WO2018223475A1 - Oled显示面板的像素排列结构及oled显示面板 - Google Patents

Oled显示面板的像素排列结构及oled显示面板 Download PDF

Info

Publication number
WO2018223475A1
WO2018223475A1 PCT/CN2017/092001 CN2017092001W WO2018223475A1 WO 2018223475 A1 WO2018223475 A1 WO 2018223475A1 CN 2017092001 W CN2017092001 W CN 2017092001W WO 2018223475 A1 WO2018223475 A1 WO 2018223475A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
display panel
row
Prior art date
Application number
PCT/CN2017/092001
Other languages
English (en)
French (fr)
Inventor
金羽锋
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/551,549 priority Critical patent/US10535718B2/en
Publication of WO2018223475A1 publication Critical patent/WO2018223475A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to a pixel arrangement structure of an OLED display panel and an OLED display panel.
  • the resolution of an OLED display panel screen is typically expressed as the product of the number of pixels in both horizontal and vertical directions.
  • one pixel unit is composed of three sub-pixels of R, G, and B.
  • the sub-pixel density of the display panel is multiplied, thereby significantly increasing the process difficulty and cost of preparing the display panel.
  • One of the technical problems to be solved by the present invention is to optimize the arrangement of sub-pixels and achieve high pixel resolution performance with fewer sub-pixels, thereby reducing the process difficulty and cost of preparing a high-resolution OLED display panel.
  • an embodiment of the present invention first provides a pixel arrangement structure of an OLED display panel, including a plurality of first sub-pixels, a plurality of second sub-pixels, and a plurality of third sub-pixels;
  • the first sub-pixel and the second sub-pixel are alternately disposed along a direction of a row of the display panel, along a gap between each pair of the first sub-pixel and the second sub-pixel selected at intervals
  • the direction of the row is set with two third sub-pixels;
  • the first sub-pixel and the third sub-pixel are alternately arranged to form a first sequence
  • the second sub-pixel and the third sub-pixel are alternately arranged to form a second a sequence in which the first sequence and the second sequence are alternately arranged in the direction of the row.
  • the number of the first sub-pixels is equal to the number of the second sub-pixels
  • the number of the third sub-pixels is the number of the first sub-pixels or the second sub-pixels Doubled.
  • a distance between the two third sub-pixels disposed at a gap between each pair of first sub-pixels and second sub-pixels selected at intervals is smaller than a direction along a direction of a row of the display panel a distance between the first sub-pixel and the second sub-pixel, a distance between the first sub-pixel and the third sub-pixel, and between the two sub-pixels and the third sub-pixel distance.
  • an area of the third sub-pixel is smaller than an area of the first sub-pixel and smaller than an area of the second sub-pixel.
  • an area of the first sub-pixel is equal to an area of the second sub-pixel.
  • the first sub-pixel, the second sub-pixel and the third sub-pixel each have a polygonal structure.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel are sequentially a red sub-pixel, a blue sub-pixel, and a green sub-pixel; or, the first sub-pixel, the second sub-pixel, and the third The sub-pixels are, in order, a blue sub-pixel, a red sub-pixel, and a green sub-pixel.
  • each of the first sub-pixels and each of the second sub-pixels are shared by two pixel units.
  • the first/second sub-pixels located in the 2k+1th row and the 2k+1th column are located in the second/first sub-pixels of the 2k+2th row and the 2k+2th column, And the third sub-pixel located in the 2k+1th row and the 2k+2th column forms a first pixel unit;
  • the first/second sub-pixels located in the 2k+1th row and the 2k+1th column, the second/first sub-pixels located in the 2k+2th row, the 2k+2th column, and the first 2k+2 rows, the third sub-pixel of the 2k+1th column forms a second pixel unit;
  • the k is an integer greater than or equal to zero.
  • An embodiment of the present invention further provides an OLED display panel, wherein the pixel array is formed by arranging the pixel arrangement structure as described above.
  • the first sub-pixel and the second sub-pixel are shared by two different pixel units to form different pixel units, and the sub-pixels are realized with fewer sub-pixels.
  • the performance of pixel resolution reduces the process difficulty and cost of preparing high-resolution OLED display panels.
  • FIG. 1 is a schematic diagram of a pixel arrangement structure according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a manner of forming a pixel unit of a pixel arrangement structure according to an embodiment of the invention
  • 3 to 4 are schematic diagrams showing the configuration of process recipe parameters of a pixel arrangement structure according to an embodiment of the invention.
  • FIG. 1 is a schematic diagram of a pixel arrangement structure of an OLED display panel according to an embodiment of the invention.
  • each rectangle represents one sub-pixel.
  • the plurality of sub-pixels integrally constitute a multi-row, multi-column sub-pixel array structure.
  • the sub-pixel includes a plurality of first sub-pixels 101, a plurality of second sub-pixels 102, and a plurality of third sub-pixels 103.
  • Each sub-pixel is arranged as follows:
  • the first sub-pixel 101 and the second sub-pixel 102 are alternately arranged along the direction of the row of the display panel (the direction indicated by X). Specifically, as shown in FIG. 1 , in the case where the third sub-pixel 103 is temporarily not considered, in the first row, the first sub-pixel 101, the second sub-pixel 102, the first sub-pixel 101, and the second appear sequentially. A repeating sequence of sub-pixels 102 and the like.
  • the second line is similar to the first line except that the second line first appears after the second sub-pixel 102 appears. That is, in the present embodiment, the first sub-pixel 101 and the second sub-pixel 102 are integrally arranged in an alternating manner.
  • the third sub-pixel 103 is further disposed at a plurality of gaps between the first sub-pixel 101 and the second sub-pixel 102 that are alternately disposed. As shown in FIG. 1 , a first sub-pixel 101 is taken first, and then a second sub-pixel 102 is taken to form a group. At a gap between the first sub-pixel 101 and the second sub-pixel 102 in each group, Two third sub-pixels 103 are arranged side by side in the X direction.
  • the set of sub-pixel pairs formed above is sequential. If any two adjacent first sub-pixels 101 and second sub-pixels 102 are combined, the arrangement of the third sub-pixels is equivalent. Then, a plurality of groups are first selected in each group of sub-pixel pairs formed, and two gaps are arranged along the X direction in the gap between the first sub-pixel 101 and the second sub-pixel 102 in each selected group. Three sub-pixels 103.
  • the first sub-pixel 101 and the third sub-pixel 103 are alternately arranged to form a first sequence
  • the second sub-pixel 102 is arranged along a direction of the column of the display panel (direction indicated by Y).
  • the third sub-pixel 103 is alternately arranged to constitute a second sequence, and the first sequence and the second sequence are alternately arranged in the X direction.
  • the first column of sub-pixels includes only the first sub-pixel 101 and the third sub-pixel 103 , and the two appear alternately to form the first sequence 130 .
  • the second column of sub-pixels includes only the second sub-pixel 102 and the third sub-pixel 103, which alternately appear to form the first sequence 140.
  • the third column of sub-pixels repeats the arrangement of the first column of sub-pixels
  • the fourth column of sub-pixels repeats the arrangement of the second column of sub-pixels, and the overall appearance is along the X direction, and the first sequence and the second sequence are alternately arranged.
  • the first sub-pixel 101 may be a red sub-pixel
  • the second sub-pixel 102 may be a blue sub-pixel
  • the third sub-pixel 103 may be a green sub-pixel.
  • the colors of the first sub-pixel 101 and the second sub-pixel 102 are interchangeable, that is, the first sub-pixel 101 is a blue sub-pixel, and the second sub-pixel 102 is a red sub-pixel.
  • the number of the first sub-pixels 101 is equal to the number of the second sub-pixels 102
  • the number of the third sub-pixels 103 is the number of the first sub-pixels 101 or the second.
  • the number of sub-pixels 102 is twice. Therefore, when the pixel unit is formed by the above-described pixel arrangement structure for display, each of the first sub-pixels 101 and each of the second sub-pixels 102 is shared by two pixel units at the same time.
  • the first sub-pixel 101 located in the first row and the first column, the second sub-pixel 102 located in the second row and the second column, and the first row and the second column are located.
  • the third sub-pixel 103 forms the first pixel unit 212.
  • the second sub-pixel 101 located in the first row, the first column, the second sub-pixel 102 located in the second row and the second column, and the third sub-pixel 103 located in the second row and the first column form a second pixel Unit 221.
  • the first sub-pixel 101 located in the first row and the first column and the second sub-pixel 102 located in the second row and the second column are shared by the first pixel unit 412 and the second pixel unit 421.
  • the first/second sub-pixel located in the 2k+1th row and the 2k+1th column, the second/first sub-pixel located in the 2k+2th row, the 2k+2th column, and the first The 2k+1 row, the 3k+2 column of the third sub-pixel forms the first pixel unit.
  • the first/second sub-pixel located in the 2k+1th row and the 2k+1th column is located
  • the second/first sub-pixel of the 2k+2th row, the 2k+2th column, and the third sub-pixel of the 2k+1th row and the 2k+1th column form the second pixel unit.
  • k is an integer greater than or equal to zero.
  • the positional resolving power of the human eye to the blue and red sub-pixels is significantly lower than that of the position of the green sub-pixel and the position of the center of the brightness of the pixel.
  • the human eye can distinguish the position of the center of the brightness of the pixel, it has a normal feeling for the color, but the actual position or boundary of the blue sub-pixel or the red sub-pixel cannot be distinguished on the pixel scale.
  • the difference in the resolving power of the different colors of the sub-pixels can be utilized, and the form in which one pixel unit is simply defined by the RGB three-color sub-pixel is actually changed. .
  • sub-pixels of certain colors are shared between different pixel units, and the human eye is insensitive to the position resolution of the sub-pixels of these colors, and then sub-pixel compensation is performed when the screen is displayed through an auxiliary algorithm design.
  • the analog implementation is larger than the pixel resolution in the conventional sense.
  • the dashed box in the figure shows a 3x4 block structure, which represents a conventional pixel cell structure in the prior art. Since one pixel unit is composed of three sub-pixels of R, G, and B, 3 ⁇ 4 ⁇ 3, that is, a total of 36 sub-pixels, will be provided in the above block range. However, if the sub-pixels are arranged in the manner of the embodiment of the present invention within the above-mentioned block, only the 24 sub-pixels need to be set to achieve the same pixel resolution.
  • the 24 sub-pixels are arranged in a 6 ⁇ 4 array form. Since the first sub-pixel 101 and the second sub-pixel 102 are shared by adjacent pixel units, the pixel resolution is actually equal to the first The number of three sub-pixels 103.
  • the pixel brightness center of the 6 ⁇ 4 sub-pixel array in FIG. 3 is 1.5 times that of the conventional pixel unit structure, and the pixel brightness center formed in the horizontal direction is 1.3 times that of the conventional pixel unit structure. .
  • a total of 12 third sub-pixels 103 are provided, that is, 24 sub-pixels can form a total of 12 display pixels.
  • the pixel arrangement structure in the embodiment of the present invention is adopted, and fewer sub-substrates are used. Pixels achieve high pixel resolution performance.
  • the reduction in the number of sub-pixels increases the aperture ratio and improves the yield of the high-resolution panel.
  • the process difficulty and cost of preparing a high-resolution OLED display panel can be reduced during the preparation process of the OLED panel.
  • the distance between the two third sub-pixels 103 arranged side by side in the same row of sub-pixels is represented by x1
  • the first sub-pixel directly adjacent to the same row of sub-pixels is represented by x2.
  • the distance between the first sub-pixel 101 and the third sub-pixel 103 in the same row of sub-pixels is represented by x3, and the distance between the first sub-pixel 101 and the third sub-pixel 103 is represented by x4,
  • the distance between the immediately adjacent second sub-pixel 102 and the third sub-pixel 103 represents the distance between the sub-pixels of the adjacent two rows in the direction of the column of the display panel by y1.
  • the above x1, x2, x3, x4 and y1 need to meet certain process design requirements. For example, each distance must meet the requirements greater than its minimum.
  • the two third sub-pixels 103 arranged side by side are integrally formed. That is, the two third sub-pixels 103 occupy the position on the same mask version MASK, and the color layers of the two adjacent third sub-pixels are connected to form an overall sub-pixel structure, and then through an evaporation hole. Two color-developing light-emitting layers next to the third sub-pixel are formed, so x1 is actually much smaller than x2, x3, and x4.
  • the above process process process helps to reduce the difficulty in making the mask MASK and reduces the process difficulty of preparing the third sub-pixel.
  • the minimum value of the distance parameter of x2, x3 and x4 is more easily ensured, so that it is advantageous to make the first sub-pixel 101 and the second sub-pixel 102 larger, thereby extending The service life of OLED display panels.
  • the area of the third sub-pixel 103 is smaller than the area of the first sub-pixel 101 and at the same time smaller than the area of the second sub-pixel 102.
  • the first sub-pixel 101 may be made to have the same area as the second sub-pixel 102.
  • the organic light emitting diode Since the organic light emitting diode has the characteristics of being heated after startup, the life of the organic light emitting materials of different colors is different, the life of the green organic light emitting material is the longest, and the service life of the red and blue organic light emitting materials is short.
  • the area of the green sub-pixel is prepared to be smaller than the area of the red sub-pixel and the area of the blue sub-pixel, that is, the red sub-pixel and the blue
  • the color sub-pixels are made larger, which is beneficial to prolong the service life of the red sub-pixels and the blue sub-pixels, thereby improving the lifetime of the OLED display panel.
  • the first sub-pixel 101 and the second sub-pixel 102 are located at a diagonal position with respect to two pixel units sharing them, as shown by d1 in FIG.
  • d1 also needs to meet the design requirements greater than its minimum.
  • d1 in the embodiment is equal to the length of one diagonal, the length is larger than the direction along the row of the display panel, or between the first sub-pixel 101 and the second sub-pixel 102 in the direction of the column of the display panel.
  • the distance, as shown in FIG. 5, is d1>x5, d1>y2.
  • d1 is more likely to meet the design requirement of the minimum value, and thus it is advantageous to increase the area of the first sub-pixel 101 and the second sub-pixel 102, thereby improving Display quality of OLED display devices.
  • the first sub-pixel 101, the second sub-pixel 102, and the third sub-pixel 103 each have a polygonal structure.
  • the shapes of the sub-pixels in the foregoing embodiments are all schematically represented as rectangles, but this is for illustrative purposes only and does not constitute a limitation of the present invention.
  • the shapes of the first sub-pixel 101, the second sub-pixel 102, and the third sub-pixel 103 may be a regular or irregular polygonal structure.
  • each sub-pixel is an irregular hexagonal structure, so that the aperture ratio of the display panel is further improved.
  • an OLED display panel the pixel array of which is formed by arranging the pixel arrangement structure as described above.
  • the edge of the pixel array formed by the pixel arrangement structure in the embodiment of the present invention assuming that the pixel array is m ⁇ n, the position in the upper left corner of the pixel array (the first row and the first column) Should be set as the first sub-pixel 101 / the second sub-pixel 102, in its upper right corner (at the position of the 1st row, the nth column) should be set as the second sub-pixel 102 / the first sub-pixel 101, in The lower left corner (at the mth row, the first column position) and the lower right corner thereof (at the mth row and the nth column position) are all set as the third subpixel 103.
  • the block structure shown in FIG. 3 is used as a loop unit, and is cyclically arranged.
  • the first sub-pixel and the second sub-pixel are sub-pixels of position-resolved insensitive color.
  • the first sub-pixel and the second sub-pixel are separated by two different pixel units. Sharing, used to form different display pixel units, is beneficial to improve the resolution of the display panel.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示面板的像素排列结构及OLED显示面板,该像素排列结构沿行方向(X),第一子像素(101)与第二子像素(102)交替设置,间隔选取的每对第一子像素(101)与第二子像素(102)之间设置两个第三子像素(103);沿列方向(Y),第一子像素(101)与第三子像素(103)交替设置构成一序列,第二子像素(102)与第三子像素(103)交替设置构成另一序列,两序列交替设置。该像素排列结构降低了制程难度。

Description

OLED显示面板的像素排列结构及OLED显示面板
相关申请的交叉引用
本申请要求享有2017年06月9日提交的名称为“OLED显示面板的像素排列结构及OLED显示面板”的中国专利申请CN201710430673.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明属于显示技术领域,特别涉及一种OLED显示面板的像素排列结构及OLED显示面板。
背景技术
随着OLED显示技术的不断发展,对分辨率的需求不断提高。OLED显示面板屏幕的分辨率通常被表示成水平、竖直两个方向上的像素数量的乘积。而传统的像素设计上一个像素单元由R、G、B三个子像素构成。这样若采用传统的RGB像素的排列形式,为了实现高分辨率表现能力,显示面板的子像素密度就要成倍的增加,进而显著增加制备显示面板的工艺难度和成本。
发明内容
本发明所要解决的技术问题之一就是优化子像素的排列,以较少的子像素实现高像素分辨率的表现能力,从而降低制备高分辨率OLED显示面板的工艺难度和成本。
为了解决上述技术问题,本发明的实施例首先提供了一种OLED显示面板的像素排列结构,包括多个第一子像素、多个第二子像素以及多个第三子像素;
沿所述显示面板的行的方向,所述第一子像素与所述第二子像素交替设置,在间隔选取的每对第一子像素与第二子像素之间的间隙处,沿所述行的方向设置有两个第三子像素;
沿所述显示面板的列的方向,所述第一子像素与所述第三子像素交替设置以构成第一序列,所述第二子像素与所述第三子像素交替设置以构成第二序列,所述第一序列与所述第二序列沿所述行的方向交替设置。
优选地,所述第一子像素的个数与所述第二子像素的个数相等,所述第三子像素的个数为所述第一子像素或所述第二子像素的个数的二倍。
优选地,在间隔选取的每对第一子像素与第二子像素之间的间隙处设置的所述两个第三子像素之间的距离,小于沿所述显示面板的行的方向设置的所述第一子像素与所述第二子像素之间的距离、所述第一子像素与所述第三子像素之间的距离以及所述二子像素与所述第三子像素之间的距离。
优选地,所述第三子像素的面积小于所述第一子像素的面积,且小于所述第二子像素的面积。
优选地,所述第一子像素的面积与所述第二子像素的面积相等。
优选地,所述第一子像素、所述第二子像素与所述第三子像素均具有多边形结构。
优选地,所述第一子像素、第二子像素和第三子像素依次为红色子像素、蓝色子像素和绿色子像素;或者,所述第一子像素、第二子像素和第三子像素依次为蓝色子像素、红色子像素和绿色子像素。
优选地,在利用所述OLED显示面板进行显示时,每个所述第一子像素与每个所述第二子像素均为两个像素单元共用。
优选地,由位于第2k+1行、第2k+1列的所述第一/第二子像素,位于第2k+2行、第2k+2列的所述第二/第一子像素,以及位于第2k+1行,第2k+2列的所述第三子像素形成第一像素单元;
由位于第2k+1行、第2k+1列的所述第一/第二子像素,位于第2k+2行、第2k+2列的所述第二/第一子像素,以及位于第2k+2行,第2k+1列的所述第三子像素形成第二像素单元;
所述k为大于或等于零的整数。
本发明的实施例还提供了一种OLED显示面板,其像素阵列采用如上述的像素排列结构排列形成。
采用本发明中的像素排列结构的OLED显示面板进行画面显示时,第一子像素、第二子像素被两个不同的像素单元共用,以形成不同的像素单元,以较少的子像素实现高像素分辨率的表现能力,进而降低了制备高分辨率OLED显示面板的工艺难度和成本。
本发明的其他优点、目标,和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而 易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书,权利要求书,以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请的技术方案或现有技术的进一步理解,并且构成说明书的一部分。其中,表达本申请实施例的附图与本申请的实施例一起用于解释本申请的技术方案,但并不构成对本申请技术方案的限制。
图1是根据本发明实施例的像素排列结构的示意图;
图2是根据本发明实施例的像素排列结构的像素单元的形成方式示意图;
图3-图4是根据本发明实施例的像素排列结构的工艺制程参数的配置示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成相应技术效果的实现过程能充分理解并据以实施。本申请实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。
图1为本发明一实施例OLED显示面板的像素排列结构的示意图。
如图1所示,每个矩形表示一个子像素。在本实施例中,多个子像素整体构成多行、多列的子像素阵列结构。子像素包括多个第一子像素101、多个第二子像素102以及多个第三子像素103。各子像素基于如下方式进行排列:
在本发明实施例的像素排列结构中,沿显示面板的行的方向(X所示的方向),第一子像素101与第二子像素102交替设置。具体如图1所示,在暂时不考虑第三子像素103的情况下,在第一行中,依次出现的是第一子像素101、第二子像素102、第一子像素101、第二子像素102等的重复序列。第二行与第一行类似,只不过第二行是先出现第二子像素102后再出现第一子像素101。即在本实施例中,第一子像素101与第二子像素102整体呈交替设置的形式。
在本发明实施例的像素排列结构中,在交替设置的第一子像素101与第二子像素102之间的多个间隙处还设置有第三子像素103。如图1所示,先取一个第一子像素101,再取一个第二子像素102,以构成一组,在每组内的第一子像素101与第二子像素102之间的间隙处,沿X方向,并排设置两个第三子像素103。
需要说明的是,上述形成的一组子像素对是有顺序的,如果以任意两个相邻的第一子像素101与第二子像素102构成一组,则第三子像素的布置形式相当于,先在构成的各组子像素对中间隔选取多组,在选取的各组中的第一子像素101与第二子像素102之间的间隙处,沿X方向,并排设置两个第三子像素103。
在本发明实施例的像素排列结构中,沿显示面板的列的方向(Y所示的方向),第一子像素101与第三子像素103交替设置以构成第一序列,第二子像素102与第三子像素103交替设置以构成第二序列,且第一序列与第二序列沿X方向交替设置。具体的,如图1所示,第一列子像素中只包含第一子像素101和第三子像素103,两者交替出现,构成第一序列130。第二列子像素中只包含第二子像素102和第三子像素103,两者交替出现,构成第一序列140。第三列子像素重复第一列子像素的布置方式,第四列子像素重复第二列子像素的布置方式,整体呈现出沿X方向,第一序列和第二序列交替设置。
进一步地,第一子像素101具体可以为红色子像素,第二子像素102具体可以为蓝色子像素,第三子像素103具体可以为绿色子像素。其中,第一子像素101与第二子像素102的颜色可以互换,即第一子像素101为蓝色子像素,第二子像素102为红色子像素。
在本发明实施例的像素排列结构中,第一子像素101的个数与第二子像素102的个数相等,第三子像素103的个数为第一子像素101的个数或第二子像素102的个数的二倍。因此,在利用上述像素排列结构形成像素单元以进行显示时,每个第一子像素101和每个第二子像素102是同时为两个像素单元所共用的。
具体的,如图2所示,以位于第一行、第一列的第一子像素101,位于第二行、第二列的第二子像素102,以及位于第一行、第二列的第三子像素103形成第一像素单元212。以位于第一行、第一列的第一子像素101,位于第二行、第二列的第二子像素102,以及位于第二行、第一列的第三子像素103形成第二像素单元221。其中,位于第一行、第一列的第一子像素101与位于第二行、第二列的第二子像素102为第一像素单元412与第二像素单元421所共用。
同样容易理解的是,当第一子像素101与第二子像素102交换位置设置时,上述关系也是满足的。
更一般的,由位于第2k+1行、第2k+1列的第一/第二子像素,位于第2k+2行、第2k+2列的第二/第一子像素,以及位于第2k+1行,第2k+2列的第三子像素形成第一像素单元。由位于第2k+1行、第2k+1列的第一/第二子像素,位于 第2k+2行、第2k+2列的第二/第一子像素,以及位于第2k+2行,第2k+1列的第三子像素形成第二像素单元。其中,k为大于或等于零的整数。通过子像素的共用,有利于提升OLED显示面板的屏幕的分辨率,或者在相同分辨率的情况下,减少所需子像素的个数。
我们知道,人眼对不同颜色的分辨能力的是不同的。一般的,人眼对蓝色、红色子像素的位置分辨能力显著低于其对于绿色子像素的位置以及像素的亮度中心的位置的分辨能力。在一定的像素分辨率下,人眼虽然能分辨出像素的亮度中心的位置,对颜色有正常的感觉,但在像素尺度上不能分辨出蓝色子像素或红色子像素的实际位置或边界。当显示屏幕的分辨率与人眼的分辨率水平相当时,就可以利用这种人眼对不同颜色子像素的分辨能力的差异,改变实际中由RGB三色子像素简单定义一个像素单元的形式。具体为,在不同的像素单元之间,共享某些颜色的子像素,而人眼对这些颜色的子像素的位置分辨不敏感,再通过辅助的算法设计,在画面显示时进行子像素的补偿,这样就可以实现用相对较少的子像素个数,模拟实现大于传统意义上的像素分辨率。
如图3所示,图中虚线框示出3×4的区块结构,以其表示现有技术中传统的像素单元结构。由于一个像素单元是由R、G、B三个子像素构成的,因此,上述区块范围内将设置有3×4×3,即共计36个子像素。而如果在上述区块范围内,以本发明实施例的方式排列子像素,则只需要设置24个子像素就可以达到同样的像素分辨率。
如图3所示,24个子像素布置为6×4的阵列形式,由于第一子像素101与第二子像素102是被相邻的像素单元共用的,因此像素分辨率的大小实际上等于第三子像素103的个数。根据图2所示的像素单元共用方式,图3中6x4的子像素阵列在纵向形成的像素亮度中心是传统像素单元结构的1.5倍,在横向形成的像素亮度中心是传统像素单元结构的1.3倍。
此外,在高分辨率显示器中,显示单线条时(单像素排列),由于线条太细及亮度不足,一般会通过算法加粗线条,以提升观赏舒适度。根据图3的区块结构,不难看出相比传统方式、采用图2所示的像素单元共用方式形成的像素单元水平较宽。而这种较宽的像素单元在高分辨率显示器显示中,并不影响单线条的显示。
在如图3所示的区域内,共设置有12个第三子像素103,即24个子像素共可形成12个显示像素。这样采用本发明实施例中的像素排列结构,以较少的子 像素实现了高像素分辨率的表现能力。子像素个数的减少,可使开口率增加,提高高分辨率面板的良率。同时,由于子像素的个数的减少,可以在OLED面板制备过程中,降低制备高分辨率OLED显示面板的工艺难度和成本。
具体的,如图4所示,以x1表示同一行子像素中,并排设置的两个第三子像素103之间的距离,以x2表示同一行子像素中,直接相邻的第一子像素101与第二子像素102之间的距离,以x3表示同一行子像素中,直接相邻的第一子像素101与第三子像素103之间的距离,以x4表示同一行子像素中,直接相邻的第二子像素102与第三子像素103之间的距离,以y1表示沿显示面板的列的方向、位于相邻两行的子像素之间的距离。在实际制备OLED子像素阵列时,上述x1、x2、x3、x4与y1均需满足一定工艺设计要求。例如,各距离均需满足大于其最小值的要求。
进一步地,在采用精密金属掩膜蒸镀工艺制备OLED时,并排设置的两个第三子像素103是整体制作形成的。即这两个第三子像素103占据同一个掩膜版MASK上的位置,将紧邻的两个第三子像素的颜色层连起来,形成一个整体的子像素结构,再通过一个蒸镀孔来形成两个紧邻第三子像素的显色发光层,因此x1实际上要远远小于x2、x3与x4。上述工艺制程有助于降低掩膜版MASK的制作难度,以及降低制备第三子像素的工艺难度。
同时,随着x1距离的减小,x2、x3与x4等距离参数的最小值就更加容易得到保证,因此,有利于将第一子像素101与第二子像素102制作得更大,从而延长OLED显示面板的使用寿命。
在本发明的一个具体的实施例中,第三子像素103的面积小于第一子像素101的面积,且同时小于第二子像素102的面积。优选地,为便于制备,第一子像素101可以制作成与第二子像素102具有相同的面积。
由于有机发光二极管具有启动后被加热的特性,不同颜色的有机发光材料的寿命不同,绿色有机发光材料的使用寿命最长,红色和蓝色有机发光材料使用寿命较短。为了有效延长OLED显示面板的整体使用寿命,在制作形成不同的颜色的子像素时,将绿色子像素的面积制备为小于红色子像素的面积和蓝色子像素的面积,即将红色子像素和蓝色子像素制作得大一些,有利于延长红色子像素和蓝色子像素的使用寿命,进而提高OLED显示面板的寿命。
进一步的,在本发明的实施例中,第一子像素101与第二子像素102相对于共用它们的两个像素单元,位于对角线的位置,如图4中d1所示。在OLED制 程中,d1也需要满足大于其最小值的设计要求。而由于本实施例中的d1等于一个对角线的长度,该长度大于沿显示面板的行的方向,或者沿显示面板的列的方向的第一子像素101与第二子像素102之间的距离,如图5所示,d1>x5,d1>y2,换句话说,d1更容易满足最小值的设计要求,因此有利于增大第一子像素101与第二子像素102的面积,提升OLED显示设备的显示品质。
在本发明的另一个具体的实施例中,第一子像素101、第二子像素102与第三子像素103均具有多边形结构。前述各实施例中的子像素的形状均示意性的表示为矩形,但这只是用于说明,并不构成对本发明的限定。在具体的制备过程中,第一子像素101、第二子像素102与第三子像素103的形状可以为规则或不规则的多边形结构。例如,各子像素均为不规则的六边形结构,从而使显示面板的开口率得以进一步改善。
在本发明的其他实施例中,还提供了一种OLED显示面板,其像素阵列采用如上述的像素排列结构排列形成。
另外,需要说明的是,对于采用本发明实施例中的像素排列结构形成的像素阵列的边沿,假设像素阵列为m×n,则在像素阵列的左上角(第1行、第1列的位置处)应设置为第一子像素101/第二子像素102,在其右上角(第1行、第n列的位置处)应设置为第二子像素102/第一子像素101,在其左下角(第m行、第1列位置处)以及其右下角(第m行、第n列位置处)均设置为第三子像素103。实际上,即是以如图3所示的区块结构作为循环单元,循环排列得到。
本发明实施例中,第一子像素、第二子像素为位置分辨不敏感颜色的子像素,在利用OLED显示面板进行显示时,第一子像素、第二子像素被两个不同的像素单元共用,用来形成不同的显示像素单元,有利于提高显示面板的分辨率。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人员在本发明所揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种OLED显示面板的像素排列结构,包括多个第一子像素、多个第二子像素以及多个第三子像素;
    沿所述显示面板的行的方向,所述第一子像素与所述第二子像素交替设置,在间隔选取的每对第一子像素与第二子像素之间的间隙处,沿所述行的方向设置有两个第三子像素;
    沿所述显示面板的列的方向,所述第一子像素与所述第三子像素交替设置以构成第一序列,所述第二子像素与所述第三子像素交替设置以构成第二序列,所述第一序列与所述第二序列沿所述行的方向交替设置。
  2. 根据权利要求1所述的像素排列结构,其中,所述第一子像素的个数与所述第二子像素的个数相等,所述第三子像素的个数为所述第一子像素或所述第二子像素的个数的二倍。
  3. 根据权利要求1所述的像素排列结构,其中,在间隔选取的每对第一子像素与第二子像素之间的间隙处设置的所述两个第三子像素之间的距离,小于沿所述显示面板的行的方向设置的所述第一子像素与所述第二子像素之间的距离、所述第一子像素与所述第三子像素之间的距离以及所述二子像素与所述第三子像素之间的距离。
  4. 根据权利要求1所述的像素排列结构,其中,所述第三子像素的面积小于所述第一子像素的面积,且小于所述第二子像素的面积。
  5. 根据权利要求4所述的像素排列结构,其中,所述第一子像素的面积与所述第二子像素的面积相等。
  6. 根据权利要求1所述的像素排列结构,其中,所述第一子像素、所述第二子像素与所述第三子像素均具有多边形结构。
  7. 根据权利要求1所述的像素排列结构,其中,所述第一子像素、第二子像素和第三子像素依次为红色子像素、蓝色子像素和绿色子像素;或者,所述第一子像素、第二子像素和第三子像素依次为蓝色子像素、红色子像素和绿色子像素。
  8. 根据权利要求7所述的像素排列结构,其中,在利用所述OLED显示面板进行显示时,每个所述第一子像素与每个所述第二子像素均为两个像素单元共用。
  9. 根据权利要求8所述的像素排列结构,其中,
    由位于第2k+1行、第2k+1列的所述第一/第二子像素,位于第2k+2行、第2k+2列的所述第二/第一子像素,以及位于第2k+1行,第2k+2列的所述第三子像素形成第一像素单元;
    由位于第2k+1行、第2k+1列的所述第一/第二子像素,位于第2k+2行、第2k+2列的所述第二/第一子像素,以及位于第2k+2行,第2k+1列的所述第三子像素形成第二像素单元;
    所述k为大于或等于零的整数。
  10. 一种OLED显示面板,在所述OLED显示面板上设置有像素阵列,所述像素阵列采用如下像素排列结构排列形成;
    所述像素排列结构包括多个第一子像素、多个第二子像素以及多个第三子像素;
    沿所述显示面板的行的方向,所述第一子像素与所述第二子像素交替设置,在间隔选取的每对第一子像素与第二子像素之间的间隙处,沿所述行的方向设置有两个第三子像素;
    沿所述显示面板的列的方向,所述第一子像素与所述第三子像素交替设置以构成第一序列,所述第二子像素与所述第三子像素交替设置以构成第二序列,所述第一序列与所述第二序列沿所述行的方向交替设置。
  11. 根据权利要求10所述的OLED显示面板,其中,所述第一子像素的个数与所述第二子像素的个数相等,所述第三子像素的个数为所述第一子像素或所述第二子像素的个数的二倍。
  12. 根据权利要求10所述的OLED显示面板,其中,在间隔选取的每对第一子像素与第二子像素之间的间隙处设置的所述两个第三子像素之间的距离,小于沿所述显示面板的行的方向设置的所述第一子像素与所述第二子像素之间的距离、所述第一子像素与所述第三子像素之间的距离以及所述二子像素与所述第三子像素之间的距离。
  13. 根据权利要求10所述的OLED显示面板,其中,所述第三子像素的面积小于所述第一子像素的面积,且小于所述第二子像素的面积。
  14. 根据权利要求13所述的OLED显示面板,其中,所述第一子像素的面积与所述第二子像素的面积相等。
  15. 根据权利要求10所述的OLED显示面板,其中,所述第一子像素、所述第二子像素与所述第三子像素均具有多边形结构。
  16. 根据权利要求10所述的OLED显示面板,其中,所述第一子像素、第二子像素和第三子像素依次为红色子像素、蓝色子像素和绿色子像素;或者,所述第一子像素、第二子像素和第三子像素依次为蓝色子像素、红色子像素和绿色子像素。
  17. 根据权利要求16所述的OLED显示面板,其中,在利用所述OLED显示面板进行显示时,每个所述第一子像素与每个所述第二子像素均为两个像素单元共用。
  18. 根据权利要求17所述的OLED显示面板,其中,
    由位于第2k+1行、第2k+1列的所述第一/第二子像素,位于第2k+2行、第2k+2列的所述第二/第一子像素,以及位于第2k+1行,第2k+2列的所述第三子像素形成第一像素单元;
    由位于第2k+1行、第2k+1列的所述第一/第二子像素,位于第2k+2行、第2k+2列的所述第二/第一子像素,以及位于第2k+2行,第2k+1列的所述第三子像素形成第二像素单元;
    所述k为大于或等于零的整数。
PCT/CN2017/092001 2017-06-09 2017-07-06 Oled显示面板的像素排列结构及oled显示面板 WO2018223475A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/551,549 US10535718B2 (en) 2017-06-09 2017-07-06 Pixel arrangement of OLED display panel, and OLED display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710430673.4 2017-06-09
CN201710430673.4A CN107293571B (zh) 2017-06-09 2017-06-09 Oled显示面板的像素排列结构及oled显示面板

Publications (1)

Publication Number Publication Date
WO2018223475A1 true WO2018223475A1 (zh) 2018-12-13

Family

ID=60096122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092001 WO2018223475A1 (zh) 2017-06-09 2017-07-06 Oled显示面板的像素排列结构及oled显示面板

Country Status (3)

Country Link
US (1) US10535718B2 (zh)
CN (1) CN107293571B (zh)
WO (1) WO2018223475A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11747531B2 (en) 2016-02-18 2023-09-05 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate, fine metal mask set and manufacturing method thereof
US11264430B2 (en) 2016-02-18 2022-03-01 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel arrangement structure with misaligned repeating units, display substrate, display apparatus and method of fabrication thereof
US11448807B2 (en) 2016-02-18 2022-09-20 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate, fine metal mask set and manufacturing method thereof
CN110137213A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 像素排列结构及其显示方法、显示基板
US11233096B2 (en) 2016-02-18 2022-01-25 Boe Technology Group Co., Ltd. Pixel arrangement structure and driving method thereof, display substrate and display device
CN109427850B (zh) * 2017-08-31 2020-02-21 昆山国显光电有限公司 像素结构及包含所述像素结构的显示面板
CN109637388B (zh) * 2019-01-31 2020-06-16 武汉华星光电半导体显示技术有限公司 显示面板
US11574960B2 (en) 2018-02-09 2023-02-07 Boe Technology Group Co., Ltd. Pixel arrangement structure, display substrate, display device and mask plate group
CN115542617A (zh) 2018-02-09 2022-12-30 京东方科技集团股份有限公司 显示基板和显示装置
CN110137212B (zh) * 2018-02-09 2022-05-27 京东方科技集团股份有限公司 像素排列结构、显示基板以及显示装置
CN110133885A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 像素排列结构、显示基板和显示装置
CN108766990A (zh) * 2018-06-05 2018-11-06 武汉华星光电半导体显示技术有限公司 显示面板
CN108598141B (zh) * 2018-06-27 2020-12-11 昆山国显光电有限公司 一种像素显示模组以及制作像素显示模组的掩膜板
CN109036242A (zh) * 2018-07-03 2018-12-18 深圳吉迪思电子科技有限公司 一种像素复用方法及装置
CN110323260B (zh) * 2019-06-28 2022-04-15 云谷(固安)科技有限公司 像素排列结构、像素驱动方法及显示面板
CN112673475A (zh) 2019-07-31 2021-04-16 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板、显示装置
CN110945582B (zh) * 2019-10-31 2022-03-04 北京集创北方科技股份有限公司 子像素渲染方法、驱动芯片和显示装置
KR20210057993A (ko) * 2019-11-13 2021-05-24 엘지디스플레이 주식회사 투명 표시 패널 및 이를 포함하는 투명 표시 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136149A1 (ja) * 2013-03-04 2014-09-12 パナソニック株式会社 El表示装置
US20140319486A1 (en) * 2013-04-24 2014-10-30 Samsung Display Co., Ltd. Organic light-emitting display
CN104465714A (zh) * 2014-12-30 2015-03-25 京东方科技集团股份有限公司 一种像素结构及其显示方法、显示装置
CN104576699A (zh) * 2014-12-26 2015-04-29 信利(惠州)智能显示有限公司 一种有机发光二极管显示器的像素排列结构
CN204538030U (zh) * 2015-01-30 2015-08-05 信利(惠州)智能显示有限公司 一种oled像素排布结构
CN106653799A (zh) * 2016-10-31 2017-05-10 昆山工研院新型平板显示技术中心有限公司 像素结构以及包含所述像素结构的oled显示面板
CN107068731A (zh) * 2017-06-09 2017-08-18 京东方科技集团股份有限公司 像素排列结构、显示面板、显示装置和掩模板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492379B2 (en) * 2002-01-07 2009-02-17 Samsung Electronics Co., Ltd. Color flat panel display sub-pixel arrangements and layouts for sub-pixel rendering with increased modulation transfer function response
US6867549B2 (en) * 2002-12-10 2005-03-15 Eastman Kodak Company Color OLED display having repeated patterns of colored light emitting elements
TWI359626B (en) * 2007-03-22 2012-03-01 Au Optronics Corp Electro-luminescence display
CN203134285U (zh) * 2012-12-24 2013-08-14 Tcl集团股份有限公司 一种像素结构及具有该像素结构的显示面板
CN103278960B (zh) * 2012-12-31 2015-11-25 上海天马微电子有限公司 一种三色像素结构、彩膜基板及液晶显示器
KR101427593B1 (ko) * 2013-04-26 2014-08-07 삼성디스플레이 주식회사 유기 발광 표시 장치
CN105552099A (zh) * 2014-10-29 2016-05-04 上海和辉光电有限公司 一种oled像素排列结构
CN105826348B (zh) * 2015-01-05 2018-11-30 上海和辉光电有限公司 Oled显示面板的像素排列结构
TWI598662B (zh) * 2015-01-12 2017-09-11 聯詠科技股份有限公司 顯示面板
CN205355055U (zh) * 2016-02-18 2016-06-29 京东方科技集团股份有限公司 一种像素排列结构、显示面板及显示装置
CN205845956U (zh) * 2016-07-22 2016-12-28 京东方科技集团股份有限公司 像素排列结构、显示基板、显示装置及掩膜版

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136149A1 (ja) * 2013-03-04 2014-09-12 パナソニック株式会社 El表示装置
US20140319486A1 (en) * 2013-04-24 2014-10-30 Samsung Display Co., Ltd. Organic light-emitting display
CN104576699A (zh) * 2014-12-26 2015-04-29 信利(惠州)智能显示有限公司 一种有机发光二极管显示器的像素排列结构
CN104465714A (zh) * 2014-12-30 2015-03-25 京东方科技集团股份有限公司 一种像素结构及其显示方法、显示装置
CN204538030U (zh) * 2015-01-30 2015-08-05 信利(惠州)智能显示有限公司 一种oled像素排布结构
CN106653799A (zh) * 2016-10-31 2017-05-10 昆山工研院新型平板显示技术中心有限公司 像素结构以及包含所述像素结构的oled显示面板
CN107068731A (zh) * 2017-06-09 2017-08-18 京东方科技集团股份有限公司 像素排列结构、显示面板、显示装置和掩模板

Also Published As

Publication number Publication date
US10535718B2 (en) 2020-01-14
CN107293571B (zh) 2019-09-20
CN107293571A (zh) 2017-10-24
US20190326365A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2018223475A1 (zh) Oled显示面板的像素排列结构及oled显示面板
EP3346497B1 (en) Pixel structure and oled display panel
CN106653804B (zh) 一种oled显示器件
CN106486513B (zh) 像素结构以及oled显示面板
US10665640B2 (en) Pixel array structure and display device
CN103123927B (zh) 用于oled显示屏的像素结构及其金属掩膜板
US20180053812A1 (en) Arrangement of color sub-pixels for full color oled and method of manufacturing same
US10937352B2 (en) Pixel structure, method of manufacturing the same, display panel and display device
WO2019019604A1 (zh) 显示基板、显示装置及其显示方法、掩模板
CN109037287A (zh) 子像素排列结构、掩膜装置、显示面板及显示装置
CN109671759A (zh) Oled像素结构
EP2390869A2 (en) Pixel arrangement of an organic light emitting display device
US20180212001A1 (en) Pixel structure, fabrication method thereof, display panel, and display apparatus
JP7005657B2 (ja) 画素構造及びoled表示パネル
TWI533446B (zh) 像素陣列及具有該像素陣列的顯示器
KR101970088B1 (ko) 디스플레이 스크린 및 이의 구동 방법
CN107706213A (zh) 一种oled显示面板及其像素排列结构
WO2019228212A1 (zh) 显示面板及显示装置
CN111863889B (zh) 像素排列结构、显示面板以及显示装置
WO2019062278A1 (zh) 像素排列结构、像素结构及其制作方法、阵列基板和显示面板
CN110364546B (zh) 一种有机发光二极管oled像素排列结构
CN109148547B (zh) 像素排列结构和显示面板
JP2005315960A (ja) カラー画像表示装置
KR20240010382A (ko) 화소 배열 구조, 메탈 마스크 플레이트 및 유기 발광 표시 장치
CN109686263B (zh) 一种像素结构、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912405

Country of ref document: EP

Kind code of ref document: A1