WO2019008914A1 - Crane apparatus - Google Patents

Crane apparatus Download PDF

Info

Publication number
WO2019008914A1
WO2019008914A1 PCT/JP2018/018938 JP2018018938W WO2019008914A1 WO 2019008914 A1 WO2019008914 A1 WO 2019008914A1 JP 2018018938 W JP2018018938 W JP 2018018938W WO 2019008914 A1 WO2019008914 A1 WO 2019008914A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
unit
center
inclination angle
tilt angle
Prior art date
Application number
PCT/JP2018/018938
Other languages
French (fr)
Japanese (ja)
Inventor
伸郎 吉岡
Original Assignee
住友重機械搬送システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械搬送システム株式会社 filed Critical 住友重機械搬送システム株式会社
Priority to CN202011502944.0A priority Critical patent/CN112678665B/en
Priority to MYPI2019007190A priority patent/MY196459A/en
Priority to JP2019528387A priority patent/JP6672530B2/en
Priority to CN201880035030.2A priority patent/CN110799442B/en
Publication of WO2019008914A1 publication Critical patent/WO2019008914A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions

Definitions

  • One aspect of the present invention relates to a crane apparatus.
  • Patent Document 1 discloses a spreader which is suspended from a crane main body via a wire, holds a container and lifts the container by lifting the container, and a position detection for detecting the position of the container placed in the container yard A crane arrangement comprising a part is described. The crane device places the container lifted by the spreader on the container placed in the container yard based on the result detected by the position detection unit.
  • the spreader includes a spreader main body having a substantially rectangular shape in plan view, and a guide which is provided outside the spreader main body and guides the spreader main body onto a target container.
  • the guide portion positions the spreader body on the target container while entering the gap between the target container and the container adjacent to the target container.
  • the yard surface of a container yard may have a part which inclines to a level surface.
  • the yard surface of the area where the container is to be placed is inclined with respect to the horizontal plane
  • the lower and upper surfaces of the container placed on the yard surface are also Tilt to the horizontal plane. Then, the position of the container placed on the yard surface is shifted in the horizontal direction with respect to the normal loading position in the area where the container is to be placed.
  • one aspect of the present invention aims to provide a crane apparatus capable of suppressing displacement of a container relative to a normal loading position.
  • a crane device of one mode of the present invention is a crane device which conveys a container on a container yard which can put a container in a predetermined field, and can lock a container Yes, the load handling unit that handles the container as a lifting container by lifting and holding the container, and the tilt angle recognizing the tilt angle of the area of the area where the lifting container is to be placed with respect to the horizontal surface of the yard
  • a control unit for controlling the position of the loading and unloading unit the control unit being recognized by the inclination angle recognition unit when the hanging container is placed on the upper surface of the stacking container which is a container placed in the area
  • the center of the lower surface of the hanging container is shifted in the direction that the height of the upper surface with respect to the horizontal plane is higher with respect to the center of the upper surface of the loading container based on the inclined angle It controls the position of the handling portion.
  • the control unit when the hanging container is placed on the upper surface of the stacking container, the control unit causes the center of the lower surface of the hanging container to be the upper surface of the stacking container on the basis of the inclination angle recognized by the inclination angle recognition unit.
  • the position of the cargo handling unit is controlled such that the height of the upper surface with respect to the horizontal plane is higher with respect to the center.
  • the center of the lower surface of the suspension container is shifted in the direction in which the height of the upper surface with respect to the horizontal plane is higher than the center of the upper surface of the stacking container.
  • the center of the lower surface of the suspension container extends straight through the center of the lower surface of the cargo container, as compared to the case where the center of the lower surface of the suspension container is aligned with the center of the upper surface of the storage container. It can be brought close to the position of As a result, the containers can be stacked along a straight line extending in the vertical direction, and displacement of the containers relative to the normal loading position can be suppressed.
  • the container yard further includes a storage unit having a plurality of areas and storing the inclination angle of the yard surface of each area measured in advance, and the inclination angle recognition unit
  • the tilt angle corresponding to the area in which the hanging container is to be placed may be recognized by reading out the tilt angle corresponding to the area in which the container is to be placed from the storage unit.
  • the inclination angle recognition unit reads the inclination angle of the yard surface of each area measured in advance from the storage unit, and thereby recognizes the inclination angle corresponding to the area in which the hanging container is to be placed. Therefore, it is possible to control the position of the cargo handling unit by the control unit based on the tilt angle read from the storage unit without measuring the tilt angle of the yard surface with respect to the horizontal plane each time.
  • the cargo handling unit has an inclination angle measurement unit that measures an inclination angle with respect to the horizontal plane corresponding to the inclination angle recognized by the inclination angle recognition unit.
  • the hanging container is placed on the stacking container so that the center of the lower surface of the hanging container is aligned with the center of the stacking container, and the inclination angle measurement unit measures the inclination angle with respect to its horizontal plane.
  • control unit places the suspension container on the stacking container such that the center of the lower surface of the suspension container is aligned with the center of the stacking container.
  • the tilt angle measuring unit measures the tilt angle of the cargo handling unit with respect to the horizontal plane corresponding to the tilt angle recognized by the tilt angle recognition unit.
  • the control unit causes the center of the lower surface of the suspension container to be higher than the center of the upper surface of the stacking container with respect to the horizontal surface of the upper surface.
  • the position of the cargo handling unit is controlled to shift in the high direction.
  • the control unit can control the position of the cargo handling unit based on the inclination angle of the cargo handling unit measured by the inclination angle measurement unit without measuring the inclination angle of the yard surface relative to the horizontal surface.
  • the control unit may shift the center of the lower surface of the suspension container with respect to the center of the upper surface of the stacking container by a horizontal distance ⁇ shown in the following Formula (1).
  • the horizontal distance of the center of the lower surface of the lifting container with respect to a straight line extending vertically through the center of the lower surface of the loading container.
  • the center of the lower surface of the lifting container can be positioned on a straight line extending vertically through the center of the lower surface of the loading container by shifting the center of the lower surface of the lifting container by the amount represented by the equation (1). it can.
  • the containers can be stacked on a straight line extending in the vertical direction, and displacement of the containers relative to the normal loading position can be suppressed.
  • a crane apparatus is a crane apparatus for transporting a container on a container yard capable of mounting the container in a predetermined area, and is capable of locking the container and engaging the container.
  • a load handling unit that loads and holds the container as a lifting container by stopping and lifting, a tilt angle recognition unit that recognizes a tilt angle of the area of the yard surface where the lifting container is to be placed with respect to a horizontal surface, and a load handling unit Control unit for controlling the position of the suspension container when the suspension container is placed on the upper surface of the stacking container which is a container placed in the area, the inclination angle recognized by the inclination angle recognition unit If the angle is larger than the predetermined allowable angle, the center of the lower surface of the hanging container is positioned on a straight line extending vertically through the center of the lower surface of the loading container Te, and controls the position of the cargo handling section so as to place the container suspended on the upper surface of the palletizing container.
  • the loading container when the hanging container is placed on the upper surface of the loading container, the loading container is horizontally oriented if the tilt angle recognized by the tilt angle recognition unit is larger than the predetermined allowable angle.
  • the control unit places the center of the lower surface of the lifting container on a straight line extending vertically through the center of the lower surface of the loading container, and places the lifting container on the upper surface of the loading container As such, the position of the cargo handling unit is controlled.
  • the hanging container is placed on the top surface of the stacking container so that the center of the bottom surface of the hanging container is positioned on a straight line extending vertically through the center of the bottom surface of the stacking container.
  • the containers can be stacked on a straight line extending in the vertical direction, and displacement of the containers relative to the normal loading position can be suppressed.
  • FIG. 1 is a perspective view showing a container handling crane device according to the first embodiment.
  • FIG. 2 is a view of the container handling crane device as seen from the traveling direction.
  • FIG. 3 is a perspective view showing a container yard.
  • FIG. 4 is a block diagram functionally showing the configuration of the container handling crane device.
  • FIG. 5 is a perspective view showing a spreader.
  • FIG. 6 is a diagram for explaining the automatic stowing target correction value calculated by the correction unit.
  • FIG. 7 is a flow chart showing an operation of container loading by the container handling crane device.
  • FIG. 8 is a flowchart following to FIG.
  • FIG. 9 is a figure for demonstrating the effect
  • FIG. 10 is a view for explaining that the gap between adjacent containers in the case of the related art becomes narrow.
  • FIG. 11 is a block diagram functionally showing the configuration of the container handling crane device according to the second embodiment.
  • FIG. 12 is a flow chart showing an operation of container loading by the container handling crane device.
  • FIG. 13 is a flowchart following to FIG.
  • FIG. 14 is a flowchart following to FIG.
  • FIG. 1 is a perspective view showing a container handling crane device according to the first embodiment
  • FIG. 2 is a view of the container handling crane device seen from a traveling direction
  • FIG. 3 is a perspective view showing a container yard.
  • the container handling crane device 1 shown in FIGS. 1 and 2 is, for example, as shown in FIG. 3, in a container yard CY at a container terminal where transfer of a container C to a docked container ship S is performed. It is distributed and performs loading and unloading of the container C.
  • the container C is a container such as an ISO standard container.
  • the container C is in the form of a long rectangular solid and has a predetermined length of, for example, 20 feet or 40 feet in the longitudinal direction. Also, the container C has a predetermined height of, for example, 8.5 feet or 9.5 feet in the height direction.
  • the containers C are stacked one or more in a container yard CY to form a plurality of rows 12.
  • the longitudinal direction of the container C constituting the row 12 (that is, the container C placed on the row 12) is parallel to the longitudinal direction of the container C constituting the other row 12.
  • the rows 12 adjacent to each other are positioned such that the distance between the containers C in the first row is equal to or greater than a predetermined minimum distance (threshold value) between containers.
  • the predetermined inter-container minimum distance is, for example, a distance through which a guide 17 of the spreader 10 described later can enter.
  • FIG. 3 shows an XYZ orthogonal coordinate system in which the longitudinal direction of the container C is the X direction, the short direction of the container C is the Y direction, and the height direction of the container C is the Z direction.
  • the container yard CY extends on the XY plane, and the containers C are stacked, for example, in the Z direction at any position on the XY plane.
  • the position at which the container C is to be stacked is virtually set in a three-dimensional space, and the virtual stacking position of the container C is defined as an address (X, Y, Z). That is, the container yard CY has a plurality of predetermined addresses (X, Y, Z) as an area on which the container C can be placed.
  • the container handling crane device 1 transports the container C in the container yard CY having such a plurality of addresses (X, Y, Z).
  • a traveling path 14 of a transport carriage 13 such as a trailer or an AGV (Automated Guided Vehicle) is laid.
  • the container handling crane device 1 acquires the container C transported by the transport carriage 13 and places the container C at a position indicated by a predetermined address (X, Y, Z) of the container yard CY.
  • the container handling crane device 1 acquires the container C placed in the container yard CY, transfers the container C to the transport carriage 13, and causes the transport carriage 13 to carry the container C out.
  • FIG. 4 is a block diagram functionally showing the configuration of the container handling crane device 1.
  • the container handling crane device 1 includes a main body 2, a spreader 10 (load handling unit 21), a control unit 40, and a storage unit 37.
  • the main body portion 2 is capable of traveling by a traveling device 4 having a wheel with a tire.
  • the traveling device 4 travels by driving of the traveling motor.
  • the main body portion 2 has a pair of leg portions 5 and 5 erected on the traveling device 4 in a substantially gate shape including two sets of leg portions 5 and 5 and crane girder 6 connecting the upper end portions of the leg portions 5 and 5. It is formed.
  • the main body 2 includes a trolley 7 capable of traversing the crane girder 6 in a direction orthogonal to the traveling direction.
  • the trolley 7 traverses by the drive of the traverse motor.
  • the trolley 7 includes a drum 8 that is rotated in the forward and reverse directions by a drum drive motor, and suspends the spreader 10 via a wire 9.
  • the traveling motor, the traverse motor, and the drum drive motor described above function as the drive unit 20, and the operation thereof is controlled by the control unit 40.
  • the spreader 10 is a hanger for lifting the container C.
  • the spreader 10 can lock the container C from the upper surface side, and performs loading and unloading of the container C by locking and lifting the container C.
  • the spreader 10 is suspended via a sheave 18 around which a wire 9 from a drum 8 is wound, and can be raised and lowered by forward and reverse rotation of the drum 8.
  • the spreader 10 functions as a loading and unloading unit 21 that performs loading and unloading of the container C, and its operation and position are controlled by the control unit 40.
  • FIG. 5 is a perspective view showing the spreader 10.
  • the inclination-angle measurement part 30 shown with a dashed-two dotted line in FIG. 5 is a structure provided with the spreader 10 which concerns on 2nd Embodiment mentioned later, Comprising: The spreader 10 which concerns on this embodiment is not provided.
  • the spreader 10 includes a spreader main body portion 15, a guide (guide portion) 17, a lock pin 16, and a position detection portion 22.
  • the spreader main body 15 has a shape substantially the same as the shape of the upper surface of the container C in a plan view.
  • the spreader body 15 has a sheave 18 around which the wire 9 is wound, above the central portion in the longitudinal direction.
  • the spreader main body 15 is positioned on the container C when the spreader 10 locks the container C.
  • the guide 17 places the spreader body portion 15 on the target container when the spreader 10 lowers the target container C (hereinafter referred to as “target container”) to be acquired by the spreader 10.
  • Guide to The guides 17 are provided in the vicinity of both ends in the longitudinal direction at each of one end and the other end in the lateral direction of the spreader main body 15 in the horizontal direction. That is, the guides 17 are provided at the four corners of the spreader body 15 on the outer side in the short direction of the spreader body 15.
  • the guide 17 has a tapered surface 17b at its tip 17a.
  • the guide 17 abuts the tapered surface 17b on the edge of the upper surface of the target container by entering the gap between the target container and another container C placed horizontally adjacent to the target container. And (in a guided manner) guide the spreader body 15 directly above the target container.
  • the lock pin 16 is a mechanism for locking the container C.
  • the lock pin 16 is provided on the lower surface side of the spreader main body portion 15 so as to protrude downward from the spreader main body portion 15.
  • the lock pin 16 is at a position corresponding to the hole (not shown) of the container C when the spreader 10 locks the container C, and in the horizontal direction of the spreader main body 15 with respect to the position of the guide 17. It is provided at the center side.
  • the lock pin 16 is, for example, a twist pin and includes at its lower end a locking piece (not shown) that can be pivoted about an axis extending in the vertical direction.
  • the lock pin 16 is engageable with the container C by entering through the holes formed at the four corners of the upper surface of the container C and rotating the locking piece.
  • the position detection unit 22 is an apparatus capable of acquiring three-dimensional coordinate data of a measurement object.
  • a laser sensor is used as the position detection unit 22. More specifically, the position detection unit 22 calculates the distance to the measurement object based on the time until the laser light is reflected by the measurement object and returns. Then, the position detection unit 22 obtains the coordinates of the light arrival point based on the distance to the measurement object and the irradiation angle of the laser light, and outputs the information to the control unit 40.
  • the position detection unit 22 is provided on the side surface of the spreader main body unit 15. Specifically, the position detection unit 22 is provided in the vicinity of both ends in the longitudinal direction at each of one end and the other end in the width direction of the spreader body 15 in the horizontal direction. Therefore, each position detection unit 22 is provided at a position corresponding to any one of the guides 17.
  • the position detection unit 22 detects the container C located at the lower part of the spreader main body 15 and measures the position of the container C.
  • the position detection unit 22 transmits the measurement result to the control unit 40.
  • the position detection part 22 is provided in the spreader 10 in this embodiment, it is not restricted to this, For example, the position detection part 22 may be provided in the trolley 7. FIG.
  • the position detection unit 22 is not limited to the laser sensor as long as it can acquire three-dimensional coordinate data of the measurement object, and another type (for example, an optical camera or the like) may be used. Furthermore, the position detection unit 22 may use a plurality of methods (for example, a combination of a laser sensor and an optical camera).
  • the control unit 40 controls the operation of the drive unit 20 and the cargo handling unit 21 based on the detection result from the position detection unit 22. Specifically, the control unit 40 controls the operation of the traveling motor, the traverse motor, the drum drive motor and the like based on the detection result from the position detection unit 22, and also the guide 17 of the cargo handling unit 21, the lock pin 16 and the like. Control the operation of
  • control unit 40 controls the position of the cargo handling unit 21 by controlling the operation of the drive unit 20 based on the automatic command from the upper system 35.
  • the yard surface is a surface on which the container C in the container yard CY is to be placed.
  • the upper system 35 is, for example, a control room provided in the container yard CY and controlling the entire container yard CY.
  • the automatic command from the upper system is, for example, a command specifying the target address (X, Y, Z) to which the container C is to be loaded.
  • the automatic command may include, for example, information indicating the height of the container C (8.5 feet or 9.5 feet).
  • the control unit 40 includes a receiving unit 41, an inclination angle recognition unit 42, and a correction unit 43.
  • the receiving unit 41 receives, as an automatic command from the upper system 35, information indicating the target address (X, Y, Z) to which the container C is to be placed and the height of the container C.
  • the receiving unit 41 acquires an address (X, Y) from which only the bay number and the row number are taken out of the received address (X, Y, Z).
  • this address (X, Y) will be referred to as "the target address for stowing (X, Y).
  • the tilt angle recognition unit 42 sets the tilt angle of the yard surface of the stowage target address (X, Y) to which the container C (hereinafter referred to as “hanging container”) lifted by the cargo handling unit 21 is to be placed. recognize.
  • the inclination angle with respect to the horizontal plane is simply referred to as “inclination angle”.
  • the tilt angle recognition unit 42 refers to the tilt angle data table stored in the storage unit 37, and sets the tilt angle corresponding to the target position (X, Y) to which the stowage is acquired by the receiving unit 41. By reading out, the inclination angle of the yard surface of the loading target address (X, Y) is recognized.
  • the correction unit 43 (control unit) recognizes the inclination angle when the hanging container is placed on the upper surface of the container C (hereinafter referred to as "loading container") placed at the loading target address (X, Y).
  • the center of the lower surface of the lifting container is shifted to a higher height with respect to the horizontal plane of the upper surface with respect to the center of the upper surface of the loading container C based on the inclination angle of the yard surface recognized by the part 42 Control the position.
  • the correction unit 43 controls the position of the cargo handling unit 21 by controlling the operation of the drive unit 20. That is, the position of the cargo handling unit 21 is controlled by controlling the operation of the traveling motor, the traverse motor, the drum drive motor, and the like.
  • the correction unit 43 calculates an automatic loading target correction value as a distance for shifting the center of the lower surface of the suspension container.
  • FIG. 6 is a diagram for explaining the automatic stowing target correction value calculated by the correction unit 43.
  • the height of the container C is L
  • the yard surface YA is for example that in the Y direction theta y tilt correcting portion 43, the inclined angle theta y along the Y-direction
  • the automatic loading target correction value is calculated based on the above. That is, as the inclination angle ⁇ y along the Y direction, for example, the horizontal distance ⁇ shown by the following formula (1) is calculated as the automatic stowing target value.
  • the automatic stowing target correction value is not limited to the horizontal distance ⁇ shown by the above equation (1), and may be a value closer to the height of the upper surface of the storage container with respect to the horizontal plane.
  • the correction unit 43 is based on the information indicating the inclination angle ⁇ y of the yard surface YA recognized by the inclination angle recognition unit 42 and the height L of the container C received by the reception unit 41, the horizontal distance indicated by the equation (1). Calculate ⁇ .
  • the correction unit 43 shifts the center of the lower surface of the suspension container in the Y direction by the horizontal distance ⁇ shown by the above equation (1) with respect to the center of the upper surface of the stacking container.
  • the correction unit 43 performs an automatic integration based on the inclination angle ⁇ x along the X direction as in the case where the yard surface YA is inclined along the Y direction. While calculating the attached target correction value, the center of the lower surface of the hanging container is shifted in the X direction by the automatic loading target correction value with respect to the center of the upper surface of the loading container.
  • the automatic storage target correction value is calculated based on the inclination angles ⁇ x and ⁇ y along each direction, and The center of the lower surface of the container is shifted in each direction by the automatic loading target correction value corresponding to each direction with respect to the center of the upper surface of the stacking container.
  • the center of the lower surface of the hanging container passes vertically through the center of the lower surface of the stacking container It is located on a straight line A (see FIG. 6: hereinafter simply referred to as “straight line A”) extending in the direction. That is, the correction unit 43 positions the center of the lower surface of the suspension container on the straight line A, and controls the position of the cargo handling unit 21 so that the suspension container is placed on the upper surface of the stacking container.
  • the correction unit 43 is not limited to positioning the center of the lower surface of the hanging container on the straight line A, but may position the center of the lower surface of the hanging container near the straight line A or center of the lower surface of the hanging container on the straight line A
  • the position of the cargo handling unit 21 may be controlled so that
  • the storage unit 37 is a part that stores various information, and is configured by a memory or the like.
  • the storage unit 37 stores, as a data table, the inclination angle ⁇ of the yard surface YA for each of the pre-measured target addresses (X, Y).
  • the storage unit 37 may be integrated with the control unit 40.
  • FIGS. 7 and 8 are flowcharts showing the operation of loading the container C by the container handling crane device 1.
  • the receiving unit 41 indicates a target address (X, Y, Z) to which the container C is to be placed as an automatic command from the upper system 35 and the height L of the container C.
  • Information is received (step S1).
  • the receiving unit 41 acquires the target address (X, Y) for stowing from the received address (X, Y, Z) (step S2).
  • the tilt angle recognition unit 42 refers to the data table of the tilt angle ⁇ in the storage unit 37, and reads out and obtains the tilt angle ⁇ corresponding to the target location (X, Y) for stowage obtained by the receiving unit 41.
  • Step S3 Subsequently, based on the information indicating the height L of the container C received by the reception unit 41 and the inclination angle ⁇ acquired by the inclination angle recognition unit 42, the correction unit 43 performs the horizontal operation represented by Equation (1) described above.
  • the distance ⁇ is calculated as an automatic loading target correction value (step S4).
  • the control unit 40 controls the operation of the drive unit 20 to automatically transport the suspension container to the vicinity of the loading target address (X, Y) (step S5).
  • the position detection unit 22 measures the position of the container C, which is located at the lower part of the suspension container and is placed on the yard surface YA of the loading target address (X, Y) first (step S6).
  • the correction unit 43 automatically stacks the hanging container on the upper surface of the stacking container with the automatic loading target correction value calculated in step S4 as a target (step S7). That is, the correction unit 43 stacks the hanging container by shifting the center of the lower surface of the hanging container with respect to the center of the upper surface of the stacking container by the horizontal distance ⁇ shown in the above equation (1).
  • the control unit 40 determines the loading accuracy of the hanging container loaded in step S7 (step S8). For example, the control unit 40 determines whether the loading of the hanging container is within the allowable range. That is, with respect to the correction amount indicated by the automatic loading target value calculated by the correction unit 43, it is determined whether or not the position of the loaded hanging container is properly corrected. If the loading in step S7 is not within the allowable range (S8; NO), the control unit 40 winds up the loaded hanging container again and shifts to step S6 to retry loading of the lifting container. (Step S9). If the loading of the suspension container is within the allowable range (S8; YES), the processing of the flowcharts shown in FIGS. 7 and 8 is ended.
  • FIG. 9 is a figure for demonstrating the effect
  • FIG. 9 (a) shows a container C loaded by the conventional container handling crane device
  • FIG. 9 (b) is a container C loaded by the container handling crane device according to the present embodiment. Is shown.
  • FIG. 10 is a view for explaining that the gap between adjacent containers in the case of the related art becomes narrow.
  • the containers C adjacent to each other increase as the number of stacked containers C increases.
  • the gap G between C and C becomes narrow.
  • the guide 17 of the spreader 10 can not enter into the gap G when lifting the container C by the spreader 10, and the spreader main body 15 can not be positioned on the stacking container. As a result, it becomes difficult for the spreader 10 to lock and lift the loading container.
  • the correction unit is mounted based on the inclination angle ⁇ recognized by the inclination angle recognition unit 42 when the hanging container is placed on the upper surface of the storage container.
  • the position of the cargo handling unit 21 is controlled by 43 so that the center of the lower surface of the suspension container is shifted in the direction in which the height of the upper surface with respect to the horizontal plane of the upper surface is higher than the center of the upper surface of the loading container.
  • the center of the lower surface of the suspension container is shifted in the direction in which the height of the upper surface with respect to the horizontal plane is higher than the center of the upper surface of the stacking container. Therefore, compared with the said conventional case, as shown in (b) of FIG. 9, the center of the lower surface of a suspension container can be closely approached to the position on the straight line A.
  • the containers C can be stacked along the straight line A, and displacement of the containers C relative to the normal loading position can be suppressed.
  • the containers C can be stacked along the straight line A.
  • the gap G between the adjacent containers C and C can be determined by the minimum distance between the predetermined containers described above. It can be more than the distance. Therefore, when lifting the container C by the spreader 10, the guide 17 of the spreader 10 can be made to approach the said clearance gap G, and the spreader main-body part 15 can be located on a stacking container. As a result, the loading container C can be locked and lifted by the spreader 10.
  • the tilt angle recognition unit 42 reads out the tilt angle ⁇ of the yard surface YA for each of the loading target addresses (X, Y) measured in advance from the storage unit 37, thereby performing stowage
  • the tilt angle ⁇ corresponding to the target address (X, Y) is recognized. Therefore, the position of the cargo handling unit 21 can be controlled by the correction unit 43 based on the inclination angle ⁇ read from the storage unit 37 without measuring the inclination angle ⁇ of the yard surface YA each time.
  • the horizontal shift amount of the center of the lower surface of the suspension container with respect to the straight line A is represented by the equation (1) described above . Therefore, according to the present embodiment, the center of the lower surface of the suspension container can be positioned on the straight line A by shifting the center of the lower surface of the suspension container by the amount represented by the above-mentioned equation (1). As a result, the containers C can be stacked on the straight line A, and displacement of the containers C relative to the normal loading position can be suppressed.
  • the stacking container is horizontally permitted. Even if the control unit 40 positions the center of the lower surface of the suspension container on the straight line A and controls the position of the loading unit 21 so that the suspension container is placed on the upper surface of the stacking container. Good. Thus, the hanging container is placed on the upper surface of the loading container so that the center of the lower surface of the hanging container is located on the straight line A. As a result, the containers C can be stacked on the straight line A, and displacement of the containers C relative to the normal loading position can be suppressed.
  • FIG. 11 is a block diagram functionally showing the configuration of the container handling crane device 1A according to the second embodiment.
  • the description overlapping with the first embodiment is appropriately omitted.
  • the container handling crane device 1A according to the second embodiment differs from the container handling crane device 1 according to the first embodiment in that the storage device 37 is not provided and the tilt angle measurement unit 30 is provided. .
  • the inclination angle measurement unit 30 is provided, for example, at a substantially central position in a plan view of the spreader main body 15 (see FIG. 5). That is, the spreader 10 has an inclination angle measurement unit 30 provided in the spreader main body 15.
  • the tilt angle measurement unit 30 is, for example, a tilt angle sensor.
  • the tilt angle measurement unit 30 measures the tilt angle of the spreader 10 itself.
  • the inclination angle measurement unit 30 measures the inclination angle of the spreader 10 in a state in which the suspension container is placed on the stacking container.
  • the inclination angle of the upper surface of the loading container corresponds to the inclination angle ⁇ of the yard surface YA.
  • the upper surface of the hanging container placed on the upper surface of the loading container, and the inclination angle of the spreader 10 itself that locks the hanging container also correspond to the inclination angle ⁇ of the yard surface YA. Therefore, the tilt angle of the spreader 10 itself measured by the tilt angle measurement unit 30 corresponds to the tilt angle ⁇ of the yard surface YA recognized by the tilt angle recognition unit 42.
  • the tilt angle measurement unit 30 outputs the measurement result to the tilt angle recognition unit 42.
  • the tilt angle recognition unit 42 recognizes the tilt angle of the spreader 10 measured by the tilt angle measurement unit 30 as the tilt angle ⁇ of the yard surface YA at the loading target address (X, Y).
  • the correction unit 43 When loading the lifting container onto the loading container, the correction unit 43 first places the lifting container on the loading container so that the center of the lower surface of the lifting container is aligned with the center of the loading container.
  • the center of the lower surface of the hanging container coincides with the center of the loading container does not only mean that these centers completely coincide, but also the deviation of these centers is a preset difference or measurement error, etc.
  • the correction unit 43 causes the tilt angle measurement unit 30 to measure the tilt angle of the spreader 10.
  • the correction unit 43 is based on the tilt angle of the spreader 10 measured by the tilt angle measurement unit 30 (that is, the tilt angle ⁇ of the yard surface YA recognized by the tilt angle recognition unit 42).
  • the position of the cargo handling unit 21 is controlled such that the center of the lower surface of the suspension container is shifted in the direction higher in height with respect to the horizontal plane of the upper surface with respect to the center of the upper surface of the loading container.
  • the receiving unit 41 indicates the address (X, Y, Z) of the target to which the container C is to be placed as an automatic command from the upper system 35 and the height L of the container C.
  • Information is received (step S11).
  • the receiving unit 41 acquires the target address (X, Y) for stowage from the received address (X, Y, Z) (step S12).
  • the control unit 40 controls the operation of the drive unit 20 to automatically transport the suspension container to the vicinity of the loading target address (X, Y) (step S13).
  • the position detection part 22 measures the position of the container C located in the lower part of a suspension container (step S14).
  • the correction unit 43 first sets the hanging container on the upper surface of the stacking container with the goal that the skewing of the yard surface YA is zero (unknown) at the time of the first loading and that the misalignment is zero.
  • Automatic loading step S15). That is, the correction unit 43 stacks the suspension container so that the center of the lower surface of the suspension container coincides with the center of the upper surface of the stacking container with the goal of the automatic loading target correction value being zero.
  • the correction unit 43 measures the inclination angle of the yard surface YA, which is a container mounting surface, by measuring the inclination angle of the spreader 10 by the inclination angle measurement unit 30 (step S16). Specifically, the correction unit 43 causes the tilt angle measurement unit 30 to measure the tilt angle of the spreader 10 in a state in which the hanging container is mounted on the loading container.
  • the tilt angle recognition unit 42 recognizes the tilt angle of the spreader 10 measured by the tilt angle measurement unit 30 as the tilt angle ⁇ of the yard surface YA at the loading target address (X, Y).
  • step S17 based on the information indicating the height L of the container C received by the reception unit 41 and the inclination angle ⁇ of the yard surface YA measured by the inclination angle measurement unit 30, the correction unit 43 The horizontal distance ⁇ shown in) is calculated as an automatic loading target correction value (step S17).
  • the control unit 40 determines the loading accuracy of the hanging container loaded in step S15 (S18). That is, with respect to the correction amount indicated by the automatic loading target value calculated by the correction unit 43, it is determined whether or not the position of the loaded hanging container is appropriate. If the loading of the hanging container is not within the allowable range (S18; NO), the control unit 40 rolls up the loaded hanging container again (S19), and proceeds to step S20. In step S20, the position detection unit 22 measures the position of the container C located in the lower part of the suspension container, and the process proceeds to step S21.
  • step S21 the correction unit 43 automatically stacks the hanging container on the top surface of the stacking container, with the automatic loading target correction value calculated in step S17 as a target, and proceeds to step S18. If the loading of the suspension container is within the allowable range (S18; YES), the processing of the flowcharts shown in FIGS. 7 and 8 is ended.
  • the correction unit 43 places the suspension container on the stacking container so that the center of the lower surface of the suspension container coincides with the center of the stacking container. Be placed. Then, the inclination angle of the spreader 10 is measured by the inclination angle measurement unit 30. Furthermore, based on the inclination angle of the spreader 10 measured by the inclination angle measurement unit 30, the correction unit 34 sets the center of the lower surface of the suspension container to the height of the upper surface with respect to the center of the upper surface of the stacking container. The position of the cargo handling unit 21 is controlled so as to be shifted in the high direction. In this case, based on the inclination angle of the spreader 10 measured by the inclination angle measurement unit 30, the position control of the cargo handling unit 21 can be performed based on the inclination angle ⁇ of the yard surface YA.
  • the center of the lower surface of the hanging container is not shifted in both the X direction and the Y direction with respect to the center of the upper surface of the stacking container It may be shifted in either the X direction or the Y direction.
  • a storage unit may be provided which stores the tilt angle of the spreader 10 measured by the tilt angle measurement unit 30. In this case, it is not necessary to measure the inclination angle of the spreader 10 every time the hanging container is loaded at a certain address.
  • the tilt angle recognition unit 42 may recognize the angle of the spreader 10 stored by the storage unit as the tilt angle ⁇ of the yard surface YA.
  • the present invention is not limited to the portal crane apparatus, and may be applied to a bridge crane apparatus and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

A container loading/unloading crane apparatus 1 that transfers containers in a container yard in which the containers can be placed at predetermined addresses (X, Y, Z), the container loading/unloading crane apparatus 1 including: a loading/unloading part 21 that can lock a container, that locks and hoists the container so that the container is handled as a suspended container, and that performs loading/unloading of the suspended container; an inclination-angle identifying unit 42 that identifies the inclination angle of the yard surface at the address to which the suspended container is to be placed; and a correcting unit 43 that controls the position of the loading/unloading part 21. When a suspended container is to be placed on the top surface of a stowed container, which is a container placed at an address, the correcting unit 43 controls the position of the loading/unloading part 21 such that the center of the bottom surface of the suspended container is shifted, with respect to the center of the top surface of the stowed container, in the direction in which the height of the top surface with respect to the horizontal plane is higher, on the basis of the inclination angle identified by the inclination-angle identifying unit 42.

Description

クレーン装置Crane equipment
 本発明の一態様は、クレーン装置に関する。 One aspect of the present invention relates to a crane apparatus.
 従来、予め定められた領域にコンテナを載置可能なコンテナヤード上に、コンテナの搬送を行うクレーン装置が知られている。例えば特許文献1には、クレーン本体からワイヤを介して吊り下げられ、コンテナを係止して吊り上げることによりコンテナの荷役を行うスプレッダと、コンテナヤードに載置されたコンテナの位置を検出する位置検出部と、を備えたクレーン装置が記載されている。このクレーン装置は、位置検出部により検出された結果に基づき、スプレッダにより吊り上げられたコンテナを、コンテナヤードに載置されたコンテナの上に載置する。 BACKGROUND Conventionally, a crane apparatus is known which transports containers on a container yard in which the containers can be placed in a predetermined area. For example, Patent Document 1 discloses a spreader which is suspended from a crane main body via a wire, holds a container and lifts the container by lifting the container, and a position detection for detecting the position of the container placed in the container yard A crane arrangement comprising a part is described. The crane device places the container lifted by the spreader on the container placed in the container yard based on the result detected by the position detection unit.
 一般にスプレッダは、平面視略矩形状のスプレッダ本体部と、スプレッダ本体部の外側に設けられ、スプレッダ本体部を目標のコンテナ上に案内する案内部と、を有している。案内部は、目標のコンテナと当該目標のコンテナに隣接するコンテナとの隙間に進入しつつ、スプレッダ本体部を目標のコンテナ上に位置させる。 Generally, the spreader includes a spreader main body having a substantially rectangular shape in plan view, and a guide which is provided outside the spreader main body and guides the spreader main body onto a target container. The guide portion positions the spreader body on the target container while entering the gap between the target container and the container adjacent to the target container.
国際公開第2015/121973号International Publication No. 2015/121973
 ところで、コンテナヤードのヤード表面は、水平面に対して傾斜している部分を有する場合がある。コンテナを載置しようとする領域のヤード表面が水平面に対して傾斜している場合、当該ヤード表面上にコンテナが載置されると、当該ヤード表面上に載置されたコンテナの下面及び上面も水平面に対して傾く。そして、当該ヤード表面上に載置されたコンテナの位置は、コンテナを載置しようとする領域における正常な積み付け位置に対して水平方向にずれる。 By the way, the yard surface of a container yard may have a part which inclines to a level surface. When the yard surface of the area where the container is to be placed is inclined with respect to the horizontal plane, when the container is placed on the yard surface, the lower and upper surfaces of the container placed on the yard surface are also Tilt to the horizontal plane. Then, the position of the container placed on the yard surface is shifted in the horizontal direction with respect to the normal loading position in the area where the container is to be placed.
 コンテナを載置しようとする領域のヤード表面が水平面に対して傾斜している場合に上記特許文献1に記載されているようなクレーン装置を用いてコンテナの荷役を行うと、ヤード表面上に載置されることにより傾斜したコンテナの上にコンテナが次々と載置されて積み上げられていくこととなる。よって、このような領域に積み上げられたコンテナの位置の正常な積み付け位置に対する水平方向のずれ量は、コンテナの積み上げ数が多くなるほど大きくなる。当該水平方向のずれ量が大きくなることにより、このような領域に積み上げられたコンテナと当該コンテナに隣接する領域に積み上げられたコンテナとの隙間が小さくなる可能性がある。当該隙間が小さくなると、コンテナをスプレッダにより吊り上げる際にスプレッダの案内部を当該隙間に進入させることができず、スプレッダ本体部をコンテナ上に位置させることができなくなる。その結果、スプレッダによりコンテナを係止して吊り上げることが困難となってしまう。 When the yard surface of the area where the container is to be placed is inclined with respect to the horizontal plane when loading the container with a crane apparatus as described in Patent Document 1, the yard surface is placed on the yard surface. By being placed, the containers are sequentially placed and stacked on the inclined containers. Therefore, the amount of horizontal displacement of the position of containers stacked in such a region with respect to the normal loading position becomes larger as the number of stacked containers increases. As the amount of displacement in the horizontal direction increases, the gap between the container stacked in such a region and the container stacked in the region adjacent to the container may be reduced. If the gap becomes smaller, the guide portion of the spreader can not enter the gap when lifting the container by the spreader, and the spreader main body can not be positioned on the container. As a result, it becomes difficult to lock and lift the container by the spreader.
 そこで本発明の一態様は、コンテナの正常な積み付け位置に対する位置ずれを抑制することができるクレーン装置を提供することを目的とする。 Then, one aspect of the present invention aims to provide a crane apparatus capable of suppressing displacement of a container relative to a normal loading position.
 上記課題を解決するため、本発明の一態様のクレーン装置は、予め定められた領域にコンテナを載置可能なコンテナヤード上においてコンテナの搬送を行うクレーン装置であって、コンテナを係止可能であり、コンテナを係止して吊り上げることによりコンテナを吊コンテナとし当該吊コンテナの荷役を行う荷役部と、吊コンテナを載置しようとする領域のヤード表面の水平面に対する傾斜角度を認識する傾斜角度認識部と、荷役部の位置を制御する制御部と、を備え、制御部は、領域に載置されたコンテナである積み付けコンテナの上面に吊コンテナを載置する際、傾斜角度認識部により認識された傾斜角度に基づき、吊コンテナの下面の中心を、積み付けコンテナの上面の中心に対して上面の水平面に対する高さが高い方向へずらすように荷役部の位置を制御する。 In order to solve the above-mentioned subject, a crane device of one mode of the present invention is a crane device which conveys a container on a container yard which can put a container in a predetermined field, and can lock a container Yes, the load handling unit that handles the container as a lifting container by lifting and holding the container, and the tilt angle recognizing the tilt angle of the area of the area where the lifting container is to be placed with respect to the horizontal surface of the yard And a control unit for controlling the position of the loading and unloading unit, the control unit being recognized by the inclination angle recognition unit when the hanging container is placed on the upper surface of the stacking container which is a container placed in the area The center of the lower surface of the hanging container is shifted in the direction that the height of the upper surface with respect to the horizontal plane is higher with respect to the center of the upper surface of the loading container based on the inclined angle It controls the position of the handling portion.
 このクレーン装置では、積み付けコンテナの上面に吊コンテナを載置する際、傾斜角度認識部により認識された傾斜角度に基づき、制御部によって、吊コンテナの下面の中心を、積み付けコンテナの上面の中心に対して当該上面の水平面に対する高さが高い方向へずらすように荷役部の位置が制御される。これにより、吊コンテナの下面の中心は、積み付けコンテナの上面の中心に対して当該上面の水平面に対する高さが高い方向にずれる。よって、吊コンテナの下面の中心が積み付けコンテナの上面の中心と一致している場合と比較して、吊コンテナの下面の中心を、積み付けコンテナの下面の中心を通り鉛直方向へ延びる直線上の位置に近づけることができる。その結果、鉛直方向へ延びる直線上に沿ってコンテナを積み上げることができ、コンテナの正常な積み付け位置に対する位置ずれを抑制することができる。 In this crane device, when the hanging container is placed on the upper surface of the stacking container, the control unit causes the center of the lower surface of the hanging container to be the upper surface of the stacking container on the basis of the inclination angle recognized by the inclination angle recognition unit. The position of the cargo handling unit is controlled such that the height of the upper surface with respect to the horizontal plane is higher with respect to the center. As a result, the center of the lower surface of the suspension container is shifted in the direction in which the height of the upper surface with respect to the horizontal plane is higher than the center of the upper surface of the stacking container. Therefore, the center of the lower surface of the suspension container extends straight through the center of the lower surface of the cargo container, as compared to the case where the center of the lower surface of the suspension container is aligned with the center of the upper surface of the storage container. It can be brought close to the position of As a result, the containers can be stacked along a straight line extending in the vertical direction, and displacement of the containers relative to the normal loading position can be suppressed.
 また、本発明の一態様のクレーン装置において、コンテナヤードは、領域を複数有し、予め測定された領域それぞれのヤード表面の傾斜角度を記憶する記憶部を更に備え、傾斜角度認識部は、吊コンテナを載置しようとする領域に対応する傾斜角度を記憶部から読み出すことにより、吊コンテナを載置しようとする領域に対応する傾斜角度を認識してもよい。この場合、傾斜角度認識部によって、予め測定された領域それぞれのヤード表面の傾斜角度が記憶部から読み出されることにより、吊コンテナを載置しようとする領域に対応する傾斜角度が認識される。よって、ヤード表面の水平面に対する傾斜角度をその都度測定することなく、記憶部から読み出された傾斜角度に基づき制御部による荷役部の位置の制御を行うことができる。 Further, in the crane device according to one aspect of the present invention, the container yard further includes a storage unit having a plurality of areas and storing the inclination angle of the yard surface of each area measured in advance, and the inclination angle recognition unit The tilt angle corresponding to the area in which the hanging container is to be placed may be recognized by reading out the tilt angle corresponding to the area in which the container is to be placed from the storage unit. In this case, the inclination angle recognition unit reads the inclination angle of the yard surface of each area measured in advance from the storage unit, and thereby recognizes the inclination angle corresponding to the area in which the hanging container is to be placed. Therefore, it is possible to control the position of the cargo handling unit by the control unit based on the tilt angle read from the storage unit without measuring the tilt angle of the yard surface with respect to the horizontal plane each time.
 また、本発明の一態様のクレーン装置において、荷役部は、傾斜角度認識部により認識される傾斜角度に相当する自身の水平面に対する傾斜角度を測定する傾斜角度測定部を有し、制御部は、吊コンテナの下面の中心を積み付けコンテナの中心に対して一致させるように吊コンテナを積み付けコンテナ上に載置させ、傾斜角度測定部により自身の水平面に対する傾斜角度を測定させ、傾斜角度測定部により測定された自身の水平面に対する傾斜角度に基づき、吊コンテナの下面の中心を、積み付けコンテナの上面の中心に対して上面の水平面に対する高さが高い方向へずらすように荷役部の位置を制御してもよい。この場合、制御部によって、吊コンテナの下面の中心が積み付けコンテナの中心に対して一致するように吊コンテナが積み付けコンテナ上に載置される。そして、傾斜角度認識部により認識される傾斜角度に相当する荷役部の水平面に対する傾斜角度が傾斜角度測定部により測定される。さらに、傾斜角度測定部により測定された荷役部の水平面に対する傾斜角度に基づき、制御部によって、吊コンテナの下面の中心を、積み付けコンテナの上面の中心に対して当該上面の水平面に対する高さが高い方向へずらすように荷役部の位置が制御される。この場合、ヤード表面の水平面に対する傾斜角度を測定することなく、傾斜角度測定部により測定された荷役部の水平面に対する傾斜角度に基づき、制御部による荷役部の位置の制御を行うことができる。 Further, in the crane apparatus according to one aspect of the present invention, the cargo handling unit has an inclination angle measurement unit that measures an inclination angle with respect to the horizontal plane corresponding to the inclination angle recognized by the inclination angle recognition unit. The hanging container is placed on the stacking container so that the center of the lower surface of the hanging container is aligned with the center of the stacking container, and the inclination angle measurement unit measures the inclination angle with respect to its horizontal plane. Control the position of the loading unit so that the height of the upper surface relative to the horizontal plane is higher than the center of the upper surface of the storage container based on the inclination angle relative to the horizontal plane measured by You may In this case, the control unit places the suspension container on the stacking container such that the center of the lower surface of the suspension container is aligned with the center of the stacking container. Then, the tilt angle measuring unit measures the tilt angle of the cargo handling unit with respect to the horizontal plane corresponding to the tilt angle recognized by the tilt angle recognition unit. Furthermore, based on the tilt angle of the cargo handling unit measured by the tilt angle measurement unit, the control unit causes the center of the lower surface of the suspension container to be higher than the center of the upper surface of the stacking container with respect to the horizontal surface of the upper surface. The position of the cargo handling unit is controlled to shift in the high direction. In this case, the control unit can control the position of the cargo handling unit based on the inclination angle of the cargo handling unit measured by the inclination angle measurement unit without measuring the inclination angle of the yard surface relative to the horizontal surface.
 また、本発明の一態様のクレーン装置において、制御部は、吊コンテナの下面の中心を、積み付けコンテナの上面の中心に対して次の数式(1)で示す水平距離Δずらしてもよい。
Figure JPOXMLDOC01-appb-M000002
(ただし、Lをコンテナの高さとし、θをヤード表面の傾斜角度とする。)
 積み付けコンテナの高さがLでありヤード表面の傾斜角度がθである場合に、積み付けコンテナの下面の中心を通り鉛直方向へ延びる直線に対する吊コンテナの下面の中心の水平方向のずれ量は上記数式(1)で示される。よって、吊コンテナの下面の中心を上記数式(1)で示される量ずらすことにより、吊コンテナの下面の中心を、積み付けコンテナの下面の中心を通り鉛直方向へ延びる直線上に位置させることができる。その結果、鉛直方向へ延びる直線上にコンテナを積み上げることができ、コンテナの正常な積み付け位置に対する位置ずれを抑制することができる。
Moreover, in the crane apparatus of one aspect of the present invention, the control unit may shift the center of the lower surface of the suspension container with respect to the center of the upper surface of the stacking container by a horizontal distance Δ shown in the following Formula (1).
Figure JPOXMLDOC01-appb-M000002
(However, let L be the height of the container and θ be the inclination angle of the yard surface.)
When the height of the loading container is L and the inclination angle of the yard surface is θ, the horizontal displacement of the center of the lower surface of the lifting container with respect to a straight line extending vertically through the center of the lower surface of the loading container is It is shown by the above equation (1). Therefore, the center of the lower surface of the lifting container can be positioned on a straight line extending vertically through the center of the lower surface of the loading container by shifting the center of the lower surface of the lifting container by the amount represented by the equation (1). it can. As a result, the containers can be stacked on a straight line extending in the vertical direction, and displacement of the containers relative to the normal loading position can be suppressed.
 また、本発明の一態様のクレーン装置は、予め定められた領域にコンテナを載置可能なコンテナヤード上においてコンテナの搬送を行うクレーン装置であって、コンテナを係止可能であり、コンテナを係止して吊り上げることによりコンテナを吊コンテナとし当該吊コンテナの荷役を行う荷役部と、吊コンテナを載置しようとする領域のヤード表面の水平面に対する傾斜角度を認識する傾斜角度認識部と、荷役部の位置を制御する制御部と、を備え、制御部は、領域に載置されたコンテナである積み付けコンテナの上面に吊コンテナを載置する際、傾斜角度認識部により認識された傾斜角度が予め定められた許容角度よりも大きい場合には、積み付けコンテナの下面の中心を通り鉛直方向へ延びる直線上に吊コンテナの下面の中心を位置させて、積み付けコンテナの上面に吊コンテナを載置させるように荷役部の位置を制御する。 A crane apparatus according to an aspect of the present invention is a crane apparatus for transporting a container on a container yard capable of mounting the container in a predetermined area, and is capable of locking the container and engaging the container. A load handling unit that loads and holds the container as a lifting container by stopping and lifting, a tilt angle recognition unit that recognizes a tilt angle of the area of the yard surface where the lifting container is to be placed with respect to a horizontal surface, and a load handling unit Control unit for controlling the position of the suspension container when the suspension container is placed on the upper surface of the stacking container which is a container placed in the area, the inclination angle recognized by the inclination angle recognition unit If the angle is larger than the predetermined allowable angle, the center of the lower surface of the hanging container is positioned on a straight line extending vertically through the center of the lower surface of the loading container Te, and controls the position of the cargo handling section so as to place the container suspended on the upper surface of the palletizing container.
 このクレーン装置では、積み付けコンテナの上面に吊コンテナを載置する際、傾斜角度認識部により認識された傾斜角度が予め定められた許容角度よりも大きい場合には、積み付けコンテナが水平方向に許容範囲以上にずれるとして、制御部によって、積み付けコンテナの下面の中心を通り鉛直方向へ延びる直線上に吊コンテナの下面の中心を位置させて、積み付けコンテナの上面に吊コンテナを載置させるように荷役部の位置が制御される。これにより、吊コンテナの下面の中心が、積み付けコンテナの下面の中心を通り鉛直方向へ延びる直線上に位置するように、吊コンテナが積み付けコンテナの上面に載置される。その結果、鉛直方向へ延びる直線上にコンテナを積み上げることができ、コンテナの正常な積み付け位置に対する位置ずれを抑制することができる。 In this crane device, when the hanging container is placed on the upper surface of the loading container, the loading container is horizontally oriented if the tilt angle recognized by the tilt angle recognition unit is larger than the predetermined allowable angle. The control unit places the center of the lower surface of the lifting container on a straight line extending vertically through the center of the lower surface of the loading container, and places the lifting container on the upper surface of the loading container As such, the position of the cargo handling unit is controlled. Thus, the hanging container is placed on the top surface of the stacking container so that the center of the bottom surface of the hanging container is positioned on a straight line extending vertically through the center of the bottom surface of the stacking container. As a result, the containers can be stacked on a straight line extending in the vertical direction, and displacement of the containers relative to the normal loading position can be suppressed.
 本発明の一態様によれば、コンテナの正常な積み付け位置に対する位置ずれを抑制することができるクレーン装置を提供することができる。 According to an aspect of the present invention, it is possible to provide a crane apparatus capable of suppressing displacement of a container relative to a normal loading position.
図1は、第1実施形態に係るコンテナ荷役用クレーン装置を示す斜視図である。FIG. 1 is a perspective view showing a container handling crane device according to the first embodiment. 図2は、コンテナ荷役用クレーン装置を走行方向から見た図である。FIG. 2 is a view of the container handling crane device as seen from the traveling direction. 図3は、コンテナヤードを示す斜視図である。FIG. 3 is a perspective view showing a container yard. 図4は、コンテナ荷役用クレーン装置の構成を機能的に示すブロック図である。FIG. 4 is a block diagram functionally showing the configuration of the container handling crane device. 図5は、スプレッダを示す斜視図である。FIG. 5 is a perspective view showing a spreader. 図6は、補正部により算出される自動積付目標補正値を説明するための図である。FIG. 6 is a diagram for explaining the automatic stowing target correction value calculated by the correction unit. 図7は、コンテナ荷役用クレーン装置によるコンテナの積み付けの動作を示すフローチャートである。FIG. 7 is a flow chart showing an operation of container loading by the container handling crane device. 図8は、図7に続くフローチャートである。FIG. 8 is a flowchart following to FIG. 図9は、本実施形態の作用及び効果を説明するための図である。FIG. 9 is a figure for demonstrating the effect | action and effect of this embodiment. 図10は、従来の場合に隣り合うコンテナ同士の隙間が狭くなることを説明するための図である。FIG. 10 is a view for explaining that the gap between adjacent containers in the case of the related art becomes narrow. 図11は、第2実施形態に係るコンテナ荷役用クレーン装置の構成を機能的に示すブロック図である。FIG. 11 is a block diagram functionally showing the configuration of the container handling crane device according to the second embodiment. 図12は、コンテナ荷役用クレーン装置によるコンテナの積み付けの動作を示すフローチャートである。FIG. 12 is a flow chart showing an operation of container loading by the container handling crane device. 図13は、図12に続くフローチャートである。FIG. 13 is a flowchart following to FIG. 図14は、図13に続くフローチャートである。FIG. 14 is a flowchart following to FIG.
 以下、添付図面を参照しながら本発明に係るクレーン装置の実施形態について説明する。なお、以下の説明において、同一又は相当要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, an embodiment of a crane apparatus according to the present invention will be described with reference to the attached drawings. In the following description, the same or corresponding elements are denoted by the same reference numerals and redundant description will be omitted.
(第1実施形態)
 まず、図1~図3を参照して、本発明の第1実施形態に係るクレーン装置の概要を説明する。図1は、第1実施形態に係るコンテナ荷役用クレーン装置を示す斜視図、図2は、コンテナ荷役用クレーン装置を走行方向から見た図、図3は、コンテナヤードを示す斜視図である。図1及び図2に示されるコンテナ荷役用クレーン装置1は、例えば図3に示されるように、接岸したコンテナ船Sに対してコンテナCの移載等が行われるコンテナターミナルにおいて、コンテナヤードCYに配されてコンテナCの荷役を行う。
First Embodiment
First, an overview of a crane apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a perspective view showing a container handling crane device according to the first embodiment, FIG. 2 is a view of the container handling crane device seen from a traveling direction, and FIG. 3 is a perspective view showing a container yard. The container handling crane device 1 shown in FIGS. 1 and 2 is, for example, as shown in FIG. 3, in a container yard CY at a container terminal where transfer of a container C to a docked container ship S is performed. It is distributed and performs loading and unloading of the container C.
 コンテナCは、ISO規格コンテナ等のコンテナである。コンテナCは、長尺の直方体状を呈し、その長手方向において例えば20フィート、40フィートといった所定の長さを有している。また、コンテナCは、その高さ方向において例えば8.5フィート、9.5フィートといった所定の高さを有している。 The container C is a container such as an ISO standard container. The container C is in the form of a long rectangular solid and has a predetermined length of, for example, 20 feet or 40 feet in the longitudinal direction. Also, the container C has a predetermined height of, for example, 8.5 feet or 9.5 feet in the height direction.
 コンテナCは、図2に示されるように、コンテナヤードCYに一段又は複数段積み上げられて複数のロウ12を形成している。各ロウ12は、当該ロウ12を構成するコンテナC(すなわち、当該ロウ12に載置されるコンテナC)の長手方向が他のロウ12を構成するコンテナCの長手方向に対して平行となるように、縦横に整列している。互いに隣り合う各ロウ12は、1段目のコンテナC同士の間の距離が所定のコンテナ間最小距離(閾値)以上となるように位置している。所定のコンテナ間最小距離とは、例えば後述するスプレッダ10のガイド17が進入可能な距離である。 As shown in FIG. 2, the containers C are stacked one or more in a container yard CY to form a plurality of rows 12. In each row 12, the longitudinal direction of the container C constituting the row 12 (that is, the container C placed on the row 12) is parallel to the longitudinal direction of the container C constituting the other row 12. In the vertical and horizontal alignment. The rows 12 adjacent to each other are positioned such that the distance between the containers C in the first row is equal to or greater than a predetermined minimum distance (threshold value) between containers. The predetermined inter-container minimum distance is, for example, a distance through which a guide 17 of the spreader 10 described later can enter.
 図3では、コンテナCの長手方向をX方向、コンテナCの短手方向をY方向、コンテナCの高さ方向をZ方向とするXYZ直交座標系を示している。図3に示されるように、コンテナヤードCYはXY平面上に延在しており、コンテナCは例えば当該XY平面上の何れかの位置においてZ方向に積み上げられる。コンテナヤードCYにおいては、コンテナCを積み付ける位置が三次元空間に仮想的に設定されており、このコンテナCの仮想的な積み付け位置は番地(X,Y,Z)として定義されている。すなわち、コンテナヤードCYは、コンテナCを載置可能な領域として、予め定められた複数の番地(X,Y,Z)を有している。番地(X,Y,Z)の内、「X」はベイ番号、「Y」はロウ番号、「Z」は積み段数を示している。コンテナ荷役用クレーン装置1は、このような複数の番地(X,Y,Z)を有するコンテナヤードCYにおいてコンテナCの搬送を行う。 FIG. 3 shows an XYZ orthogonal coordinate system in which the longitudinal direction of the container C is the X direction, the short direction of the container C is the Y direction, and the height direction of the container C is the Z direction. As shown in FIG. 3, the container yard CY extends on the XY plane, and the containers C are stacked, for example, in the Z direction at any position on the XY plane. In the container yard CY, the position at which the container C is to be stacked is virtually set in a three-dimensional space, and the virtual stacking position of the container C is defined as an address (X, Y, Z). That is, the container yard CY has a plurality of predetermined addresses (X, Y, Z) as an area on which the container C can be placed. Among the addresses (X, Y, Z), "X" indicates a bay number, "Y" indicates a row number, and "Z" indicates the number of stacking stages. The container handling crane device 1 transports the container C in the container yard CY having such a plurality of addresses (X, Y, Z).
 図2に示されるように、コンテナヤードCYには、トレーラやAGV(AutomatedGuided Vehicle)等の搬送台車13の走行路14が敷設されている。コンテナ荷役用クレーン装置1は、搬送台車13によって搬送されて来るコンテナCを取得して、当該コンテナCをコンテナヤードCYの所定の番地(X,Y,Z)で示される位置に載置する。また、コンテナ荷役用クレーン装置1は、コンテナヤードCYに載置されているコンテナCを取得して、当該コンテナCを搬送台車13に移載し、搬送台車13によってコンテナCを外部に搬出させる。 As shown in FIG. 2, in the container yard CY, a traveling path 14 of a transport carriage 13 such as a trailer or an AGV (Automated Guided Vehicle) is laid. The container handling crane device 1 acquires the container C transported by the transport carriage 13 and places the container C at a position indicated by a predetermined address (X, Y, Z) of the container yard CY. In addition, the container handling crane device 1 acquires the container C placed in the container yard CY, transfers the container C to the transport carriage 13, and causes the transport carriage 13 to carry the container C out.
 次に、コンテナ荷役用クレーン装置1の構成について、図1~図3に加えて図4を更に参照して説明する。図4は、コンテナ荷役用クレーン装置1の構成を機能的に示すブロック図である。図1~図4に示されるように、コンテナ荷役用クレーン装置1は、本体部2と、スプレッダ10(荷役部21)と、制御部40と、記憶部37と、を備えている。 Next, the configuration of the container handling crane device 1 will be described with reference to FIG. 4 in addition to FIGS. 1 to 3. FIG. 4 is a block diagram functionally showing the configuration of the container handling crane device 1. As shown in FIGS. 1 to 4, the container handling crane device 1 includes a main body 2, a spreader 10 (load handling unit 21), a control unit 40, and a storage unit 37.
 本体部2は、タイヤ付車輪を有する走行装置4により走行可能とされている。走行装置4は、走行モータの駆動によって走行する。また、本体部2は、走行装置4に立設された一対の脚部5,5を二組備え、これら脚部5,5の上端部同士を繋ぐクレーンガーダ6,6を備える略門形に形成されている。更に、本体部2は、走行方向に直交する方向にクレーンガーダ6上を横行可能なトロリー7を備えている。トロリー7は、横行モータの駆動によって横行する。トロリー7は、ドラム駆動モータにより正逆回転するドラム8を備え、ワイヤ9を介してスプレッダ10を吊り下げている。上記の走行モータ、横行モータ、及びドラム駆動モータは、駆動部20として機能し、制御部40によってその動作が制御される。 The main body portion 2 is capable of traveling by a traveling device 4 having a wheel with a tire. The traveling device 4 travels by driving of the traveling motor. Further, the main body portion 2 has a pair of leg portions 5 and 5 erected on the traveling device 4 in a substantially gate shape including two sets of leg portions 5 and 5 and crane girder 6 connecting the upper end portions of the leg portions 5 and 5. It is formed. Furthermore, the main body 2 includes a trolley 7 capable of traversing the crane girder 6 in a direction orthogonal to the traveling direction. The trolley 7 traverses by the drive of the traverse motor. The trolley 7 includes a drum 8 that is rotated in the forward and reverse directions by a drum drive motor, and suspends the spreader 10 via a wire 9. The traveling motor, the traverse motor, and the drum drive motor described above function as the drive unit 20, and the operation thereof is controlled by the control unit 40.
 スプレッダ10は、コンテナCを吊り上げるための吊具である。スプレッダ10は、コンテナCを上面側から係止可能であり、コンテナCを係止して吊り上げることによりコンテナCの荷役を行う。スプレッダ10は、ドラム8からのワイヤ9が掛け回されたシーブ18を介して吊り下げられ、ドラム8の正逆回転により昇降可能である。スプレッダ10は、コンテナCの荷役を行う荷役部21として機能し、制御部40によってその動作及び位置が制御される。 The spreader 10 is a hanger for lifting the container C. The spreader 10 can lock the container C from the upper surface side, and performs loading and unloading of the container C by locking and lifting the container C. The spreader 10 is suspended via a sheave 18 around which a wire 9 from a drum 8 is wound, and can be raised and lowered by forward and reverse rotation of the drum 8. The spreader 10 functions as a loading and unloading unit 21 that performs loading and unloading of the container C, and its operation and position are controlled by the control unit 40.
 図5は、スプレッダ10を示す斜視図である。なお、図5において二点鎖線で示す傾斜角度測定部30は、後述する第2実施形態に係るスプレッダ10が備える構成であって、本実施形態に係るスプレッダ10は備えていない。図5に示されるように、スプレッダ10は、スプレッダ本体部15と、ガイド(案内部)17と、ロックピン16と、位置検出部22と、を有している。 FIG. 5 is a perspective view showing the spreader 10. In addition, the inclination-angle measurement part 30 shown with a dashed-two dotted line in FIG. 5 is a structure provided with the spreader 10 which concerns on 2nd Embodiment mentioned later, Comprising: The spreader 10 which concerns on this embodiment is not provided. As shown in FIG. 5, the spreader 10 includes a spreader main body portion 15, a guide (guide portion) 17, a lock pin 16, and a position detection portion 22.
 スプレッダ本体部15は、平面視においてコンテナCの上面の形状と略同一の形状を呈している。スプレッダ本体部15は、長手方向における中央部の上側に、ワイヤ9が掛け回されるシーブ18を有している。スプレッダ本体部15は、コンテナCをスプレッダ10が係止する際に当該コンテナC上に位置する。 The spreader main body 15 has a shape substantially the same as the shape of the upper surface of the container C in a plan view. The spreader body 15 has a sheave 18 around which the wire 9 is wound, above the central portion in the longitudinal direction. The spreader main body 15 is positioned on the container C when the spreader 10 locks the container C.
 ガイド17は、スプレッダ10により取得されるべき目標のコンテナC(以下、「目標コンテナ」という。)をスプレッダ10が取得する場合において、スプレッダ10が下降する際に、スプレッダ本体部15を目標コンテナ上に案内する。ガイド17は、水平方向におけるスプレッダ本体部15の短手方向の一端部及び他端部のそれぞれにおいて、長手方向の両端付近のそれぞれに設けられている。すなわち、ガイド17は、スプレッダ本体部15の四隅でスプレッダ本体部15の短手方向の外側に設けられている。 When the spreader 10 descends, the guide 17 places the spreader body portion 15 on the target container when the spreader 10 lowers the target container C (hereinafter referred to as “target container”) to be acquired by the spreader 10. Guide to The guides 17 are provided in the vicinity of both ends in the longitudinal direction at each of one end and the other end in the lateral direction of the spreader main body 15 in the horizontal direction. That is, the guides 17 are provided at the four corners of the spreader body 15 on the outer side in the short direction of the spreader body 15.
 ガイド17は、その先端部17aにテーパ面17bを有する。ガイド17は、目標コンテナと当該目標コンテナに対して水平方向に隣り合って載置された別のコンテナCとの隙間に進入することにより、目標コンテナの上面の縁部にテーパ面17bを当接させ、当該縁部からの反力を受けて(案内されて)スプレッダ本体部15を目標コンテナの直上に案内する。 The guide 17 has a tapered surface 17b at its tip 17a. The guide 17 abuts the tapered surface 17b on the edge of the upper surface of the target container by entering the gap between the target container and another container C placed horizontally adjacent to the target container. And (in a guided manner) guide the spreader body 15 directly above the target container.
 ロックピン16は、コンテナCを係止するための機構である。ロックピン16は、スプレッダ本体部15の下面側に、スプレッダ本体部15から下側に突出して設けられている。ロックピン16は、スプレッダ10がコンテナCを係止する際に当該コンテナCの孔部(不図示)に対応する位置であって、且つ、ガイド17の位置よりも水平方向におけるスプレッダ本体部15の中央側に設けられている。ロックピン16は、例えばツイストピンであって、上下方向に延在する軸線回りに回動可能な係止片(不図示)を下端に含む。ロックピン16は、コンテナCの上面の四隅に形成された孔部を通して進入すると共に係止片を回動させることにより、コンテナCに係合可能である。 The lock pin 16 is a mechanism for locking the container C. The lock pin 16 is provided on the lower surface side of the spreader main body portion 15 so as to protrude downward from the spreader main body portion 15. The lock pin 16 is at a position corresponding to the hole (not shown) of the container C when the spreader 10 locks the container C, and in the horizontal direction of the spreader main body 15 with respect to the position of the guide 17. It is provided at the center side. The lock pin 16 is, for example, a twist pin and includes at its lower end a locking piece (not shown) that can be pivoted about an axis extending in the vertical direction. The lock pin 16 is engageable with the container C by entering through the holes formed at the four corners of the upper surface of the container C and rotating the locking piece.
 位置検出部22は、測定対象物の三次元座標データを取得可能な装置である。本実施形態では、位置検出部22として、レーザセンサを用いている。より具体的には、位置検出部22は、レーザ光が測定対象物で反射して戻って来るまでの時間に基づいて、測定対象物までの距離を算出する。そして、位置検出部22は、測定対象物までの距離とレーザ光の照射角度とによって着光点の座標を求め、その情報を制御部40に出力する。 The position detection unit 22 is an apparatus capable of acquiring three-dimensional coordinate data of a measurement object. In the present embodiment, a laser sensor is used as the position detection unit 22. More specifically, the position detection unit 22 calculates the distance to the measurement object based on the time until the laser light is reflected by the measurement object and returns. Then, the position detection unit 22 obtains the coordinates of the light arrival point based on the distance to the measurement object and the irradiation angle of the laser light, and outputs the information to the control unit 40.
 位置検出部22は、スプレッダ本体部15の側面に設けられている。具体的には、位置検出部22は、水平方向におけるスプレッダ本体部15の短手方向の一端部及び他端部のそれぞれにおいて、長手方向の両端付近のそれぞれに設けられている。従って、各位置検出部22は、何れかのガイド17に対応する位置に設けられている。位置検出部22は、スプレッダ本体部15の下部に位置するコンテナCを検出し、当該コンテナCの位置を計測する。位置検出部22は計測結果を制御部40に送信する。なお、本実施形態では位置検出部22がスプレッダ10に設けられているとしているが、これに限られず、位置検出部22は例えばトロリー7に設けられていてもよい。また、位置検出部22は、測定対象物の三次元座標データを取得できるのであればレーザセンサに限定されず、他の方式のもの(例えば、光学式カメラ等)を用いてもよい。更に、位置検出部22は、複数の方式のものを併用(例えば、レーザセンサと光学式カメラとを併用)してもよい。 The position detection unit 22 is provided on the side surface of the spreader main body unit 15. Specifically, the position detection unit 22 is provided in the vicinity of both ends in the longitudinal direction at each of one end and the other end in the width direction of the spreader body 15 in the horizontal direction. Therefore, each position detection unit 22 is provided at a position corresponding to any one of the guides 17. The position detection unit 22 detects the container C located at the lower part of the spreader main body 15 and measures the position of the container C. The position detection unit 22 transmits the measurement result to the control unit 40. In addition, although the position detection part 22 is provided in the spreader 10 in this embodiment, it is not restricted to this, For example, the position detection part 22 may be provided in the trolley 7. FIG. Further, the position detection unit 22 is not limited to the laser sensor as long as it can acquire three-dimensional coordinate data of the measurement object, and another type (for example, an optical camera or the like) may be used. Furthermore, the position detection unit 22 may use a plurality of methods (for example, a combination of a laser sensor and an optical camera).
 制御部40は、位置検出部22からの検出結果に基づき、駆動部20及び荷役部21の動作を制御する。具体的には、制御部40は、位置検出部22からの検出結果に基づき、走行モータ、横行モータ、及びドラム駆動モータ等の動作を制御すると共に、荷役部21のガイド17及びロックピン16等の動作を制御する。 The control unit 40 controls the operation of the drive unit 20 and the cargo handling unit 21 based on the detection result from the position detection unit 22. Specifically, the control unit 40 controls the operation of the traveling motor, the traverse motor, the drum drive motor and the like based on the detection result from the position detection unit 22, and also the guide 17 of the cargo handling unit 21, the lock pin 16 and the like. Control the operation of
 また、制御部40は、上位システム35からの自動コマンドに基づき、駆動部20の動作を制御することによって荷役部21の位置を制御する。ヤード表面とは、コンテナヤードCYにおけるコンテナCが載置されることとなる表面である。上位システム35は、例えばコンテナヤードCYに設けられコンテナヤードCY全体を制御する管理室である。上位システムからの自動コマンドとは、例えばコンテナCを積み付けする目標の番地(X,Y,Z)を指定する指令である。また、自動コマンドには、例えばコンテナCの高さ(8.5フィート又は9.5フィート)を示す情報が含まれ得る。 Further, the control unit 40 controls the position of the cargo handling unit 21 by controlling the operation of the drive unit 20 based on the automatic command from the upper system 35. The yard surface is a surface on which the container C in the container yard CY is to be placed. The upper system 35 is, for example, a control room provided in the container yard CY and controlling the entire container yard CY. The automatic command from the upper system is, for example, a command specifying the target address (X, Y, Z) to which the container C is to be loaded. Also, the automatic command may include, for example, information indicating the height of the container C (8.5 feet or 9.5 feet).
 制御部40は、受信部41と、傾斜角度認識部42と、補正部43と、を有している。受信部41は、上位システム35からの自動コマンドとしてコンテナCを載置しようとする目標の番地(X,Y,Z)及びコンテナCの高さを示す情報を受信する。受信部41は、受信した番地(X,Y,Z)の内、ベイ番号及びロウ番号のみを取り出した番地(X,Y)を取得する。以下、この番地(X,Y)を「積付目標番地(X,Y)」という。 The control unit 40 includes a receiving unit 41, an inclination angle recognition unit 42, and a correction unit 43. The receiving unit 41 receives, as an automatic command from the upper system 35, information indicating the target address (X, Y, Z) to which the container C is to be placed and the height of the container C. The receiving unit 41 acquires an address (X, Y) from which only the bay number and the row number are taken out of the received address (X, Y, Z). Hereinafter, this address (X, Y) will be referred to as "the target address for stowing (X, Y).
 傾斜角度認識部42は、荷役部21により吊り上げられたコンテナC(以下、「吊コンテナ」という。)を載置しようとする積付目標番地(X,Y)のヤード表面の水平面に対する傾斜角度を認識する。以下、水平面に対する傾斜角度を単に「傾斜角度」という。具体的には、傾斜角度認識部42は、記憶部37に記憶されている傾斜角度データテーブルを参照し、受信部41により取得された積付目標番地(X,Y)に対応する傾斜角度を読み出すことにより、当該積付目標番地(X,Y)のヤード表面の傾斜角度を認識する。 The tilt angle recognition unit 42 sets the tilt angle of the yard surface of the stowage target address (X, Y) to which the container C (hereinafter referred to as “hanging container”) lifted by the cargo handling unit 21 is to be placed. recognize. Hereinafter, the inclination angle with respect to the horizontal plane is simply referred to as “inclination angle”. Specifically, the tilt angle recognition unit 42 refers to the tilt angle data table stored in the storage unit 37, and sets the tilt angle corresponding to the target position (X, Y) to which the stowage is acquired by the receiving unit 41. By reading out, the inclination angle of the yard surface of the loading target address (X, Y) is recognized.
 補正部43(制御部)は、積付目標番地(X,Y)に載置されたコンテナC(以下、「積み付けコンテナ」という。)の上面に吊コンテナを載置する際、傾斜角度認識部42により認識されたヤード表面の傾斜角度に基づき、吊コンテナの下面の中心を、積み付けコンテナCの上面の中心に対して上面の水平面に対する高さが高い方へずらすように荷役部21の位置を制御する。具体的には、補正部43は、駆動部20の動作を制御することにより、荷役部21の位置を制御する。すなわち、走行モータ、横行モータ、及びドラム駆動モータ等の動作を制御することにより、荷役部21の位置を制御する。 The correction unit 43 (control unit) recognizes the inclination angle when the hanging container is placed on the upper surface of the container C (hereinafter referred to as "loading container") placed at the loading target address (X, Y). The center of the lower surface of the lifting container is shifted to a higher height with respect to the horizontal plane of the upper surface with respect to the center of the upper surface of the loading container C based on the inclination angle of the yard surface recognized by the part 42 Control the position. Specifically, the correction unit 43 controls the position of the cargo handling unit 21 by controlling the operation of the drive unit 20. That is, the position of the cargo handling unit 21 is controlled by controlling the operation of the traveling motor, the traverse motor, the drum drive motor, and the like.
 補正部43は、吊コンテナの下面の中心をずらす距離として自動積付目標補正値を算出する。図6は、補正部43により算出される自動積付目標補正値を説明するための図である。図6に示されるように、コンテナCの高さがLであり、ヤード表面YAが例えばY方向に沿ってθ傾斜している場合、補正部43は、Y方向に沿う傾斜角度θに基づき自動積付目標補正値を算出する。すなわち、傾斜角度θをY方向に沿う傾斜角度θとして、例えば次の数式(1)で示す水平距離Δを自動積付目標値として算出する。
Figure JPOXMLDOC01-appb-M000003
なお、自動積付目標補正値は、上記の数式(1)で示す水平距離Δに限られず、積み付けコンテナの上面の水平面に対する高さが高い方へ近づく値であればよい。
The correction unit 43 calculates an automatic loading target correction value as a distance for shifting the center of the lower surface of the suspension container. FIG. 6 is a diagram for explaining the automatic stowing target correction value calculated by the correction unit 43. As shown in FIG. As shown in FIG. 6, the height of the container C is L, if the yard surface YA is for example that in the Y direction theta y tilt correcting portion 43, the inclined angle theta y along the Y-direction The automatic loading target correction value is calculated based on the above. That is, as the inclination angle θ y along the Y direction, for example, the horizontal distance Δ shown by the following formula (1) is calculated as the automatic stowing target value.
Figure JPOXMLDOC01-appb-M000003
The automatic stowing target correction value is not limited to the horizontal distance Δ shown by the above equation (1), and may be a value closer to the height of the upper surface of the storage container with respect to the horizontal plane.
 補正部43は、傾斜角度認識部42により認識されたヤード表面YAの傾斜角度θ及び受信部41により受信したコンテナCの高さLを示す情報に基づき、上記数式(1)で示す水平距離Δを算出する。補正部43は、吊コンテナの下面の中心を、積み付けコンテナの上面の中心に対して上記数式(1)で示す水平距離Δ分Y方向にずらす。 The correction unit 43 is based on the information indicating the inclination angle θ y of the yard surface YA recognized by the inclination angle recognition unit 42 and the height L of the container C received by the reception unit 41, the horizontal distance indicated by the equation (1). Calculate Δ. The correction unit 43 shifts the center of the lower surface of the suspension container in the Y direction by the horizontal distance Δ shown by the above equation (1) with respect to the center of the upper surface of the stacking container.
 ヤード表面YAがX方向に沿って傾斜している場合も、ヤード表面YAがY方向に沿って傾斜している場合と同様、補正部43は、X方向に沿う傾斜角度θに基づき自動積付目標補正値を算出すると共に、吊コンテナ下面の中心を、積み付けコンテナの上面の中心に対して自動積み付け目標補正値分X方向にずらす。また、ヤード表面YAがX方向及びY方向の両方に沿って傾斜している場合には、各方向に沿う傾斜角度θ,θに基づき自動積付目標補正値をそれぞれ算出すると共に、吊コンテナ下面の中心を、積み付けコンテナの上面の中心に対して各方向に対応する自動積付目標補正値分各方向にずらす。 Even when the yard surface YA is inclined along the X direction, the correction unit 43 performs an automatic integration based on the inclination angle θ x along the X direction as in the case where the yard surface YA is inclined along the Y direction. While calculating the attached target correction value, the center of the lower surface of the hanging container is shifted in the X direction by the automatic loading target correction value with respect to the center of the upper surface of the loading container. When the yard surface YA is inclined along both the X direction and the Y direction, the automatic storage target correction value is calculated based on the inclination angles θ x and θ y along each direction, and The center of the lower surface of the container is shifted in each direction by the automatic loading target correction value corresponding to each direction with respect to the center of the upper surface of the stacking container.
 吊コンテナの下面の中心を積み付けコンテナの下面の中心に対して前述した数式(1)で示す水平距離Δずらすことにより、吊コンテナの下面の中心は、積み付けコンテナの下面の中心を通り鉛直方向へ延びる直線A(図6参照:以下、単に「直線A」という。)上に位置する。つまり、補正部43は、直線A上に吊コンテナの下面の中心を位置させて、積み付けコンテナの上面に吊コンテナを載置させるように荷役部21の位置を制御する。補正部43は、直線A上に吊コンテナの下面の中心を位置させるのに限らず、直線A近傍に吊コンテナの下面の中心を位置させるように、又は、直線Aに吊コンテナの下面の中心が近づくように、荷役部21の位置を制御してもよい。 By shifting the center of the lower surface of the hanging container to the center of the lower surface of the stacking container by the horizontal distance Δ shown in the above equation (1), the center of the lower surface of the hanging container passes vertically through the center of the lower surface of the stacking container It is located on a straight line A (see FIG. 6: hereinafter simply referred to as “straight line A”) extending in the direction. That is, the correction unit 43 positions the center of the lower surface of the suspension container on the straight line A, and controls the position of the cargo handling unit 21 so that the suspension container is placed on the upper surface of the stacking container. The correction unit 43 is not limited to positioning the center of the lower surface of the hanging container on the straight line A, but may position the center of the lower surface of the hanging container near the straight line A or center of the lower surface of the hanging container on the straight line A The position of the cargo handling unit 21 may be controlled so that
 記憶部37は、各種情報を記憶する部分であり、メモリ等によって構成される。記憶部37は、予め測定された積付目標番地(X,Y)それぞれのヤード表面YAの傾斜角度θをデータテーブルとして記憶する。なお、本実施形態において記憶部37は制御部40の外部に設けられているが、制御部40と一体化されていてもよい。 The storage unit 37 is a part that stores various information, and is configured by a memory or the like. The storage unit 37 stores, as a data table, the inclination angle θ of the yard surface YA for each of the pre-measured target addresses (X, Y). Although the storage unit 37 is provided outside the control unit 40 in the present embodiment, the storage unit 37 may be integrated with the control unit 40.
 次に、コンテナ荷役用クレーン装置1によるコンテナCの積み付けの動作について図7及び図8を参照して説明する。 Next, the operation of loading the container C by the container handling crane device 1 will be described with reference to FIGS. 7 and 8.
 図7及び図8は、コンテナ荷役用クレーン装置1によるコンテナCの積み付けの動作を示すフローチャートである。図7に示されるように、まず、受信部41は、上位システム35からの自動コマンドとしてコンテナCを載置しようとする目標の番地(X,Y,Z)及びコンテナCの高さLを示す情報を受信する(ステップS1)。受信部41は、受信した番地(X,Y,Z)から積付目標番地(X,Y)を取得する(ステップS2)。続いて、傾斜角度認識部42は、記憶部37における傾斜角度θのデータテーブルを参照し、受信部41により取得した積付目標番地(X,Y)に対応する傾斜角度θを読み出して取得する(ステップS3)。続いて、補正部43は、受信部41により受信したコンテナCの高さLを示す情報と、傾斜角度認識部42により取得された傾斜角度θとに基づき、前述した数式(1)で示す水平距離Δを自動積付目標補正値として算出する(ステップS4)。 FIGS. 7 and 8 are flowcharts showing the operation of loading the container C by the container handling crane device 1. As shown in FIG. 7, first, the receiving unit 41 indicates a target address (X, Y, Z) to which the container C is to be placed as an automatic command from the upper system 35 and the height L of the container C. Information is received (step S1). The receiving unit 41 acquires the target address (X, Y) for stowing from the received address (X, Y, Z) (step S2). Subsequently, the tilt angle recognition unit 42 refers to the data table of the tilt angle θ in the storage unit 37, and reads out and obtains the tilt angle θ corresponding to the target location (X, Y) for stowage obtained by the receiving unit 41. (Step S3). Subsequently, based on the information indicating the height L of the container C received by the reception unit 41 and the inclination angle θ acquired by the inclination angle recognition unit 42, the correction unit 43 performs the horizontal operation represented by Equation (1) described above. The distance Δ is calculated as an automatic loading target correction value (step S4).
 続いて、図8に示されるように、制御部40は、駆動部20の動作を制御することにより、吊コンテナを積付目標番地(X,Y)近傍まで自動搬送する(ステップS5)。続いて、位置検出部22は、吊コンテナの下部に位置し、先に積付目標番地(X,Y)のヤード表面YA上に載置されたコンテナCの位置を計測する(ステップS6)。続いて、補正部43は、ステップS4において算出した自動積付目標補正値を目標として、積み付けコンテナの上面に吊コンテナを自動積み付けする(ステップS7)。すなわち、補正部43は、吊コンテナの下面の中心を、積み付けコンテナの上面の中心に対して前述した数式(1)で示す水平距離Δずらして吊コンテナを積み付ける。 Subsequently, as shown in FIG. 8, the control unit 40 controls the operation of the drive unit 20 to automatically transport the suspension container to the vicinity of the loading target address (X, Y) (step S5). Subsequently, the position detection unit 22 measures the position of the container C, which is located at the lower part of the suspension container and is placed on the yard surface YA of the loading target address (X, Y) first (step S6). Subsequently, the correction unit 43 automatically stacks the hanging container on the upper surface of the stacking container with the automatic loading target correction value calculated in step S4 as a target (step S7). That is, the correction unit 43 stacks the hanging container by shifting the center of the lower surface of the hanging container with respect to the center of the upper surface of the stacking container by the horizontal distance Δ shown in the above equation (1).
 続いて、制御部40は、ステップS7において積み付けられた吊コンテナの積み付け精度を判定する(ステップS8)。例えば、制御部40は、吊コンテナの積み付けが許容範囲内か否かを判定する。すなわち、補正部43により算出された自動積付目標値が示す補正量に対し、積み付けられた吊コンテナの位置が適切に補正されているか否かを判定する。ステップS7による積み付けが許容範囲内でない場合(S8;NO)には、制御部40は、積み付けられた吊コンテナを再度巻き上げて、ステップS6に移行して吊コンテナの積み付けを再試行する(ステップS9)。吊コンテナの積み付けが許容範囲内であった場合(S8;YES)には、図7及び図8に示すフローチャートの処理を終了する。 Subsequently, the control unit 40 determines the loading accuracy of the hanging container loaded in step S7 (step S8). For example, the control unit 40 determines whether the loading of the hanging container is within the allowable range. That is, with respect to the correction amount indicated by the automatic loading target value calculated by the correction unit 43, it is determined whether or not the position of the loaded hanging container is properly corrected. If the loading in step S7 is not within the allowable range (S8; NO), the control unit 40 winds up the loaded hanging container again and shifts to step S6 to retry loading of the lifting container. (Step S9). If the loading of the suspension container is within the allowable range (S8; YES), the processing of the flowcharts shown in FIGS. 7 and 8 is ended.
 次に、本実施形態に係るコンテナ荷役用クレーン装置1の作用及び効果について、従来のコンテナ荷役用クレーン装置と比較して説明する。 Next, the operation and effects of the container handling crane device 1 according to the present embodiment will be described in comparison with a conventional container handling crane device.
 図9は、本実施形態の作用及び効果を説明するための図である。図9の(a)は従来のコンテナ荷役用クレーン装置により積み付けられたコンテナCを示しており、図9の(b)は本実施形態に係るコンテナ荷役用クレーン装置により積み付けられたコンテナCを示している。 FIG. 9 is a figure for demonstrating the effect | action and effect of this embodiment. FIG. 9 (a) shows a container C loaded by the conventional container handling crane device, and FIG. 9 (b) is a container C loaded by the container handling crane device according to the present embodiment. Is shown.
 図9の(a)に示されるように、コンテナヤードCYのヤード表面YAが水平面に対して傾斜している場合に従来のコンテナ荷役用クレーン装置を用いてコンテナCを積み上げていくと、ヤード表面YA上に載置されることにより傾斜したコンテナCの上にコンテナCが次々と載置されて積み上げられていくこととなる。吊コンテナの下面の中心は、例えば積み付けコンテナの上面の中心と一致するように積み上げられていく。よって、積み上げられたコンテナCの位置の正常な積み付け位置に対する水平方向のずれ量Dは、コンテナCの積み上げ数が多くなるほど大きくなる。当該水平方向のずれ量が大きくなることにより、ヤード表面YAが傾斜した番地(X,Y,Z)に積み上げられたコンテナCと当該コンテナCに隣接する番地(X,Y,Z)に積み上げられたコンテナCとの隙間(以下、「隣り合うコンテナ同士の隙間」という。)が小さくなる可能性がある。 As shown in FIG. 9 (a), when the container yard surface YA of the container yard CY is inclined with respect to the horizontal plane, stacking the containers C using the conventional container handling crane device, the yard surface By being placed on YA, the containers C are placed one after another and stacked on the inclined container C. The center of the lower surface of the suspension container is stacked, for example, to coincide with the center of the upper surface of the storage container. Therefore, the horizontal shift amount D with respect to the normal loading position of the stacked containers C becomes larger as the number of stacked containers C increases. As the amount of displacement in the horizontal direction increases, the container C stacked at the address (X, Y, Z) where the yard surface YA is inclined and the address (X, Y, Z) adjacent to the container C are stacked. There is a possibility that the gap with the container C (hereinafter, referred to as “a gap between adjacent containers”) may be reduced.
 図10は、従来の場合に隣り合うコンテナ同士の隙間が狭くなることを説明するための図である。図10に示されるように、例えば隣り合う番地(X,Y,Z)のヤード表面YA同士が向かい合いV字をなすように傾斜している場合、コンテナCの積み上げ数が多くなるほど、隣り合うコンテナC,C同士の隙間Gが狭くなってしまう。当該隙間Gが狭くなると、コンテナCをスプレッダ10により吊り上げる際にスプレッダ10のガイド17を当該隙間Gに進入させることができず、スプレッダ本体部15を積み付けコンテナ上に位置させることができなくなる。その結果、スプレッダ10により積み付けコンテナを係止して吊り上げることが困難となってしまう。 FIG. 10 is a view for explaining that the gap between adjacent containers in the case of the related art becomes narrow. As shown in FIG. 10, for example, when the yard surface YA of adjacent addresses (X, Y, Z) are inclined to face each other to form a V, the containers C adjacent to each other increase as the number of stacked containers C increases. The gap G between C and C becomes narrow. When the gap G is narrowed, the guide 17 of the spreader 10 can not enter into the gap G when lifting the container C by the spreader 10, and the spreader main body 15 can not be positioned on the stacking container. As a result, it becomes difficult for the spreader 10 to lock and lift the loading container.
 これに対し、本実施形態に係るコンテナ荷役用クレーン装置1によれば、積み付けコンテナの上面に吊コンテナを載置する際、傾斜角度認識部42により認識された傾斜角度θに基づき、補正部43によって、吊コンテナの下面の中心を、積み付けコンテナの上面の中心に対して当該上面の水平面に対する高さが高い方向へずらすように荷役部21の位置が制御される。これにより、吊コンテナの下面の中心は、積み付けコンテナの上面の中心に対して当該上面の水平面に対する高さが高い方向にずれる。よって、上記従来の場合と比較して、図9の(b)に示されるように吊コンテナの下面の中心を直線A上の位置に近づけることができる。その結果、直線A上に沿ってコンテナCを積み上げることができ、コンテナCの正常な積み付け位置に対する位置ずれを抑制することができる。 On the other hand, according to the container handling crane device 1 according to the present embodiment, the correction unit is mounted based on the inclination angle θ recognized by the inclination angle recognition unit 42 when the hanging container is placed on the upper surface of the storage container. The position of the cargo handling unit 21 is controlled by 43 so that the center of the lower surface of the suspension container is shifted in the direction in which the height of the upper surface with respect to the horizontal plane of the upper surface is higher than the center of the upper surface of the loading container. As a result, the center of the lower surface of the suspension container is shifted in the direction in which the height of the upper surface with respect to the horizontal plane is higher than the center of the upper surface of the stacking container. Therefore, compared with the said conventional case, as shown in (b) of FIG. 9, the center of the lower surface of a suspension container can be closely approached to the position on the straight line A. As a result, the containers C can be stacked along the straight line A, and displacement of the containers C relative to the normal loading position can be suppressed.
 このように、直線A上に沿ってコンテナCを積み上げることができる結果、コンテナCの積み上げ数が多くなったとしても、隣り合うコンテナC,C同士の隙間Gを、前述した所定のコンテナ間最小距離以上とすることができる。よって、コンテナCをスプレッダ10により吊り上げる際にスプレッダ10のガイド17を当該隙間Gに進入させてスプレッダ本体部15を積み付けコンテナ上に位置させることができる。その結果、スプレッダ10により積み付けコンテナCを係止して吊り上げることができる。 As described above, the containers C can be stacked along the straight line A. As a result, even if the number of stacked containers C increases, the gap G between the adjacent containers C and C can be determined by the minimum distance between the predetermined containers described above. It can be more than the distance. Therefore, when lifting the container C by the spreader 10, the guide 17 of the spreader 10 can be made to approach the said clearance gap G, and the spreader main-body part 15 can be located on a stacking container. As a result, the loading container C can be locked and lifted by the spreader 10.
 また、本実施形態によれば、傾斜角度認識部42によって、予め測定された積付目標番地(X,Y)それぞれのヤード表面YAの傾斜角度θが記憶部37から読み出されることにより、積付目標番地(X,Y)に対応する傾斜角度θが認識される。よって、ヤード表面YAの傾斜角度θをその都度測定することなく、記憶部37から読み出された傾斜角度θに基づき補正部43による荷役部21の位置の制御を行うことができる。 Further, according to the present embodiment, the tilt angle recognition unit 42 reads out the tilt angle θ of the yard surface YA for each of the loading target addresses (X, Y) measured in advance from the storage unit 37, thereby performing stowage The tilt angle θ corresponding to the target address (X, Y) is recognized. Therefore, the position of the cargo handling unit 21 can be controlled by the correction unit 43 based on the inclination angle θ read from the storage unit 37 without measuring the inclination angle θ of the yard surface YA each time.
 また、積み付けコンテナの高さがLでありヤード表面YAの傾斜角度がθである場合に、直線Aに対する吊コンテナの下面の中心の水平方向のずれ量は前述した数式(1)で示される。よって、本実施形態によれば、吊コンテナの下面の中心を前述した数式(1)で示される量ずらすことにより、吊コンテナの下面の中心を直線A上に位置させることができる。その結果、直線A上にコンテナCを積み上げることができ、コンテナCの正常な積み付け位置に対する位置ずれを抑制することができる。 In addition, when the height of the loading container is L and the inclination angle of the yard surface YA is θ, the horizontal shift amount of the center of the lower surface of the suspension container with respect to the straight line A is represented by the equation (1) described above . Therefore, according to the present embodiment, the center of the lower surface of the suspension container can be positioned on the straight line A by shifting the center of the lower surface of the suspension container by the amount represented by the above-mentioned equation (1). As a result, the containers C can be stacked on the straight line A, and displacement of the containers C relative to the normal loading position can be suppressed.
 また、積み付けコンテナの上面に吊コンテナを載置する際、傾斜角度認識部42により認識された傾斜角度θが予め定められた許容角度よりも大きい場合には、積み付けコンテナが水平方向に許容範囲以上にずれるとして、制御部40によって、直線A上に吊コンテナの下面の中心を位置させて、積み付けコンテナの上面に吊コンテナを載置させるように荷役部21の位置を制御してもよい。これにより、吊コンテナの下面の中心が直線A上に位置するように、吊コンテナが積み付けコンテナの上面に載置される。その結果、直線A上にコンテナCを積み上げることができ、コンテナCの正常な積み付け位置に対する位置ずれを抑制することができる。 In addition, when the hanging container is placed on the upper surface of the stacking container, if the tilt angle θ recognized by the tilt angle recognition unit 42 is larger than the predetermined allowable angle, the stacking container is horizontally permitted. Even if the control unit 40 positions the center of the lower surface of the suspension container on the straight line A and controls the position of the loading unit 21 so that the suspension container is placed on the upper surface of the stacking container. Good. Thus, the hanging container is placed on the upper surface of the loading container so that the center of the lower surface of the hanging container is located on the straight line A. As a result, the containers C can be stacked on the straight line A, and displacement of the containers C relative to the normal loading position can be suppressed.
(第2実施形態)
 次に、第2実施形態に係るコンテナ荷役用クレーン装置について図11を参照しながら説明する。図11は、第2実施形態に係るコンテナ荷役用クレーン装置1Aの構成を機能的に示すブロック図である。以下の説明においては、第1実施形態と重複する説明を適宜省略する。
Second Embodiment
Next, a container handling crane device according to a second embodiment will be described with reference to FIG. FIG. 11 is a block diagram functionally showing the configuration of the container handling crane device 1A according to the second embodiment. In the following description, the description overlapping with the first embodiment is appropriately omitted.
 第2実施形態に係るコンテナ荷役用クレーン装置1Aは、記憶部37を備えておらず、傾斜角度測定部30を備えている点で第1実施形態に係るコンテナ荷役用クレーン装置1と異なっている。 The container handling crane device 1A according to the second embodiment differs from the container handling crane device 1 according to the first embodiment in that the storage device 37 is not provided and the tilt angle measurement unit 30 is provided. .
 傾斜角度測定部30は、例えばスプレッダ本体部15の平面視における略中央の位置に設けられている(図5参照)。すなわち、スプレッダ10は、スプレッダ本体部15に設けられた傾斜角度測定部30を有している。傾斜角度測定部30は、例えば傾斜角センサである。傾斜角度測定部30は、スプレッダ10自身の傾斜角度を測定する。 The inclination angle measurement unit 30 is provided, for example, at a substantially central position in a plan view of the spreader main body 15 (see FIG. 5). That is, the spreader 10 has an inclination angle measurement unit 30 provided in the spreader main body 15. The tilt angle measurement unit 30 is, for example, a tilt angle sensor. The tilt angle measurement unit 30 measures the tilt angle of the spreader 10 itself.
 具体的には、傾斜角度測定部30は、吊コンテナを積み付けコンテナ上に載置させた状態でスプレッダ10の傾斜角度を測定する。積み付けコンテナの上面の傾斜角度は、ヤード表面YAの傾斜角度θに相当する。このため、当該積み付けコンテナの上面に載置された吊コンテナの上面、及び、当該吊コンテナを係止したスプレッダ10自身の傾斜角度も、ヤード表面YAの傾斜角度θに相当する。よって、傾斜角度測定部30により測定されるスプレッダ10自身の傾斜角度は、傾斜角度認識部42により認識されるヤード表面YAの傾斜角度θに相当する。傾斜角度測定部30は、測定結果を傾斜角度認識部42に出力する。 Specifically, the inclination angle measurement unit 30 measures the inclination angle of the spreader 10 in a state in which the suspension container is placed on the stacking container. The inclination angle of the upper surface of the loading container corresponds to the inclination angle θ of the yard surface YA. For this reason, the upper surface of the hanging container placed on the upper surface of the loading container, and the inclination angle of the spreader 10 itself that locks the hanging container also correspond to the inclination angle θ of the yard surface YA. Therefore, the tilt angle of the spreader 10 itself measured by the tilt angle measurement unit 30 corresponds to the tilt angle θ of the yard surface YA recognized by the tilt angle recognition unit 42. The tilt angle measurement unit 30 outputs the measurement result to the tilt angle recognition unit 42.
 傾斜角度認識部42は、傾斜角度測定部30によって測定されたスプレッダ10の傾斜角度を、積付目標番地(X,Y)のヤード表面YAの傾斜角度θとして認識する。 The tilt angle recognition unit 42 recognizes the tilt angle of the spreader 10 measured by the tilt angle measurement unit 30 as the tilt angle θ of the yard surface YA at the loading target address (X, Y).
 補正部43は、吊コンテナを積み付けコンテナの上に積み付ける際、まず吊コンテナの下面の中心を積み付けコンテナの中心に対して一致させるように吊コンテナを積み付けコンテナ上に載置させる。ここで、吊コンテナの下面の中心が積み付けコンテナの中心に対して一致するとは、これらの中心が完全に一致することだけでなく、これらの中心のずれが予め設定した微差又は測定誤差等の範囲内であることを含む。 When loading the lifting container onto the loading container, the correction unit 43 first places the lifting container on the loading container so that the center of the lower surface of the lifting container is aligned with the center of the loading container. Here, not only that the center of the lower surface of the hanging container coincides with the center of the loading container does not only mean that these centers completely coincide, but also the deviation of these centers is a preset difference or measurement error, etc. Including within the scope of
 また、補正部43は、傾斜角度測定部30によりスプレッダ10の傾斜角度を測定させる。また、補正部43は、傾斜角度測定部30により測定されたスプレッダ10の傾斜角度(すなわち、傾斜角度認識部42により認識されたヤード表面YAの傾斜角度θ)に基づき、上記第1実施形態と同様にして、吊コンテナの下面の中心を、積み付けコンテナの上面の中心に対して上面の水平面に対する高さが高い方向へずらすように荷役部21の位置を制御する。 Further, the correction unit 43 causes the tilt angle measurement unit 30 to measure the tilt angle of the spreader 10. In addition, the correction unit 43 is based on the tilt angle of the spreader 10 measured by the tilt angle measurement unit 30 (that is, the tilt angle θ of the yard surface YA recognized by the tilt angle recognition unit 42). Similarly, the position of the cargo handling unit 21 is controlled such that the center of the lower surface of the suspension container is shifted in the direction higher in height with respect to the horizontal plane of the upper surface with respect to the center of the upper surface of the loading container.
 次に、コンテナ荷役用クレーン装置1AによるコンテナCの積み付けの動作について図12~図14を参照して説明する。 Next, the loading operation of the container C by the container handling crane device 1A will be described with reference to FIGS. 12 to 14.
 図12~図14は、コンテナ荷役用クレーン装置1AによるコンテナCの積み付けの動作を示すフローチャートである。図12に示されるように、まず、受信部41は、上位システム35からの自動コマンドとしてコンテナCを載置しようとする目標の番地(X,Y,Z)及びコンテナCの高さLを示す情報を受信する(ステップS11)。受信部41は、受信した番地(X,Y,Z)から積付目標番地(X,Y)を取得する(ステップS12)。続いて、制御部40は、駆動部20の動作を制御することにより、吊コンテナを積付目標番地(X,Y)近傍まで自動搬送する(ステップS13)。 12 to 14 are flowcharts showing the operation of loading the container C by the container handling crane device 1A. As shown in FIG. 12, first, the receiving unit 41 indicates the address (X, Y, Z) of the target to which the container C is to be placed as an automatic command from the upper system 35 and the height L of the container C. Information is received (step S11). The receiving unit 41 acquires the target address (X, Y) for stowage from the received address (X, Y, Z) (step S12). Subsequently, the control unit 40 controls the operation of the drive unit 20 to automatically transport the suspension container to the vicinity of the loading target address (X, Y) (step S13).
 続いて、図13に示されるように、位置検出部22は、吊コンテナの下部に位置するコンテナCの位置を計測する(ステップS14)。続いて、補正部43は、まず初回の積み付け時にはヤード表面YAの傾斜影響はゼロ(未知)であるとして、積み付けずれがゼロであることを目標に、積み付けコンテナの上面に吊コンテナを自動積み付けする(ステップS15)。すなわち、補正部43は、自動積付目標補正値がゼロであることを目標として、吊コンテナの下面の中心を、積み付けコンテナの上面の中心と一致するように吊コンテナを積み付ける。 Then, as FIG. 13 shows, the position detection part 22 measures the position of the container C located in the lower part of a suspension container (step S14). Subsequently, the correction unit 43 first sets the hanging container on the upper surface of the stacking container with the goal that the skewing of the yard surface YA is zero (unknown) at the time of the first loading and that the misalignment is zero. Automatic loading (step S15). That is, the correction unit 43 stacks the suspension container so that the center of the lower surface of the suspension container coincides with the center of the upper surface of the stacking container with the goal of the automatic loading target correction value being zero.
 続いて、補正部43は、傾斜角度測定部30によってスプレッダ10の傾斜角度を測定させることにより、コンテナ載置面であるヤード表面YAの傾斜角度θを計測する(ステップS16)。具体的には、補正部43は、傾斜角度測定部30により、吊コンテナを積み付けコンテナに載置した状態におけるスプレッダ10の傾斜角度を測定させる。傾斜角度認識部42は、傾斜角度測定部30によって測定されたスプレッダ10の傾斜角度を、積付目標番地(X,Y)のヤード表面YAの傾斜角度θとして認識する。続いて、補正部43は、受信部41により受信したコンテナCの高さLを示す情報と、傾斜角度測定部30により計測されたヤード表面YAの傾斜角度θとに基づき、前述した数式(1)で示す水平距離Δを自動積付目標補正値として算出する(ステップS17)。 Subsequently, the correction unit 43 measures the inclination angle of the yard surface YA, which is a container mounting surface, by measuring the inclination angle of the spreader 10 by the inclination angle measurement unit 30 (step S16). Specifically, the correction unit 43 causes the tilt angle measurement unit 30 to measure the tilt angle of the spreader 10 in a state in which the hanging container is mounted on the loading container. The tilt angle recognition unit 42 recognizes the tilt angle of the spreader 10 measured by the tilt angle measurement unit 30 as the tilt angle θ of the yard surface YA at the loading target address (X, Y). Subsequently, based on the information indicating the height L of the container C received by the reception unit 41 and the inclination angle θ of the yard surface YA measured by the inclination angle measurement unit 30, the correction unit 43 The horizontal distance Δ shown in) is calculated as an automatic loading target correction value (step S17).
 続いて、図14に示されるように、制御部40は、ステップS15において積み付けられた吊コンテナの積み付け精度を判定する(S18)。すなわち、補正部43により算出された自動積付目標値が示す補正量に対し、積み付けられた吊コンテナの位置が適切か否かを判定する。吊コンテナの積み付けが許容範囲内でない場合(S18;NO)には、制御部40は、積み付けられた吊コンテナを再度巻き上げて(S19)、ステップS20へ移行する。ステップS20において、位置検出部22は、吊コンテナの下部に位置するコンテナCの位置を計測し、ステップS21へ移行する。ステップS21において、補正部43は、ステップS17において算出した自動積付目標補正値を目標として、積み付けコンテナの上面に吊コンテナを自動積み付けし、ステップS18に移行する。吊コンテナの積み付けが許容範囲内である場合(S18;YES)には、図7及び図8に示すフローチャートの処理を終了する。 Subsequently, as shown in FIG. 14, the control unit 40 determines the loading accuracy of the hanging container loaded in step S15 (S18). That is, with respect to the correction amount indicated by the automatic loading target value calculated by the correction unit 43, it is determined whether or not the position of the loaded hanging container is appropriate. If the loading of the hanging container is not within the allowable range (S18; NO), the control unit 40 rolls up the loaded hanging container again (S19), and proceeds to step S20. In step S20, the position detection unit 22 measures the position of the container C located in the lower part of the suspension container, and the process proceeds to step S21. In step S21, the correction unit 43 automatically stacks the hanging container on the top surface of the stacking container, with the automatic loading target correction value calculated in step S17 as a target, and proceeds to step S18. If the loading of the suspension container is within the allowable range (S18; YES), the processing of the flowcharts shown in FIGS. 7 and 8 is ended.
 以上、本実施形態に係るコンテナ荷役用クレーン装置1Aによれば、補正部43によって、吊コンテナの下面の中心が積み付けコンテナの中心に対して一致するように吊コンテナが積み付けコンテナ上に載置される。そして、スプレッダ10の傾斜角度が傾斜角度測定部30により測定される。さらに、傾斜角度測定部30により測定されたスプレッダ10の傾斜角度に基づき、補正部34によって、吊コンテナの下面の中心を、積み付けコンテナの上面の中心に対して当該上面の水平面に対する高さが高い方向へずらすように荷役部21の位置が制御される。この場合、ヤード表面YAの傾斜角度θを測定することなく、傾斜角度測定部30により測定されたスプレッダ10の傾斜角度に基づき、補正部43による荷役部21の位置の制御を行うことができる。 As described above, according to the container handling crane device 1A according to the present embodiment, the correction unit 43 places the suspension container on the stacking container so that the center of the lower surface of the suspension container coincides with the center of the stacking container. Be placed. Then, the inclination angle of the spreader 10 is measured by the inclination angle measurement unit 30. Furthermore, based on the inclination angle of the spreader 10 measured by the inclination angle measurement unit 30, the correction unit 34 sets the center of the lower surface of the suspension container to the height of the upper surface with respect to the center of the upper surface of the stacking container. The position of the cargo handling unit 21 is controlled so as to be shifted in the high direction. In this case, based on the inclination angle of the spreader 10 measured by the inclination angle measurement unit 30, the position control of the cargo handling unit 21 can be performed based on the inclination angle θ of the yard surface YA.
 以上、本実施形態の種々の実施形態について説明したが、本発明は上記実施形態に限られず、各請求項に記載した要旨を変更しない範囲で変形し、又は他に適用してもよい。 As mentioned above, although various embodiment of this embodiment was described, this invention is not limited to the said embodiment, You may deform | transform in the range which does not change the summary described to each claim, or may apply to others.
 例えば、ヤード表面YAがX方向及びY方向の両方に沿って傾斜している場合に、吊コンテナ下面の中心を、積み付けコンテナの上面の中心に対してX方向及びY方向の両方にずらさなくてもよく、X方向及びY方向の何れか一方にずらしてもよい。 For example, when the yard surface YA is inclined along both the X direction and the Y direction, the center of the lower surface of the hanging container is not shifted in both the X direction and the Y direction with respect to the center of the upper surface of the stacking container It may be shifted in either the X direction or the Y direction.
 また、上記第2実施形態において、傾斜角度測定部30により測定されたスプレッダ10の傾斜角度を記憶する記憶部を備えていてもよい。この場合、ある番地に吊コンテナを積載する毎にスプレッダ10の傾斜角度を測定しなくてもよい。傾斜角度認識部42は、当該記憶部により記憶されたスプレッダ10の角度をヤード表面YAの傾斜角度θとして認識してもよい。 In the second embodiment, a storage unit may be provided which stores the tilt angle of the spreader 10 measured by the tilt angle measurement unit 30. In this case, it is not necessary to measure the inclination angle of the spreader 10 every time the hanging container is loaded at a certain address. The tilt angle recognition unit 42 may recognize the angle of the spreader 10 stored by the storage unit as the tilt angle θ of the yard surface YA.
 また、本発明は、門型クレーン装置に限定されず、橋型クレーン装置等に適用してもよい。 Moreover, the present invention is not limited to the portal crane apparatus, and may be applied to a bridge crane apparatus and the like.
 1,1A…コンテナ荷役用クレーン装置、10…スプレッダ、21…荷役部、30…傾斜角度測定部、37…記憶部、42…傾斜角度認識部、40…制御部、43…補正部、C…コンテナ、CY…コンテナヤード、YA…ヤード表面。 1, 1A: Crane device for container handling, 10: Spreader, 21: Load handling unit, 30: Inclination angle measurement unit, 37: Storage unit, 42: Inclination angle recognition unit, 40: Control unit, 43: Correction unit, C ... Container, CY ... container yard, YA ... yard surface.

Claims (5)

  1.  予め定められた領域にコンテナを載置可能なコンテナヤード上において前記コンテナの搬送を行うクレーン装置であって、
     前記コンテナを係止可能であり、前記コンテナを係止して吊り上げることにより前記コンテナを吊コンテナとし当該吊コンテナの荷役を行う荷役部と、
     前記吊コンテナを載置しようとする前記領域のヤード表面の水平面に対する傾斜角度を認識する傾斜角度認識部と、
     前記荷役部の位置を制御する制御部と、
    を備え、
     前記制御部は、前記領域に載置された前記コンテナである積み付けコンテナの上面に前記吊コンテナを載置する際、前記傾斜角度認識部により認識された前記傾斜角度に基づき、前記吊コンテナの下面の中心を、前記積み付けコンテナの上面の中心に対して前記上面の水平面に対する高さが高い方向へずらすように前記荷役部の位置を制御する、クレーン装置。
    It is a crane apparatus which conveys the said container on the container yard which can mount a container in a predetermined area | region, Comprising:
    A cargo handling unit capable of locking the container, and locking and lifting the container to make the container a lifting container and handling the lifting container;
    An inclination angle recognition unit that recognizes an inclination angle of the area of the area to which the suspension container is to be placed with respect to the horizontal plane;
    A control unit that controls the position of the cargo handling unit;
    Equipped with
    The control unit is configured to, based on the inclination angle recognized by the inclination angle recognition unit, when the suspension container is placed on the upper surface of a stacking container that is the container placed in the area, The crane apparatus which controls the position of the said cargo handling part to shift the center of a lower surface to the direction where height with respect to the horizontal surface of the said upper surface is high with respect to the center of the upper surface of the said storage container.
  2.  前記コンテナヤードは、前記領域を複数有し、
     予め測定された前記領域それぞれのヤード表面の前記傾斜角度を記憶する記憶部を更に備え、
     前記傾斜角度認識部は、前記吊コンテナを載置しようとする前記領域に対応する前記傾斜角度を前記記憶部から読み出すことにより、前記吊コンテナを載置しようとする前記領域に対応する前記傾斜角度を認識する、請求項1に記載のクレーン装置。
    The container yard has a plurality of the areas,
    The storage unit further stores the tilt angle of the yard surface of each of the areas measured in advance.
    The tilt angle recognition unit reads the tilt angle corresponding to the area where the suspension container is to be placed from the storage unit, thereby reading the tilt angle corresponding to the region where the suspension container is to be placed. The crane apparatus according to claim 1, which recognizes
  3.  前記荷役部は、前記傾斜角度認識部により認識される前記傾斜角度に相当する自身の水平面に対する傾斜角度を測定する傾斜角度測定部を有し、
     前記制御部は、
      前記吊コンテナの下面の中心を前記積み付けコンテナの中心に対して一致させるように前記吊コンテナを前記積み付けコンテナ上に載置させ、
      前記傾斜角度測定部により前記自身の水平面に対する傾斜角度を測定させ、
      前記傾斜角度測定部により測定された前記自身の水平面に対する傾斜角度に基づき、前記吊コンテナの下面の中心を、前記積み付けコンテナの上面の中心に対して前記上面の水平面に対する高さが高い方向へずらすように前記荷役部の位置を制御する、請求項1に記載のクレーン装置。
    The cargo handling unit has a tilt angle measurement unit that measures a tilt angle with respect to the horizontal plane of the cargo handling unit, which corresponds to the tilt angle recognized by the tilt angle recognition unit,
    The control unit
    Placing the hanging container on the stacking container so that the center of the lower surface of the hanging container is aligned with the center of the stacking container;
    Causing the tilt angle measurement unit to measure the tilt angle with respect to the horizontal plane of the user,
    Based on the inclination angle with respect to the horizontal plane of the self measured by the inclination angle measurement unit, the center of the lower surface of the suspension container is in a direction in which the height of the upper surface with respect to the horizontal plane is higher than the center of the upper surface of the stacking container The crane apparatus of Claim 1 which controls the position of the said cargo handling part so that it may shift.
  4.  前記制御部は、前記吊コンテナの下面の中心を、前記積み付けコンテナの上面の中心に対して次の数式(1)で示す水平距離Δずらす、請求項1~3の何れか一項に記載のクレーン装置。
    Figure JPOXMLDOC01-appb-M000001
    (ただし、Lを前記コンテナの高さとし、θを前記ヤード表面の前記傾斜角度とする。)
    The controller according to any one of claims 1 to 3, wherein the control unit shifts the center of the lower surface of the suspension container with respect to the center of the upper surface of the stacking container by a horizontal distance Δ represented by the following formula (1). Crane equipment.
    Figure JPOXMLDOC01-appb-M000001
    (However, let L be the height of the container and θ be the inclination angle of the yard surface.)
  5.  予め定められた領域にコンテナを載置可能なコンテナヤード上において前記コンテナの搬送を行うクレーン装置であって、
     前記コンテナを係止可能であり、前記コンテナを係止して吊り上げることにより前記コンテナを吊コンテナとし当該吊コンテナの荷役を行う荷役部と、
     前記吊コンテナを載置しようとする前記領域のヤード表面の水平面に対する傾斜角度を認識する傾斜角度認識部と、
     前記荷役部の位置を制御する制御部と、
    を備え、
     前記制御部は、前記領域に載置された前記コンテナである積み付けコンテナの上面に前記吊コンテナを載置する際、前記傾斜角度認識部により認識された前記傾斜角度が予め定められた許容角度よりも大きい場合には、前記積み付けコンテナの下面の中心を通り鉛直方向へ延びる直線上に前記吊コンテナの下面の中心を位置させて、前記積み付けコンテナの上面に前記吊コンテナを載置させるように前記荷役部の位置を制御する、クレーン装置。
    It is a crane apparatus which conveys the said container on the container yard which can mount a container in a predetermined area | region, Comprising:
    A cargo handling unit capable of locking the container, and locking and lifting the container to make the container a lifting container and handling the lifting container;
    An inclination angle recognition unit that recognizes an inclination angle of the area of the area to which the suspension container is to be placed with respect to the horizontal plane;
    A control unit that controls the position of the cargo handling unit;
    Equipped with
    When the control unit places the suspension container on the upper surface of the stacking container that is the container placed in the area, the control unit recognizes an inclination angle in which the inclination angle recognized by the inclination angle recognition unit is predetermined. If larger, the center of the lower surface of the lifting container is positioned on a straight line extending vertically through the center of the lower surface of the loading container, and the lifting container is placed on the upper surface of the loading container The crane apparatus which controls the position of the said cargo handling part.
PCT/JP2018/018938 2017-07-05 2018-05-16 Crane apparatus WO2019008914A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202011502944.0A CN112678665B (en) 2017-07-05 2018-05-16 Crane device
MYPI2019007190A MY196459A (en) 2017-07-05 2018-05-16 Crane Device
JP2019528387A JP6672530B2 (en) 2017-07-05 2018-05-16 Crane equipment
CN201880035030.2A CN110799442B (en) 2017-07-05 2018-05-16 Crane device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017131987 2017-07-05
JP2017-131987 2017-07-05

Publications (1)

Publication Number Publication Date
WO2019008914A1 true WO2019008914A1 (en) 2019-01-10

Family

ID=64950837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018938 WO2019008914A1 (en) 2017-07-05 2018-05-16 Crane apparatus

Country Status (4)

Country Link
JP (1) JP6672530B2 (en)
CN (2) CN110799442B (en)
MY (1) MY196459A (en)
WO (1) WO2019008914A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021143065A (en) * 2020-03-13 2021-09-24 株式会社ダイフク Article storage facility
US11506565B2 (en) * 2019-09-24 2022-11-22 Falk PLI Engineering & Surveying, Inc. Four-dimensional crane rail measurement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114065555B (en) * 2022-01-13 2022-07-01 聚时领臻科技(浙江)有限公司 Deviation correction compensation method for identifying target in quayside crane lane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152289A (en) * 1996-11-25 1998-06-09 Mitsubishi Heavy Ind Ltd Method for positioning landing of hoisted cargo, and its device
JP2006176217A (en) * 2004-12-20 2006-07-06 Mitsubishi Heavy Ind Ltd Yard crane control device
JP2014144836A (en) * 2013-01-28 2014-08-14 Mitsubishi Heavy Industries Machinery Technology Corp Container crane

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2402615A1 (en) * 1977-09-09 1979-04-06 Brissonneau & Lotz CONTAINER OR SIMILAR GRIPPING DEVICE
JP3785061B2 (en) * 2000-10-27 2006-06-14 三菱重工業株式会社 Container position detection method and apparatus for cargo handling crane, container landing and stacking control method
JP3935826B2 (en) * 2002-11-15 2007-06-27 三菱重工業株式会社 Loading load control method and control device, and cargo handling machine
RU2548831C2 (en) * 2009-02-16 2015-04-20 Лангенштайн Энд Шеман Гмбх Structure and method for stacking stackable bodies, in particular sand-lime bricks
WO2011062310A1 (en) * 2009-11-18 2011-05-26 Kim Kyoung-Han Container crane apparatus and container loading/unloading method using same
CN202080823U (en) * 2011-03-31 2011-12-21 上海海镭激光科技有限公司 Inclination and declination control system of container spreader
CN102431895B (en) * 2011-09-07 2013-12-25 中南大学 Container aligning system and method
FI124602B (en) * 2012-10-26 2014-10-31 Oy Langh Ship Ab Goods Transport Unit
WO2014083611A1 (en) * 2012-11-27 2014-06-05 東芝三菱電機産業システム株式会社 Crane operation assistance device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152289A (en) * 1996-11-25 1998-06-09 Mitsubishi Heavy Ind Ltd Method for positioning landing of hoisted cargo, and its device
JP2006176217A (en) * 2004-12-20 2006-07-06 Mitsubishi Heavy Ind Ltd Yard crane control device
JP2014144836A (en) * 2013-01-28 2014-08-14 Mitsubishi Heavy Industries Machinery Technology Corp Container crane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506565B2 (en) * 2019-09-24 2022-11-22 Falk PLI Engineering & Surveying, Inc. Four-dimensional crane rail measurement
JP2021143065A (en) * 2020-03-13 2021-09-24 株式会社ダイフク Article storage facility
JP7294198B2 (en) 2020-03-13 2023-06-20 株式会社ダイフク Goods storage facility

Also Published As

Publication number Publication date
CN112678665A (en) 2021-04-20
CN110799442A (en) 2020-02-14
CN110799442B (en) 2020-12-11
JP6672530B2 (en) 2020-03-25
JPWO2019008914A1 (en) 2020-03-19
CN112678665B (en) 2023-02-28
MY196459A (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP4671380B2 (en) Means for implementing container handling method and method for selecting desired position on stacking target
JP4712388B2 (en) Container crane
JP5266683B2 (en) Transport system and teaching method in the transport system
JP4856394B2 (en) Object position measuring apparatus for container crane and automatic cargo handling apparatus using the object position measuring apparatus
US6880712B2 (en) Crane and method for controlling the crane
WO2014115354A1 (en) Container crane
WO2019008914A1 (en) Crane apparatus
EP3613699A1 (en) Inspection system for container
JP2018188299A (en) Container terminal system and control method of the same
JP6807131B2 (en) Cargo handling and transportation equipment
JP4585303B2 (en) Yard crane control device
JP7162555B2 (en) Cranes and crane stowage methods
CN111766882B (en) Container detection method suitable for AGV and automatic wharf management system
JPS61101389A (en) Container crane
JP2017214176A (en) Container-handling crane device and method of operating container-handling crane device
TWI841772B (en) Positional relationship detection system
WO2024084971A1 (en) Crane control system and crane control method
JP2019077544A (en) Article storage facility
JPH11116060A (en) Container placed condition detection method for cargo handling device
JP2022144133A (en) cargo handling system
JP2023069491A (en) Conveying system
CN118251361A (en) Crane and measuring system thereof
WO2015114768A1 (en) Container height detection device, crane system, container height detection method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828002

Country of ref document: EP

Kind code of ref document: A1