WO2018232949A1 - Oled面板的封装方法 - Google Patents

Oled面板的封装方法 Download PDF

Info

Publication number
WO2018232949A1
WO2018232949A1 PCT/CN2017/098171 CN2017098171W WO2018232949A1 WO 2018232949 A1 WO2018232949 A1 WO 2018232949A1 CN 2017098171 W CN2017098171 W CN 2017098171W WO 2018232949 A1 WO2018232949 A1 WO 2018232949A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
organic
layer
inorganic barrier
packaging
Prior art date
Application number
PCT/CN2017/098171
Other languages
English (en)
French (fr)
Inventor
黄静
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/569,772 priority Critical patent/US10724139B2/en
Publication of WO2018232949A1 publication Critical patent/WO2018232949A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention relates to the field of flat panel display technologies, and in particular, to a method for packaging an OLED panel.
  • OLED Organic Light Emitting Display
  • OLED has self-illumination, low driving voltage, high luminous efficiency, short response time, high definition and contrast ratio, near 180° viewing angle, wide temperature range, and flexible display.
  • a large-area full-color display and many other advantages have been recognized by the industry as the most promising display device.
  • OLED display technology is different from traditional liquid crystal display technology. It does not require a backlight. It uses a very thin coating of organic materials and a glass substrate. When there is current, these organic materials will emit light. However, since organic materials are easily reacted with water vapor or oxygen, as an organic material-based display device, the OLED display has a very high requirement for packaging, and therefore, the sealing of the inside of the device is improved by the packaging of the OLED device, and the external environment is isolated as much as possible. It is essential for stable illumination of OLED devices.
  • the packaging of OLED devices is mainly packaged on a hard package substrate (such as glass or metal), but the method is not suitable for flexible devices, and the flexible OLED display is an inevitable trend in the development of the display industry in the future. Therefore, there are also technologies.
  • the OLED device is packaged by a laminated film generally formed by forming two barrier layers of a water-repellent barrier layer of an inorganic material over the OLED device on the substrate, between the two barrier layers.
  • a layer of a flexible buffer layer is formed as an organic material.
  • the inorganic barrier layer is usually subjected to Plasma Enhanced Chemical Vapor Deposition (PECVD), Atomic Layer Deposition (ALD), or Physical Vapor Deposition (PVD).
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • PVD Physical Vapor Deposition
  • the method is deposited, and the organic buffer layer is mainly prepared by a method of PECVD or inkjet printing (Ink-Jet Printing, IJP).
  • the ALD equipment is mainly used for depositing alumina (Al 2 O 3 ), and the obtained film has good compactness, high coverage and controllable thickness.
  • a metal mask is usually used for patterning in the ALD process, but how to clean the mask used by ALD (removing the Al 2 O 3 deposited on it) is a very tricky process. The problem is that the alumina film is difficult to clean by plasma, and if wet etching is used, it will affect the life of the mask and increase the production cost.
  • Levy et al. reported the use of IJP to pattern-spray a polymer, polyvinylpyrrolidone (PVP), on a silica substrate in order to inhibit the growth of ALD films and selectively grow Al 2 O 3 in unsprayed regions. The film is finally removed by oxygen (O 2 ) plasma to remove the polymer PVP, and a selective atomic layer deposition (SALD) technique is realized. Farm et al. also reported the use of another polymer, polymethyl methacrylate (PMMA), to inhibit the growth of ALD films.
  • PMMA polymethyl methacrylate
  • the method of performing selective-deactivation by spraying a polymer to achieve SALD has a relatively simple process and a lower cost than a conventional method of fabricating a patterned ALD film without using a mask and a wet etching process.
  • this method has not been reported in the field of OLED packaging.
  • An object of the present invention is to provide a method for packaging an OLED panel, wherein an atomic layer deposition film disposed on a substrate corresponding to a package region and covering the OLED device is formed by using an organic limiting film to achieve selective atomic layer deposition, thereby avoiding Cleaning and replacement problems caused by the use of ALD Masks.
  • the present invention provides a method for packaging an OLED panel, comprising the following steps:
  • Step S1 providing a substrate, forming an OLED device on the substrate; forming an organic defining film on the substrate on a periphery of the OLED device, the organic defining film enclosing a package region on the substrate;
  • Step S2 depositing an inorganic thin film covering the package region over the substrate and the OLED device by using an atomic layer deposition method, removing the organic limiting film, and the inorganic thin film is correspondingly located in the package region.
  • Step S3 forming a package film on the atomic layer deposition film.
  • the material of the organic defining film is polyvinylpyrrolidone or polymethyl methacrylate, and the organic limiting film has a thickness of 0.5 ⁇ m or more.
  • the organic limiting film is formed by a method of inkjet printing.
  • the organic defining film is removed by an oxygen plasma, which is generated in a plasma enhanced chemical vapor deposition apparatus.
  • the material of the atomic layer deposition film is aluminum oxide, silicon oxide, or zirconium dioxide, and the thickness of the atomic layer deposition film is 25-100 nm.
  • the encapsulating film formed in the step S3 comprises at least one inorganic barrier layer and at least one organic buffer layer, wherein the single-layer inorganic barrier layer and the single-layer organic buffer layer are alternately stacked one after another.
  • the anode layer is disposed on the atomic layer deposition film, and the uppermost layer of the package film is an inorganic barrier layer.
  • the inorganic barrier layer is deposited by plasma chemical vapor deposition, pulsed laser deposition, or sputtering.
  • the material of the inorganic barrier layer is silicon nitride, silicon oxide, silicon oxynitride, or silicon carbon nitride, and the thickness of the inorganic barrier layer is 0.5-3 ⁇ m;
  • the material of the organic buffer layer is Hexamethyldisiloxane, a polyacrylate material, a polycarbonate material, or polystyrene, the organic buffer layer having a thickness of 1-10 ⁇ m.
  • the encapsulating film formed in the step S3 comprises two inorganic barrier layers and an organic buffer layer, wherein an inorganic barrier layer is disposed on the upper surface of the atomic layer deposition film.
  • the encapsulating film formed in the step S3 comprises an inorganic barrier layer and an organic buffer layer, wherein the organic buffer layer is disposed on the upper surface of the atomic layer deposition film.
  • the invention also provides a method for packaging an OLED panel, comprising the following steps:
  • Step S1 providing a substrate, forming an OLED device on the substrate; forming an organic defining film on the substrate on a periphery of the OLED device, the organic defining film enclosing a package region on the substrate;
  • Step S2 depositing an inorganic thin film covering the package region over the substrate and the OLED device by using an atomic layer deposition method, removing the organic limiting film, and the inorganic thin film is correspondingly located in the package region.
  • Step S3 forming a package film on the atomic layer deposition film
  • the material of the organic defining film is polyvinylpyrrolidone or polymethyl methacrylate, and the thickness of the organic limiting film is 0.5 ⁇ m or more;
  • the organic limiting film is formed by a method of inkjet printing
  • the organic limiting film is removed by using an oxygen plasma generated in a plasma enhanced chemical vapor deposition apparatus
  • the material of the atomic layer deposition film is aluminum oxide, silicon oxide, or zirconium dioxide, and the thickness of the atomic layer deposition film is 25-100 nm;
  • the package film formed in the step S3 includes at least one inorganic barrier layer and at least one organic buffer layer, wherein a single layer of the inorganic barrier layer and a single layer of the organic buffer layer are sequentially stacked alternately on the atom.
  • the uppermost layer of the encapsulation film is an inorganic barrier layer.
  • the packaging method of the OLED panel of the present invention firstly forms a circle of organic limiting film on the substrate on the periphery of the OLED device, and then deposits a full surface covering on the substrate and the OLED device by atomic layer deposition.
  • an atomic layer deposition film corresponding to the upper portion of the encapsulation region can be obtained, Forming a package film on the atomic layer deposition film corresponding to the upper portion of the package region, thereby completing packaging of the OLED panel; the invention realizes selective atomic layer deposition by using the organic limiting film, thereby avoiding the use of the ALD mask and
  • the cleaning and replacement problems caused by the use thereof are relatively simple, thereby saving cost, and the obtained package structure can meet the packaging requirements of the flexible OLED panel, and can effectively block the external water and oxygen, thereby effectively protecting the OLED device. .
  • FIG. 1 is a schematic flow chart of a method for packaging an OLED panel of the present invention
  • step S2 of the method for packaging an OLED panel of the present invention is a schematic diagram of step S2 of the method for packaging an OLED panel of the present invention.
  • step S3 is a schematic diagram of step S3 of a preferred embodiment of a method for packaging an OLED panel of the present invention
  • FIG. 6 is a schematic diagram of step S3 of another preferred embodiment of the packaging method of the OLED panel of the present invention.
  • the present invention provides a method for packaging an OLED panel, including the following steps:
  • Step S1 as shown in FIG. 2, providing a substrate 10 on which an OLED device 20 is formed; then forming a circle of organically defined film on the substrate 10 on the periphery of the OLED device 20 by inkjet printing 90.
  • the organic defining film 90 encloses a package area on the substrate 10.
  • the substrate 10 is a thin film transistor (TFT) array substrate having a TFT layer thereon.
  • TFT thin film transistor
  • the organic defining film 90 has a certain distance from the display (Active Area, AA) region.
  • Step S2 as shown in FIG. 3 to FIG. 4, a method of depositing an inorganic material covering the encapsulation area on the substrate 10 and the OLED device 20 by atomic layer deposition, in the deposition process,
  • the organic defining film 90 is capable of suppressing deposition of an inorganic material on its surface, and then removing the organic defining film 90 by oxygen plasma to obtain an atomic layer deposition film 30 corresponding to the package region.
  • the material of the organic defining film 90 is an organic polymer functional material capable of suppressing the growth of a metal oxide such as polyvinylpyrrolidone or polymethyl methacrylate.
  • the formed organic defining film 90 has a thickness of 0.5 ⁇ m or more.
  • the oxygen plasma may be generated in a plasma enhanced chemical vapor deposition apparatus, and the organic defining film 90 is removed in the plasma enhanced chemical vapor deposition apparatus, of course, the organic limiting film is removed.
  • the process of 90 can also be carried out in other devices capable of generating an oxygen plasma, in which the organic limiting film 90 can be easily etched away by oxygen plasma, while the atomic layer deposited film 30 can be well It is retained to effectively block the intrusion of water and oxygen on the OLED device 20.
  • the material of the atomic layer deposition film 30 is made of aluminum oxide, silicon oxide (SiOx), or zirconium dioxide (ZrO 2 ), which can be used to increase the water-blocking oxygen resistance.
  • the atomic layer deposition film 30 has a thickness of 25 to 100 nm.
  • Step S3 forming a package film 40 on the atomic layer deposition film 30 corresponding to the upper portion of the package region, the package film 40 including at least one inorganic barrier layer 41 and at least one organic buffer layer 42, wherein the single layer The inorganic barrier layer 41 and the single-layer organic buffer layer 42 are alternately stacked on the atomic layer deposition film 30, and the uppermost layer of the package film 40 is an inorganic barrier layer 41.
  • the packaging method of the OLED panel of the invention realizes selective atomic layer deposition by using the organic limiting film 90, avoids the use of the ALD mask and the cleaning and replacement problems caused by the use thereof, and the process is relatively simple, thereby saving cost.
  • the obtained package structure can meet the packaging requirements of the flexible OLED panel, and can effectively block the external water and oxygen, thereby effectively protecting the OLED device 20.
  • the inorganic barrier layer 41 in the formed package film 40 may be deposited by plasma chemical vapor deposition, pulsed laser deposition (PLD), or sputtering.
  • the formation may also be deposited by atomic layer deposition.
  • all of the inorganic barrier layers 41 are deposited by plasma chemical vapor deposition, although the inorganic barrier layer 41 is deposited by PECVD. It is necessary to use a mask, but after forming the inorganic barrier layer 41, the sink on the mask The excess material can be removed in the plasma enhanced chemical vapor deposition apparatus, and is easier to remove, and the process is relatively simple.
  • the inorganic barrier layer 41 is still capable of inhibiting metal by using the same method as described in the above steps S1 and S2.
  • the oxide-grown organic polymer functional material is formed by atomic layer deposition to avoid the use of the ALD mask, and the specific fabrication process is as follows: inkjet printing is performed on the substrate 10 on the outside of the atomic layer deposition film 30.
  • the region of the spare organic limiting film enclosing on the substrate 10 is a package region, and depositing an inorganic film covering the package region over the entire surface by atomic layer deposition Then, the alternate organic limiting film is removed by an oxygen plasma to obtain an inorganic barrier layer 41 corresponding to the upper portion of the package region.
  • the alternate organic limiting film is the same as the organic defining film 90, and the material thereof is an organic polymer functional material such as polyvinylpyrrolidone or polymethyl methacrylate capable of suppressing growth of a metal oxide, and has a thickness of 0.5 ⁇ m. the above.
  • the organic buffer layer 42 may be formed by inkjet printing, plasma chemical vapor deposition, or slot coating.
  • the material of the inorganic barrier layer 41 formed is silicon oxide (SiNx), silicon oxide, silicon oxynitride (SiON), or silicon carbon nitride (SiCN), which can block water and oxygen. material.
  • the inorganic barrier layer 41 is formed to have a thickness of 0.5 to 3 ⁇ m.
  • the material of the organic buffer layer 42 formed may be hexamethyldisiloxane (HMDSO), polyacrylate material, polycarbonate material, or polystyrene, etc.
  • HMDSO hexamethyldisiloxane
  • polyacrylate material polyacrylate material
  • polycarbonate material polycarbonate material
  • polystyrene etc.
  • the organic buffer layer 42 is formed to have a thickness of 1-10 ⁇ m.
  • the inorganic barrier layer 41 may be formed on the upper surface of the atomic layer deposition film 30, or may be selected first on the upper surface of the atomic layer deposition film 30.
  • An organic buffer layer 42 is formed.
  • the package film 40 formed in the step S3 includes two inorganic barrier layers 41 and an organic buffer layer 42, wherein one inorganic barrier layer 41 It is provided on the upper surface of the atomic layer deposition film 30.
  • the package film 40 formed in the step S3 includes an inorganic barrier layer 41 and an organic buffer layer 42, wherein the layer An organic buffer layer 42 is provided on the upper surface of the atomic layer deposition film 30.
  • the packaging method of the OLED panel of the present invention is first applied to the OLED on the substrate.
  • a circle of organic limiting film is formed on the periphery of the device, and then an inorganic thin film covering the package area is deposited on the substrate and the OLED device by atomic layer deposition. After the organic limiting film is removed, the corresponding positioning can be obtained.
  • the present invention realizes selective atomic layer deposition by using an organic definition film
  • the use of the ALD Mask and the cleaning and replacement problems caused by the use thereof are avoided, the process is relatively simple, thereby saving cost, and the obtained package structure can meet the packaging requirements of the flexible OLED panel, and can effectively block the outside world.
  • the water oxygen is effective to protect the OLED device.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED面板的封装方法,首先在基板(10)上于OLED器件(20)***形成一圈有机限定膜(90),然后采用原子层沉积的方法在基板(10)、及OLED器件(20)上沉积一层整面覆盖所述封装区域的无机薄膜(30),去除所述有机限定膜后,便可以得到对应位于封装区域上方的原子层沉积膜(30),最后对应所述封装区域的上方在所述原子层沉积膜上形成封装薄膜(40),从而完成OLED面板的封装;由此通过利用有机限定膜实现了选择性原子层沉积,避免了ALDMask的使用及由其使用所带来的清洗及更换问题,制程相对简单,从而节省了成本,且所得到的封装结构,能够满足柔性OLED面板的封装要求,可以有效的阻隔外界的水氧,从而有效保护OLED器件(20)。

Description

OLED面板的封装方法 技术领域
本发明涉及平板显示技术领域,尤其涉及一种OLED面板的封装方法。
背景技术
有机发光二极管显示装置(Organic Light Emitting Display,OLED)具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示技术与传统的液晶显示技术不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。但是由于有机材料易与水汽或氧气反应,作为基于有机材料的显示设备,OLED显示屏对封装的要求非常高,因此,通过OLED器件的封装提高器件内部的密封性,尽可能的与外部环境隔离,对于OLED器件的稳定发光至关重要。
目前OLED器件的封装主要在硬质封装基板(如玻璃或金属)上通过封装胶封装,但是该方法并不适用于柔性器件,而柔性OLED显示器是未来显示行业发展的必然趋势,因此,也有技术方案通过叠层的薄膜对OLED器件进行封装,该薄膜封装方式一般是在基板上的OLED器件上方形成两层为无机材料的阻水性好的阻挡层(barrier layer),在两层阻挡层之间形成一层为有机材料的柔韧性好的缓冲层(buffer layer)。目前这种封装技术已经较为成熟,取得了很好的封装效果并应用在了相关产品当中。
在上述薄膜封装方式中,无机阻挡层通常采用等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)、原子层沉积(Atomic Layer Deposition,ALD)、或物理气相沉积(Physical Vapor Deposition,PVD)等方法沉积得到,而有机缓冲层主要通过PECVD或喷墨打印﹙Ink-Jet Printing,IJP﹚的方法制备得到。其中,ALD设备主要用来沉积氧化铝(Al2O3﹚,其所得到的薄膜致密性好,覆盖率高并且厚度可控。和PECVD技术一样,在ALD制程中通常采用金属掩膜板(mask)来进行图案化处理,但是,如何清洗ALD所使用的mask(去除其上所沉积的Al2O3)却是一个非常棘手的问题,因为氧化铝薄膜很难通过等离子体(plasma)的方式进行清理,而如果使用湿蚀刻(wet etching)方式的话又会影响mask的使用寿 命,增加生产成本。
Levy等人报道了采用IJP的方式在氧化硅基底上进行图案化喷涂高分子--聚乙烯吡咯烷酮(PVP),目的是抑制ALD薄膜的生长,再在未喷涂的区域选择性生长Al2O3薄膜,最后利用氧(O2)plasma将高分子PVP去除,而实现选择性原子层沉积(Selective-ALD,SALD)的技术方案。Farm等人也有报道利用另外一种高分子--聚甲基丙烯酸甲酯(PMMA)来抑制ALD薄膜的生长。这种利用喷涂高分子来进行选择性去活化(selective-deactivation)而实现SALD的方法,与传统制作图案化ALD薄膜的方法相比,无需使用mask以及湿蚀刻制程,制程相对简单,成本更低,但该方法在OLED封装领域却没有相关的报道。
发明内容
本发明的目的在于提供一种OLED面板的封装方法,其基板上对应封装区域设置并覆盖OLED器件的原子层沉积膜,是通过利用有机限定膜而实现选择性原子层沉积的方式形成,避免了由原子层沉积掩膜板(ALD Mask)的使用所带来的清洗及更换问题。
为实现上述目的,本发明提供一种OLED面板的封装方法,包括如下步骤:
步骤S1、提供基板,在所述基板上形成OLED器件;在所述基板上于所述OLED器件***形成有机限定膜,所述有机限定膜在所述基板上围出封装区域;
步骤S2、采用原子层沉积的方法在所述基板、及OLED器件上沉积一层整面覆盖所述封装区域的无机薄膜,去除所述有机限定膜,由该无机薄膜得到对应位于所述封装区域上方的原子层沉积膜;
步骤S3、在所述原子层沉积膜上形成封装薄膜。
所述步骤S1中,所述有机限定膜的材料为聚乙烯吡咯烷酮、或聚甲基丙烯酸甲酯,所述有机限定膜的厚度为0.5μm以上。
所述步骤S1中,采用喷墨打印的方法形成所述有机限定膜。
所述步骤S2中,利用氧等离子体去除所述有机限定膜,所述氧等离子体在等离子体增强化学气相沉积设备内产生。
所述步骤S2中,所述原子层沉积膜的材料为三氧化二铝、氧化硅、或二氧化锆,所述原子层沉积膜的厚度为25-100nm。
所述步骤S3中所形成的封装薄膜包括至少一层无机阻挡层和至少一层有机缓冲层,其中,单层的无机阻挡层和单层的有机缓冲层依次交替层叠 设置于所述原子层沉积膜上,所述封装薄膜的最上一层为无机阻挡层。
所述步骤S3中,所述无机阻挡层采用等离子体化学气相沉积、脉冲激光沉积、或溅镀的方法沉积形成。
所述步骤S3中,所述无机阻挡层的材料为氮化硅、氧化硅、氮氧化硅、或硅碳氮,所述无机阻挡层的厚度为0.5-3μm;所述有机缓冲层的材料为六甲基二硅醚、聚丙烯酸酯类材料、聚碳酸脂类材料、或聚苯乙烯,所述有机缓冲层的厚度为1-10μm。
所述步骤S3中所形成的封装薄膜包括两层无机阻挡层和一层有机缓冲层,其中一层无机阻挡层设于所述原子层沉积膜的上表面上。
所述步骤S3中所形成的封装薄膜包括一层无机阻挡层和一层有机缓冲层,其中,该一层有机缓冲层设于所述原子层沉积膜的上表面上。
本发明还提供一种OLED面板的封装方法,包括如下步骤:
步骤S1、提供基板,在所述基板上形成OLED器件;在所述基板上于所述OLED器件***形成有机限定膜,所述有机限定膜在所述基板上围出封装区域;
步骤S2、采用原子层沉积的方法在所述基板、及OLED器件上沉积一层整面覆盖所述封装区域的无机薄膜,去除所述有机限定膜,由该无机薄膜得到对应位于所述封装区域上方的原子层沉积膜;
步骤S3、在所述原子层沉积膜上形成封装薄膜;
其中,所述步骤S1中,所述有机限定膜的材料为聚乙烯吡咯烷酮、或聚甲基丙烯酸甲酯,所述有机限定膜的厚度为0.5μm以上;
其中,所述步骤S1中,采用喷墨打印的方法形成所述有机限定膜;
其中,所述步骤S2中,利用氧等离子体去除所述有机限定膜,所述氧等离子体在等离子体增强化学气相沉积设备内产生;
其中,所述步骤S2中,所述原子层沉积膜的材料为三氧化二铝、氧化硅、或二氧化锆,所述原子层沉积膜的厚度为25-100nm;
其中,所述步骤S3中所形成的封装薄膜包括至少一层无机阻挡层和至少一层有机缓冲层,其中,单层的无机阻挡层和单层的有机缓冲层依次交替层叠设置于所述原子层沉积膜上,所述封装薄膜的最上一层为无机阻挡层。
本发明的有益效果:本发明的OLED面板的封装方法,首先在基板上于OLED器件***形成一圈有机限定膜,然后采用原子层沉积的方法在基板、及OLED器件上沉积一层整面覆盖所述封装区域的无机薄膜,去除所述有机限定膜后,便可以得到对应位于封装区域上方的原子层沉积膜,最 后对应所述封装区域的上方在所述原子层沉积膜上形成封装薄膜,从而完成OLED面板的封装;本发明通过利用有机限定膜实现了选择性原子层沉积,避免了ALD Mask的使用及由其使用所带来的清洗及更换问题,制程相对简单,从而节省了成本,且所得到的封装结构,能够满足柔性OLED面板的封装要求,可以有效的阻隔外界的水氧,从而有效保护OLED器件。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为本发明的OLED面板的封装方法的流程示意图;
图2为本发明的OLED面板的封装方法的步骤S1的示意图;
图3-4为本发明的OLED面板的封装方法的步骤S2的示意图;
图5为本发明的OLED面板的封装方法的一优选实施例的步骤S3的示意图;
图6为本发明的OLED面板的封装方法的另一优选实施例的步骤S3的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种OLED面板的封装方法,包括如下步骤:
步骤S1、如图2所示,提供基板10,在所述基板10上形成OLED器件20;然后采用喷墨打印的方法在所述基板10上于所述OLED器件20***形成一圈有机限定膜90,所述有机限定膜90在所述基板10上围出封装区域。
具体地,所述基板10为薄膜晶体管(TFT)阵列基板,其上带有TFT层。
具体地,所述步骤S1中,所形成的有机限定膜90与OLED器件20之间需要存在间隔,即所述有机限定膜90与显示(Active Area,AA)区域之间具有一定距离。
步骤S2、如图3至4所示,采用原子层沉积的方法在所述基板10、及OLED器件20上沉积一层整面覆盖所述封装区域的无机材料的薄膜,该沉积过程中,所述有机限定膜90能够抑制无机材料在其表面上沉积,然后利用氧等离子体去除所述有机限定膜90,得到对应位于所述封装区域上方的原子层沉积膜30。
具体地,所述有机限定膜90的材料为聚乙烯吡咯烷酮、或聚甲基丙烯酸甲酯等能够抑制金属氧化物生长的有机高分子功能材料。
具体地,所述步骤S2中,所形成的有机限定膜90的厚度为0.5μm以上。
具体地,所述步骤S2中,所述氧等离子体可以在等离子体增强化学气相沉积设备内产生,所述有机限定膜90在该等离子体增强化学气相沉积设备内去除,当然该去除有机限定膜90的过程也可以在其他能够产生氧等离子体的设备内进行,此过程中,所述有机限定膜90可以很容易地被氧等离子体刻蚀掉,而原子层沉积膜30却可以被很好的保留下来,从而有效阻隔水氧对OLED器件20的侵害。
具体地,所述步骤S2中,所形成原子层沉积膜30的材料为三氧化二铝、氧化硅(SiOx)、或二氧化锆(ZrO2)等能够用于增加阻水氧性能的无机材料,所述原子层沉积膜30的厚度为25-100nm。
步骤S3、对应所述封装区域的上方在所述原子层沉积膜30上形成封装薄膜40,所述封装薄膜40包括至少一层无机阻挡层41和至少一层有机缓冲层42,其中,单层的无机阻挡层41和单层的有机缓冲层42依次交替层叠设置于所述原子层沉积膜30上,所述封装薄膜40的最上一层为无机阻挡层41。
本发明的OLED面板的封装方法,通过利用有机限定膜90实现了选择性原子层沉积,避免了ALD Mask的使用及由其使用所带来的清洗及更换问题,制程相对简单,从而节省了成本,且所得到的封装结构,能够满足柔性OLED面板的封装要求,可以有效的阻隔外界的水氧,从而有效保护OLED器件20。
具体地,所述步骤S3中,所形成的封装薄膜40中所述无机阻挡层41可以采用等离子体化学气相沉积、脉冲激光沉积(Pulsed Laser Deposition,PLD)、或溅镀(sputter)的方法沉积形成,也可以采用原子层沉积的方法沉积形成,优选地,所述步骤S3中,所有无机阻挡层41均采用等离子体化学气相沉积的方法沉积形成,虽然通过PECVD的方法沉积形成无机阻挡层41需要使用掩膜板,但是在形成无机阻挡层41后,其掩膜板上的所沉 积的多余材料在等离子体增强化学气相沉积设备内便可以去除,且较容易去除,制程较为简单。
具体地,所述步骤S3中,当某一无机阻挡层41采用原子层沉积的方法沉积形成时,该无机阻挡层41仍如上述步骤S1及步骤S2所描述的方法一样,通过利用能够抑制金属氧化物生长的有机高分子功能材料来进行原子层沉积形成,从而避免ALD Mask的使用,其具体制作过程为:采用喷墨打印的方法在所述基板10上于所述原子层沉积膜30外侧形成一圈备用有机限定膜(未图示),该备用有机限定膜在基板10上所围出的区域为封装区域,采用原子层沉积的方法沉积一层整面覆盖所述封装区域的无机薄膜,然后利用氧等离子体去除该备用有机限定膜,得到对应位于所述封装区域上方的无机阻挡层41。
具体地,该备用有机限定膜同所述有机限定膜90一样,其材料为聚乙烯吡咯烷酮、或聚甲基丙烯酸甲酯等能够抑制金属氧化物生长的有机高分子功能材料,其厚度为0.5μm以上。
具体地,所述步骤S3中,所述有机缓冲层42可以采用喷墨打印、等离子体化学气相沉积、或狭缝涂布(slot coating)的方法形成。
具体地,所述步骤S3中,所形成的无机阻挡层41的材料为氮化硅(SiNx)、氧化硅、氮氧化硅(SiON)、或硅碳氮(SiCN)等能够阻隔水氧的无机材料。
具体地,所述步骤S3中,所形成的无机阻挡层41的厚度为0.5-3μm。
具体地,所述步骤S3中,所形成的有机缓冲层42的材料可以为六甲基二硅醚(HMDSO)、聚丙烯酸酯类材料、聚碳酸脂类材料、或聚苯乙烯等能够用于缓冲器件在弯曲、折叠时的应力以及覆盖颗粒污染物的有机材料。
具体地,所述步骤S3中,所形成的有机缓冲层42的厚度为1-10μm。
具体地,所述步骤S3中,在制作封装薄膜40的过程中,可以先在原子层沉积膜30的上表面上形成无机阻挡层41,也可以选择先在原子层沉积膜30的上表面上形成有机缓冲层42。例如,如图5所示,本发明的一优选实施例中,所述步骤S3中所形成的封装薄膜40包括两层无机阻挡层41和一层有机缓冲层42,其中一层无机阻挡层41设于所述原子层沉积膜30的上表面上。再例如,如图6所示,本发明的另一优选实施例中,所述步骤S3中所形成的封装薄膜40包括一层无机阻挡层41和一层有机缓冲层42,其中,该一层有机缓冲层42设于所述原子层沉积膜30的上表面上。
综上所述,本发明的OLED面板的封装方法,首先在基板上于OLED 器件***形成一圈有机限定膜,然后采用原子层沉积的方法在基板、及OLED器件上沉积一层整面覆盖所述封装区域的无机薄膜,去除所述有机限定膜后,便可以得到对应位于封装区域上方的原子层沉积膜,最后对应所述封装区域的上方在所述原子层沉积膜上形成封装薄膜,从而完成OLED面板的封装;本发明通过利用有机限定膜实现了选择性原子层沉积,避免了ALD Mask的使用及由其使用所带来的清洗及更换问题,制程相对简单,从而节省了成本,且所得到的封装结构,能够满足柔性OLED面板的封装要求,可以有效的阻隔外界的水氧,从而有效保护OLED器件。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (15)

  1. 一种OLED面板的封装方法,包括如下步骤:
    步骤S1、提供基板,在所述基板上形成OLED器件;在所述基板上于所述OLED器件***形成有机限定膜,所述有机限定膜在所述基板上围出封装区域;
    步骤S2、采用原子层沉积的方法在所述基板、及OLED器件上沉积一层整面覆盖所述封装区域的无机薄膜,去除所述有机限定膜,由该无机薄膜得到对应位于所述封装区域上方的原子层沉积膜;
    步骤S3、在所述原子层沉积膜上形成封装薄膜。
  2. 如权利要求1所述的OLED面板的封装方法,其中,所述步骤S1中,所述有机限定膜的材料为聚乙烯吡咯烷酮、或聚甲基丙烯酸甲酯,所述有机限定膜的厚度为0.5μm以上。
  3. 如权利要求1所述的OLED面板的封装方法,其中,所述步骤S1中,采用喷墨打印的方法形成所述有机限定膜。
  4. 如权利要求1所述的OLED面板的封装方法,其中,所述步骤S2中,利用氧等离子体去除所述有机限定膜,所述氧等离子体在等离子体增强化学气相沉积设备内产生。
  5. 如权利要求1所述的OLED面板的封装方法,其中,所述步骤S2中,所述原子层沉积膜的材料为三氧化二铝、氧化硅、或二氧化锆,所述原子层沉积膜的厚度为25-100nm。
  6. 如权利要求1所述的OLED面板的封装方法,其中,所述步骤S3中所形成的封装薄膜包括至少一层无机阻挡层和至少一层有机缓冲层,其中,单层的无机阻挡层和单层的有机缓冲层依次交替层叠设置于所述原子层沉积膜上,所述封装薄膜的最上一层为无机阻挡层。
  7. 如权利要求6所述的OLED面板的封装方法,其中,所述步骤S3中,所述无机阻挡层采用等离子体化学气相沉积、脉冲激光沉积、或溅镀的方法沉积形成。
  8. 如权利要求6所述的OLED面板的封装方法,其中,所述步骤S3中,所述无机阻挡层的材料为氮化硅、氧化硅、氮氧化硅、或硅碳氮,所述无机阻挡层的厚度为0.5-3μm;所述有机缓冲层的材料为六甲基二硅醚、聚丙烯酸酯类材料、聚碳酸脂类材料、或聚苯乙烯,所述有机缓冲层的厚度为1-10μm。
  9. 如权利要求6所述的OLED面板的封装方法,其中,所述步骤S3中所形成的封装薄膜包括两层无机阻挡层和一层有机缓冲层,其中一层无机阻挡层设于所述原子层沉积膜的上表面上。
  10. 如权利要求6所述的OLED面板的封装方法,其中,所述步骤S3中所形成的封装薄膜包括一层无机阻挡层和一层有机缓冲层,其中,该一层有机缓冲层设于所述原子层沉积膜的上表面上。
  11. 一种OLED面板的封装方法,包括如下步骤:
    步骤S1、提供基板,在所述基板上形成OLED器件;在所述基板上于所述OLED器件***形成有机限定膜,所述有机限定膜在所述基板上围出封装区域;
    步骤S2、采用原子层沉积的方法在所述基板、及OLED器件上沉积一层整面覆盖所述封装区域的无机薄膜,去除所述有机限定膜,由该无机薄膜得到对应位于所述封装区域上方的原子层沉积膜;
    步骤S3、在所述原子层沉积膜上形成封装薄膜;
    其中,所述步骤S1中,所述有机限定膜的材料为聚乙烯吡咯烷酮、或聚甲基丙烯酸甲酯,所述有机限定膜的厚度为0.5μm以上;
    其中,所述步骤S1中,采用喷墨打印的方法形成所述有机限定膜;
    其中,所述步骤S2中,利用氧等离子体去除所述有机限定膜,所述氧等离子体在等离子体增强化学气相沉积设备内产生;
    其中,所述步骤S2中,所述原子层沉积膜的材料为三氧化二铝、氧化硅、或二氧化锆,所述原子层沉积膜的厚度为25-100nm;
    其中,所述步骤S3中所形成的封装薄膜包括至少一层无机阻挡层和至少一层有机缓冲层,其中,单层的无机阻挡层和单层的有机缓冲层依次交替层叠设置于所述原子层沉积膜上,所述封装薄膜的最上一层为无机阻挡层。
  12. 如权利要求11所述的OLED面板的封装方法,其中,所述步骤S3中,所述无机阻挡层采用等离子体化学气相沉积、脉冲激光沉积、或溅镀的方法沉积形成。
  13. 如权利要求11所述的OLED面板的封装方法,其中,所述步骤S3中,所述无机阻挡层的材料为氮化硅、氧化硅、氮氧化硅、或硅碳氮,所述无机阻挡层的厚度为0.5-3μm;所述有机缓冲层的材料为六甲基二硅醚、聚丙烯酸酯类材料、聚碳酸脂类材料、或聚苯乙烯,所述有机缓冲层的厚度为1-10μm。
  14. 如权利要求11所述的OLED面板的封装方法,其中,所述步骤 S3中所形成的封装薄膜包括两层无机阻挡层和一层有机缓冲层,其中一层无机阻挡层设于所述原子层沉积膜的上表面上。
  15. 如权利要求11所述的OLED面板的封装方法,其中,所述步骤S3中所形成的封装薄膜包括一层无机阻挡层和一层有机缓冲层,其中,该一层有机缓冲层设于所述原子层沉积膜的上表面上。
PCT/CN2017/098171 2017-06-19 2017-08-18 Oled面板的封装方法 WO2018232949A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/569,772 US10724139B2 (en) 2017-06-19 2017-08-18 Encapsulation method for OLED Panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710465750.XA CN107403877B (zh) 2017-06-19 2017-06-19 Oled面板的封装方法
CN201710465750.X 2017-06-19

Publications (1)

Publication Number Publication Date
WO2018232949A1 true WO2018232949A1 (zh) 2018-12-27

Family

ID=60405284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098171 WO2018232949A1 (zh) 2017-06-19 2017-08-18 Oled面板的封装方法

Country Status (2)

Country Link
CN (1) CN107403877B (zh)
WO (1) WO2018232949A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206244A (zh) * 2017-12-28 2018-06-26 信利(惠州)智能显示有限公司 有机发光显示装置及其制备方法
CN108305954B (zh) * 2018-01-24 2020-07-31 武汉华星光电半导体显示技术有限公司 Oled器件的薄膜封装方法及oled器件
CN108461647B (zh) * 2018-03-01 2020-06-19 云谷(固安)科技有限公司 封装方法和显示装置
CN108963104A (zh) * 2018-07-02 2018-12-07 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其封装方法
CN109037482A (zh) * 2018-08-03 2018-12-18 武汉华星光电半导体显示技术有限公司 薄膜封装层的制备方法及oled显示装置
US10790472B2 (en) 2018-08-03 2020-09-29 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method of manufacturing a thin film encapsulation layer and organic light emitting diode display device
CN208444841U (zh) 2018-08-09 2019-01-29 云谷(固安)科技有限公司 显示屏及显示装置
CN109446941A (zh) * 2018-10-15 2019-03-08 武汉华星光电半导体显示技术有限公司 显示装置及其制备方法
CN110718647A (zh) 2019-09-25 2020-01-21 武汉华星光电半导体显示技术有限公司 薄膜的制备方法及显示装置的制备方法
CN111244327B (zh) * 2020-01-23 2023-01-24 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN112635697A (zh) * 2021-01-06 2021-04-09 Tcl华星光电技术有限公司 一种封装方法、封装结构、显示面板
CN115747753B (zh) * 2022-11-07 2024-05-14 福建华佳彩有限公司 一种tfe遮罩免清洗结构及工艺方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709486A (zh) * 2012-06-11 2012-10-03 四川虹视显示技术有限公司 LiF膜的用途及OLED封装结构及封装方法
CN102751445A (zh) * 2012-05-31 2012-10-24 昆山工研院新型平板显示技术中心有限公司 一种封装薄膜及制造该封装薄膜的方法
CN106848087A (zh) * 2015-12-07 2017-06-13 上海和辉光电有限公司 显示模组封装结构及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293706B2 (en) * 2011-02-07 2016-03-22 Applied Materials, Inc. Method for encapsulating an organic light emitting diode
CN106158901B (zh) * 2015-03-24 2020-06-23 上海和辉光电有限公司 一种混合型薄膜及其制备方法、以及柔性oled显示器
CN106711354A (zh) * 2016-12-02 2017-05-24 武汉华星光电技术有限公司 有机半导体器件的封装方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751445A (zh) * 2012-05-31 2012-10-24 昆山工研院新型平板显示技术中心有限公司 一种封装薄膜及制造该封装薄膜的方法
CN102709486A (zh) * 2012-06-11 2012-10-03 四川虹视显示技术有限公司 LiF膜的用途及OLED封装结构及封装方法
CN106848087A (zh) * 2015-12-07 2017-06-13 上海和辉光电有限公司 显示模组封装结构及其制备方法

Also Published As

Publication number Publication date
CN107403877B (zh) 2019-10-25
CN107403877A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
WO2018232949A1 (zh) Oled面板的封装方法
US10205123B2 (en) Packaging method for organic semiconductor device
US9166191B2 (en) Display device, method of manufacturing the display device and carrier substrate for manufacturing display device
US10724139B2 (en) Encapsulation method for OLED Panel
EP3016166B1 (en) Organic light-emitting display apparatus
US9716249B2 (en) Display module encapsulating structure and preparing method thereof
CN106848088B (zh) 显示模组封装结构及其制备方法
WO2019041386A1 (zh) Oled面板的制作方法及oled面板
JP6054589B2 (ja) 有機発光装置
WO2018072283A1 (zh) Oled显示器及其制作方法
US11793028B2 (en) Organic light emitting diode display and method for manufacturing the same
US10068923B2 (en) Transparent display device and method of manufacturing the same
US20160197293A1 (en) Flexible display substrate and manufacturing method thereof, and flexible display device
US9312279B2 (en) Thin film transistor array substrate, method of manufacturing the same, and display apparatus including the same
US20150102332A1 (en) Organic light emitting device and method of fabricating the same
WO2015043176A1 (zh) 柔性显示基板及其制备方法、柔性显示装置
US9343519B2 (en) Method of manufacturing organic light emitting display device
WO2019051920A1 (zh) Oled显示面板的封装方法
WO2019075853A1 (zh) 柔性oled面板的封装方法及封装结构
WO2018113005A1 (zh) Oled封装方法与oled封装结构
KR20100124012A (ko) 플렉시블 디스플레이의 기판 처리 방법
TWI531276B (zh) 有機電激發光元件之封裝方法及其結構
CN103515409B (zh) 显示装置及显示装置的制造方法
JP2009043614A (ja) 有機elディスプレイの製造方法
KR100670367B1 (ko) 유기 발광 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914503

Country of ref document: EP

Kind code of ref document: A1