WO2018233371A1 - 一种油溶性二硫化钨纳米片的制备方法 - Google Patents

一种油溶性二硫化钨纳米片的制备方法 Download PDF

Info

Publication number
WO2018233371A1
WO2018233371A1 PCT/CN2018/084218 CN2018084218W WO2018233371A1 WO 2018233371 A1 WO2018233371 A1 WO 2018233371A1 CN 2018084218 W CN2018084218 W CN 2018084218W WO 2018233371 A1 WO2018233371 A1 WO 2018233371A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
tungsten disulfide
soluble
disulfide nanosheet
tungsten
Prior art date
Application number
PCT/CN2018/084218
Other languages
English (en)
French (fr)
Inventor
张晟卯
蒋正权
张玉娟
张平余
张治军
Original Assignee
河南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南大学 filed Critical 河南大学
Publication of WO2018233371A1 publication Critical patent/WO2018233371A1/zh
Priority to US16/290,940 priority Critical patent/US20190194030A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size

Definitions

  • the invention belongs to the technical field of preparation of novel functional nano materials, and in particular relates to a preparation method of oil-soluble tungsten disulfide nanosheets.
  • Tungsten disulfide nanosheets have a wide range of applications in the fields of lubricating materials and catalysts.
  • the preparation is mainly to prepare tungsten disulfide nanoparticles by decomposing ammonium tetrathiotungstate by high temperature baking heat (360 ° C) (Chem. Mater., 2011, 23 (17), pp 3879-3885, Advanced Materials, 2001 , 13(4), pp283–286, Chemical Communications, 2003 (8): 980-981.).
  • nanosheets Another technical bottleneck restricting the application of nanosheets is their dispersion, which is due to the high surface energy of the nanosheets, easy agglomeration, and difficulty in dispersion in liquid media, thus restricting its large-scale application.
  • the invention aims to overcome the defects of the prior art, and provides a preparation method of oil-soluble tungsten disulfide nanosheets with low reaction temperature, simple and safe operation, and suitable for large-scale production, and the tungsten disulfide nanosheets prepared by the method have high purity. It has good dispersibility and stability in organic solvents.
  • the present invention adopts the following technical solutions:
  • Method for preparing oil-soluble tungsten disulfide nanosheet which uses tungsten hexachloride as tungsten source, active sulfur source represented by thioacetamide or thiourea, and is thermostated at 100-200 ° C in the presence of surface modifier The reaction is carried out for 60 minutes or more; wherein the surface modifier is at least one of a linear or branched fatty acid or a fatty amine having 6 to 40 carbon atoms.
  • the tungsten source, and the active sulfur source represented by thioacetamide or thiourea have a certain addition ratio, otherwise the prepared tungsten disulfide is not pure, and the surface modifier has a certain addition range, otherwise tungsten disulfide may not be prepared. Or the prepared tungsten disulfide is difficult to disperse.
  • the ratio of addition of tungsten hexachloride to thioacetamide or thiourea is 1 mol: 2 mol
  • the ratio of addition of tungsten hexachloride to the surface modifier is 1 g: 1-50 g.
  • the method of the invention uses tungsten hexachloride as a tungsten source, thioacetamide or thiourea as a representative active sulfur source, and reacts at 100-200 ° C in the presence of a surface modifier to obtain the oil-soluble tungsten disulfide nanometer. sheet. No anion to be removed is introduced into the reaction system, and reaction by-products can be easily removed, which greatly reduces the production cost. Compared with the conventional preparation methods using high temperature reaction (300 ° C or 360 ° C), the requirements of high temperature and severe reaction conditions are avoided.
  • the preparation method has the advantages of mild reaction condition, simple and safe operation, no pollution to the environment, simple process equipment, low cost and easy availability of raw materials, low cost and high yield, and is suitable for large-scale industrial production.
  • the prepared tungsten disulfide nanosheet has uniform particle size and good oil solubility, and has broad application prospects in the field of lubricating oil nano additives.
  • Example 1 is an XRD pattern of the oil-soluble tungsten disulfide nanosheet prepared in Example 1;
  • Example 2 is a TEM image of the oil-soluble tungsten disulfide nanosheet prepared in Example 1;
  • Figure 3 is a schematic view of the synthesis process involved in the present invention.
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • Fig. 1 The XRD pattern of the oil-soluble tungsten disulfide nanosheets obtained is shown in Fig. 1.
  • the diffraction peak at 32.665°, 49.087°, and 57.424° is identical to the standard card phase of tungsten disulfide (JCPDF card number, 08-0237), corresponding to the characteristic diffractive crystal plane of ammonium dithiotungstate (100, respectively). ), (105), (110). It is indicated that the prepared tungsten disulfide is successful and has a two-dimensional sheet structure.
  • the transmission electron microscope TEM image of the obtained oil-soluble tungsten disulfide nanosheet is shown in Fig. 2.
  • the prepared tungsten disulfide nanosheets have a uniform particle size.
  • High resolution images indicate that the synthesized sample crystallizes well and is a lamellar structure.
  • the selected area electron diffraction pattern proved to be consistent with the X-ray diffraction results and was tungsten disulfide.
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • a preparation method of oil-soluble tungsten disulfide nanosheet specifically:
  • the oil-soluble tungsten disulfide nanosheets prepared in the above Examples 2 to 13 were found by XRD and transmission electron microscopy to find that the obtained product has high purity, is indeed a tungsten disulfide nanosheet, and has a uniform size and a two-dimensional sheet structure.
  • a solution having an oil-soluble WS 2 nanosheet added at a concentration of 2.0 wt% was placed, and no precipitation was observed after standing for 2 months.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Lubricants (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)

Abstract

提供一种油溶性二硫化钨纳米片的制备方法,以六氯化钨为钨源,硫代乙酰胺或硫脲为活性硫源,在表面修饰剂存在下,于 100-200℃恒温反应 60 分钟以上获得,其中表面修饰剂为碳原子数在 6-40 之间的直链或支链的脂肪酸或脂肪胺中的至少一种。该方法在反应体系中不引入需要除去的离子,无有毒污染物排放,合成工艺温度低,制得的二硫化钨纳米片粒径均一、具有良好的油溶性,在润滑油纳米添加剂等领域有广阔的应用前景。

Description

一种油溶性二硫化钨纳米片的制备方法 技术领域
本发明属于新型功能纳米材料制备技术领域,具体涉及一种油溶性二硫化钨纳米片的制备方法。
背景技术
二硫化钨纳米片在润滑材料、催化剂等领域具有广泛的用途。目前其制备主要是以通过高温焙烧热(360℃)分解四硫代钨酸铵来制备二硫化钨纳米微粒(Chem.Mater.,2011,23(17),pp 3879–3885、Advanced Materials,2001,13(4),pp283–286、Chemical Communications,2003(8):980-981.)。这种制备方法的主要缺点不仅是反应温度高,对设备要求苛刻,而且热解中间体四硫代钨酸铵的过程中生成无色、剧毒、酸性硫化氢气体,对操作人员造成危害,也会对环境造成极大的污染。Angewandte Chemie,2014,126(30),8091-8091通过六氯化钨和硫单质反应,制备了二硫化钨纳米片,虽然和上述相比反应温度有所降低,但仍高达300℃,对反应设备要求非常苛刻,甚至会发生***危险,以致造成人员伤亡,限制着二硫化钨纳米片的工业化生产。
另一个制约纳米片应用的技术瓶颈是其分散性,这是由于纳米片表面能高,易团聚、难以在液体介质中分散,从而制约了其大规模的应用。
发明内容
本发明目的在于克服现有技术缺陷,提供一种低反应温度、操作简便安全、适合规模化生产的油溶性二硫化钨纳米片的制备方法,采用该方法制得的二硫化钨纳米片纯度高、在有机溶剂中具有良好的分散性、稳定性。
为实现上述目的,本发明采用如下技术方案:
一种油溶性二硫化钨纳米片的制备方法,其以六氯化钨为钨源,硫代乙酰胺或硫脲为代表的活性硫源,在表面修饰剂存在条件下于100-200℃恒温反应60分钟以上获得;其中,表面修饰剂为碳原子数在6~40之间的直链、或支链脂肪酸或脂肪胺中的至少一种。
其中,钨源、和硫代乙酰胺或硫脲为代表的活性硫源有一定的添加比例,否则制备的二硫化钨不纯,表面修饰剂也有一定的添加范围,否则制备不出二硫化钨或制备出来的二硫化钨难以分散。具体的,六氯化钨与硫代乙酰胺或硫脲的添加比例为1mol:2mol,六氯化钨与表面修饰剂的添加比例为1g:1-50g。
本发明所涉及的合成工艺如下图3所示。
本发明方法以六氯化钨为钨源,硫代乙酰胺或硫脲作为代表的活性硫源,在表面修饰剂存在条件下于100-200℃反应即得到所述的油溶性二硫化钨纳米片。在反应体系中不引入任何需要除去的阴离子,反应副产物可轻易除去,极大地降低了制备成本。相较于现有普遍采用高温反应(300℃或者360℃)的制备方法,避免了高温苛刻反应条件的要求。
本发明制备方法反应条件温和、操作简便安全、对环境无污染,具有工艺设备简单、原料廉价易得、成本低,产率高等特点,适合大规模的工业化生产。所制备出的二硫化钨纳米片粒径均一,具有良好的油溶性,在润滑油纳米添加剂等领域具有广阔的应用前景。
附图说明
图1为实施例1制得的油溶性二硫化钨纳米片的XRD图;
图2为实施例1制得的油溶性二硫化钨纳米片的TEM图;
图3为本发明所涉及的合成工艺示意图。
具体实施方式
以下结合实施例对本发明的技术方案作进一步地详细介绍,但本发明的保护范围并不局限于此。
实施例1
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,20g油胺,10g十八烯,将上述混合液加热到140℃,恒温10分钟,加入5g含有1.5026g的硫代乙酰胺的油胺溶液,升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
制得的油溶性二硫化钨纳米片的XRD图见图1。图中,32.665°,49.087°,57.424°处的衍射峰与二硫化钨的标准卡片相完全一致(JCPDF卡片号,08-0237),分别对应二硫代钨酸铵的特征衍射晶面(100),(105),(110)。说明所制备的二硫化钨成功,且为二维片层结构。
制得的油溶性二硫化钨纳米片的透射电子显微镜TEM图见图2。由图2可以看出,所制备的二硫化钨纳米片粒径均匀。高分辨图像表明所合成的样品结晶良好且为片层结构。选区电子衍射图证明显示和X射线衍射结果一致,为二硫化钨。
在聚α烯烃6基础油和酯类油癸二酸二异辛酯中,分别配置油溶性WS 2纳米片添加浓度3.0wt%的溶液,静置2个月未见沉淀析出。
实施例2
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,25g油胺,10g十八烯和1.5026g的硫代乙酰胺,将上述混合液加热到120℃,恒温10分钟,继续升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例3
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,25g油胺,10g十八烯和1.5026g的硫代乙酰胺,将上述混合液加热到140℃,恒温10分钟,继续升温至200℃,恒温反应2h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例4
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,25g十八酸,10g十八烯和1.5026g的硫代乙酰胺,将上述混合液加热到160℃,恒温10分钟,继续升温至200℃,恒温反应1h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例5
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,25g油胺和1.5026g的硫代乙酰胺,将上述混合液加热到140℃,恒温10分钟,继续升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例6
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,25g油胺,10g十八烯和1.5224g的硫脲,将上述混合液加热到140℃,恒温10分钟,继续升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例7
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,20g油胺,10g十八烯,将上述混合液加热到140℃,恒温10分钟,加入5g含有1.5224g的硫脲的油胺溶液,升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例8
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,20g十八酸,10g十八烯,将上述混合液加热到140℃,恒温10分钟,加入5g含有1.5026g的硫代乙酰胺的油胺溶液,升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例9
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,20g十七胺,10g十八烯,将上述混合液加热到140℃,恒温10分钟,加入5g含有1.5026g的硫代乙酰胺的油胺溶液,升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例10
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,1g油胺,10g油酸,10g十八烯,将上述混合液加热到140℃,恒温10分钟,加入5g含有1.5026g的硫代乙酰胺的油胺溶液,升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例11
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,20g正辛胺,10g十八烯,将上述混合液加热到140℃,恒温10分钟,加入5g含有1.5026g的硫代乙酰胺的油胺溶液,升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例12
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,20g油胺和10g十八胺,10g十八烯,将上述混合液加热到140℃,恒温10分钟,加入5g含有1.5224g的硫脲的油胺溶液,升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
实施例13
一种油溶性二硫化钨纳米片的制备方法,具体为:
在500ml烧瓶中加入3.9656g六氯化钨,20g十八胺,10g油酸,10g十八烯,将上述混合液加热到140℃,恒温10分钟,加入5g含有1.5026g的硫代乙酰胺的油胺溶液,升温至200℃,恒温反应3h。然后用乙醇离心洗涤产物,得到的黑色半固体膏体即为目标产物油溶性二硫化钨纳米片。
上述实施例2至13制得的油溶性二硫化钨纳米片经XRD和透射电子显微镜检测发现:所得产物纯度较高,确实为二硫化钨纳米片,且尺寸均匀,呈二维片层结构。在聚α烯烃6基础油和酯类油癸二酸二异辛酯中,分别配置油溶性WS 2纳米片添加浓度2.0wt%的溶液,静置2个月未见沉淀析出。

Claims (2)

  1. 一种油溶性二硫化钨纳米片的制备方法,其特征在于,以六氯化钨为钨源,硫代乙酰胺或硫脲为活性硫源,在表面修饰剂存在条件下于100-200℃恒温反应60分钟以上获得;其中,表面修饰剂为碳原子数在6~40之间的直链、或支链脂肪酸或脂肪胺中的至少一种。
  2. 如权利要求1所述的油溶性二硫化钨纳米片的制备方法,其特征在于,六氯化钨与硫代乙酰胺或硫脲的添加比例为1mol:2mol,六氯化钨与表面修饰剂的添加比例为1g:1-50g。
PCT/CN2018/084218 2017-06-22 2018-04-24 一种油溶性二硫化钨纳米片的制备方法 WO2018233371A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/290,940 US20190194030A1 (en) 2017-06-22 2019-03-03 Method of preparing nanosheet tungsten disulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710479587.2A CN107416905B (zh) 2017-06-22 2017-06-22 一种油溶性二硫化钨纳米片的制备方法
CN201710479587.2 2017-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/290,940 Continuation-In-Part US20190194030A1 (en) 2017-06-22 2019-03-03 Method of preparing nanosheet tungsten disulfide

Publications (1)

Publication Number Publication Date
WO2018233371A1 true WO2018233371A1 (zh) 2018-12-27

Family

ID=60426034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084218 WO2018233371A1 (zh) 2017-06-22 2018-04-24 一种油溶性二硫化钨纳米片的制备方法

Country Status (3)

Country Link
US (1) US20190194030A1 (zh)
CN (1) CN107416905B (zh)
WO (1) WO2018233371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835163A (zh) * 2022-05-24 2022-08-02 南京邮电大学 一种面向水质净化的新型硫化钨光热材料及其制备和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10883046B2 (en) * 2017-02-02 2021-01-05 Nanoco 2D Materials Limited Synthesis of luminescent 2D layered materials using an amine-met al complex and a slow sulfur-releasing precursor
CN107416905B (zh) * 2017-06-22 2019-03-08 河南大学 一种油溶性二硫化钨纳米片的制备方法
CN108535207B (zh) * 2018-03-07 2020-01-07 浙江大学 基于二硫化钨纳米片的免标记生物传感器及其制备方法和应用
CN108587729B (zh) * 2018-04-13 2022-02-18 李立强 一种改性纳米二硫化钨润滑油添加剂及其制备方法
CN109225273B (zh) * 2018-10-18 2021-03-23 中国计量大学 一种硫化铜/硫化钨复合光催化剂及其制备方法
CN112142110B (zh) * 2019-06-28 2023-04-07 安徽大学 一种具有催化性能的硫化钨纳米薄片的制备方法
CN111470539A (zh) * 2019-10-20 2020-07-31 安徽大学 一种高效催化苄胺氧化偶联催化剂的制备方法
CN112871397B (zh) * 2020-12-28 2021-10-22 浙江爱润特汽车科技有限公司 一种纳米级二硫化钨材料及其制备方法、装置
CN112811469B (zh) * 2021-03-15 2022-10-14 陕西科技大学 一种单层或少层二硫化钨纳米材料的制备方法
CN115215374B (zh) * 2021-04-16 2023-08-29 北京化工大学 一种不同形貌纳米二硫化钼的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897841A (zh) * 2012-09-28 2013-01-30 浙江东晶光电科技有限公司 一种二硫化钨微米结构的制备方法
CN104828867A (zh) * 2015-05-21 2015-08-12 西南大学 溶剂热法制备三维纳米层状结构ws2及其电化学应用
CN105271417A (zh) * 2015-11-06 2016-01-27 河南大学 一种油溶性二硫化钨纳米微粒的制备方法
CN106567055A (zh) * 2015-10-08 2017-04-19 中国科学院金属研究所 一种大面积高质量完全单层的二硫化钨的制备方法
CN107416905A (zh) * 2017-06-22 2017-12-01 河南大学 一种油溶性二硫化钨纳米片的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103641173B (zh) * 2013-11-04 2016-03-02 江苏大学 一种类石墨烯二硫化钨纳米片的制备方法
CN106517335B (zh) * 2016-10-21 2018-10-12 河南师范大学 一种单层二硫化钨纳米片的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897841A (zh) * 2012-09-28 2013-01-30 浙江东晶光电科技有限公司 一种二硫化钨微米结构的制备方法
CN104828867A (zh) * 2015-05-21 2015-08-12 西南大学 溶剂热法制备三维纳米层状结构ws2及其电化学应用
CN106567055A (zh) * 2015-10-08 2017-04-19 中国科学院金属研究所 一种大面积高质量完全单层的二硫化钨的制备方法
CN105271417A (zh) * 2015-11-06 2016-01-27 河南大学 一种油溶性二硫化钨纳米微粒的制备方法
CN107416905A (zh) * 2017-06-22 2017-12-01 河南大学 一种油溶性二硫化钨纳米片的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835163A (zh) * 2022-05-24 2022-08-02 南京邮电大学 一种面向水质净化的新型硫化钨光热材料及其制备和应用
CN114835163B (zh) * 2022-05-24 2023-07-21 南京邮电大学 一种面向水质净化的新型硫化钨光热材料及其制备和应用

Also Published As

Publication number Publication date
CN107416905A (zh) 2017-12-01
US20190194030A1 (en) 2019-06-27
CN107416905B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2018233371A1 (zh) 一种油溶性二硫化钨纳米片的制备方法
Zak et al. Synthesis and characterization of ZnO nanoparticles prepared in gelatin media
US8512672B2 (en) Fabrication method of ZnO nano-particle and fabrication method of ZnO nano-fluid using thereof
US7820130B2 (en) Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions
Chang et al. Facet-controlled self-assembly of ZnO nanocrystals by non-hydrolytic aminolysis and their photodegradation activities
Li et al. Surfactant-assisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation
Xia et al. Microwave-assisted synthesis of flower-like and leaf-like CuO nanostructures via room-temperature ionic liquids
US10479696B2 (en) Method for preparing molybdenum oxide nanoparticles
CN111229258A (zh) 一种高活性硫化钼加氢催化剂的制备方法
ITSA20100029A1 (it) Sintesi "one-pot" di nano cristalli 1d, 2d, e 0d di calcogenuri di tungsteno e molibdeno (ws2, mos2) funzionalizzati con ammine e/o acidi grassi a lunga catena e/o tioli
CN102701283A (zh) 一种二硫化钨纳米棒的制备方法
CN114106276A (zh) 一种形貌可控的共价有机框架材料的制备方法
Luo et al. Hydrothermal synthesis of hollow MoS2 microspheres in ionic liquids/water binary emulsions
Shcherbakov et al. Facile method for fabrication of surfactant-free concentrated CeO2 sols
Bera et al. Facile synthesis of nanocrystalline wurtzite Cu–In–S by amine-assisted decomposition of precursors
Sabbaghan et al. Synthesis and optical properties of CuO nanostructures in imidazolium-based ionic liquids
Zhao et al. Synthesis and their physicochemical behaviors of flower-like Co3O4 microspheres
CN110156071A (zh) 一种高度有序的全无机钙钛矿纳米团簇组装体的制备方法
CN111233038A (zh) 一种球状二硫化钼及制备方法和其应用
Ma et al. Synthesis and characterization of MoS2 nanostructures with different morphologies via an ionic liquid-assisted hydrothermal route
CN108080005B (zh) 一种高催化活性电催化剂1t’相硫化钨的制备方法
Liu et al. Solvothermal synthesis of monodisperse self-assembly CeO2 nanospheres and their enhanced blue-shifting in ultraviolet absorption
Shen et al. Phase-controlled synthesis and characterization of nickel sulfides nanorods
Wang et al. Selected-control hydrothermal synthesis and formation mechanism of 1D ammonium vanadate
KR20120041215A (ko) 나노크기로 도핑된 산화 아연 입자의 제조 및 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820432

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 12.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18820432

Country of ref document: EP

Kind code of ref document: A1