WO2019007135A1 - 一种链式多端口并网接口装置及控制方法 - Google Patents

一种链式多端口并网接口装置及控制方法 Download PDF

Info

Publication number
WO2019007135A1
WO2019007135A1 PCT/CN2018/083773 CN2018083773W WO2019007135A1 WO 2019007135 A1 WO2019007135 A1 WO 2019007135A1 CN 2018083773 W CN2018083773 W CN 2018083773W WO 2019007135 A1 WO2019007135 A1 WO 2019007135A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
interface device
port
grid
sub
Prior art date
Application number
PCT/CN2018/083773
Other languages
English (en)
French (fr)
Inventor
谢晔源
王宇
李海英
连建阳
张中锋
田杰
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to KR1020207001374A priority Critical patent/KR102311485B1/ko
Priority to JP2020500101A priority patent/JP6951542B2/ja
Priority to EP18828186.9A priority patent/EP3651305A4/en
Priority to US16/628,383 priority patent/US20200220355A1/en
Publication of WO2019007135A1 publication Critical patent/WO2019007135A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention belongs to the field of power electronic converters, and in particular relates to a multi-port grid-connecting device and a control method for a chain structure.
  • the DC bus is usually medium voltage. For example, 35kV/10kV, and the distributed power supply has a voltage range of 200 to 1000V.
  • a high-ratio DC transformer or a high-ratio AC/DC converter is required, and the cost is high.
  • the disadvantage is that when the DC bus fails or the device hanging on the DC bus fails, the device with the bus will be affected.
  • the DC breaker needs to be configured to isolate the fault.
  • Figure 1-8 shows the structure of a converter that converts from high-voltage AC to low-voltage DC.
  • the main advantage of this topology is to avoid the use of high-voltage DC busses and eliminate the need for a large number of high-ratio converters. It is equivalent to replacing a large number of small-capacity converters with a large-capacity converter, but the topology can only provide a low-voltage DC port, and the low-voltage AC port needs to pass through a DC/AC converter, as shown in Figure 1-7.
  • the DC port can constitute a DC bus
  • the AC port constitutes an AC bus
  • a large amount of distributed power is connected to the DC port through the converter.
  • the main drawbacks of this structure are: (1) The structure is complicated: The main function of the converter of Figure 1-8 is to provide the DC bus port. The converter itself has a high complexity, and the rear stage of the chain structure requires a large amount of DC/DC. Inverter, the output side of the converter is directly connected in parallel, and the control complexity is high. The low-voltage AC bus port is inverted by the DC bus port. The electric energy is derived from the DC bus, which occupies the power capacity of the DC bus, and the AC and DC power. It is not completely decoupled, and it also increases the difficulty of coordinated control.
  • the essential defect of the prior art is that the single port and the use of a single port to be compatible with different types of units result in high complexity and low cost performance; the above solutions all have a DC bus, the fault is difficult to isolate, and the reliability is low.
  • the invention aims to solve the deficiencies of the above solutions, and provides a plurality of independent ports for the connection of the low-voltage power source, the load and the energy storage unit, so that the low-voltage units are connected to the high-voltage AC power grid with high reliability, thereby realizing plug-and-play. , greatly reducing the difficulty and cost of implementation.
  • the present invention provides a chain multi-port grid-connected interface device, which is specifically as follows:
  • a chain multi-port grid-connected interface device comprising a commutation chain, the converter chain being composed of at least two sub-module units connected in series, the sub-module unit comprising a power conversion unit and a capacitor, a positive pole and a cathode of the capacitor
  • the lead-out is defined as the DC terminal of the sub-module unit.
  • One end of the power conversion unit is connected in parallel with the capacitor, and the other end is defined as the AC end of the sub-module unit.
  • the AC terminals of each sub-module are connected in an end-to-end manner, and the chain multi-port is connected.
  • the network interface device further includes at least one DC converter, at least one DC-DC converter, which converts one DC power into another DC power having different output characteristics, one end of the DC converter and the sub-module unit
  • the DC terminal is connected, and the other end is defined as a DC interaction port of the grid connection device.
  • the DC-DC converter can convert DC power into AC power, and the DC power connection end of the DC-DC converter is connected to the DC terminal of the sub-module unit.
  • the AC connection is defined as the AC interaction port of the grid connection device.
  • the interface device includes a DC terminal of at least one sub-module unit that is not connected to the DC-DC converter, and is not connected to the DC converter, and the idle DC terminal is defined as an alternate port.
  • the interface device includes at least two DC interactive ports and at least two AC interactive ports.
  • the interface device includes at least two AC interaction ports, the AC interaction port is connected to a multi-winding transformer, and each group of the primary side of the multi-winding transformer is connected to an AC interaction port, and the secondary side of the multi-winding transformer is defined as the first Press the AC port.
  • the interface device includes at least two AC interaction ports, the AC interaction ports are connected in series, and the serially connected ports are defined as a second medium voltage AC port.
  • the interface device includes at least two DC interaction ports, and the DC interaction ports are connected in series and are defined as medium voltage DC ports.
  • the output voltage amplitude and phase of the AC interaction port in the interface device can be independently adjusted, and the output voltage amplitude of the DC interaction port can be independently adjusted.
  • the sub-module unit is an H-bridge power module unit composed of four sets of fully-controlled power semiconductor devices.
  • the sub-module unit is a half-bridge power module unit composed of two sets of fully-controlled power semiconductor devices.
  • the interface device also includes at least one bypass switch in parallel with the AC terminal of the sub-module unit.
  • the interface device also includes at least one DC switch that is connected in series between the sub-module unit and the DC converter or the DC-DC converter.
  • the invention also includes a method for controlling a chain multi-port grid-connected interface device.
  • the control method includes the following steps:
  • the invention also includes a control method for a chain multi-port grid-connected interface device.
  • the control method includes the following steps:
  • the invention also includes a control method for a chain multi-port grid-connected interface device.
  • the control method includes the following steps:
  • the invention also includes a control method of a chain multi-port grid-connected interface device, wherein when the DC converter or the DC-DC converter in the device fails, the control method comprises the following steps:
  • the invention also includes a system for the chain multi-port grid-connected interface device, the system comprising a chain multi-port grid-connected interface device and five kinds of low voltages of a DC power source, an AC power source, an energy storage unit, a DC load, and an AC load.
  • the unit, the interface device comprises an AC interaction port and a DC interaction port connected to at least the two low-voltage units to form a chain multi-port grid connection device system, wherein the DC power source, the energy storage unit, the DC load and the DC interaction port Connection, AC power and AC load are connected to the AC interactive port.
  • the invention also includes an inverter comprising the chained multi-port grid-connected interface device, the converter comprising three phases, each phase comprising two upper and lower bridge arms, each bridge arm comprising a reactor and The serial connection of the interface device, the upper and lower bridge arms are combined to form a phase unit, the connection points of the upper and lower bridge arms are midpoints, and the lead ends of the three upper bridge arms are connected together for the commutation
  • the positive ends of the three lower arms are connected together, being the negative end of the converter, the midpoint of the three-phase bridge arms of the converter is connected to the grid, and the positive end of the converter is The positive pole of the DC transmission line is connected, and the negative end of the converter is connected to the cathode of the DC transmission line.
  • the invention also includes an inverter comprising the chained multi-port grid-connected interface device, the converter comprising three phase units, each phase unit comprising a series connection of an interface device and a reactor, three One ends of the phase units are connected to form a star connection, and the other ends of the three phase units are respectively connected to the three phases of the grid side.
  • the invention also includes an inverter comprising the chained multi-port grid-connected interface device, the converter comprising three unit phases, each phase unit comprising a series connection of an interface device and a reactor, three The first and last phases of the phase unit are connected to each other to form an angular connection, and the three connection points of the first and last connections are respectively connected to the three phases of the grid side.
  • the DC side of the sub-module unit in the commutation chain is taken out as a grid-connected interface of the low-voltage energy exchange unit, and the DC voltage value of the energy exchange unit is matched with the DC voltage value of the sub-module unit to realize low-voltage DC access.
  • the AC side of the sub-module unit in the converter chain realizes the high-voltage output by means of cascading, and the low-voltage DC high-ratio ratio boosting access AC grid is realized by the method, and the high-ratio DC transformer is omitted.
  • the grid-connected converter can be constructed by using the grid-connected interface device, such as a static var compensator or a modular multi-level converter.
  • the low-voltage unit in the grid-connected device can realize the active power between the grid and the grid.
  • the inverter or static var compensator can also perform reactive power compensation, realize decoupling control of active power and reactive power, and maximize equipment utilization.
  • the DC interaction interface and the AC interaction interface in the access network interface device may be multiple power sources, loads, and energy storage units.
  • the access units for the same converter chain may be different, and the number of configurations may be small.
  • the configuration is more flexible, and each unit is independently controlled to realize plug and play.
  • the components of the DC distribution network (storage unit, AC power, DC power, AC load, DC load) can be connected through the DC converter and the DC-DC converter in the grid connection device.
  • a complete microgrid system is constructed by using a grid-connected interface device. The centralized mode is adopted to facilitate the management and implementation of the control functions of the entire microgrid.
  • the present invention configures a bypass switch in the sub-module unit, when the sub-module unit fails, The fault can be bypassed, and the corresponding DC switch can be separated when the DC converter or the DC-DC converter fails, and the fault range can be quickly reduced by the switch.
  • the DC converter and the DC-DC converter in the grid-connected interface device can be integrated with the sub-module unit, and the engineering can be realized and space-saving.
  • the power semiconductor device and its control loop in the DC converter and the DC-DC converter require an appropriate power supply and can share the energy-receiving loop with the sub-module unit.
  • the DC converter and the DC-DC converter can be used without a separate cooling device to share the cooling device with the sub-module unit.
  • FIG. 1 is a schematic top view of a chain multi-port grid-connected interface device of the present invention
  • FIG. 2 is a topological view of a sub-module unit in the chain multi-port grid-connected interface device of the present invention
  • FIG. 3 is an embodiment of a DC/DC converter in a chain multi-port grid-connected interface device of the present invention
  • Figure 5 is a first embodiment of the inverter of the present invention.
  • Figure 6 is a second embodiment of the inverter of the present invention.
  • Figure 7 is a third embodiment of the inverter of the present invention.
  • Figure 9 is an embodiment of the present invention under the application scenario 1;
  • Figure 10 is an embodiment of the present invention in the application scenario 2;
  • a chain multi-port grid-connected interface device includes a converter chain, and the converter chain is composed of at least two sub-module units connected in series, and the sub-module unit includes a power conversion unit and a capacitor.
  • the positive and negative terminals of the capacitor are defined as the DC terminal of the sub-module unit.
  • One end of the power conversion unit is connected in parallel with the capacitor, and the other end is defined as the AC end of the sub-module unit.
  • the AC terminals of each sub-module are connected in an end-to-end manner.
  • the chained multi-port grid-connected interface device further includes at least one DC converter, at least one DC-DC converter, which converts one DC power into another DC power with different output characteristics, DC converter One end is connected to the DC end of the sub-module unit, and the other end is defined as a DC interactive port of the grid-connected interface device, the DC-DC converter can convert DC power into AC power, and the DC power connection end and sub-module of the DC-DC converter The DC end of the unit is connected, and the AC line is defined as the AC interactive port of the grid interface device.
  • This embodiment includes two DC interactive ports, including two AC interactive ports.
  • the topology of the DC converter is shown in Figure 3.
  • the topology of the DC-to-AC converter is shown in Figure 4.
  • the interface device includes a DC terminal of at least one sub-module unit that is not connected to the DC-DC converter, and is not connected to the DC converter, and the idle DC terminal is defined as an alternate port.
  • this implementation includes an alternate port.
  • the interface device includes at least two DC interactive ports and at least two AC interactive ports.
  • the interface device comprises at least two AC interaction ports, the AC interaction port is connected to the multi-winding transformer, each of the primary sides of the multi-winding transformer is connected with an AC interaction port, and the secondary side of the multi-winding transformer is defined as the first medium voltage AC port.
  • the interface device includes at least two AC interaction ports, the AC interaction ports are connected in series, and the serially connected ports are defined as a second medium voltage AC port.
  • the interface device includes at least two DC interaction ports, and the DC interaction ports are connected in series and are defined as medium voltage DC ports.
  • the output voltage amplitude and phase of the AC interaction port in the interface device can be independently adjusted, and the output voltage amplitude of the DC interaction port can be independently adjusted.
  • the sub-module unit is an H-bridge power module unit composed of four sets of fully-controlled power semiconductor devices. As shown in Figure 2 (a).
  • the sub-module unit is a half-bridge power module unit composed of two sets of fully-controlled power semiconductor devices. As shown in Figure 2 (b).
  • the interface device further includes at least one bypass switch, and the bypass switch is connected in parallel with the AC terminal of the submodule unit.
  • the interface device further comprises at least one DC switch connected in series between the submodule unit and the DC converter or the DC-DC converter.
  • the invention also includes a method for controlling a chain multi-port grid-connected interface device.
  • the control method includes the following steps:
  • the invention also includes a control method for a chain multi-port grid-connected interface device.
  • the control method includes the following steps:
  • the invention also includes a control method for a chain multi-port grid-connected interface device.
  • the control method includes the following steps:
  • the invention also includes a control method of a chain multi-port grid-connected interface device, wherein when the DC converter or the DC-DC converter in the device fails, the control method comprises the following steps:
  • the invention also includes a system for the chain multi-port grid-connected interface device, the system comprising a chain multi-port grid-connected interface device and five kinds of low voltages of a DC power source, an AC power source, an energy storage unit, a DC load, and an AC load.
  • the unit, the interface device comprises an AC interaction port and a DC interaction port connected to at least the two low-voltage units to form a chain multi-port grid connection device system, wherein the DC power source, the energy storage unit, the DC load and the DC interaction port Connection, AC power and AC load are connected to the AC interactive port.
  • the present invention also includes an inverter including the chained multi-port grid-connected interface device, as shown in FIG. 5, the inverter includes three phases, each phase including upper and lower two bridge arms, each bridge The arm comprises a series connection of a reactor and the interface device, and the upper and lower bridge arms are combined to form a phase unit, the connection points of the upper and lower bridge arms are midpoints, and the outlet ends of the three upper bridge arms are connected together a positive end of the converter; the terminals of the three lower arms are connected together, being the negative end of the converter, and the midpoint of the three-phase bridge arm of the converter is connected to the grid,
  • the positive end of the current transformer is connected to the positive pole of the direct current transmission line, and the negative end of the current transformer is connected to the negative pole of the direct current transmission line.
  • the present invention also includes an inverter including the chained multi-port grid-connected interface device, as shown in FIG. 6, the inverter includes three phase units, each phase unit including an interface device and a reactor The series connection, one end of the three phase units are connected to form a star connection, and the other ends of the three phase units are respectively connected with the three phases of the grid side.
  • the present invention also includes an inverter including the chained multi-port grid-connected interface device, as shown in FIG. 7, the inverter includes three unit phases, each phase unit including an interface device and a reactor The series connection of the three phase units is connected to each other to form an angular connection, and the three connection points of the first and last connections are respectively connected to the three phases of the grid side.
  • the invention can be applied to a DC grid, an AC/DC hybrid distribution network, a microgrid, etc., which need to connect a low voltage unit to a medium and high voltage power grid, and can also be used for a medium voltage AC load, such as a medium voltage motor inverter application.
  • Scenario 1 The microgrid system on the island contains the following requirements:
  • DC power supply including 2 sets (500kW) of photovoltaic power generation, the output is DC 600V
  • Energy storage unit 1 group of energy storage unit (800kW) composed of sodium-sulfur battery, the output is DC 700V
  • AC load Contains 2 sets of AC load for power supply on the island, 1 set of single-phase 220V AC load (200kW), 1 set of three-phase 380V AC load (300kW)
  • the total capacity reaches 3200 kW
  • the high-voltage side voltage is 10 kV
  • 10 sub-module units are included, and each sub-module unit is configured with a DC/DC unit, DC/ DC unit design capacity is 320kW, DC/DC unit output is connected in parallel, and a 1100V DC bus is provided.
  • the total capacity of the DC bus is 3200kW. Since the power demand includes multiple electrical systems, multiple DCs are required based on the 1100V DC bus.
  • the /DC unit and the DC/AC unit match different power sources and loads, and the overall structure is complicated. In this scenario, a total of 13 DC/DC converters and 5 DC/AC converters are required.
  • the commutation chain is composed of 10 sub-module units connected in series, and the AC ends of the 10 sub-modules are connected in series, and connected to the high-voltage side of the 10 kV AC.
  • a total of five sets of DC/AC converters and four sets of DC/DC converters are provided, providing five independent AC interaction ports and four independent DC interaction ports.
  • the AC interactive port connection consists of 3 sets of (300kW) wind power generation units, 1 set of single-phase load, 1 set of three-phase load, DC interactive port to connect 2 sets of photovoltaic power generation units, and 1 set of energy storage energy storage unit.
  • the capacity of each sub-module unit and the DC/DC or DC/AC converter is greater than or equal to the capacity required by the port, and the capacity of each sub-module is generally designed to be equivalent for engineering. Design and production, for this scenario, most of the required unit capacity is not more than 500kW. For the energy storage unit, the capacity is 800kW.
  • the two units can be connected in parallel. The configuration is very flexible and easy to design.
  • Each DC/DC or DC/AC converter is independently controlled, and the port voltage is adjustable. The adaptation of the different electrical units within the working range is achieved by the control strategy of each converter and the adjustment of the control target. Compared with the prior art, it also has the following advantages:
  • the prior art scheme includes two power conversion links from the sub-module unit to the access unit, and the present invention only needs one power conversion link, and the efficiency has a significant advantage.
  • the present invention is easier to expand than the prior art solution.
  • this application scenario it is assumed that a new photovoltaic power generation unit needs to access the system, and the addition of a new unit leads to an increase in the total capacity of the device.
  • the sum of the capacities of the DC/DC converters exceeds the original design range. At this time, it is difficult to increase the capacity again.
  • increasing the capacity of 10 DC/DC converters is very expensive, and the sub-module unit of the converter chain needs to be added. A lot of changes have been made to the original system structure.
  • the device of the present invention has a spare port, and only needs to add one DC/DC converter to the standby port to access the new photovoltaic power generation unit.
  • one inverter has three AAC three-phase converter chains, so there will be a large number of spare ports.
  • the spare ports are reserved without any increase in cost, and the device utilization is not affected, but for the prior art.
  • the solution, if reserved, requires an increase in the capacity of 10 DC/DC converters, adding additional cost.
  • the solution of the present invention can connect the primary side of the multi-winding transformer through the AC interaction port.
  • the embodiment includes 10 sub-module units, including 6 sets of DC/AC converters, and 6 slots are provided.
  • AC interactive port, multi-winding transformer consists of 6 primary sides, and is connected with 6 AC interactive ports one by one.
  • the secondary side of the multi-winding transformer is connected to a 6kV medium voltage AC motor, and the DC/AC inverter connected to the submodule is controlled.
  • the duty cycle of the device can control the output AC frequency and adjust the speed or torque of the medium voltage AC motor load.
  • This implementation also includes four alternate ports for capacity expansion or access to other types of power supplies or loads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种链式多端口并网接口装置及其控制方法,该链式多端口并网接口装置包括:一个换流链,至少一个直流变换器,至少一个直-交变换器,换流链由至少两个子模块单元同向串联连接构成,直流变换器的一端与子模块单元的直流端连接,另一端为该链式多端口并网接口装置的直流交互端口,直-交变换器的直流电连接端与子模块单元的直流端连接,交流电连接端为该链式多端口并网接口装置的交流交互端口。该链式多端口并网接口装置为低压电源、负荷以及储能单元的接入提供多个相互独立的端口,实现即插即用,大大降低实现难度以及成本。

Description

一种链式多端口并网接口装置及控制方法 技术领域
本发明属于电力电子变流器领域,特别涉及一种链式结构的多端口并网接口装置及控制方法。
背景技术
近年来分布式发电技术的不断进步以及电力电子技术的日益成熟,分布式发电在电网中的应用范围越来越广泛,且逐渐成为大电网的有效补充,分布式电源、负荷以及储能装置构成微网,众多分布式电源、负荷以及储能装置的类型不同,包含直流或交流,电压等级、容量也不相同,如何将上述单元经济、有效地接入,进行统一管理是较难解决的问题。现有技术中公开的技术方案包括以下几种,现有技术1:硕士论文 面向能源互联网的多端口双 向能量路由器研究王雨婷北京交通大学中给出了传统的解决方案。上述论文中的图1-7给出了直流微电网的基本结构,该结构复杂,其中存在大量的DC/DC和DC/AC变换器,为了体现直流输电优势,通常直流母线为中压等级,如35kV/10kV,而分布式电源的电压范围为200~1000V,这种情况下,需要高变比的直流变压器或者高变比的交直流变换器,成本较高,这种方式还存在可靠性的弊端,当直流母线发生故障或挂在直流母线上的设备发生故障时,同母线的设备都会受到影响,需要配置直流断路器对故障进行隔离。现有技术2:硕士论文 基于级联型电力电子变压器的楼宇微网研究黄双萍湖南大学中提出了另外一种解决方案,上述论文中的图1-7与1-8描述了该解决方案的思路,图1-8给出了一个由高压交流变换为低压直流的变换器的结构,该拓扑结构的主要优势是避免使用高压直流母线,也不再需要大量的高变比的变换器,相当于是用一台大容量的变换器替代了众多小容量的变换器,但该拓扑结构仅仅可提供一个低压的直流端口,低压的交流端口需要再经过一个DC/AC变换器,从图1-7可知,直流端口可以构成直流母线,交流端口构成交流母线,大量的分布式电源再通过变换器连接到直流端口。这种结构的主要弊端在于:(1)结构复杂:图1-8的变换器主要作用是提供直流母线端口,该变换器本身复杂度很高,链式结构的后级需要大量的DC/DC变换器,变换器输出侧直接并联,控制上复杂度高,低压的交流母线端口是由直流母线端口逆变而来,电能来源于直流母线,占用了直流母线的用电容量,交直流用电并未完全解耦,同样增加了协调控制的难度(2)环节多,效率低:效率是电力电子设备的关键指标,图1-8中的结构存在多个环节的电力电子变换器,设备整体效率低。(3)设备可靠性低:链式结构的后级需要大量的DC/DC变换器,变换器输出侧并联,不利于故障隔离,一旦低压直流母线发生故障,将影响到前级所有的DC/DC变换器以及后级的DC/AC逆变器。
现有技术的本质缺陷在于,端口单一,使用单一端口去兼容各个类型不同的单元导致复杂度高,性价比低;上述方案均存在直流母线,故障难隔离,可靠性低。
发明内容
本发明旨在解决上述方案的不足,为低压电源、负荷以及储能单元的接入提供多个相互独立的端口,使各个低压的单元高可靠性的接入高压交流电网,实现即插即用,大大 降低实现难度以及成本。
为了达到上述目的,本发明提供一种链式多端口并网接口装置,具体如下:
一种链式多端口并网接口装置,包含一个换流链,所述换流链由相互串联的至少两个子模块单元构成,所述子模块单元包含功率变换单元以及电容,电容的正极、负极引出,定义为子模块单元的直流端,功率变换单元的一端与电容并联连接,另一端定义为子模块单元的交流端,各个子模块的交流端首尾顺次连接,所述链式多端口并网接口装置还包括至少一个直流变换器、至少一个直-交变换器,所述直流变换器可将一种直流电变换成另一种具有不同输出特性的直流电,直流变换器的一端与子模块单元的直流端连接,另一端定义为并网接口装置的直流交互端口,所述直-交变换器可将直流电变换成交流电,直-交变换器的直流电连接端与子模块单元的直流端连接,交流电连接端定义为并网接口装置的交流交互端口。
所述接口装置至少包含一个子模块单元的直流端未与直-交变换器连接,也未与直流变换器连接,上述空闲的直流端定义为备用端口。
所述接口装置包含至少两个直流交互端口以及至少两个交流交互端口。
所述接口装置包含至少两个交流交互端口,所述交流交互端口与多绕组变压器连接,多绕组变压器的每组原边均与一个交流交互端口连接,多绕组变压器的副边定义为第一中压交流端口。
所述接口装置包含至少两个交流交互端口,所述交流交互端口串联连接,所述串联连接后的端口定义为第二中压交流端口。
所述接口装置包含至少两个直流交互端口,所述直流交互端口串联连接,定义为中压直流端口。
所述接口装置中的交流交互端口的输出电压幅值和相位可独立的调节,直流交互端口的输出电压幅值可独立的调节。
所述子模块单元为由4组全控型功率半导体器件构成的H桥功率模块单元。
所述子模块单元为由2组全控型功率半导体器件构成的半桥功率模块单元。
所述接口装置还包含至少一个旁路开关,所述旁路开关与子模块单元交流端并联。
所述接口装置还包含至少一个直流开关,所述直流开关串联在子模块单元与直流变换器或直-交变换器之间。
本发明还包括一种链式多端口并网接口装置的控制方法,当装置接收到启动指令时,所述控制方法包括如下步骤:
(1)所述并网接口装置换流链中的子模块单元中的功率变换器单元开始启动;
(2)对各子模块的直流端电压进行闭环控制,控制每个子模块的直流端电压稳定;
(3)待子模块的直流端电压稳定后,启动链式多端口并网接口装置中的直流变换器以及直-交变换器,通过控制直流变换器以及直-交变换器中功率半导体器件的开通关断,使流过直流变换器以及直-交变换器的电流为0;
(4)通过控制直流变换器以及直-交变换器中功率半导体器件的开通关断,使流过直流变换器以及直-交变换器的电流逐渐增加,直至电流达到目标值。
本发明还包括一种链式多端口并网接口装置的控制方法,当装置接受到停机指令 时,所述控制方法包括如下步骤:
(1)通过控制直流变换器以及直-交变换器中功率半导体器件的开通关断,使流过直流变换器以及直-交变换器的电流逐渐减小,直至电流达到0;
(2)停止链式多端口并网接口装置中的直流变换器以及直-交变换器,功率半导体器件闭锁;
(3)停止并网接口装置换流链中的子模块单元,整个装置停止运行。
本发明还包括一种链式多端口并网接口装置的控制方法,当装置中的子模块单元发生故障时,所述控制方法包括如下步骤:
(1)发生故障的子模块单元中的功率半导体器件停止工作,同时闭合与子模块单元并联的旁路开关;
(2)停止链式多端口并网接口装置中的直流变换器以及直-交变换器,功率半导体器件闭锁。作为一种优选方案,在功率半导体器件闭锁时,可同时分开对应的直流开关。
本发明还包括一种链式多端口并网接口装置的控制方法,当装置中的直流变换器或直-交变换器发生故障时,所述控制方法包括如下步骤:
(1)发生故障的直流变换器或直-交变换器的功率半导体器件停止工作
(2)分开对应的直流开关。
本发明还包括一种所述链式多端口并网接口装置的***,所述***包含链式多端口并网接口装置以及直流电源、交流电源、储能单元、直流负荷,交流负荷五种低压单元,所述接口装置包含的交流交互端口和直流交互端口至少与上述两种低压单元连接,构成链式多端口并网接口装置的***,其中直流电源、储能单元,直流负荷与直流交互端口连接,交流电源和交流负荷与交流交互端口连接。
本发明还包括一种含有所述链式多端口并网接口装置的换流器,所述换流器包括三相,每一相包括上下两个桥臂,每个桥臂包含一个电抗器与所述接口装置的串联连接,上下两个桥臂合在一起成为一个相单元,上下两个桥臂的连接点为中点,三个上桥臂的引出端连接在一起,为所述换流器正端;三个下桥臂的引出端连接在一起,为所述换流器的负端,所述换流器的三相桥臂的中点与电网连接,换流器的正端与直流输电线路的正极连接,换流器的负端与直流输电线路的负极连接。
本发明还包括一种含有所述链式多端口并网接口装置的换流器,所述换流器包括三个相单元,每一个相单元包括一个接口装置与电抗器的串联连接,三个相单元的一端相连,构成星型连接,三个相单元的另一端分别与电网侧的三相对应连接。
本发明还包括一种含有所述链式多端口并网接口装置的换流器,所述换流器包括三个单元相,每一个相单元包括一个接口装置与电抗器的串联连接,三个相单元的首尾相互连接,构成角型连接,首尾连接的三个连接点分别与电网侧的三相对应连接。
本发明的有益效果是:
(1)将换流链中子模块单元的直流侧引出,作为低压能量交换单元的并网接口,能量交换单元的直流电压值与子模块单元的直流电压值相匹配,实现了低压直流接入,换流链中子模块单元的交流侧通过级联的方式实现了高压输出,利用该方式实现了低压直流高变比升压接入交流电网,省去了高变比的直流变压器。
(2)利用并网接口装置可以构成链式的换流器,如静止无功补偿器或基于模块化 多电平的换流器,并网接口装置中低压单元可与电网之间实现有功功率交互,同时,换流器或静止无功补偿器还能够进行无功补偿,实现了有功功率与无功功率的解耦控制,使设备利用率最大化。
(3)接入并网接口装置中的直流交互接口与交流交互接口的可以是多个电源、负荷以及储能单元,用于同一换流链的各个接入单元可以不同,配置数量上可以少于或等于子模块单元,配置上更加灵活,每个单元独立控制,实现了即插即用。
(4)直流配电网中的各组成要素(储能单元,交流电源、直流电源、交流负荷、直流负荷)均可以通过并网接口装置中的直流变换器以及直-交变换器接入,利用并网接口装置构成了完整微网***。且采用集中方式,便于实现对整个微网的控制功能的管理与实现。
(5)通过子模块单元接入,每个子模块单元的直流母线相互独立,与公共母线方式相比,这种方式有利于实现故障的隔离,可靠性更高。
(6)便于实现冗余,传统方案通过并联方式增容,难以实现冗余,一旦单模块故障,整个***将退出运行,本发明在子模块单元配置旁路开关,当子模块单元故障时,可将故障旁路,在直流变换器或直-交变换器故障时可分开对应的直流开关,能够通过开关迅速将故障范围缩小。
(7)并网接口装置中的直流变换器以及直-交变换器可与子模块单元一体化设计、工程可实现性好、节省空间。
(8)无需独立取能。直流变换器以及直-交变换器中的功率半导体器件及其控制回路需要适当的电源供电,可以与子模块单元共用取能回路。
(9)直流变换器以及直-交变换器可以不用配置独立冷却设备,与子模块单元共用冷却设备。
附图说明
图1是本发明链式多端口并网接口装置拓扑示意图;
图2是本发明链式多端口并网接口装置中子模块单元的拓扑图;
图3是本发明链式多端口并网接口装置中DC/DC变换装置的一种实施例;
图4是本发明链式多端口并网接口装置中DC/AC变换装置的一种实施例;
图5是本发明换流器的第一实施例;
图6是本发明换流器的第二实施例;
图7是本发明换流器的第三实施例;
图8是应用场景1下现有技术方案的实施例;
图9是应用场景1下本发明的实施例;
图10是应用场景2下本发明的实施例;
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
如图1所示:一种链式多端口并网接口装置,包含一个换流链,所述换流链由相互串联的至少两个子模块单元构成,所述子模块单元包含功率变换单元以及电容,电容的正极、负极引出,定义为子模块单元的直流端,功率变换单元的一端与电容并联连接,另一端 定义为子模块单元的交流端,各个子模块的交流端首尾顺次连接,所述链式多端口并网接口装置还包括至少一个直流变换器、至少一个直-交变换器,所述直流变换器可将一种直流电变换成另一种具有不同输出特性的直流电,直流变换器的一端与子模块单元的直流端连接,另一端定义为并网接口装置的直流交互端口,所述直-交变换器可将直流电变换成交流电,直-交变换器的直流电连接端与子模块单元的直流端连接,交流电连接端定义为并网接口装置的交流交互端口。
本实施例包含两个直流交互端口,包含两个交流交互端口。直流变换器的拓扑结构如图3所示,直-交变换器的拓扑结构如图4所示。
所述接口装置至少包含一个子模块单元的直流端未与直-交变换器连接,也未与直流变换器连接,上述空闲的直流端定义为备用端口。
如图1所示,本实施包含一个备用端口。
作为一种优选方案,接口装置包含至少两个直流交互端口以及至少两个交流交互端口。
接口装置包含至少两个交流交互端口,所述交流交互端口与多绕组变压器连接,多绕组变压器的每组原边均与一个交流交互端口连接,多绕组变压器的副边定义为第一中压交流端口。
所述接口装置包含至少两个交流交互端口,所述交流交互端口串联连接,所述串联连接后的端口定义为第二中压交流端口。
所述接口装置包含至少两个直流交互端口,所述直流交互端口串联连接,定义为中压直流端口。
所述接口装置中的交流交互端口的输出电压幅值和相位可独立的调节,直流交互端口的输出电压幅值可独立的调节。
所述子模块单元为由4组全控型功率半导体器件构成的H桥功率模块单元。如图2(a)所示。
所述子模块单元为由2组全控型功率半导体器件构成的半桥功率模块单元。如图2(b)所示。
作为一种优选方案,所述接口装置还包含至少一个旁路开关,所述旁路开关与子模块单元交流端并联。
作为一种优选方案,所述接口装置还包含至少一个直流开关,所述直流开关串联在子模块单元与直流变换器或直-交变换器之间。
本发明还包括一种链式多端口并网接口装置的控制方法,当装置接收到启动指令时,所述控制方法包括如下步骤:
(1)所述并网接口装置换流链中的子模块单元中的功率变换器单元开始启动;
(2)对各子模块的直流端电压进行闭环控制,控制每个子模块的直流端电压稳定;
(3)待子模块的直流端电压稳定后,启动链式多端口并网接口装置中的直流变换器以及直-交变换器,通过控制直流变换器以及直-交变换器中功率半导体器件的开通关断,使流过直流变换器以及直-交变换器的电流为0;
(4)通过控制直流变换器以及直-交变换器中功率半导体器件的开通关断,使流过直流变换器以及直-交变换器的电流逐渐增加,直至电流达到目标值。
本发明还包括一种链式多端口并网接口装置的控制方法,当装置接受到停机指令时,所述控制方法包括如下步骤:
(1)通过控制直流变换器以及直-交变换器中功率半导体器件的开通关断,使流过直流变换器以及直-交变换器的电流逐渐减小,直至电流达到0;
(2)停止链式多端口并网接口装置中的直流变换器以及直-交变换器,功率半导体器件闭锁;
(3)停止并网接口装置换流链中的子模块单元,整个装置停止运行。
本发明还包括一种链式多端口并网接口装置的控制方法,当装置中的子模块单元发生故障时,所述控制方法包括如下步骤:
(1)发生故障的子模块单元中的功率半导体器件停止工作,同时闭合与子模块单元并联的旁路开关;
(2)停止链式多端口并网接口装置中的直流变换器以及直-交变换器,功率半导体器件闭锁。作为一种优选的实施方案,功率半导体器件闭锁时,可同时分开对应的直流开关。
本发明还包括一种链式多端口并网接口装置的控制方法,当装置中的直流变换器或直-交变换器发生故障时,所述控制方法包括如下步骤:
(1)发生故障的直流变换器或直-交变换器的功率半导体器件停止工作
(2)分开对应的直流开关。
本发明还包括一种所述链式多端口并网接口装置的***,所述***包含链式多端口并网接口装置以及直流电源、交流电源、储能单元、直流负荷,交流负荷五种低压单元,所述接口装置包含的交流交互端口和直流交互端口至少与上述两种低压单元连接,构成链式多端口并网接口装置的***,其中直流电源、储能单元,直流负荷与直流交互端口连接,交流电源和交流负荷与交流交互端口连接。
本发明还包括一种含有所述链式多端口并网接口装置的换流器,如图5所示,所述换流器包括三相,每一相包括上下两个桥臂,每个桥臂包含一个电抗器与所述接口装置的串联连接,上下两个桥臂合在一起成为一个相单元,上下两个桥臂的连接点为中点,三个上桥臂的引出端连接在一起,为所述换流器正端;三个下桥臂的引出端连接在一起,为所述换流器的负端,所述换流器的三相桥臂的中点与电网连接,换流器的正端与直流输电线路的正极连接,换流器的负端与直流输电线路的负极连接。
本发明还包括一种含有所述链式多端口并网接口装置的换流器,如图6所示,所述换流器包括三个相单元,每一个相单元包括一个接口装置与电抗器的串联连接,三个相单元的一端相连,构成星型连接,三个相单元的另一端分别与电网侧的三相对应连接。
本发明还包括一种含有所述链式多端口并网接口装置的换流器,如图7所示,所述换流器包括三个单元相,每一个相单元包括一个接口装置与电抗器的串联连接,三个相单元的首尾相互连接,构成角型连接,首尾连接的三个连接点分别与电网侧的三相对应连接。
本发明可应用在直流电网、交直流混合配网,微网等需要将低压单元接入到中高压电网的应用场合,还可以用于中压交流负荷,如中压电动机变频器应用场合。
以下列海岛上的微网***的应用场景以及中压电动机变频器说明本发明的具体实施方案:
场景1:海岛上的微网***,包含以下需求:
(1)中压输电:海岛上的电能通过10kV以交流形式送出
(2)交压电源:包含3组(300kW)风力发电单元,输出为交流三相690V
(3)直流电源:包括2组(500kW)光伏发电电源,输出为直流600V
(4)储能单元:1组由钠硫电池构成的储能单元(800kW),输出为直流700V
(5)交流负荷:包含2组交流负荷,用于海岛内供电,1组单相220V交流负荷(200kW),1组三相380V交流负荷(300kW)
通常构成换流器需要3个链式多端口并网装置,每个构成1相,构成ABC三相,本场景为了简化分析,仅列出1相的情况。
如采用现有技术中的方案解决应用场景的问题,如图8所示,总容量达到3200kW,高压侧电压为10kV,包含10个子模块单元,每个子模块单元都配置DC/DC单元,DC/DC单元设计容量为320kW,DC/DC单元输出并联,提供一个1100V的直流母线,直流母线的总容量3200kW,由于用电需求包含多种电制,因此基于1100V的直流母线,还需要多个DC/DC单元与DC/AC单元对不同电制的电源以及负荷进行匹配,总体结构复杂,该场景下,共需要13个DC/DC变换器,5个DC/AC变换器。
采用本发明解决应用场景的问题,如图9所示,本实施例中换流链由相互串联的10个子模块单元构成,10个子模块的交流端首尾顺次连接,连接在10kV交流高压侧,对于本实施例,共包含5组DC/AC变换器,4组DC/DC变换器,提供5个独立的交流交互端口,4个独立的直流交互端口。交流交互端口连接包含3组(300kW)风力发电单元、1组单相负荷,1组三相负荷;直流交互端口连接2组光伏发电单元,1组储能储能单元。
采用本发明方案,不必考虑总容量,每个子模块单元以及DC/DC或DC/AC变换器的容量大于等于端口所需的容量即可,通常每个子模块的容量设计为相同,以利于工程化设计和生产,对于本场景,大部分所需要接入的单元容量不大于500kW,对于储能单元,容量为800kW,可以采用两个单元并联的方式,配置非常灵活,易于工程化设计。每个DC/DC或DC/AC变换器均是独立控制,且端口电压可调节,通过每个变换器控制策略以及控制目标的调整实现了工作范围内不同电制单元接入的自适应。与现有技术相比还具有以下优势:
(1)与现有技术的方案相比,本方案需要3个DC/DC变换器,5个DC/AC变换器,成本大大降低。
(2)减少了1个功率变换环节,现有技术方案由子模块单元到接入的单元包括两个功率变换的环节,而本发明只需要1个功率变换环节,效率上有显著优势。
(3)现有技术方案中存在低压直流母线,该母线与前级的10个DC/DC变换器的副边连接,与后级DC/DC变换器、DC/AC变换器的原边连接,一旦直流母线发生故障,所有的13个功率变换器均会受到影响,导致设备全部停止运行,单个功率变换器发生故障后,也较难从***中完全切除,需要对每个功率变换器在母线侧设置直流开关;成本和代价较大。本发明不存在公共母线,各个单元相对独立,当子模块发生故障时可以通过旁路的方式从***中切除,受到影响的仅仅是1个单元,当功率变换器发生故障时,可分开对应的直流开关,直流开关为选配,如不配置直流开关,也可通过旁路开关将故障单元切除,可以迅速缩小故障范围。本发明与现有技术的方案相比在可靠性上具有显著的优势。
(4)本发明与现有技术的方案相比更容易扩容,该应用场景下,假设又有新的光伏 发电单元需要接入***,新的单元的加入导致设备的总容量增加,前级10个DC/DC变换器的容量总和超出了原有设计范围,此时很难再进行增容,同时增加10个DC/DC变换器的容量代价很大,增加换流链的子模块单元需要对原有***结构进行大量的更改。而本发明的装置中留有备用端口,仅仅需要为备用端口增加1个DC/DC变换器,即可接入的新的光伏发电单元。通常1个换流器有ABC三相3个换流链,因此会有数量较多的备用端口,预留上述备用端口并未增加任何成本,设备利用率不受影响,而对于现有技术的方案,如果预留容量,需要提高10个DC/DC变换器的容量,增加了额外的成本。
场景2:中压电动机变频器
如图10所示,本发明方案可以通过交流交互端口连接多绕组变压器的原边,在本实施例中,本实施例包含10个子模块单元,包含6组DC/AC变换器,可提供6个交流交互端口,多绕组变压器包含6个原边,与6个交流交互端口一一对应连接,多绕组变压器的副边连接6kV的中压交流电机,通过控制与子模块连接的DC/AC逆变器的占空比,可控制输出交流频率,调节中压交流电机负荷的转速或者转矩。本实施还包括4个备用端口,用于增容或接入其他类型电源或负荷。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (20)

  1. 一种链式多端口并网接口装置,包含一个换流链,所述换流链由相互串联的至少两个子模块单元构成,所述子模块单元包含功率变换单元以及电容,电容的正极、负极引出,定义为子模块单元的直流端,功率变换单元的一端与电容并联连接,另一端定义为子模块单元的交流端,各个子模块的交流端首尾顺次连接,其特征在于,所述链式多端口并网接口装置还包括至少一个直流变换器、至少一个直-交变换器,所述直流变换器实现将一种直流电变换成另一种具有不同输出特性的直流电,直流变换器的一端与子模块单元的直流端连接,另一端定义为并网接口装置的直流交互端口,所述直-交变换器实现将直流电变换成交流电,直-交变换器的直流电连接端与子模块单元的直流端连接,交流电连接端定义为并网接口装置的交流交互端口。
  2. 如权利要求1所述的链式多端口并网接口装置,其特征在于,所述接口装置至少包含一个空闲的直流端,上述直流端未与直-交变换器连接,也未与直流变换器连接,定义为备用端口。
  3. 如权利要求1所述的链式多端口并网接口装置,其特征在于,所述接口装置包含至少两个直流交互端口以及至少两个交流交互端口。
  4. 如权利要求1所述的链式多端口并网接口装置,其特征在于,所述接口装置包含至少两个交流交互端口,所述交流交互端口与多绕组变压器连接,多绕组变压器的每组原边均与一个交流交互端口连接,多绕组变压器的副边定义为第一中压交流端口。
  5. 如权利要求1所述的链式多端口并网接口装置,其特征在于,所述接口装置包含至少两个交流交互端口,所述交流交互端口串联连接,所述串联连接后的端口定义为第二中压交流端口。
  6. 如权利要求1所述的链式多端口并网接口装置,其特征在于,所述接口装置包含至少两个直流交互端口,所述直流交互端口串联连接,定义为中压直流端口。
  7. 如权利要求1所述的链式多端口并网接口装置,其特征在于,所述接口装置中的交流交互端口的输出电压幅值和相位可独立的调节,直流交互端口的输出电压幅值可独立的调节。
  8. 如权利要求1所述的链式多端口并网接口装置,其特征在于,所述子模块单元为由4组全控型功率半导体器件构成的H桥功率模块单元。
  9. 如权利要求1所述的链式多端口并网接口装置,其特征在于,所述子模块单元为由2组全控型功率半导体器件构成的半桥功率模块单元。
  10. 如权利要求1所述的链式多端口并网接口装置,其特征在于,所述接口装置还包含至少一个旁路开关,所述旁路开关与子模块单元交流端并联。
  11. 如权利要求1所述的链式多端口并网接口装置,其特征在于,所述接口装置还包含至少一个直流开关,所述直流开关串联在子模块单元与直流变换器或直-交变换器之间。
  12. 如权利要求1至11中任意一项所述的一种链式多端口并网接口装置的控制方法,其特征在于,当装置接收到启动指令时,所述控制方法包括如下步骤:
    步骤1:所述并网接口装置换流链中的子模块单元中的功率变换器单元开始启动;
    步骤2:对各子模块的直流端电压进行闭环控制,控制每个子模块的直流端电压稳定;
    步骤3:待子模块的直流端电压稳定后,启动链式多端口并网接口装置中的直流变换器以及直-交变换器,通过控制直流变换器以及直-交变换器中功率半导体器件的开通关断, 使流过直流变换器以及直-交变换器的电流为0;
    步骤4:通过控制直流变换器以及直-交变换器中功率半导体器件的开通关断,使流过直流变换器以及直-交变换器的电流逐渐增加,直至电流达到目标值。
  13. 如权利要求1至11中任意一项所述的一种链式多端口并网接口装置的控制方法,其特征在于,当装置接受到停机指令时,所述控制方法包括如下步骤:
    步骤1:通过控制直流变换器以及直-交变换器中功率半导体器件的开通关断,使流过直流变换器以及直-交变换器的电流逐渐减小,直至电流达到0;
    步骤2:停止链式多端口并网接口装置中的直流变换器以及直-交变换器,功率半导体器件闭锁;
    步骤3:停止并网接口装置换流链中的子模块单元,整个装置停止运行。
  14. 如权利要求1至11中任意一项所述的一种链式多端口并网接口装置的控制方法,其特征在于,当装置中的子模块单元发生故障时,所述控制方法包括如下步骤:
    步骤1:发生故障的子模块单元中的功率半导体器件停止工作,同时闭合与子模块单元并联的旁路开关;
    步骤2:停止链式多端口并网接口装置中的直流变换器以及直-交变换器,功率半导体器件闭锁。
  15. 如权利要求14所述的一种链式多端口并网接口装置的控制方法,其特征在于,步骤2为:停止链式多端口并网接口装置中的直流变换器以及直-交变换器,功率半导体器件闭锁,同时分开对应的直流开关。
  16. 如权利要求1至11中任意一项所述的一种链式多端口并网接口装置的控制方法,其特征在于,当装置中的直流变换器或直-交变换器发生故障时,所述控制方法包括如下步骤:
    步骤1:发生故障的直流变换器或直-交变换器的功率半导体器件停止工作;
    步骤2:分开对应的直流开关。
  17. 一种含有权利要求1-11中任意一项所述链式多端口并网接口装置的***,其特征在于,所述***包含链式多端口并网接口装置以及与其相连接的低压单元,所述低压单元的种类包括直流电源、交流电源、储能单元、直流负荷或者交流负荷,其中,接口装置中的直流交互端口与直流电源、储能单元或者直流负荷相连接,,接口装置中的交流交互端口与交流电源或者交流负荷相连接。
  18. 一种含有权利要求1-11中任意一项所述链式多端口并网接口装置的换流器,其特征在于,所述换流器包括三相,每一相包括上下两个桥臂,每个桥臂包含一个电抗器与所述接口装置的串联连接,上下两个桥臂合在一起组成一个相单元,上下两个桥臂的连接点为中点,三个上桥臂的引出端连接在一起,作为所述换流器正端;三个下桥臂的引出端连接在一起,作为所述换流器的负端,所述换流器的三相桥臂的中点与电网连接,换流器的正端与直流输电线路的正极连接,换流器的负端与直流输电线路的负极连接。
  19. 一种含有权利要求1-11中任意一项所述链式多端口并网接口装置的换流器,其特征在于,所述换流器包括三个相单元,每一个相单元包括一个接口装置与电抗器的串联连接,三个相单元的一端相连,构成星型连接,三个相单元的另一端分别与电网侧的三相对应连接。
  20. 一种含有权利要求1-11中任意一项所述链式多端口并网接口装置的换流器,其特征在于,所述换流器包括三个单元相,每一个相单元包括一个接口装置与电抗器的串联连接,三个相单元的首尾相互连接,构成角型连接,首尾连接的三个连接点分别与电网侧的三相对应连接。
PCT/CN2018/083773 2017-07-06 2018-04-19 一种链式多端口并网接口装置及控制方法 WO2019007135A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207001374A KR102311485B1 (ko) 2017-07-06 2018-04-19 체인식 다중 포트 그리드 연결 인터페이스 장치 및 제어 방법
JP2020500101A JP6951542B2 (ja) 2017-07-06 2018-04-19 チェーンマルチポートグリッド接続インターフェース装置及び制御方法
EP18828186.9A EP3651305A4 (en) 2017-07-06 2018-04-19 CHAINED NETWORK-CONNECTED INTERFACE DEVICE WITH MULTIPLE CONNECTIONS AND CONTROL METHODS
US16/628,383 US20200220355A1 (en) 2017-07-06 2018-04-19 Chained multi-port grid-connected interface apparatus and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710544441.1 2017-07-06
CN201710544441.1A CN107276125B (zh) 2017-07-06 2017-07-06 一种链式多端口并网接口装置及控制方法

Publications (1)

Publication Number Publication Date
WO2019007135A1 true WO2019007135A1 (zh) 2019-01-10

Family

ID=60073197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083773 WO2019007135A1 (zh) 2017-07-06 2018-04-19 一种链式多端口并网接口装置及控制方法

Country Status (6)

Country Link
US (1) US20200220355A1 (zh)
EP (1) EP3651305A4 (zh)
JP (1) JP6951542B2 (zh)
KR (1) KR102311485B1 (zh)
CN (1) CN107276125B (zh)
WO (1) WO2019007135A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290526A (zh) * 2020-09-18 2021-01-29 清华大学 一种用作海上风电能量管理枢纽的直流集电器
CN114156874A (zh) * 2021-11-25 2022-03-08 南京南瑞继保电气有限公司 柔性多状态开关装置、多状态切换方法及交流***

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107276125B (zh) * 2017-07-06 2023-06-27 南京南瑞继保电气有限公司 一种链式多端口并网接口装置及控制方法
CN110445147B (zh) * 2018-05-04 2022-07-22 南京南瑞继保电气有限公司 一种新能源厂站电压无功协调优化控制方法
CN109039081B (zh) * 2018-06-20 2021-01-01 中国科学院电工研究所 电力电子变压器、双向直流变换器及其控制方法
CN108880402B (zh) * 2018-06-22 2021-11-19 卧龙电气集团辽宁荣信电气传动有限公司 一种大功率九相电机缺相并网方法
CN109245557B (zh) * 2018-09-06 2021-10-01 南京南瑞继保电气有限公司 一种模块式变流装置、组合型换流器以及控制方法
CN109194130B (zh) * 2018-09-06 2020-11-17 南京南瑞继保电气有限公司 一种单向直流电压变换装置和***及其控制方法
CN110504688B (zh) * 2019-08-12 2020-12-29 上海交通大学 具备交直流故障不间断运行能力的固态变压器及控制方法
CN110912183B (zh) * 2019-10-31 2023-12-22 格瑞美科技(武汉)有限公司 一种含多种类型可再生能源的发电***拓扑结构
CN113258572B (zh) * 2020-02-13 2022-07-22 南京南瑞继保电气有限公司 一种柔性多状态开关及控制方法
CN113258794B (zh) * 2020-02-13 2022-07-22 南京南瑞继保电气有限公司 一种双向能量均衡换流链、电能路由器及控制方法
CN113676061B (zh) * 2020-05-15 2023-06-27 南京南瑞继保电气有限公司 动态平衡式换流器***及其控制方法
CN111934570B (zh) * 2020-09-29 2021-01-19 国网(天津)综合能源服务有限公司 一种级联h桥型光储混合能量路由器的故障容错控制方法
CN112701886B (zh) * 2020-12-07 2022-03-25 齐鲁中科电工先进电磁驱动技术研究院 模块化能量路由器、控制方法、装置及介质
JP2023550783A (ja) * 2021-01-13 2023-12-05 南京南瑞▲継▼保▲電気▼有限公司 モジュール化バッチエネルギー取得転流回路および制御方法
CN112937342A (zh) * 2021-03-10 2021-06-11 上海电机学院 一种电动汽车功率共享群充***及其方法
CN112821405B (zh) * 2021-03-29 2023-04-07 广东电网有限责任公司 一种分布式能源最优化运行***及测试方法
CN113098295A (zh) * 2021-04-07 2021-07-09 全球能源互联网研究院有限公司 一种交交变换器
CN113507214B (zh) * 2021-06-11 2022-06-24 湖南大学 三有源桥变换器功率解耦移相控制及电流有效值优化方法
CN113452070B (zh) * 2021-06-24 2022-10-11 燕山大学 一种电流源型多端口柔性并网接口装置及控制方法
US11557957B1 (en) * 2021-08-04 2023-01-17 Resilient Power Systems, Inc. Configurable power module for AC and DC applications
CN114865634B (zh) * 2022-01-17 2024-05-07 国网智能电网研究院有限公司 一种交流电网的柔性互联接线结构及控制方法
CN114598175A (zh) * 2022-03-18 2022-06-07 国网智能电网研究院有限公司 基于多端口模块化多电平直流变压器的能量均衡控制装置
CN115189341B (zh) * 2022-09-09 2022-12-06 国网浙江省电力有限公司电力科学研究院 一种全直流电力***
CN116155081B (zh) * 2023-04-23 2023-06-27 深圳市澳博森科技有限公司 一种基于多端口电源适配器的过载调整方法及装置
CN117559567B (zh) * 2024-01-11 2024-04-26 西安西电电力***有限公司 多端口能量路由器的控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156189A1 (en) * 2008-12-24 2010-06-24 Fishman Oleg S Collection of electric power from renewable energy sources via high voltage, direct current systems with conversion and supply to an alternating current transmission network
CN205265555U (zh) * 2015-11-05 2016-05-25 阳光电源股份有限公司 一种级联多电平逆变器及其应用***
CN105960746A (zh) * 2013-11-18 2016-09-21 伦斯勒理工学院 形成和操作多终端电力***的方法
CN107276125A (zh) * 2017-07-06 2017-10-20 南京南瑞继保电气有限公司 一种链式多端口并网接口装置及控制方法
CN207010253U (zh) * 2017-07-06 2018-02-13 南京南瑞继保电气有限公司 一种链式多端口并网接口装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136664A (ja) * 1999-11-05 2001-05-18 Hitachi Ltd 分散形発電システム
JP3601479B2 (ja) * 2001-06-27 2004-12-15 日本電気株式会社 多出力型電源装置およびその制御方法
JP4757815B2 (ja) * 2007-03-05 2011-08-24 本田技研工業株式会社 電動機の制御装置および車両
JP4969614B2 (ja) * 2009-07-21 2012-07-04 株式会社日立製作所 電力変換装置
JP5740824B2 (ja) * 2010-03-24 2015-07-01 ダイキン工業株式会社 電力変換装置
DE102010039640A1 (de) * 2010-08-23 2012-02-23 Siemens Aktiengesellschaft Traktionsstromrichter
JP5900949B2 (ja) * 2011-09-30 2016-04-06 Necプラットフォームズ株式会社 電源故障検出回路および電源故障検出方法
US20130343089A1 (en) * 2012-06-25 2013-12-26 General Electric Company Scalable-voltage current-link power electronic system for multi-phase ac or dc loads
JP5579804B2 (ja) * 2012-08-28 2014-08-27 ミネベア株式会社 負荷駆動装置およびその制御方法
JP2015156740A (ja) * 2014-02-20 2015-08-27 東芝三菱電機産業システム株式会社 電力変換装置
CN103904636B (zh) * 2014-02-28 2015-09-23 株洲变流技术国家工程研究中心有限公司 一种基于柔性直流输电的直流牵引供电***
CN104410095B (zh) * 2014-03-21 2015-11-18 南车株洲电力机车研究所有限公司 基于多端直流输电的交流电气化铁道同相贯通供电***
JP6326135B2 (ja) * 2014-06-13 2018-05-16 株式会社東芝 駆動装置およびその方法、ならびに無線電力伝送装置
US20160072395A1 (en) * 2014-09-08 2016-03-10 Infineon Technologies Austria Ag Multi-cell power conversion method and multi-cell power converter
JP6383304B2 (ja) * 2015-02-27 2018-08-29 株式会社日立製作所 電力変換装置、およびダブルセル
US9755537B2 (en) * 2015-03-04 2017-09-05 Infineon Technologies Austria Ag Multi-cell power conversion method with failure detection and multi-cell power converter
CN104753322A (zh) * 2015-04-07 2015-07-01 国家电网公司 能量路由器主电路拓扑和供电***
JP6575226B2 (ja) * 2015-08-24 2019-09-18 岩崎電気株式会社 Led電源装置及びled照明装置
JP6422125B2 (ja) * 2015-12-02 2018-11-14 東芝三菱電機産業システム株式会社 電力変換装置及びその制御方法
CN106253287B (zh) * 2016-08-18 2023-11-14 厦门盈盛捷电力科技有限公司 一种交直流混合供电***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156189A1 (en) * 2008-12-24 2010-06-24 Fishman Oleg S Collection of electric power from renewable energy sources via high voltage, direct current systems with conversion and supply to an alternating current transmission network
CN105960746A (zh) * 2013-11-18 2016-09-21 伦斯勒理工学院 形成和操作多终端电力***的方法
CN205265555U (zh) * 2015-11-05 2016-05-25 阳光电源股份有限公司 一种级联多电平逆变器及其应用***
CN107276125A (zh) * 2017-07-06 2017-10-20 南京南瑞继保电气有限公司 一种链式多端口并网接口装置及控制方法
CN207010253U (zh) * 2017-07-06 2018-02-13 南京南瑞继保电气有限公司 一种链式多端口并网接口装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651305A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290526A (zh) * 2020-09-18 2021-01-29 清华大学 一种用作海上风电能量管理枢纽的直流集电器
CN114156874A (zh) * 2021-11-25 2022-03-08 南京南瑞继保电气有限公司 柔性多状态开关装置、多状态切换方法及交流***

Also Published As

Publication number Publication date
CN107276125A (zh) 2017-10-20
KR20200017501A (ko) 2020-02-18
EP3651305A4 (en) 2021-01-13
JP2020526178A (ja) 2020-08-27
JP6951542B2 (ja) 2021-10-20
US20200220355A1 (en) 2020-07-09
KR102311485B1 (ko) 2021-10-08
EP3651305A1 (en) 2020-05-13
CN107276125B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
KR102311485B1 (ko) 체인식 다중 포트 그리드 연결 인터페이스 장치 및 제어 방법
CN106253728B (zh) 用于多端柔性直流输电应用的多端口模块化多电平变换器
CN105811447A (zh) 基于智能直流配电中心的城市配电网网架结构
CN104410260A (zh) 一种具有容错能力可实现直流故障自主防护的mmc子模块结构及其mmc调制方法
CN207010253U (zh) 一种链式多端口并网接口装置
CN110912242B (zh) 含混合储能直流微电网的大扰动暂态稳定协调控制方法
CN104702114A (zh) 一种开关电容接入的高频链双向直流变压器及其控制方法
CN209448659U (zh) 一种多直流端口换流器
WO2020169018A1 (zh) 一种多直流端口换流器及控制方法
CN114825451B (zh) 一种火电厂用光储微网柔性组网***
WO2024001674A1 (zh) 光储柔性并网***及方法
WO2021115019A1 (zh) 海岛输电***及其控制方法
Wang et al. Control of a three-stage three-phase cascaded modular power electronic transformer
CN105743121A (zh) 一种直接并网型光伏电站电路拓扑结构
CN215009622U (zh) 一种储能***并网装置
Ricchiuto et al. Overview of multi-DC-bus solutions for DC microgrids
CN106972541A (zh) 一种基于混合型子模块mmc的配电网多端柔性互联开关
CN213585598U (zh) 多端口电力电子变压器拓扑结构及其交直流微电网***
CN203039365U (zh) 一种基于模块化多电平换流器结构的线间潮流控制器
CN203813692U (zh) 一种基于蓄电池和超级电容的混合储能逆变器***
CN116131325A (zh) 一种用于远距离海上风电场直流汇集外送的固态变压器
Yu et al. Multi-terminal energy router and its distributed control strategy in micro-grid community applications
Chong et al. A Power Conversion System For Large-Scale Reversible SOFC Energy Storage System
CN109412182A (zh) 一种新型模块化无电解电容的光伏能量***及其调制方法
CN101299546B (zh) 太阳能发电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207001374

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018828186

Country of ref document: EP

Effective date: 20200206