WO2019012802A1 - Crane device - Google Patents

Crane device Download PDF

Info

Publication number
WO2019012802A1
WO2019012802A1 PCT/JP2018/018940 JP2018018940W WO2019012802A1 WO 2019012802 A1 WO2019012802 A1 WO 2019012802A1 JP 2018018940 W JP2018018940 W JP 2018018940W WO 2019012802 A1 WO2019012802 A1 WO 2019012802A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
spreader
obstacle
imaging
imaging means
Prior art date
Application number
PCT/JP2018/018940
Other languages
French (fr)
Japanese (ja)
Inventor
伸郎 吉岡
Original Assignee
住友重機械搬送システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械搬送システム株式会社 filed Critical 住友重機械搬送システム株式会社
Priority to CN202011502911.6A priority Critical patent/CN112678688B/en
Priority to CN201880035035.5A priority patent/CN110869305B/en
Priority to MYPI2019007241A priority patent/MY202483A/en
Priority to JP2019528955A priority patent/JP6644955B2/en
Publication of WO2019012802A1 publication Critical patent/WO2019012802A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details

Definitions

  • One aspect of the present invention relates to a crane apparatus.
  • the crane apparatus provided with the cargo handling part which can be wound up or down with a wire rope, and performs a cargo handling of a to-be-conveyed object is known.
  • a crane apparatus for container handling that uses a container as a transported object
  • a crane apparatus including a spreader as described in Patent Document 1 as a handling unit in the spreader described in Patent Document 1, a camera for photographing a container located below the spreader is attached at positions corresponding to four corners of the spreader main body having a substantially rectangular shape in plan view.
  • the camera is supported by a spring, and in the absence of an obstacle around the camera, the camera is projected outside the projected area of the container that the spreader locks.
  • the spring is retracted by receiving an external force from the obstacle, and the camera is retracted inside the projected area of the container to which the spreader is locked.
  • an aspect of the present invention aims to provide a crane apparatus capable of evacuating an imaging means from an obstacle without making the imaging means come into contact with the obstacle.
  • the crane device of one mode of the present invention can be rolled up or down with a wire rope, and it is attached to the cargo handling unit which carries out cargo handling of a transported object, and is attached to the cargo handling unit.
  • Image pickup means capable of picking up an image, an obstacle detection unit for detecting an obstacle around the image pickup means, and a control unit for controlling the posture of the image pickup means, the image pickup means protruding horizontally from the cargo handling unit It is possible to change between the first posture positioned in the direction and the second posture that is a position not protruding in the horizontal direction from the cargo handling unit compared to the first posture, and the control unit is an obstacle detection unit When the distance from the obstacle detected by the sensor to the imaging means falls within a predetermined range, the imaging means is changed from the first attitude to the second attitude.
  • the control unit causes the imaging unit to change from the first posture to the second posture. To be changed.
  • the imaging means protrudes horizontally from the cargo handling unit as compared to the first posture that is horizontally projected from the cargo handling unit. Not to be located. Therefore, the imaging means can be retracted from the obstacle without contacting the obstacle. As described above, since the imaging means does not contact the obstacle, it is possible to prevent the obstacle from being damaged and the imaging means from being broken.
  • the imaging means does not vibrate without coming into contact with an obstacle, the image by the imaging means is less likely to be disturbed, so that the surroundings of the transported object located below the cargo handling unit can be suitably viewed by the image. it can. Furthermore, since the entire cargo handling unit does not shake without coming into contact with an obstacle, it is possible to perform cargo handling by the cargo handling unit without waiting for the shaking of the entire cargo handling unit to be settled.
  • the control unit is configured to calculate a collision virtual time until the imaging unit collides with the obstacle based on the moving speed of the cargo handling unit and the obstacle detected by the obstacle detection unit.
  • the imaging means may be changed from the first attitude to the second attitude when the calculated value calculated is less than or equal to a predetermined time.
  • a collision virtual time until the imaging means collides with the obstacle is calculated by the control unit, and if the calculated value becomes equal to or less than a predetermined time, there is a risk of contact.
  • the imaging means is changed from the first attitude to the second attitude.
  • the imaging means before the imaging means collides with the obstacle, the imaging means can be positioned so as not to protrude in the horizontal direction from the cargo handling unit as compared with the first posture. Therefore, the imaging means can be retracted from the obstacle without contacting the obstacle with certainty.
  • the control unit is configured such that the distance in the horizontal direction from the imaging unit to the side surface of the obstacle is equal to or less than a predetermined first threshold and When the distance in the vertical direction to the upper end of the side surface is equal to or less than a predetermined second threshold, the imaging means may be changed from the first attitude to the second attitude.
  • the distance in the horizontal direction from the imaging means to the side surface of the obstacle is less than or equal to a predetermined first threshold, and the distance in the vertical direction from the imaging means to the upper end of the side surface of the obstacle is predetermined.
  • the control unit changes the imaging unit from the first posture to the second posture because there is a possibility of contact.
  • the imaging means before the imaging means collides with the obstacle, the imaging means can be positioned so as not to protrude in the horizontal direction from the cargo handling unit as compared with the first posture. Therefore, the imaging means can be retracted from the obstacle without contacting the obstacle with certainty.
  • a traveling leg capable of traveling in a predetermined direction on a quay, a girder projecting from the traveling leg in a direction intersecting the predetermined direction, and a trolley capable of traversing along the girder
  • the cargo handling unit may be a spreader that can be suspended from the trolley via a wire rope and can lock the transported object placed in the vessel that is placed on the quay.
  • the crane apparatus of this configuration can be applied, for example, when lifting up a container, which is a transported object placed in a ship that is placed on a quay, or when loading a container on the ship.
  • the gap between the container fixing guide in the ship or the obstacle such as the side wall of the ship or the other container which is the obstacle is narrow.
  • it is effective to apply the crane apparatus of the above-mentioned composition.
  • FIG. 1 is a view for explaining the overall configuration of a crane installation provided with a crane apparatus according to the first embodiment.
  • FIG. 2 is a perspective view showing a spreader.
  • FIG. 3 is a conceptual diagram for explaining a slide mechanism for changing the position of the imaging means.
  • FIG. 4 is a block diagram functionally showing the configuration of the crane apparatus according to the first embodiment.
  • FIG. 5 is a flowchart showing the operation of the control unit in the crane apparatus according to the first embodiment.
  • FIG. 6 is a flowchart following to FIG.
  • FIG. 7 is a conceptual diagram for explaining a change in position of the imaging unit under the control of the control unit according to the second embodiment.
  • FIG. 1 is a view for explaining the overall configuration of a crane installation provided with a crane apparatus according to the first embodiment.
  • the crane installation 100 is provided with the crane apparatus 1 which conveys the container C (to-be-conveyed object) mounted in the container ship 50 (ship) which was transversely attached to the quay 51 so that FIG. 1 may show.
  • the container C is a container such as an ISO standard container.
  • the container C is in the form of a long rectangular solid and has a predetermined length of, for example, 20 feet or 40 feet in the longitudinal direction.
  • the crane device 1 is here a bridge crane.
  • the crane apparatus 1 includes a leg structure 11, a girder 12, a trolley 7, a cab 14, and a spreader 10 (load handling unit).
  • the leg structure portion 11 (traveling portion) is installed on the ground of the quay 51, has an H shape in the longitudinal direction view (traveling direction view), and supports the entire crane device 1 while extending upward.
  • the leg structure portion 11 forms a left and right pair, and has a traveling device 11a at the base end.
  • the traveling device 11 a travels in a predetermined direction (front-rear direction: hereinafter referred to as “traveling direction”) along a rail provided on the ground by driving of a traveling motor.
  • traveling direction front-rear direction
  • the girder 12 projects from the leg structure 11 in a direction (horizontal direction in the drawing of FIG. 1) intersecting the traveling direction in the horizontal direction.
  • the girder 12 extends to the container ship 50 side above the wharf 51 above the container ship 50 while being supported by the leg structure portion 11. That is, the girder 12 projects from the quay 51 to the sea.
  • the trolley 7 can be traversed along the girder 12.
  • the trolley 7 traverses by the drive of the traverse motor.
  • the cab 14 and the spreader 10 can be moved in the extension direction of the girder 12.
  • the trolley 7 is provided with a drum (not shown) rotated forward and backward by a drum drive motor, and suspends the spreader 10 via a wire rope 9 wound around the drum.
  • the travel motor, the traverse motor, and the drum drive motor described above function as the drive unit 23 (see FIG. 4), and the operation thereof is controlled by the control unit 30 (see FIG. 4).
  • the spreader 10 is suspended from the trolley 7 via a wire rope 9 and can be rolled up or down by the wire rope 9.
  • the spreader 10 can lock the container C to be lifted, and performs loading and unloading of the container C.
  • the spreader 10 is suspended via a sheave 18 (see FIG. 2) on which a wire rope 9 is wound and can be raised and lowered by rotating the drum of the trolley 7 forward and reverse.
  • FIG. 2 is a perspective view of the spreader 10.
  • the spreader 10 includes a spreader main body portion 15, a guide (guide portion) 17, a lock pin 16, a position detection unit 21, and an imaging unit 22.
  • the spreader main body 15 has a shape substantially the same as the shape of the upper surface of the container C in a plan view.
  • the spreader body portion 15 has the above-described sheave 18 around which the wire rope 9 is wound around the central portion in the longitudinal direction.
  • the spreader main body 15 is positioned on the container C when the spreader 10 locks the container C.
  • the spreader main body 15 is provided with a storage 15 a provided at both ends in the longitudinal direction of the spreader main body 15 and an opening provided at both ends in the lateral direction corresponding to the storage 15 a at both ends in the longitudinal direction of the spreader main body 15 And a unit 15b.
  • the storage unit 15a has a box shape, and can store the position detection unit 21 and the imaging unit 22 inside.
  • the opening 15 b is a hole opened at a position where the storage portion 15 a is provided in the side surface 15 c, 15 d of the spreader main body 15, and the position detection unit 21 and the imaging unit 22 can pass therethrough.
  • the guide 17 places the spreader body portion 15 on the target container when the spreader 10 lowers the target container C (hereinafter referred to as “target container”) to be acquired by the spreader 10.
  • Guide to The guides 17 are provided in the vicinity of both ends in the longitudinal direction at each of one end and the other end in the lateral direction of the spreader main body 15 in the horizontal direction. That is, the guides 17 are provided at the four corners of the spreader body 15 on the outer side in the short direction of the spreader body 15.
  • the guide 17 is located outside the side surfaces 15 c and 15 d of the spreader main body 15.
  • the guide 17 is retractable inside the side surfaces 15c and 15d of the spreader body portion 15.
  • the guide 17 is retracted. Specifically, when the guide 17 is moved to the upper side of the spreader main body 15, the guide 17 is moved inward of the spreader main body 15 in a plan view.
  • the guide 17 has a tapered surface 17b at its tip 17a.
  • the guide 17 abuts the tapered surface 17b on the edge of the upper surface of the target container by entering the gap between the target container and another container C placed horizontally adjacent to the target container. And (in a guided manner) guide the spreader body 15 directly above the target container.
  • the lock pin 16 is a mechanism for locking the container C.
  • the lock pin 16 is provided on the lower surface side of the spreader main body portion 15 so as to protrude downward from the spreader main body portion 15.
  • the lock pin 16 is at a position corresponding to the hole (not shown) of the container C when the spreader 10 locks the container C, and in the horizontal direction of the spreader main body 15 with respect to the position of the guide 17. It is provided at the center side.
  • the lock pin 16 is, for example, a twist pin and includes at its lower end a locking piece (not shown) that can be pivoted about an axis extending in the vertical direction.
  • the lock pin 16 is engageable with the container C by entering through the holes formed at the four corners of the upper surface of the container C and rotating the locking piece.
  • the position detection unit 21 is an apparatus capable of acquiring two-dimensional coordinate data of a measurement object.
  • a laser sensor is used as the position detection unit 21. More specifically, the position detection unit 21 calculates the distance to the measurement object based on the time until the laser light is reflected by the measurement object and returns. Then, the position detection unit 21 obtains the coordinates of the light arrival point based on the distance to the measurement object and the irradiation angle of the laser light, and outputs the information to the control unit 30.
  • the position detection unit 21 is not limited to two-dimensional coordinate data of the measurement object, and may be an apparatus capable of acquiring three-dimensional coordinate data or one-dimensional coordinate data.
  • the position detection unit 21 is provided on the side surfaces 15 c and 15 d of the spreader main body unit 15. Specifically, the position detection unit 21 is provided in the vicinity of both ends in the longitudinal direction at each of one end and the other end in the lateral direction of the spreader body 15 in the horizontal direction. Each position detection unit 21 is attached to the imaging unit 22 and can pass through the opening 15 b of the spreader main unit 15 together with the imaging unit 22.
  • the position detection unit 21 is slid along with the imaging unit 22 by driving an electric cylinder 40 (see FIG. 3) described later.
  • the position detection unit 21 and the imaging unit 22 are drawn out of the storage unit 15a through the opening 15b by driving of the electric cylinder 40, and are stored in the storage unit 15a through the opening 15b.
  • the position detection unit 21 detects the container C located at the lower part of the spreader main body unit 15, and measures the position of the detected container C. Further, the position detection unit 21 detects an obstacle around the imaging unit 22 and measures the position of the detected obstacle.
  • the obstacles include, for example, the container fixing guide in the container ship 50, the side wall of the container ship 50, or the container C loaded on the container ship 50 or the like.
  • the position detection unit 21 functions as an obstacle detection unit 25 (see FIG. 4), and transmits the measurement result to the control unit 30.
  • the position detection part 21 may be provided in the trolley 7, for example.
  • the position detection unit 21 is not limited to the laser sensor as long as the coordinate data of the measurement object can be acquired, and another type (for example, an optical camera or the like) may be used. Furthermore, the position detection unit 21 may use a plurality of methods (for example, a combination of a laser sensor and an optical camera).
  • the imaging unit 22 is a camera capable of imaging the periphery of the spreader 10, and is, for example, a video camera capable of capturing a moving image. Similar to the position detection unit 21, the imaging unit 22 is provided on the side surface of the spreader main unit 15 and at a position corresponding to the opening 15 b of the spreader main unit 15.
  • the imaging means 22 is fixed to a rod 42 of an electric cylinder 40 (see FIG. 3) provided in the housing portion 15 a of the spreader main body portion 15.
  • the rod 42 of the electric cylinder 40 is illustrated for the imaging unit 22 on the front side of the drawing, but the imaging unit 22 on the rear side of the drawing is complicated by illustration. It is omitted.
  • FIG. 3 is a conceptual view for explaining the electric cylinder 40 for changing the position of the imaging means 22.
  • the electric cylinder 40 is a slide mechanism for sliding the imaging means 22.
  • the electric cylinder 40 is an electrically driven cylinder, and includes, for example, a cylindrical cylinder body 41 and a rod 42 that can be advanced and retracted with respect to the cylinder body 41. There is.
  • the electric cylinder 40 includes, for example, an electric motor (not shown).
  • the rod 42 advances and retreats in the horizontal direction by the drive of the electric motor.
  • the imaging means 22 and the position detection unit 21 attached to the rod 42 are advanced to the outside of the storage portion 15a through the opening 15b by the advancement and retraction of the rod 42, and of the storage portion 15a through the opening 15b. It is housed inside. Since the rod 42 advances and retreats in the horizontal direction, the imaging means 22 and the position detection unit 21 attached to the rod 42 also slide while maintaining the horizontal direction. Therefore, it can be suitably visually recognized in a state in which the line of sight of the imaging means 22 is always directed downward.
  • the movement and retraction of the rod 42 allow the imaging means 22 to move between the maximum extended position and the maximum retracted position.
  • the maximum projecting position is a position projecting from the spreader 10, and is a position at which the imaging means 22 is most separated from the spreader 10 when the rod 42 of the electric cylinder 40 is advanced to the maximum position.
  • the maximum retracted position is a position at which the imaging means 22 is maximally retracted from an obstacle around the spreader 10 as the rod 42 of the electric cylinder 40 is retracted to the maximum position.
  • the maximum retraction position is a position at which the imaging unit 22 is stored in the storage portion 15 a of the spreader main body 15 (hereinafter referred to as “storage position”).
  • the imaging unit 22 has a first orientation that is positioned in a direction in which the spreader 10 projects in the horizontal direction, and a second orientation that is a position that does not project in the horizontal direction from the spreader 10 as compared to the first orientation. It is supposed to be changeable.
  • the first posture is, for example, located outside the spreader 10 in plan view, in other words, located outside the projected area of the container C to which the spreader 10 is locked.
  • the second posture is a position at which the overhang in the horizontal direction from the spreader 10 is smaller than that in the first posture, and is a position not overhanging in the horizontal direction from the spreader 10 (container C to which the spreader 10 is engaged Located inside the projected area of the
  • the imaging unit 22 captures an image of the container C located below the spreader 10 and the periphery of the container C.
  • the image captured by the imaging means 22 is projected on the monitor 29 (see FIG. 4) in the driver's cab 14 and provided to the driver.
  • the imaging unit 22 transmits the captured image to the control unit 30.
  • the imaging unit 22 and the electric cylinder 40 function as an imaging unit 26 (see FIG. 4), and are controlled by the control unit 30.
  • FIG. 4 is a block diagram functionally showing the configuration of the crane apparatus 1.
  • the crane apparatus 1 includes a drive unit 23, a cargo handling operation unit 24, an obstacle detection unit 25, an imaging unit 26, a storage unit 27, a control unit 30, and a cab 14. And.
  • the drive unit 23 corresponds to the travel motor, the traverse motor, the drum drive motor, and the like described above.
  • the cargo handling operation unit 24 corresponds to the guide 17 and the lock pin 16 and the like included in the spreader 10 described above.
  • the obstacle detection unit 25 corresponds to the position detection unit 21 described above.
  • the imaging unit 26 corresponds to the imaging unit 22 and the electric cylinder 40 described above.
  • the control unit 30 controls the operation of the drive unit 23 and the cargo handling operation unit 24 based on, for example, the information transmitted from the operation unit 28 of the cab 14. Specifically, the control unit 30 controls the operation of the traveling motor, the traverse motor, the drum drive motor and the like described above based on the information transmitted from the operation unit 28 of the cab 14, and The operation of the guide 17 and the lock pin 16 is controlled.
  • the control unit 30 controls the imaging unit 26 when the distance from the obstacle detected by the obstacle detection unit 25 to the imaging unit 22 falls within a predetermined range. 22 is changed from the first posture to the second posture.
  • the control unit 30 includes a collision determination unit 31 and an imaging unit posture change control unit 32.
  • the collision determination unit 31 determines whether the distance from the obstacle detected by the obstacle detection unit 25 to the imaging unit 22 is within a predetermined range based on the detection result from the obstacle detection unit 25. Determine Within the predetermined range which is determined in advance, the imaging means 22 and the obstacle are close to each other, and the imaging means 22 may collide with the obstacle.
  • the collision includes not only the collision to mutually exert a strong force, but also, for example, the contact with each other.
  • the imaging unit posture change command unit 32 starts from the obstacle detected by the obstacle detection unit 25. Assuming that the distance to the imaging means 22 falls within a predetermined range, the operation of the electric cylinder 40 included in the imaging unit 26 is controlled, and the attitude of the imaging means 22 is controlled. Specifically, the imaging unit attitude change command unit 32 changes the imaging unit 22 from the first attitude to the second attitude by driving the electric cylinder 40.
  • the predetermined time is set, for example, with some allowance for the time required for the imaging means 22 to move from the first attitude to the second attitude (time required for the attitude change of the imaging means 22). Time (hereinafter referred to as "set travel time"). Details of the operation of the control unit 30 will be described later using a flowchart.
  • the operator's cab 14 has an operating device 28 for the driver to operate the crane apparatus 1 and a monitor 29 for the driver to view an image captured by the imaging means 22.
  • the driver operates the operating device 28 by viewing the image projected on the monitor 29.
  • Information input to the operating device 28 by the driver operating the operating device 28 is transmitted to the control unit 30.
  • the monitor 29 receives the video captured by the imaging unit 22 through the control unit 30, and displays the video.
  • the storage unit 27 is a part that stores various information, and is configured by a memory or the like.
  • the storage unit 27 acquires the position of the obstacle detected by the obstacle detection unit 25 via the control unit 30, and stores the acquired position of the obstacle. For example, the storage unit 27 stores the position of the obstacle detected by the obstacle detection unit 25 immediately before the imaging unit 22 is moved to the storage position by the imaging unit posture change command unit 32.
  • FIGS. 5 and 6 are flowcharts showing the loading operation of the container C by the crane device 1.
  • the imaging means 22 is at an intermediate position.
  • the intermediate position is a position between the above-described maximum projecting position and the storage position, and is a position on the side of the spreader 10 with respect to the above-described maximum projecting position although it is projected horizontally from the spreader 10.
  • the intermediate position is not limited to the position just between the maximum overhang position and the storage position, and may be on the side of the spreader 10 with respect to the maximum overhang position.
  • the imaging means 22 is shown on the storage position side rather than the middle position.
  • the second attitude of the imaging means 22 is at a position closer to the spreader 10 than the intermediate position.
  • the storage position corresponds.
  • the first attitude of the imaging means 22 is the maximum overhanging position
  • the second attitude of the imaging means 22 is a position closer to the spreader 10 than the maximum overhanging position, for example, an intermediate position and a storage position Is the equivalent.
  • the imaging unit 22 captures an image of the container C located below the spreader 10 and the periphery of the container C at the intermediate position.
  • the image captured by the imaging means 22 is projected on a monitor 29 in the cab 14 in real time.
  • the driver operates the crane device 1 while viewing the image projected on the monitor 29.
  • step S1 area monitoring by the position detection unit 21 functioning as the obstacle detection unit 25 is started (step S1). Specifically, the position detection unit 21 detects an obstacle around the imaging unit 22 and measures the position of the detected obstacle. Subsequently, the control unit 30 acquires a moving speed target value and an actual measurement value of the speed of the spreader 10 (step S2). At this time, the control unit 30 acquires the moving speed target value by receiving information indicating the moving speed target value set in advance from the moving speed command generation unit (not shown) of the driver's cab 14. Further, the control unit 30 acquires the measured value of the speed of the spreader 10 by receiving the information indicating the measured value of the speed of the spreader 10.
  • the measured value of the speed of the spreader 10 may be, for example, a value measured by a speed sensor (not shown) attached to the spreader 10, and is a value measured based on the rotational speed of the drum moving up and down the spreader 10. It may be.
  • the control unit 30 may acquire the measured value of the velocity of the spreader 10 every time it is measured, or may acquire it at predetermined intervals.
  • a collision virtual time (hereinafter, simply referred to as a “collision virtual time”), which is a predetermined time, is calculated (step S3).
  • the speed of the spreader 10 for example, any one of the movement speed target value and the actual measurement value acquired in step S2 is used.
  • the actual measurement value may be used as a more accurate value of the velocity of the spreader 10, or the movement velocity target value may be used when a measurement error of the actual measurement of the velocity of the spreader 10 occurs.
  • the collision determination unit 31 determines whether the calculated value of the collision virtual time is longer than the time required for the imaging unit 22 to move from the maximum overhang position to the intermediate position (step S4).
  • the time required for the imaging means 22 to move from the maximum overhang position to the intermediate position is the set travel time described above.
  • the information which shows the said setting movement time is transmitted to the control part 30 from the operator's cab 14, for example.
  • the posture change of the imaging means 22 is in three steps of the maximum projecting position, the intermediate position, and the storage position, but the invention is not limited thereto. Two steps of the maximum projecting position and the storage position, the intermediate position, and the storage It may be a two stage position, a four or more stage change, or a continuous change.
  • the imaging means posture change command unit 32 maximizes the imaging means 22. It is moved to the overhanging position (step S5). Note that moving the imaging means 22 to the maximum overhang position in step S5 means not only moving the imaging means 22 to the maximum overhang position when the imaging means 22 is other than the maximum overhang position before step S5, but also before the step S5.
  • the image pickup means 22 is kept in the state of the maximum projection position when the image pickup means 22 is at the maximum projection position. After step S5, the process returns to step S2.
  • the imaging unit 22 moved in step S5 images the container C located below the spreader 10 and the periphery of the container C at the maximum extended position.
  • step 4 when the calculated value of the collision virtual time is equal to or less than the time required for the imaging unit 22 to move from the maximum overhang position to the intermediate position (step 4; NO), the process proceeds to step S6 without moving the imaging unit 22. Do.
  • the collision determination unit 31 determines whether the calculated value of the collision virtual time is longer than the time required for the imaging unit 22 to move from the intermediate position to the storage position (step S6).
  • the time required for the imaging means 22 to move from the intermediate position to the storage position is the set movement time described above.
  • the imaging unit posture change command unit 32 sets the imaging unit 22 to the intermediate position. (Step S7). Note that moving the imaging means 22 to the intermediate position in step S7 means not only moving the imaging means 22 to the intermediate position when the imaging means 22 is other than the intermediate position before step S7, but also the imaging means before step S7. When the imaging unit 22 is in the intermediate position, the imaging unit 22 is left in the intermediate position. After step S7, the process returns to step S2.
  • step S6 If the calculated value of the collision virtual time is equal to or less than the time required for the imaging unit 22 to move from the intermediate position to the storage position (step S6; NO), it is determined that the imaging unit 22 needs to be retracted to the storage position.
  • the storage unit 27 temporarily stores area monitoring information (step S8). Specifically, the storage unit 27 stores the position of the obstacle detected by the position detection unit 21 before proceeding to step S9.
  • the imaging unit posture change command unit 32 moves the imaging unit 22 to the storage position (step S9).
  • the position detection unit 21 attached to the imaging unit 22 also moves to the storage position together with the imaging unit 22.
  • the imaging unit 22 and the position detection unit 21 are stored in the storage unit 15a.
  • the driver may visually observe from the cab 14 instead of viewing the image on the monitor 29, or another imaging attached to the trolley 7 or the like You may look at the monitor 29 on which the image by the means was shown.
  • step S10 position monitoring of the spreader 10 is continued with respect to the position of the obstacle stored in step S8 (step S10). Specifically, the position of the spreader 10 is detected based on the winding up or down length of the drum moving up and down the spreader 10. If, for example, the position detection unit 21 is provided in the trolley 7, the position detection unit 21 provided in the trolley 7 may detect the position of the spreader 10 in step S10.
  • the collision determination unit 31 calculates collision virtual time based on the speed of the spreader 10 and the position of the obstacle detected by the position detection unit 21 (step S11). At this time, for example, an actual measurement value is used as the speed of the spreader 10. At this time, since the position detection unit 21 is stored in the storage unit 15a, the position of the obstacle stored by the storage unit 27 in step S8 is used as the position of the obstacle.
  • the position detection unit 21 is provided not in the imaging unit 22 but in another part such as the trolley 7, the position of the obstacle detected by the position detection unit 21 provided in the trolley 7 or the like is determined in step S11. May be used.
  • the storage unit 27 does not have to store the position of the obstacle.
  • the collision determination unit 31 determines whether the calculated value of the collision virtual time in step S11 is longer than the time required for the imaging unit 22 to move from the intermediate position to the storage position (step S12).
  • Step S12 When the calculated value of the collision virtual time is longer than the time required for the imaging means 22 to move from the intermediate position to the storage position (Step S12; YES), the imaging means 22 is moved from the storage position to the intermediate position. And the process proceeds to step S13.
  • the storage unit 27 resets storage of area monitoring information in order to resume area monitoring by the position detection unit 21 (step S13). Specifically, the storage unit 27 deletes the information storing the position of the obstacle detected by the position detection unit 21 before proceeding to step S9. Subsequently, the imaging unit attitude change command unit 32 moves the imaging unit 22 to an intermediate position (step S14). At this time, along with the movement of the imaging means 22, the position detection unit 21 also moves to an intermediate position. Then, the process returns to step S1, and area monitoring by the position detection unit 21 is started again.
  • step S12 when the calculated value of the collision virtual time is equal to or less than the time required to move the imaging unit 22 from the intermediate position to the storage position (step S12; NO), the imaging unit 22 is maintained at the storage position Then, the process returns to step S10. The operation of the control unit 30 described above is repeated, and at the same time the loading or lifting of the crane apparatus 1 is completed, the operation of the control unit 30 is also ended.
  • the control unit 30 captures an image.
  • the means 22 is changed from the first attitude to the second attitude.
  • the imaging unit 22 is compared in the horizontal direction from the spreader 10 as compared with the first posture horizontally extended from the spreader 10. Position so as not to overhang. Therefore, the imaging means 22 can be retracted from the obstacle without contacting the obstacle.
  • the imaging unit 22 since the imaging unit 22 does not contact the obstacle, it is possible to prevent the obstacle from being damaged and the imaging unit 22 from being broken.
  • the imaging means 22 does not vibrate without coming into contact with an obstacle, the image by the imaging means 22 is unlikely to be disturbed, and the periphery of the container C located below the spreader 10 is preferably viewed by the image. Can. Furthermore, since the entire spreader 10 does not shake without coming into contact with an obstacle, the container C can be handled by the spreader 10 without waiting for the entire shake of the spreader 10 to settle.
  • the collision determination unit 31 calculates the collision virtual time until the imaging unit 22 collides with the obstacle, and the calculated value becomes equal to or less than the set movement time described above.
  • the imaging means 22 is changed from the first attitude to the second attitude. Thereby, before the imaging means 22 collides with an obstacle, the imaging means 22 can be positioned so as not to project from the spreader 10 in the horizontal direction compared to the first posture. Therefore, the imaging means 22 can be retracted from the obstacle without contacting the obstacle with certainty.
  • the crane device 1 can be applied, for example, when lifting up the container C placed in the container ship 50 transversely attached to the quay 51 or when stacking the container C on the container ship 50.
  • the container fixing guide in the container ship 50 or a gap with an obstacle such as a side wall of the container ship 50 or another container C which is an obstacle
  • the gap between them is narrow.
  • the container C is placed with a certain degree of clearance between adjacent rows, while the container vessel 50 has the container as close as possible to prevent collapse of the container C during transportation and the like. C is placed.
  • the spreader 10 is easy to contact with an obstacle, it is effective to apply the crane apparatus 1 of the structure mentioned above.
  • the control unit 30 determines that the distance in the horizontal direction from the imaging unit 22 to the side surface of the obstacle is equal to or less than a predetermined first threshold, and the obstacle from the imaging unit 22 When the distance in the vertical direction to the upper end of the side surface is less than or equal to a predetermined second threshold, the distance from the obstacle detected by the position detection unit 21 to the imaging unit 22 is within a predetermined range The imaging means 22 is changed from the first attitude to the second attitude.
  • the position change of the imaging unit 22 under the control of the control unit 30 will be described in detail with reference to FIG.
  • FIG. 7 is a conceptual diagram for explaining a change in position of the imaging unit 22 under the control of the control unit 30 according to the second embodiment.
  • the end surface which looked at the spreader 10 from the front-back direction is shown typically.
  • the container C to which the spreader 10 is locked is shown as a hanging container C1
  • the other stacked containers C are shown as loading containers C2 to C8.
  • the loading containers C2 to C8 correspond to obstacles to the imaging means 22 of the spreader 10.
  • the imaging means 22 provided on one side surface 15 c of the spreader main body 15 is shown as an imaging means 22 a
  • the imaging means 22 provided on the other side 15 d of the spreader main body 15 is shown as an imaging means 22 b. ing.
  • a predetermined distance D1 (first threshold) is taken horizontally from the imaging means 22 and a predetermined distance D2 (second threshold) is taken vertically from the imaging means 22.
  • the range is set in advance as the interference range A.
  • the interference range A is set outside the spreader 10 and the hanging container C1.
  • the distance D1 satisfies the condition D1> V xmax ⁇ t. It can be a value.
  • the distance D2 can be a value satisfying the condition D2> Vymax ⁇ t.
  • the position detection unit 21 is a horizontal distance from the imaging unit 22 to the side surface of each of the stacking containers C2 to C8 (hereinafter referred to as “horizontal distance”) and a vertical direction from the imaging unit 22 to the upper end of the side surface And the distance at (hereinafter referred to as “vertical distance”).
  • the position detection unit 21 transmits the measurement result to the control unit 30.
  • the control unit 30 determines whether the obstacle is within the interference range A by determining whether the horizontal distance is equal to or less than the distance D1 and whether or not the vertical distance is equal to or less than the distance D2. Make an interference judgment.
  • the control unit 30 captures an image of an obstacle that is in the interference range A and in the interference range A. Assuming that the means 22 may collide, the imaging means 22 is changed from the first attitude to the second attitude. Thereby, the imaging means 22 can be retracted from the obstacle before the imaging means 22 collides with the obstacle.
  • the distances D1 and D2 to values satisfying the conditions described above, it is determined that the imaging unit 22 may collide with the loading containers C2 to C8, and then the spreader 10 is horizontal at the maximum speeds V xmax and V ymax . Even when moved in the direction or the vertical direction, the imaging means 22 can be prevented from colliding with the side surface and the upper end of the loading containers C2 to C8.
  • the interference determination with respect to the storage container C7 of the imaging means 22a will be specifically described.
  • Position detector 21, the horizontal distance x 7 to the side surface S 7 stowing containers C7 from the imaging unit 22a, a vertical distance y 7 to the top edge T 7 of the side surface S 7 stowing containers C7 from the imaging unit 22a, Measure Control unit 30 determines whether as to determine whether the horizontal distance x 7 is the distance D1 or less, the vertical distance y 7 the distance D2 below.
  • the control unit 30 determines that the loading container C7 is not within the interference range A, and the imaging means 22a does not collide with the loading container C7.
  • the control unit 30 causes the imaging unit 22a to protrude from the spreader 10 in the horizontal direction (that is, to be in the first posture).
  • the interference determination on the stacking containers C2 to C8 of the imaging means 22b can also be performed in the same manner as in the case of the imaging means 22a described above.
  • the horizontal distance to the side surface S 3 stowing containers C3 from the imaging means 22b is at distance D1 below, and the side surface S 3 stowing containers C3 from the imaging means 22b the vertical distance to the top edge T 3 is the distance D2 less.
  • the control unit 30 determines that the loading container C3 is in the interference range A and the imaging means 22b collides with the loading container C3. Therefore, the control unit 30 sets the imaging unit 22b in the storage position without projecting from the spreader 10 in the horizontal direction (that is, sets the second posture).
  • the imaging unit 22 before the imaging unit 22 collides with an obstacle, the imaging unit 22 can be positioned so as not to protrude from the spreader 10 in the horizontal direction compared to the first posture. . Therefore, the imaging means 22 can be retracted from the obstacle without contacting the obstacle with certainty.
  • the slide mechanism for sliding the imaging means 22 is not limited to the electric cylinder 40, and a four-bar parallel link mechanism may be provided, for example.
  • the fixed link of the four-bar parallel link mechanism is fixed to the spreader 10, and the imaging means 22 and the position detection unit 21 are attached to the intermediate link, and the intermediate link is kept horizontal by driving the drive link. It may be configured to slide in the longitudinal direction as it is. In this case, since the imaging unit 22 and the position detection unit 21 slide along with the intermediate link while maintaining the horizontal, the line of sight of the imaging unit 22 is always directed downward as in the case of the electric cylinder described above. It can be suitably viewed in the state.
  • the position detection unit 21 and the imaging unit 22 are retracted by storing the position detection unit 21 and the imaging unit 22 in the storage unit 15a.
  • the present invention is not limited to this example.
  • the position detection unit 21 and the imaging unit 22 are provided by providing the position detection unit 21 and the imaging unit 22 on the upper surface of the spreader main body 15 and sliding the position detection unit 21 and the imaging unit 22 on the upper surface It is also good.
  • the position detection unit 21 and the imaging unit 22 are not limited to sliding and retracting.
  • the position detection unit 21 and the imaging unit 22 may be rotated and retracted.
  • the maximum retracted position is not limited to the storage position described in the above embodiment, and the position detection unit 21 and the imaging unit 22 are retracted so as to be positioned inside the projected area of the container C which the spreader 10 locks. Any position is acceptable.
  • the girder 12 projects from the leg structure 11 in a direction intersecting the predetermined direction, and transports the container C with the docked container ship 50.
  • the present invention is also applicable to a bridge crane in which the girder 12 does not project to the sea, and also to a crane device whose overhead part is, for example, a club bucket or an overhead crane device. It is applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)
  • Load-Engaging Elements For Cranes (AREA)

Abstract

The present invention is provided with: a spreader 10 for handling a container, the spreader capable of being wound up or wound down by a wire rope; an imaging means 22 attached to the spreader 10 and capable of imaging the area around the spreader 10; a position detecting unit 21 for detecting obstacles in the area around the imaging means 22; and a control unit that controls the attitude of the imaging means 22. The imaging means 22 can change between a first attitude positioned in a direction extending from the spreader 10 in the horizontal direction, and a second attitude in a position not extending from the spreader 10 in the horizontal direction as compared to the first attitude. In a case where the distance from an obstacle detected by the position detecting unit 21 to the imaging means 22 is within a predetermined range, the imaging means 22 is caused to change from the first attitude to the second attitude.

Description

クレーン装置Crane equipment
 本発明の一態様は、クレーン装置に関する。 One aspect of the present invention relates to a crane apparatus.
 従来、ワイヤーロープにより巻き上げ又は巻き下げが可能であり、被搬送物の荷役を行う荷役部を備えたクレーン装置が知られている。例えば、コンテナを被搬送物とするコンテナ荷役用のクレーン装置であって、荷役部として特許文献1に記載されているようなスプレッダを備えたクレーン装置が知られている。特許文献1に記載のスプレッダでは、平面視略矩形状のスプレッダ本体部の四隅に対応する位置に、スプレッダの下方に位置するコンテナを撮影するためのカメラが取り付けられている。 DESCRIPTION OF RELATED ART Conventionally, the crane apparatus provided with the cargo handling part which can be wound up or down with a wire rope, and performs a cargo handling of a to-be-conveyed object is known. For example, there is known a crane apparatus for container handling that uses a container as a transported object, and a crane apparatus including a spreader as described in Patent Document 1 as a handling unit. In the spreader described in Patent Document 1, a camera for photographing a container located below the spreader is attached at positions corresponding to four corners of the spreader main body having a substantially rectangular shape in plan view.
 カメラは、バネによって支持されており、カメラの周囲に障害物が存在しない状態では、スプレッダが係止するコンテナの投影面積よりも外側にカメラが張り出されている。カメラが障害物に接触した場合には、当該障害物からの外力を受けてバネが縮退することにより、スプレッダが係止するコンテナの投影面積よりも内側にカメラが退避される。 The camera is supported by a spring, and in the absence of an obstacle around the camera, the camera is projected outside the projected area of the container that the spreader locks. When the camera contacts an obstacle, the spring is retracted by receiving an external force from the obstacle, and the camera is retracted inside the projected area of the container to which the spreader is locked.
特開2003-54871号公報JP 2003-54871 A
 上記特許文献1に記載された技術のように、カメラ等の撮像手段が障害物に接触することにより当該撮像手段が張り出し位置から退避される場合、撮像手段が障害物に接触する際の衝撃により、障害物を傷付ける可能性、及び、撮像手段が壊れる可能性がある。また、撮像手段が障害物に接触する際に撮像手段が振動するので、撮像手段による映像に乱れが生じ、スプレッダの下方に位置するコンテナの周囲を当該映像によって視認することが困難となる。更に、障害物に接触する際の衝撃によってスプレッダ全体も揺れるので、スプレッダによるコンテナの荷役が困難となり、スプレッダ全体の揺れが収まるまで待たなければコンテナの荷役を行うことができないという問題がある。 As in the technology described in Patent Document 1 above, when the image pickup means is retracted from the extended position by the image pickup means such as a camera coming into contact with the obstacle, the impact when the image pickup means contacts the obstacle There is a possibility of damaging an obstacle, and the imaging means may be broken. Further, since the imaging means vibrates when the imaging means contacts an obstacle, the image by the imaging means is disturbed, and it becomes difficult to visually recognize the periphery of the container located below the spreader. Furthermore, since the entire spreader shakes due to an impact when contacting an obstacle, it becomes difficult to handle the container by the spreader, and there is a problem that the container can not be handled without waiting until the whole spreader swings down.
 そこで本発明の一態様は、撮像手段を障害物と接触させることなく障害物から退避させることができるクレーン装置を提供することを目的とする。 Therefore, an aspect of the present invention aims to provide a crane apparatus capable of evacuating an imaging means from an obstacle without making the imaging means come into contact with the obstacle.
 上記課題を解決するため、本発明の一態様のクレーン装置は、ワイヤーロープにより巻き上げ又は巻き下げが可能であり、被搬送物の荷役を行う荷役部と、荷役部に取り付けられ、荷役部の周囲を撮像可能な撮像手段と、撮像手段の周囲の障害物を検知する障害物検知部と、撮像手段の姿勢を制御する制御部と、を備え、撮像手段は、荷役部から水平方向において張り出す方向へ位置する第1の姿勢と、第1の姿勢に比して荷役部から水平方向において張り出さない位置である第2の姿勢と、で変更可能であり、制御部は、障害物検知部により検知された障害物から撮像手段までの距離が予め定められた所定の範囲内に入った場合、撮像手段を第1の姿勢から第2の姿勢へ変更させる。 In order to solve the above-mentioned subject, the crane device of one mode of the present invention can be rolled up or down with a wire rope, and it is attached to the cargo handling unit which carries out cargo handling of a transported object, and is attached to the cargo handling unit. Image pickup means capable of picking up an image, an obstacle detection unit for detecting an obstacle around the image pickup means, and a control unit for controlling the posture of the image pickup means, the image pickup means protruding horizontally from the cargo handling unit It is possible to change between the first posture positioned in the direction and the second posture that is a position not protruding in the horizontal direction from the cargo handling unit compared to the first posture, and the control unit is an obstacle detection unit When the distance from the obstacle detected by the sensor to the imaging means falls within a predetermined range, the imaging means is changed from the first attitude to the second attitude.
 このクレーン装置では、障害物検知部により検知された障害物から撮像手段までの距離が予め定められた所定の範囲内に入った場合、制御部によって撮像手段が第1の姿勢から第2の姿勢へ変更される。これにより、撮像手段から障害物までの距離が所定の範囲内となると、撮像手段は、荷役部から水平方向において張り出された第1の姿勢に比して、荷役部から水平方向において張り出さないように位置する。よって、撮像手段を障害物と接触させることなく障害物から退避させることができる。このように、撮像手段が障害物と接触しないので、障害物を傷付けること、及び、撮像手段が壊れることを防止することができる。また、障害物と接触せず撮像手段が振動することがないので、撮像手段による映像に乱れが生じ難く、荷役部の下方に位置する被搬送物の周囲を当該映像によって好適に視認することができる。更に、障害物と接触せず荷役部全体が揺れることがないので、荷役部全体の揺れが収まることを待つことなく荷役部による被搬送物の荷役を行うことができる。 In this crane apparatus, when the distance from the obstacle detected by the obstacle detection unit to the imaging unit falls within a predetermined range, the control unit causes the imaging unit to change from the first posture to the second posture. To be changed. Thus, when the distance from the imaging means to the obstacle falls within the predetermined range, the imaging means protrudes horizontally from the cargo handling unit as compared to the first posture that is horizontally projected from the cargo handling unit. Not to be located. Therefore, the imaging means can be retracted from the obstacle without contacting the obstacle. As described above, since the imaging means does not contact the obstacle, it is possible to prevent the obstacle from being damaged and the imaging means from being broken. In addition, since the imaging means does not vibrate without coming into contact with an obstacle, the image by the imaging means is less likely to be disturbed, so that the surroundings of the transported object located below the cargo handling unit can be suitably viewed by the image. it can. Furthermore, since the entire cargo handling unit does not shake without coming into contact with an obstacle, it is possible to perform cargo handling by the cargo handling unit without waiting for the shaking of the entire cargo handling unit to be settled.
 また、本発明の一態様のクレーン装置において、制御部は、荷役部の移動速度及び障害物検知部により検知された障害物に基づいて、撮像手段が障害物に衝突するまでの衝突仮想時間を算出し、算出された算出値が予め定められた時間以下となった場合には、撮像手段を第1の姿勢から第2の姿勢へ変更させてもよい。この場合、制御部によって、撮像手段が障害物に衝突するまでの衝突仮想時間が算出され、算出された算出値が予め定められた時間以下となった場合には、接触のおそれがあるとして、撮像手段が第1の姿勢から第2の姿勢へ変更される。これにより、撮像手段が障害物に衝突する前に、第1の姿勢に比して荷役部から水平方向において張り出さないように撮像手段を位置させることができる。よって、撮像手段を確実に障害物と接触させることなく障害物から退避させることができる。 Further, in the crane apparatus according to one aspect of the present invention, the control unit is configured to calculate a collision virtual time until the imaging unit collides with the obstacle based on the moving speed of the cargo handling unit and the obstacle detected by the obstacle detection unit. The imaging means may be changed from the first attitude to the second attitude when the calculated value calculated is less than or equal to a predetermined time. In this case, a collision virtual time until the imaging means collides with the obstacle is calculated by the control unit, and if the calculated value becomes equal to or less than a predetermined time, there is a risk of contact. The imaging means is changed from the first attitude to the second attitude. Thereby, before the imaging means collides with the obstacle, the imaging means can be positioned so as not to protrude in the horizontal direction from the cargo handling unit as compared with the first posture. Therefore, the imaging means can be retracted from the obstacle without contacting the obstacle with certainty.
 また、本発明の一態様のクレーン装置において、制御部は、撮像手段から障害物の側面までの水平方向における距離が、予め定められた第1の閾値以下となり、且つ、撮像手段から障害物の側面の上端までの鉛直方向における距離が、予め定められた第2の閾値以下となった場合、撮像手段を、第1の姿勢から第2の姿勢へ変更させてもよい。この場合、撮像手段から障害物の側面までの水平方向における距離が、予め定められた第1の閾値以下となり、且つ、撮像手段から障害物の側面の上端までの鉛直方向における距離が、予め定められた第2の閾値以下となった場合には、接触のおそれがあるとして、制御部によって、撮像手段が第1の姿勢から第2の姿勢へ変更される。これにより、撮像手段が障害物に衝突する前に、第1の姿勢に比して荷役部から水平方向において張り出さないように撮像手段を位置させることができる。よって、撮像手段を確実に障害物と接触させることなく障害物から退避させることができる。 Further, in the crane apparatus according to one aspect of the present invention, the control unit is configured such that the distance in the horizontal direction from the imaging unit to the side surface of the obstacle is equal to or less than a predetermined first threshold and When the distance in the vertical direction to the upper end of the side surface is equal to or less than a predetermined second threshold, the imaging means may be changed from the first attitude to the second attitude. In this case, the distance in the horizontal direction from the imaging means to the side surface of the obstacle is less than or equal to a predetermined first threshold, and the distance in the vertical direction from the imaging means to the upper end of the side surface of the obstacle is predetermined. When it becomes less than the second threshold, the control unit changes the imaging unit from the first posture to the second posture because there is a possibility of contact. Thereby, before the imaging means collides with the obstacle, the imaging means can be positioned so as not to protrude in the horizontal direction from the cargo handling unit as compared with the first posture. Therefore, the imaging means can be retracted from the obstacle without contacting the obstacle with certainty.
 また、本発明の一態様において、岸壁上を所定方向へ走行可能な走行脚部と、走行脚部から所定方向と交差する方向へ張り出したガーダーと、ガーダーに沿って横行可能なトロリーと、を備え、荷役部は、トロリーからワイヤーロープを介して吊り下げられ、岸壁に横付けされた船舶内に載置された被搬送物を係止可能なスプレッダであってもよい。この構成のクレーン装置は、例えば、岸壁に横付けされた船舶内に載置された被搬送物であるコンテナを吊り上げる際又は当該船舶にコンテナを積み付ける際に適用することができる。このようにコンテナを吊り上げる際又はコンテナを積み付ける際には、船舶内のコンテナ固定ガイド又は船舶の側壁等の障害物との隙間や障害物となる他のコンテナとの隙間が狭く、障害物と接触し易いので、前述した構成のクレーン装置を適用することが有効である。 Further, in one aspect of the present invention, a traveling leg capable of traveling in a predetermined direction on a quay, a girder projecting from the traveling leg in a direction intersecting the predetermined direction, and a trolley capable of traversing along the girder In addition, the cargo handling unit may be a spreader that can be suspended from the trolley via a wire rope and can lock the transported object placed in the vessel that is placed on the quay. The crane apparatus of this configuration can be applied, for example, when lifting up a container, which is a transported object placed in a ship that is placed on a quay, or when loading a container on the ship. Thus, when lifting the container or loading the container, the gap between the container fixing guide in the ship or the obstacle such as the side wall of the ship or the other container which is the obstacle is narrow. As it is easy to contact, it is effective to apply the crane apparatus of the above-mentioned composition.
 本発明の一態様によれば、撮像手段を障害物と接触させることなく障害物から退避させることができるクレーン装置を提供することができる。 According to one aspect of the present invention, it is possible to provide a crane apparatus capable of evacuating an imaging means from an obstacle without contacting the imaging means.
図1は、第1実施形態に係るクレーン装置を備えたクレーン設備の全体構成を説明する図である。FIG. 1 is a view for explaining the overall configuration of a crane installation provided with a crane apparatus according to the first embodiment. 図2は、スプレッダを示す斜視図である。FIG. 2 is a perspective view showing a spreader. 図3は、撮像手段の位置を変更するスライド機構を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining a slide mechanism for changing the position of the imaging means. 図4は、第1実施形態に係るクレーン装置の構成を機能的に示すブロック図である。FIG. 4 is a block diagram functionally showing the configuration of the crane apparatus according to the first embodiment. 図5は、第1実施形態に係るクレーン装置における制御部の動作を示すフローチャートである。FIG. 5 is a flowchart showing the operation of the control unit in the crane apparatus according to the first embodiment. 図6は、図5に続くフローチャートである。FIG. 6 is a flowchart following to FIG. 図7は、第2実施形態に係る制御部の制御による撮像手段の位置変化を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining a change in position of the imaging unit under the control of the control unit according to the second embodiment.
 以下、添付図面を参照しながら本発明に係るクレーン装置の実施形態について説明する。なお、以下の説明において、同一又は相当要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, an embodiment of a crane apparatus according to the present invention will be described with reference to the attached drawings. In the following description, the same or corresponding elements are denoted by the same reference numerals and redundant description will be omitted.
(第1実施形態)
 まず、図1を参照して、本発明の第1実施形態に係るクレーン装置の概要を説明する。図1は、第1実施形態に係るクレーン装置を備えたクレーン設備の全体構成を説明する図である。
First Embodiment
First, an overview of a crane apparatus according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a view for explaining the overall configuration of a crane installation provided with a crane apparatus according to the first embodiment.
 図1に示されるように、クレーン設備100は、岸壁51に横付けされたコンテナ船50(船舶)内に載置されたコンテナC(被搬送物)の搬送を行うクレーン装置1を備える。コンテナCは、ISO規格コンテナ等のコンテナである。コンテナCは、長尺の直方体状を呈し、その長手方向において例えば20フィート、40フィートといった所定の長さを有している。クレーン装置1は、ここでは、橋形クレーンである。クレーン装置1は、脚構造部11と、ガーダー12と、トロリー7と、運転室14と、スプレッダ10(荷役部)と、を備えている。 The crane installation 100 is provided with the crane apparatus 1 which conveys the container C (to-be-conveyed object) mounted in the container ship 50 (ship) which was transversely attached to the quay 51 so that FIG. 1 may show. The container C is a container such as an ISO standard container. The container C is in the form of a long rectangular solid and has a predetermined length of, for example, 20 feet or 40 feet in the longitudinal direction. The crane device 1 is here a bridge crane. The crane apparatus 1 includes a leg structure 11, a girder 12, a trolley 7, a cab 14, and a spreader 10 (load handling unit).
 脚構造部11(走行部)は、岸壁51の地上に設置され、前後方向視(走行方向視)においてH形を呈し、上方に延伸しながらクレーン装置1全体を支持する。脚構造部11は、左右一対を成し、基端に走行装置11aをそれぞれ有している。走行装置11aは、走行モータの駆動により、地上に設けられたレールに沿って所定方向(前後方向:以下、「走行方向」とする)へ走行する。これにより、脚構造部11は、岸壁51上を走行方向へ走行可能とされている。 The leg structure portion 11 (traveling portion) is installed on the ground of the quay 51, has an H shape in the longitudinal direction view (traveling direction view), and supports the entire crane device 1 while extending upward. The leg structure portion 11 forms a left and right pair, and has a traveling device 11a at the base end. The traveling device 11 a travels in a predetermined direction (front-rear direction: hereinafter referred to as “traveling direction”) along a rail provided on the ground by driving of a traveling motor. Thus, the leg structure 11 can travel in the traveling direction on the quay 51.
 ガーダー12は、脚構造部11から、水平方向において走行方向と交差する方向(図1の紙面左右方向)へ張り出している。ガーダー12は、脚構造部11に支持された状態で、コンテナ船50の上方において岸壁51よりもコンテナ船50側に延伸している。すなわち、ガーダー12は、岸壁51から海上へ張り出している。 The girder 12 projects from the leg structure 11 in a direction (horizontal direction in the drawing of FIG. 1) intersecting the traveling direction in the horizontal direction. The girder 12 extends to the container ship 50 side above the wharf 51 above the container ship 50 while being supported by the leg structure portion 11. That is, the girder 12 projects from the quay 51 to the sea.
 トロリー7は、ガーダー12に沿って横行可能とされている。トロリー7は、横行モータの駆動によって横行する。トロリー7の移動に伴って、ガーダー12の延伸方向に運転室14及びスプレッダ10が移動可能とされている。トロリー7は、ドラム駆動モータにより正逆回転する不図示のドラムを備え、ドラムに掛け回されたワイヤーロープ9を介してスプレッダ10を吊り下げている。上記の走行モータ、横行モータ、及びドラム駆動モータは、駆動部23(図4参照)として機能し、制御部30(図4参照)によってその動作が制御される。 The trolley 7 can be traversed along the girder 12. The trolley 7 traverses by the drive of the traverse motor. As the trolley 7 moves, the cab 14 and the spreader 10 can be moved in the extension direction of the girder 12. The trolley 7 is provided with a drum (not shown) rotated forward and backward by a drum drive motor, and suspends the spreader 10 via a wire rope 9 wound around the drum. The travel motor, the traverse motor, and the drum drive motor described above function as the drive unit 23 (see FIG. 4), and the operation thereof is controlled by the control unit 30 (see FIG. 4).
 運転室14には、クレーン装置1を操作する運転者が搭乗する。運転室14の詳細については後述する。スプレッダ10は、トロリー7からワイヤーロープ9を介して吊り下げられ、ワイヤーロープ9により巻き上げ又は巻き下げが可能とされている。スプレッダ10は、吊り上げようとするコンテナCを係止可能であり、コンテナCの荷役を行う。スプレッダ10は、ワイヤーロープ9が掛け回されたシーブ18(図2参照)を介して吊り下げられ、トロリー7のドラムが正逆回転することにより昇降可能である。 A driver who operates the crane apparatus 1 gets into the cab 14. Details of the cab 14 will be described later. The spreader 10 is suspended from the trolley 7 via a wire rope 9 and can be rolled up or down by the wire rope 9. The spreader 10 can lock the container C to be lifted, and performs loading and unloading of the container C. The spreader 10 is suspended via a sheave 18 (see FIG. 2) on which a wire rope 9 is wound and can be raised and lowered by rotating the drum of the trolley 7 forward and reverse.
 次に、図2を参照して、スプレッダ10の詳細な構成について説明する。図2は、スプレッダ10の斜視図である。図2に示されるように、スプレッダ10は、スプレッダ本体部15と、ガイド(案内部)17と、ロックピン16と、位置検出部21と、撮像手段22と、を有している。 Next, with reference to FIG. 2, the detailed configuration of the spreader 10 will be described. FIG. 2 is a perspective view of the spreader 10. As shown in FIG. 2, the spreader 10 includes a spreader main body portion 15, a guide (guide portion) 17, a lock pin 16, a position detection unit 21, and an imaging unit 22.
 スプレッダ本体部15は、平面視においてコンテナCの上面の形状と略同一の形状を呈している。スプレッダ本体部15は、長手方向における中央部の上側に、ワイヤーロープ9が掛け回される前述したシーブ18を有している。スプレッダ本体部15は、コンテナCをスプレッダ10が係止する際に当該コンテナC上に位置する。 The spreader main body 15 has a shape substantially the same as the shape of the upper surface of the container C in a plan view. The spreader body portion 15 has the above-described sheave 18 around which the wire rope 9 is wound around the central portion in the longitudinal direction. The spreader main body 15 is positioned on the container C when the spreader 10 locks the container C.
 スプレッダ本体部15は、スプレッダ本体部15の長手方向の両端に設けられた収納部15aと、スプレッダ本体部15の長手方向の両端で収納部15aに対応する短手方向の両端に設けられた開口部15bと、を有している。収納部15aは、箱状を呈しており、位置検出部21及び撮像手段22を内部に収納可能とされている。開口部15bは、スプレッダ本体部15の側面15c,15dにおける収納部15aが設けられた位置に開口された穴であり、位置検出部21及び撮像手段22が通過可能とされている。 The spreader main body 15 is provided with a storage 15 a provided at both ends in the longitudinal direction of the spreader main body 15 and an opening provided at both ends in the lateral direction corresponding to the storage 15 a at both ends in the longitudinal direction of the spreader main body 15 And a unit 15b. The storage unit 15a has a box shape, and can store the position detection unit 21 and the imaging unit 22 inside. The opening 15 b is a hole opened at a position where the storage portion 15 a is provided in the side surface 15 c, 15 d of the spreader main body 15, and the position detection unit 21 and the imaging unit 22 can pass therethrough.
 ガイド17は、スプレッダ10により取得されるべき目標のコンテナC(以下、「目標コンテナ」という。)をスプレッダ10が取得する場合において、スプレッダ10が下降する際に、スプレッダ本体部15を目標コンテナ上に案内する。ガイド17は、水平方向におけるスプレッダ本体部15の短手方向の一端部及び他端部のそれぞれにおいて、長手方向の両端付近のそれぞれに設けられている。すなわち、ガイド17は、スプレッダ本体部15の四隅でスプレッダ本体部15の短手方向の外側に設けられている。ガイド17は、スプレッダ本体部15の側面15c,15dよりも外側に位置している。ガイド17は、スプレッダ本体部15の側面15c,15dよりも内側に退避可能とされており、例えば、積み付けられたコンテナCに対してスプレッダ10により吊り上げられたコンテナCを隙間なく載置する際にガイド17を退避させる。具体的には、スプレッダ本体部15の上方へガイド17を移動させた際、ガイド17は、平面視でスプレッダ本体部15よりも内側へ移動するようになっている。 When the spreader 10 descends, the guide 17 places the spreader body portion 15 on the target container when the spreader 10 lowers the target container C (hereinafter referred to as “target container”) to be acquired by the spreader 10. Guide to The guides 17 are provided in the vicinity of both ends in the longitudinal direction at each of one end and the other end in the lateral direction of the spreader main body 15 in the horizontal direction. That is, the guides 17 are provided at the four corners of the spreader body 15 on the outer side in the short direction of the spreader body 15. The guide 17 is located outside the side surfaces 15 c and 15 d of the spreader main body 15. The guide 17 is retractable inside the side surfaces 15c and 15d of the spreader body portion 15. For example, when the container C lifted by the spreader 10 is placed on the stacked containers C without gaps. The guide 17 is retracted. Specifically, when the guide 17 is moved to the upper side of the spreader main body 15, the guide 17 is moved inward of the spreader main body 15 in a plan view.
 ガイド17は、その先端部17aにテーパ面17bを有する。ガイド17は、目標コンテナと当該目標コンテナに対して水平方向に隣り合って載置された別のコンテナCとの隙間に進入することにより、目標コンテナの上面の縁部にテーパ面17bを当接させ、当該縁部からの反力を受けて(案内されて)スプレッダ本体部15を目標コンテナの直上に案内する。 The guide 17 has a tapered surface 17b at its tip 17a. The guide 17 abuts the tapered surface 17b on the edge of the upper surface of the target container by entering the gap between the target container and another container C placed horizontally adjacent to the target container. And (in a guided manner) guide the spreader body 15 directly above the target container.
 ロックピン16は、コンテナCを係止するための機構である。ロックピン16は、スプレッダ本体部15の下面側に、スプレッダ本体部15から下側に突出して設けられている。ロックピン16は、スプレッダ10がコンテナCを係止する際に当該コンテナCの孔部(不図示)に対応する位置であって、且つ、ガイド17の位置よりも水平方向におけるスプレッダ本体部15の中央側に設けられている。ロックピン16は、例えばツイストピンであって、上下方向に延在する軸線回りに回動可能な係止片(不図示)を下端に含む。ロックピン16は、コンテナCの上面の四隅に形成された孔部を通して進入すると共に係止片を回動させることにより、コンテナCに係合可能である。 The lock pin 16 is a mechanism for locking the container C. The lock pin 16 is provided on the lower surface side of the spreader main body portion 15 so as to protrude downward from the spreader main body portion 15. The lock pin 16 is at a position corresponding to the hole (not shown) of the container C when the spreader 10 locks the container C, and in the horizontal direction of the spreader main body 15 with respect to the position of the guide 17. It is provided at the center side. The lock pin 16 is, for example, a twist pin and includes at its lower end a locking piece (not shown) that can be pivoted about an axis extending in the vertical direction. The lock pin 16 is engageable with the container C by entering through the holes formed at the four corners of the upper surface of the container C and rotating the locking piece.
 位置検出部21は、測定対象物の二次元座標データを取得可能な装置である。本実施形態では、位置検出部21として、レーザセンサを用いている。より具体的には、位置検出部21は、レーザ光が測定対象物で反射して戻って来るまでの時間に基づいて、測定対象物までの距離を算出する。そして、位置検出部21は、測定対象物までの距離とレーザ光の照射角度とによって着光点の座標を求め、その情報を制御部30に出力する。なお、位置検出部21は、測定対象物の二次元座標データに限られず、三次元座標データ又は一次元座標データを取得可能な装置であってもよい。 The position detection unit 21 is an apparatus capable of acquiring two-dimensional coordinate data of a measurement object. In the present embodiment, a laser sensor is used as the position detection unit 21. More specifically, the position detection unit 21 calculates the distance to the measurement object based on the time until the laser light is reflected by the measurement object and returns. Then, the position detection unit 21 obtains the coordinates of the light arrival point based on the distance to the measurement object and the irradiation angle of the laser light, and outputs the information to the control unit 30. The position detection unit 21 is not limited to two-dimensional coordinate data of the measurement object, and may be an apparatus capable of acquiring three-dimensional coordinate data or one-dimensional coordinate data.
 位置検出部21は、スプレッダ本体部15の側面15c,15dに設けられている。具体的には、位置検出部21は、水平方向におけるスプレッダ本体部15の短手方向の一端部及び他端部のそれぞれにおいて、長手方向の両端付近のそれぞれに設けられている。各位置検出部21は、撮像手段22に取り付けられ、撮像手段22と共にスプレッダ本体部15の開口部15bを通過可能である。 The position detection unit 21 is provided on the side surfaces 15 c and 15 d of the spreader main body unit 15. Specifically, the position detection unit 21 is provided in the vicinity of both ends in the longitudinal direction at each of one end and the other end in the lateral direction of the spreader body 15 in the horizontal direction. Each position detection unit 21 is attached to the imaging unit 22 and can pass through the opening 15 b of the spreader main unit 15 together with the imaging unit 22.
 位置検出部21は、後述する電動シリンダ40(図3参照)の駆動により、撮像手段22と共にスライド移動させられる。位置検出部21及び撮像手段22は、電動シリンダ40の駆動により、開口部15bを通って収納部15aの外部へ出されると共に、開口部15bを通って収納部15aの内部に収納される。 The position detection unit 21 is slid along with the imaging unit 22 by driving an electric cylinder 40 (see FIG. 3) described later. The position detection unit 21 and the imaging unit 22 are drawn out of the storage unit 15a through the opening 15b by driving of the electric cylinder 40, and are stored in the storage unit 15a through the opening 15b.
 位置検出部21は、スプレッダ本体部15の下部に位置するコンテナCを検出し、検出したコンテナCの位置を計測する。また、位置検出部21は、撮像手段22の周囲の障害物を検知し、検知した障害物の位置を計測する。障害物には、例えば、コンテナ船50内のコンテナ固定ガイド、コンテナ船50の側壁、又はコンテナ船50に積まれたコンテナC等が含まれる。位置検出部21は、障害物検知部25(図4参照)として機能し、計測結果を制御部30に送信する。なお、本実施形態では位置検出部21がスプレッダ10に設けられている例を説明するが、この例に限られず、位置検出部21は例えばトロリー7に設けられていてもよい。また、位置検出部21は、測定対象物の座標データを取得できるのであればレーザセンサに限定されず、他の方式のもの(例えば、光学式カメラ等)を用いても良い。更に、位置検出部21は、複数の方式のものを併用(例えば、レーザセンサと光学式カメラとを併用)してもよい。 The position detection unit 21 detects the container C located at the lower part of the spreader main body unit 15, and measures the position of the detected container C. Further, the position detection unit 21 detects an obstacle around the imaging unit 22 and measures the position of the detected obstacle. The obstacles include, for example, the container fixing guide in the container ship 50, the side wall of the container ship 50, or the container C loaded on the container ship 50 or the like. The position detection unit 21 functions as an obstacle detection unit 25 (see FIG. 4), and transmits the measurement result to the control unit 30. In addition, although the example which the position detection part 21 is provided in the spreader 10 is demonstrated in this embodiment, it is not restricted to this example, The position detection part 21 may be provided in the trolley 7, for example. The position detection unit 21 is not limited to the laser sensor as long as the coordinate data of the measurement object can be acquired, and another type (for example, an optical camera or the like) may be used. Furthermore, the position detection unit 21 may use a plurality of methods (for example, a combination of a laser sensor and an optical camera).
 撮像手段22は、スプレッダ10の周囲を撮像可能なカメラであって、例えば動画撮影が可能なビデオカメラである。撮像手段22は、位置検出部21と同様、スプレッダ本体部15の側面であって、スプレッダ本体部15の開口部15bに対応する位置に設けられている。撮像手段22は、スプレッダ本体部15の収納部15a内に設けられた電動シリンダ40(図3参照)のロッド42に固定されている。なお、図2において、紙面手前側の撮像手段22については電動シリンダ40のロッド42を図示しているが、紙面奥側の撮像手段22については図示すると煩雑になるため、電動シリンダ40の図示を省略している。 The imaging unit 22 is a camera capable of imaging the periphery of the spreader 10, and is, for example, a video camera capable of capturing a moving image. Similar to the position detection unit 21, the imaging unit 22 is provided on the side surface of the spreader main unit 15 and at a position corresponding to the opening 15 b of the spreader main unit 15. The imaging means 22 is fixed to a rod 42 of an electric cylinder 40 (see FIG. 3) provided in the housing portion 15 a of the spreader main body portion 15. In FIG. 2, the rod 42 of the electric cylinder 40 is illustrated for the imaging unit 22 on the front side of the drawing, but the imaging unit 22 on the rear side of the drawing is complicated by illustration. It is omitted.
 図3は、撮像手段22の位置を変更する電動シリンダ40を説明するための概念図である。なお、図3では、撮像手段22による撮像範囲を灰色で塗りつぶして模式的に示している。電動シリンダ40は、撮像手段22をスライド移動させるためのスライド機構である。図3に示されるように、電動シリンダ40は、電気駆動のシリンダであって、例えば、筒状のシリンダ本体部41と、シリンダ本体部41に対して進退可能なロッド42と、を有している。進退可能とは、ロッド42が、シリンダ本体部41の外側に軸方向に伸びるように突出する(進行する)と共に、シリンダ本体部41の内部に引っ込む(退行する)ことができることを意味する。 FIG. 3 is a conceptual view for explaining the electric cylinder 40 for changing the position of the imaging means 22. As shown in FIG. In FIG. 3, the imaging range of the imaging means 22 is schematically shown in gray. The electric cylinder 40 is a slide mechanism for sliding the imaging means 22. As shown in FIG. 3, the electric cylinder 40 is an electrically driven cylinder, and includes, for example, a cylindrical cylinder body 41 and a rod 42 that can be advanced and retracted with respect to the cylinder body 41. There is. The retractable means that the rod 42 can project (advance) so as to extend in the axial direction to the outside of the cylinder body 41 and can be retracted (retracted) inside the cylinder body 41.
 電動シリンダ40は、例えば不図示の電動モータを備えている。ロッド42は、電動モータの駆動により水平方向に進行すると共に退行する。ロッド42の進行及び退行によって、ロッド42に取り付けられた撮像手段22及び位置検出部21は、開口部15bを通って収納部15aの外部へ出されると共に、開口部15bを通って収納部15aの内部に収納される。ロッド42が水平方向に進行及び退行するので、ロッド42に取り付けられた撮像手段22及び位置検出部21も水平方向を保ったままスライド移動する。よって、撮像手段22の視線を常に下方に向かせた状態で好適に視認することができる。 The electric cylinder 40 includes, for example, an electric motor (not shown). The rod 42 advances and retreats in the horizontal direction by the drive of the electric motor. The imaging means 22 and the position detection unit 21 attached to the rod 42 are advanced to the outside of the storage portion 15a through the opening 15b by the advancement and retraction of the rod 42, and of the storage portion 15a through the opening 15b. It is housed inside. Since the rod 42 advances and retreats in the horizontal direction, the imaging means 22 and the position detection unit 21 attached to the rod 42 also slide while maintaining the horizontal direction. Therefore, it can be suitably visually recognized in a state in which the line of sight of the imaging means 22 is always directed downward.
 ロッド42の進行及び退行により、撮像手段22は、最大張り出し位置と最大退避位置との間で移動可能とされている。最大張り出し位置とは、スプレッダ10から張り出した位置であって、電動シリンダ40のロッド42が最大限に進行した位置となることにより撮像手段22が最もスプレッダ10から離れる位置である。最大退避位置とは、電動シリンダ40のロッド42が最大限に退行した位置となることにより、スプレッダ10の周囲の障害物から撮像手段22が最大限に退避された位置である。本実施形態において、最大退避位置は、撮像手段22がスプレッダ本体部15の収納部15aに収納される位置(以下、「収納位置」とする。)である。 The movement and retraction of the rod 42 allow the imaging means 22 to move between the maximum extended position and the maximum retracted position. The maximum projecting position is a position projecting from the spreader 10, and is a position at which the imaging means 22 is most separated from the spreader 10 when the rod 42 of the electric cylinder 40 is advanced to the maximum position. The maximum retracted position is a position at which the imaging means 22 is maximally retracted from an obstacle around the spreader 10 as the rod 42 of the electric cylinder 40 is retracted to the maximum position. In the present embodiment, the maximum retraction position is a position at which the imaging unit 22 is stored in the storage portion 15 a of the spreader main body 15 (hereinafter referred to as “storage position”).
 撮像手段22は、スプレッダ10から水平方向において張り出す方向へ位置する第1の姿勢と、第1の姿勢に比してスプレッダ10から水平方向において張り出さない位置である第2の姿勢と、で変更可能とされている。第1の姿勢とは、例えば、平面視でスプレッダ10よりも外側に位置することであり、換言すれば、スプレッダ10が係止するコンテナCの投影面積よりも外側に位置することをいう。第2の姿勢とは、第1の姿勢と比較するとスプレッダ10からの水平方向における張り出しが少ない位置であり、スプレッダ10から水平方向において張り出していない位置であること(スプレッダ10が係止するコンテナCの投影面積よりも内側に位置すること)を含む。 The imaging unit 22 has a first orientation that is positioned in a direction in which the spreader 10 projects in the horizontal direction, and a second orientation that is a position that does not project in the horizontal direction from the spreader 10 as compared to the first orientation. It is supposed to be changeable. The first posture is, for example, located outside the spreader 10 in plan view, in other words, located outside the projected area of the container C to which the spreader 10 is locked. The second posture is a position at which the overhang in the horizontal direction from the spreader 10 is smaller than that in the first posture, and is a position not overhanging in the horizontal direction from the spreader 10 (container C to which the spreader 10 is engaged Located inside the projected area of the
 撮像手段22は、スプレッダ10の下方に位置するコンテナC及び当該コンテナCの周囲を撮像する。撮像手段22により撮像された映像は、運転室14におけるモニタ29(図4参照)に映し出され、運転者に提供される。撮像手段22は、撮像した映像を制御部30に送信する。撮像手段22及び電動シリンダ40は、撮像部26(図4参照)として機能し、制御部30によって制御される。 The imaging unit 22 captures an image of the container C located below the spreader 10 and the periphery of the container C. The image captured by the imaging means 22 is projected on the monitor 29 (see FIG. 4) in the driver's cab 14 and provided to the driver. The imaging unit 22 transmits the captured image to the control unit 30. The imaging unit 22 and the electric cylinder 40 function as an imaging unit 26 (see FIG. 4), and are controlled by the control unit 30.
 次に、クレーン装置1の機能的な構成について図4を参照して説明する。図4は、クレーン装置1の構成を機能的に示すブロック図である。図4に示されるように、クレーン装置1は、駆動部23と、荷役動作部24と、障害物検知部25と、撮像部26と、記憶部27と、制御部30と、運転室14と、を備えている。 Next, the functional configuration of the crane device 1 will be described with reference to FIG. FIG. 4 is a block diagram functionally showing the configuration of the crane apparatus 1. As shown in FIG. 4, the crane apparatus 1 includes a drive unit 23, a cargo handling operation unit 24, an obstacle detection unit 25, an imaging unit 26, a storage unit 27, a control unit 30, and a cab 14. And.
 駆動部23は、前述した走行モータ、横行モータ、及びドラム駆動モータ等に相当する。荷役動作部24は、前述したスプレッダ10が備えるガイド17及びロックピン16等に相当する。障害物検知部25は、前述した位置検出部21に相当する。撮像部26は、前述した撮像手段22及び電動シリンダ40に相当する。 The drive unit 23 corresponds to the travel motor, the traverse motor, the drum drive motor, and the like described above. The cargo handling operation unit 24 corresponds to the guide 17 and the lock pin 16 and the like included in the spreader 10 described above. The obstacle detection unit 25 corresponds to the position detection unit 21 described above. The imaging unit 26 corresponds to the imaging unit 22 and the electric cylinder 40 described above.
 制御部30は、例えば、運転室14の操作器28から送信された情報に基づき、駆動部23及び荷役動作部24の動作を制御する。具体的には、制御部30は、運転室14の操作器28から送信された情報に基づき、前述した走行モータ、横行モータ、及びドラム駆動モータ等の動作を制御すると共に、荷役動作部24のガイド17及びロックピン16等の動作を制御する。 The control unit 30 controls the operation of the drive unit 23 and the cargo handling operation unit 24 based on, for example, the information transmitted from the operation unit 28 of the cab 14. Specifically, the control unit 30 controls the operation of the traveling motor, the traverse motor, the drum drive motor and the like described above based on the information transmitted from the operation unit 28 of the cab 14, and The operation of the guide 17 and the lock pin 16 is controlled.
 また、制御部30は、障害物検知部25により検知された障害物から撮像手段22までの距離が予め定められた所定の範囲内に入った場合には、撮像部26を制御し、撮像手段22を第1の姿勢から第2の姿勢へ変更させる。 The control unit 30 controls the imaging unit 26 when the distance from the obstacle detected by the obstacle detection unit 25 to the imaging unit 22 falls within a predetermined range. 22 is changed from the first posture to the second posture.
 具体的には、制御部30は、衝突判定部31と、撮像手段姿勢変更司令部32と、を有している。衝突判定部31は、障害物検知部25からの検出結果に基づき、障害物検知部25により検知された障害物から撮像手段22までの距離が予め定められた所定の範囲内に入ったか否かを判定する。予め定められた所定の範囲内とは、撮像手段22と障害物が近接し、撮像手段22が障害物に衝突する可能性のある範囲内である。衝突とは、互いに強い力を及ぼし合うようにぶつかることだけでなく、例えば、互いに接触することも含む。 Specifically, the control unit 30 includes a collision determination unit 31 and an imaging unit posture change control unit 32. The collision determination unit 31 determines whether the distance from the obstacle detected by the obstacle detection unit 25 to the imaging unit 22 is within a predetermined range based on the detection result from the obstacle detection unit 25. Determine Within the predetermined range which is determined in advance, the imaging means 22 and the obstacle are close to each other, and the imaging means 22 may collide with the obstacle. The collision includes not only the collision to mutually exert a strong force, but also, for example, the contact with each other.
 撮像手段姿勢変更司令部32は、衝突仮想時間の算出値が、予め定められた時間以下であると衝突判定部31により判定された場合には、障害物検知部25により検知された障害物から撮像手段22までの距離が所定の範囲に入ったものとして、撮像部26に含まれる電動シリンダ40の動作を制御し、撮像手段22の姿勢を制御する。具体的には、撮像手段姿勢変更司令部32は、電動シリンダ40を駆動させることにより、撮像手段22を第1の姿勢から第2の姿勢へ変更させる。予め定められた時間とは、例えば撮像手段22が第1の姿勢から第2の姿勢まで移動するのに要する時間(撮像手段22の姿勢変化に要する時間)に対して多少余裕を持って設定された時間(以下、「設定移動時間」とする。)である。制御部30の動作の詳細は、フローチャートを用いて後述する。 If the collision determination unit 31 determines that the calculated value of the collision virtual time is equal to or less than a predetermined time, the imaging unit posture change command unit 32 starts from the obstacle detected by the obstacle detection unit 25. Assuming that the distance to the imaging means 22 falls within a predetermined range, the operation of the electric cylinder 40 included in the imaging unit 26 is controlled, and the attitude of the imaging means 22 is controlled. Specifically, the imaging unit attitude change command unit 32 changes the imaging unit 22 from the first attitude to the second attitude by driving the electric cylinder 40. The predetermined time is set, for example, with some allowance for the time required for the imaging means 22 to move from the first attitude to the second attitude (time required for the attitude change of the imaging means 22). Time (hereinafter referred to as "set travel time"). Details of the operation of the control unit 30 will be described later using a flowchart.
 運転室14は、運転者がクレーン装置1を操作するための操作器28と、撮像手段22により撮像された映像を運転者が見るためのモニタ29と、を有している。運転者は、モニタ29に映し出された映像を見て、操作器28を操作する。運転者が操作器28を操作することにより操作器28に入力された情報は、制御部30に送信される。モニタ29は、撮像手段22により撮像された映像を、制御部30を介して受信し、当該映像を映し出す。 The operator's cab 14 has an operating device 28 for the driver to operate the crane apparatus 1 and a monitor 29 for the driver to view an image captured by the imaging means 22. The driver operates the operating device 28 by viewing the image projected on the monitor 29. Information input to the operating device 28 by the driver operating the operating device 28 is transmitted to the control unit 30. The monitor 29 receives the video captured by the imaging unit 22 through the control unit 30, and displays the video.
 記憶部27は、各種情報を記憶する部分であり、メモリ等によって構成される。記憶部27は、障害物検知部25によって検知された障害物の位置を、制御部30を介して取得し、取得した障害物の位置を記憶する。例えば、記憶部27は、撮像手段22が撮像手段姿勢変更司令部32により収納位置に移動させられる直前に障害物検知部25によって検知された障害物の位置を記憶する。 The storage unit 27 is a part that stores various information, and is configured by a memory or the like. The storage unit 27 acquires the position of the obstacle detected by the obstacle detection unit 25 via the control unit 30, and stores the acquired position of the obstacle. For example, the storage unit 27 stores the position of the obstacle detected by the obstacle detection unit 25 immediately before the imaging unit 22 is moved to the storage position by the imaging unit posture change command unit 32.
 次に、クレーン装置1における制御部30の動作について、図2及び図4に加え、図5及び図6を参照して説明する。図5及び図6は、クレーン装置1によるコンテナCの荷役の動作を示すフローチャートである。 Next, the operation of the control unit 30 in the crane apparatus 1 will be described with reference to FIGS. 5 and 6 in addition to FIGS. 2 and 4. 5 and 6 are flowcharts showing the loading operation of the container C by the crane device 1.
 図5に示されるフローチャートが開始される前に、撮像手段22は、中間位置にあるとする。中間位置とは、前述した最大張り出し位置と収納位置との間の位置であって、スプレッダ10から水平方向において張り出しているが、前述した最大張り出し位置よりもスプレッダ10側の位置である。中間位置は、最大張り出し位置と収納位置との丁度中間の位置に限られず、最大張り出し位置よりもスプレッダ10側であればよい。なお、図2においては、ロックピン16を見易くするために、撮像手段22を中間位置よりも収納位置側に示している。 Before the flowchart shown in FIG. 5 is started, it is assumed that the imaging means 22 is at an intermediate position. The intermediate position is a position between the above-described maximum projecting position and the storage position, and is a position on the side of the spreader 10 with respect to the above-described maximum projecting position although it is projected horizontally from the spreader 10. The intermediate position is not limited to the position just between the maximum overhang position and the storage position, and may be on the side of the spreader 10 with respect to the maximum overhang position. In FIG. 2, in order to make the lock pin 16 easy to see, the imaging means 22 is shown on the storage position side rather than the middle position.
 図5に示されるフローチャートが開始される前には、撮像手段22の第1の姿勢が中間位置であるので、撮像手段22の第2の姿勢は、中間位置よりもスプレッダ10側の位置であって、例えば収納位置が相当する。なお、撮像手段22の第1の姿勢が最大張り出し位置である場合には、撮像手段22の第2の姿勢は、最大張り出し位置よりもスプレッダ10側の位置であって、例えば中間位置及び収納位置が相当する。 Since the first attitude of the imaging means 22 is at the intermediate position before the flowchart shown in FIG. 5 is started, the second attitude of the imaging means 22 is at a position closer to the spreader 10 than the intermediate position. For example, the storage position corresponds. When the first attitude of the imaging means 22 is the maximum overhanging position, the second attitude of the imaging means 22 is a position closer to the spreader 10 than the maximum overhanging position, for example, an intermediate position and a storage position Is the equivalent.
 撮像手段22は、中間位置において、スプレッダ10の下方に位置するコンテナC及び当該コンテナCの周囲を撮像する。撮像手段22により撮像された映像は、運転室14におけるモニタ29にリアルタイムで映し出される。運転者は、モニタ29に映し出された映像を見ながら、クレーン装置1を操作する。 The imaging unit 22 captures an image of the container C located below the spreader 10 and the periphery of the container C at the intermediate position. The image captured by the imaging means 22 is projected on a monitor 29 in the cab 14 in real time. The driver operates the crane device 1 while viewing the image projected on the monitor 29.
 図5に示されるように、まず、障害物検知部25として機能する位置検出部21によるエリア監視が開始される(ステップS1)。具体的には、位置検出部21は、撮像手段22の周囲の障害物を検知し、検知した障害物の位置を計測する。続いて、制御部30は、スプレッダ10の速度の移動速度目標値及び実測値を取得する(ステップS2)。このとき、制御部30は、運転室14の移動速度指令生成部(不図示)から、予め設定された移動速度目標値を示す情報を受信することにより、移動速度目標値を取得する。また、制御部30は、スプレッダ10の速度の実測値を示す情報を受信することにより、スプレッダ10の速度の実測値を取得する。スプレッダ10の速度の実測値は、例えば、スプレッダ10に取り付けられた速度センサ(不図示)により計測された値であってもよく、スプレッダ10を昇降するドラムの回転速度に基づき計測された値であってもよい。制御部30は、スプレッダ10の速度の実測値を、計測される度に取得してもよいし、所定間隔毎に取得してもよい。 As shown in FIG. 5, first, area monitoring by the position detection unit 21 functioning as the obstacle detection unit 25 is started (step S1). Specifically, the position detection unit 21 detects an obstacle around the imaging unit 22 and measures the position of the detected obstacle. Subsequently, the control unit 30 acquires a moving speed target value and an actual measurement value of the speed of the spreader 10 (step S2). At this time, the control unit 30 acquires the moving speed target value by receiving information indicating the moving speed target value set in advance from the moving speed command generation unit (not shown) of the driver's cab 14. Further, the control unit 30 acquires the measured value of the speed of the spreader 10 by receiving the information indicating the measured value of the speed of the spreader 10. The measured value of the speed of the spreader 10 may be, for example, a value measured by a speed sensor (not shown) attached to the spreader 10, and is a value measured based on the rotational speed of the drum moving up and down the spreader 10. It may be. The control unit 30 may acquire the measured value of the velocity of the spreader 10 every time it is measured, or may acquire it at predetermined intervals.
 続いて、衝突判定部31は、ステップS2において取得したスプレッダ10の速度と、位置検出部21により検知された障害物の位置とに基づき、スプレッダ10が障害物に衝突するまでにかかると想定される時間である衝突仮想時間(以下、単に「衝突仮想時間」とする。)を算出する(ステップS3)。このとき、スプレッダ10の速度としては、例えば、ステップS2において取得した移動速度目標値及び実測値のうちの何れかが用いられる。例えば、スプレッダ10の速度のより正確な値として実測値を用いてもよいし、スプレッダ10の速度の実測値の測定エラーが生じた場合には移動速度目標値を用いてもよい。 Subsequently, based on the velocity of the spreader 10 acquired in step S2 and the position of the obstacle detected by the position detection unit 21, the collision determination unit 31 assumes that the spreader 10 takes a collision with the obstacle. A collision virtual time (hereinafter, simply referred to as a “collision virtual time”), which is a predetermined time, is calculated (step S3). At this time, as the speed of the spreader 10, for example, any one of the movement speed target value and the actual measurement value acquired in step S2 is used. For example, the actual measurement value may be used as a more accurate value of the velocity of the spreader 10, or the movement velocity target value may be used when a measurement error of the actual measurement of the velocity of the spreader 10 occurs.
 続いて、衝突判定部31は、衝突仮想時間の算出値が、撮像手段22が最大張り出し位置から中間位置まで移動するのに要する時間に対して長いか否かを判定する(ステップS4)。撮像手段22が最大張り出し位置から中間位置まで移動するのに要する時間は、前述した設定移動時間である。当該設定移動時間を示す情報は、例えば、運転室14から制御部30に送信される。なお、本実施形態では、撮像手段22の姿勢変化を最大張り出し位置、中間位置、及び収納位置の三段階としているが、これに限られず、最大張り出し位置及び収納位置の二段階、中間位置及び収納位置の二段階としてもよく、四段階以上の変化としてもよく、連続的な変化としてもよい。 Subsequently, the collision determination unit 31 determines whether the calculated value of the collision virtual time is longer than the time required for the imaging unit 22 to move from the maximum overhang position to the intermediate position (step S4). The time required for the imaging means 22 to move from the maximum overhang position to the intermediate position is the set travel time described above. The information which shows the said setting movement time is transmitted to the control part 30 from the operator's cab 14, for example. In the present embodiment, the posture change of the imaging means 22 is in three steps of the maximum projecting position, the intermediate position, and the storage position, but the invention is not limited thereto. Two steps of the maximum projecting position and the storage position, the intermediate position, and the storage It may be a two stage position, a four or more stage change, or a continuous change.
 衝突仮想時間の算出値が、撮像手段22が最大張り出し位置から中間位置まで移動するのに要する時間よりも長い場合(ステップS4;YES)、撮像手段姿勢変更司令部32は、撮像手段22を最大張り出し位置に移動させる(ステップS5)。なお、ステップS5において撮像手段22を最大張り出し位置に移動させるとは、ステップS5の前に撮像手段22が最大張り出し位置以外にある場合に最大張り出し位置に移動させることだけでなく、ステップS5の前に撮像手段22が最大張り出し位置にある場合に撮像手段22を最大張り出し位置の状態のままとすることを含む。ステップS5の後、ステップS2に戻る。ステップS5により移動した撮像手段22は、最大張り出し位置において、スプレッダ10の下方に位置するコンテナC及び当該コンテナCの周囲を撮像する。 When the calculated value of the collision virtual time is longer than the time required for the imaging means 22 to move from the maximum overhang position to the intermediate position (step S4; YES), the imaging means posture change command unit 32 maximizes the imaging means 22. It is moved to the overhanging position (step S5). Note that moving the imaging means 22 to the maximum overhang position in step S5 means not only moving the imaging means 22 to the maximum overhang position when the imaging means 22 is other than the maximum overhang position before step S5, but also before the step S5. The image pickup means 22 is kept in the state of the maximum projection position when the image pickup means 22 is at the maximum projection position. After step S5, the process returns to step S2. The imaging unit 22 moved in step S5 images the container C located below the spreader 10 and the periphery of the container C at the maximum extended position.
 また、衝突仮想時間の算出値が、撮像手段22が最大張り出し位置から中間位置まで移動するのに要する時間以下である場合(ステップ4;NO)、撮像手段22を移動させずにステップS6に移行する。 In addition, when the calculated value of the collision virtual time is equal to or less than the time required for the imaging unit 22 to move from the maximum overhang position to the intermediate position (step 4; NO), the process proceeds to step S6 without moving the imaging unit 22. Do.
 続いて、衝突判定部31は、衝突仮想時間の算出値が、撮像手段22が中間位置から収納位置まで移動するのに要する時間に対して長いか否かを判定する(ステップS6)。撮像手段22が中間位置から収納位置まで移動するのに要する時間は、前述した設定移動時間である。衝突仮想時間の算出値が、撮像手段22が中間位置から収納位置まで移動するのに要する時間よりも長い場合(ステップS6;YES)、撮像手段姿勢変更司令部32は、撮像手段22を中間位置に移動させる(ステップS7)。なお、ステップS7において撮像手段22を中間位置に移動させるとは、ステップS7の前に撮像手段22が中間位置以外にある場合に中間位置に移動させることだけでなく、ステップS7の前に撮像手段22が中間位置にある場合に撮像手段22を中間位置の状態のままとすることを含む。ステップS7の後、ステップS2に戻る。 Subsequently, the collision determination unit 31 determines whether the calculated value of the collision virtual time is longer than the time required for the imaging unit 22 to move from the intermediate position to the storage position (step S6). The time required for the imaging means 22 to move from the intermediate position to the storage position is the set movement time described above. When the calculated value of the collision virtual time is longer than the time required for the imaging unit 22 to move from the intermediate position to the storage position (step S6; YES), the imaging unit posture change command unit 32 sets the imaging unit 22 to the intermediate position. (Step S7). Note that moving the imaging means 22 to the intermediate position in step S7 means not only moving the imaging means 22 to the intermediate position when the imaging means 22 is other than the intermediate position before step S7, but also the imaging means before step S7. When the imaging unit 22 is in the intermediate position, the imaging unit 22 is left in the intermediate position. After step S7, the process returns to step S2.
 衝突仮想時間の算出値が、撮像手段22が中間位置から収納位置まで移動するのに要する時間以下である場合(ステップS6;NO)、撮像手段22を収納位置に退避させる必要があるとして、ステップS8に移行する。続いて、記憶部27は、エリア監視情報を一時記憶する(ステップS8)。具体的には、記憶部27は、ステップS9に移行する前に位置検出部21によって検知された障害物の位置を記憶する。続いて、撮像手段姿勢変更司令部32は、撮像手段22を収納位置に移動する(ステップS9)。このとき、撮像手段22に取り付けられた位置検出部21も撮像手段22と共に収納位置に移動する。これにより、撮像手段22及び位置検出部21が収納部15aに収納される。撮像手段22が収納部15aに収納された後は、運転者は、モニタ29の映像を見る代わりに運転室14から運転者が目視してもよいし、トロリー7等に取り付けられた別の撮像手段による映像が映し出されたモニタ29を見てもよい。 If the calculated value of the collision virtual time is equal to or less than the time required for the imaging unit 22 to move from the intermediate position to the storage position (step S6; NO), it is determined that the imaging unit 22 needs to be retracted to the storage position. Move to S8. Subsequently, the storage unit 27 temporarily stores area monitoring information (step S8). Specifically, the storage unit 27 stores the position of the obstacle detected by the position detection unit 21 before proceeding to step S9. Subsequently, the imaging unit posture change command unit 32 moves the imaging unit 22 to the storage position (step S9). At this time, the position detection unit 21 attached to the imaging unit 22 also moves to the storage position together with the imaging unit 22. Thereby, the imaging unit 22 and the position detection unit 21 are stored in the storage unit 15a. After the imaging unit 22 is stored in the storage unit 15a, the driver may visually observe from the cab 14 instead of viewing the image on the monitor 29, or another imaging attached to the trolley 7 or the like You may look at the monitor 29 on which the image by the means was shown.
 続いて、ステップS8において記憶された障害物の位置に対して、スプレッダ10の位置監視を継続する(ステップS10)。具体的には、スプレッダ10を昇降するドラムの巻き上げ又は巻き下げ長さ等に基づきスプレッダ10の位置を検出する。なお、例えば位置検出部21がトロリー7に設けられている場合には、ステップS10において、トロリー7に設けられた位置検出部21によってスプレッダ10の位置を検出してもよい。 Subsequently, position monitoring of the spreader 10 is continued with respect to the position of the obstacle stored in step S8 (step S10). Specifically, the position of the spreader 10 is detected based on the winding up or down length of the drum moving up and down the spreader 10. If, for example, the position detection unit 21 is provided in the trolley 7, the position detection unit 21 provided in the trolley 7 may detect the position of the spreader 10 in step S10.
 続いて、衝突判定部31は、スプレッダ10の速度と、位置検出部21により検知された障害物の位置とに基づき、衝突仮想時間を算出する(ステップS11)。このとき、例えばスプレッダ10の速度としては実測値が用いられる。また、このとき、位置検出部21は収納部15aに収納されているので、障害物の位置としては、ステップS8において記憶部27により記憶された障害物の位置が用いられる。なお、位置検出部21が撮像手段22ではなくトロリー7等の他の部分に設けられている場合には、トロリー7等に設けられた位置検出部21により検知された障害物の位置がステップS11において用いられてもよい。このように位置検出部21がトロリー7に設けられる場合には、記憶部27により障害物の位置を記憶する必要がない。 Subsequently, the collision determination unit 31 calculates collision virtual time based on the speed of the spreader 10 and the position of the obstacle detected by the position detection unit 21 (step S11). At this time, for example, an actual measurement value is used as the speed of the spreader 10. At this time, since the position detection unit 21 is stored in the storage unit 15a, the position of the obstacle stored by the storage unit 27 in step S8 is used as the position of the obstacle. When the position detection unit 21 is provided not in the imaging unit 22 but in another part such as the trolley 7, the position of the obstacle detected by the position detection unit 21 provided in the trolley 7 or the like is determined in step S11. May be used. When the position detection unit 21 is provided in the trolley 7 as described above, the storage unit 27 does not have to store the position of the obstacle.
 ここで、例えば、スプレッダ10を昇降するドラムの巻き上げ又は巻き下げ速度が遅くなることによりスプレッダ10の速度が遅くなった場合、ステップS11における衝突仮想時間の算出値は、スプレッダ10が中間位置から収納位置まで移動するのに要する時間に対して長くなる可能性がある。そのため、続くステップS12において衝突判定部31による判定が再度行われる。具体的には、衝突判定部31は、ステップS11による衝突仮想時間の算出値が、撮像手段22が中間位置から収納位置まで移動するのに要する時間に対して長いか否かを判定する(ステップS12)。衝突仮想時間の算出値が、撮像手段22が中間位置から収納位置まで移動するのに要する時間よりも長い場合(ステップS12;YES)には、撮像手段22を収納位置から中間位置に移動することが可能であるとして、ステップS13に移行する。 Here, for example, when the speed of the spreader 10 becomes slow due to the slowing-up or lowering speed of the drum moving up and down the spreader 10, the calculated value of the collision virtual time in step S11 is stored by the spreader 10 from the intermediate position. It may be longer than the time required to move to the position. Therefore, the determination by the collision determination unit 31 is performed again in the subsequent step S12. Specifically, the collision determination unit 31 determines whether the calculated value of the collision virtual time in step S11 is longer than the time required for the imaging unit 22 to move from the intermediate position to the storage position (step S12). When the calculated value of the collision virtual time is longer than the time required for the imaging means 22 to move from the intermediate position to the storage position (Step S12; YES), the imaging means 22 is moved from the storage position to the intermediate position. And the process proceeds to step S13.
 続いて、記憶部27は、位置検出部21によるエリア監視を再開するため、エリア監視情報の記憶をリセットする(ステップS13)。具体的には、記憶部27は、ステップS9に移行する前に位置検出部21によって検知された障害物の位置を記憶した情報を削除する。続いて、撮像手段姿勢変更司令部32は、撮像手段22を中間位置に移動させる(ステップS14)。このとき、撮像手段22の移動と共に位置検出部21も中間位置に移動する。そして、ステップS1に戻り、位置検出部21によるエリア監視を再度開始する。 Subsequently, the storage unit 27 resets storage of area monitoring information in order to resume area monitoring by the position detection unit 21 (step S13). Specifically, the storage unit 27 deletes the information storing the position of the obstacle detected by the position detection unit 21 before proceeding to step S9. Subsequently, the imaging unit attitude change command unit 32 moves the imaging unit 22 to an intermediate position (step S14). At this time, along with the movement of the imaging means 22, the position detection unit 21 also moves to an intermediate position. Then, the process returns to step S1, and area monitoring by the position detection unit 21 is started again.
 また、衝突仮想時間の算出値が、撮像手段22を中間位置から収納位置まで移動するのに要する時間以下である場合(ステップS12;NO)には、撮像手段22を収納位置の状態のまま維持して、ステップS10に戻る。以上の制御部30の動作が繰り返し行われ、クレーン装置1の積み付け又は吊り上げが完了すると同時に、制御部30の動作も終了する。 In addition, when the calculated value of the collision virtual time is equal to or less than the time required to move the imaging unit 22 from the intermediate position to the storage position (step S12; NO), the imaging unit 22 is maintained at the storage position Then, the process returns to step S10. The operation of the control unit 30 described above is repeated, and at the same time the loading or lifting of the crane apparatus 1 is completed, the operation of the control unit 30 is also ended.
 以上、本実施形態に係るクレーン装置1によれば、位置検出部21により検知された障害物から撮像手段22までの距離が予め定められた所定の範囲内に入った場合、制御部30によって撮像手段22が第1の姿勢から第2の姿勢へ変更される。これにより、撮像手段22から障害物までの距離が所定の範囲内となると、撮像手段22は、スプレッダ10から水平方向において張り出された第1の姿勢に比して、スプレッダ10から水平方向において張り出さないように位置する。よって、撮像手段22を障害物と接触させることなく障害物から退避させることができる。このように、撮像手段22が障害物と接触しないので、障害物を傷付けること、及び、撮像手段22が壊れることを防止することができる。また、障害物と接触せず撮像手段22が振動することがないので、撮像手段22による映像に乱れが生じ難く、スプレッダ10の下方に位置するコンテナCの周囲を当該映像によって好適に視認することができる。更に、障害物と接触せずスプレッダ10全体が揺れることがないので、スプレッダ10全体の揺れが収まることを待つことなくスプレッダ10によるコンテナCの荷役を行うことができる。 As described above, according to the crane apparatus 1 according to the present embodiment, when the distance from the obstacle detected by the position detection unit 21 to the imaging unit 22 falls within a predetermined range, the control unit 30 captures an image. The means 22 is changed from the first attitude to the second attitude. Thereby, when the distance from the imaging unit 22 to the obstacle is within the predetermined range, the imaging unit 22 is compared in the horizontal direction from the spreader 10 as compared with the first posture horizontally extended from the spreader 10. Position so as not to overhang. Therefore, the imaging means 22 can be retracted from the obstacle without contacting the obstacle. As described above, since the imaging unit 22 does not contact the obstacle, it is possible to prevent the obstacle from being damaged and the imaging unit 22 from being broken. Moreover, since the imaging means 22 does not vibrate without coming into contact with an obstacle, the image by the imaging means 22 is unlikely to be disturbed, and the periphery of the container C located below the spreader 10 is preferably viewed by the image. Can. Furthermore, since the entire spreader 10 does not shake without coming into contact with an obstacle, the container C can be handled by the spreader 10 without waiting for the entire shake of the spreader 10 to settle.
 また、本実施形態によれば、衝突判定部31によって、撮像手段22が障害物に衝突するまでの衝突仮想時間が算出され、算出された算出値が前述した設定移動時間以下となった場合には、接触のおそれがあるとして、撮像手段22が第1の姿勢から第2の姿勢へ変更される。これにより、撮像手段22が障害物に衝突する前に、第1の姿勢に比してスプレッダ10から水平方向において張り出さないように撮像手段22を位置させることができる。よって、撮像手段22を確実に障害物と接触させることなく障害物から退避させることができる。 Further, according to the present embodiment, the collision determination unit 31 calculates the collision virtual time until the imaging unit 22 collides with the obstacle, and the calculated value becomes equal to or less than the set movement time described above. In the case where there is a risk of contact, the imaging means 22 is changed from the first attitude to the second attitude. Thereby, before the imaging means 22 collides with an obstacle, the imaging means 22 can be positioned so as not to project from the spreader 10 in the horizontal direction compared to the first posture. Therefore, the imaging means 22 can be retracted from the obstacle without contacting the obstacle with certainty.
 また、クレーン装置1は、岸壁51に横付けされたコンテナ船50内に載置されたコンテナCを吊り上げる際又は当該コンテナ船50にコンテナCを積み付ける際等に適用することができる。このようにコンテナCを吊り上げる際又はコンテナCを積み付ける際には、コンテナ船50内のコンテナ固定ガイド又はコンテナ船50の側壁等の障害物との隙間や障害物となる他のコンテナCとの間の隙間が狭い。例えば、コンテナヤード上では、隣接するロウ間である程度の隙間を設けてコンテナCが載置されるのに対し、コンテナ船50内では、輸送時のコンテナCの倒壊等を防ぐために極力隙間無くコンテナCが載置される。このため、スプレッダ10が障害物と接触し易いので、前述した構成のクレーン装置1を適用することが有効である。 In addition, the crane device 1 can be applied, for example, when lifting up the container C placed in the container ship 50 transversely attached to the quay 51 or when stacking the container C on the container ship 50. Thus, when lifting up the container C or when loading the container C, the container fixing guide in the container ship 50 or a gap with an obstacle such as a side wall of the container ship 50 or another container C which is an obstacle The gap between them is narrow. For example, on the container yard, the container C is placed with a certain degree of clearance between adjacent rows, while the container vessel 50 has the container as close as possible to prevent collapse of the container C during transportation and the like. C is placed. For this reason, since the spreader 10 is easy to contact with an obstacle, it is effective to apply the crane apparatus 1 of the structure mentioned above.
(第2実施形態)
 次に、第2実施形態に係るクレーン装置について説明する。以下の説明においては、第1実施形態と重複する説明を適宜省略する。
Second Embodiment
Next, a crane apparatus according to a second embodiment will be described. In the following description, the description overlapping with the first embodiment is appropriately omitted.
 第2実施形態に係るクレーン装置において、制御部30は、撮像手段22から障害物の側面までの水平方向における距離が、予め定められた第1の閾値以下となり、且つ、撮像手段22から障害物の側面の上端までの鉛直方向における距離が、予め定められた第2の閾値以下となった場合には、位置検出部21により検知された障害物から撮像手段22までの距離が所定の範囲内に入ったものとして、撮像手段22を、第1の姿勢から第2の姿勢へ変更させる。以下、図7を参照して制御部30の制御による撮像手段22の位置変化について詳細に説明する。 In the crane apparatus according to the second embodiment, the control unit 30 determines that the distance in the horizontal direction from the imaging unit 22 to the side surface of the obstacle is equal to or less than a predetermined first threshold, and the obstacle from the imaging unit 22 When the distance in the vertical direction to the upper end of the side surface is less than or equal to a predetermined second threshold, the distance from the obstacle detected by the position detection unit 21 to the imaging unit 22 is within a predetermined range The imaging means 22 is changed from the first attitude to the second attitude. Hereinafter, the position change of the imaging unit 22 under the control of the control unit 30 will be described in detail with reference to FIG.
 図7は、第2実施形態に係る制御部30の制御による撮像手段22の位置変化を説明するための概念図である。図7では、スプレッダ10を前後方向(クレーン装置1の走行方向)から見た端面を模式的に示している。また、図7では、スプレッダ10が係止するコンテナCを吊コンテナC1とし、その他の積み付けられたコンテナCを積み付けコンテナC2~C8として示している。積み付けコンテナC2~C8は、スプレッダ10の撮像手段22に対する障害物に相当する。また、図7では、スプレッダ本体部15の一方の側面15cに設けられた撮像手段22を撮像手段22aとし、スプレッダ本体部15の他方の側面15dに設けられた撮像手段22を撮像手段22bとして示している。 FIG. 7 is a conceptual diagram for explaining a change in position of the imaging unit 22 under the control of the control unit 30 according to the second embodiment. In FIG. 7, the end surface which looked at the spreader 10 from the front-back direction (traveling direction of the crane apparatus 1) is shown typically. Further, in FIG. 7, the container C to which the spreader 10 is locked is shown as a hanging container C1, and the other stacked containers C are shown as loading containers C2 to C8. The loading containers C2 to C8 correspond to obstacles to the imaging means 22 of the spreader 10. Further, in FIG. 7, the imaging means 22 provided on one side surface 15 c of the spreader main body 15 is shown as an imaging means 22 a, and the imaging means 22 provided on the other side 15 d of the spreader main body 15 is shown as an imaging means 22 b. ing.
 図7に示されるように、撮像手段22から水平方向に所定の距離D1(第1の閾値)を取り、且つ、撮像手段22から鉛直方向に所定の距離D2(第2の閾値)を取った範囲が予め干渉範囲Aとして設定されている。ただし、干渉範囲Aは、スプレッダ10及び吊コンテナC1の外側に設定されている。撮像手段22を収納位置に移動させるのに要する時間をtとし、スプレッダ10を水平方向に移動させる速度の最大値をVxmaxとした場合、距離D1は、D1>Vxmax×tの条件を満たす値とすることができる。スプレッダ10を鉛直方向に移動させる速度の最大値をVymaxとした場合、距離D2は、D2>Vymax×tの条件を満たす値とすることができる。 As shown in FIG. 7, a predetermined distance D1 (first threshold) is taken horizontally from the imaging means 22 and a predetermined distance D2 (second threshold) is taken vertically from the imaging means 22. The range is set in advance as the interference range A. However, the interference range A is set outside the spreader 10 and the hanging container C1. Assuming that the time required for moving the imaging means 22 to the storage position is t and the maximum value of the speed for moving the spreader 10 in the horizontal direction is V xmax , the distance D1 satisfies the condition D1> V xmax × t. It can be a value. When the maximum value of the speed at which the spreader 10 is moved in the vertical direction is Vymax , the distance D2 can be a value satisfying the condition D2> Vymax × t.
 位置検出部21は、撮像手段22から各積み付けコンテナC2~C8の側面までの水平方向における距離(以下、「水平距離」とする。)と、撮像手段22から当該側面の上端までの鉛直方向における距離(以下、「鉛直距離」とする。)と、を測定する。位置検出部21は、測定結果を制御部30に送信する。制御部30は、水平距離が距離D1以下であるか否かを判定すると共に、鉛直距離が距離D2以下であるか否かを判定することにより、障害物が干渉範囲A内に入っているか否かの干渉判定を行う。制御部30は、水平距離が距離D1以下であり、且つ、鉛直距離が距離D2以下である場合には、障害物が干渉範囲Aに入っており、干渉範囲Aに入っている障害物に撮像手段22が衝突する可能性があるとして、撮像手段22を第1の姿勢から第2の姿勢へ変更する。これにより、撮像手段22が障害物に衝突する前に、撮像手段22を障害物から退避させることができる。距離D1,D2を前述した条件を満たす値とすることにより、撮像手段22が積み付けコンテナC2~C8に衝突する可能性があると判定した後にスプレッダ10を最大の速度Vxmax,Vymaxで水平方向又は鉛直方向に移動させたとしても、撮像手段22が積み付けコンテナC2~C8の側面及び上端に衝突することを防ぐことができる。 The position detection unit 21 is a horizontal distance from the imaging unit 22 to the side surface of each of the stacking containers C2 to C8 (hereinafter referred to as “horizontal distance”) and a vertical direction from the imaging unit 22 to the upper end of the side surface And the distance at (hereinafter referred to as "vertical distance"). The position detection unit 21 transmits the measurement result to the control unit 30. The control unit 30 determines whether the obstacle is within the interference range A by determining whether the horizontal distance is equal to or less than the distance D1 and whether or not the vertical distance is equal to or less than the distance D2. Make an interference judgment. When the horizontal distance is equal to or less than the distance D1 and the vertical distance is equal to or less than the distance D2, the control unit 30 captures an image of an obstacle that is in the interference range A and in the interference range A. Assuming that the means 22 may collide, the imaging means 22 is changed from the first attitude to the second attitude. Thereby, the imaging means 22 can be retracted from the obstacle before the imaging means 22 collides with the obstacle. By setting the distances D1 and D2 to values satisfying the conditions described above, it is determined that the imaging unit 22 may collide with the loading containers C2 to C8, and then the spreader 10 is horizontal at the maximum speeds V xmax and V ymax . Even when moved in the direction or the vertical direction, the imaging means 22 can be prevented from colliding with the side surface and the upper end of the loading containers C2 to C8.
 一例として、撮像手段22aの積み付けコンテナC7に対する干渉判定を具体的に説明する。位置検出部21は、撮像手段22aから積み付けコンテナC7の側面Sまでの水平距離xと、撮像手段22aから積み付けコンテナC7の側面Sの上端Tまでの鉛直距離yと、を測定する。制御部30は、水平距離xが距離D1以下であるか否かを判定すると共に、鉛直距離yが距離D2以下であるか否かを判定する。 As an example, the interference determination with respect to the storage container C7 of the imaging means 22a will be specifically described. Position detector 21, the horizontal distance x 7 to the side surface S 7 stowing containers C7 from the imaging unit 22a, a vertical distance y 7 to the top edge T 7 of the side surface S 7 stowing containers C7 from the imaging unit 22a, Measure Control unit 30 determines whether as to determine whether the horizontal distance x 7 is the distance D1 or less, the vertical distance y 7 the distance D2 below.
 図7に示されるように、水平距離xは距離D1よりも大きく、且つ、鉛直距離yは距離D2よりも大きい。このため、制御部30は、積み付けコンテナC7が干渉範囲A内に入っておらず、撮像手段22aが積み付けコンテナC7に衝突しないと判定する。他の積み付けコンテナC2~C6,C8についても同様の干渉判定を行うことにより、撮像手段22aが全ての積み付けコンテナC2~C8に衝突しないと判定することができる。よって、制御部30は、撮像手段22aをスプレッダ10から水平方向において張り出しておく(すなわち、第1の姿勢とする)。 As shown in FIG. 7, greater than the horizontal distance x 7 is the distance D1, and a vertical distance y 7 is greater than the distance D2. For this reason, the control unit 30 determines that the loading container C7 is not within the interference range A, and the imaging means 22a does not collide with the loading container C7. By performing the same interference determination for the other loading containers C2 to C6 and C8, it can be determined that the imaging means 22a does not collide with all the loading containers C2 to C8. Therefore, the control unit 30 causes the imaging unit 22a to protrude from the spreader 10 in the horizontal direction (that is, to be in the first posture).
 撮像手段22bの積み付けコンテナC2~C8に対する干渉判定も、前述した撮像手段22aの場合と同様に行うことができる。撮像手段22bの積み付けコンテナC3に対する干渉判定において、撮像手段22bから積み付けコンテナC3の側面Sまでの水平距離は距離D1以下であり、且つ、撮像手段22bから積み付けコンテナC3の側面Sの上端Tまでの鉛直距離は距離D2以下である。このため、制御部30は、積み付けコンテナC3が干渉範囲A内に入っており、撮像手段22bが積み付けコンテナC3に衝突すると判定する。よって、制御部30は、撮像手段22bをスプレッダ10から水平方向において張り出さずに収納位置とする(すなわち、第2の姿勢とする)。 The interference determination on the stacking containers C2 to C8 of the imaging means 22b can also be performed in the same manner as in the case of the imaging means 22a described above. In the interference determination for stowing containers C3 imaging means 22b, the horizontal distance to the side surface S 3 stowing containers C3 from the imaging means 22b is at distance D1 below, and the side surface S 3 stowing containers C3 from the imaging means 22b the vertical distance to the top edge T 3 is the distance D2 less. For this reason, the control unit 30 determines that the loading container C3 is in the interference range A and the imaging means 22b collides with the loading container C3. Therefore, the control unit 30 sets the imaging unit 22b in the storage position without projecting from the spreader 10 in the horizontal direction (that is, sets the second posture).
 以上、第2実施形態によれば、撮像手段22が障害物と衝突する前に、第1の姿勢に比してスプレッダ10から水平方向において張り出さないように撮像手段22を位置させることができる。よって、撮像手段22を確実に障害物と接触させることなく障害物から退避させることができる。 As described above, according to the second embodiment, before the imaging unit 22 collides with an obstacle, the imaging unit 22 can be positioned so as not to protrude from the spreader 10 in the horizontal direction compared to the first posture. . Therefore, the imaging means 22 can be retracted from the obstacle without contacting the obstacle with certainty.
 以上、本実施形態の種々の実施形態について説明したが、本発明は上記実施形態に限られず、各請求項に記載した要旨を変更しない範囲で変形し、又は他に適用してもよい。 As mentioned above, although various embodiment of this embodiment was described, this invention is not limited to the said embodiment, You may deform | transform in the range which does not change the summary described to each claim, or may apply to others.
 例えば、撮像手段22をスライド移動させるためのスライド機構は電動シリンダ40に限られず、例えば4節平行リンク機構を設けてもよい。具体的には、4節平行リンク機構の固定リンクをスプレッダ10に固定すると共に、中間リンクに撮像手段22及び位置検出部21を取り付け、駆動リンクを駆動することにより、中間リンクが水平を保ったまま前後方向にスライド移動する構成としてもよい。この場合、撮像手段22及び位置検出部21は中間リンクと共に水平を保ったままスライド移動することになるため、前述した電動シリンダの場合と同様に、撮像手段22の視線を常に下方を向かせた状態で好適に視認することができる。 For example, the slide mechanism for sliding the imaging means 22 is not limited to the electric cylinder 40, and a four-bar parallel link mechanism may be provided, for example. Specifically, the fixed link of the four-bar parallel link mechanism is fixed to the spreader 10, and the imaging means 22 and the position detection unit 21 are attached to the intermediate link, and the intermediate link is kept horizontal by driving the drive link. It may be configured to slide in the longitudinal direction as it is. In this case, since the imaging unit 22 and the position detection unit 21 slide along with the intermediate link while maintaining the horizontal, the line of sight of the imaging unit 22 is always directed downward as in the case of the electric cylinder described above. It can be suitably viewed in the state.
 また、上記実施形態では、位置検出部21及び撮像手段22を収納部15aに収納することにより位置検出部21及び撮像手段22を退避させる例について説明したが、この例に限られない。例えば、位置検出部21及び撮像手段22をスプレッダ本体部15の上面に設け、当該上面上で位置検出部21及び撮像手段22をスライド移動させることにより位置検出部21及び撮像手段22を退避させてもよい。また、位置検出部21及び撮像手段22をスライド移動させて退避させることに限られず、例えば位置検出部21及び撮像手段22を回動させて退避させてもよい。また、最大退避位置は上記実施形態で述べた収納位置に限られず、位置検出部21及び撮像手段22が、スプレッダ10が係止するコンテナCの投影面積よりも内側に位置するように退避された位置であればよい。 In the above-described embodiment, the example in which the position detection unit 21 and the imaging unit 22 are retracted by storing the position detection unit 21 and the imaging unit 22 in the storage unit 15a has been described. However, the present invention is not limited to this example. For example, the position detection unit 21 and the imaging unit 22 are provided by providing the position detection unit 21 and the imaging unit 22 on the upper surface of the spreader main body 15 and sliding the position detection unit 21 and the imaging unit 22 on the upper surface It is also good. Further, the position detection unit 21 and the imaging unit 22 are not limited to sliding and retracting. For example, the position detection unit 21 and the imaging unit 22 may be rotated and retracted. In addition, the maximum retracted position is not limited to the storage position described in the above embodiment, and the position detection unit 21 and the imaging unit 22 are retracted so as to be positioned inside the projected area of the container C which the spreader 10 locks. Any position is acceptable.
 また、上記実施形態では、特に効果的であるとして、脚構造部11から所定方向と交差する方向へガーダー12が張り出し、接岸したコンテナ船50との間でコンテナCの搬送を行う橋形クレーンに対する適用を述べているが、ガーダー12が海上へ張り出していない橋形クレーンに対しても適用可能であり、また、荷役部を例えばクラブバケット等としたクレーン装置や、天井クレーン装置等に対しても適用可能である。 Further, in the above embodiment, it is particularly effective that the girder 12 projects from the leg structure 11 in a direction intersecting the predetermined direction, and transports the container C with the docked container ship 50. Although the application is described, the present invention is also applicable to a bridge crane in which the girder 12 does not project to the sea, and also to a crane device whose overhead part is, for example, a club bucket or an overhead crane device. It is applicable.
 1…クレーン装置、7…トロリー、9…ワイヤーロープ、10…スプレッダ(荷役部)、11…脚構造部(走行部)、12…ガーダー、21…位置検出部(障害物検知部)、22…撮像手段、25…障害物検知部、30…制御部、31…衝突判定部(制御部)、32…撮像手段姿勢変更司令部(制御部)、50…コンテナ船(船舶)、51…岸壁、C…コンテナ(被搬送物)、x…水平距離(水平方向における距離),y…鉛直距離(鉛直方向における距離),D1…距離(第1の閾値)、D2…距離(第2の閾値)。 DESCRIPTION OF SYMBOLS 1 ... Crane apparatus, 7 ... Trolley, 9 ... Wire rope, 10 ... Spreader (load handling part), 11 ... Leg structure part (traveling part), 12 ... Garder, 21 ... Position detection part (obstacle detection part), 22 ... Imaging means, 25: obstacle detection unit, 30: control unit, 31: collision determination unit (control unit), 32: imaging means attitude change command unit (control unit), 50: container ship (vessel), 51: wharf, C ... container (carried object), x 7 ... horizontal distance (distance in the horizontal direction), y 7 ... vertical distance (distance in the vertical direction), D1 ... distance (first threshold), D2 ... distance (second Threshold).

Claims (4)

  1.  ワイヤーロープにより巻き上げ又は巻き下げが可能であり、被搬送物の荷役を行う荷役部と、
     前記荷役部に取り付けられ、前記荷役部の周囲を撮像可能な撮像手段と、
     前記撮像手段の周囲の障害物を検知する障害物検知部と、
     前記撮像手段の姿勢を制御する制御部と、
    を備え、
     前記撮像手段は、前記荷役部から水平方向において張り出す方向へ位置する第1の姿勢と、前記第1の姿勢に比して前記荷役部から水平方向において張り出さない位置である第2の姿勢と、で変更可能であり、
     前記制御部は、前記障害物検知部により検知された前記障害物から前記撮像手段までの距離が予め定められた所定の範囲内に入った場合、前記撮像手段を前記第1の姿勢から前記第2の姿勢へ変更させる、クレーン装置。
    A cargo handling unit that can be wound up or down with a wire rope, and performs cargo handling of a transported object;
    An imaging unit attached to the cargo handling unit and capable of imaging the periphery of the cargo handling unit;
    An obstacle detection unit that detects an obstacle around the imaging unit;
    A control unit that controls the attitude of the imaging unit;
    Equipped with
    The image pickup means has a first posture positioned in a direction extending in the horizontal direction from the cargo handling unit, and a second posture in which the position does not horizontally protrude from the cargo handling unit compared to the first posture. And can be changed by
    When the distance from the obstacle detected by the obstacle detection unit to the imaging unit falls within a predetermined range, the control unit causes the imaging unit to move from the first posture to the first posture. Crane equipment to change to 2 attitudes.
  2.  前記制御部は、前記荷役部の移動速度及び前記障害物検知部により検知された前記障害物に基づいて、前記撮像手段が前記障害物に衝突するまでの衝突仮想時間を算出し、算出された算出値が予め定められた時間以下となった場合には、前記撮像手段を前記第1の姿勢から前記第2の姿勢へ変更させる、請求項1に記載のクレーン装置。 The control unit calculates and calculates a collision virtual time until the imaging unit collides with the obstacle based on the moving speed of the cargo handling unit and the obstacle detected by the obstacle detection unit. The crane apparatus according to claim 1, wherein when the calculated value becomes equal to or less than a predetermined time, the imaging unit is changed from the first attitude to the second attitude.
  3.  前記制御部は、前記撮像手段から前記障害物の側面までの水平方向における距離が、予め定められた第1の閾値以下となり、且つ、前記撮像手段から前記障害物の前記側面の上端までの鉛直方向における距離が、予め定められた第2の閾値以下となった場合、前記撮像手段を、前記第1の姿勢から前記第2の姿勢へ変更させる、請求項1に記載のクレーン装置。 The control unit is configured such that the distance in the horizontal direction from the imaging unit to the side surface of the obstacle is equal to or less than a predetermined first threshold, and the vertical distance from the imaging unit to the upper end of the side surface of the obstacle The crane apparatus according to claim 1, wherein when the distance in the direction becomes equal to or less than a predetermined second threshold, the imaging unit is changed from the first posture to the second posture.
  4.  岸壁上を所定方向へ走行可能な走行部と、
     前記走行部から前記所定方向と交差する方向へ張り出したガーダーと、
     前記ガーダーに沿って横行可能なトロリーと、
    を備え、
     前記荷役部は、前記トロリーからワイヤーロープを介して吊り下げられ、前記岸壁に横付けされた船舶内に載置された前記被搬送物を係止可能なスプレッダである、請求項1~3の何れか一項に記載のクレーン装置。
    A traveling portion capable of traveling in a predetermined direction on the quay,
    A girder projecting from the traveling portion in a direction intersecting the predetermined direction;
    A trolley that can traverse along the girder,
    Equipped with
    The cargo handling unit according to any one of claims 1 to 3, wherein the cargo handling unit is a spreader that can be suspended from the trolley via a wire rope and can lock the transported object placed in a ship that is placed on the quay. The crane apparatus according to any one of the preceding claims.
PCT/JP2018/018940 2017-07-13 2018-05-16 Crane device WO2019012802A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202011502911.6A CN112678688B (en) 2017-07-13 2018-05-16 Crane device
CN201880035035.5A CN110869305B (en) 2017-07-13 2018-05-16 Crane device
MYPI2019007241A MY202483A (en) 2017-07-13 2018-05-16 Crane device
JP2019528955A JP6644955B2 (en) 2017-07-13 2018-05-16 Crane equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-137160 2017-07-13
JP2017137160 2017-07-13

Publications (1)

Publication Number Publication Date
WO2019012802A1 true WO2019012802A1 (en) 2019-01-17

Family

ID=65002586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018940 WO2019012802A1 (en) 2017-07-13 2018-05-16 Crane device

Country Status (4)

Country Link
JP (1) JP6644955B2 (en)
CN (2) CN110869305B (en)
MY (1) MY202483A (en)
WO (1) WO2019012802A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142914A (en) * 2019-03-08 2020-09-10 住友重機械搬送システム株式会社 Crane and loading method of crane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054871A (en) * 2001-08-10 2003-02-26 Yuzo Shimizu Spreader for suspending container
JP2006273532A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Crane for loading/unloading container
WO2014170554A1 (en) * 2013-04-17 2014-10-23 Konecranes Plc Grabber for load handling apparatus and crane

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237558B2 (en) * 1996-01-29 2001-12-10 日本鋼管株式会社 Position detection device for suspended load of rope suspension type crane
CN1613747A (en) * 2003-11-04 2005-05-11 中国科学院自动化研究所 Automatic controlling system of crane
CN1978306A (en) * 2005-11-29 2007-06-13 中国国际海运集装箱(集团)股份有限公司 Container sling
JP5039385B2 (en) * 2007-01-05 2012-10-03 三菱重工業株式会社 Misalignment amount calculation method, misalignment amount calculation device, crane, and cargo handling system
CN105084222A (en) * 2015-08-28 2015-11-25 成都正广科技有限公司 Remote control tower crane device
CN205709438U (en) * 2016-05-04 2016-11-23 湖南科天健光电技术有限公司 A kind of detection automatically for container is grabbed case and piles up the device of position
CN105836629B (en) * 2016-05-13 2017-10-10 中交第三航务工程勘察设计院有限公司 A kind of container crane and its handling method with double luffing mechanisms
CN206077465U (en) * 2016-08-31 2017-04-05 深圳市至壹科技开发有限公司 A kind of drawing video camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054871A (en) * 2001-08-10 2003-02-26 Yuzo Shimizu Spreader for suspending container
JP2006273532A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Crane for loading/unloading container
WO2014170554A1 (en) * 2013-04-17 2014-10-23 Konecranes Plc Grabber for load handling apparatus and crane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142914A (en) * 2019-03-08 2020-09-10 住友重機械搬送システム株式会社 Crane and loading method of crane
WO2020184025A1 (en) * 2019-03-08 2020-09-17 住友重機械搬送システム株式会社 Crane and method for loading with crane
CN113490635A (en) * 2019-03-08 2021-10-08 住友重机械搬运***工程株式会社 Crane and stacking method thereof
JP7162555B2 (en) 2019-03-08 2022-10-28 住友重機械搬送システム株式会社 Cranes and crane stowage methods

Also Published As

Publication number Publication date
CN112678688B (en) 2023-02-28
MY202483A (en) 2024-04-30
JP6644955B2 (en) 2020-02-12
JPWO2019012802A1 (en) 2020-03-19
CN112678688A (en) 2021-04-20
CN110869305B (en) 2020-11-20
CN110869305A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2014115354A1 (en) Container crane
JP4856394B2 (en) Object position measuring apparatus for container crane and automatic cargo handling apparatus using the object position measuring apparatus
EP3033293B1 (en) Method and system for automatically landing containers on a landing target using a container crane
EP3613699A1 (en) Inspection system for container
JP6689467B2 (en) Crane equipment
CN110182500A (en) Method and system for operative material haulage equipment
JP2018188250A (en) Method and device for assisting with operation of cargo handling machine, and method and device for assisting with maintenance work
JP2018188299A (en) Container terminal system and control method of the same
KR100624008B1 (en) Auto landing system and the method for control spreader of crane
JP2006273533A (en) Crane for loading/unloading container
JP6644955B2 (en) Crane equipment
JP6807131B2 (en) Cargo handling and transportation equipment
JP4421352B2 (en) Container spreader positioning display device
JP7345335B2 (en) Crane operation support system and crane operation support method
JP6879618B2 (en) Crane operation support system and operation support method
WO2020184025A1 (en) Crane and method for loading with crane
US11091356B2 (en) Alignment apparatus of container
JP4365246B2 (en) Container lifting operation support method and container spreader positioning device
JPS61101389A (en) Container crane
JP6879578B2 (en) Remote control system and remote control method for container cranes
JP6879579B2 (en) Remote control system and remote control method for container cranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832855

Country of ref document: EP

Kind code of ref document: A1