WO2019011156A1 - 一种掌上式三维超声成像***和方法 - Google Patents

一种掌上式三维超声成像***和方法 Download PDF

Info

Publication number
WO2019011156A1
WO2019011156A1 PCT/CN2018/094306 CN2018094306W WO2019011156A1 WO 2019011156 A1 WO2019011156 A1 WO 2019011156A1 CN 2018094306 W CN2018094306 W CN 2018094306W WO 2019011156 A1 WO2019011156 A1 WO 2019011156A1
Authority
WO
WIPO (PCT)
Prior art keywords
handheld
dimensional
ultrasound
image
positioning
Prior art date
Application number
PCT/CN2018/094306
Other languages
English (en)
French (fr)
Inventor
郑永平
Original Assignee
中慧医学成像有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中慧医学成像有限公司 filed Critical 中慧医学成像有限公司
Priority to AU2018301576A priority Critical patent/AU2018301576B2/en
Priority to CA3069589A priority patent/CA3069589A1/en
Priority to JP2020501224A priority patent/JP6964751B2/ja
Priority to US16/629,955 priority patent/US11478219B2/en
Priority to EP18832028.7A priority patent/EP3653127A4/en
Publication of WO2019011156A1 publication Critical patent/WO2019011156A1/zh
Priority to US17/941,471 priority patent/US11744549B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4427Device being portable or laptop-like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4263Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors not mounted on the probe, e.g. mounted on an external reference frame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4411Device being modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4472Wireless probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes

Definitions

  • the present invention relates to the field of medical devices, and more particularly to a palm-sized three-dimensional ultrasound imaging system and method.
  • Three-dimensional ultrasound imaging has been widely used in the medical field, usually in three ways, namely electronic scanning, mechanical scanning and manual scanning.
  • Mechanical scanning is the use of a motor to drive the ultrasound probe for scanning.
  • the advantage is that the repeatability is better, but it is only suitable for small-scale scanning, such as fetal observation.
  • Electronic scanning can give real-time three-dimensional images, such as the heart, but is only suitable for scanning smaller areas, and requires the use of two-dimensional transducers for display, making the cost quite expensive.
  • Manual scanning refers to scanning the human or animal's area of interest with the operator's hand holding the ultrasound probe, and recording the three-dimensional spatial position and angle of each ultrasound image by a spatial positioning system, and then performing three-dimensional image reconstruction, the advantage is that A wide range of scans can be done, but manual scans are required.
  • the object of the present invention is to provide a palm-type three-dimensional ultrasound imaging system and method for prior art problems, thereby enabling a wide range of handheld three-dimensional ultrasound imaging.
  • the technical solution for solving the above technical problem is to provide a palm-sized ultrasonic imaging system, including a palm-type ultrasound probe for scanning and acquiring an ultrasound image; displaying, controlling and processing the terminal through a wired or wireless connection
  • the handheld ultrasound imaging system of the present invention further comprises: a palm-sized three-dimensional spatial positioning system connected to the palm-sized ultrasound probe and moved with the movement of the palm-sized ultrasound probe, by wire or A wireless connection is coupled to the display, control, and processing terminals for independently positioning the three-dimensional position of the handheld ultrasound probe.
  • the palm-sized ultrasound imaging system further comprises a positioning reference device located outside the palm-sized ultrasound probe for providing a positioning reference for the palm-sized three-dimensional spatial positioning system.
  • the palm-sized three-dimensional spatial positioning system is built into the palm-sized ultrasound probe.
  • the palm-type three-dimensional spatial positioning system is an accelerometer or an angular velocity meter mounted on the handheld ultrasound probe for obtaining the acceleration or angular acceleration value of the handheld ultrasound probe, thereby obtaining the moving distance of the handheld ultrasound probe. And the angle of rotation.
  • the positioning reference device is a positioning image disposed on the to-be-detected portion
  • the handheld three-dimensional spatial positioning system includes a camera for detecting the position of the positioning image to give a positioning reference; an accelerometer or an angular velocity meter for obtaining the handheld ultrasound The acceleration or angular acceleration of the probe is used to obtain the moving distance and rotation angle of the handheld ultrasound probe.
  • a cloud database is further included, and is communicably connected to the display, control and processing terminal, and the ultrasonic image and the three-dimensional position and angle information are acquired from a display, control and processing terminal by a wireless or wired data transmission device. Data processing is performed and the data processing results are returned to the display, control and processing terminal.
  • the invention further provides a palm-type three-dimensional ultrasound imaging method, comprising the following steps:
  • S3. Perform three-dimensional image reconstruction and display on the ultrasound image and the three-dimensional spatial information and angle.
  • step S3 is:
  • the ultrasound image and the three-dimensional spatial position and angle information are transmitted to a cloud database for image reconstruction, analysis, calculation, and comparison by a wireless or wired data transmission device, and the cloud database reconstructs, analyzes, calculates, and compares the image.
  • the results are passed back to the display, control and processing terminals for display.
  • step S3 is:
  • the palm-type three-dimensional spatial positioning system is an accelerometer or an angular velocity meter mounted on the handheld ultrasound probe for obtaining the acceleration or angular acceleration value of the handheld ultrasound probe, thereby obtaining the moving distance of the handheld ultrasound probe. And the angle of rotation.
  • the step S2 of the imaging method comprises the following steps:
  • S2.1 uses a three-dimensional spatial positioning system to scan the positioning reference device for providing a spatial positioning reference for the palm-type three-dimensional spatial positioning system.
  • step S3 of the imaging method further comprises the following steps:
  • the S3.2 display, control and processing terminal restores the ultrasound image to a state in which no interference of the positioning reference device is disturbed, and then reconstructs and displays the three-dimensional image on the ultrasound image.
  • the positioning reference device is disposed at the portion to be detected, and the step S1 of the imaging method further comprises the following steps:
  • Step S3 of the imaging method further includes the following steps:
  • the huge spatial positioning system in the existing three-dimensional ultrasound imaging system is turned into a portable, ready-to-use spatial positioning system, enabling palm-type three-dimensional ultrasound imaging. Can be widely quoted.
  • FIG. 1 is a schematic structural view of a palm-type three-dimensional ultrasound imaging system of the present invention
  • FIG. 2 is a schematic structural view of a palm-type three-dimensional ultrasound imaging system according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic structural view of a palm-type three-dimensional ultrasound imaging system in another preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a palm-type three-dimensional ultrasound imaging system according to Embodiment 3 of the present invention.
  • FIG. 5a is a schematic diagram of scanning of a palm-type three-dimensional ultrasound imaging system according to Embodiment 4 of the present invention.
  • FIG. 5b is a schematic diagram of two consecutive ultrasound images in Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram of a positioning reference system and a palm-sized ultrasound probe according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a positioning reference system according to Embodiment 7 of the present invention.
  • FIG. 8a is a schematic diagram of positioning information obtained by a scanning positioning reference system according to Embodiment 7 of the present invention.
  • 8b is another positioning information obtained by the scanning positioning reference system in Embodiment 7 of the present invention.
  • FIG. 9 is a schematic structural view of a palm-type ultrasound probe according to a preferred embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a palm-type three-dimensional ultrasound imaging method provided by the present invention.
  • the present invention discloses a palm-type three-dimensional ultrasound imaging system, including a palm-type ultrasound probe 100; a display, control and processing terminal 300 connected to the handheld ultrasound probe 100 by wired or wireless connection;
  • the palm-mounted three-dimensional spatial positioning system 200 is coupled to the handheld ultrasound system probe 100 and moves with the movement of the handheld ultrasound system probe 100, and is coupled to the display, control and processing terminal 300 by wired or wireless connection.
  • a palm-sized three-dimensional spatial positioning system 200 is mounted on a palm-sized ultrasound probe 100. In other embodiments, as long as it is coupled to the handheld ultrasound probe 100, it can be moved with the handheld ultrasound probe 100. The movement can be performed without necessarily being installed on the handheld ultrasound system probe 100.
  • the display, control and processing terminal 300 of the present invention can be a palmtop terminal or desktop terminal, such as a notebook computer or the like, which can be connected to the palmtop ultrasound probe 100 by wireless or wired means.
  • the display, control and processing terminal 300 stores three-dimensional imaging, image processing and three-dimensional display algorithms, directly analyzes and processes the image and data information returned by the handheld ultrasound probe 100, and displays a three-dimensional image.
  • the palm-type three-dimensional ultrasound imaging system of the present invention further includes the cloud database 400 and the like in order to reduce the volume of the handheld three-dimensional ultrasound imaging system.
  • a similar processing system thereby, the display, control and processing terminal 300 transmits the three-dimensional position information, the angle, and the reconstruction result to the cloud database 400 for storage.
  • the reconstruction result may be classified and stored, for example, time-classified storage by the customer's name, so that the user can compare the changes of the to-be-detected part 600 in different time periods, or classify and store the diseases according to different disease names.
  • the user can refer to the change of the location 600 to be detected of other users.
  • the display, control, and processing terminal 300 is connected to the cloud database 400 and the like by a network, Bluetooth, etc., and the cloud database 400 can store more advanced and more complex three-dimensional imaging, image processing and three-dimensional display algorithms, display,
  • the control and processing terminal 300 uploads the simply processed information to the cloud database 400 for analysis and processing, and the cloud database 400 transmits the analyzed and processed results back to the display, control and processing terminal 300 of the handheld ultrasound system for display or Further processing.
  • the three-dimensional imaging, image processing, and three-dimensional display algorithms may not be stored in the display, control, and processing terminal 300, and the image and data information returned by the handheld ultrasound probe 100 may be directly uploaded to the cloud database 400 through the cloud.
  • the processed information is transmitted back to the display, control, and processing terminal 300 for display.
  • the reconstruction result can still be classified and stored, so that the customer can retrieve the data of the reconstruction result from the cloud database 400 for querying.
  • Cloud database 400 can be a remote storage and computing device.
  • the palm-type three-dimensional spatial positioning system 200 of the present invention is a device for convenient movement and installation, which is connected with the palm-type ultrasound probe 100 and can move with the movement of the palm-type ultrasound probe 100, and the handheld three-dimensional ultrasound imaging The system directly acquires the three-dimensional spatial position of the handheld ultrasound probe 100 through the handheld three-dimensional spatial positioning system 200 without the need for other positioning systems.
  • the palm-mounted three-dimensional spatial positioning system 200 is built into the handheld ultrasound system probe 100, so that when the handheld three-dimensional ultrasound imaging system of the present invention is applied, there is no non-portable positioning system that affects the handheld three-dimensional The portability of ultrasound imaging systems.
  • the handheld three-dimensional spatial positioning system 200 obtains three-dimensional positional information and angular information of the handheld ultrasound probe 100, the following six embodiments exist.
  • the handheld three-dimensional ultrasound imaging system may further include a positioning reference device 500 located outside the palm-sized ultrasound probe 100 for a handheld three-dimensional spatial positioning system. 200 provides a positioning reference.
  • the handheld three-dimensional spatial positioning system 200 includes a miniature inertial sensor such as an accelerometer and an angular velocity meter mounted on the handheld ultrasonic probe 100 for obtaining the acceleration and angular acceleration values of the handheld ultrasonic probe 100, thereby estimating the handheld ultrasound system.
  • the moving distance and the angle of rotation of the probe 100 in turn, independently obtain the three-dimensional spatial position of the handheld ultrasound probe 100.
  • the palm-sized three-dimensional spatial positioning system 200 includes one or more cameras mounted on the handheld ultrasound system probe 100 and miniature inertial sensors such as accelerometers and angular velocity meters mounted in the handheld ultrasound system probe 100.
  • the positioning reference device 500 is an external environment.
  • the camera is used to obtain an image of the surrounding environment, such as a grid on the ceiling, etc., and the position and angle of the handheld ultrasound probe 100 are calculated according to the obtained image change, and a special graphic can be simply added in the environment to facilitate Detection.
  • the accelerometer and the angular velocity meter are used to obtain the acceleration and angular acceleration values of the handheld ultrasound system probe 100, thereby estimating the moving distance and angle of the handheld ultrasound probe 100.
  • the handheld ultrasound probe 100 Before using the handheld three-dimensional spatial positioning system 200, the handheld ultrasound probe 100 needs to be moved a known distance or rotated by a known angle for determining various parameters required in the positioning algorithm.
  • the palm-type three-dimensional spatial positioning system 200 is a miniature inertial sensor such as an accelerometer or an angular velocity meter mounted on the handheld ultrasonic probe 100.
  • the palm-type three-dimensional ultrasound system further includes a positioning reference device 500 that is a small reference system mounted on or near the scanning object, that is, mounted outside the handheld ultrasound system probe 100 for providing a handheld
  • the three-dimensional spatial positioning system 200 is positioned for reference.
  • the small reference system is a miniature electromagnetic transmitter mounted on a scanned object. In addition to the electromagnetic transmitter, it is also possible to use a sound or light emitting and receiving system, that is, to miniaturize a conventional light, sound, and electromagnetic handheld three-dimensional spatial positioning system.
  • the accelerometer and angular velocity meter are used to obtain the acceleration and angular acceleration values of the handheld ultrasound probe 100 to estimate the range and angle of movement of the handheld ultrasound probe 100.
  • the combination of an accelerometer, an angular velocity meter and a small reference system makes positioning more accurate.
  • the small reference system can also be one or more miniature cameras placed on the scanning body, and record the angle of rotation of the micro camera to track the movement and angle of the probe.
  • the palm-type three-dimensional spatial positioning system 200 in the fourth embodiment is a miniature inertial sensor such as an accelerometer or an angular velocity meter.
  • the palm-sized three-dimensional ultrasound system further includes a positioning reference device 500, which is the ultrasound image itself.
  • Fig. 5a when the palm-type ultrasound probe 100 is moved, two left and right ultrasound images in Fig. 5b are successively obtained.
  • the two ultrasound images have continuity and a certain image overlap portion, that is, there is a great similarity between the contents of the ultrasonic images sequentially obtained.
  • the image sampling speed is high and the moving speed is not fast, the images in the two images are separated by a distance d, so that the moving distance can be obtained by the image matching method by the difference between the ultrasonic images sequentially obtained.
  • the angle of rotation of the handheld ultrasound probe 100 in this plane can also be obtained in the same manner.
  • the handheld ultrasound system probe 100 can only move or rotate in one direction.
  • the handheld ultrasound system probe 100 moves or rotates in the reverse direction, it is easy to cause the three-dimensional position information of the acquisition. Or angle information is calculated incorrectly.
  • a miniature inertial sensor such as an accelerometer or an angular velocity meter is used in combination with an ultrasonic image
  • an inertial sensor such as an accelerometer or an angular velocity meter is used to obtain the acceleration and angular acceleration values of the handheld ultrasonic probe 100, thereby estimating
  • the moving distance and angle of the handheld ultrasound probe 100 can complement the data obtained by the image, making the positioning method more accurate.
  • the fifth embodiment differs from the fourth embodiment in that the palm-type ultrasound probe of the fifth embodiment uses a composite probe, that is, a sub-probe of different directions is installed in a palm-sized ultrasound probe 100 for use in two directions. The distance and the angle of rotation of the handheld ultrasound probe 100 are simultaneously measured.
  • the handheld three-dimensional spatial positioning system 200 is still a miniature inertial sensor such as an accelerometer or an angular velocity meter, and is used to obtain the acceleration and angular acceleration values of the handheld ultrasonic probe 100, and to calculate the moving distance and angle of the handheld ultrasonic probe 100.
  • the palm-type three-dimensional spatial positioning system 200 can detect the amount of movement and the amount of rotation in the third direction except for the direction provided by the composite probe, thereby more accurately calculating the three-dimensional position information and angle of the handheld ultrasound probe 100.
  • the palm-type three-dimensional ultrasound imaging system further includes a positioning reference device 500.
  • the positioning reference device 500 is a positioning image 501 disposed on the surface of the scanning object.
  • the palm-sized three-dimensional spatial positioning system 200 includes a camera 201 mounted on a handheld ultrasound system probe 100. When the palm-sized ultrasound probe 100 moves, the camera 201 tracks the moving distance and the angle of rotation of the handheld ultrasound probe 100 based on changes in the positioning image 501.
  • the palm-type three-dimensional spatial positioning system 200 further comprises a miniature inertial sensor such as an accelerometer, an angular velocity meter or the like mounted on the palm-type ultrasound probe 100 for further providing information on the moving distance and the rotation angle of the handheld ultrasound probe 100.
  • the positioning image 501 may be a specially designed image temporarily attached to the surface of the scanning object, which is attached to the to-be-detected portion 600 of the object to be scanned to prevent the positioning image 501 from interfering with the ultrasonic signal.
  • the positioning image 501 is a dot matrix attached to the to-be-detected portion 600, and the distance between the dots in the dot matrix is a pre-designed value, which is known.
  • the lattice can also be designed as dots spaced apart for more clearly providing a positioning reference.
  • the positioning image 501 is recorded by the camera 201 for positioning.
  • other similar methods may be applied, for example, designing a positioning image 501 having characteristics of sound, light, dots, magnetism, and the like.
  • the image is attached to the scanning object, and a detector is mounted on the handheld ultrasound system probe 100 to record the positioning images 501 located outside the portion 600 to be inspected for positioning.
  • the seventh embodiment is different from the sixth embodiment in that the positioning image 501 of the sixth embodiment is temporarily attached to the to-be-detected portion 600 of the object to be scanned, that is, the ultrasound does not scan the positioning image 501 to avoid the positioning images 501. Interference with ultrasound signals. However, in the sixth embodiment, the interference of the ultrasonic signals by these positioning images 501 is utilized as the positioning.
  • the positioning image 501 is a dot matrix.
  • the positioning image 501 may also be other shapes, such as a grid, a wave shape, etc., as long as it can provide a positioning reference.
  • the positioning image 501 in this embodiment is attached to the to-be-detected portion 600, and the distance between the dots in the dot matrix is a pre-designed value, which is known. Preferably, it can be arranged in a mode with one large dot for every five dots for providing positioning information more clearly. Further, according to the material of the positioning image 501 used, the degree of influence of each point on the array on the ultrasonic signal is different. As shown in FIG.
  • the reflected signal may be a point, as shown in FIG. 8b, the reflected signal may also be A point with a shaded area that distinguishes the position of each row or column of points to make positioning more accurate.
  • the positioning image 501 is integrally combined with the ultrasonic coupling sticker, which makes the use and paste more convenient and the operation process is more concise.
  • the first positioning method extracts the information of the positioning images 501 from the obtained ultrasonic image as positioning information, and then restores the ultrasonic image to no positioning through image processing.
  • the image 501 interferes with the state, and then reconstructs the three-dimensional image of the ultrasound image.
  • Another positioning method is to first scan the to-be-detected portion 600 with the positioning image 501 attached to the to-be-detected portion 600 to obtain a first ultrasound image.
  • the range of the first ultrasound image may include the positioning image 501 and the positioning image 501. a range other than; the positioning image 501 is taken away, and the scanning is repeated once to obtain a second ultrasonic image; the display, control and processing terminal determines the positioning image 501 relative to the second ultrasonic image based on the obtained first ultrasonic image as a reference.
  • the position is such that a three-dimensional image that is completely unaffected by the positioning image 501 while having the positioning information of the positioning image 501 is obtained.
  • the embodiment uses the above positioning image 501 to interfere with the ultrasonic wave to perform the positioning function.
  • other similar methods may also be applied, for example, designing optical, electrical, magnetic, and the like.
  • the positioning image 501 is attached to the scanning object, and the optical, electrical, magnetic and other detectors are mounted on the handheld ultrasound system probe 100 as the handheld three-dimensional spatial positioning system 200 of the system to detect the positioning images 501 for positioning.
  • the installation method of the palm-type three-dimensional space positioning system 200 is as shown in the figure.
  • all the palm-type three-dimensional spatial positioning systems 200 installed on the handheld ultrasonic probe 100 may not be installed.
  • the handheld ultrasound system probe 100 as long as they can move with the movement of the handheld ultrasound system probe 100, it is not limited herein.
  • the present invention further discloses a palm-type three-dimensional ultrasound imaging method comprising the following steps, as shown in FIG. 10:
  • the ultrasound image and the three-dimensional spatial information and angle are reconstructed and displayed by the display, control and processing terminal 300.
  • the palm-type three-dimensional ultrasound imaging method includes the following steps in step S2:
  • a positioning reference device 500 is provided on the scanned object for giving the palm-type three-dimensional spatial positioning system 200 a spatial positioning reference.
  • the positioning reference device 500 is an electric, magnetic, acoustic, optical, etc. transmitter mounted on the scanning object, and the emitted electrical, magnetic, acoustic, optical and other signals can be installed on the corresponding receiver of the handheld ultrasound system probe 100.
  • the sound and light detectors are detected and used for positioning.
  • the palm-type three-dimensional ultrasound imaging method includes the following steps in step S3:
  • the display, control and processing terminal 300 performs a three-dimensional image reconstruction and display on the ultrasound image and the three-dimensional spatial information and angle.
  • step S3 further includes:
  • the display, control and processing terminal 300 of S3.2 transmits the reconstruction result to the cloud database 400 for storage.
  • the reconstruction result may be classified and stored, for example, time-classified storage by the customer's name, so that the user can compare the changes of the to-be-detected part 600 in different time periods, or classify and store the diseases according to different disease names.
  • the user can refer to the change of the location 600 to be detected of other users.
  • the handheld three-dimensional ultrasound imaging system further includes a cloud database 400 for performing data processing, and the step S3 of the imaging method includes:
  • the display, control and processing terminal 300 of S3.3 transmits the ultrasound image and the three-dimensional spatial information and angle to the cloud database 400;
  • the cloud database 400 performs three-dimensional image reconstruction on the ultrasound image and the three-dimensional spatial information and angle and transmits the reconstruction result back to the display, control and processing terminal 300;
  • the display, control and processing terminal 300 of S3.5 displays the reconstruction result.
  • the reconstruction result can be classified and stored, so that the customer can retrieve the data of the reconstruction result from the cloud database 400 for query.
  • the handheld three-dimensional spatial positioning system 300 in the present method may be any one of the palm-type three-dimensional spatial positioning systems of any one of the first to seventh embodiments.
  • the positioning reference device 500 of the present invention may be in the case of the seventh embodiment, that is, The positioning reference device 500 is any of the positioning reference devices of the second embodiment to the seventh embodiment.
  • the step S3 of the imaging method further includes the following steps:
  • control and processing terminal 300 extracts information of the positioning reference device 500 from the ultrasound image as positioning information
  • the S3.2 display, control and processing terminal 300 restores the ultrasound image to a state in which the positioning device 500 is not interfered with, and then reconstructs and displays the three-dimensional image on the ultrasound image.
  • step S1 of the imaging method further comprises the following steps:
  • the handheld ultrasonic probe 100 is used to scan the to-be-detected portion 600 to obtain a first ultrasonic image
  • S1.2 takes the positioning reference device 500, and scans the to-be-detected portion 600 again using the handheld ultrasound probe 100 to obtain a second ultrasound image;
  • step S3 of the imaging method further comprises the following steps:
  • control and processing terminal 300 determines a position of the positioning reference device 500 relative to the second ultrasound image based on the first ultrasound image as a reference, thereby the ultrasound image and the three-dimensional spatial information and angle Perform 3D image reconstruction and display.
  • a palm-type three-dimensional ultrasound imaging system and method disclosed by the present invention does not have a conventional large-sized, inconvenient carrying spatial positioning system, but can be portable and portable three-dimensional spatial positioning system and The positioning reference device can even complete the positioning of the handheld ultrasound probe by using the handheld three-dimensional spatial positioning system alone, and is convenient for the user to carry and use the handheld three-dimensional ultrasonic imaging system disclosed in the present invention, and is compact and portable.
  • Type of handheld three-dimensional ultrasound imaging system is not have a conventional large-sized, inconvenient carrying spatial positioning system, but can be portable and portable three-dimensional spatial positioning system and The positioning reference device can even complete the positioning of the handheld ultrasound probe by using the handheld three-dimensional spatial positioning system alone, and is convenient for the user to carry and use the handheld three-dimensional ultrasonic imaging system disclosed in the present invention, and is compact and portable.
  • Type of handheld three-dimensional ultrasound imaging system is a palm-type three-dimensional ultrasound imaging system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种掌上式三维超声成像***和方法,包括掌上式超声仪探头,用于扫描并获取超声图像;显示、控制和处理终端,通过有线或无线连接方式与掌上式超声仪探头连接。本发明的掌上式超声成像***和方法还包括:掌上式三维空间定位***,与掌上式超声仪探头相连,并随着掌上式超声仪探头的移动而移动,通过有线或无线连接方式与显示、控制和处理终端连接,用于独立地定位所述掌上式超声仪探头的三维位置。通过应用本发明所提供的掌上式三维超声成像***和方法,将现有的三维超声成像***中庞大的空间定位***变成了便携且可随时使用的空间定位***,使得掌上式三维超声成像可以得以广泛引用。

Description

一种掌上式三维超声成像***和方法 技术领域
本发明涉及医疗器械领域,尤其涉及掌上式三维超声成像***和方法。
背景技术
三维超声成像在医学领域已经得到广泛应用,通常有三种方式,分别是电子扫描、机械扫描和手动扫描。机械扫描是利用马达带动超声探头进行扫描,优点是重复性比较好,但是只适合小范围的扫描,比如胎儿的观察。电子扫描可以给予实时的三维图像,比如心脏,但只适用于扫描更小的范围,而且需要使用二维换能器陈列,使得费用相当昂贵。手动扫描是指由操作者手拿着超声探头扫描人体或动物的感兴趣的区域,并由一空间定位***记录每一张超声图像的三维空间位置及角度,再进行三维图像重建,其好处是可以做大范围的扫描,但是须人工手动扫描。
近年来,超声成像***的小型化发展迅速,目前已经有许多不同类型的掌上式超声***。利用掌上式超声***可以大大提高便携性从而可以让超声成像应用在更多领域。但是,目前,市场上仍不存在掌上式三维超声成像***,因为其实现起来有一定的困难,特别是手动扫描人体大范围的掌上式三维超声成像***。因为传统的超声成像***所需的空间定位***庞大,并不适合掌上式的实用,比如最常用的电磁定位装置需要一个外置的发射器和置于超声探头上的空间定位传感器,将这样的***是完全做成掌上式这种便携的***是十分困难的。
技术问题
所以,目前,如何改进庞大的空间定位***,使得便携的掌上式三维超声成像***能够广泛应用,已经成为了业内亟需解决的技术问题。
技术解决方案
本发明的目的是针对现有技术问题,提供了一种掌上式三维超声成像***和方法,从而使得掌上式三维超声成像得以广泛引用。
本发明用于解决以上技术问题的技术方案为,提供一种掌上式超声成像***,包括掌上式超声仪探头,用于扫描并获取超声图像;显示、控制和处理终端,通过有线或无线连接方式与掌上式超声仪探头连接;本发明的掌上式超声成像***还包括:掌上式三维空间定位***,与掌上式超声仪探头相连,并随着掌上式超声仪探头的移动而移动,通过有线或无线连接方式与显示、控制和处理终端连接,用于独立地定位所述掌上式超声仪探头的三维位置。
优选地,掌上式超声成像***还包括定位参考装置,位于所述掌上式超声仪探头外,用于给掌上式三维空间定位***提供定位参考。
优选地,掌上式三维空间定位***内置在掌上式超声仪探头内。
优选地,掌上式三维空间定位***为安装掌上式超声仪探头上的加速度计或角速度计,用于获得的掌上式超声仪探头的加速度或角加速度值,进而获得掌上式超声仪探头的移动距离和转动角度。
优选地,定位参考装置为设置在待检测部位上的定位图像,掌上式三维空间定位***包括摄像头,用于检测定位图像的位置给予定位参考;加速度计或角速度计,用于获得的掌上式超声仪探头的加速度或角加速度值,进而获得掌上式超声仪探头的移动距离和转动角度。
优选地,还包括云端数据库,与所述显示、控制和处理终端通信连接,通过无线或有线数据传送装置从显示、控制和处理终端中获取所述的超声图像及所述的三维位置和角度信息进行数据处理,并将数据处理结果返回所述显示、控制和处理终端。
本发明进一步提供一种掌上式三维超声成像方法,包括如下步骤:
S1、使用掌上式超声仪探头扫描待检测部位以获取一系列的超声图像;
S2、由掌上式三维空间定位***获取与每一超声图像对应的三维空间位置及角度;
S3、对所述超声图像和所述三维空间信息及角度进行三维图像重建并显示。
优选地,步骤S3为:
S3、通过无线或有线数据传送装置将所述超声图像及所述三维空间位置及角度信息传送给云端数据库进行图像重建、分析、计算、比较,所述云端数据库将图像重建、分析、计算、比较的结果回传给显示、控制和处理终端进行显示。
优选地,步骤S3为:
S3、通过显示、控制和处理终端对所述超声图像和所述三维空间信息及角度进行三维图像重建并显示。
优选地,掌上式三维空间定位***为安装掌上式超声仪探头上的加速度计或角速度计,用于获得的掌上式超声仪探头的加速度或角加速度值,进而获得掌上式超声仪探头的移动距离和转动角度。
优选地,所述成像方法的步骤S2包括如下步骤:
S2.1 使用三维空间定位***扫描定位参考装置,用于给予掌上式三维空间定位***提供空间定位参考。
优选地,定位参考装置设置在待检测部位,所述成像方法的步骤S3进一步包括如下步骤:
S3.1显示、控制和处理终端从所述超声图像中提取出定位参考装置的信息作为定位信息;
S3.2显示、控制和处理终端将所述超声图像恢复成没有定位参考装置干扰的状态,再对所述超声图像进行三维图像的重建并显示。
优选地,定位参考装置设置在待检测部位,所述成像方法的步骤S1进一步包括如下步骤:
S1.1在定位参考装置设置在待检测部位上时,使用掌上式超声仪探头扫描待检测部位以获得第一超声图像;
S1.2 将定位参考装置取走,并再次使用掌上式超声仪探头扫描待检测部位以获得第二超声图像;
所述成像方法的步骤S3进一步包括如下步骤:
S3.6显示、控制和处理终端根据所述第一超声图像作为参考以确定定位参考装置相对于所述第二超声图像的位置,从而对所述超声图像和所述三维空间信息及角度进行三维图像重建并显示。
有益效果
通过应用本发明所提供的掌上式三维超声成像***和方法,将现有的三维超声成像***中庞大的空间定位***变成了便携的,可随时使用的空间定位***,使得掌上式三维超声成像可以得以广泛引用。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明的掌上式三维超声成像***结构示意图;
图2为本发明一优选实施例中的掌上式三维超声成像***结构示意图;
图3为本发明另一优选实施例中的掌上式三维超声成像***结构示意图;
图4为本发明实施例三中的掌上式三维超声成像***结构示意图;
图5a为本发明实施例四中的掌上式三维超声成像***扫描示意图;
图5b为本发明实施例四中的连续的两幅超声图像示意图
图6为本发明实施例六中的定位参考***和掌上式超声仪探头的结构示意图;
图7为本发明实施例七中的定位参考***结构示意图;
图8a为本发明实施例七中扫描定位参考***获得的一种定位信息图;
图8b为本发明实施例七中扫描定位参考***获得的另一种定位信息图;
图9为本发明一优选实施例中的掌上式超声仪探头的结构示意图;
图10 为本发明提供的一种掌上式三维超声成像方法的示意图。
本发明的最佳实施方式
为了使本领域技术人员能够更加清楚地理解本发明,下面将结合附图及具体实施例对本发明做进一步详细的描述。
如图1所示,本发明公开了一种掌上式三维超声成像***,包括掌上式超声仪探头100;显示、控制和处理终端300,通过有线或无线连接方式与掌上式超声仪探头100连接;掌上式三维空间定位***200,与掌上式超声仪探头100相连,并随着掌上式超声仪探头100的移动而移动,通过有线或无线连接方式与显示、控制和处理终端300连接。在图1中,掌上式三维空间定位***200安装在掌上式超声仪探头100上,在其他实施例中,其只要与掌上式超声仪探头100相连,可以随着掌上式超声仪探头100的移动而移动即可,而不一定需要安装在掌上式超声仪探头100上,具体的设置方式在此不做限定。本发明的显示、控制和处理终端300可以为掌上式终端或台式终端,如笔记本电脑等,其可以通过无线或有线的方式与掌上式超声仪探头100连接。显示、控制和处理终端300中存储有三维成像、图像处理和三维显示算法,直接对掌上式超声仪探头100传回的图像和数据信息进行分析、处理,并显示出三维图像。
如图2所示,由于掌上式三维超声成像***要求体积小,轻便便携,因此,为了减小掌上式三维超声成像***的体积,本发明的掌上式三维超声成像***进一步包括云端数据库400及其类似的处理***。由此,显示、控制和处理终端300将三维位置信息、角度以及重建结果传输至云端数据库400进行储存。在云端数据库400中,可以对重建结果进行分类存储,如,以客户的名字进行时间分类存储,以方便用户对比不同时间段待检测部位600的变化情况,或以不同疾病名称进行分类存储,使得用户可以参考其他用户的待检测部位600变化情况。
进一步地,为了使得掌上式三维超声成像***更加小型化,提高其便携度,在显示、控制和处理终端300中仅存储简单的三维成像、图像处理和三维显示算法,对图像和数据信息做简单的分析和处理。显示、控制和处理终端300通过网络、蓝牙等方式连接到云端数据库400及类似的处理***,在云端数据库400中可以存储有更高级和更复杂的三维成像、图像处理和三维显示算法,显示、控制和处理终端300将简单处理后的信息上传到云端数据库400中进行分析和处理,云端数据库400将分析和处理之后的结果传输回掌上式超声仪的显示、控制和处理终端300上做显示或进一步处理。甚至,显示、控制和处理终端300中可以不存储有三维成像、图像处理和三维显示算法,只需直接将掌上式超声仪探头100传回的图像和数据信息直接上传到云端数据库400,通过云端数据库400中的三维成像、图像处理和三维显示算法进行运算、分析和处理之后,将处理后的信息传递回显示、控制和处理终端300进行显示即可。类似地,在云端数据库400中,仍可以对重建结果进行分类存储,便于客户从云端数据库400调取重建结果的数据进行查询。云端数据库400可以为远程存储和计算装置。
本发明中的掌上式三维空间定位***200为方便移动和安装的装置,其与掌上式超声仪探头100相连接,并可以随着掌上式超声仪探头100的运动而运动,掌上式三维超声成像***通过掌上式三维空间定位***200直接获取掌上式超声仪探头100的三维空间位置,而不需要其他定位***。优选地,掌上式三维空间定位***200内置在掌上式超声仪探头100内,使得在实用本发明的掌上式三维超声成像***的时候,不会存在有一个非便携式的定位***而影响掌上式三维超声成像***的便携性。关于掌上式三维空间定位***200如何获得掌上式超声仪探头100的三维位置信息和角度信息,存在以下六种实施例。
如图3所示,为了提高定位的准确性,掌上式三维超声成像***还可以进一步地包括定位参考装置500,其位于所述掌上式超声仪探头100外,用于给掌上式三维空间定位***200提供定位参考。
实施例一
掌上式三维空间定位***200包括安装掌上式超声仪探头100上的加速度计、角速度计等微型惯性传感器,用于获得的掌上式超声仪探头100的加速度和角加速度值,从而推算掌上式超声仪探头100的移动距离和转动角度,进而独立地获得掌上式超声仪探头100的三维空间位置。
实施例二
掌上式三维空间定位***200包括一个或多个安装在掌上式超声仪探头100上的摄像头和安装在掌上式超声仪探头100内的加速度计、角速度计等微型惯性传感器。定位参考装置500为外部环境。摄像头用于获取周围环境的图像,如天花板上的格子等,根据所获得的图像变化来计算掌上式超声仪探头100所处的位置和角度,也可以在环境中简单地添加特别的图形以方便检测。加速度计、角速度计用于获得的掌上式超声仪探头100的加速度和角加速度值,从而推算掌上式超声仪探头100的移动距离和角度。加速度计、角速度计与摄像头的的结合使得定位更加准确。此种掌上式三维空间定位***200在使用前,需要让掌上式超声仪探头100移动已知的距离或转动所知的角度,用于确定定位算法中所需要的各项参数。
实施例三
如图4所示,掌上式三维空间定位***200为安装在掌上式超声仪探头100上的加速度计、角速度计等微型惯性传感器。掌上式三维超声***还进一步包括定位参考装置500,该定位参考装置500为安装在扫描对象上或附近的一个小型参考***,即安装在掌上式超声仪探头100之外,用于提供给掌上式三维空间定位***200以定位参考。该小型参考***为安装在扫描对象上的微型的电磁发射器。除了电磁发射器,也可以使用声音或者光发射接收***,即将传统光、声、电磁掌上式三维空间定位***小型化。加速度计和角速度计用于获得的掌上式超声仪探头100的加速度和角加速度值,从而推算掌上式超声仪探头100的移动距离和角度。加速度计、角速度计与小型参考***的结合使得定位更加准确。
另外, 该小型参考***还可以为一个或多个放置在扫描体上的***头,记录***头转动的角度来追踪探头的移动和角度。
实施例四
实施例四中的掌上式三维空间定位***200为加速度计、角速度计等微型惯性传感器。掌上式三维超声***还进一步包括定位参考装置500,该定位参考装置500为超声图像本身。
如图5a所示,当掌上式超声仪探头100移动时,先后得到图5b中的左右两幅超声图像。该两幅超声图像具有连续性和一定的图像重叠部分,即,依次获得的的超声图像的内容之间具有很大的相似性。当图像采样速度很高,而移动速度不是很快的情况下,两张图中的图像相差距离d,从而可以通过图像匹配的方式,通过依次获得的超声图像之间的差异中获得移动的距离。用同样的方法也可以获得掌上式超声仪探头100在这个平面内的旋转角度。但是,当单独使用超声图像本身时,局限性是掌上式超声仪探头100只能顺着一个方向移动或者转动,当掌上式超声仪探头100反向移动或转动时,容易造成采集的三维位置信息或角度信息计算错误。
因此,本实施例中,采用加速度计、角速度计等微型惯性传感器配合超声图像使用,加速度计、角速度计等微型惯性传感器用于获得的掌上式超声仪探头100的加速度和角加速度值,从而推算掌上式超声仪探头100的移动距离和角度,可以对图像获得的数据进行补充,使得定位方法更加准确。
实施例五
实施例五与实施例四的不同之处在于,实施例五的掌上式超声仪探头采用复合探头,即在一个掌上式超声仪探头100内安装了不同方向的子探头,用于在两个方向上同时测量掌上式超声仪探头100移动的距离和转动的角度。掌上式三维空间定位***200仍为加速度计、角速度计等微型惯性传感器,用于获得的掌上式超声仪探头100的加速度和角加速度值,推算掌上式超声仪探头100的移动距离和角度。由此,掌上式三维空间定位***200可以探测除了除了复合探头提供的方向之外的第三个方向的移动量和旋转量,进而更准确地计算掌上式超声仪探头100三维位置信息和角度。
实施例六
如图6所示,掌上式三维超声成像***进一步包括定位参考装置500,在本实施例中,定位参考装置500为设置在扫描对象表面的定位图像501。掌上式三维空间定位***200包括安装在掌上式超声仪探头100上的摄像头201。当掌上式超声仪探头100移动时,摄像头201根据定位图像501的变化来追踪掌上式超声仪探头100的移动距离和转动角度。优选地,掌上式三维空间定位***200还包括安装在掌上式超声仪探头100上的加速度计、角速度计等微型惯性传感器,用于进一步提供掌上式超声仪探头100移动距离和转动角度的信息。定位图像501可以是临时性地贴在扫描对象表面的特定设计的图,它们贴在要扫描对象的待检测部位600旁边,避免定位图像501对超声信号产生干扰。在本实施例中,定位图像501为贴在待检测部位600上的点阵,点阵中的点与点之间的距离为预先设计的值,是已知的。优选地,点阵还可以设计成大小间隔的点,用于更清晰地提供定位参考。
本实施例采用摄像头201对定位图像501进行记录用于定位,在本发明的其他实施例中,还可以应用其他类似的方法,例如,设计有声、光、点、磁等特性的定位图像501,贴到扫描对象上,而并在掌上式超声仪探头100上装有检测器来记录这些位于待检测部位600外的定位图像501进行定位。
实施例七
实施例七与实施例六的不同之处在于,实施例六的定位图像501临时性地贴在要扫描对象的待检测部位600旁边,即超声不会扫描到定位图像501以避免这些定位图像501对超声信号造成干扰。但是,在实施例六中,则利用这些定位图像501对超声的信号的干扰来用作定位。
如图7所示,定位图像501为点阵,当然,在本发明的其他实施例中,定位图像501还可以为其他形状,如,格子,波浪形状等等,只要其可以提供定位参考即可。本实施例中的定位图像501贴在待检测部位600上,点阵中的点与点之间的距离为预先设计的值,是已知的。优选地,其设置方式可以为每五个小点有一个大点的模式,用于更清晰地提供定位信息。进一步地,根据所用的定位图像501的材料,点阵上的每一点对超声信号的影响的程度不同,如图8a所示,反射信号可以为点,如图8b所示,反射信号也可以为带有阴影区域的点,用于区别每一行或者每一列点的位置,使得定位更加准确。优选地,定位图像501与超声波耦合贴一体化地结合在一起,使得使用和粘贴更加方便,操作过程更加简洁。
因此,在本实施例中,有两种定位方法,第一种定位方法是把这些定位图像501的信息从得到的超声图像上提取出来作为定位信息,然后经过图像处理把超声图像恢复成没有定位图像501干扰的状态,再对超声图像进行三维图像的重建。
另一种定位方法是,先在有定位图像501贴在待检测部位600的情况下扫描一次待检测部位600以获得第一超声图像,第一超声图像的范围可以包括定位图像501以及定位图像501以外的范围;然后把定位图像501拿走,再重复扫描一次,得到第二超声图像;显示、控制和处理终端根据所获得的第一超声图像作参考来确定定位图像501相对于第二超声图像的位置,从而得到完全不受定位图像501影响同时又具有定位图像501的定位信息的三维图像。
如图9所示,本实施例采用以上定位图像501干涉超声波以起到定位作用,在本发明的其他实施例中,还可以应用其他类似的方法,例如,设计有光、电、磁等特性的定位图像501,贴到扫描对象上,而并在掌上式超声仪探头100上装上光、电、磁等检测器作为***的掌上式三维空间定位***200来检测到这些定位图像501进行定位,掌上式三维空间定位***200的安装方式如图所示。
可以理解地,在实施例一至实施例七中,安装在掌上式超声仪探头100上的所有掌上式三维空间定位***200,即摄像头、声、光、电、磁检测器等均也可以不安装在掌上式超声仪探头100上,只要它们可以随着掌上式超声仪探头100的移动而移动即可,在此不做限定。
本发明进一步公开了一种掌上式三维超声成像方法包括如下步骤,如图10所示:
S1、使用掌上式超声仪探头100扫描待检测部位600以获取一系列的超声图像;
S2、由掌上式三维空间定位***200获取与每一超声图像对应的三维空间位置及角度;
S3、由显示、控制和处理终端300将所述超声图像和所述三维空间信息及角度进行三维图像重建并显示。
掌上式三维超声成像方法在步骤S2中包括以下步骤:
S2.1 在扫描对象上设置定位参考装置500,用于给予掌上式三维空间定位***200以空间定位参考。
所述定位参考装置500为在扫描对象上安装的电、磁、声、光等发射器,发射的电、磁、声、光等信号可以被安装在掌上式超声仪探头100上的相应接收器接受,用于作为定位参考;或者将具有电、磁、声、光特征的定位图像501安放在扫描对象表面,使其可以被掌上式超声仪探头100上的超声换能器,或电、磁、声、光检测器检测到,进而用于定位,具体实施例请参考实施例一至六,在此不再赘述。
掌上式三维超声成像方法在步骤S3中包括以下步骤:
S3.1 所述显示、控制和处理终端300对所述超声图像和所述三维空间信息及角度进行三维图像重建并显示。
为了实现掌上式三维超声成像***的小型化,当掌上式三维超声成像***进一步包括用于存储数据的云端数据库400时,步骤S3进一步包括:
S3.2 所述显示、控制和处理终端300将重建结果传输至云端数据库400进行储存。
在云端数据库400中,可以对重建结果进行分类存储,如,以客户的名字进行时间分类存储,以方便用户对比不同时间段待检测部位600的变化情况,或以不同疾病名称进行分类存储,使得用户可以参考其他用户的待检测部位600变化情况。
为了实现掌上式三维超声成像***进一步小型化,提高其便携度,掌上式三维超声成像***进一步包括用于进行数据处理的云端数据库400,该成像方法的步骤S3包括:
S3.3所述显示、控制和处理终端300将所述超声图像和所述三维空间信息及角度传输至所述云端数据库400;
S3.4所述云端数据库400对所述超声图像和所述三维空间信息及角度进行三维图像重建并将重建结果传输回所述显示、控制和处理终端300;
S3.5 所述显示、控制和处理终端300显示所述重建结果。
同样地,在云端数据库400中,可以对重建结果进行分类存储,便于客户从云端数据库400调取重建结果的数据进行查询。
本方法中的掌上式三维空间定位***300可以为实施例一至七中的任一一种掌上式三维空间定位***,本发明的定位参考装置500可以为当实施例七所述的情况时,即定位参考装置500为实施例二至实施例七中的任一定位参考装置。当定位参考装置500为实施例七中所示,为可以干扰超声成像的材料,且设置在待检测部位600上时,则成像方法的步骤S3进一步包括如下步骤:
S3.1显示、控制和处理终端300从所述超声图像中提取出定位参考装置500的信息作为定位信息;
S3.2显示、控制和处理终端300将所述超声图像恢复成没有定位参考装置500干扰的状态,再对所述超声图像进行三维图像的重建并显示。
在实施例七中还有另一种定位方法,成像方法的步骤S1进一步包括如下步骤:
S1.1在定位参考装置500设置在待检测部位600上时,使用掌上式超声仪探头100扫描待检测部位600以获得第一超声图像;
S1.2 将定位参考装置500取走,并再次使用掌上式超声仪探头100扫描待检测部位600以获得第二超声图像;
同时,成像方法的步骤S3进一步包括如下步骤:
S3.6显示、控制和处理终端300根据所述第一超声图像作为参考以确定定位参考装置500相对于所述第二超声图像的位置,从而对所述超声图像和所述三维空间信息及角度进行三维图像重建并显示。
综上所述,采用本发明所公开的一种掌上式三维超声成像***和方法,其不具有传统的体积大,不便于携带的空间定位***,而可以通过便携的掌上式三维空间定位***和定位参考装置,甚至单独采用掌上式三维空间定位***,即可完成对掌上式超声仪探头的定位,方便用户携带并随时使用本发明所公开的掌上式三维超声成像***,得到了小型化且便携型的掌上式三维超声成像***。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (14)

  1. 一种掌上式三维超声成像***,包括掌上式超声仪探头(100),用于扫描并获取超声图像;
    显示、控制和处理终端(300),通过有线或无线连接方式与掌上式超声仪探头(100)连接;
    其特征在于,还包括:
    掌上式三维空间定位***(200),与掌上式超声仪探头(100)相连,并随着掌上式超声仪探头(100)的移动而移动,通过有线或无线连接方式与显示、控制和处理终端(300)连接,用于独立地定位所述掌上式超声仪探头(100)的三维位置和角度信息。
  2. 根据权利要求1中所述的掌上式三维超声成像***,其特征在于,还包括定位参考装置(500),位于所述掌上式超声仪探头(100)外,用于给掌上式三维空间定位***(200)提供定位参考。
  3. 根据权利要求1中所述的掌上式三维超声成像***,其特征在于,掌上式三维空间定位***(200)内置在掌上式超声仪探头(100)内。
  4. 根据权利要求1中所述的掌上式三维超声成像***,其特征在于,掌上式三维空间定位***(200)为安装掌上式超声仪探头(100)上的加速度计或角速度计,用于获得的掌上式超声仪探头(100)的加速度或角加速度值,进而获得掌上式超声仪探头(100)的移动距离和转动角度。
  5. 根据权利要求2中所述的掌上式三维超声成像***,其特征在于,定位参考装置(500)为设置在待检测部位(600)上的定位图像(501),掌上式三维空间定位***(200)包括摄像头(201),用于检测定位图像(501)的位置给予定位参考;加速度计或角速度计,用于获得的掌上式超声仪探头(100)的加速度或角加速度值,进而获得掌上式超声仪探头(100)的移动距离和转动角度。
  6. 根据权利要求1中所述的掌上式三维超声成像***,其特征在于,还包括云端数据库(400),与所述显示、控制和处理终端(300)通信连接,通过无线或有线数据传送装置从显示、控制和处理终端(300)中获取所述的超声图像及所述的三维位置和角度信息进行数据处理,并将数据处理结果返回所述显示、控制和处理终端(300)。
  7. 一种掌上式三维超声成像方法,其特征在于,包括如下步骤:
    S1、使用掌上式超声仪探头(100)扫描待检测部位(600)以获取一系列的超声图像;
    S2、通过掌上式三维空间定位***(200)获取与每一帧超声图像对应的三维空间位置及角度信息;
    S3、对所述超声图像和所述三维空间信息及角度进行三维图像重建并显示。
  8. 根据权利要求7所述的掌上式三维超声成像方法,其特征在于,步骤S3为:
    S3、通过无线或有线数据传送装置将所述超声图像及所述三维空间位置及角度信息传送给云端数据库(400)进行图像重建、分析、计算、比较,所述云端数据库(400)将图像重建、分析、计算、比较的结果回传给显示、控制和处理终端(300)进行显示。
  9. 根据权利要求7所述的掌上式三维超声成像方法,其特征在于,步骤S3为:
    S3、通过显示、控制和处理终端(300)对所述超声图像和所述三维空间信息及角度进行三维图像重建并显示。
  10. 根据权利要求7所述的掌上式三维超声成像方法,其特征在于,掌上式三维空间定位***(200)为安装掌上式超声仪探头(100)上的加速度计或角速度计,用于获得的掌上式超声仪探头(100)的加速度或角加速度值,进而获得掌上式超声仪探头(100)的移动距离和转动角度。
  11. 根据权利要求7所述的掌上式三维超声成像方法,其特征在于,掌上式三维空间定位***(200)为安装掌上式超声仪探头(100)上的加速度计或角速度计,用于获得的掌上式超声仪探头(100)的加速度或角加速度值,进而获得掌上式超声仪探头(100)的移动距离和转动角度。
  12. 根据权利要求7-10所述的掌上式三维超声成像方法,其特征在于,所述成像方法的步骤S2包括如下步骤:
    S2.1 使用三维空间定位***(200)扫描定位参考装置(500),用于给予掌上式三维空间定位***(200)提供空间定位参考。
  13. 根据权利要求11所述的掌上式三维超声成像方法,其特征在于,定位参考装置(500)设置在待检测部位(600),所述成像方法的步骤S3进一步包括如下步骤:
    S3.1显示、控制和处理终端(300)从所述超声图像中提取出定位参考装置(500)的信息作为定位信息;
    S3.2显示、控制和处理终端(300)将所述超声图像恢复成没有定位参考装置(500)干扰的状态,再对所述超声图像进行三维图像的重建并显示。
  14. 根据权利要求11所述的掌上式三维超声成像方法,其特征在于,定位参考装置(500)设置在待检测部位(600),所述成像方法的步骤S1进一步包括如下步骤:
    S1.1在定位参考装置(500)设置在待检测部位(600)上时,使用掌上式超声仪探头(100)扫描待检测部位(600)以获得第一超声图像;
    S1.2 将定位参考装置(500)取走,并再次使用掌上式超声仪探头(100)扫描待检测部位(600)以获得第二超声图像;
    所述成像方法的步骤S3进一步包括如下步骤:
    S3.6显示、控制和处理终端(300)根据所述第一超声图像作为参考以确定定位参考装置(500)相对于所述第二超声图像的位置,从而对所述超声图像和所述三维空间信息及角度进行三维图像重建并显示。
PCT/CN2018/094306 2017-07-11 2018-07-03 一种掌上式三维超声成像***和方法 WO2019011156A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2018301576A AU2018301576B2 (en) 2017-07-11 2018-07-03 Handheld three-dimensional ultrasound imaging system and method
CA3069589A CA3069589A1 (en) 2017-07-11 2018-07-03 Handheld three-dimensional ultrasound imaging system and method
JP2020501224A JP6964751B2 (ja) 2017-07-11 2018-07-03 ハンドヘルド型3次元超音波イメージングシステム及び方法
US16/629,955 US11478219B2 (en) 2017-07-11 2018-07-03 Handheld three-dimensional ultrasound imaging system and method
EP18832028.7A EP3653127A4 (en) 2017-07-11 2018-07-03 PORTABLE THREE-DIMENSIONAL ULTRASONIC IMAGING SYSTEM AND METHOD
US17/941,471 US11744549B2 (en) 2017-07-11 2022-09-09 Handheld three-dimensional ultrasound imaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710560949.0 2017-07-11
CN201710560949.0A CN109223030B (zh) 2017-07-11 2017-07-11 一种掌上式三维超声成像***和方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/629,955 A-371-Of-International US11478219B2 (en) 2017-07-11 2018-07-03 Handheld three-dimensional ultrasound imaging system and method
US17/941,471 Division US11744549B2 (en) 2017-07-11 2022-09-09 Handheld three-dimensional ultrasound imaging method

Publications (1)

Publication Number Publication Date
WO2019011156A1 true WO2019011156A1 (zh) 2019-01-17

Family

ID=65001021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094306 WO2019011156A1 (zh) 2017-07-11 2018-07-03 一种掌上式三维超声成像***和方法

Country Status (7)

Country Link
US (2) US11478219B2 (zh)
EP (1) EP3653127A4 (zh)
JP (1) JP6964751B2 (zh)
CN (1) CN109223030B (zh)
AU (1) AU2018301576B2 (zh)
CA (1) CA3069589A1 (zh)
WO (1) WO2019011156A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109223030B (zh) * 2017-07-11 2022-02-18 中慧医学成像有限公司 一种掌上式三维超声成像***和方法
CN111487320B (zh) * 2019-01-29 2023-07-21 中慧医学成像有限公司 基于三维光学成像传感器的三维超声成像方法和***
CN111789630B (zh) * 2019-04-08 2023-06-20 中慧医学成像有限公司 超声探头三维空间信息测量装置
CN111383332B (zh) * 2020-03-26 2023-10-13 深圳市菲森科技有限公司 一种三维扫描和重建***、计算机设备和可读存储介质
CN112704514B (zh) * 2020-12-24 2021-11-02 重庆海扶医疗科技股份有限公司 病灶定位方法及病灶定位***
CN113091636A (zh) * 2021-03-08 2021-07-09 华朗三维技术(深圳)有限公司 一种带陀螺仪手持三维扫描仪控制***
CN113081033A (zh) * 2021-03-29 2021-07-09 孙鲲 基于空间定位装置的三维超声成像方法、存储介质及设备
CN114533111A (zh) * 2022-01-12 2022-05-27 电子科技大学 一种基于惯性导航***的三维超声重建***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006127142A2 (en) * 2005-03-30 2006-11-30 Worcester Polytechnic Institute Free-hand three-dimensional ultrasound diagnostic imaging with position and angle determination sensors
WO2009149499A1 (en) * 2008-06-13 2009-12-17 Signostics Limited Improved scan display
CN101842053A (zh) * 2007-08-31 2010-09-22 施格诺斯迪克斯有限公司 用于医学扫描的装置和方法
CN102499762A (zh) * 2011-11-23 2012-06-20 东南大学 医用超声探头相对于***位的三维空间定位***及方法
CN105025799A (zh) * 2012-12-18 2015-11-04 米轨公司 用于诊断超声机器的三维映射显示***
CN205126280U (zh) * 2015-10-23 2016-04-06 苏州斯科特医学影像科技有限公司 带显示屏的无线掌上探头

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569097B1 (en) * 2000-07-21 2003-05-27 Diagnostics Ultrasound Corporation System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
WO2006031526A2 (en) * 2004-09-09 2006-03-23 Diagnostic Ultrasound Corporation Systems and methods for ultrasound imaging using an inertial reference unit
CN101569541B (zh) * 2008-04-29 2011-04-06 香港理工大学 三维超声波成像***
WO2011063266A2 (en) * 2009-11-19 2011-05-26 The Johns Hopkins University Low-cost image-guided navigation and intervention systems using cooperative sets of local sensors
US9538982B2 (en) * 2010-12-18 2017-01-10 Massachusetts Institute Of Technology User interface for ultrasound scanning system
CN202211705U (zh) * 2011-05-30 2012-05-09 华南理工大学 一种医学超声三维成像数据采集装置
JP6065602B2 (ja) * 2013-01-21 2017-01-25 セイコーエプソン株式会社 超音波測定装置、超音波診断装置及び超音波測定用シート
WO2015142306A1 (en) * 2014-03-20 2015-09-24 Ozyegin Universitesi Method and system related to a portable ultrasonic imaging system
DE102014111066A1 (de) * 2014-08-04 2016-02-04 Piur Imaging Gmbh Vorrichtung und Verfahren zur Erzeugung eines 3D Bildes ausgehend von 2D Ultraschalldaten
US10453269B2 (en) * 2014-12-08 2019-10-22 Align Technology, Inc. Intraoral scanning using ultrasound and optical scan data
WO2016176452A1 (en) * 2015-04-28 2016-11-03 Qualcomm Incorporated In-device fusion of optical and inertial positional tracking of ultrasound probes
US10646199B2 (en) * 2015-10-19 2020-05-12 Clarius Mobile Health Corp. Systems and methods for remote graphical feedback of ultrasound scanning technique
CN105528527A (zh) * 2016-01-29 2016-04-27 乐普(北京)医疗器械股份有限公司 一种超声成像***及超声成像方法
EP3407796A4 (en) * 2016-01-29 2019-09-04 Noble Sensors, LLC POSITION CORRELATED ULTRASONIC IMAGE GENERATION
CN109223030B (zh) * 2017-07-11 2022-02-18 中慧医学成像有限公司 一种掌上式三维超声成像***和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006127142A2 (en) * 2005-03-30 2006-11-30 Worcester Polytechnic Institute Free-hand three-dimensional ultrasound diagnostic imaging with position and angle determination sensors
CN101842053A (zh) * 2007-08-31 2010-09-22 施格诺斯迪克斯有限公司 用于医学扫描的装置和方法
WO2009149499A1 (en) * 2008-06-13 2009-12-17 Signostics Limited Improved scan display
CN102499762A (zh) * 2011-11-23 2012-06-20 东南大学 医用超声探头相对于***位的三维空间定位***及方法
CN105025799A (zh) * 2012-12-18 2015-11-04 米轨公司 用于诊断超声机器的三维映射显示***
CN205126280U (zh) * 2015-10-23 2016-04-06 苏州斯科特医学影像科技有限公司 带显示屏的无线掌上探头

Also Published As

Publication number Publication date
CN109223030A (zh) 2019-01-18
JP6964751B2 (ja) 2021-11-10
US11744549B2 (en) 2023-09-05
CA3069589A1 (en) 2019-01-17
CN109223030B (zh) 2022-02-18
EP3653127A4 (en) 2021-03-17
AU2018301576A1 (en) 2020-02-27
US11478219B2 (en) 2022-10-25
AU2018301576B2 (en) 2023-12-07
JP2020530319A (ja) 2020-10-22
US20230039634A1 (en) 2023-02-09
US20200138408A1 (en) 2020-05-07
EP3653127A1 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
US11744549B2 (en) Handheld three-dimensional ultrasound imaging method
CN112288742B (zh) 用于超声探头的导航方法、装置、存储介质以及电子设备
US8756033B2 (en) Ultrasonic diagnostic imaging system and control method thereof
US9538982B2 (en) User interface for ultrasound scanning system
CN101569541B (zh) 三维超声波成像***
US20090306509A1 (en) Free-hand three-dimensional ultrasound diagnostic imaging with position and angle determination sensors
US9445078B2 (en) Stereo-vision system
CN113543718B (zh) 用于确定超声探头的包括前后方向性的运动的装置和方法
KR101658576B1 (ko) 이미지 데이터를 이용한 거리 측정 장치 및 방법
JPH04332544A (ja) 超音波撮像システム
JP2011141402A (ja) 超音波診断教育用シミュレーション装置
US10949579B2 (en) Method and apparatus for enhanced position and orientation determination
CN108413917A (zh) 非接触式三维测量***、非接触式三维测量方法及测量装置
US11366450B2 (en) Robot localization in a workspace via detection of a datum
CN203328720U (zh) 一种基于计算机视觉技术的三维超声成像***
JP4317988B2 (ja) 3次元位置キャリブレーション方法
US20050256689A1 (en) Method and system for measuring attributes on a three-dimenslonal object
JP2020173167A (ja) 三次元位置計測装置、三次元位置計測方法及びプログラム
JP5314018B2 (ja) 因子測定及び表示装置、因子測定及び表示方法、因子測定及び表示方法をコンピューターに実行させる因子測定及び表示プログラム、並びに、音響スキャナ
Belov et al. SLAM implementation for mobile robots using physical sensors
Aron et al. Multimodal acquisition of articulatory data: Geometrical and temporal registration
CN116392081A (zh) 一种消化道动力检测胶囊
CN117838192A (zh) 一种基于惯导模块的三维b型超声成像的方法与装置
JP3168027B2 (ja) 触覚センサ
WO2023139394A1 (en) Soft tissue monitoring device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3069589

Country of ref document: CA

Ref document number: 2020501224

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018832028

Country of ref document: EP

Effective date: 20200211

ENP Entry into the national phase

Ref document number: 2018301576

Country of ref document: AU

Date of ref document: 20180703

Kind code of ref document: A