is to provide. Moreover, the conductive pattern and electronic circuit using this laminated body are provided.
  • the inventors of the present invention have a porous body in which two types of metal layers are formed on a support, and the first metal layer formed on the support is porous. If the metal constituting the second metal layer formed on the first metal layer fills the voids existing in the first metal layer, this 2 The inventors have found that the adhesion between the various metal layers is extremely excellent, and have completed the present invention.
  • the present invention is a laminate in which a porous metal layer (B) is formed on a support (A), and a metal layer (C) is formed on the metal layer (B). Further, the present invention relates to a laminate and a method for producing the same, characterized in that the voids present in the metal layer (B) are filled with the metal constituting the metal layer (C). The present invention also relates to a conductive pattern and an electronic circuit using this laminate.
  • the laminate of the present invention has extremely good adhesion between the two types of metal layers formed on the support, the conductivity of the metal layer does not decrease over time, and There is no disconnection when patterning with fine lines. Therefore, for example, conductive patterns, electronic circuits, organic solar cells, electronic terminals, organic EL, organic transistors, flexible printed circuit boards, non-contact IC cards and other peripheral wiring forming RFID, plasma display electromagnetic shielding In general, it can be suitably used as various members in the field of printed electronics, such as production of wiring, integrated circuits, and organic transistors.
  • FIG. 1 is a cross-sectional photograph taken by a scanning electron microscope of the laminate (1) produced in Example 1, and a bright part indicates a part where copper (Cu) atoms are present.
  • FIG. 2 is a cross-sectional photograph taken by a scanning electron microscope of the laminate (1) produced in Example 1, and the bright part indicates a part where silver (Ag) atoms are present.
  • FIG. 3 is a cross-sectional photograph taken by a scanning electron microscope of the laminate (R1) produced in Comparative Example 1, and a bright part indicates a part where copper (Cu) atoms are present.
  • FIG. 4 is a cross-sectional photograph of the laminate (R1) produced in Comparative Example 1 using a scanning electron microscope, and a bright part indicates a part where silver (Ag) atoms are present.
  • the laminate of the present invention is a laminate in which a porous metal layer (B) is formed on a support (A) and a metal layer (C) is formed on the metal layer (B). Then, the voids present in the metal layer (B) are filled with the metal constituting the metal layer (C).
  • the support (A) serves as a base material for the laminate of the present invention.
  • the material of the support (A) include polyimide, polyamideimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (ABS resin), acrylic resin, polyvinylidene fluoride, polyvinyl chloride, Examples thereof include polyvinylidene chloride, polyvinyl alcohol, polyethylene, polypropylene, polyurethane, cellulose nanofiber, silicon, ceramics, glass, glass / epoxy resin, glass polyimide, and paper phenol.
  • the support (A) is made of a phenol resin, a fluororesin, a polyimide resin, a polyethylene terephthalate, a polyethylene naphthalate.
  • Preferred are phthalate, glass, glass / epoxy resin, glass polyimide, paper phenol, cellulose nanofiber, alumina, mullite, steatite, forsterite, zirconia and the like.
  • the support (A) for example, a substrate made of synthetic fibers such as polyester fibers, polyamide fibers, and aramid fibers; natural fibers such as cotton and hemp can be used.
  • the fibers may be processed in advance.
  • the support (A) it is preferable to use a flexible and flexible support when the laminate of the present invention is used for applications that require bending flexibility. Specifically, it is preferable to use a film or sheet-like support.
  • the film or sheet-like support examples include a polyethylene terephthalate film, a polyimide film, and a polyethylene naphthalate film.
  • the thickness of the film or sheet support is usually preferably about 1 to 5,000 ⁇ m, and preferably about 1 to 300 ⁇ m. More preferably.
  • the laminate of the present invention is used for a flexible printed circuit board or the like that requires flexibility, it is preferable to use a film having a thickness of about 1 to 200 ⁇ m as the support.
  • a plasma discharge treatment method such as a corona discharge treatment method, a dry treatment method such as an ultraviolet treatment method, water
  • the surface treatment may be performed by a wet treatment method using an acidic or alkaline chemical solution, an organic solvent, or the like.
  • the metal layer (B) is a porous material formed on the support (A), and has voids in the layer.
  • a metal which comprises the said metal layer (B) a transition metal or its compound is mentioned, Among these, an ionic transition metal is preferable.
  • the ionic transition metal include copper, silver, gold, nickel, palladium, platinum, and cobalt.
  • copper, silver, and gold are preferable because they have a low electrical resistance and provide a conductive pattern that is resistant to corrosion.
  • examples of the metal constituting the metal layer (C) include copper, nickel, chromium, cobalt, tin and the like. Among these, copper is preferable because a conductive pattern having low electric resistance and strong against corrosion can be obtained.
  • the metal constituting the metal layer (C) is filled in the voids present in the metal layer (B), but the support (A) and the metal layer (B)
  • the metal layer (C) is filled with the metal constituting the metal layer (C) up to the voids in the metal layer (B) existing in the vicinity of the interface between the metal layer (B) and the metal layer (C). Since adhesiveness improves more, it is preferable.
  • the fluid containing a nanosize metal powder and a dispersing agent was apply
  • the method of forming (C) is mentioned.
  • the shape of the nano-sized metal powder used to form the metal layer (B) is not particularly limited as long as the metal layer becomes porous, but is preferably in the form of particles or fibers.
  • the size of the metal powder is nano-sized. Specifically, when the shape of the metal powder is particulate, a fine conductive pattern can be formed, and the resistance value after firing is further reduced. Therefore, the average particle size is preferably in the range of 1 to 100 nm, more preferably in the range of 1 to 50 nm.
  • the “average particle size” is a volume average value measured by a dynamic light scattering method after diluting the conductive substance with a good dispersion solvent. For this measurement, “Nanotrack UPA-150” manufactured by Microtrack Co. can be used.
  • the fiber diameter is preferably in the range of 5 to 100 nm, and in the range of 5 to 50 nm. Is more preferable.
  • the fiber length is preferably in the range of 0.1 to 100 ⁇ m, and more preferably in the range of 0.1 to 30 ⁇ m.
  • the content ratio of the nano-sized metal powder in the fluid is preferably in the range of 5 to 90% by mass, and more preferably in the range of 10 to 60% by mass.
  • the components to be blended in the fluid include a dispersant and a solvent for dispersing the nano-sized metal powder in the solvent, and, if necessary, a surfactant, a leveling agent, a viscosity modifier, and a film formation described later.
  • Organic compounds such as auxiliaries, antifoaming agents and preservatives are included.
  • a low molecular weight or high molecular weight dispersant is used.
  • the dispersant include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid, stearic acid; cholic acid, Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and avintinic acid.
  • a polymer dispersant is preferable because the adhesion between the metal layer (B) and the metal layer (C) described later can be improved by increasing the void size in the metal layer (B).
  • the polymer dispersant is preferably a polyalkyleneimine such as polyethyleneimine or polypropyleneimine, or a compound obtained by adding polyoxyalkylene to the polyalkyleneimine.
  • the void size formed by removing the dispersant in the metal layer (B) can be increased as compared with the low-molecular dispersant. It is possible to form voids having a size of nano-order to sub-micron order.
  • the voids are easily filled with the metal constituting the metal layer (C) described later, and the filled metal serves as an anchor, greatly improving the adhesion between the metal layer (B) and the metal layer (C) described later. can do.
  • the amount of the dispersant used for dispersing the nano-sized metal powder is preferably 0.01 to 50 parts by weight, and 0.01 to 10 parts by weight with respect to 100 parts by weight of the nano-sized metal powder. Is more preferable.
  • the nano The amount is preferably 0.1 to 10 parts by weight, and more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the size of the metal powder.
  • an aqueous medium or an organic solvent can be used as the solvent used for the fluid.
  • the aqueous medium include distilled water, ion exchange water, pure water, and ultrapure water.
  • the organic solvent include alcohol compounds, ether compounds, ester compounds, and ketone compounds.
  • Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol, heptanol, hexanol, octanol, and nonanol.
  • ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used for the fluid as necessary.
  • a general surfactant can be used.
  • di-2-ethylhexylsulfosuccinate, dodecylbenzenesulfonate, alkyldiphenylether disulfonate, alkylnaphthalenesulfonate, hexametalin Examples include acid salts.
  • leveling agent a general leveling agent can be used, and examples thereof include silicone compounds, acetylenic diol compounds, and fluorine compounds.
  • a general thickener can be used, for example, an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to an alkaline property, and can be thickened by association of molecules.
  • examples thereof include urethane resin, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amide wax, polyethylene oxide, metal soap, and dibenzylidene sorbitol.
  • a general film forming aid can be used.
  • an anionic surfactant dioctylsulfosuccinic acid ester soda salt, etc.
  • a hydrophobic nonionic surfactant sorbitan monooleate
  • polyether-modified siloxane silicone oil, and the like.
  • a general antifoaming agent can be used, and examples thereof include silicone-based antifoaming agents, nonionic surfactants, polyethers, higher alcohols, and polymer-based surfactants.
  • preservatives can be used, for example, isothiazoline preservatives, triazine preservatives, imidazole preservatives, pyridine preservatives, azole preservatives, iodine preservatives, Examples include pyrithione preservatives.
  • the viscosity of the fluid is preferably in the range of 0.1 to 500,000 mPa ⁇ s, more preferably in the range of 0.5 to 10,000 mPa ⁇ s. .
  • the viscosity is preferably in the range of 5 to 20 mPa ⁇ s.
  • Examples of the method for applying the fluid on the support (A) include an inkjet printing method, a reverse printing method, a screen printing method, an offset printing method, a spin coating method, a spray coating method, a bar coating method, and a die coating. Method, slit coat method, roll coat method, dip coat method and the like.
  • the metal layer (B) patterned in a thin line shape having a width of about 0.01 to 100 ⁇ m which is required when realizing high density of electronic circuits or the like. It is preferable to use an inkjet printing method or a reverse printing method.
  • an ink jet printer As the ink jet printing method, what is generally called an ink jet printer can be used. Specific examples include Konica Minolta EB100, XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dimatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), and the like.
  • the fluid is applied to the surface of various blankets and brought into contact with a plate from which a non-image portion protrudes,
  • the pattern is formed on the surface of the blanket or the like, and then the pattern is formed on the support layer (A).
  • the method of transferring to (surface) is mentioned.
  • the said metal layer (B) is formed on the said support body (A), in order to improve the adhesiveness of the surface of the said support body (A), and the said metal layer (B) more, the said support body After forming a primer layer by applying and drying a primer on the surface of (A), the metal layer (B) may be formed on the primer layer.
  • primer examples include urethane resin, vinyl resin, urethane-vinyl composite resin, epoxy resin, imide resin, amide resin, melamine resin, phenol resin, polyvinyl alcohol, polyvinyl pyrrolidone, and various resins and solvents. Is mentioned.
  • urethane resin urethane resin
  • vinyl resin urethane-vinyl composite resin
  • urethane resin vinyl resin, and urethane-vinyl composite resin
  • Urethane resin having a polyether structure Urethane resin having a polyether structure, urethane resin having a polycarbonate structure, urethane resin having a polyester structure, acrylic resin
  • one or more resins selected from the group consisting of urethane-acrylic composite resins are more preferred, and urethane-acrylic composite resins provide a laminate for use in conductive patterns having excellent adhesion, electrical conductivity, and fine wire properties. More preferable.
  • the content ratio of the resin in the primer is preferably in the range of 10 to 70% by mass and more preferably in the range of 10 to 50% by mass in consideration of ease of application.
  • examples of the solvent used for the primer include organic solvents and aqueous media.
  • Examples of the organic solvent include toluene, ethyl acetate, and methyl ethyl ketone.
  • Examples of the aqueous medium include water, an organic solvent that is miscible with water, and a mixture thereof.
  • organic solvent miscible with water examples include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, and butyl cellosolve; ketones such as acetone and methyl ethyl ketone; and polymers such as ethylene glycol, diethylene glycol, and propylene glycol.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, and butyl cellosolve
  • ketones such as acetone and methyl ethyl ketone
  • polymers such as ethylene glycol, diethylene glycol, and propylene glycol.
  • alkylene glycols alkyl ethers of polyalkylene glycols
  • lactams such as N-methyl-2-pyrrolidone.
  • the content ratio of the solvent in the primer is preferably in the range of 25 to 85% by mass and more preferably in the range of 45 to 85% by mass in consideration of ease of application.
  • additives such as a crosslinking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent, and an antifoaming agent may be added to the primer.
  • the primer layer can be formed by applying a primer to part or all of the surface of the support (A) and removing a solvent such as an aqueous medium or an organic solvent contained in the primer.
  • Examples of the method for applying the primer to the surface of the support (A) include a gravure method, a coating method, a screen method, a roller method, a rotary method, and a spray method.
  • a plasma discharge treatment method such as a corona discharge treatment method, a dry treatment method such as an ultraviolet treatment method, water, acidic or alkaline Surface treatment may be performed by a wet treatment method using a chemical solution, an organic solvent, or the like.
  • a method for removing the solvent contained in the coating layer after coating the primer on the surface of the support (A) for example, a method of drying using a dryer and volatilizing the solvent is common.
  • the drying temperature is preferably set to a temperature that allows the solvent to be volatilized and does not adversely affect the support (A).
  • the thickness of the primer layer formed using the primer varies depending on the use of the laminate of the present invention, it can further improve the adhesion between the support (A) and the metal layer (B).
  • the range of ⁇ 30 ⁇ m is preferable, the range of 10 nm to 1 ⁇ m is more preferable, and the range of 10 nm to 500 nm is more preferable.
  • a primer layer on the said support body (A) since the adhesiveness of the said support body (A) and the said primer layer can be improved, it is fine on the surface of the said support body (A).
  • Surface treatment for forming irregularities, cleaning dirt adhering to the surface, introducing functional groups such as hydroxyl group, carbonyl group, and carboxyl group may be performed.
  • a plasma discharge treatment such as a corona discharge treatment, a dry treatment such as an ultraviolet treatment, a wet treatment using an aqueous solution such as water, an acid / alkali, or an organic solvent may be applied.
  • the firing step performed after applying a fluid containing metal powder is a metal having conductivity by closely contacting and joining the metal powders contained in the fluid. Performed to form layer (B).
  • the firing is preferably performed at a temperature range of 80 to 300 ° C. for about 2 to 200 minutes.
  • the firing may be performed in the air, but a part or all of the firing step may be performed in a reducing atmosphere in order to prevent all of the metal powder from being oxidized.
  • the metal layer (B) becomes porous when the particulate or fibrous metal powders used for forming the metal layer (B) are brought into close contact with each other and bonded together.
  • the baking step can be performed using, for example, an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwave, light irradiation (flash irradiation apparatus), or the like.
  • the thickness of the metal layer (B ′) obtained by the firing step is preferably in the range of 10 nm to 10 ⁇ m, more preferably in the range of 10 nm to 3 ⁇ m, considering the adhesion with the metal layer (C) described later. .
  • the porous metal layer (B) can be obtained by removing the organic compound containing the dispersant present in the metal layer (B ′) to form voids.
  • a method for removing this organic compound a plasma discharge treatment method, an electromagnetic wave irradiation treatment method, a laser irradiation treatment method, an organic compound containing a dispersant with water or an organic solvent is redispersed with respect to the metal layer (B ′).
  • a method of performing a treatment such as a dissolution treatment method. These treatment methods are preferable because they can be used alone or in combination of two or more, and the organic compound can be removed more efficiently by combining two or more.
  • the organic compound referred to here is a component blended in the fluid and includes a dispersant, a solvent, a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, a preservative, and the like.
  • An organic compound is a component blended in the fluid and includes a dispersant, a solvent, a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, a preservative, and the like.
  • Examples of the plasma discharge treatment method include an atmospheric pressure plasma discharge treatment method such as a corona discharge treatment method, a vacuum plasma discharge treatment method such as a glow discharge treatment method and an arc discharge treatment method performed under vacuum or reduced pressure, and the like.
  • Examples of the atmospheric pressure plasma discharge treatment method include a plasma discharge treatment method in an atmosphere having an oxygen concentration of about 0.1 to 25% by volume.
  • the adhesion between the metal layer (B) and the metal layer (C) is mentioned.
  • the oxygen concentration is preferably in the range of 10 to 22% by volume so that the metal constituting the metal layer (C) can be easily filled in the voids of the porous metal layer (B). Volume% (in an air atmosphere) is more preferable.
  • the atmospheric pressure plasma discharge treatment method is performed in an environment containing an inert gas under the oxygen concentration, and the metal layer (B) can be formed without excessive irregularities on the surface of the metal layer (B). Since the adhesiveness of (B) and a metal layer (C) can be improved more, it is preferable.
  • the inert gas include argon and nitrogen.
  • Examples of an apparatus that can be used for the treatment by the atmospheric pressure plasma discharge treatment method include an atmospheric pressure plasma treatment apparatus “AP-T01” manufactured by Sekisui Chemical Co., Ltd.
  • the flow rate of gas such as air is preferably in the range of 5 to 50 liters / minute.
  • the output is preferably in the range of 50 to 500W.
  • the treatment time is preferably in the range of 1 to 500 seconds.
  • a corona discharge treatment method As an apparatus that can be used in the corona discharge treatment method, for example, a corona surface modification evaluation apparatus “TEC-4AX” manufactured by Kasuga Electric Co., Ltd. may be mentioned.
  • the output is preferably in the range of 5 to 300 W.
  • the treatment time is preferably in the range of 0.5 to 600 seconds.
  • the plasma discharge treatment method can remove the organic compound existing in the metal layer (B ′) to a deep portion and is present in the vicinity of the interface between the support (A) and the metal layer (B). It is preferable because the organic compound existing in the metal layer (B) can be removed.
  • the metal constituting the metal layer (C) is easily filled in the voids of the porous metal layer (B) when the metal layer (C) described later is formed. It becomes easier to fill the metal constituting the metal layer (C) to the voids in the metal layer (B) existing in the vicinity of the interface between the support (A) and the metal layer (B).
  • the metal constituting the metal layer (C) penetrates to a deeper portion of the metal layer (B) and exhibits a greater anchoring effect. Therefore, the metal layer (B) and a metal layer (C described later) ) Can be greatly improved.
  • the metal layer (B ′) is heated at a high temperature by irradiating the metal layer (B ′) with electromagnetic waves, whereby the organic compound can be decomposed and removed.
  • the dispersant can be selectively removed using electromagnetic wave absorption resonance.
  • the wavelength of the electromagnetic wave that resonates with the organic compound present in the metal layer (B ′) is set in advance, and the electromagnetic wave having the wavelength set in the metal layer (B) is irradiated. Thereby, since the absorption to the organic compound increases (resonance), only the dispersant can be removed by adjusting the intensity of the electromagnetic wave.
  • the organic compound in the metal layer (B ′) can be decomposed and removed by irradiating the metal layer (B ′) with a laser.
  • a laser capable of laser scribing treatment can be used.
  • the laser that can be laser-scribed include a YAG laser, a CO 2 laser, and an excimer laser, and a YAG laser is particularly preferable.
  • a YAG laser is particularly preferable.
  • a YAG laser preferably uses a pulsed laser in order to obtain a high peak power and a high frequency.
  • a laser beam output from a laser light source is condensed by a lens while conveying the metal layer (B ′), and the metal layer Irradiate the surface of (B ′).
  • the laser beam is moved using a polygon mirror, and the surface of the metal layer (B ′) being conveyed is scanned with the laser beam. Accordingly, the metal layer (B ′) can be heated at a high temperature.
  • the output of the laser beam is 0.1 to 100 kW
  • the pulse transmission frequency (oscillation frequency) is several kHz to several tens kHz
  • the duration (pulse width) of one pulse is 90 to 100 nsec. preferable.
  • the dissolution treatment method is a method of removing the organic compound existing in the metal layer (B ′) by redispersing it and dissolving it in water or an organic solvent.
  • the organic solvent include alcohol solvents such as methanol, ethanol and isopropyl alcohol; aprotic polar solvents such as dimethyl sulfoxide, dimethylformamide and N-methylpyrrolidone; tetrahydrofuran, methyl ethyl ketone, ethyl acetate and ecamide (organic solvent manufactured by Idemitsu Kosan Co., Ltd.) ) And the like.
  • an acid or an alkali in order to re-disperse and dissolve the organic compound, it is preferable to use an acid or an alkali, and more preferably to use an alkali.
  • the acid include sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, oxalic acid, acetic acid, formic acid, propionic acid, succinic acid, glutaric acid, tartaric acid, adipic acid and the like.
  • strong acids such as sulfuric acid, nitric acid, and hydrochloric acid.
  • the metal layer (C) described later is formed by an electrolytic copper plating process using copper sulfate, it is preferable to use sulfuric acid so as not to bring impurities into the subsequent process.
  • alkali examples include organic amines such as sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, ammonia, triethylamine, pyridine and morpholine; alkanolamines such as monoethanolamine. Among these, it is preferable to use a strong alkali such as sodium hydroxide or potassium hydroxide.
  • a surfactant can be used to re-disperse and dissolve the organic compound.
  • a general surfactant can be used, and examples thereof include di-2-ethylhexyl sulfosuccinate, alkyl sulfate, alkyl benzene sulfonate, and alkyl diphenyl ether disulfonate. Since these surfactants show alkalinity when dissolved in water, they are more preferable because they easily remove the organic compound.
  • a porous metal layer (B) having voids is formed on the support (A) by removing the organic compound in the metal layer (B ′). Then, the laminate of the present invention can be obtained by forming the metal layer (C) on the metal layer (B).
  • the metal layer (C) constituting the laminate of the present invention has a reliability capable of maintaining good electrical conductivity without disconnection or the like over a long period of time when the laminate is used for a conductive pattern, for example.
  • This layer is provided for the purpose of forming a highly reliable wiring pattern.
  • the metal layer (C) is a layer formed on the metal layer (B), and the formation method is preferably a method of forming by plating.
  • the plating treatment include wet plating methods such as electrolytic plating methods and electroless plating methods, and dry plating methods such as sputtering methods and vacuum deposition methods. Further, the metal layer (C) may be formed by combining two or more of these plating methods.
  • the metal constituting the metal layer (C) is easily filled in the voids of the porous metal layer (B), and the metal layer (B) and the metal layer (C) are in close contact with each other. Therefore, wet plating methods such as an electrolytic plating method and an electroless plating method are preferable, and an electrolytic plating method is more preferable because the conductivity is further improved and a conductive pattern having excellent conductivity is obtained.
  • the metal constituting the metal layer (B) is brought into contact with an electroless plating solution, thereby depositing a metal such as copper contained in the electroless plating solution from the metal film.
  • This is a method of forming an electroless plating layer (film).
  • Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
  • reducing agent examples include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
  • monocarboxylic acids such as acetic acid and formic acid
  • dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid, and fumaric acid
  • malic acid lactic acid, glycol Hydroxycarboxylic acid compounds such as acid, gluconic acid and citric acid
  • amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamic acid
  • aminopolyester such as nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid
  • organic acids such as carboxylic acid compounds, or soluble salts of these organic acids (sodium salts, potassium salts, ammonium salts, etc.), and those containing complexing agents such as amine compounds such as ethylenediamine, diethylenetriamine, and triethylenetetramine.
  • Do Door can be.
  • the electroless plating solution is preferably used in the range of 20 to 98 ° C.
  • the metal constituting the metal layer (B) or the surface of the electroless plating layer (coating) formed by the electroless treatment is energized with an electrolytic plating solution in contact with the surface.
  • a metal such as copper contained in the electrolytic plating solution is used to form a conductive material constituting the metal layer (B) placed on the cathode or the electroless plating layer (coating) formed by the electroless treatment.
  • This is a method of depositing on the surface and forming an electrolytic plating layer (metal coating).
  • Examples of the electrolytic plating solution include those containing metal sulfides such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specifically, what contains copper sulfate, sulfuric acid, and an aqueous medium is mentioned.
  • the electrolytic plating solution is preferably used in the range of 20 to 98 ° C.
  • a metal layer (C) made of copper it is preferable to form a metal layer (C) made of copper using an electrolytic plating method because workability is good without using a highly toxic substance.
  • a sputtering method, a vacuum deposition method, or the like can be used as the dry plating process.
  • an inert gas mainly argon
  • a voltage is applied to the forming material (target material) of the metal layer (C) to generate a glow discharge.
  • Activated gas atoms are ionized, gas ions are struck violently at the surface of the metal layer (C) forming material (target material) at high speed, and atoms and molecules constituting the metal layer (C) forming material (target material)
  • the metal layer (C) is formed by vigorously adhering to the surface of the metal layer (B).
  • Examples of the material (target material) for forming the metal layer (C) by sputtering include chrome, copper, titanium, silver, platinum, gold, nickel-chromium alloy, stainless steel, copper-zinc alloy, and indium tin oxide (ITO). ), Silicon dioxide, titanium dioxide, niobium oxide, zinc oxide and the like.
  • a magnetron sputtering apparatus or the like When performing the plating process by the sputtering method, for example, a magnetron sputtering apparatus or the like can be used.
  • the thickness of the metal layer (C) is preferably in the range of 1 to 50 ⁇ m.
  • the thickness of the metal layer (C) can be adjusted by controlling the processing time, the current density, the amount of the additive for plating, etc. in the plating process when forming the metal layer (C). .
  • the laminate of the present invention obtained by the above method can be used as a conductive pattern.
  • a fluid containing the metal powder is applied to form the metal layer (B) at a position corresponding to a desired pattern shape to be formed.
  • a conductive pattern having a desired pattern can be manufactured.
  • the conductive pattern can be manufactured by, for example, a photolithographic etching method such as a subtractive method or a semi-additive method, or a method of plating on a printed pattern of the metal layer (B).
  • an etching resist layer having a shape corresponding to a desired pattern shape is formed on the metal layer (C) constituting the laminate of the present invention that has been manufactured in advance, and the development process is followed by the development process.
  • a desired pattern is formed by dissolving and removing the metal layer (C) and the metal layer (B) in the removed portion of the resist with a chemical solution.
  • a chemical solution a chemical solution containing copper chloride, iron chloride or the like can be used.
  • the semi-additive method includes forming a metal layer (B ′) on the support (A) and, if necessary, a dispersant present in the metal layer (B ′) by plasma discharge treatment or the like. After removing the organic compound, a plating resist layer having a shape corresponding to a desired pattern is formed on the surface of the obtained metal layer (B), and then the metal layer (C ) Is formed, and then the plating resist layer and the metal layer (B) in contact therewith are dissolved and removed in a chemical solution or the like to form a desired pattern.
  • the method of plating on the printed pattern of the metal layer (B) is to print the pattern of the metal layer (B) on the support (A) by an inkjet method, a reverse printing method, etc., and if necessary, plasma
  • the surface of the obtained metal layer (B) is subjected to electrolytic plating or electroless plating.
  • a desired pattern is formed by forming the layer (C).
  • the conductive pattern obtained by the above method has excellent adhesion between each layer, in particular, adhesion between the metal layer (B) and the metal layer (C). Because it has excellent durability capable of maintaining high electrical conductivity, it is possible to form circuit formation substrates used in electronic circuits, integrated circuits, etc. using silver ink, organic solar cells, electronic terminals, organic It can be used for formation of peripheral wiring constituting EL, organic transistor, flexible printed circuit board, RFID, etc., wiring for electromagnetic wave shield of plasma display, and the like. In particular, it can be suitably used for applications requiring high durability. For example, for printed wiring boards (PWB), flexible printed boards (FPC), automatic tape bonding (TAB), chip-on-film (COF), etc. It is possible to use.
  • PWB printed wiring boards
  • FPC flexible printed boards
  • TAB automatic tape bonding
  • COF chip-on-film
  • the measuring method of the said cloudiness temperature collected 1g of resin, and mixed this resin with 100 ml of water adjusted to the designated temperature. At that time, the highest water temperature when the resin became cloudy without dissolving in water was defined as the cloudiness temperature.
  • Example 1 On the surface of the support made of a polyimide film (“Kapton 200H” manufactured by Toray DuPont Co., Ltd., thickness 50 ⁇ m), the primer prepared as described above is dried to a thickness of 0.1 ⁇ m using a spin coater. It was applied as follows. Next, a primer layer was formed on the surface of the polyimide film by drying at 120 ° C. for 5 minutes using a hot air dryer.
  • the fluid (2) obtained above is applied to the surface of the primer layer using an inkjet printer (inkjet testing machine EB100 manufactured by Konica Minolta IJ Co., Ltd., evaluation printer head KM512L, discharge amount 42 pL), 10 cm in length. The entire surface was applied to an area of 5 cm in width. Next, by baking at 250 ° C. for 30 minutes, a silver layer (thickness: about 1 ⁇ m) corresponding to the metal layer (B ′) was formed.
  • inkjet printer inkjet testing machine EB100 manufactured by Konica Minolta IJ Co., Ltd., evaluation printer head KM512L, discharge amount 42 pL
  • a treatment for removing an organic compound in the silver layer corresponding to the metal layer (B ′) was performed.
  • the surface of a silver layer corresponding to the metal layer (B ′) is subjected to corona discharge treatment (gas: using a corona surface modification evaluation apparatus (“TEC-4AX” manufactured by Kasuga Electric Co., Ltd.). Air (oxygen concentration: about 21% by mass), gap: 1.5 mm, output: 100 W, treatment time: 2 seconds)
  • corona discharge treatment gas: using a corona surface modification evaluation apparatus (“TEC-4AX” manufactured by Kasuga Electric Co., Ltd.). Air (oxygen concentration: about 21% by mass), gap: 1.5 mm, output: 100 W, treatment time: 2 seconds)
  • TEC-4AX corona surface modification evaluation apparatus
  • the organic compound was removed to obtain a silver layer corresponding to the porous metal layer (B) having voids.
  • the silver layer corresponding to the metal layer (B) obtained above is set as the cathode, the phosphorous copper is set as the anode, and the current density is 2 A / dm using an electrolytic plating solution containing copper sulfate. by performing 15 minutes electroplating at 2, on the surface of the silver layer were laminated a copper plating layer having a thickness of 8 [mu] m.
  • the electroplating solution 70 g / liter of copper sulfate, 200 g / liter of sulfuric acid, 50 mg / liter of chloride ions, and 5 ml / liter of additives (“Top Lucina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used.
  • a laminate (1) in which the layers were laminated in the order of the support (A), the primer layer, the metal layer (B), and the metal layer (C) was obtained.
  • the cross section of the obtained laminate (1) was confirmed using a scanning electron microscope (“JSM-7800F” manufactured by JEOL Ltd.).
  • Cross-sectional photographs of this laminate (1) are shown in FIG. 1 (copper (Cu) mapping) and FIG. 2 (silver (Ag) mapping).
  • copper (Cu) atoms constituting the metal layer (C) are also present in the silver layer corresponding to the metal layer (B), and the copper atoms are contained in the metal layer (B).
  • Example 2 Support (A) in the same manner as in Example 1 except that an electromagnetic wave irradiation treatment (wavelength: 100 ⁇ m) was performed instead of the treatment with a corona surface modification evaluation apparatus (“TEC-4AX” manufactured by Kasuga Denki Co., Ltd.).
  • TEC-4AX corona surface modification evaluation apparatus
  • TEC-4AX corona surface modification evaluation apparatus
  • Example 3 In the same manner as in Example 1 except that laser irradiation treatment (output 6 kW) was performed instead of treatment with a corona surface modification evaluation apparatus (“TEC-4AX” manufactured by Kasuga Electric Co., Ltd.) and treatment with an ICP cleaner.
  • a laminate (3) was obtained in which the support (A), the primer layer, the metal layer (B), and a layer corresponding to the metal layer (C) were laminated.
  • TEC-4AX corona surface modification evaluation apparatus
  • Example 4 The support was prepared in the same manner as in Example 1 except that it was immersed in sulfuric acid (60 ml / liter) for 5 minutes instead of treatment with a corona surface modification evaluation apparatus (“TEC-4AX” manufactured by Kasuga Denki Co., Ltd.).
  • a laminate (4) was obtained in which the layers were laminated in the order of (A), primer layer, metal layer (B), and metal layer (C).
  • TEC-4AX corona surface modification evaluation apparatus manufactured by Kasuga Denki Co., Ltd.
  • a laminate (4) was obtained in which the layers were laminated in the order of (A), primer layer, metal layer (B), and metal layer (C).
  • copper which is a metal constituting the metal layer (C)
  • in the voids of the metal layer (B) was found to be a metal layer. It was confirmed that the vicinity of the interface between (B) and the support (A) was filled.
  • a silver layer having a film thickness of about 1 ⁇ m is formed on the surface of the primer layer by a magnetron sputtering method in which silver is set as a target material and a DC voltage is applied between the base material and the target material while introducing argon under vacuum. Formed.
  • the silver layer obtained above is set as a cathode, phosphorous copper is set as an anode, and electroplating is performed at a current density of 2 A / dm 2 for 15 minutes using an electrolytic plating solution containing copper sulfate. Then, a copper plating layer having a thickness of 8 ⁇ m was laminated on the surface of the silver layer.
  • the electroplating solution 70 g / liter of copper sulfate, 200 g / liter of sulfuric acid, 50 mg / liter of chloride ions, and 5 ml / liter of additives (“Top Lucina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used.
  • Peel strength was measured by a method based on IPC-TM-650 and NUMBER 2.4.9.
  • the lead width used for the measurement was 1 mm, and the peel angle was 90 °.
  • the peel strength tends to show a higher value as the thickness of the plating layer increases, but the measurement of the peel strength in the present invention was performed based on the measurement value in the currently used plating layer of 8 ⁇ m. .
  • the laminates (1) to (4) obtained in Examples 1 to 4, which are laminates of the present invention, have high peel strength without peeling from the interface between the metal layer (B) and the metal layer (C). It was confirmed that the adhesion between the metal layer (B) and the metal layer (C) was very high.
  • the laminate (R1) obtained in Comparative Example 1 is an example in which the silver layer corresponding to the metal layer (B) is not porous. Since this laminate (R1) was peeled off from the interface between the silver layer (corresponding to the metal layer (B)) and the copper layer (corresponding to the metal layer (C)), the adhesion between the two metal layers was practical. It was confirmed that it is not resistant to

Abstract

The present invention provides: a stacked body in which a porous metal layer (B) is formed upon a support body (A), and a metal layer (C) is formed upon the metal layer (B), said stacked body wherein pores in the metal layer (B) are filled with a metal configuring the metal layer (C); and a production method for said stacked body. Also provided are a conductive pattern and an electronic circuit which use the stacked body. In this stacked body, although metal layers of two different kinds are formed upon the support body, excellent adhesive properties are exhibited therebetween.

Description

積層体、導電性パターン、電子回路及び積層体の製造方法LAMINATE, CONDUCTIVE PATTERN, ELECTRONIC CIRCUIT, AND LAMINATE MANUFACTURING METHOD
 本発明は、プリント基板、電磁波シールド、集積回路、有機トランジスタ等の配線された電子回路に供される導電性パターンとして用いることのできる積層体及びその製造方法に関するものである。 The present invention relates to a laminate that can be used as a conductive pattern provided in a wired electronic circuit such as a printed circuit board, an electromagnetic wave shield, an integrated circuit, and an organic transistor, and a method for manufacturing the same.
 近年、電子機器の高性能化、小型化及び薄型化にともなって、それに使用される電子回路や集積回路の高密度化、小型化及び薄型化が強く求められている。 In recent years, with increasing performance, miniaturization and thinning of electronic devices, there is a strong demand for higher density, miniaturization and thinning of electronic circuits and integrated circuits used therein.
 上記の電子回路等に用いることのできる導電性パターンとしては、例えば、支持体の表面に、導電性物質を含有する塗剤を塗布し焼成することによって導電性物質層を支持体表面に形成し、次いで、前記導電性物質層の表面をめっき処理することによって、前記導電性物質層の表面にめっき層が設けられた導電性パターンが知られている(例えば、特許文献1及び2参照。)。しかしながら、この導電性パターンは、導電性物質層とめっき層との密着性が不十分であり、経時的にめっき層の剥離が起こり、導電性の低下や断線を生じる問題があった。 As the conductive pattern that can be used for the above electronic circuit, for example, a conductive material layer is formed on the support surface by applying a coating material containing a conductive material to the support surface and baking it. Then, a conductive pattern in which a plating layer is provided on the surface of the conductive material layer by plating the surface of the conductive material layer is known (see, for example, Patent Documents 1 and 2). . However, the conductive pattern has insufficient adhesion between the conductive material layer and the plating layer, and the plating layer is peeled off over time, resulting in a problem that the conductivity is lowered or disconnected.
 このように、導電性パターンとして用いることのできる積層体としては、支持体と、導電性物質層と、めっき層との各界面における密着性に優れたものが求められており、特に導電性物質層とめっき層との界面における密着性に優れた積層体は、未だ見出されていなかった。 As described above, a laminate that can be used as a conductive pattern is required to have excellent adhesion at each interface between a support, a conductive material layer, and a plating layer. A laminate having excellent adhesion at the interface between the layer and the plating layer has not yet been found.
特開昭60-246695号公報JP-A-60-246695 特開2005-286158号公報JP 2005-286158 A
 本発明が解決しようとする課題は、支持体の上に、2種類の金属層を形成した積層体において、この2種類の金属層間の密着性が極めて優れたものである積層体及びその製造方法を提供することである。また、この積層体を用いた導電性パターン、電子回路を提供するものである。 The problem to be solved by the present invention is a laminate in which two kinds of metal layers are formed on a support, and a laminate having excellent adhesion between the two kinds of metal layers and a method for producing the same. Is to provide. Moreover, the conductive pattern and electronic circuit using this laminated body are provided.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、支持体の上に、2種類の金属層を形成した積層体において、支持体の上に形成する第一の金属層を多孔質状のものとし、その第一の金属層の上に形成する第二の金属層を構成する金属が、第一の金属層中に存在する空隙を充填しているものであれば、この2種類の金属層間の密着性が極めて優れたものとなることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have a porous body in which two types of metal layers are formed on a support, and the first metal layer formed on the support is porous. If the metal constituting the second metal layer formed on the first metal layer fills the voids existing in the first metal layer, this 2 The inventors have found that the adhesion between the various metal layers is extremely excellent, and have completed the present invention.
 すなわち、本発明は、支持体(A)の上に多孔質状の金属層(B)が形成され、前記金属層(B)の上に金属層(C)が形成された積層体であって、前記金属層(B)中に存在する空隙に金属層(C)を構成する金属が充填されていることを特徴とする積層体及びその製造方法に関するものである。また、この積層体を用いた導電性パターン、電子回路に関するものである。 That is, the present invention is a laminate in which a porous metal layer (B) is formed on a support (A), and a metal layer (C) is formed on the metal layer (B). Further, the present invention relates to a laminate and a method for producing the same, characterized in that the voids present in the metal layer (B) are filled with the metal constituting the metal layer (C). The present invention also relates to a conductive pattern and an electronic circuit using this laminate.
 本発明の積層体は、支持体上に形成された2種類の金属層間の密着性が極めて優れたものであるため、経時的に金属層の導電性が低下することなく、また、金属層を細線によりパターン化した場合に断線することがない。したがって、例えば、導電性パターン、電子回路、有機太陽電池、電子端末、有機EL、有機トランジスタ、フレキシブルプリント基板、非接触ICカード等のRFIDなどを構成する周辺配線の形成、プラズマディスプレイの電磁波シールドの配線、集積回路、有機トランジスタの製造等の、一般にプリンテッド・エレクトロニクス分野の各種部材として好適に使用することができる。 Since the laminate of the present invention has extremely good adhesion between the two types of metal layers formed on the support, the conductivity of the metal layer does not decrease over time, and There is no disconnection when patterning with fine lines. Therefore, for example, conductive patterns, electronic circuits, organic solar cells, electronic terminals, organic EL, organic transistors, flexible printed circuit boards, non-contact IC cards and other peripheral wiring forming RFID, plasma display electromagnetic shielding In general, it can be suitably used as various members in the field of printed electronics, such as production of wiring, integrated circuits, and organic transistors.
図1は、実施例1で作製した積層体(1)の走査電子顕微鏡による断面写真であり、明るい部分は銅(Cu)原子が存在する部分を示す。FIG. 1 is a cross-sectional photograph taken by a scanning electron microscope of the laminate (1) produced in Example 1, and a bright part indicates a part where copper (Cu) atoms are present. 図2は、実施例1で作製した積層体(1)の走査電子顕微鏡による断面写真であり、明るい部分は銀(Ag)原子が存在する部分を示す。FIG. 2 is a cross-sectional photograph taken by a scanning electron microscope of the laminate (1) produced in Example 1, and the bright part indicates a part where silver (Ag) atoms are present. 図3は、比較例1で作製した積層体(R1)の走査電子顕微鏡による断面写真であり、明るい部分は銅(Cu)原子が存在する部分を示す。FIG. 3 is a cross-sectional photograph taken by a scanning electron microscope of the laminate (R1) produced in Comparative Example 1, and a bright part indicates a part where copper (Cu) atoms are present. 図4は、比較例1で作製した積層体(R1)の走査電子顕微鏡による断面写真であり、明るい部分は銀(Ag)原子が存在する部分を示す。FIG. 4 is a cross-sectional photograph of the laminate (R1) produced in Comparative Example 1 using a scanning electron microscope, and a bright part indicates a part where silver (Ag) atoms are present.
 本発明の積層体は、支持体(A)の上に多孔質状の金属層(B)が形成され、前記金属層(B)の上に金属層(C)が形成された積層体であって、前記金属層(B)中に存在する空隙に金属層(C)を構成する金属が充填されているものである。 The laminate of the present invention is a laminate in which a porous metal layer (B) is formed on a support (A) and a metal layer (C) is formed on the metal layer (B). Then, the voids present in the metal layer (B) are filled with the metal constituting the metal layer (C).
 前記支持体(A)は、本発明の積層体の基材となるものである。前記支持体(A)の材質としては、例えば、ポリイミド、ポリアミドイミド、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン(ABS樹脂)、アクリル樹脂、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリウレタン、セルロースナノファイバー、シリコン、セラミックス、ガラス、ガラス・エポキシ樹脂、ガラスポリイミド、紙フェノール等が挙げられる。 The support (A) serves as a base material for the laminate of the present invention. Examples of the material of the support (A) include polyimide, polyamideimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (ABS resin), acrylic resin, polyvinylidene fluoride, polyvinyl chloride, Examples thereof include polyvinylidene chloride, polyvinyl alcohol, polyethylene, polypropylene, polyurethane, cellulose nanofiber, silicon, ceramics, glass, glass / epoxy resin, glass polyimide, and paper phenol.
 また、本発明の積層体を導電性パターンとして用いる場合、絶縁性を有するものが好ましいことから、前記支持体(A)の材質としては、フェノール樹脂、フッ素樹脂、ポリイミド樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ガラス、ガラス・エポキシ樹脂、ガラスポリイミド、紙フェノール、セルロースナノファイバー、アルミナ、ムライト、ステアタイト、フォルステライト、ジルコニア等が好ましい。 In addition, when the laminate of the present invention is used as a conductive pattern, it is preferable that the support (A) is made of a phenol resin, a fluororesin, a polyimide resin, a polyethylene terephthalate, a polyethylene naphthalate. Preferred are phthalate, glass, glass / epoxy resin, glass polyimide, paper phenol, cellulose nanofiber, alumina, mullite, steatite, forsterite, zirconia and the like.
 また、前記支持体(A)としては、例えば、ポリエステル繊維、ポリアミド繊維、アラミド繊維等の合成繊維;綿、麻等の天然繊維などからなる基材を用いることもできる。前記繊維には、予め加工が施されていてもよい。 Further, as the support (A), for example, a substrate made of synthetic fibers such as polyester fibers, polyamide fibers, and aramid fibers; natural fibers such as cotton and hemp can be used. The fibers may be processed in advance.
 前記支持体(A)としては、本発明の積層体が、折り曲げ可能な柔軟性を求められる用途に用いられる場合、柔軟でフレキシブルな支持体を用いることが好ましい。具体的には、フィルム又はシート状の支持体を用いることが好ましい。 As the support (A), it is preferable to use a flexible and flexible support when the laminate of the present invention is used for applications that require bending flexibility. Specifically, it is preferable to use a film or sheet-like support.
 前記フィルム又はシート状の支持体としては、例えば、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエチレンナフタレートフィルム等が挙げられる。 Examples of the film or sheet-like support include a polyethylene terephthalate film, a polyimide film, and a polyethylene naphthalate film.
 前記支持体(A)の形状がフィルム状又はシート状の場合、フィルム状又はシート状の支持体の厚さは、通常、1~5,000μm程度であることが好ましく、1~300μm程度の厚さであることがより好ましい。また、本発明の積層体をフレキシブルプリント基板等の屈曲性を求められるものに用いる場合には、支持体として、1~200μm程度の厚さのフィルム状のものを用いることが好ましい。 When the shape of the support (A) is a film or sheet, the thickness of the film or sheet support is usually preferably about 1 to 5,000 μm, and preferably about 1 to 300 μm. More preferably. In addition, when the laminate of the present invention is used for a flexible printed circuit board or the like that requires flexibility, it is preferable to use a film having a thickness of about 1 to 200 μm as the support.
 前記支持体(A)の表面は、前記金属層(B)との密着性をより向上するため、例えば、コロナ放電処理法等のプラズマ放電処理法、紫外線処理法等の乾式処理法、水、酸性又はアルカリ性薬液、有機溶剤等を用いた湿式処理法によって、表面処理されていてもよい。 In order to further improve the adhesion of the support (A) to the metal layer (B), for example, a plasma discharge treatment method such as a corona discharge treatment method, a dry treatment method such as an ultraviolet treatment method, water, The surface treatment may be performed by a wet treatment method using an acidic or alkaline chemical solution, an organic solvent, or the like.
 前記金属層(B)は、前記支持体(A)の上に形成された多孔質状のものであり、その層中に空隙を有する。前記金属層(B)を構成する金属としては、遷移金属又はその化合物が挙げられ、中でもイオン性の遷移金属が好ましい。このイオン性の遷移金属としては、銅、銀、金、ニッケル、パラジウム、白金、コバルト等が挙げられる。これらのイオン性の遷移金属の中でも、銅、銀、金は、電気抵抗が低く、腐食に強い導電性パターンが得られることから好ましい。 The metal layer (B) is a porous material formed on the support (A), and has voids in the layer. As a metal which comprises the said metal layer (B), a transition metal or its compound is mentioned, Among these, an ionic transition metal is preferable. Examples of the ionic transition metal include copper, silver, gold, nickel, palladium, platinum, and cobalt. Among these ionic transition metals, copper, silver, and gold are preferable because they have a low electrical resistance and provide a conductive pattern that is resistant to corrosion.
 また、前記金属層(C)を構成する金属としては、銅、ニッケル、クロム、コバルト、スズ等が挙げられる。これらの中でも、電気抵抗が低く、腐食に強い導電性パターンが得られることから銅が好ましい。 Further, examples of the metal constituting the metal layer (C) include copper, nickel, chromium, cobalt, tin and the like. Among these, copper is preferable because a conductive pattern having low electric resistance and strong against corrosion can be obtained.
 本発明の積層体においては、前記金属層(B)中に存在する空隙に金属層(C)を構成する金属が充填されているが、前記支持体(A)と前記金属層(B)との界面近傍に存在する前記金属層(B)中の空隙まで、前記金属層(C)を構成する金属が充填されているものが、前記金属層(B)と前記金属層(C)との密着性がより向上するため好ましい。 In the laminate of the present invention, the metal constituting the metal layer (C) is filled in the voids present in the metal layer (B), but the support (A) and the metal layer (B) The metal layer (C) is filled with the metal constituting the metal layer (C) up to the voids in the metal layer (B) existing in the vicinity of the interface between the metal layer (B) and the metal layer (C). Since adhesiveness improves more, it is preferable.
 本発明の積層体の製造方法としては、例えば、支持体(A)の上に、ナノサイズの金属粉及び分散剤を含有する流動体を塗布し焼成して金属層(B’)を形成した後、前記金属層(B’)中に存在する分散剤を含む有機化合物を除去して空隙を形成して多孔質状の金属層(B)とした後、電解又は無電解めっきにより前記金属層(C)を形成する方法が挙げられる。 As a manufacturing method of the laminated body of this invention, the fluid containing a nanosize metal powder and a dispersing agent was apply | coated and baked on the support body (A), and the metal layer (B ') was formed, for example. Thereafter, an organic compound containing a dispersant present in the metal layer (B ′) is removed to form a void to form a porous metal layer (B), and then the metal layer is subjected to electrolytic or electroless plating. The method of forming (C) is mentioned.
 前記金属層(B)の形成に用いるナノサイズの金属粉の形状は、金属層が多孔質状になるものであればよいが、粒子状又繊維状のものが好ましい。また、前記金属粉の大きさはナノサイズのものを用いるが、具体的には、金属粉の形状が粒子状の場合は、微細な導電性パターンを形成でき、焼成後の抵抗値をより低減できるため、平均粒子径が1~100nmの範囲が好ましく、1~50nmの範囲がより好ましい。なお、前記「平均粒子径」は、前記導電性物質を分散良溶媒にて希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。 The shape of the nano-sized metal powder used to form the metal layer (B) is not particularly limited as long as the metal layer becomes porous, but is preferably in the form of particles or fibers. In addition, the size of the metal powder is nano-sized. Specifically, when the shape of the metal powder is particulate, a fine conductive pattern can be formed, and the resistance value after firing is further reduced. Therefore, the average particle size is preferably in the range of 1 to 100 nm, more preferably in the range of 1 to 50 nm. The “average particle size” is a volume average value measured by a dynamic light scattering method after diluting the conductive substance with a good dispersion solvent. For this measurement, “Nanotrack UPA-150” manufactured by Microtrack Co. can be used.
 一方、金属粉の形状が繊維状の場合は、微細な導電性パターンを形成でき、焼成後の抵抗値をより低減できるため、繊維の直径が5~100nmの範囲が好ましく、5~50nmの範囲がより好ましい。また、繊維の長さは、0.1~100μmの範囲が好ましく、0.1~30μmの範囲がより好ましい。 On the other hand, when the shape of the metal powder is fibrous, a fine conductive pattern can be formed and the resistance value after firing can be further reduced. Therefore, the fiber diameter is preferably in the range of 5 to 100 nm, and in the range of 5 to 50 nm. Is more preferable. The fiber length is preferably in the range of 0.1 to 100 μm, and more preferably in the range of 0.1 to 30 μm.
 前記支持体(A)の上に前記金属層(B)を形成する際には、前記ナノサイズの金属粉を溶媒中に分散させた流動体を、前記支持体(A)上に塗布する方法が好ましい。 When forming the metal layer (B) on the support (A), a method in which a fluid in which the nano-sized metal powder is dispersed in a solvent is applied onto the support (A). Is preferred.
 前記流動体中の前記ナノサイズの金属粉の含有比率は、5~90質量%の範囲が好ましく、10~60質量%の範囲がより好ましい。 The content ratio of the nano-sized metal powder in the fluid is preferably in the range of 5 to 90% by mass, and more preferably in the range of 10 to 60% by mass.
 前記流動体に配合される成分としては、ナノサイズの金属粉を溶媒中に分散させるための分散剤や溶媒、また必要に応じて、後述する界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤などの有機化合物が含まれる。 The components to be blended in the fluid include a dispersant and a solvent for dispersing the nano-sized metal powder in the solvent, and, if necessary, a surfactant, a leveling agent, a viscosity modifier, and a film formation described later. Organic compounds such as auxiliaries, antifoaming agents and preservatives are included.
 前記ナノサイズの金属粉を溶媒中に分散させるため、低分子量又は高分子量の分散剤が用いられる。前記分散剤としては、例えば、ドデカンチオール、1-オクタンチオール、トリフェニルホスフィン、ドデシルアミン、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルピロリドン;ミリスチン酸、オクタン酸、ステアリン酸等の脂肪酸;コール酸、グリシルジン酸、アビンチン酸等のカルボキシル基を有する多環式炭化水素化合物などが挙げられる。これらの中でも、前記金属層(B)中の空隙サイズを大きくすることで前記金属層(B)と後述する金属層(C)との密着性を向上できることから、高分子分散剤が好ましく、この高分子分散剤としては、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物等が好ましい。 In order to disperse the nano-sized metal powder in a solvent, a low molecular weight or high molecular weight dispersant is used. Examples of the dispersant include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid, stearic acid; cholic acid, Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and avintinic acid. Among these, a polymer dispersant is preferable because the adhesion between the metal layer (B) and the metal layer (C) described later can be improved by increasing the void size in the metal layer (B). The polymer dispersant is preferably a polyalkyleneimine such as polyethyleneimine or polypropyleneimine, or a compound obtained by adding polyoxyalkylene to the polyalkyleneimine.
 上記のように、前記分散剤に高分子分散剤を用いることで、低分子分散剤と比較して、前記金属層(B)中の分散剤を除去して形成する空隙サイズを大きくすることができ、ナノオーダーからサブミクロンオーダーの大きさの空隙を形成することができる。この空隙に後述する金属層(C)を構成する金属が充填されやすくなり、充填された金属がアンカーとなり、前記金属層(B)と後述する金属層(C)との密着性を大幅に向上することができる。 As described above, by using a polymer dispersant as the dispersant, the void size formed by removing the dispersant in the metal layer (B) can be increased as compared with the low-molecular dispersant. It is possible to form voids having a size of nano-order to sub-micron order. The voids are easily filled with the metal constituting the metal layer (C) described later, and the filled metal serves as an anchor, greatly improving the adhesion between the metal layer (B) and the metal layer (C) described later. can do.
 前記ナノサイズの金属粉を分散させるために必要な前記分散剤の使用量は、前記ナノサイズの金属粉100質量部に対し、0.01~50質量部が好ましく、0.01~10質量部がより好ましい。 The amount of the dispersant used for dispersing the nano-sized metal powder is preferably 0.01 to 50 parts by weight, and 0.01 to 10 parts by weight with respect to 100 parts by weight of the nano-sized metal powder. Is more preferable.
 また、前記金属層(B)中の分散剤を除去して空隙をより形成しやすくし、前記金属層(B)と後述する金属層(C)との密着性をより向上できることから、前記ナノサイズの金属粉100質量部に対し、0.1~10質量部が好ましく、0.1~5質量部がより好ましい。 In addition, since the dispersant in the metal layer (B) is removed to make it easier to form voids and the adhesion between the metal layer (B) and the metal layer (C) described later can be further improved, the nano The amount is preferably 0.1 to 10 parts by weight, and more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the size of the metal powder.
 前記流動体に用いる溶媒としては、水性媒体や有機溶剤を使用することができる。前記水性媒体としては、例えば、蒸留水、イオン交換水、純水、超純水等が挙げられる。また、前記有機溶剤としては、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物等が挙げられる。 As the solvent used for the fluid, an aqueous medium or an organic solvent can be used. Examples of the aqueous medium include distilled water, ion exchange water, pure water, and ultrapure water. Examples of the organic solvent include alcohol compounds, ether compounds, ester compounds, and ketone compounds.
 前記アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、2-メチル-2-プロパノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。 Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol, heptanol, hexanol, octanol, and nonanol. , Decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol Monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol Butyl ether, tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tri And propylene glycol monobutyl ether.
 また、前記流動体には、上記の金属粉、溶媒の他に、必要に応じてエチレングリコール、ジエチレングリコール、1,3-ブタンジオール、イソプレングリコール等を用いることができる。 In addition to the above metal powder and solvent, ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used for the fluid as necessary.
 前記界面活性剤としては、一般的な界面活性剤を使用することができ、例えば、ジ-2-エチルヘキシルスルホコハク酸塩、ドデシルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルナフタレンスルホン酸塩、ヘキサメタリン酸塩等が挙げられる。 As the surfactant, a general surfactant can be used. For example, di-2-ethylhexylsulfosuccinate, dodecylbenzenesulfonate, alkyldiphenylether disulfonate, alkylnaphthalenesulfonate, hexametalin Examples include acid salts.
 前記レベリング剤としては、一般的なレベリング剤を使用することができ、例えば、シリコーン系化合物、アセチレンジオール系化合物、フッ素系化合物などが挙げられる。 As the leveling agent, a general leveling agent can be used, and examples thereof include silicone compounds, acetylenic diol compounds, and fluorine compounds.
 前記粘度調整剤としては、一般的な増粘剤を使用することができ、例えば、アルカリ性に調整することによって増粘可能なアクリル重合体や合成ゴムラテックス、分子が会合することによって増粘可能なウレタン樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、水添加ヒマシ油、アマイドワックス、酸化ポリエチレン、金属石鹸、ジベンジリデンソルビトール等が挙げられる。 As the viscosity modifier, a general thickener can be used, for example, an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to an alkaline property, and can be thickened by association of molecules. Examples thereof include urethane resin, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amide wax, polyethylene oxide, metal soap, and dibenzylidene sorbitol.
 前記成膜助剤としては、一般的な成膜助剤を使用することができ、例えば、アニオン系界面活性剤(ジオクチルスルホコハク酸エステルソーダ塩など)、疎水性ノニオン系界面活性剤(ソルビタンモノオレエートなど)、ポリエーテル変性シロキサン、シリコーンオイル等が挙げられる。 As the film forming aid, a general film forming aid can be used. For example, an anionic surfactant (dioctylsulfosuccinic acid ester soda salt, etc.), a hydrophobic nonionic surfactant (sorbitan monooleate). And polyether-modified siloxane, silicone oil, and the like.
 前記消泡剤としては、一般的な消泡剤を使用することができ、例えばシリコーン系消泡剤や、ノニオン系界面活性剤、ポリエーテル,高級アルコール、ポリマー系界面活性剤等が挙げられる。 As the antifoaming agent, a general antifoaming agent can be used, and examples thereof include silicone-based antifoaming agents, nonionic surfactants, polyethers, higher alcohols, and polymer-based surfactants.
 前記防腐剤としては、一般的な防腐剤を使用することができ、例えば、イソチアゾリン系防腐剤、トリアジン系防腐剤、イミダゾール系防腐剤、ピリジン系防腐剤、アゾール系防腐剤、ヨード系防腐剤、ピリチオン系防腐剤等が挙げられる。 As the preservative, general preservatives can be used, for example, isothiazoline preservatives, triazine preservatives, imidazole preservatives, pyridine preservatives, azole preservatives, iodine preservatives, Examples include pyrithione preservatives.
 前記流動体の粘度(25℃でB型粘度計を用いて測定した値)は、0.1~500,000mPa・sの範囲が好ましく、0.5~10,000mPa・sの範囲がより好ましい。また、前記流動体を、後述するインクジェット印刷法、凸版反転印刷等の方法によって塗布(印刷)する場合には、その粘度は5~20mPa・sの範囲が好ましい。 The viscosity of the fluid (measured with a B-type viscometer at 25 ° C.) is preferably in the range of 0.1 to 500,000 mPa · s, more preferably in the range of 0.5 to 10,000 mPa · s. . In addition, when the fluid is applied (printed) by a method such as an ink jet printing method or letterpress reverse printing described later, the viscosity is preferably in the range of 5 to 20 mPa · s.
 前記支持体(A)の上に前記流動体を塗布する方法としては、例えば、インクジェット印刷法、反転印刷法、スクリーン印刷法、オフセット印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等が挙げられる。 Examples of the method for applying the fluid on the support (A) include an inkjet printing method, a reverse printing method, a screen printing method, an offset printing method, a spin coating method, a spray coating method, a bar coating method, and a die coating. Method, slit coat method, roll coat method, dip coat method and the like.
 これらの塗布方法の中でも、電子回路等の高密度化を実現する際に求められる0.01~100μm程度の幅の細線状でパターン化された前記金属層(B)を形成する場合には、インクジェット印刷法、反転印刷法を用いることが好ましい。 Among these coating methods, when forming the metal layer (B) patterned in a thin line shape having a width of about 0.01 to 100 μm, which is required when realizing high density of electronic circuits or the like, It is preferable to use an inkjet printing method or a reverse printing method.
 前記インクジェット印刷法としては、一般にインクジェットプリンターといわれるものを使用することができる。具体的には、コニカミノルタEB100、XY100(コニカミノルタIJ株式会社製)、ダイマティックス・マテリアルプリンターDMP-3000、ダイマティックス・マテリアルプリンターDMP-2831(富士フィルム株式会社製)等が挙げられる。 As the ink jet printing method, what is generally called an ink jet printer can be used. Specific examples include Konica Minolta EB100, XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dimatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), and the like.
 また、反転印刷法としては、凸版反転印刷法、凹版反転印刷法が知られており、例えば、各種ブランケットの表面に前記流動体を塗布し、非画線部が突出した版と接触させ、前記非画線部に対応する流動体を前記版の表面に選択的に転写させることによって、前記ブランケット等の表面に前記パターンを形成し、次いで、前記パターンを、前記支持体層(A)の上(表面)に転写させる方法が挙げられる。 Further, as the reversal printing method, a letterpress reversal printing method and an intaglio reversal printing method are known, for example, the fluid is applied to the surface of various blankets and brought into contact with a plate from which a non-image portion protrudes, By selectively transferring a fluid corresponding to a non-image area to the surface of the plate, the pattern is formed on the surface of the blanket or the like, and then the pattern is formed on the support layer (A). The method of transferring to (surface) is mentioned.
 前記金属層(B)は、前記支持体(A)の上に形成されるが、前記支持体(A)の表面と前記金属層(B)との密着性をより向上するため、前記支持体(A)の表面にプライマーを塗布、乾燥してプライマー層を形成した後に、このプライマー層の上に前記金属層(B)を形成しても構わない。 Although the said metal layer (B) is formed on the said support body (A), in order to improve the adhesiveness of the surface of the said support body (A), and the said metal layer (B) more, the said support body After forming a primer layer by applying and drying a primer on the surface of (A), the metal layer (B) may be formed on the primer layer.
 前記プライマーとしては、例えば、ウレタン樹脂、ビニル樹脂、ウレタン-ビニル複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、ポリビニルアルコール、ポリビニルピロリドン等の各種樹脂と溶媒とを含有するものが挙げられる。 Examples of the primer include urethane resin, vinyl resin, urethane-vinyl composite resin, epoxy resin, imide resin, amide resin, melamine resin, phenol resin, polyvinyl alcohol, polyvinyl pyrrolidone, and various resins and solvents. Is mentioned.
 前記プライマーとして用いる樹脂の中でも、ウレタン樹脂、ビニル樹脂、ウレタン-ビニル複合樹脂を使用することが好ましく、ポリエーテル構造を有するウレタン樹脂、ポリカーボネート構造を有するウレタン樹脂、ポリエステル構造を有するウレタン樹脂、アクリル樹脂、及び、ウレタン-アクリル複合樹脂からなる群より選ばれる1種以上の樹脂がより好ましく、ウレタン-アクリル複合樹脂は、密着性、導電性、細線性に優れた導電性パターンに用いる積層体が得られるのでさらに好ましい。 Among the resins used as the primer, urethane resin, vinyl resin, and urethane-vinyl composite resin are preferably used. Urethane resin having a polyether structure, urethane resin having a polycarbonate structure, urethane resin having a polyester structure, acrylic resin And one or more resins selected from the group consisting of urethane-acrylic composite resins are more preferred, and urethane-acrylic composite resins provide a laminate for use in conductive patterns having excellent adhesion, electrical conductivity, and fine wire properties. More preferable.
 前記プライマー中の前記樹脂の含有比率は、塗布のしやすさを考慮すると、10~70質量%の範囲が好ましく、10~50質量%の範囲がより好ましい。 The content ratio of the resin in the primer is preferably in the range of 10 to 70% by mass and more preferably in the range of 10 to 50% by mass in consideration of ease of application.
 また、前記プライマーに用いる溶媒としては、有機溶剤や水性媒体が挙げられる。 Also, examples of the solvent used for the primer include organic solvents and aqueous media.
 前記有機溶剤としては、例えば、トルエン、酢酸エチル、メチルエチルケトン等が挙げられ、前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。 Examples of the organic solvent include toluene, ethyl acetate, and methyl ethyl ketone. Examples of the aqueous medium include water, an organic solvent that is miscible with water, and a mixture thereof.
 水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール;アセトン、メチルエチルケトン等のケトン;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール;ポリアルキレングリコールのアルキルエーテル;N-メチル-2-ピロリドン等のラクタムなどが挙げられる。 Examples of the organic solvent miscible with water include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, and butyl cellosolve; ketones such as acetone and methyl ethyl ketone; and polymers such as ethylene glycol, diethylene glycol, and propylene glycol. Examples include alkylene glycols; alkyl ethers of polyalkylene glycols; and lactams such as N-methyl-2-pyrrolidone.
 前記プライマー中の前記溶媒の含有比率は、塗布のしやすさを考慮すると、25~85質量の範囲が好ましく、45~85質量%の範囲がより好ましい。 The content ratio of the solvent in the primer is preferably in the range of 25 to 85% by mass and more preferably in the range of 45 to 85% by mass in consideration of ease of application.
 前記プライマーには、必要に応じて、架橋剤、pH調整剤、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤等の添加剤を加えてもよい。 If necessary, additives such as a crosslinking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent, and an antifoaming agent may be added to the primer.
 前記プライマー層は、前記支持体(A)の表面の一部又は全部にプライマーを塗布し、前記プライマー中に含まれる水性媒体、有機溶剤等の溶媒を除去することによって形成することができる。 The primer layer can be formed by applying a primer to part or all of the surface of the support (A) and removing a solvent such as an aqueous medium or an organic solvent contained in the primer.
 前記プライマーを前記支持体(A)の表面に塗布する方法としては、例えば、グラビア方式、コーティング方式、スクリーン方式、ローラー方式、ロータリー方式、スプレー方式等が挙げられる。 Examples of the method for applying the primer to the surface of the support (A) include a gravure method, a coating method, a screen method, a roller method, a rotary method, and a spray method.
 前記プライマー層の表面は、前記金属層(B)との密着性をより向上するため、例えば、コロナ放電処理法等のプラズマ放電処理法、紫外線処理法等の乾式処理法、水、酸性又はアルカリ性薬液、有機溶剤等を用いた湿式処理法によって、表面処理されていてもよい。 In order to further improve the adhesion of the primer layer to the metal layer (B), for example, a plasma discharge treatment method such as a corona discharge treatment method, a dry treatment method such as an ultraviolet treatment method, water, acidic or alkaline Surface treatment may be performed by a wet treatment method using a chemical solution, an organic solvent, or the like.
 前記プライマーを前記支持体(A)の表面に塗布した後、その塗布層に含まれる溶媒を除去する方法としては、例えば乾燥機を用いて乾燥させ、前記溶媒を揮発させる方法が一般的である。乾燥温度としては、前記溶媒を揮発させることが可能で、かつ支持体(A)に悪影響を与えない範囲の温度に設定することが好ましい。 As a method for removing the solvent contained in the coating layer after coating the primer on the surface of the support (A), for example, a method of drying using a dryer and volatilizing the solvent is common. . The drying temperature is preferably set to a temperature that allows the solvent to be volatilized and does not adversely affect the support (A).
 前記プライマーを用いて形成するプライマー層の厚さは、本発明の積層体を用いる用途によって異なるが、前記支持体(A)と前記金属層(B)との密着性をより向上できることから、10nm~30μmの範囲が好ましく、10nm~1μmの範囲がより好ましく、10nm~500nmの範囲がさらに好ましい。 Although the thickness of the primer layer formed using the primer varies depending on the use of the laminate of the present invention, it can further improve the adhesion between the support (A) and the metal layer (B). The range of ˜30 μm is preferable, the range of 10 nm to 1 μm is more preferable, and the range of 10 nm to 500 nm is more preferable.
 また、前記支持体(A)の上にプライマー層を設ける場合には、前記支持体(A)と前記プライマー層との密着性を向上できることから、前記支持体(A)の表面に、微細な凹凸の形成、その表面に付着した汚れの洗浄、ヒドロキシル基、カルボニル基、カルボキシル基等の官能基の導入のための表面処理等が施されていてもよい。具体的にはコロナ放電処理等のプラズマ放電処理、紫外線処理等の乾式処理、水、酸・アルカリ等の水溶液又は有機溶剤等を用いる湿式処理等が施されていてもよい。 Moreover, when providing a primer layer on the said support body (A), since the adhesiveness of the said support body (A) and the said primer layer can be improved, it is fine on the surface of the said support body (A). Surface treatment for forming irregularities, cleaning dirt adhering to the surface, introducing functional groups such as hydroxyl group, carbonyl group, and carboxyl group may be performed. Specifically, a plasma discharge treatment such as a corona discharge treatment, a dry treatment such as an ultraviolet treatment, a wet treatment using an aqueous solution such as water, an acid / alkali, or an organic solvent may be applied.
 前記金属層(B)を形成するために、金属粉を含有する流動体を塗布した後に行う焼成工程は、前記流動体中に含まれる金属粉同士を密着し接合することで導電性を有する金属層(B)を形成するために行う。前記焼成は、80~300℃の温度範囲で、2~200分程度行うことが好ましい。前記焼成は大気中で行っても良いが、金属粉のすべてが酸化することを防止するため、焼成工程の一部又は全部を還元雰囲気下で行ってもよい。この焼成工程を経ることで、前記金属層(B)の形成に用いる粒子状又は繊維状の金属粉同士が密着し接合することで、前記金属層(B)は多孔質状のものとなる。 In order to form the metal layer (B), the firing step performed after applying a fluid containing metal powder is a metal having conductivity by closely contacting and joining the metal powders contained in the fluid. Performed to form layer (B). The firing is preferably performed at a temperature range of 80 to 300 ° C. for about 2 to 200 minutes. The firing may be performed in the air, but a part or all of the firing step may be performed in a reducing atmosphere in order to prevent all of the metal powder from being oxidized. By passing through this firing step, the metal layer (B) becomes porous when the particulate or fibrous metal powders used for forming the metal layer (B) are brought into close contact with each other and bonded together.
 また、前記焼成工程は、例えば、オーブン、熱風式乾燥炉、赤外線乾燥炉、レーザー照射、マイクロウェーブ、光照射(フラッシュ照射装置)等を用いて行うことができる。 The baking step can be performed using, for example, an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwave, light irradiation (flash irradiation apparatus), or the like.
 上記の焼成工程により得られた金属層(B’)の厚さは、後述する金属層(C)との密着性を考慮すると、10nm~10μmの範囲が好ましく、10nm~3μmの範囲がより好ましい。 The thickness of the metal layer (B ′) obtained by the firing step is preferably in the range of 10 nm to 10 μm, more preferably in the range of 10 nm to 3 μm, considering the adhesion with the metal layer (C) described later. .
 上記の焼成工程後、前記金属層(B’)中に存在する分散剤を含む有機化合物を除去し空隙を形成することで、多孔質状の前記金属層(B)とすることができる。この有機化合物を除去する方法としては、前記金属層(B’)に対し、プラズマ放電処理法、電磁波照射処理法、レーザー照射処理法、水や有機溶剤で分散剤を含む有機化合物を再分散して溶解する溶解処理法等の処理を施す方法がある。これらの処理方法は、単独又は2つ以上を組合せて用いることができ、2つ以上を組み合わせることで、より効率よく前記有機化合物が除去できるため好ましい。なお、ここでいう有機化合物とは、前記流動体に配合される成分であり、分散剤、溶媒、界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤等の有機化合物をいう。 After the above baking step, the porous metal layer (B) can be obtained by removing the organic compound containing the dispersant present in the metal layer (B ′) to form voids. As a method for removing this organic compound, a plasma discharge treatment method, an electromagnetic wave irradiation treatment method, a laser irradiation treatment method, an organic compound containing a dispersant with water or an organic solvent is redispersed with respect to the metal layer (B ′). There is a method of performing a treatment such as a dissolution treatment method. These treatment methods are preferable because they can be used alone or in combination of two or more, and the organic compound can be removed more efficiently by combining two or more. The organic compound referred to here is a component blended in the fluid and includes a dispersant, a solvent, a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, a preservative, and the like. An organic compound.
 前記プラズマ放電処理法としては、例えば、コロナ放電処理法等の常圧プラズマ放電処理法、真空又は減圧下で行うグロー放電処理法及びアーク放電処理法等の真空プラズマ放電処理法などが挙げられる。 Examples of the plasma discharge treatment method include an atmospheric pressure plasma discharge treatment method such as a corona discharge treatment method, a vacuum plasma discharge treatment method such as a glow discharge treatment method and an arc discharge treatment method performed under vacuum or reduced pressure, and the like.
 前記常圧プラズマ放電処理法としては、酸素濃度が0.1~25容量%程度の雰囲気下でプラズマ放電処理する方法が挙げられるが、前記金属層(B)と金属層(C)との密着性を向上するとともに、多孔質状の金属層(B)が有する空隙に金属層(C)を構成する金属が充填されやすくするため、酸素濃度は10~22容量%の範囲が好ましく、約21容量%(空気雰囲気下)がより好ましい。 Examples of the atmospheric pressure plasma discharge treatment method include a plasma discharge treatment method in an atmosphere having an oxygen concentration of about 0.1 to 25% by volume. The adhesion between the metal layer (B) and the metal layer (C) is mentioned. The oxygen concentration is preferably in the range of 10 to 22% by volume so that the metal constituting the metal layer (C) can be easily filled in the voids of the porous metal layer (B). Volume% (in an air atmosphere) is more preferable.
 また、前記常圧プラズマ放電処理法は、前記酸素濃度の下で不活性ガスを含む環境下で行うことが、前記金属層(B)の表面に過剰な凹凸を付与することなく、前記金属層(B)と金属層(C)との密着性をより向上できるため好ましい。なお、前記不活性ガスとしては、アルゴン、窒素等が挙げられる。 Further, the atmospheric pressure plasma discharge treatment method is performed in an environment containing an inert gas under the oxygen concentration, and the metal layer (B) can be formed without excessive irregularities on the surface of the metal layer (B). Since the adhesiveness of (B) and a metal layer (C) can be improved more, it is preferable. Examples of the inert gas include argon and nitrogen.
 前記常圧プラズマ放電処理法によって処理する際に用いることのできる装置としては、例えば、積水化学工業株式会社製の常圧プラズマ処理装置「AP-T01」等が挙げられる。 Examples of an apparatus that can be used for the treatment by the atmospheric pressure plasma discharge treatment method include an atmospheric pressure plasma treatment apparatus “AP-T01” manufactured by Sekisui Chemical Co., Ltd.
 前記常圧プラズマ放電処理法によって処理する際には、空気等のガスの流量としては、5~50リットル/分の範囲が好ましい。また、出力としては、50~500Wの範囲が好ましい。さらに、処理時間としては、1~500秒の範囲が好ましい。 When the atmospheric pressure plasma discharge treatment is used, the flow rate of gas such as air is preferably in the range of 5 to 50 liters / minute. The output is preferably in the range of 50 to 500W. Further, the treatment time is preferably in the range of 1 to 500 seconds.
 前記常圧プラズマ放電処理法の中でも、コロナ放電処理法を用いることが好ましい。コロナ放電処理法で用いることのできる装置としては、例えば、春日電機株式会社製のコロナ表面改質評価装置「TEC-4AX」等が挙げられる。 Among the atmospheric pressure plasma discharge treatment methods, it is preferable to use a corona discharge treatment method. As an apparatus that can be used in the corona discharge treatment method, for example, a corona surface modification evaluation apparatus “TEC-4AX” manufactured by Kasuga Electric Co., Ltd. may be mentioned.
 コロナ放電処理法によって処理する際には、出力として、5~300Wの範囲が好ましい。また、処理時間は、0.5~600秒の範囲が好ましい。 When the treatment is performed by the corona discharge treatment method, the output is preferably in the range of 5 to 300 W. The treatment time is preferably in the range of 0.5 to 600 seconds.
 上記のプラズマ放電処理法は、前記金属層(B’)中に存在する前記有機化合物を深部まで除去することができ、前記支持体(A)と前記金属層(B)との界面近傍に存在する前記金属層(B)中に存在する前記有機化合物まで除去可能であることから好ましい。上記のプラズマ放電処理法を用いることで、後述する金属層(C)を形成する際に、多孔質状の金属層(B)が有する空隙に金属層(C)を構成する金属が充填されやすく、前記支持体(A)と前記金属層(B)との界面近傍に存在する前記金属層(B)中の空隙まで金属層(C)を構成する金属を充填することがより容易となる。このことにより、前記金属層(B)のより深い部分まで金属層(C)を構成する金属が入り込み、より大きなアンカー効果を発揮することから、前記金属層(B)と後述する金属層(C)との密着性を大幅に向上することができる。 The plasma discharge treatment method can remove the organic compound existing in the metal layer (B ′) to a deep portion and is present in the vicinity of the interface between the support (A) and the metal layer (B). It is preferable because the organic compound existing in the metal layer (B) can be removed. By using the above plasma discharge treatment method, the metal constituting the metal layer (C) is easily filled in the voids of the porous metal layer (B) when the metal layer (C) described later is formed. It becomes easier to fill the metal constituting the metal layer (C) to the voids in the metal layer (B) existing in the vicinity of the interface between the support (A) and the metal layer (B). As a result, the metal constituting the metal layer (C) penetrates to a deeper portion of the metal layer (B) and exhibits a greater anchoring effect. Therefore, the metal layer (B) and a metal layer (C described later) ) Can be greatly improved.
 前記電磁波照射処理法は、電磁波を前記金属層(B’)に照射することで、前記金属層(B’)を高温で加熱し、有機化合物を分解して除去することができる。この電磁波照射処理は、電磁波吸収共鳴を利用して選択的に分散剤を除去することもできる。事前に、前記金属層(B’)中に存在する前記有機化合物と共鳴する電磁波の波長を設定しておき、前記金属層(B)に設定された波長の電磁波を照射する。これにより、前記有機化合物への吸収が大きくなるため(共鳴)、電磁波の強度を調整することで、分散剤のみを除去することができる。 In the electromagnetic wave irradiation treatment method, the metal layer (B ′) is heated at a high temperature by irradiating the metal layer (B ′) with electromagnetic waves, whereby the organic compound can be decomposed and removed. In this electromagnetic wave irradiation treatment, the dispersant can be selectively removed using electromagnetic wave absorption resonance. The wavelength of the electromagnetic wave that resonates with the organic compound present in the metal layer (B ′) is set in advance, and the electromagnetic wave having the wavelength set in the metal layer (B) is irradiated. Thereby, since the absorption to the organic compound increases (resonance), only the dispersant can be removed by adjusting the intensity of the electromagnetic wave.
 前記レーザー照射処理法は、前記金属層(B’)にレーザーを照射することにより、金属層(B’)中の前記有機化合物を分解して除去することができる。このレーザー照射処理法には、レーザースクライブ処理が可能なレーザーを用いることができる。レーザースクライブ処理が可能なレーザーとしては、YAGレーザー、COレーザー、エキシマレーザー等が挙げられるが、特にYAGレーザーが好ましい。基本波長1.06μmの他に非線形光学素子を併用して得られる第二高調波の0.53μmの光も所望に応じて利用することができる。YAGレーザーは、高いピークパワーと高い周波数を得るため、パルスレーザーを使用することが好ましい。 In the laser irradiation treatment method, the organic compound in the metal layer (B ′) can be decomposed and removed by irradiating the metal layer (B ′) with a laser. For this laser irradiation treatment method, a laser capable of laser scribing treatment can be used. Examples of the laser that can be laser-scribed include a YAG laser, a CO 2 laser, and an excimer laser, and a YAG laser is particularly preferable. In addition to the fundamental wavelength of 1.06 μm, 0.53 μm light of the second harmonic obtained by using a nonlinear optical element in combination can be used as desired. A YAG laser preferably uses a pulsed laser in order to obtain a high peak power and a high frequency.
 具体的な前記金属層(B’)へのレーザー照射の方法としては、前記金属層(B’)を搬送しながら、レーザー光源から出力されたレーザービームをレンズによって集光して、前記金属層(B’)の表面に照射する。この際に、ポリゴンミラーを利用してレーザービームを移動して、搬送中の前記金属層(B’)の表面をレーザービームで走査するようにする。これにより、前記金属層(B’)を高温で加熱することができる。レーザー照射処理は、レーザー光の出力が0.1~100kW、パルス発信の周波数(発振周波数)が数kHzから数十kHz、1つのパルスの継続時間(パルス幅)が90~100nsecであることが好ましい。 As a specific method of laser irradiation to the metal layer (B ′), a laser beam output from a laser light source is condensed by a lens while conveying the metal layer (B ′), and the metal layer Irradiate the surface of (B ′). At this time, the laser beam is moved using a polygon mirror, and the surface of the metal layer (B ′) being conveyed is scanned with the laser beam. Accordingly, the metal layer (B ′) can be heated at a high temperature. In the laser irradiation treatment, the output of the laser beam is 0.1 to 100 kW, the pulse transmission frequency (oscillation frequency) is several kHz to several tens kHz, and the duration (pulse width) of one pulse is 90 to 100 nsec. preferable.
 前記溶解処理法は、前記金属層(B’)中に存在する前記有機化合物を再分散して水や有機溶媒に溶解させることで除去する方法である。前記有機溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;ジメチルスルホキシド、ジメチルホルムアミド、N-メチルピロリドン等の非プロトン性極性溶媒;テトラヒドロフラン、メチルエチルケトン、酢酸エチル、エクアミド(出光興産製有機溶剤)などが挙げられる。 The dissolution treatment method is a method of removing the organic compound existing in the metal layer (B ′) by redispersing it and dissolving it in water or an organic solvent. Examples of the organic solvent include alcohol solvents such as methanol, ethanol and isopropyl alcohol; aprotic polar solvents such as dimethyl sulfoxide, dimethylformamide and N-methylpyrrolidone; tetrahydrofuran, methyl ethyl ketone, ethyl acetate and ecamide (organic solvent manufactured by Idemitsu Kosan Co., Ltd.) ) And the like.
 また、前記有機化合物を再分散し、溶解するため、酸やアルカリを用いることが好ましく、アルカリを用いることがより好ましい。酸としては、例えば、硫酸、硝酸、塩酸、リン酸、シュウ酸、酢酸、蟻酸、プロピオン酸、コハク酸、グルタル酸、酒石酸、アジピン酸等が挙げられる。これらの中でも硫酸、硝酸、塩酸等の強酸を使用することが好ましい。さらに、後述する金属層(C)を、硫酸銅を用いた電解銅めっき工程で形成する場合、後工程に不純物を持ち込まないためにも硫酸を用いることが好ましい。 Moreover, in order to re-disperse and dissolve the organic compound, it is preferable to use an acid or an alkali, and more preferably to use an alkali. Examples of the acid include sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, oxalic acid, acetic acid, formic acid, propionic acid, succinic acid, glutaric acid, tartaric acid, adipic acid and the like. Among these, it is preferable to use strong acids such as sulfuric acid, nitric acid, and hydrochloric acid. Furthermore, when the metal layer (C) described later is formed by an electrolytic copper plating process using copper sulfate, it is preferable to use sulfuric acid so as not to bring impurities into the subsequent process.
 前記アルカリとしては、水酸化ナトリウムや水酸化カリウム、水酸化リチウム、水酸化カルシウム、アンモニア、トリエチルアミン、ピリジン、モルホリン等の有機アミン;モノエタノールアミン等のアルカノールアミンなどが挙げられる。なかでも、水酸化ナトリウムや水酸化カリウムなどの強アルカリを用いることが好ましい。 Examples of the alkali include organic amines such as sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, ammonia, triethylamine, pyridine and morpholine; alkanolamines such as monoethanolamine. Among these, it is preferable to use a strong alkali such as sodium hydroxide or potassium hydroxide.
 また、前記有機化合物を再分散し、溶解するため、界面活性剤を用いることもできる。前記界面活性剤には、一般的な界面活性剤を用いることができ、例えば、ジ-2-エチルヘキシルスルホコハク酸塩、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩等が挙げられる。これら界面活性剤は、水へ溶解することでアルカリ性を示すため、前記有機化合物を除去しやすいことからより好ましい。 Also, a surfactant can be used to re-disperse and dissolve the organic compound. As the surfactant, a general surfactant can be used, and examples thereof include di-2-ethylhexyl sulfosuccinate, alkyl sulfate, alkyl benzene sulfonate, and alkyl diphenyl ether disulfonate. Since these surfactants show alkalinity when dissolved in water, they are more preferable because they easily remove the organic compound.
 次に、上記のようにして、前記支持体(A)の上に、前記金属層(B’)中の前記有機化合物を除去することにより空隙を有する多孔質状の金属層(B)を形成した後、前記金属層(B)上に金属層(C)を形成することで、本発明の積層体を得ることができる。 Next, as described above, a porous metal layer (B) having voids is formed on the support (A) by removing the organic compound in the metal layer (B ′). Then, the laminate of the present invention can be obtained by forming the metal layer (C) on the metal layer (B).
 本発明の積層体を構成する金属層(C)は、例えば、前記積層体を導電性パターン等に使用する場合に、長期間にわたり断線等を生じることなく、良好な通電性を維持可能な信頼性の高い配線パターンを形成することを目的として設けられる層である。 The metal layer (C) constituting the laminate of the present invention has a reliability capable of maintaining good electrical conductivity without disconnection or the like over a long period of time when the laminate is used for a conductive pattern, for example. This layer is provided for the purpose of forming a highly reliable wiring pattern.
 前記金属層(C)は、前記金属層(B)の上に形成される層であるが、その形成方法としては、めっき処理によって形成する方法が好ましい。このめっき処理としては、例えば、電解めっき法、無電解めっき法等の湿式めっき法、スパッタリング法、真空蒸着法等の乾式めっき法などが挙げられる。また、これらのめっき法を2つ以上組み合わせて、前記金属層(C)を形成しても構わない。 The metal layer (C) is a layer formed on the metal layer (B), and the formation method is preferably a method of forming by plating. Examples of the plating treatment include wet plating methods such as electrolytic plating methods and electroless plating methods, and dry plating methods such as sputtering methods and vacuum deposition methods. Further, the metal layer (C) may be formed by combining two or more of these plating methods.
 上記のめっき処理の中でも、多孔質状の金属層(B)が有する空隙に金属層(C)を構成する金属が充填されやすく、前記金属層(B)と前記金属層(C)との密着性がより向上し、また、導電性に優れた導電性パターンが得られることから、電解めっき法、無電解めっき法等の湿式めっき法が好ましく、電解めっき法がより好ましい。 Among the above plating treatments, the metal constituting the metal layer (C) is easily filled in the voids of the porous metal layer (B), and the metal layer (B) and the metal layer (C) are in close contact with each other. Therefore, wet plating methods such as an electrolytic plating method and an electroless plating method are preferable, and an electrolytic plating method is more preferable because the conductivity is further improved and a conductive pattern having excellent conductivity is obtained.
 上記の無電解めっき法は、例えば、前記金属層(B)を構成する金属に、無電解めっき液を接触させることで、無電解めっき液中に含まれる銅等の金属を析出させ金属皮膜からなる無電解めっき層(皮膜)を形成する方法である。 In the electroless plating method, for example, the metal constituting the metal layer (B) is brought into contact with an electroless plating solution, thereby depositing a metal such as copper contained in the electroless plating solution from the metal film. This is a method of forming an electroless plating layer (film).
 前記無電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものが挙げられる。 Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
 前記還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等が挙げられる。 Examples of the reducing agent include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
 また、前記無電解めっき液としては、必要に応じて、酢酸、蟻酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマール酸等のジカルボン酸化合物;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸化合物;グリシン、アラニン、イミノジ酢酸、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸化合物;ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸化合物などの有機酸、又はこれらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物等の錯化剤を含有するものを使用することができる。 In addition, as the electroless plating solution, if necessary, monocarboxylic acids such as acetic acid and formic acid; dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid, and fumaric acid; malic acid, lactic acid, glycol Hydroxycarboxylic acid compounds such as acid, gluconic acid and citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamic acid; aminopolyester such as nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid Use organic acids such as carboxylic acid compounds, or soluble salts of these organic acids (sodium salts, potassium salts, ammonium salts, etc.), and those containing complexing agents such as amine compounds such as ethylenediamine, diethylenetriamine, and triethylenetetramine. Do Door can be.
 前記無電解めっき液は、20~98℃の範囲で使用することが好ましい。 The electroless plating solution is preferably used in the range of 20 to 98 ° C.
 前記電解めっき法は、例えば、前記金属層(B)を構成する金属、又は、前記無電解処理によって形成された無電解めっき層(被膜)の表面に、電解めっき液を接触した状態で通電することにより、前記電解めっき液中に含まれる銅等の金属を、カソードに設置した前記金属層(B)を構成する導電性物質又は前記無電解処理によって形成された無電解めっき層(被膜)の表面に析出させ、電解めっき層(金属被膜)を形成する方法である。 In the electrolytic plating method, for example, the metal constituting the metal layer (B) or the surface of the electroless plating layer (coating) formed by the electroless treatment is energized with an electrolytic plating solution in contact with the surface. Thus, a metal such as copper contained in the electrolytic plating solution is used to form a conductive material constituting the metal layer (B) placed on the cathode or the electroless plating layer (coating) formed by the electroless treatment. This is a method of depositing on the surface and forming an electrolytic plating layer (metal coating).
 前記電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属の硫化物と、硫酸と、水性媒体とを含有するもの等が挙げられる。具体的には、硫酸銅と硫酸と水性媒体とを含有するものが挙げられる。 Examples of the electrolytic plating solution include those containing metal sulfides such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specifically, what contains copper sulfate, sulfuric acid, and an aqueous medium is mentioned.
 前記電解めっき液は、20~98℃の範囲で使用することが好ましい。 The electrolytic plating solution is preferably used in the range of 20 to 98 ° C.
 上記電解めっき処理法では、毒性の高い物質を用いることなく、作業性がよいため、電解めっき法を用いた銅からなる金属層(C)を形成することが好ましい。 In the above electrolytic plating treatment method, it is preferable to form a metal layer (C) made of copper using an electrolytic plating method because workability is good without using a highly toxic substance.
 また、前記乾式めっき処理工程としては、スパッタリング法、真空蒸着法等を用いることができる。前記スパッタリング法は、真空中で不活性ガス(主にアルゴン)を導入し、金属層(C)の形成材料(ターゲット材)に対して電圧を印加してグロー放電を発生させ、次いで、前記不活性ガス原子をイオン化し、高速で前記金属層(C)の形成材料(ターゲット材)の表面にガスイオンを激しく叩きつけ、金属層(C)の形成材料(ターゲット材)を構成する原子及び分子を弾き出し勢いよく前記金属層(B)の表面に付着させることにより金属層(C)を形成する方法である。 Further, as the dry plating process, a sputtering method, a vacuum deposition method, or the like can be used. In the sputtering method, an inert gas (mainly argon) is introduced in a vacuum, and a voltage is applied to the forming material (target material) of the metal layer (C) to generate a glow discharge. Activated gas atoms are ionized, gas ions are struck violently at the surface of the metal layer (C) forming material (target material) at high speed, and atoms and molecules constituting the metal layer (C) forming material (target material) In this method, the metal layer (C) is formed by vigorously adhering to the surface of the metal layer (B).
 スパッタリング法による前記金属層(C)の形成材料(ターゲット材)としては、例えば、クロム、銅、チタン、銀、白金、金、ニッケル-クロム合金、ステンレス、銅-亜鉛合金、インジウムチンオキサイド(ITO)、二酸化ケイ素、二酸化チタン、酸化ニオブ、酸化亜鉛等が挙げられる。 Examples of the material (target material) for forming the metal layer (C) by sputtering include chrome, copper, titanium, silver, platinum, gold, nickel-chromium alloy, stainless steel, copper-zinc alloy, and indium tin oxide (ITO). ), Silicon dioxide, titanium dioxide, niobium oxide, zinc oxide and the like.
 前記スパッタリング法によりめっき処理する際には、例えば、マグネトロンスパッタ装置等を使用することができる。 When performing the plating process by the sputtering method, for example, a magnetron sputtering apparatus or the like can be used.
 前記金属層(C)の厚さは、1~50μmの範囲が好ましい。前記金属層(C)の厚さは、前記金属層(C)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 The thickness of the metal layer (C) is preferably in the range of 1 to 50 μm. The thickness of the metal layer (C) can be adjusted by controlling the processing time, the current density, the amount of the additive for plating, etc. in the plating process when forming the metal layer (C). .
 上記の方法により得られた本発明の積層体は、導電性パターンとして使用することが可能である。本発明の積層体を導電性パターンに使用する場合、形成しようとする所望のパターン形状に対応した位置に、前記金属層(B)を形成するため、前記金属粉を含有する流動体を塗布して焼成することによって、所望のパターンを有する導電性パターンを製造することができる。 The laminate of the present invention obtained by the above method can be used as a conductive pattern. When the laminate of the present invention is used for a conductive pattern, a fluid containing the metal powder is applied to form the metal layer (B) at a position corresponding to a desired pattern shape to be formed. By baking, a conductive pattern having a desired pattern can be manufactured.
 また、前記導電性パターンは、例えば、サブトラクティブ法、セミアディティブ法等のフォトリソ-エッチング法、または金属層(B)の印刷パターン上にめっきする方法によって製造することができる。 The conductive pattern can be manufactured by, for example, a photolithographic etching method such as a subtractive method or a semi-additive method, or a method of plating on a printed pattern of the metal layer (B).
 前記サブトラクティブ法は、予め製造した本発明の積層体を構成する前記金属層(C)の上に、所望のパターン形状に対応した形状のエッチングレジスト層を形成し、その後の現像処理によって、前記レジストの除去された部分の前記金属層(C)及び金属層(B)を薬液で溶解し除去することによって、所望のパターンを形成する方法である。前記薬液としては、塩化銅、塩化鉄等を含有する薬液を使用することができる。 In the subtractive method, an etching resist layer having a shape corresponding to a desired pattern shape is formed on the metal layer (C) constituting the laminate of the present invention that has been manufactured in advance, and the development process is followed by the development process. In this method, a desired pattern is formed by dissolving and removing the metal layer (C) and the metal layer (B) in the removed portion of the resist with a chemical solution. As the chemical solution, a chemical solution containing copper chloride, iron chloride or the like can be used.
 前記セミアディティブ法は、前記支持体(A)の上に前記金属層(B’)を形成し、必要に応じてプラズマ放電処理等により前記金属層(B’)中に存在する分散剤を含む有機化合物を除去した後、得られた前記金属層(B)の表面に、所望のパターンに対応した形状のめっきレジスト層を形成し、次いで、電解めっき法、無電解めっき法によって金属層(C)を形成した後、前記めっきレジスト層とそれに接触した前記金属層(B)とを薬液等に溶解し除去することによって、所望のパターンを形成する方法である。 The semi-additive method includes forming a metal layer (B ′) on the support (A) and, if necessary, a dispersant present in the metal layer (B ′) by plasma discharge treatment or the like. After removing the organic compound, a plating resist layer having a shape corresponding to a desired pattern is formed on the surface of the obtained metal layer (B), and then the metal layer (C ) Is formed, and then the plating resist layer and the metal layer (B) in contact therewith are dissolved and removed in a chemical solution or the like to form a desired pattern.
 また、金属層(B)の印刷パターン上にめっきする方法は、前記支持体(A)に、インクジェット法、反転印刷法等で前記金属層(B)のパターンを印刷し、必要に応じてプラズマ放電処理等により前記金属層(B’)中に存在する分散剤を含む有機化合物を除去した後、得られた前記金属層(B)の表面に、電解めっき法、無電解めっき法によって前記金属層(C)を形成することによって、所望のパターンを形成する方法である。 In addition, the method of plating on the printed pattern of the metal layer (B) is to print the pattern of the metal layer (B) on the support (A) by an inkjet method, a reverse printing method, etc., and if necessary, plasma After removing an organic compound containing a dispersant present in the metal layer (B ′) by discharge treatment or the like, the surface of the obtained metal layer (B) is subjected to electrolytic plating or electroless plating. In this method, a desired pattern is formed by forming the layer (C).
 上記の方法で得られた導電性パターンは、各層間の密着性、特に前記金属層(B)と前記金属層(C)との間の密着性が極めて高いため、層間剥離を抑制でき、良好な通電性を維持可能な優れた耐久性を有していることから、銀インク等を用いた電子回路、集積回路等に使用される回路形成用基板の形成、有機太陽電池、電子端末、有機EL、有機トランジスタ、フレキシブルプリント基板、RFID等を構成する周辺配線の形成、プラズマディスプレイの電磁波シールドの配線等に使用することができる。特に、高い耐久性の求められる用途には好適に使用することができ、例えば、プリント配線板(PWB)、フレキシブルプリント基板(FPC)、テープ自動ボンディング(TAB)、チップオンフィルム(COF)等に使用することが可能である。 The conductive pattern obtained by the above method has excellent adhesion between each layer, in particular, adhesion between the metal layer (B) and the metal layer (C). Because it has excellent durability capable of maintaining high electrical conductivity, it is possible to form circuit formation substrates used in electronic circuits, integrated circuits, etc. using silver ink, organic solar cells, electronic terminals, organic It can be used for formation of peripheral wiring constituting EL, organic transistor, flexible printed circuit board, RFID, etc., wiring for electromagnetic wave shield of plasma display, and the like. In particular, it can be suitably used for applications requiring high durability. For example, for printed wiring boards (PWB), flexible printed boards (FPC), automatic tape bonding (TAB), chip-on-film (COF), etc. It is possible to use.
 以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
[プライマーの調製]
 還流冷却器、温度計、撹拌機を備えた反応フラスコに、37質量%のホルムアルデヒドと7質量%のメタノールとを含むホルマリン600質量部(ホルムアルデヒド含量:222質量部(7.4mol)、メタノール含量:42質量部(1.31mol))に、水200質量部及びメタノール350質量部(10.92mol)を加えて均一にした溶液を仕込んだ。次いで、25質量%水酸化ナトリウム水溶液を加え、pH10に調整した後、メラミン310質量部(2.46mol)を加え、液温を85℃まで上げ、メチロール化反応を行った(反応時間:1時間)。
[Preparation of primer]
In a reaction flask equipped with a reflux condenser, a thermometer, and a stirrer, 600 parts by mass of formalin containing 37% by mass of formaldehyde and 7% by mass of methanol (formaldehyde content: 222 parts by mass (7.4 mol), methanol content: 42 parts by mass (1.31 mol)) was charged with 200 parts by mass of water and 350 parts by mass (10.92 mol) of methanol to make the solution uniform. Then, after adding 25 mass% sodium hydroxide aqueous solution and adjusting to pH 10, 310 mass parts (2.46 mol) of melamine was added, liquid temperature was raised to 85 degreeC, and methylolation reaction was performed (reaction time: 1 hour) ).
 その後、ギ酸を加えてpH7に調整した後、60℃まで冷却し、エーテル化反応させた。白濁温度40℃で25質量%水酸化ナトリウム水溶液を加えてpH9に調整し、エーテル化反応を止めた(反応時間:1時間)。温度50℃の減圧下で残存するメタノールを除去(脱メタノール時間:4時間)し、不揮発分80質量%のメラミン樹脂を含有するプライマーを得た。 Thereafter, formic acid was added to adjust the pH to 7, followed by cooling to 60 ° C. to cause an etherification reaction. A 25% by mass aqueous sodium hydroxide solution was added at a cloudiness temperature of 40 ° C. to adjust the pH to 9, and the etherification reaction was stopped (reaction time: 1 hour). The remaining methanol was removed under reduced pressure at a temperature of 50 ° C. (demethanol removal time: 4 hours) to obtain a primer containing a melamine resin having a nonvolatile content of 80% by mass.
 なお、前記白濁温度の測定方法は、樹脂を1g採取し、この樹脂を指定の温度に調整した水100mlと混合した。その際、樹脂が水に溶けずに白濁するときの最も高い水の温度を白濁温度とした。 In addition, the measuring method of the said cloudiness temperature collected 1g of resin, and mixed this resin with 100 ml of water adjusted to the designated temperature. At that time, the highest water temperature when the resin became cloudy without dissolving in water was defined as the cloudiness temperature.
[流動体(1)の調製]
 エチレングリコール45質量部と、イオン交換水55質量部との混合溶媒に、分散剤としてポリエチレンイミンにポリオキシエチレンが付加した化合物を用いて平均粒径30nmの銀粒子を分散させることによって、ナノサイズの金属粉及び分散剤を含有する流動体(1)を調製した。
[Preparation of fluid (1)]
By dispersing silver particles having an average particle diameter of 30 nm in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water using a compound in which polyoxyethylene is added to polyethyleneimine as a dispersant, A fluid (1) containing a metal powder and a dispersant was prepared.
[流動体(2)の調製]
 上記で得られた流動体(1)に、イオン交換水及び界面活性剤を用いて、その粘度を10mPa・sに調整することによって、インクジェット印刷用の導電性インクである流動体(2)を調製した。
[Preparation of fluid (2)]
By adjusting the viscosity of the fluid (1) obtained above to 10 mPa · s using ion-exchanged water and a surfactant, the fluid (2) that is a conductive ink for inkjet printing is obtained. Prepared.
[実施例1]
 ポリイミドフィルム(東レ・デュポン株式会社製「Kapton200H」、厚さ50μm)からなる支持体の表面に、上記で調製したプライマーを、スピンコーターを用いて、その乾燥後の厚さが0.1μmとなるように塗布した。次いで、熱風乾燥機を用いて120℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
[Example 1]
On the surface of the support made of a polyimide film (“Kapton 200H” manufactured by Toray DuPont Co., Ltd., thickness 50 μm), the primer prepared as described above is dried to a thickness of 0.1 μm using a spin coater. It was applied as follows. Next, a primer layer was formed on the surface of the polyimide film by drying at 120 ° C. for 5 minutes using a hot air dryer.
 次に、前記プライマー層の表面に、上記で得られた流動体(2)をインクジェットプリンター(コニカミノルタIJ株式会社製インクジェット試験機EB100、評価用プリンタヘッドKM512L、吐出量42pL)を用い、縦10cm、横5cmの面積に全面塗布した。次いで、250℃で30分間焼成することによって、前記金属層(B’)に相当する銀層(厚さ約1μm)形成した。 Next, the fluid (2) obtained above is applied to the surface of the primer layer using an inkjet printer (inkjet testing machine EB100 manufactured by Konica Minolta IJ Co., Ltd., evaluation printer head KM512L, discharge amount 42 pL), 10 cm in length. The entire surface was applied to an area of 5 cm in width. Next, by baking at 250 ° C. for 30 minutes, a silver layer (thickness: about 1 μm) corresponding to the metal layer (B ′) was formed.
 次に、前記金属層(B’)に相当する銀層中の有機化合物を除去するための処理を行った。まず、プラズマ放電処理法として、前記金属層(B’)に相当する銀層の表面を、コロナ表面改質評価装置(春日電機株式会社製「TEC-4AX」を用いてコロナ放電処理(ガス:空気(酸素濃度約21質量%)、ギャップ:1.5mm、出力:100W、処理時間:2秒)を施した。次いで、溶解処理法として、アルカリ性の界面活性剤による処理を液温40℃で5分間行うことで、有機化合物を除去して空隙を有する多孔質状の金属層(B)に相当する銀層を得た。前記アルカリ性の界面活性剤としては、ICPクリーナーSC(奥野製薬株式会社製)を150ml/リットルに希釈したもの(pH=9.3)を使用した。 Next, a treatment for removing an organic compound in the silver layer corresponding to the metal layer (B ′) was performed. First, as a plasma discharge treatment method, the surface of a silver layer corresponding to the metal layer (B ′) is subjected to corona discharge treatment (gas: using a corona surface modification evaluation apparatus (“TEC-4AX” manufactured by Kasuga Electric Co., Ltd.). Air (oxygen concentration: about 21% by mass), gap: 1.5 mm, output: 100 W, treatment time: 2 seconds) Next, as a dissolution treatment method, treatment with an alkaline surfactant was performed at a liquid temperature of 40 ° C. By performing for 5 minutes, the organic compound was removed to obtain a silver layer corresponding to the porous metal layer (B) having voids.As the alkaline surfactant, ICP cleaner SC (Okuno Pharmaceutical Co., Ltd.) Manufactured by dilution to 150 ml / liter (pH = 9.3) was used.
 次に、上記で得られた前記金属層(B)に相当する銀層をカソードに設定し、含リン銅をアノードに設定し、硫酸銅を含有する電解めっき液を用いて電流密度2A/dmで15分間電解めっきを行うことによって、前記銀層の表面に、厚さ8μmの銅めっき層を積層した。前記電解めっき液としては、硫酸銅70g/リットル、硫酸200g/リットル、塩素イオン50mg/リットル、添加剤(奥野製薬工業(株)製「トップルチナSF-M」)5ml/リットルを使用した。 Next, the silver layer corresponding to the metal layer (B) obtained above is set as the cathode, the phosphorous copper is set as the anode, and the current density is 2 A / dm using an electrolytic plating solution containing copper sulfate. by performing 15 minutes electroplating at 2, on the surface of the silver layer were laminated a copper plating layer having a thickness of 8 [mu] m. As the electroplating solution, 70 g / liter of copper sulfate, 200 g / liter of sulfuric acid, 50 mg / liter of chloride ions, and 5 ml / liter of additives (“Top Lucina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used.
 以上の方法によって、支持体(A)、プライマー層、金属層(B)、金属層(C)の順に各層が積層された積層体(1)を得た。得られた積層体(1)について、走査電子顕微鏡(日本電子株式会社製「JSM-7800F」)を用いて断面を確認した。この積層体(1)の断面写真を図1(銅(Cu)マッピング)及び図2(銀(Ag)マッピング)に示す。図1と図2との比較により、金属層(B)に相当する銀層中にも、金属層(C)を構成する銅(Cu)原子が存在し、その銅原子は、金属層(B)に相当する銀層と支持体(A)との界面近傍まで達していることから、金属層(B)の空隙に金属層(C)を構成する金属である銅が、金属層(B)と支持体(A)との界面近傍まで充填されていることが確認できた。 By the above method, a laminate (1) in which the layers were laminated in the order of the support (A), the primer layer, the metal layer (B), and the metal layer (C) was obtained. The cross section of the obtained laminate (1) was confirmed using a scanning electron microscope (“JSM-7800F” manufactured by JEOL Ltd.). Cross-sectional photographs of this laminate (1) are shown in FIG. 1 (copper (Cu) mapping) and FIG. 2 (silver (Ag) mapping). By comparing FIG. 1 and FIG. 2, copper (Cu) atoms constituting the metal layer (C) are also present in the silver layer corresponding to the metal layer (B), and the copper atoms are contained in the metal layer (B). ) Has reached the vicinity of the interface between the silver layer corresponding to (A) and the support (A), so that the copper which is the metal constituting the metal layer (C) in the gap of the metal layer (B) is the metal layer (B). It was confirmed that the resin was filled up to the vicinity of the interface between the substrate and the support (A).
[実施例2]
 コロナ表面改質評価装置(春日電機株式会社製「TEC-4AX」)による処理の代わりに、電磁波照射処理(波長100μm)を行った以外は、実施例1と同様の方法で支持体(A)、プライマー層、金属層(B)、金属層(C)の順に各層が積層された積層体(2)を得た。得られた積層体(2)について、実施例1と同様に走査電子顕微鏡を用いて観察したところ、金属層(B)の空隙に金属層(C)を構成する金属である銅が、金属層(B)と支持体(A)との界面近傍まで充填されていることが確認できた。
[Example 2]
Support (A) in the same manner as in Example 1 except that an electromagnetic wave irradiation treatment (wavelength: 100 μm) was performed instead of the treatment with a corona surface modification evaluation apparatus (“TEC-4AX” manufactured by Kasuga Denki Co., Ltd.). Thus, a laminate (2) was obtained in which the layers were laminated in the order of the primer layer, the metal layer (B), and the metal layer (C). When the obtained laminate (2) was observed using a scanning electron microscope in the same manner as in Example 1, copper, which is a metal constituting the metal layer (C), in the voids of the metal layer (B) was found to be a metal layer. It was confirmed that the vicinity of the interface between (B) and the support (A) was filled.
[実施例3]
 コロナ表面改質評価装置(春日電機株式会社製「TEC-4AX」)による処理とICPクリーナーによる処理の代わりに、レーザー照射処理(出力6kW)を行った以外は、実施例1と同様の方法で前記支持体(A)とプライマー層と前記金属層(B)と前記金属層(C)に相当する層が積層された積層体(3)を得た。得られた積層体(3)について、実施例1と同様に走査電子顕微鏡を用いて観察したところ、金属層(B)の空隙に金属層(C)を構成する金属である銅が、金属層(B)と支持体(A)との界面近傍まで充填されていることが確認できた。
[Example 3]
In the same manner as in Example 1 except that laser irradiation treatment (output 6 kW) was performed instead of treatment with a corona surface modification evaluation apparatus (“TEC-4AX” manufactured by Kasuga Electric Co., Ltd.) and treatment with an ICP cleaner. A laminate (3) was obtained in which the support (A), the primer layer, the metal layer (B), and a layer corresponding to the metal layer (C) were laminated. When the obtained laminate (3) was observed using a scanning electron microscope in the same manner as in Example 1, copper, which is a metal constituting the metal layer (C), in the voids of the metal layer (B) was found to be a metal layer. It was confirmed that the vicinity of the interface between (B) and the support (A) was filled.
[実施例4]
 コロナ表面改質評価装置(春日電機株式会社製「TEC-4AX」)による処理の代わりに、硫酸(60ml/リットル)に5分間浸漬を行った以外は、実施例1と同様の方法で支持体(A)、プライマー層、金属層(B)、金属層(C)の順に各層が積層された積層体(4)を得た。得られた積層体(4)について、実施例1と同様に走査電子顕微鏡を用いて観察したところ、金属層(B)の空隙に金属層(C)を構成する金属である銅が、金属層(B)と支持体(A)との界面近傍まで充填されていることが確認できた。
[Example 4]
The support was prepared in the same manner as in Example 1 except that it was immersed in sulfuric acid (60 ml / liter) for 5 minutes instead of treatment with a corona surface modification evaluation apparatus (“TEC-4AX” manufactured by Kasuga Denki Co., Ltd.). A laminate (4) was obtained in which the layers were laminated in the order of (A), primer layer, metal layer (B), and metal layer (C). When the obtained laminate (4) was observed using a scanning electron microscope in the same manner as in Example 1, copper, which is a metal constituting the metal layer (C), in the voids of the metal layer (B) was found to be a metal layer. It was confirmed that the vicinity of the interface between (B) and the support (A) was filled.
[比較例1]
 ポリイミドフィルム(東レ・デュポン株式会社製「Kapton200H」、厚さ50μm)からなる支持体の表面に、上記で調製したプライマーを、スピンコーターを用いて、その乾燥後の厚さが0.1μmとなるように塗布した。次いで、熱風乾燥機を用いて120℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
[Comparative Example 1]
On the surface of the support made of a polyimide film (“Kapton 200H” manufactured by Toray DuPont Co., Ltd., thickness 50 μm), the primer prepared as described above is dried to a thickness of 0.1 μm using a spin coater. It was applied as follows. Next, a primer layer was formed on the surface of the polyimide film by drying at 120 ° C. for 5 minutes using a hot air dryer.
 次に、前記プライマー層の表面に、ターゲット材として銀を設置し、真空下にアルゴンを導入しながら基材とターゲット材間に直流電圧を印加するマグネトロンスパッタリング法により膜厚約1μmの銀層を形成した。 Next, a silver layer having a film thickness of about 1 μm is formed on the surface of the primer layer by a magnetron sputtering method in which silver is set as a target material and a DC voltage is applied between the base material and the target material while introducing argon under vacuum. Formed.
 次に、上記で得られた銀層をカソードに設定し、含リン銅をアノードに設定し、硫酸銅を含有する電解めっき液を用いて電流密度2A/dmで15分間電解めっきを行うことによって、前記銀層の表面に、厚さ8μmの銅めっき層を積層した。前記電解めっき液としては、硫酸銅70g/リットル、硫酸200g/リットル、塩素イオン50mg/リットル、添加剤(奥野製薬工業(株)製「トップルチナSF-M」)5ml/リットルを使用した。 Next, the silver layer obtained above is set as a cathode, phosphorous copper is set as an anode, and electroplating is performed at a current density of 2 A / dm 2 for 15 minutes using an electrolytic plating solution containing copper sulfate. Then, a copper plating layer having a thickness of 8 μm was laminated on the surface of the silver layer. As the electroplating solution, 70 g / liter of copper sulfate, 200 g / liter of sulfuric acid, 50 mg / liter of chloride ions, and 5 ml / liter of additives (“Top Lucina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used.
 以上の方法によって、支持体(A)、プライマー層、銀層、銅層の順に各層が積層された積層体(R1)を得た。この積層体(R1)の断面写真を図3(銅(Cu)マッピング)及び図4(銀(Ag)マッピング)に示す。図3と図4との比較により、金属層(B)に相当する銀層中に、金属層(C)を構成する銅(Cu)原子が存在しないことから、金属層(B)には金属層(C)を構成する金属である銅が、全く入り込んでいないことが確認できた。なお、この積層体(R1)の断面写真を図3及び4に示す。 By the above method, a laminate (R1) in which the layers were laminated in the order of the support (A), the primer layer, the silver layer, and the copper layer was obtained. Cross-sectional photographs of this laminate (R1) are shown in FIG. 3 (copper (Cu) mapping) and FIG. 4 (silver (Ag) mapping). By comparing FIG. 3 and FIG. 4, since there is no copper (Cu) atom constituting the metal layer (C) in the silver layer corresponding to the metal layer (B), the metal layer (B) has a metal It was confirmed that copper, which is a metal constituting the layer (C), did not enter at all. In addition, the cross-sectional photograph of this laminated body (R1) is shown in FIG.
<ピール強度測定による密着性評価>
 IPC-TM-650、NUMBER2.4.9に準拠した方法により、ピール強度を測定した。測定に用いるリード幅は1mm、そのピールの角度は90°とした。なお、ピール強度は、前記めっき層の厚さが厚くなるほど高い値を示す傾向にあるが、本発明でのピール強度の測定は、現在汎用されているめっき層8μmにおける測定値を基準として実施した。
<Adhesion evaluation by peel strength measurement>
Peel strength was measured by a method based on IPC-TM-650 and NUMBER 2.4.9. The lead width used for the measurement was 1 mm, and the peel angle was 90 °. The peel strength tends to show a higher value as the thickness of the plating layer increases, but the measurement of the peel strength in the present invention was performed based on the measurement value in the currently used plating layer of 8 μm. .
<目視による密着性評価>
 前記ピール強度の測定後の剥離面を目視で観察し、剥離した界面の位置を確認した。剥離した界面の位置は下記の1~3として、剥離した界面の位置が2又は3の場合、金属層(B)と金属層(C)との密着性が良好であると判断した。
 1:金属層(B)と金属層(C)との界面
 2:プライマー層と金属層(B)と界面
 3:プライマー層とポリイミドフィルム(支持体)との界面
<Visual adhesion evaluation>
The peeled surface after the measurement of the peel strength was visually observed to confirm the position of the peeled interface. The position of the peeled interface was 1 to 3 below, and when the peeled interface position was 2 or 3, it was judged that the adhesion between the metal layer (B) and the metal layer (C) was good.
1: Interface between metal layer (B) and metal layer (C) 2: Interface between primer layer and metal layer (B) 3: Interface between primer layer and polyimide film (support)
 上記で得られた評価結果をまとめたものを表1に示す。 Table 1 summarizes the evaluation results obtained above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の積層体である実施例1~4で得られた積層体(1)~(4)は、金属層(B)と金属層(C)との界面から剥離することなく、高いピール強度を有していたことから、金属層(B)と金属層(C)との密着性は非常に高いことが確認された。 The laminates (1) to (4) obtained in Examples 1 to 4, which are laminates of the present invention, have high peel strength without peeling from the interface between the metal layer (B) and the metal layer (C). It was confirmed that the adhesion between the metal layer (B) and the metal layer (C) was very high.
 一方、比較例1で得られた積層体(R1)は、金属層(B)に対応する銀層が多孔質のものではない例である。この積層体(R1)は、銀層(金属層(B)に対応)と銅層(金属層(C)に対応)との界面から剥離したことから、2つの金属層間での密着性は実用に耐えるものではないことが確認された。 On the other hand, the laminate (R1) obtained in Comparative Example 1 is an example in which the silver layer corresponding to the metal layer (B) is not porous. Since this laminate (R1) was peeled off from the interface between the silver layer (corresponding to the metal layer (B)) and the copper layer (corresponding to the metal layer (C)), the adhesion between the two metal layers was practical. It was confirmed that it is not resistant to

Claims (9)

  1.  支持体(A)の上に多孔質状の金属層(B)が形成され、前記金属層(B)の上に金属層(C)が形成された積層体であって、前記金属層(B)中に存在する空隙に金属層(C)を構成する金属が充填されていることを特徴とする積層体。 A laminate in which a porous metal layer (B) is formed on a support (A), and a metal layer (C) is formed on the metal layer (B), the metal layer (B The laminated body characterized by the metal which comprises a metal layer (C) being filled in the space | gap which exists in the inside.
  2.  前記支持体(A)と前記金属層(B)との界面近傍に存在する前記金属層(B)中の空隙まで、前記金属層(C)を構成する金属が充填されている請求項1記載の積層体。 The metal which comprises the said metal layer (C) is filled to the space | gap in the said metal layer (B) which exists in the interface vicinity of the said support body (A) and the said metal layer (B). Laminated body.
  3.  前記金属層(B)を構成する金属が銀であり、前記金属層(C)を構成する金属が銅である請求項1記載の積層体。 The laminate according to claim 1, wherein the metal constituting the metal layer (B) is silver and the metal constituting the metal layer (C) is copper.
  4.  前記支持体(A)と前記金属層(B)とが、プライマー層を介して積層したものである請求項1記載の積層体。 The laminate according to claim 1, wherein the support (A) and the metal layer (B) are laminated via a primer layer.
  5.  請求項1~4のいずれか1項記載の積層体からなることを特徴とする導電性パターン。 A conductive pattern comprising the laminate according to any one of claims 1 to 4.
  6.  請求項5記載の導電性パターンを有することを特徴とする電子回路。 An electronic circuit comprising the conductive pattern according to claim 5.
  7.  支持体(A)の上に、ナノサイズの金属粉及び分散剤を含有する流動体を塗布し焼成して金属層(B’)を形成した後、前記金属層(B’)中に存在する分散剤を含む有機化合物を除去して空隙を形成して多孔質状の金属層(B)とした後、電解又は無電解めっきにより前記金属層(C)を形成することを特徴とする積層体の製造方法。 A fluid containing nano-sized metal powder and a dispersant is applied onto the support (A) and baked to form a metal layer (B ′), which is then present in the metal layer (B ′). A laminate comprising: removing an organic compound containing a dispersant to form a void to form a porous metal layer (B); and then forming the metal layer (C) by electrolysis or electroless plating. Manufacturing method.
  8.  前記ナノサイズの金属粉の形状が、粒子状又は繊維状である請求項7記載の積層体の製造方法。 The method for producing a laminate according to claim 7, wherein the shape of the nano-sized metal powder is particulate or fibrous.
  9.  前記ナノサイズの金属粉が銀であり、前記金属層(C)が電解銅めっきによって形成された銅めっき層である請求項7記載の積層体の製造方法。 The method for producing a laminate according to claim 7, wherein the nano-sized metal powder is silver and the metal layer (C) is a copper plating layer formed by electrolytic copper plating.
PCT/JP2014/073382 2013-09-10 2014-09-04 Stacked body, conductive pattern, electronic circuit, and production method for stacked body WO2015037511A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015530185A JP5843123B2 (en) 2013-09-10 2014-09-04 Conductive pattern, electronic circuit, and laminate manufacturing method
KR1020167002592A KR20160018843A (en) 2013-09-10 2014-09-04 Stacked body, conductive pattern, electronic circuit, and production method for stacked body
CN201480049643.3A CN105517788A (en) 2013-09-10 2014-09-04 Stacked body, conductive pattern, electronic circuit, and production method for stacked body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-187333 2013-09-10
JP2013187333 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037511A1 true WO2015037511A1 (en) 2015-03-19

Family

ID=52665617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073382 WO2015037511A1 (en) 2013-09-10 2014-09-04 Stacked body, conductive pattern, electronic circuit, and production method for stacked body

Country Status (5)

Country Link
JP (1) JP5843123B2 (en)
KR (1) KR20160018843A (en)
CN (1) CN105517788A (en)
TW (1) TW201522071A (en)
WO (1) WO2015037511A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6014792B1 (en) * 2015-06-24 2016-10-25 株式会社メイコー 3D wiring board manufacturing method, 3D wiring board, 3D wiring board base material
JP2016197582A (en) * 2015-04-06 2016-11-24 株式会社ノリタケカンパニーリミテド Substrate with conductive film, method for manufacturing the same, and conductive paste for polyimide substrate
WO2016208006A1 (en) * 2015-06-24 2016-12-29 株式会社メイコー Three-dimensional wiring board production method, three-dimensional wiring board, and substrate for three-dimensional wiring board
WO2019013038A1 (en) * 2017-07-10 2019-01-17 Dic株式会社 Laminated body, printed wiring board using same, flexible printed wiring board, and molded article
WO2019013039A1 (en) * 2017-07-10 2019-01-17 Dic株式会社 Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
WO2019167778A1 (en) * 2018-02-27 2019-09-06 Dic株式会社 Electronic component package and method for producing same
WO2020085136A1 (en) * 2018-10-22 2020-04-30 Dic株式会社 Layered body, and layered body manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109315069B (en) * 2016-07-07 2021-01-08 名幸电子有限公司 Three-dimensional wiring board, method for manufacturing three-dimensional wiring board, and substrate for three-dimensional wiring board
CN109563625B (en) * 2016-08-08 2021-06-22 Dic株式会社 Laminate, metal mesh, and touch panel
US11612933B2 (en) 2017-07-06 2023-03-28 Lg Chem, Ltd. Preparation method for metal foam
WO2019013040A1 (en) * 2017-07-10 2019-01-17 Dic株式会社 Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
TWI710020B (en) * 2019-10-24 2020-11-11 嘉聯益科技股份有限公司 Manufacturing method of flexible circuit board, electroplating solution and etching solution
CN112714554A (en) * 2019-10-24 2021-04-27 嘉联益电子(昆山)有限公司 Manufacturing method of flexible circuit board, electroplating solution and etching solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059035A (en) * 1998-08-07 2000-02-25 Mitsui Mining & Smelting Co Ltd Composite foil, copper-clad laminated material, printed wiring board, multilayer printed wiring board and manufacture of the composite foil
JP2006024808A (en) * 2004-07-09 2006-01-26 Mitsubishi Paper Mills Ltd Conductive composition producing method, method of interlayer connection and conductive film or conductive image formation method
JP2011192755A (en) * 2010-03-12 2011-09-29 Gunze Ltd Transparent conductive sheet, manufacturing method for conductive paste used for manufacturing the same, electromagnetic wave sielding material and touch sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3320478B2 (en) 1993-02-23 2002-09-03 住友スリーエム株式会社 Manufacturing method of laminated product having viscoelastic body and vibration damping material
JP2005286158A (en) 2004-03-30 2005-10-13 Seiko Epson Corp Method of forming pattern, electronic device, manufacturing method thereof, and electronic apparatus
US8404160B2 (en) * 2007-05-18 2013-03-26 Applied Nanotech Holdings, Inc. Metallic ink
KR20100096499A (en) * 2009-02-24 2010-09-02 삼성테크윈 주식회사 Circuit substrate having a porous circuit pattern and the fabricating method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059035A (en) * 1998-08-07 2000-02-25 Mitsui Mining & Smelting Co Ltd Composite foil, copper-clad laminated material, printed wiring board, multilayer printed wiring board and manufacture of the composite foil
JP2006024808A (en) * 2004-07-09 2006-01-26 Mitsubishi Paper Mills Ltd Conductive composition producing method, method of interlayer connection and conductive film or conductive image formation method
JP2011192755A (en) * 2010-03-12 2011-09-29 Gunze Ltd Transparent conductive sheet, manufacturing method for conductive paste used for manufacturing the same, electromagnetic wave sielding material and touch sensor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197582A (en) * 2015-04-06 2016-11-24 株式会社ノリタケカンパニーリミテド Substrate with conductive film, method for manufacturing the same, and conductive paste for polyimide substrate
TWI667950B (en) * 2015-06-24 2019-08-01 日商名幸電子股份有限公司 Method for manufacturing three-dimensional wiring substrate, three-dimensional wiring substrate, and base material for three-dimensional wiring substrate
WO2016208092A1 (en) * 2015-06-24 2016-12-29 株式会社メイコー Three-dimensional molded component production method and three-dimensional molded component
WO2016208006A1 (en) * 2015-06-24 2016-12-29 株式会社メイコー Three-dimensional wiring board production method, three-dimensional wiring board, and substrate for three-dimensional wiring board
WO2016208093A1 (en) * 2015-06-24 2016-12-29 株式会社メイコー Three-dimensional wiring board and method for producing three-dimensional wiring board
WO2016208090A1 (en) * 2015-06-24 2016-12-29 株式会社メイコー Three-dimensional wiring board production method, three-dimensional wiring board, and substrate for three-dimensional wiring board
JP6100975B1 (en) * 2015-06-24 2017-03-22 株式会社メイコー Three-dimensional molded part manufacturing method and three-dimensional molded part
JP6100976B1 (en) * 2015-06-24 2017-03-22 株式会社メイコー Three-dimensional wiring board and method for manufacturing three-dimensional wiring board
JP6014792B1 (en) * 2015-06-24 2016-10-25 株式会社メイコー 3D wiring board manufacturing method, 3D wiring board, 3D wiring board base material
US10537021B2 (en) 2015-06-24 2020-01-14 Meiko Electronics Co., Ltd. Three-dimensional wiring board production method, three-dimensional wiring board, and substrate for three-dimensional wiring board
US10244624B2 (en) 2015-06-24 2019-03-26 Meiko Electronics Co., Ltd. Three-dimensional wiring board production method, three-dimensional wiring board, and substrate for three-dimensional wiring board
WO2019013038A1 (en) * 2017-07-10 2019-01-17 Dic株式会社 Laminated body, printed wiring board using same, flexible printed wiring board, and molded article
JPWO2019013038A1 (en) * 2017-07-10 2019-11-07 Dic株式会社 Laminated body, printed wiring board, flexible printed wiring board and molded product using the same
WO2019013039A1 (en) * 2017-07-10 2019-01-17 Dic株式会社 Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
WO2019167778A1 (en) * 2018-02-27 2019-09-06 Dic株式会社 Electronic component package and method for producing same
US11315885B2 (en) 2018-02-27 2022-04-26 Dic Corporation Electronic component package including stacked shield layers and method for producing same
WO2020085136A1 (en) * 2018-10-22 2020-04-30 Dic株式会社 Layered body, and layered body manufacturing method

Also Published As

Publication number Publication date
CN105517788A (en) 2016-04-20
JPWO2015037511A1 (en) 2017-03-02
JP5843123B2 (en) 2016-01-13
KR20160018843A (en) 2016-02-17
TW201522071A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP5843123B2 (en) Conductive pattern, electronic circuit, and laminate manufacturing method
JP6418435B2 (en) Laminate, conductive pattern and electronic circuit
KR101263003B1 (en) silver organo-sol ink for forming conductive patterns
JP6886629B2 (en) Method for manufacturing a molded product having a metal pattern
KR102206686B1 (en) Laminate, metal mesh and touch panel
JP6750766B2 (en) Method for manufacturing printed wiring board
JPWO2020003880A1 (en) Laminate for printed wiring board and printed wiring board using the same
CN112205088A (en) Method for manufacturing printed wiring board
WO2019013038A1 (en) Laminated body, printed wiring board using same, flexible printed wiring board, and molded article
JP6432761B2 (en) LAMINATE, CONDUCTIVE PATTERN, ELECTRONIC CIRCUIT, AND LAMINATE MANUFACTURING METHOD
WO2015037512A1 (en) Electroconductive pattern and electronic circuit
WO2020130071A1 (en) Method for manufacturing printed wiring board
JP7332049B2 (en) Laminate for semi-additive construction method and printed wiring board using the same
JP7044203B2 (en) Laminates, molded products, printed wiring boards and electromagnetic wave shields
WO2022097483A1 (en) Multilayer body for semi-additive process and printed wiring board using same
WO2022097480A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
JP7371778B2 (en) Laminated body for semi-additive construction method and printed wiring board using the same
WO2022097481A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097482A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
JP2017117931A (en) Laminate, conducting pattern, electronic circuit, transparent electrode and method for manufacturing electromagnetic wave shield material
JP2023114323A (en) Manufacturing method of structure with conductive pattern
JP2023057021A (en) Manufacturing method of structure with conductive pattern, kit, and system
TW202037760A (en) Etching liquid for silver, and method for producing printed wiring board using same
WO2019013039A1 (en) Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530185

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167002592

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843339

Country of ref document: EP

Kind code of ref document: A1