WO2019011239A1 - 乙苯脱烷基催化剂及其制备方法 - Google Patents

乙苯脱烷基催化剂及其制备方法 Download PDF

Info

Publication number
WO2019011239A1
WO2019011239A1 PCT/CN2018/095160 CN2018095160W WO2019011239A1 WO 2019011239 A1 WO2019011239 A1 WO 2019011239A1 CN 2018095160 W CN2018095160 W CN 2018095160W WO 2019011239 A1 WO2019011239 A1 WO 2019011239A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
molecular sieve
ethylbenzene
ethylbenzene dealkylation
palladium
Prior art date
Application number
PCT/CN2018/095160
Other languages
English (en)
French (fr)
Inventor
张福如
辛莲森
窦涛
李宁
Original Assignee
太原大成环能化工技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原大成环能化工技术有限公司 filed Critical 太原大成环能化工技术有限公司
Publication of WO2019011239A1 publication Critical patent/WO2019011239A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2775Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7446EUO-type, e.g. EU-1, TPZ-3 or ZSM-50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7646EUO-type, e.g. EU-1, TPZ-3 or ZSM-50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7846EUO-type, e.g. EU-1, TPZ-3 or ZSM-50
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates to a molecular sieve catalyst and a preparation method thereof, and particularly to an ethylbenzene dealkylation catalyst and a preparation method thereof.
  • C8 aromatic hydrocarbon refers to a mixture of p-xylene, meta-xylene, o-xylene and ethylbenzene isomers.
  • the main sources of C8 aromatic hydrocarbons are catalytic reforming in petroleum secondary processing and thermal cracking of naphtha, followed by toluene disproportionation or transalkylation.
  • the isomerization of C8 aromatics is an important unit process in the aromatics complex. Its function is to convert the non-thermodynamically balanced mixed carbon octahydrocarbons, including ethylbenzene, into a composition close to thermodynamic equilibrium for the production of industrial applications. Higher value p-xylene (PX).
  • ethylbenzene in carbon octahydrocarbons is widely used without xylene, and the boiling point of ethylbenzene and xylene is close, and separation is difficult. If it is not removed in time, it will lead to the accumulation of ethylbenzene in the combined process recycle stream, which will increase the circulation of the isomerization unit, increase the severity of the adsorption separation, and increase the energy consumption of the unit. Therefore, ethylbenzene must be converted in time during the isomerization of carbon eight aromatics.
  • the carbon octaolefin isomerization catalyst can be classified into an ethylbenzene conversion catalyst and an ethylbenzene dealkylation catalyst according to different conversion modes of ethylbenzene.
  • the ethylbenzene conversion catalyst directly converts ethylbenzene to xylene while obtaining a thermodynamically balanced xylene mixture.
  • the process can increase the production of xylene while removing ethylbenzene, and is better adapted to the requirements of industrialization, but the conversion rate of ethylbenzene is limited by thermodynamic equilibrium, and is not suitable for raw materials with high ethylbenzene content.
  • the ethylbenzene dealkylation catalyst can convert ethylbenzene to benzene during the isomerization of carbon octarene.
  • the process is not limited by thermodynamic equilibrium and has high conversion rate of ethylbenzene. It is suitable for high ethylbenzene content. Isomerization of carbon octarene. Since the boiling points of benzene and xylene differ greatly, separation can be achieved directly by fractional distillation. Therefore, the ethylbenzene dealkylation process can adapt to the requirements of large-scale aromatics devices.
  • the ethylbenzene dealkylation type catalyst is generally a bifunctional catalyst comprising a metal component and an acidic component.
  • the metal component provides a hydrogenation active center, a saturated olefin.
  • Acidic components generally employ molecular sieves to provide isomerization and dealkylation active centers.
  • the focus of catalyst development is mainly on the study of molecular sieve components in catalysts, namely the application of new molecular sieves and the modification of existing molecular sieves, in order to develop carbon octa areomers with better activity, selectivity and stability. Catalyst.
  • Patent CN103285912 A discloses a preparation method of an ethylbenzene dealkylation catalyst in a carbon eight aromatic hydrocarbon, which comprises a Y molecular sieve, a mercerized molecular sieve and a ZSM-5 molecular sieve to form a composite molecular sieve, wherein ⁇ -Al 2 O 3 is used as a binder, and the load is selected from molybdenum.
  • One or more oxides of cobalt, nickel, and platinum In order to suppress the side reaction of the transalkylation and reduce the loss of xylene, the catalyst needs to be subjected to hydromethyl reactive silicone oil immersion heat treatment on the molecular sieve, which increases the complexity of the preparation process of the catalyst and has high cost.
  • Patent CN 102309978 A discloses an ethylbenzene dealkylation catalyst comprising a composite molecular sieve composed of a BETA type molecular sieve and a ZSM-5 molecular sieve, and the surface of the two molecular sieves is modified by using gallium oxide to adjust pore structure and acid strength, thereby reducing transalkylation, The occurrence of side reactions such as cracking and disproportionation increases the conversion of ethylbenzene and the selectivity of ethylbenzene to benzene.
  • the structure of the BETA type molecular sieve has no particular advantage in the reactivity and selectivity of xylene isomerization, the performance of the catalyst still has room for improvement.
  • Patent CN 103769206 A discloses an EUO structure molecular sieve catalyst and a preparation method thereof.
  • the mechanism of action of the catalyst is to convert ethylbenzene into xylene
  • the mechanism of action of the catalyst of the present application is to remove ethylbenzene from ethylbenzene to remove benzene. .
  • the latter has a larger amount of processing.
  • the purpose of the present application is to provide a catalyst with good activity and high selectivity for isomerization of ethylbenzene dealkylated xylene and a preparation method thereof for the deficiencies of the prior art. Since the boiling point of ethylbenzene and xylene is close, if ethylbenzene in the carbon octarene is not removed in time, it will cause the accumulation of ethylbenzene in the combined process recycle stream, so that the circulation of the isomerization unit will increase, and the operation of adsorption separation will be severe. increase.
  • This application solves this problem by converting ethylbenzene deethylation to benzene in combination with EUO molecular sieves through ZSM-5 molecular sieves.
  • An ethylbenzene dealkylation catalyst characterized in that, according to the weight percentage, the ethylbenzene dealkylation catalyst comprises the following components:
  • the ethylbenzene dealkylation catalyst comprises, by weight percent, the following components:
  • the EUO molecular sieve and the ZSM-5 molecular sieve have a mass ratio of (1 to 9): (9 to 1).
  • the ethylbenzene dealkylation catalyst comprises, by weight percent, the following components:
  • the mass percentage of the mixture of the EUO molecular sieve and the ZSM-5 molecular sieve in the ethylbenzene dealkylation catalyst is from 30% to 70%.
  • the oxide of one or more of platinum, palladium, nickel, molybdenum, and cobalt is 0.005% to 5.0% by mass in the ethylbenzene dealkylation catalyst.
  • the ethylbenzene dealkylation catalyst comprises, by weight percent, the following components:
  • the oxide of one or more of platinum, palladium, nickel, molybdenum, cobalt is an oxide of platinum, an oxide of palladium or a mixture of an oxide of platinum and an oxide of palladium. .
  • the oxide binder is alumina, silica or a mixture of alumina and silica.
  • the EUO molecular sieve and the ZSM-5 molecular sieve have a silica to alumina molar ratio of (20:1) to (90:1).
  • the EUO molecular sieve and the ZSM-5 molecular sieve are both hydrogen type zeolites.
  • the application also provides a preparation method of an ethylbenzene dealkylation catalyst, comprising the following steps:
  • S1 10 parts to 50 parts by weight of EUO molecular sieve, 10 parts to 50 parts of ZSM-5 molecular sieve, 10 parts to 80 parts of oxide binder, containing one of platinum, palladium, nickel, molybdenum and cobalt or a variety of salts or acids 0.001 to 6 parts;
  • the immersion liquid comprises a salt and/or an acid containing one or more of platinum, palladium, nickel, molybdenum and cobalt, wherein the platinum, palladium, nickel, molybdenum and cobalt are contained
  • the mass fraction of one or more salts and/or acids in the impregnation liquid is from 0.7% to 0.9%, and the catalyst carrier is added to the impregnation liquid and dynamically immersed at room temperature for 12 hours, that is, at room temperature. After stirring for 12 hours, the mass ratio of the catalyst carrier to the impregnation liquid is 1:3 to 1:5;
  • step S4 The solid obtained in the step S3 is collected, dried and calcined to obtain a catalyst.
  • the drying temperature is 50 ° C to 150 ° C
  • the drying time is 2 hours to 20 hours
  • the baking temperature is 400 ° C to 600 ° C
  • the baking time is 1 Hours to 24 hours.
  • the method for preparing an ethylbenzene dealkylation catalyst is used to prepare any of the above ethylbenzene dealkylation catalysts.
  • the salt and/or acid containing one or more of platinum, palladium, nickel, molybdenum, cobalt is chloroplatinic acid, chloroplatinic acid, palladium nitrate, palladium chloride, molybdic acid One or more of ammonium, nickel nitrate, and cobalt nitrate.
  • the mineral acid has a mass concentration of from 1.0% to 6.0%.
  • the inorganic acid is at least one of hydrochloric acid and nitric acid.
  • the inorganic acid is hydrochloric acid or nitric acid having a mass concentration of 1.0% to 6.0%.
  • an ion exchange method may be used.
  • the impregnation method may be co-impregnation or stepwise impregnation.
  • the present application Compared with the prior art, the present application has the following beneficial effects: the present application converts ethylbenzene deethylation to benzene-bonded EUO molecular sieve through ZSM-5 molecular sieve to improve the removal rate of ethylbenzene in the carbon eight aromatic hydrocarbon isomerization process. It has the advantages of high selectivity to p-xylene and low loss rate of xylene.
  • the EUO molecular sieve exhibits good activity and selectivity in the reaction of isomerization of ethylbenzene to xylene.
  • the composition of the catalyst cat-1 includes: a mixture of EUO molecular sieve and ZSM-5 molecular sieve; alumina; PtO 2 and Ni 2 O 3 , wherein the mass percentage of PtO 2 in the catalyst is 0.1%, and Ni 2 O 3 is in the catalyst. The mass percentage is 1.3%.
  • the composition of catalyst cat-2 includes: a mixture of EUO molecular sieve and ZSM-5 molecular sieve; alumina; PtO 2 and CoO, wherein the mass percentage of PtO 2 in the catalyst is 0.16%, and the mass percentage of CoO in the catalyst is 0.76%.
  • the composition of the catalyst cat-3 includes: a mixture of EUO molecular sieve and ZSM-5 molecular sieve; alumina; PdO and MoO 3 , wherein the mass percentage of PdO in the catalyst is 0.1%, and the mass percentage of MoO 3 in the catalyst is 2.8%.
  • the composition of the catalyst cat-4 includes: a mixture of EUO molecular sieve and ZSM-5 molecular sieve; alumina and PtO 2 , wherein the mass percentage of PtO 2 in the catalyst is 0.22%,
  • the carrier prepared in the step (1) 50 g was added to 200 ml of an impregnation solution containing 0.2 g of chloroplatinic acid, and dynamically impregnated for 12 hours at room temperature, and the solid was collected, dried at 120 ° C for 15 hours, and calcined in air at 600 ° C. In hours, the catalyst was obtained, numbered cat-5.
  • the catalyst evaluation method was as in Example 1, and the reaction results are shown in Table 1.
  • composition of catalyst cat-5 is based on mass percentage and includes:
  • the composition of the catalyst cat-5 includes: a mixture of EUO molecular sieve and ZSM-5 molecular sieve; alumina and PtO 2 , wherein the mass percentage of PtO 2 in the catalyst is 0.22%,
  • the composition of the catalyst cat-6 includes: a mixture of EUO molecular sieve and ZSM-5 molecular sieve; alumina and PtO 2 , wherein the mass percentage of PtO 2 in the catalyst is 0.22%,
  • the carrier prepared in the step (1) 50 g was added to 150 ml of an impregnation solution containing 0.2 g of chloroplatinic acid, and dynamically impregnated for 12 hours at room temperature, and the solid was collected, dried at 120 ° C for 10 hours, and calcined in air at 400 ° C. In hours, the catalyst was obtained, numbered cat-7.
  • the catalyst evaluation method was as in Example 1, and the reaction results are shown in Table 1.
  • the composition of the catalyst cat-7 includes: a mixture of EUO molecular sieve and ZSM-5 molecular sieve; alumina and PtO 2 , wherein the mass percentage of PtO 2 in the catalyst is 0.22%,
  • Catalyst cat-1 was investigated for its dealkylation activity and selectivity on a fixed bed reactor.
  • the side reactions were mainly the degree of transalkylation and disproportionation (expressed in terms of yield of xylene).
  • the reaction conditions were as follows: hydrogen pressure 1.2 MPa, reaction temperature 390 ° C, hydrogen hydrocarbon molar ratio 2.0, mass space velocity 10.0 h -1 , reaction for 8 hours sampling analysis, the results are shown in Table 2.
  • Catalyst cat-1 was investigated for its dealkylation activity and selectivity on a fixed bed reactor.
  • the side reactions were mainly the degree of transalkylation and disproportionation (expressed in terms of yield of xylene).
  • the reaction conditions were as follows: hydrogen pressure 1.2 MPa, reaction temperature 400 ° C, hydrogen hydrocarbon molar ratio 2.0, mass space velocity 10.0 h -1 , reaction for 8 hours sampling analysis, the results are shown in Table 2.
  • Catalyst cat-1 was investigated for its dealkylation activity and selectivity on a fixed bed reactor.
  • the side reactions were mainly the degree of transalkylation and disproportionation (expressed in terms of yield of xylene).
  • the reaction conditions were as follows: hydrogen pressure 1.2 MPa, reaction temperature 380 ° C, hydrogen hydrocarbon molar ratio 2.0, mass space velocity 11.0 h -1 , reaction for 8 hours sampling analysis, the results are shown in Table 2.
  • Catalyst cat-1 was investigated for its dealkylation activity and selectivity on a fixed bed reactor, and the side reactions were mainly the degree of transalkylation and disproportionation reactions (expressed in terms of yield of xylene).
  • the reaction conditions were as follows: hydrogen pressure 1.2 MPa, reaction temperature 380 ° C, hydrogen hydrocarbon molar ratio 2.0, mass space velocity 12.0 h -1 , reaction for 8 hours sampling analysis, the results are shown in Table 2.
  • the catalyst obtained in the present application was investigated for catalytic reaction performance using a fixed bed reactor.
  • the reactor is electrically heated and the temperature is automatically controlled.
  • the bottom of the reactor was filled with a 10-stage quartz sand as a support.
  • the reactor was filled with 5 g of catalyst, and the upper part was filled with a 10-stage quartz sand to preheat and vaporize the raw materials.
  • the mixed xylene (containing meta-xylene and o-xylene) and ethylbenzene in the raw material are mixed with hydrogen, and reacted through the catalyst bed from top to bottom.
  • the reaction conditions are: temperature 350 ° C to 420 ° C; pressure 1.0 MPa to 2.0 MPa; hydrogen hydrocarbon molar ratio 1.0 to 3.0; mass space velocity 5 h -1 ⁇ 15 h -1 .
  • the raw materials were prepared using chemically pure reagents in terms of mass fractions of 12% ethylbenzene, 62% metaxylene, and 26% o-xylene.
  • the experimental data were calculated using the following formula:
  • Xylene yield xylene content in the product / xylene content in the raw material ⁇ 100%;
  • Ethylbenzene conversion (ethylbenzene content in the raw material - ethylbenzene content in the product) / ethylbenzene content in the raw material ⁇ 100%;
  • the xylene isomerization ratio the weight of p-xylene in the product / the weight of the mixed xylene in the product.
  • the ethylbenzene hydrodealkylation catalyst described in the present application has the characteristics of high ethylbenzene conversion activity, high xylene isomerization activity and high xylene yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

提供一种乙苯脱烷基催化剂,按照重量百分比,所述乙苯脱烷基催化剂包括如下组分:a)20%~90%的EUO 分子筛和ZSM-5 分子筛的混合物;b)0.001%~6.0%的铂、钯、镍、钼、钴中的一种或多种的氧化物;以及c)氧化物粘结剂。

Description

乙苯脱烷基催化剂及其制备方法
相关申请
本申请要求2017年07月11日申请的,申请号为201710562357.2,名称为“一种乙苯脱烷基催化剂及其制备方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及一种分子筛催化剂及其制备方法,具体涉及一种乙苯脱烷基催化剂及其制备方法。
背景技术
碳八芳烃指对二甲苯、间二甲苯、邻二甲苯和乙基苯同分异构体的混合物。碳八芳烃的主要来源是石油二次加工中的催化重整和石脑油热裂解,其次是甲苯歧化或烷基转移等。碳八芳烃异构化是芳烃联合装置中的重要单元过程,其作用是将经分离后、包括乙苯在内的非热力学平衡的混合碳八芳烃转化成接近热力学平衡的组成,以增产工业应用价值较高的对二甲苯(PX)。碳八芳烃中的乙苯用途没有二甲苯用途广泛,而且乙苯与二甲苯沸点接近,分离困难。如果不及时脱除,会导致乙苯在联合装置循环物流中积累,使异构化联合装置循环量提高,吸附分离的操作苛刻度增加,增加装置能耗。因此,在碳八芳烃异构化过程中必须将乙苯及时转化。按照对乙苯的不同转化方式,可将碳八芳烃异构化催化剂分为乙苯转化型催化剂和乙苯脱烷基型催化剂。乙苯转化型催化剂直接将乙苯转化为二甲苯,同时得到热力学平衡的二甲苯混合物。该工艺在脱除乙苯的同时能够增产二甲苯,较好的适应了工业化的要求,但乙苯的转化率受到热力学平衡的限制,不适用于乙苯含量较高的原料。乙苯脱烷基型催化剂可以在碳八芳烃异构化过程中,将乙苯转化为苯,该过程不受热力学平衡限制,具有很高的乙苯转化率,适用于乙苯含量较高的碳八芳烃的异构化。由于苯和二甲苯的沸点相差较大,可直接用分馏的方法实现分离。故乙苯脱烷基工艺能适应芳烃装置大型化的要求。乙苯脱烷基型催化剂一般为双功能催化剂,包括金属组元和酸性组元。金属组元提供加氢活性中心,饱和烯烃。酸性组元一般采用分子筛,提供异构化及脱烷基活性中心。催化剂开发的重点主要集中于催化剂中分子筛组分的研究,即对新型分子筛的应用和对现有分子筛的改性处理,以期开发出具有更好活性、选择性和稳定性的碳八芳烃异构化催化剂。
专利CN103285912 A公开了一种碳八芳烃中乙苯脱烷基催化剂的制备方法,以Y型分子筛、丝光分子筛和ZSM-5分子筛组成复合分子筛,以γ-Al2O3为粘接剂,负载选自钼、钴、镍、铂中的一种或多种氧化物。该催化剂为了抑制烷基转移副反应,减少二甲苯损失,需对分子筛进行氢甲基活性硅油浸渍热处理,增加了催化剂制备过程的复杂性且成本较高。
专利CN 102309978 A公开了一种乙苯脱烷基催化剂,以BETA型分子筛和ZSM-5分子筛组成复合分子筛,采用氧化镓修饰两种分子筛的表面,调节孔结构和酸强度,减少烷基转移、裂解、歧化等副反应的发生,提高乙苯的转化率和乙苯转化为苯的选择性。但由于BETA型分子筛的结构对二甲苯异构化的反应活性和选择性并无特别优势,故该催化剂的性能依然有提高的空间。
专利CN 103769206 A公开了一种EUO结构分子筛催化剂及其制备方法,这种催化剂的作用机理是将乙苯转化为二甲苯,与本申请催化剂的作用机理即将乙苯脱乙基生成苯而除去不同。两种方式比较,后者的处理量更大。
发明内容
本申请的目的是为了针对现有技术的不足,提供一种活性好,选择性高的乙苯脱烷基二甲苯异构化的催化剂及其制备方法。由于乙苯与二甲苯沸点接近,碳八芳烃中的乙苯如果不及时脱除,会导致乙苯在联合装置循环物流中积累,使异构化联合装置循环量提高,吸附分离的操作苛刻度增加。本申请通过ZSM-5分子筛将乙苯脱乙基转化为苯结合EUO分子筛来解决这一问题。
为实现此目的,本申请的技术方案如下:
一种乙苯脱烷基催化剂,其特征在于,按照重量百分比,所述乙苯脱烷基催化剂包括如下组分:
a)20%~90%的EUO分子筛和ZSM-5分子筛的混合物;
b)0.001%~6.0%的铂、钯、镍、钼、钴中的一种或多种的氧化物;以及
c)氧化物粘结剂。
在其中一实施例中,按照重量百分比,所述乙苯脱烷基催化剂包括如下组分:
a)20%~90%的EUO分子筛和ZSM-5分子筛的混合物;
b)0.001%~6.0%的铂、钯、镍、钼、钴中的一种或多种的氧化物;
c)其余为氧化物粘结剂,使催化剂总重量份数为100%。
在其中一实施例中,所述EUO分子筛和ZSM-5分子筛质量比为(1~9)∶(9~1)。
在其中一实施例中,按照重量百分比,所述乙苯脱烷基催化剂包括如下组分:
a)20%~90%的EUO分子筛和ZSM-5分子筛的混合物,所述EUO分子筛和ZSM-5分子筛质量比为(1~9)∶(9~1);
b)0.001%~6.0%的铂、钯、镍、钼、钴中的一种或多种的氧化物;
c)其余为氧化物粘结剂,使催化剂总重量份数为100%。
在其中一实施例中,所述EUO分子筛和ZSM-5分子筛的混合物在所述乙苯脱烷基催化剂中的质量百分比为30%~70%。
在其中一实施例中,所述铂、钯、镍、钼、钴中的一种或多种的氧化物在所述乙苯脱烷基催化剂中的质量百分比为0.005%~5.0%。
在其中一个实施例中,按照重量百分比,所述乙苯脱烷基催化剂包括如下组分:
a)30-70%的EUO分子筛和ZSM-5分子筛的混合物;
b)0.005-5.0%的铂、钯、镍、钼、钴中的一种或多种的氧化物;
c)其余为氧化物粘结剂,使催化剂总重量份数为100%。
在其中一实施例中,所述铂、钯、镍、钼、钴中的一种或多种的氧化物为铂的氧化物、钯的氧化物或铂的氧化物与钯的氧化物的混合物。
在其中一实施例中,所述氧化物粘结剂为氧化铝、氧化硅或氧化铝与氧化硅的混合物。
在其中一实施例中,所述EUO分子筛和ZSM-5分子筛的硅铝摩尔比均为(20∶1)~(90∶1)。
在其中一实施例中,所述EUO分子筛和ZSM-5分子筛均为氢型沸石。
本申请还提供一种乙苯脱烷基催化剂的制备方法,包括以下步骤:
S1:取重量份为EUO分子筛10份~50份,ZSM-5分子筛10份~50份,氧化物粘合剂10份~80份,含有铂、钯、镍、钼、钴中的一种或多种的盐或酸0.001份~6份;
S2:将EUO分子筛、ZSM-5分子筛与氧化物粘结剂混合均匀得总混合物,加入质量浓度为0.5%~20%的无机酸混捏成型,所述质量浓度为0.5%~20%的无机酸占所述总混合物质量分数的40%,经干燥和焙烧,得到催化剂载体;
S3:配置浸渍液,所述浸渍液中包括含有铂、钯、镍、钼、钴中的一种或多种的盐和/或酸,所述含有铂、钯、镍、钼、钴中的一种或多种的盐和/或酸在所述浸渍液中的质量分数为0.7%~0.9%,将催化剂载体加入到所述浸渍液中在室温条件下动态浸渍12小时,即室温条件下搅拌浸渍12小时,所述催化剂载体与所述浸渍液的质量比为1∶3~1∶5;
S4:收集步骤S3得到的固体,干燥并焙烧,得到催化剂。
在其中一实施例中,所述干燥的温度为50℃~150℃,所述干燥的时间为2小时~20小 时,所述焙烧的温度为400℃~600℃,所述焙烧的时间为1小时~24小时。在其中一实施例中,所述乙苯脱烷基催化剂的制备方法用于制备上述任一种乙苯脱烷基催化剂。
在其中一实施例中,所述含有铂、钯、镍、钼、钴中的一种或多种的盐和/或酸为氯铂酸、氯铂酸、硝酸钯、氯化钯、钼酸铵、硝酸镍、硝酸钴中的一种或多种。
在其中一实施例中,所述无机酸的质量浓度为1.0%~6.0%。
在其中一实施例中,所述无机酸为盐酸和硝酸中的至少一种。
在其中一实施例中,所述无机酸为质量浓度为1.0%~6.0%的盐酸或硝酸。
上述乙苯脱烷基催化剂的制备方法中,除了使用浸渍法在催化剂载体上负载含有铂、钯、镍、钼、钴中的一种或多种的氧化物之外,还可以使用离子交换法进行负载,所述的浸渍法可以采用共浸渍,也可以采用分步浸渍。
与现有技术相比,本申请具有以下有益效果:本申请通过ZSM-5分子筛将乙苯脱乙基转化为苯结合EUO分子筛来提高碳八芳烃异构化工艺中乙苯的去除率,同时具有对二甲苯选择性高,二甲苯损失率低的优点。EUO分子筛在乙苯异构化制备二甲苯的反应中表现出很好的活性和选择性,通过在乙苯脱烷基二甲苯异构化催化剂中引入EUO分子筛,使一部分乙苯在反应过程中转化为二甲苯,可以在保证乙苯的高转化率的条件下,提高对二甲苯的收率。
具体实施方式
实施例1
(1)制备催化剂载体
取硅铝摩尔比为60∶1的EUO分子筛10kg、硅铝摩尔比为90∶1的ZSM-5分子筛40kg和氧化铝粉料50kg充分混合。加入40L质量浓度为2.0%的硝酸水溶液混捏,挤条呈直径为2.0mm的圆柱型条,120℃干燥5小时,550℃空气中焙烧6小时。
(2)制备催化剂
取(1)步制得的载体50克,加入到200毫升含有0.1克氯铂酸和1.5克硝酸镍的浸渍溶液中,室温条件,动态浸渍12小时,收集固体,于100℃干燥6小时,空气中500℃焙烧6小时,得到催化剂,编号cat-1。
(3)催化剂评价
采用固定床反应器,氢气压力1.2MPa,反应温度380℃,氢烃摩尔比(氢气的摩尔数与碳八芳烃摩尔数之比)2.0的条件下,质量空速(指单位时间内单位质量催化剂上通过的反应物料的质量)10.0h -1,反应进行8小时取样分析,结果见表1。
催化剂cat-1的成分包括:EUO分子筛和ZSM-5分子筛的混合物;氧化铝;PtO 2及Ni 2O 3,其中PtO 2在催化剂中的质量百分比为0.1%,Ni 2O 3在催化剂中的质量百分比为1.3%。
实施例2
(1)制备催化剂载体
取硅铝摩尔比为20∶1的EUO分子筛50kg、硅铝摩尔比为50∶1的ZSM-5分子筛40kg和氧化铝粉料10kg充分混合。加入40L质量浓度为1.0%的盐酸水溶液混捏,挤条呈直径为2.0mm的圆柱型条,50℃干燥2小时,400℃空气中焙烧1小时。
(2)制备催化剂
取(1)步制得的载体50克,加入到200毫升含有0.15克氯铂酸和1.5克硝酸钴的浸渍溶液中,室温条件,动态浸渍12小时,收集固体,50℃干燥2小时,400℃空气中焙烧1小时,得到催化剂,编号cat-2。催化剂评价方法如实施例1,反应结果见表1。
催化剂cat-2的成分包括:EUO分子筛和ZSM-5分子筛的混合物;氧化铝;PtO 2及CoO,其中PtO 2在催化剂中的质量百分比为0.16%,CoO在催化剂中的质量百分比为0.76%。
实施例3
(1)制备催化剂载体
取硅铝摩尔比为70∶1的EUO分子筛30kg、硅铝摩尔比为50∶1的ZSM-5分子筛10kg和氧化硅粉料60kg充分混合。加入40L质量浓度为6.0%的硝酸水溶液混捏,挤条呈直径为2.0mm的圆柱型条,150℃干燥20小时,600℃空气中焙烧24小时。
(2)制备催化剂
取(1)步制得的载体50克,加入到150毫升含有0.15克氯化钯和2.0克钼酸铵的浸渍溶液中,室温条件,动态浸渍12小时,收集固体,150℃干燥20小时,600℃空气中焙烧24小时,得到催化剂,编号cat-3。催化剂评价方法如实施例1,反应结果见表1。
催化剂cat-3的成分包括:EUO分子筛和ZSM-5分子筛的混合物;氧化铝;PdO及MoO 3,其中PdO在催化剂中的质量百分比为0.1%,MoO 3在催化剂中的质量百分比为2.8%。
实施例4
(1)制备催化剂载体
取硅铝摩尔比为30∶1的EUO分子筛40kg、硅铝摩尔比为20∶1的ZSM-5分子筛20kg和氧化硅粉料40kg充分混合。加入40L质量浓度为0.5%的硝酸水溶液混捏,挤条呈直径为2.0mm的圆柱型条,100℃干燥9小时,500℃空气中焙烧11小时。
(2)制备催化剂
取(1)步制得的载体50克,加入到250毫升含有0.2克氯铂酸的浸渍溶液中,室温条件, 动态浸渍12小时,收集固体,100℃干燥9小时,500℃空气中焙烧11小时,得到催化剂,编号cat-4。催化剂评价方法如实施例1,反应结果见表1。
催化剂cat-4的成分包括:EUO分子筛和ZSM-5分子筛的混合物;氧化铝及PtO 2,其中PtO 2在催化剂中的质量百分比为0.22%,
实施例5
(1)制备催化剂载体
取硅铝摩尔比为80∶1的EUO分子筛40kg、硅铝摩尔比为50∶1的ZSM-5分子筛20kg和氧化硅粉料80kg充分混合。加入40L质量浓度为20%的盐酸水溶液混捏,挤条呈直径为2.0mm的圆柱型条,120℃干燥15小时,600℃空气中焙烧20小时。
(2)制备催化剂
取(1)步制得的载体50克,加入到200毫升含有0.2克氯铂酸的浸渍溶液中,室温条件,动态浸渍12小时,收集固体,120℃干燥15小时,600℃空气中焙烧20小时,得到催化剂,编号cat-5。催化剂评价方法如实施例1,反应结果见表1。
催化剂cat-5的成分按照质量百分比,包括:
催化剂cat-5的成分包括:EUO分子筛和ZSM-5分子筛的混合物;氧化铝及PtO 2,其中PtO 2在催化剂中的质量百分比为0.22%,
实施例6
(1)制备催化剂载体
取硅铝摩尔比为80∶1的EUO分子筛20kg、硅铝摩尔比为50∶1的ZSM-5分子筛50kg和氧化硅粉料30kg充分混合。加入40L质量浓度为10%的盐酸水溶液混捏,挤条呈直径为2.0mm的圆柱型条,120℃干燥10小时,600℃空气中焙烧20小时。
催化剂cat-6的成分包括:EUO分子筛和ZSM-5分子筛的混合物;氧化铝及PtO 2,其中PtO 2在催化剂中的质量百分比为0.22%,
(2)制备催化剂
取(1)步制得的载体50克,加入到200毫升含有0.2克氯铂酸的浸渍溶液中,室温条件,动态浸渍12小时,收集固体,120℃干燥10小时,400℃空气中焙烧20小时,得到催化剂,编号cat-6。催化剂评价方法如实施例1,反应结果见表1。
实施例7
(1)制备催化剂载体
取硅铝摩尔比为90∶1的EUO分子筛30kg、硅铝摩尔比为90∶1的ZSM-5分子筛40kg和氧化硅粉料30kg充分混合。加入40L质量浓度为10%的盐酸水溶液混捏,挤条呈直径 为2.0mm的圆柱型条,120℃干燥10小时,600℃空气中焙烧20小时。
(2)制备催化剂
取(1)步制得的载体50克,加入到150毫升含有0.2克氯铂酸的浸渍溶液中,室温条件,动态浸渍12小时,收集固体,120℃干燥10小时,400℃空气中焙烧20小时,得到催化剂,编号cat-7。催化剂评价方法如实施例1,反应结果见表1。
催化剂cat-7的成分包括:EUO分子筛和ZSM-5分子筛的混合物;氧化铝及PtO 2,其中PtO 2在催化剂中的质量百分比为0.22%,
实施例8
用催化剂cat-1在固定床反应器上考察其脱烷基活性和选择性,副反应主要是烷基转移和歧化反应的程度(用二甲苯的收率来表示)。反应条件采用:氢气压力1.2MPa,反应温度390℃,氢烃摩尔比2.0的条件下,质量空速10.0h -1,反应进行8小时取样分析,结果见表2。
实施例9
用催化剂cat-1在固定床反应器上考察其脱烷基活性和选择性,副反应主要是烷基转移和歧化反应的程度(用二甲苯的收率来表示)。反应条件采用:氢气压力1.2MPa,反应温度400℃,氢烃摩尔比2.0的条件下,质量空速10.0h -1,反应进行8小时取样分析,结果见表2。
实施例10
用催化剂cat-1在固定床反应器上考察其脱烷基活性和选择性,副反应主要是烷基转移和歧化反应的程度(用二甲苯的收率来表示)。反应条件采用:氢气压力1.2MPa,反应温度380℃,氢烃摩尔比2.0的条件下,质量空速11.0h -1,反应进行8小时取样分析,结果见表2。
实施例11
用催化剂cat-1在固定床反应器上考察其脱烷基活性和选择性,以及副反应主要是烷基转移和歧化反应的程度(用二甲苯的收率来表示)。反应条件采用:氢气压力1.2MPa,反应温度380℃,氢烃摩尔比2.0的条件下,质量空速12.0h -1,反应进行8小时取样分析,结果见表2。
本申请得到的催化剂使用固定床反应器进行催化反应性能考察。反应器采用电加热,温度自动控制。反应器底部填充一段10目的石英砂作为支撑,反应器内填充催化剂5g,上部填充一段10目的石英砂起到预热和汽化原料的作用。原料中的混合二甲苯(含间二甲苯和邻二甲苯)和乙苯与氢气混合,自上而下通过催化剂床层发生反应。反应条件为:温度 350℃至420℃;压力1.0MPa至2.0MPa;氢烃摩尔比1.0至3.0;质量空速5h -1~15h -1。原料使用化学纯试剂,以质量分数计按乙苯12%,间二甲苯62%,邻二甲苯26%的比例配置制得,实验数据采用以下公式计算:
二甲苯收率=产物中二甲苯含量/原料中二甲苯含量×100%;
乙苯转化率=(原料中乙苯含量-产物中乙苯含量)/原料中乙苯含量×100%;
二甲苯异构化率=产物中对二甲苯的重量/产物中混合二甲苯的重量之和。
表1 实施例反应性能
Figure PCTCN2018095160-appb-000001
由表1的结果可以看出,本申请所述的乙苯加氢脱烷基催化剂具有乙苯转化活性高、二甲苯异构化活性高和二甲苯收率高的特点。
表2
Figure PCTCN2018095160-appb-000002
从表2的结果可以看出,对于本申请所述的乙苯加氢脱烷基催化剂,随着反应温度的提高,乙苯转化率提高,但二甲苯收率降低。随着质量空速的提高,乙苯转化率降低,二甲苯收率提高。
本申请可用其他的不违背本申请的精神或主要特征的具体形式来概述。因此,无论从 哪一点来看,本申请的上述实施方案都只能认为是对本申请的说明而不能限制发明,权利要求书指出了本申请的范围,而上述的说明并未指出本申请的范围,因此,在与本申请的权利要求书相当的含义和范围内的任何变化,都应认为是包括在权利要求书的范围内。

Claims (13)

  1. 一种乙苯脱烷基催化剂,其特征在于,按照重量百分比,所述乙苯脱烷基催化剂包括如下组分:
    a)20%~90%的EUO分子筛和ZSM-5分子筛的混合物;
    b)0.001%~6.0%的铂、钯、镍、钼、钴中的一种或多种的氧化物;以及
    c)氧化物粘结剂。
  2. 根据权利要求1所述的乙苯脱烷基催化剂,其特征在于,所述催化剂中除所述组分a)与所述组分b)外其余为所述组分c),使所述催化剂总重量份数为100%。
  3. 根据权利要求2所述的乙苯脱烷基催化剂,其特征在于,所述EUO分子筛和ZSM-5分子筛质量比为(1~9)∶(9~1)。
  4. 根据权利要求1所述的乙苯脱烷基催化剂,其特征在于,所述EUO分子筛和ZSM-5分子筛的混合物在所述乙苯脱烷基催化剂的质量百分比为30%~70%,所述铂、钯、镍、钼、钴中的一种或多种的氧化物在所述乙苯脱烷基催化剂的质量百分比为0.005%~5.0%。
  5. 根据权利要求1所述的乙苯脱烷基催化剂,其特征在于,所述铂、钯、镍、钼、钴中的一种或多种的氧化物为铂的氧化物和/或钯的氧化物。
  6. 根据权利要求1所述的乙苯脱烷基催化剂,其特征在于,所述氧化物粘结剂为氧化铝和/或氧化硅。
  7. 根据权利要求1所述的乙苯脱烷基催化剂,其特征在于,所述EUO分子筛和ZSM-5分子筛的硅铝摩尔比均为(20∶1)~(90∶1)。
  8. 根据权利要求1所述的乙苯脱烷基催化剂,其特征在于,所述EUO分子筛和ZSM-5分子筛均为氢型沸石。
  9. 一种乙苯脱烷基催化剂的制备方法,其特征在于,包括以下步骤:
    S1:取重量份为EUO分子筛10份~50份,ZSM-5分子筛10份~50份,氧化物粘合剂10份~80份,含有铂、钯、镍、钼、钴中的一种或多种的盐或酸0.001份~6份;
    S2:将EUO分子筛、ZSM-5分子筛与氧化物粘结剂混合均匀得总混合物,加入质量浓度为0.5%~20%的无机酸混捏成型,所述质量浓度为0.5%~20%的无机酸占所述总混合物质量分数的40%,经干燥和焙烧,得到催化剂载体;
    S3:配置浸渍液,所述浸渍液中包括含有铂、钯、镍、钼、钴中的一种或多种的盐和/或酸,所述含有铂、钯、镍、钼、钴中的一种或多种的盐和/或酸在所述浸渍液中的质量 分数为0.7%~0.9%,将催化剂载体加入到所述浸渍液中在室温条件下动态浸渍12小时,所述催化剂载体与所述浸渍液的质量比为1∶3~1∶5;以及
    S4:收集步骤S3得到的固体,干燥并焙烧,得到催化剂,所述干燥的温度为50℃~150℃,所述干燥的时间为2小时~20小时,所述焙烧的温度为400℃~600℃,所述焙烧的时间为1小时~24小时。
  10. 根据权利要求9所述的乙苯脱烷基催化剂的制备方法,其特征在于,所述乙苯脱烷基催化剂的制备方法用于制备权利要求1-8任一项所述的乙苯脱烷基催化剂。
  11. 根据权利要求9所述的乙苯脱烷基催化剂的制备方法,其特征在于,所述含有铂、钯、镍、钼、钴中的一种或多种的盐和/或酸为氯铂酸、氯铂酸、硝酸钯、氯化钯、钼酸铵、硝酸镍、硝酸钴中的一种或多种。
  12. 如权利要求9所述的乙苯脱烷基催化剂的制备方法,其特征在于,所述无机酸的质量浓度为1.0%~6.0%。
  13. 根据权利要求9所述的乙苯脱烷基催化剂的制备方法,其特征在于,所述无机酸为盐酸和硝酸中的至少一种。
PCT/CN2018/095160 2017-07-11 2018-07-10 乙苯脱烷基催化剂及其制备方法 WO2019011239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710562357.2 2017-07-11
CN201710562357.2A CN107297221A (zh) 2017-07-11 2017-07-11 一种乙苯脱烷基催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2019011239A1 true WO2019011239A1 (zh) 2019-01-17

Family

ID=60133497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095160 WO2019011239A1 (zh) 2017-07-11 2018-07-10 乙苯脱烷基催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN107297221A (zh)
WO (1) WO2019011239A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107297221A (zh) * 2017-07-11 2017-10-27 太原大成环能化工技术有限公司 一种乙苯脱烷基催化剂及其制备方法
CN108046971A (zh) * 2017-11-17 2018-05-18 杭州多向流化学科技有限公司 以混合二甲苯为原料分离芳烃并制备间苯二甲酸的方法
CN108435243A (zh) * 2018-04-20 2018-08-24 太原大成环能化工技术有限公司 一种稀土改性的乙苯脱烷基催化剂及其制备方法
CN110240534A (zh) * 2019-07-02 2019-09-17 太原大成环能化工技术有限公司 一种用于c8芳烃异构化生产对二甲苯的方法
CN117361442A (zh) * 2023-10-08 2024-01-09 成都岷山绿氢能源有限公司 一种利用超重力反应器进行天然气部分氧化制氢的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340976A (zh) * 2005-12-22 2009-01-07 法国石油公司 包含viii族金属和iiia族金属的双沸石催化剂及其在芳香族c8化合物的异构化中的应用
CN101722020A (zh) * 2008-10-15 2010-06-09 中国石油天然气股份有限公司 一种含euo结构的共晶沸石催化剂及其制备和应用
CN101987298A (zh) * 2009-08-07 2011-03-23 中国石油天然气股份有限公司 金属改性的含euo结构的共晶沸石催化剂及制备方法和应用
CN102039161A (zh) * 2009-10-16 2011-05-04 中国石油化工股份有限公司 C8芳烃异构化催化剂及其应用
CN107297221A (zh) * 2017-07-11 2017-10-27 太原大成环能化工技术有限公司 一种乙苯脱烷基催化剂及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0999182T3 (da) * 1998-11-02 2003-07-14 Inst Francais Du Petrole Fremgangsmåde til fremstilling af en zeolit af strukturtypen EUO ved hjælp af kim af zeolitiske materialer og anvendelse heraf som katalysator til isomerisering af aromatiske forbindelser med otte carbonatomer
FR2895283B1 (fr) * 2005-12-22 2008-02-01 Inst Francais Du Petrole Catalyseur comprenant une zeolithe euo, une zeolithe 10mr et une zeolithe 12mr et son utilisation en isomerisation des composes c8 aromatiques
CN102039159B (zh) * 2009-10-16 2012-09-19 中国石油化工股份有限公司 一种二甲苯异构化催化剂及其应用
CN102441420B (zh) * 2010-10-12 2013-06-19 中国石油化工股份有限公司 C8芳烃异构催化剂及其制备方法和应用
CN102441418A (zh) * 2010-10-12 2012-05-09 中国石油化工股份有限公司 一种二甲苯异构化催化剂及其制备方法和应用
CN102909057B (zh) * 2011-08-01 2014-08-20 中国石油化工股份有限公司 一种含euo型分子筛的催化剂及其制备方法和应用
CN103285910B (zh) * 2012-03-01 2016-02-10 中国石油天然气股份有限公司 一种碳八芳烃中乙苯脱烷基催化剂
CN103769206B (zh) * 2012-10-25 2017-07-14 中国石油化工股份有限公司 Euo结构分子筛催化剂及其制备方法
CN105582984B (zh) * 2014-10-22 2017-10-27 中国石油化工股份有限公司 一种乙苯脱烷基催化剂的制备方法
CN106311320B (zh) * 2015-07-03 2018-09-04 中国石油天然气股份有限公司 一种含eu-1/mor共晶沸石的催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340976A (zh) * 2005-12-22 2009-01-07 法国石油公司 包含viii族金属和iiia族金属的双沸石催化剂及其在芳香族c8化合物的异构化中的应用
CN101722020A (zh) * 2008-10-15 2010-06-09 中国石油天然气股份有限公司 一种含euo结构的共晶沸石催化剂及其制备和应用
CN101987298A (zh) * 2009-08-07 2011-03-23 中国石油天然气股份有限公司 金属改性的含euo结构的共晶沸石催化剂及制备方法和应用
CN102039161A (zh) * 2009-10-16 2011-05-04 中国石油化工股份有限公司 C8芳烃异构化催化剂及其应用
CN107297221A (zh) * 2017-07-11 2017-10-27 太原大成环能化工技术有限公司 一种乙苯脱烷基催化剂及其制备方法

Also Published As

Publication number Publication date
CN107297221A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
WO2019011239A1 (zh) 乙苯脱烷基催化剂及其制备方法
JP5110316B2 (ja) 炭化水素混合物から芳香族炭化水素および液化石油ガスを製造する方法
KR101539613B1 (ko) 촉매와, 이 촉매를 이용하여 탄화수소 공급원료로부터경방향족 탄화수소 및 경알칸의 제조방법
JP4432019B2 (ja) 炭化水素原料から芳香族炭化水素化合物及び液化石油ガスを製造する方法
RU2741425C2 (ru) Каталитическая композиция, содержащая цеолит типа con и цеолит типа zsm-5, получение и способ применения указанной композиции
WO2021012801A1 (zh) 烯烃芳构化催化剂及其制备方法和应用以及低碳烯烃芳构化方法
JP6005878B2 (ja) Uzm−39アルミノケイ酸塩ゼオライトを用いた芳香族トランスアルキル化反応
JP2015504002A (ja) メタノール及び/又はジメチルエーテルとc4液化ガスの混合転換によりパラキシレンを製造するための触媒及びその製造方法と使用
EP2773603B1 (en) Catalyst and process for hydrocarbon conversion
WO2013127044A1 (zh) 一种碳八芳烃中乙苯脱烷基催化剂
CN110961143B (zh) 分子筛催化剂、其制备方法及其在乙苯脱烷基反应和二甲苯异构化反应中的应用
CN102909058B (zh) 含改性euo型分子筛的催化剂及其制备方法和应用
CN102441418A (zh) 一种二甲苯异构化催化剂及其制备方法和应用
KR20190023054A (ko) Zsm-5-계 촉매 제조; 에틸벤젠 탈알킬화 공정에서의 용도
RU2765750C2 (ru) Композиция катализатора
CN104353487B (zh) 一种c8芳烃异构化催化剂及其应用
CN109772447B (zh) 一种碳八芳烃异构化复合分子筛催化剂及其制备方法
CN108246354B (zh) 一种催化剂、其制备方法及二甲苯的制备方法
CN102909057B (zh) 一种含euo型分子筛的催化剂及其制备方法和应用
JP3302553B2 (ja) 重質芳香族を軽質芳香族へ転化する触媒及びその転化方法
CN108349836A (zh) 用于二甲苯异构化方法中乙基苯转化的改进催化剂
JP2000167408A (ja) 芳香族炭化水素の転化用触媒および転化方法
CN112657539A (zh) 一种稠环芳烃选择性加氢裂解催化剂及其制备方法应用
Shan et al. Acidity, Crystallite Size and Pore Structure as Key Factors Influencing 1, 3, 5-Trimethylbenzene Hydrodealkylation Performance of NiMoS/ZSM-5
WO2020052144A1 (zh) 一种催化裂化汽油预加氢方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831432

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/06/2020).

122 Ep: pct application non-entry in european phase

Ref document number: 18831432

Country of ref document: EP

Kind code of ref document: A1