WO2018219226A1 - 无人机停机库 - Google Patents

无人机停机库 Download PDF

Info

Publication number
WO2018219226A1
WO2018219226A1 PCT/CN2018/088435 CN2018088435W WO2018219226A1 WO 2018219226 A1 WO2018219226 A1 WO 2018219226A1 CN 2018088435 W CN2018088435 W CN 2018088435W WO 2018219226 A1 WO2018219226 A1 WO 2018219226A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
charging
drone
push
shutdown
Prior art date
Application number
PCT/CN2018/088435
Other languages
English (en)
French (fr)
Inventor
王海滨
钱茂冬
胡天波
周浩
高杰
徐乐
胡益汀
Original Assignee
星逻智能科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710391868.2A external-priority patent/CN107176047A/zh
Priority claimed from CN201720614879.8U external-priority patent/CN207028881U/zh
Application filed by 星逻智能科技(苏州)有限公司 filed Critical 星逻智能科技(苏州)有限公司
Priority to GB2009295.3A priority Critical patent/GB2583418B/en
Publication of WO2018219226A1 publication Critical patent/WO2018219226A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations for handling aircraft
    • B64F1/222Ground or aircraft-carrier-deck installations for handling aircraft for storing aircraft, e.g. in hangars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/02Ground or aircraft-carrier-deck installations for arresting aircraft, e.g. nets or cables
    • B64F1/0299Ground or aircraft-carrier-deck installations for arresting aircraft, e.g. nets or cables characterized by the use of multiple devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/20Transport or storage specially adapted for UAVs with arrangements for servicing the UAV
    • B64U80/25Transport or storage specially adapted for UAVs with arrangements for servicing the UAV for recharging batteries; for refuelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/30Transport or storage specially adapted for UAVs with arrangements for data transmission

Definitions

  • the present invention relates to a drone landing assist device, and more particularly to a drone shutdown library having an automatic charging device.
  • Unmanned aircraft that is, drones, are unmanned aircraft operated by radio remote control equipment and self-provided program control devices, because of low cost, good cost-effectiveness, low risk, strong survivability, good maneuverability, etc. Advantages, and widely used in high-altitude shooting, and has a strong application prospect in the field of express delivery.
  • the drone is usually powered by the battery mounted on it, limited by the limited weight of the battery that can be carried, and the power consumption increases with the increase of the auxiliary equipment, resulting in a short single stroke, which limits its Application prospects and development.
  • CN106368478A discloses an unattended distributed drone charger library, which includes a hangar protection box, a tarmac, and a slideable solar energy. a battery board, a battery pack, a GPS/Beidou positioning communication unit, a control unit, and a wireless charging unit.
  • the battery pack is electrically connected to the solar panel to charge the battery
  • the wireless charging unit is electrically connected to the battery pack and controlled by the control unit to be docked.
  • the drone on the tarmac is charged.
  • the patent document can effectively extend the endurance capability of the drone by distributing the UAV charger library, but it is wireless charging, and compared with the wired charging, not only the charging efficiency is low, but also the charging device cost is high.
  • the invention provides a UAV shutdown library, which can automatically charge the cable while providing the landing assistance for the UAV.
  • An unmanned aircraft shutdown library includes a tarmac, a controller, and an automatic charging device controlled by the controller, the automatic charging device including a pair of clamping components, the clamping component including a carding drone a plurality of claws of the transverse rod or the support leg of the landing gear, a traveling mechanism that drives the movement of the claw, an actuator that drives the traveling mechanism to move to move the claw between the clamped charging position and the released position And a charging electrode fixed on the claw.
  • the actuator drive jaw moves to the clamped charging position, the jaws are pressed against the landing gear or support foot of the drone and pass through the charging electrode and the opening provided on the landing gear.
  • the electrodes are contacted to charge the unmanned aerial vehicle, and at the same time, the two sides of the landing gear are pressed from opposite directions by a pair of claws, so that the drone is held on the tarmac during the charging process, thereby effectively ensuring the continuity of the charging process.
  • stability and can effectively prevent the drone from sliding on the tarmac due to external vibration, to ensure its safety after landing; after the charging is completed, the actuator drive jaws move to the release position, the drone can continue Fly to extend its endurance.
  • the running mechanism comprises two mutually parallel lateral support rods disposed on opposite sides of the tarmac, and two mutually parallel longitudinal guide rods respectively disposed on the other opposite sides of the tarmac. And a plurality of sliders respectively contacting the two longitudinal guide rods on the two sides and slidable along the longitudinal guide rods, wherein the two ends of each of the lateral support rods are respectively fixedly connected with one of the sliders;
  • the jaws are grouped on two of the lateral support bars.
  • the actuator pushes the lateral support bar to push the drone to the center of the apron in the lateral position, and then the control jaw pushes the drone to the center of the longitudinal position
  • the card is pressed against the landing gear transverse bar, thereby increasing the fault tolerance of the drone position deviation, further ensuring that the charging process can proceed normally.
  • the running mechanism includes a longitudinal rail and a pair of sliding seats slidable along the longitudinal rail, the longitudinal rails are arranged in a direction in which the pressing charging position is directed to the releasing position, and the plurality of claws They are respectively disposed on the pair of sliding seats; and a notch for the sliding of the claws is further disposed on the apron.
  • a sealing zipper is fixed between two sides of each of the notches, and the sealing zipper synchronously performs the notch when the claw is retracted from the pressing charging position to the releasing position. Closed, and when the claw enters the pressing and charging position from the releasing position, the sealing zipper synchronously opens the notch to prevent the drone from stopping to a preset position during the landing process
  • the landing gear is embedded in the slot, which effectively ensures that the claw moving path is not blocked during the subsequent charging process, and ensures that the drone can take off normally after landing.
  • the claw has a fixing portion, and the sliding member of the sealing zipper is fixedly connected with the fixing portion on the claw to realize the synchronization of the zipper and the movement of the claw.
  • the running mechanism is further provided with an elastic buffering mechanism
  • the elastic buffering mechanism mainly comprises: a rear seat fixedly disposed at a rear portion of the sliding seat, arranged along a direction of the longitudinal rail and fixed at one end An optical axis disposed on the rear seat, a linear flange bearing disposed at a middle portion of the sliding seat and slidably fitted on the optical axis, and an adjustable preloading elastic mechanism, the adjustable preloading force elasticity A mechanism is disposed between the linear flange bearing and the rear seat.
  • the adjustable pre-tightening elastic mechanism can change the compression amount to change the pre-tightening force of the claw in the longitudinal direction, so that the clamping jaw can form the buffer pressure and the buffer displacement when the UAV landing gear is clamped, thereby effectively ensuring the tightness of the clamping pressure and Avoid hard extrusion and crush the drone landing gear or claws.
  • the running mechanism is further provided with a fixing seat, the fixing seat is fixedly connected with the linear flange bearing, and the claw is a quick release type detachably mounted on the fixing seat. Connect the charging head so that the charging electrode can be replaced when it ages.
  • the adjustable preload force elastic mechanism includes a compression spring pressed between the rear seat and the linear flange bearing, and is used for adjusting the linear flange bearing and the rear seat A tie rod that compresses the spacing threshold.
  • the running mechanism includes a pair of X-axis direction push rods disposed on the tarmac and a pair of Y-axis direction push rods, and the two push rods of the pair of X-axis direction push rods Relatively arranged and synchronously moving, the two push rods of the pair of Y-axis direction push rods are oppositely arranged and synchronously moved, and the pair of X-axis direction push rods and the pair of Y-axis direction push rods pass the power and transmission mechanism The movement is realized, and the plurality of claws are respectively disposed on the two push rods of the pair of X-axis direction push rods or the pair of Y-axis direction push rods.
  • the intermediate position of the apron is provided with a alignment guide.
  • the alignment guide can be selected from a two-dimensional code label, an optical target, a U-shaped indicator light, and the like.
  • the alignment guiding device comprises a U-shaped indicator light and a square indicator light, a circular indicator light and a triangular indicator light located in the area enclosed by the U-shaped indicator light.
  • the alignment guide is a two-dimensional code.
  • the alignment guide comprises a circular contour and an I-shaped logo disposed within the circular contour.
  • the clamping position detecting switch is mounted on the claw, and the clamping in position detecting switch may be selected from a micro switch, a photoelectric detecting switch and the like. Avoiding crushing the landing gear while ensuring that the card is pressed into place to bring the charging electrode into contact with the electrodes on the landing gear.
  • a plurality of voltage detecting pins are fixed on the claws, and the voltage detecting pins together with the charging electrodes constitute a four-wire or more feedback-charged structure with voltage compensation.
  • the charging electrode is a conductive fiber cloth or a mesh metal electrode attached to the pressing surface of the claw.
  • the conductive fiber cloth or the mesh metal structure is used as the charging electrode, so that it is pressed into contact with the electrode provided on the transverse rod or the supporting leg on the landing gear to ensure the contact effect during charging; in addition, the conductive fiber cloth is used as the charging electrode. It can make full use of its certain flexibility, so that it can be more fully pressed with the electrode provided on the landing gear, further improving the contact effect of the charging process.
  • the apron is provided with an NFC/RFID card reader at its stand; a wind sensor, a light sensor and a rain sensor are mounted on the outer wall of the drone library. Used by the hangar to detect nighttime environments to provide illumination or detect severe weather conditions to interrupt drone travel.
  • the UAV shutdown library includes two or more library units, and the uppermost layer is a top library unit, each of the library units including a support frame, a protective case, and being installed in the protective case.
  • the library unit located below the top library unit further includes a push-pull drawer structure installed in the protective casing, the push-pull drawer structure including a push-pull plate and an actuator for driving the push-pull plate to slide along the lateral rail,
  • the apron and the pressing component are mounted on the push-pull plate. Setting up two or more library units makes it easy to set the number of library units according to the actual number of drones to be stopped, and improve land use efficiency.
  • the push-pull drawer structure facilitates the storage or release of the drone unit under the top library unit, and cooperates with the push-pull plate through the pressing component to ensure that the push-pull plate is pushed or pulled into the storage unit of the storage unit. Stability and safety.
  • the apron is a hollow structure, and the apron and the push-pull plate are supported by a plurality of support plates to form an air-floor structure on both sides;
  • the push-pull drawer structure has a plurality of a side plate, the side plate is provided with a plurality of through holes.
  • the above structure can reduce the impact of the airflow rebound on the take-off or landing of the drone when the drone is landing, so that it can accurately fall into the preset area, so that the charging electrode on the claw can be more accurate and better.
  • the card is pressed onto the charging electrode on the landing gear to effectively ensure the charging process.
  • the push-pull directions of the push-pull plates of adjacent two-layer library units are opposite or orthogonal. To avoid mutual interference when the two drones are docked on the adjacent two floors of the apron, increase the number of drones that can be dropped at the same time.
  • the protective cover includes a top plate, a bottom plate, a rear panel, and two side plates.
  • the push-pull plate of the push-pull drawer structure is hinged with a front panel, and the push-pull drawer structure is provided with a push front An actuator that rotates the panel about the hinge axis between a closed position and a tiled position.
  • the front panel is tiled when the drone takes off or landed to reduce the impact of airflow bounce on the drone landing.
  • the UAV shutdown library further includes a temperature control module, a power module, a communication module, and a positioning module, wherein the controller is electrically connected to the temperature control module, the power module, the communication module, and the positioning module, respectively.
  • the claw is further provided with a temperature measuring component
  • the controller has a memory and a processor
  • the processor of the controller detects the data based on the temperature of the temperature measuring component during operation. Executing a computer program stored in the controller memory to implement the following steps:
  • the temperature measuring element can be a thermocouple, an NTC or the like.
  • the top plate of the top library unit of the UAV shutdown library is a push-pull cover plate, and the UAV shutdown library is provided with a lifting mechanism for pushing the apron out of its protective casing.
  • a lifting mechanism for pushing the apron out of its protective casing can reduce the influence of the rebound airflow on the stability of the drone when the drone takes off or land, so that it can accurately land in the preset area, so that the charging electrode on the claw can be more accurate and better.
  • the card is pressed onto the charging electrode on the landing gear to effectively ensure the charging process.
  • the UAV shutdown library of the present invention uses a contact type fast charging charging mechanism to provide automatic wired charging for the drone while providing landing assistance;
  • the drone shutdown library of the present invention can control the drone to accurately land
  • the UAV shutdown library of the present invention can perform rapid charging at high speed and safely under outdoor harsh conditions.
  • Figure 1 is a perspective view of Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view of the library unit in which the drone is parked in the first embodiment of the present invention after the shell is omitted;
  • FIG. 3 is a perspective view of a push-pull drawer structure in Embodiment 1 of the present invention.
  • FIG. 4 is a perspective view of a push-pull drawer mechanism with a drone in a first embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a bottom library unit according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural view of a back side of a bottom library unit according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural view of a drawer structure according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural view of a clamping component according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural diagram of a top library unit according to Embodiment 3 of the present invention.
  • Figure 10 is a perspective view showing the perspective view of the front view of the apron and the traveling mechanism according to Embodiment 4 of the present invention.
  • FIG. 11 is a perspective structural view showing another perspective view of the front surface of the apron and the traveling mechanism according to Embodiment 4 of the present invention.
  • Figure 12 is a perspective view showing the back structure of the apron and the traveling mechanism according to Embodiment 4 of the present invention.
  • Figure 13 is a front elevational view showing the back structure of the apron and the traveling mechanism according to Embodiment 4 of the present invention.
  • FIG. 14 is a schematic perspective view showing the X-axis direction push rod of the apron and the traveling mechanism and the jaws, the stepping motor and the screw provided thereon according to Embodiment 4 of the present invention;
  • Figure 15 is a schematic view showing the structural state of the apron and the traveling mechanism after the drone is stopped according to the fourth embodiment of the present invention.
  • FIG. 16 is a schematic view showing the structural state of a fixed autonomous landing gear of a pawl of the apron and the traveling mechanism after the drone is stopped according to Embodiment 4 of the present invention
  • 1a-Apron 2a- pair of X-axis direction push rods; 21a, 22a-two X-axis direction push rods; 3a- pair of Y-axis direction push rods; 31a, 32a-two Y-axis direction push rods; 4a - jaw; 41a - jaw of the jaw; 411a - curved clamping surface of the chuck; 51a - first pulley; 52a - second pulley; 53a - third pulley; 54a - fourth pulley ; 6a-drive belt; 7a-power source; 8a-long shaft; 9a-slider; 10a-synchronous belt; 11a-connector; 13a-structural reinforcement; 14a-threaded rod; 141a, 142a-threaded section; Drone.
  • the UAV shutdown library provided by the embodiment includes a controller, a plurality of library units, a temperature control module, a power module, a communication module, and a positioning module, wherein the controller and the library unit, the temperature control module, and the power module The communication module and the positioning module are respectively electrically connected.
  • a UAV shutdown library provided by this embodiment includes five library units, which are a first library unit 1, a second library unit 21, and a third library unit 22 from bottom to top.
  • the description of the number of sets of library units in this embodiment is merely exemplary. In actual use, the library units of different layers than the present embodiment can be configured according to the number of drones that need to be docked.
  • the top plate 241 of the top storage unit 24 is a solar panel driven by a linear motor along the slide rail, so that the top storage unit 24 can not only open and close the storage unit but also generate electric energy.
  • the structure of the library unit is described by taking the first library unit 1 at the bottom as an example.
  • the first library unit 1 includes a support frame 11 , a protective shell and a push-pull drawer structure installed in the protective shell.
  • the support frame 11 is a rectangular parallelepiped frame
  • the protective cover includes the side plate 12, the side plate 13 and the bottom plate not shown in the figure, the top plate and the other two are opposite to the side plate 12 and the side plate 13, respectively.
  • the side plate, the push-pull drawer structure is provided with an apron, and the apron is provided with a charging structure.
  • the top plate is pushed out and retracted after the drone takes off.
  • the top plate is pushed out and taken back after the drone is lowered.
  • the push-pull drawer structure For each of the remaining library units, when the drone needs to be released, the push-pull drawer structure is pushed out and retracted after the drone takes off. When the drone needs to land, the push-pull drawer structure is pushed out and recovered after the drone is lowered. .
  • the controller controls all the library units at the same time, and sets the drawing direction of each layer of the library units to different directions.
  • the outlet directions of the push-pull drawer structures of the lower four library units are different, and may be allowed. More than four drones take off and land at the same time.
  • the controller is the control center of the UAV shutdown library. It collects the working status information of each component through the internal electronic circuit, generates control commands, and controls the coordinated actions of the various actuators to realize the function of the UAV shutdown library.
  • the controller includes a memory and a processor.
  • the power module includes a cable, a power source, a relay, an indicator light, and a power supply interface, wherein
  • the cable is arranged along a support frame of the library unit to avoid interference with the movable mechanism of the library unit; the cable is connected to the output pole of the power source.
  • the cable is made of a flexible spring-type cable, and the flexible spring-type cable is used to deliver electrical energy to each of the drone parking spaces;
  • the power source is powered by a DC power source, an AC power source, or a body solar power source disposed on the library unit through the charging platform interface, and provides a power supply system required for charging the drone through an internal power conversion device;
  • the relay directly controls the output of the voltage of the power supply interface
  • the indicator light is used to detect the working state of the power supply interface.
  • the temperature control module comprises a temperature detecting sensor and a thermostat module, wherein the temperature detecting sensor is used for detecting the temperature in the library unit, and the thermostat module is provided with an internal/external micro air conditioner to provide a suitable temperature and humidity environment for the drone. For example, when the ambient temperature is lower than 10 °C, the air conditioner is started to preheat the drone, and when the ambient temperature is higher than 30 °C, the air conditioner is started to cool down the drone.
  • the communication module is configured to communicate with a UAV intelligent dispatch management platform, and the communication module sends charging reservation information.
  • the communication module also uploads an operating state parameter of the UAV shutdown library in real time, including a power supply parameter and a charging electrode.
  • the key parameters such as normal contact and protection device are normal to the UAV intelligent dispatch management platform.
  • the positioning module is configured to obtain the location information of the UAV shutdown library, and send the information to the UAV intelligent dispatch management platform through the communication module to provide a reference for the UAV.
  • the library unit 1 includes a support frame 11, a protective shell composed of a panel such as a side panel 12 and a side panel 13, and a push-pull drawer structure installed in the protective casing, wherein the push-pull drawer structure includes a push-pull plate 3, an apron 4, A pair of pressing members 5 and a push-pull actuator 63 that drives the push-pull plate 3 to slide along the guide bars 61, 62.
  • the clamping component 5 is used as an embodiment of the above charging structure.
  • the apron 4 and the pressing assembly 5 are both mounted on the push-pull plate 3 so as to be able to be pushed out or pulled into the protective casing as the push-pull plate 3 is pushed.
  • a aligning guiding device 7 is fixed on the tarb 4, and the aligning guiding device 7 includes a U-shaped indicator 71 and a square indicator 72, a circular indicator 73 and a triangular indicator located in the area surrounding the U-shaped indicator 71 74.
  • the alignment guide 7 is mounted at the intermediate position of the parking stand 4 of the apron 4.
  • the pressing assembly 5 includes a running mechanism, a claw 51, and an actuator 8. among them,
  • the running mechanism includes two mutually parallel lateral support rods 52, two parallel longitudinal guide rods 53 and a slider 54 slidable along the longitudinal guide rods 53, wherein
  • each of the lateral support rods 52 are respectively fixedly coupled to a slider 54 so that the lateral support rods 52 can slide along the longitudinal guide rods 53;
  • the transverse support rod 52 has a semi-circular cross section, and the claw 51 is provided with a semi-circular fixed through hole matched with the lateral support rod 52, and each of the lateral support rods 52 is fixed with three claws 51; the longitudinal guide rod 53 constitutes a present
  • the longitudinal rails in the embodiment, the jaws 51 are fixedly connected to the slider 54 by the lateral support bars 52.
  • the two lateral support rods 52 of the running mechanism can push the drone with the deviation of the original landing position to the center.
  • the nose offset angle of the drone can also be corrected at the same time (less than plus or minus 45 degrees when the offset is not large), that is, the positioning effect is achieved.
  • the claw 51 is a wedge-shaped claw having a wedge-shaped surface 511, and a conductive fiber cloth and a micro switch are attached to the wedge-shaped surface 511 of the wedge-shaped claw, the conductive fiber cloth serves as a charging electrode, and the wedge surface serves as a pressing surface . Further, a mesh metal electrode attached to the wedge-shaped pressing surface may be used instead of the conductive fiber cloth as a charging electrode.
  • the charging electrode of the UAV shutdown library of the invention can be matched with the charging ports of various models, is compatible with a plurality of models, and has good versatility.
  • a set of claws fixed to the same lateral support rod 52 is fixed with a positive electrode charging electrode, and three claws fixed to the other set of lateral support rods are fixed with a negative electrode charging electrode.
  • the space under the apron 4 is respectively connected to the positive and negative poles of the power source through a flexible spring cable, and the power source is led to the drone stand and electrically connected to the charging electrode provided on the claw 51.
  • the actuator 8 includes a screw nut mechanism and a driving motor, and the driving motor is drivingly connected to the screw of the screw nut mechanism, and the nut in the screw nut mechanism is fixedly connected with a claw 51 at an intermediate position, thereby The intermediate claw 51 can be pushed, and at the same time, the two claws 51 on the side of the side are driven to move or move away from the alignment guide 7 on the apron 4 by the lateral support rod 52, that is, to the parking space of the apron 4 or Move away.
  • the push-pull plate 3 is slidably coupled to the guide bars 61, 62 by a plurality of sliders 64 fixed to the push-pull plate 3.
  • the push-pull actuator 63 comprises a screw nut mechanism and a driving motor, and the driving motor is connected with the screw rod of the screw nut mechanism.
  • the nut in the screw nut mechanism is fixedly connected with the bottom surface of the sliding plate 3 to push and pull the plate 3 and install
  • the apron 4, the pressing assembly 5, and the like thereon are pushed out or pushed together to protect the protective casing of the storage unit.
  • One of the side plates in the protective casing of the library unit in the push-pull direction of the push-pull plate is fixedly connected with the fixing rod 31 on the push-pull plate 3 so as to be movable together with the push-pull plate 3, and the other plates of the protective case are fixed on the support frame 11. .
  • the UAV shutdown library of the invention is generally operated together with the UAV intelligent dispatch management platform and multiple UAVs, and the UAV intelligent dispatch management platform cooperatively controls multiple UAVs and many A drone shutdown library to control the drone's fixed-point cruise, mission execution and return-to-air shutdown, charging and other functions.
  • the controller of the drone shutdown library receives the takeoff and landing command of the drone through the communication module or receives the opening or closing of the library unit controlled by the drone landing command of the drone control dispatching platform, and controls the same.
  • the device can also control the opening or closing of the assigned charger library by detecting whether the drone arrives or not;
  • the controller controls the claw to fix the drone and close the protective case of the library unit. After the closing, the corresponding charging function is performed according to whether the drone needs to be charged; in the process,
  • the temperature detecting sensor detects that the temperature in the library unit is too low or too high, it will send a signal to the controller, the controller will turn on the temperature control module to adjust the temperature to the suitable temperature; and the controller can also receive the drone intelligence.
  • the temperature control command of the dispatch management platform controls the temperature of the drone shutdown library or a certain library unit to reach the specified range, and always keeps the drone in a suitable temperature range.
  • the controller of the UAV shutdown library can also collect state information such as temperature information collected, the state of charge of the drone, the UAV shutdown library, and/or the position status of the UAV located therein, and The temperature information of the UAV shutdown library, whether the UAV in the UAV shutdown library can run, and other status information, and send the information to the UAV intelligent dispatch management platform for storage and feedback to the user.
  • state information such as temperature information collected, the state of charge of the drone, the UAV shutdown library, and/or the position status of the UAV located therein
  • the temperature information of the UAV shutdown library, whether the UAV in the UAV shutdown library can run, and other status information and send the information to the UAV intelligent dispatch management platform for storage and feedback to the user.
  • the controller of the UAV shutdown library can also send status information such as whether the shutdown library can receive the drone and the temperature of the shutdown library to the UAV to perform emergency functions, such as landing to the emergency working point.
  • the work between the UAV intelligent dispatch management platform and the controllers, controllers and UAVs, controllers and hangar library units also includes other functions. This is not listed one by one.
  • the embodiment further provides a UAV working system, comprising a plurality of the above-mentioned UAV shutdown library, a plurality of UAVs and a UAV intelligent dispatch management platform, the UAV shutdown library, the UAV, and the UAV
  • the human-machine intelligent dispatch management platform is respectively provided with wireless communication devices, and the unmanned aerial vehicle intelligent dispatch management platform is respectively connected with each drone shutdown library and each drone wirelessly.
  • the drone 01 is a rotary wing type unmanned aerial vehicle, which is controlled by a remote control matched thereto.
  • the drone 01 is mainly composed of a flight control system, a communication system, a positioning system, a power system and a battery.
  • the positioning system is a GPS and a similar satellite positioning unit and a visual positioning system.
  • the drone is automatically dispatched to the vision through the GPS. Within the positioning range, it is then landed onto the tarmac for charging by a visual positioning system.
  • the drone 01 can receive the instructions of the drone intelligent dispatch management platform and use the command to cruise to any point within a certain range (ie, the drone cruise range).
  • an open electrode is fixed on the transverse rod 012 of the landing gear 011 of the drone 01.
  • the open electrode is a conductive fiber cloth embedded in the transverse bar 012, which is engaged with a conductive fiber cloth fixed on the wedge surface of the claw 51 of the pressing member 5 of the push-pull plate 3.
  • the voltage detection is also performed by a voltage sensing probe disposed on the charging claw of the UAV shutdown library, so as to prevent reverse current from being generated when the drone is not correctly dropped, and the UAV is on the rack.
  • the protection circuit is connected in series with the battery electrode connected to the electrode of the drone and connected to the electrode on the landing gear, and has an overcurrent protection fuse function to prevent accidental short circuit damage to the drone and the automatic charging platform.
  • the image of the aligning guiding device installed in the middle position of the parking space of the tarmac is collected by the onboard camera of the drone 01, and then recognized by the image recognition function of the drone, and Refer to the positioning data generated by the drone gyroscope for positioning and alignment of the drone.
  • a low-dividing LED light bead is embedded in the indicator of the indicator light of the positive guiding device, so that the camera of the drone can collect images in a low illumination environment.
  • a tag identification device for example, an NFC/RFID card reader
  • a tag identification device is disposed on the parking space of the drone of the apron 4 for reading the electronic tag information of the drone, and verifying the identity of the drone.
  • the drone can be recharged after successful verification.
  • the working process of the UAV working system of this embodiment is as follows: the UAV sends a charging request according to the parameters of the onboard BMS (BATTERY MANAGEMENT SYSTEM), and the dispatching management platform acquires the drone within the scope of the jurisdiction. And the location of the shutdown library, the occupancy status of the parking space and other working status information, matching it with a reasonable charging shutdown library, and guiding it to the corresponding position; when the drone is cruising to the vicinity of the parking garage, it is set in the parking garage.
  • the alignment guide on the stand is landing, and after authentication, automatic charging can be started. When the charging is completed, the drone takes off and leaves the parking space.
  • the drone sends a charging request in time according to the parameters of the onboard BMS;
  • the UAV intelligent dispatch management platform obtains the location of the UAV and UAV shutdown library within the jurisdiction, the occupancy status of the UAV shutdown library and other working status information, and according to the charging request of the UAV
  • the communication module of the drone shutdown library sends charging reservation information to match a reasonable drone shutdown library for the drone and directs it to cruise to the corresponding location;
  • the automatic charging device When the drone shutdown library receives the drone landing command, the automatic charging device obtains a response, and the controller will designate a vacant library unit to be pushed out of the tarmac, for example, control the top library unit to open the top plate 241 or other library unit to launch the tarmac 4;
  • the UAV cruises to the top of the automatic charging device of the corresponding UAV shutdown library according to the positioning navigation system, starts to fall slowly, and continuously performs the posture according to the alignment guiding device 7 of the UAV shutdown library during the landing process. Adjust, correct landing;
  • the tag identification device that communicates with the controller at this time starts scanning the label at the bottom of the drone to perform identity verification.
  • the top plate 241 Or the apron 4 is retracted, and at the same time, the controller sends a command to control the actuator 8 to push the claw 51 to move in the middle until the card presses against the transverse rod 012 of the drone landing gear, thereby fixing the drone and making the claw
  • the charging electrode of 51 is in contact with the open electrode of the transverse rod 012 of the drone landing gear, and also by a micro switch arranged on the claw 51 to feed back whether it is fastened in place while avoiding damage to the landing gear 011;
  • the relay of the power module is closed, the indicator of the power module is lit, the current is supplied to charge the battery of the drone, and at the same time, the dispatching management platform is notified through the communication module, the unmanned The corresponding parking space of the machine shutdown library is in the charging state;
  • the relay of the power module is disconnected, its indicator light is extinguished, and the communication module is used to inform the UAV intelligent dispatch management platform that the corresponding drone battery is full, and the shutdown library receives the drone ready to take off.
  • the machine is in a state of being in flight;
  • the top plate 241 or the apron 4 is closed, the library unit is in the standby state, and the drone shutdown library is intelligent to the drone through the communication module.
  • the dispatch management platform updates the local drone stop occupancy information.
  • the working area of the entire system can be divided into three sections: the flight zone, the parking garage working zone and the service zone. among them,
  • the flight zone is the working place of the drone.
  • the drone flies at the workplace and measures the target environment through the portable device, collects the corresponding data, and transmits the collected target information to the cloud of the UAV intelligent dispatch management platform, or It is also possible to send its own state information to the cloud or system controller of the UAV intelligent dispatch management platform to complete the information interaction;
  • the parking garage working area is the location of the parking garage. It is usually equipped with equipment such as the parking unit, controller, remote control, etc.
  • the three can be integrated or separated according to requirements.
  • the three can be wired or wireless. Ways to achieve the exchange of information.
  • the controller is the core part of the system, and the controller obtains external instructions to the hangar, such as instructions for taking off and landing of the drone, control temperature sent by the cloud, etc., and parsing the instructions to the slave of the corresponding library unit. After sending the corresponding instruction, the slave controls the execution actions of the actuators such as the actuator, the temperature control module, and the charging device after obtaining the analysis command, and the slave controller can also send the status information of the collected hangar to the controller, such as shutdown.
  • the controller can send this information to the cloud of the UAV intelligent dispatch management platform, or directly parse the data. Then, according to the result of the analysis, feedback is given to the drone and the user, for example, for controlling the flight of the drone and performing other states;
  • the service area is an area where data is analyzed and processed, and it is also an area for human-computer interaction.
  • the system controller of the cloud business system of the service area acquires a large amount of data, and after detailed analysis of the data, the final result is fed back to the user. After the user obtains the information, the instructions can be issued and sent to the unmanned person through the cloud.
  • the system controller of the machine or the drone shutdown library realizes the function of remote monitoring.
  • the protective cover includes a top plate, a bottom plate, a front panel, a rear panel, and two side panels.
  • the apron 4′ of the embodiment is a hollow plate structure, and is supported by a plurality of support plates between the push-pull plate 32 to form an overhead layer structure with air permeability on both sides;
  • the plate 33 is provided with two rows of through holes and an LED strip 35 for illumination in a night environment.
  • the front panel 34 of the drawer structure and the push-pull plate 32 are hinged by a hinge, and the front panel 34 is pushed around the hinge by the actuator 36.
  • the hinge shaft rotates to control the front panel 34 to switch between the tiled position and the upright position.
  • a two-dimensional code 42 disposed on the tarmac 4' is used as a aligning guiding device, and an NFC/RFID card reader is also provided for reading.
  • an operation state warning light 91, a waterproof industrial plug 95, a power output socket and an air switch 94, a forward/backward 2-position button, and an emergency stop switch 97 are mounted on the side wall of the library unit.
  • a notch 41 for sliding the claw 51' is provided on the apron 4'.
  • the slot 41 is provided on the slot 41.
  • the sealing zipper (not shown) for opening and closing, the two strips of the sealing zipper are fixed on the two side walls of the notch 41 by bonding or the like, and the sides thereof are on the apron 4' The surface is horizontally aligned, and the slider of the sealing zipper is fixedly coupled to the fixing portion 86 on the claw 51' to be pulled or pushed to close the notch 41 when the claw 51 is retracted from the pressing charging position to the releasing position. And open when the card is pressed.
  • the jaw 51' adjusts the position of the drone that landed on the apron 4', but it is adjusted in the longitudinal direction, in order to enable the drone to be in the preset position for charging, in the parking position
  • the two sides are respectively provided with push rods 92 and 93 arranged in the longitudinal direction, and both ends of the two are slidable along the lateral guide rails (not shown) through the sliders, so that the push rods 92 and 93 can be pushed along the lateral guide rails through the actuators. Slide to adjust the displacement of the drone in the lateral direction.
  • the push rods 92, 93, the lateral rails, and the sliders mated therewith constitute the position correcting mechanism in this embodiment.
  • a voltage detecting pin 82 is fixed on the claw 51' for detecting the polarity of the battery on the drone, so as to prevent reverse current from being reversed on the charging electrode, mainly in the drone. Appears without landing properly.
  • the two voltage detecting pins 82 are electrically connected to the conductive electrodes provided on the landing gear of the drone, and the conductive electrodes are electrically connected with the voltage detecting legs of the unmanned battery, that is, the battery voltage of the unmanned aerial vehicle is fed back during the charging process.
  • the change in the case, in order to perform remote voltage compensation on the unmanned battery, together with the two charging electrodes constitutes a four-wire feedback-compensated charging structure with voltage compensation in this embodiment, of course, it can also be set to A feedback detection charging structure with voltage compensation above five lines.
  • a mounting groove for mounting the card holder 87 is formed on the base of the claw 51'.
  • a thermocouple is mounted on the card holder 87 for temperature change of the claw 51 during charging. Monitor.
  • the mounting unit of the claw 51' includes a slider 84 slidable along the longitudinal rail 81, an optical axis 85, a linear flange bearing 88, an adjustable preload spring mechanism 83, a rear seat 89, and a fixed seat. 98, where:
  • the rear seat 89 is fixed on the sliding seat 84.
  • the two optical shafts 85 are arranged along the longitudinal rail 81 and one end is fixed on the rear seat 89, that is, the longitudinal direction of the optical axis 85 is fixedly arranged along the direction in which the pressing charging position is directed to the releasing position.
  • the linear flange bearing 88 is slidably fitted on the optical axis 85 along the optical axis 85.
  • the fixing base 98 is fixedly coupled to the two linear flange bearings 88, that is, the fixing base 98 is slidable along the optical axis 85.
  • the claw 51' is a quick-release splicing charging head detachably mounted on the fixing base 98 to facilitate replacement when the charging electrode is aged.
  • the adjustable pre-tension spring mechanism 83 is disposed between the fixing base 98 and the rear seat 89, that is, the pressing force of the spring between the two is adjusted to change the pre-tightening force of the claw 51' in the longitudinal direction, thereby facilitating the The cushioning pressure and the cushioning displacement are formed when the unmanned aerial vehicle is jammed, which effectively ensures the tightness of the clamping and avoids hard extrusion and crushes the drone landing gear or the claw 51'.
  • the spring mechanism 83 includes a compression spring that is pressed between the rear seat 89 and the fixed seat 98, and a tie rod for adjusting the threshold of the compressible spacing between the fixed seat 98 and the rear seat 89.
  • the controller's processor executes the computer program stored in the controller memory based on the temperature detection data of the thermocouple on the card 87 to implement the following steps:
  • the electrode will continue to age with the prolonged use time, resulting in its resistance becoming larger, that is, its calorific value during charging will be higher than that of the new electrode, so that its aging condition can be monitored by temperature monitoring to remind the replacement of charging. electrode.
  • the first temperature threshold is higher than the second temperature threshold, and the specific value needs to be determined according to actual conditions.
  • a sensor 96 is fixed on the outer side wall of the library unit.
  • the sensor 96 integrates a wind sensor, a light sensor and a rain sensor to detect the environmental conditions around the shutdown library and send the detection data to the controller.
  • the processor determines whether the current environmental state is suitable for the drone to stop according to the relevant detection data, and feeds the judgment result to the drone or the drone intelligent dispatch management platform through the communication module.
  • the sensor 96 is mounted on the push-pull cover 241.
  • the lifting mechanism is selected as a jack.
  • the communication module of the UAV shutdown library may be a 3G, 4G, wifi or other similar wireless communication module for receiving the dispatch control command of the UAV intelligent dispatch management platform and uploading the drone shutdown library. status.
  • the drone correction and clamping mechanism for the UAV shutdown library of the present embodiment mainly includes a pair of X-axis direction push rods 2a disposed on the apron 1a. And a pair of Y-axis direction push rods 3a, the two push rods (push rod 21a, push rod 22a) of the pair of X-axis direction push rods 2a are oppositely arranged and synchronously moved, and the pair of Y-axis directions are pushed The two push rods (push rod 31a, push rod 32a) of the rod 3a are oppositely arranged and synchronously moved, and the pair of X-axis direction push rods 2a and the pair of Y-axis direction push rods 3a are moved by power and transmission mechanism.
  • Two claws 4a are respectively disposed on the two push rods (push rod 21a, push rod 22a) of the pair of X-axis direction push rods 2a, and each of the claws 4a includes a chuck 41a, each clip
  • the head 41a has a curved pressing surface 411a on each of which is provided with a charging electrode.
  • the claws may be disposed on the pair of Y-axis direction push rods 3a, and the number of the claws may be other than two, and may be provided to be provided only on a part of the claws.
  • the electrode is charged, and the remaining portion is not provided with a charging electrode.
  • the power and transmission mechanism of the pair of X-axis direction push rods 2a includes two sets of pulleys, two transmission belts 6a, and one power source 7a, and the two sets of pulleys are respectively disposed on the opposite side of the apron 1a.
  • the side of the apron is a side perpendicular to the X-axis direction push rod 2a, and the two ends of each X-axis direction push rod are respectively fixed on the transmission belts on both sides of the apron 1a.
  • the ends of the two X-axis direction push rods on the same side are respectively disposed in the upper half and the lower half of the side belt.
  • the first set of pulleys includes a first pulley 51a and a second pulley 52a.
  • the second set of pulleys includes a third pulley 53a and a fourth pulley 54a.
  • the power source 7a drives the first pulley. 51a, the first pulley 51a drives the second pulley 52a to rotate by the transmission belt 6a, and the second pulley 52a drives the third pulley 53a to rotate by a long shaft 8a, the third pulley 53a drives the fourth pulley 54a through another belt 6a.
  • the two X-axis direction pushers use the same power source 7a, and synchronous movement is realized by the combined transmission structure of the above pulley, the transmission belt and the long shaft.
  • the first, second, third, and fourth of the first pulley, the second pulley, the third pulley, and the fourth pulley named above are used only for distinguishing, and there is no limitation.
  • the power and transmission mechanism of the pair of X-axis direction push rods may further include more than one power source, that is, each X-axis direction push rod is provided with one power source, and each X-axis direction push rod is provided.
  • Other number of sets of pulleys and other numbers of belts on each set of pulleys can be provided in the transmission mechanism as needed and actual conditions.
  • the power and transmission mechanism of the pair of Y-axis direction push rods 3a include two screw rods 14a, four sliders 9a, and one power source 7a.
  • the two screw rods 14a are disposed on the apron 1a.
  • the side of the apron 1a is a side perpendicular to the Y-axis direction push rod 3a, and the two ends of each Y-axis direction push rod 3a are respectively fixed on the sliders on both sides.
  • Each of the screw rods 14a is provided with two threads (thread segments 141a, thread segments 142a) having opposite thread directions, and the power source 7a drives the first screw rod 14a, and the first screw rod 14a is rotated to drive
  • the two sliders 9a mounted thereon are moved toward or away from each other, and the ends of the shafts of the first screw 14a and the second screw 14a are driven by the timing belt 10a, and the first root
  • the lead screw 14a drives the second screw 14a to rotate, and then the two sliders 9a on the second screw 14a move toward or away from each other.
  • the two Y-axis direction push rods use the same power source 7a, and through the combined transmission structure of the screw rod, the slider and the timing belt, the synchronous movement of the two Y-axis direction push rods is realized.
  • the power and transmission mechanism of the pair of Y-axis direction push rods may further include more than one power source, that is, each of the Y-axis direction push rods is provided with a power source, the number of the screw rods and the screw rods. The number of sliders can be deformed and replaced as needed.
  • both ends of the X-axis direction push rod 2a are fixed with a power source 7a and a screw rod 14a through a plurality of connecting members 11a, and at the same time, the above-mentioned X-axis direction push rod 2a is disposed.
  • the claw 4a is in contact with or connected to some of the connecting members 11a.
  • the threaded rod 14a is provided with a threaded portion.
  • the power source 7a drives the screw rod 14a to rotate or contact the claw 4a.
  • the connecting member 11a is slidable along the lead screw 14a, thereby driving the claw 4a to move along the X-axis direction push rod 2a.
  • the claw 4a is further provided with an elastic member (not shown), specifically a spring, which triggers a micro switch when the elastic member is compressed to a predetermined shape variable, thereby driving the claw 4a
  • the power source 7a propelled by the push rod 2a in the X-axis direction is stopped.
  • the elastic member and the micro switch structure ensure the contact force of the claw 4a with the electrode on the landing gear of the drone.
  • the plurality of power sources 7a are all stepper motors.
  • timing belt structure of the above embodiment may be replaced by a chain transmission.
  • the specific structure may be replaced by those skilled in the art according to the prior art, and will not be described or expanded in detail herein.
  • the embodiment further provides a UAV shutdown library, which includes an apron and is provided with any of the above-mentioned UAV rectification and clamping mechanisms.
  • the middle portion of the apron 1a is provided with a alignment guide mark
  • the alignment guide mark includes a circular outline mark and an I-shaped mark located inside the circular outline mark.
  • the back surface of the apron 1a is provided with a plurality of structural reinforcement members 13a.
  • the structural reinforcement member 13a is rod-shaped and is two mutually parallel reinforcing bars, and two ends of each reinforcing bar are respectively connected to the two long sides of the apron 1a.
  • the shape, the number, and the relative positional relationship of the structural reinforcement member may be modified on the basis of the above structure, or other reinforcing member structures commonly used in the art may be used, and the illustration of the embodiment and the above description are not related to the structure.
  • the shape, number and relative positional relationship of the reinforcing members are limited.
  • the two X-axis direction push rods 21a, 22a and the two Y-axis direction push rods 31a, 32a are advanced toward the intermediate position of the tarmac 1a, and are pushed.
  • the curved pressing surface 411a of the claw 4a provided on the two X-axis direction push rods 21a, 22a is abutted against the landing gear of the drone.
  • the charging electrode provided on the curved pressing surface 411a cooperates with the corresponding charging structure on the vertical rod of the drone landing gear to charge the drone 15a.
  • the UAV correction and clamping mechanism provided in this embodiment can correct the UAV landing on the tarmac, and automatically pushes a pair of push rods in the X-axis direction and a pair of push rods in the Y-axis direction. Positive (well-shaped push), and ensure the synchronization of the movement of the two putters in a set of putters, while also using the charging jaws of the vertical clamping of the drone's feet, with the existing horizontal clip In contrast, another way of clamping has been successfully implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无人机停机库,包括控制器、停机坪(4)及受所述控制器控制的自动充电装置,所述自动充电装置包括一对卡压组件(5),所述卡压组件(5)包括卡压无人机起落架的横向杆或支撑脚的若干卡爪(51)、带动所述卡爪(51)移动的行走机构、驱动所述行走机构移动进而使所述卡爪(51)在卡压充电位置与释放位置之间移动的致动器(8)及固设在所述卡爪(51)上的充电电极。该无人机停机库,在为无人机提供降落辅助的同时,能为其进行高速安全的自动有线充电。

Description

无人机停机库 技术领域
本发明涉及一种无人机降落辅助装置,具体地说,涉及一种具有自动充电装置的无人机停机库。
背景技术
无人驾驶飞机,即无人机,是利用无线电遥控设备和自备的程序控制装置操作的不载人飞机,因具有成本低、效费比好、风险低、生存能力强、机动性能好等优点,而广泛应用于高空拍摄,且在快递送货领域具有很强的应用前景。
无人机通常由搭载在其上的电池进行供电,受限于可搭载电池的重量有限,且耗电量随着辅助设备的增加而不断增大,导致其单次航程偏短,限制了其应用前景与发展。
为了延长无人机的续航能力,公开号为CN106368478A的专利文献中公开了一种无人值守的分布式无人机充电机库,其包括机库保护箱体、停机坪、可滑盖的太阳能电池板、电池组、GPS/北斗定位通信单元、控制单元及无线充电单元,电池组与太阳能电池板电连接以对其进行充电,无线充电单元与电池组电连接且受控制单元控制而对停靠在停机坪上的无人机进行充电。
该专利文献通过分布式设置无人机充电机库,可有效地延长无人机的续航能力,但是其为无线充电,与有线充电相比,不仅充电效率较低,且充电设备成本偏高。
发明内容
本发明提供一种无人机停机库,以在为无人机提供降落辅助的同时,能为其进行自动有线充电。
本发明的技术方案如下:
一种无人机停机库,包括停机坪、控制器、及受所述控制器控制的自动充电装置,所述自动充电装置包括一对卡压组件,所述卡压组件包括卡压无人机起落架的横向杆或支撑脚的若干卡爪、带动所述卡爪移动的行走机构、驱动所述行走机构移动进而使所述卡爪在卡压充电位置与释放位置之间移动的致动器及固设在所述卡爪上的充电电极。
在工作过程中,随着致动器驱动卡爪移动至卡压充电位置处,卡爪卡压在无人机起落架横向杆或支撑脚上,并通过充电电极与设于起落架上的开放式电极接触而对无人机进行充电,同时通过一对卡爪从相对方向上卡压两侧起落架,使无人机在充电过程中被固持在停机坪上,有效确保充电过程的连续性、稳定性,及可有效防止因外部震动而引起无人机在停机坪上滑动,确保其降落后的安全;在完成充电后,致动器驱动卡爪移至释放位置,无人机可继续飞行而延长其续航能力。
在一优选实施方式中,所述行走机构包括设置在停机坪的相对两侧的两根相互平行的横向支撑杆、分别设置在停机坪的另外的相对两侧的两根相互平行的纵向导杆及分别与两侧的两纵向导杆相接触并可沿所述纵向导杆滑动的若干滑块,其中,每根横向支撑杆的两个端部分别与一所述的滑块固定连接;若干所述卡爪分组设置在两根所述横向支撑杆上。
当无人机降落至停机坪上时,致动器推动横向支撑杆将无人机推至停机坪在横向位置上的中心处,而后控制卡爪将无人机推至纵向位置上的中心处并卡压住起落架横向杆,从而对无人机降落位置偏差的容错性增加,进一步确保充电过程能正常进行。
在另一优选实施方式中,所述行走机构包括纵向导轨及可沿所述纵向导轨滑动的一对滑座,所述纵向导轨沿卡压充电位置指向释放位置的方向布置,若干所述卡爪分别设置在所述一对滑座上;在所述停机坪上还设有供所述卡爪滑动通过的槽口。
在优选实施方式中,每个所述槽口的两侧之间固设有封口拉链,在所述卡爪从卡压充电位置退至释放位置时,所述封口拉链同步对所述槽口进行封闭,而在所述卡爪从释放位置进至所述卡压充电位置时,所述封口拉链同步 将所述槽口打开,以防无人机在降落过程中,未停至预设位置而出现起落架嵌入该槽口中,有效地确保后续充电过程中卡爪移动路径不会被阻挡,也确保了无人机降落后能够正常起飞。
在优选实施方式中,所述卡爪上具有一固定部,所述封口拉链的滑动件与所述卡爪上的固定部固定连接,以实现所述拉链与所述卡爪移动的同步性。
在优选实施方式中,所述行走机构上还设有弹性缓冲机构,所述弹性缓冲机构主要包括:固定设置在所述滑座后部的后座、沿所述纵向导轨的方向布置且一端固设在所述后座上的光轴、设置在所述滑座中部且滑动地套装在所述光轴上的直线法兰轴承、可调预紧力弹性机构,所述可调预紧力弹性机构设置在所述直线法兰轴承与所述后座之间。可调预紧力弹性机构可通过调整压缩量,以改变卡爪沿纵向的预紧力,便于卡爪在卡压无人机起落架时形成缓冲压力与缓冲位移,有效确保卡压紧密性及避免出现硬挤压而挤坏无人机起落架或卡爪。
在优选实施方式中,所述行走机构上还设有固定座,所述固定座与所述直线法兰轴承固定连接,所述卡爪为可拆卸地安装在所述固定座上的快拆式隼接充电头,以便于充电电极出现老化时进行更换。
在优选实施方式中,所述可调预紧力弹性机构包括压于所述后座与所述直线法兰轴承之间的压簧,及用于调节所述直线法兰轴承与所述后座之间可压缩间距阈值的拉杆。
在又一优选实施方式中,所述行走机构包括设置在停机坪上的一对X轴方向推杆和一对Y轴方向推杆,所述的一对X轴方向推杆的两个推杆相对设置且同步移动,所述的一对Y轴方向推杆的两个推杆相对设置且同步移动,所述的一对X轴方向推杆和一对Y轴方向推杆通过动力及传动机构带动而实现移动,在所述一对X轴方向推杆或所述一对Y轴方向推杆的两个推杆上分别设有所述若干卡爪。
在优选实施方式中,所述停机坪的中间位置设有对正引导装置。对正引导装置可选自二维码标签、光学标靶、U型指示灯等。通过增设对正引导装置,可有效地确保无人机精准降落。
在优选实施方式中,所述对正引导装置包括U型指示灯及位于所述U型指示灯所围区域内的方形指示灯、圆形指示灯与三角形指示灯。
在优选实施方式中,所述对正引导装置为二维码。
在优选实施方式中,所述对正引导装置包括圆形轮廓及设置在所述圆形轮廓内的工字标识。
在优选实施方式中,所述卡爪上安装有卡压到位检测开关,卡压到位检测开关可选自微动开关、光电检测开关等。在确保卡压到位以使充电电极与起落架上的电极接触的同时,避免压坏起落架。
在优选实施方式中,所述卡爪上固定有若干电压探测针,所述电压探测针与所述充电电极一起构成四线以上带有电压补偿的反馈检测充电结构。
在优选实施方式中,所述充电电极为附着在所述卡爪的卡压面上的导电纤维布或网状金属电极。使用导电纤维布或网状金属结构作为充电电极,便于其与设于起落架上横向杆或支撑脚上的电极卡压接触,确保充电过程中的接触效果;此外,使用导电纤维布作为充电电极,可充分利用其具有一定的柔软性,使其与设于起落架上的电极卡压接触更充分,进一步提高充电过程的接触效果。
在优选实施方式中,所述停机坪在其停机位处设有NFC/RFID读卡器;所述无人机停机库的外壁上安装有风传感器、光传感器及雨传感器。用于机库检测到夜间环境以提供照明或者检测到恶劣气象条件而中断无人机出行任务。
在优选实施方式中,所述无人机停机库包括两层以上的库单元,位于最上层的为顶部库单元,每个所述库单元包括支撑框架、保护壳及安装在所述保护壳内的所述停机坪与所述自动充电装置;
位于所述顶部库单元下方的库单元还包括安装在所述保护壳内的推拉式抽屉结构,所述推拉式抽屉结构包括推拉板及驱动所述推拉板沿横向导轨滑动的致动器,所述停机坪与所述卡压组件安装在所述推拉板上。设置两层以上的库单元便于根据实际需停无人机数量设置库单元层数,并提高土地使用 效率。推拉式抽屉结构便于顶部库单元之下的库单元收纳或释放无人机,并通过卡压组件与推拉板配合,确保推拉板在将无人机推出或拉进库单元保护壳的过程中的稳定性与安全性。
在优选实施方式中,所述停机坪为镂空结构,并且所述停机坪与所述推拉板之间通过多块支撑板支撑,构成两侧透风的架空层结构;所述推拉式抽屉结构具有若干侧板,所述侧板上设有多个通孔。
上述结构可以减小无人机降落时气流反弹对无人机起飞或降落所造成的影响,从而能够准确地降落至预设区域内,以使卡爪上的充电电极能更准确及更好地卡压至起落架上的充电电极上,有效地确保充电过程的进行。
在优选实施方式中,相邻两层库单元的推拉板的推拉方向为相反或相正交。以避免两架无人机停靠在相邻两层的停机坪上时出现相互干涉的问题,提高停机库可同时降落的无人机数量。
在优选实施方式中,所述保护壳包括顶板、底板、后面板、两侧板,所述推拉式抽屉结构的推拉板与一前面板铰接,所述推拉式抽屉结构上设有推动所述前面板绕铰轴在闭合位置与平铺位置间转动的致动器。无人机起飞或降落时平铺前面板以减小气流反弹对无人机降落所造成的影响。
在优选实施方式中,所述无人机停机库还包括温控模块、电源模块、通信模块及定位模块,其中所述控制器与温控模块、电源模块、通信模块、定位模块分别电连接。
在优选实施方式中,所述卡爪上还设有测温元件,所述控制器具有存储器和处理器,在工作过程中,所述控制器的处理器基于所述测温元件的温度检测数据,执行存储在所述控制器存储器内的计算机程序以实现以下步骤:
在充电过程中,若检测到所述卡爪的温度高于一设定的第一温度阈值时,控制所述致动器驱动所述卡爪释放所述无人机起落架的横向杆或支撑脚,并重新移至卡压充电位置进行充电,重复释放步骤与重新卡压充电步骤直至所述卡爪的温度低于第一温度阈值;
若连续两次以上的充电过程都检测到卡爪的温度超过一设定的第二温度 阈值,则发送更换电极的提醒。测温元件可以为热电偶、NTC等。
再一个具体的方案为无人机停机库的顶部库单元的顶板为推拉式盖板,无人机停机库设有将停机坪推出其保护壳的升降机构。这样的结构可以减小无人机起飞或降落时反弹气流对无人机稳定性的影响,从而能够准确地降落在预设区域内,以使卡爪上的充电电极能更准确及更好地卡压至起落架上的充电电极上,有效地确保充电过程的进行。
与现有技术相比,本发明的有益效果如下:
第一、本发明的无人机停机库使用接触式快速充电的充电机制,在为无人机提供降落辅助的同时,能为其进行自动有线充电;
第二、本发明的无人机停机库能够控制无人机精准降落;
第三、本发明的无人机停机库能够在户外恶劣条件下高速、安全的进行快速充电。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
图1为本发明实施例1的立体图;
图2为本发明实施例1中停有无人机的库单元在略去壳板后的立体图;
图3为本发明实施例1中推拉式抽屉结构的立体图;
图4为本发明实施例1中卡压有无人机的推拉式抽屉机构的立体图;
图5为本发明实施例2中底部库单元的结构示意图;
图6为本发明实施例2中底部库单元的背侧结构示意图;
图7为本发明实施例2中抽屉结构的结构示意图;
图8为本发明实施例2中卡压组件的结构示意图;
图9为本发明实施例3中顶部库单元的结构示意图;
图10为本发明实施例4的停机坪和行走机构的正面视角的立体结构示意 图;
图11为本发明实施例4的停机坪和行走机构的正面另一视角的立体结构示意图;
图12为本发明实施例4的停机坪和行走机构的背面结构立体图;
图13为本发明实施例4的停机坪和行走机构的背面结构正视图;
图14为本发明实施例4的停机坪和行走机构的X轴方向推杆及其上设置的卡爪、步进电机和丝杆的立体结构示意图;
图15为本发明实施例4的停机坪和行走机构在无人机停靠后的结构状态示意图;
图16为本发明实施例4的停机坪和行走机构在无人机停靠后,其卡爪固定无人机起落架的结构状态示意图;
图中:
1-第一库单元;11-支撑框架;12-侧板;13-侧板;21-第二库单元;22-第三库单元;23-第四库单元;24-顶部库单元;241-顶板;3-推拉板;31-固定杆;4、4’-停机坪;5-卡压组件;51、51’-卡爪;52-横向支撑杆;53-纵向导杆;54-滑块;511-楔形面;61-导杆;62-导杆;63-推拉致动器;64-滑块;7-对正引导装置;71-U性指示灯;72-方形指示灯;73-圆形指示灯;74-三角形指示灯;8-致动器;01-无人机;011-起落架;012-横向杆;32-推拉板;33-侧板;34-前面板;35-LED灯带;36-致动器;91-运行状态警示灯;94-电源输出插座与空气开关;95-防水工业插头;97-进退2位按钮及紧停开关;92、93-推杆;41-槽口;42-二维码;81-纵向导轨;82-电压探测针;83-可调预紧力弹簧机构;84-滑座;85-光轴;86-卡爪51’上的固定部;87-卡托;88-;89-法兰轴承;98-固定座;96-传感器;
1a-停机坪;2a-一对X轴方向推杆;21a、22a-两根X轴方向推杆;3a-一对Y轴方向推杆;31a、32a-两根Y轴方向推杆;4a-卡爪;41a-卡爪的夹头;411a-夹头的弧形卡压面;51a-第一带轮;52a-第二带轮;53a-第三带轮;54a-第四带轮;6a-传动带;7a-动力源;8a-长轴;9a-滑块;10a-同步带;11a-连接 件;13a-结构加强件;14a-丝杆;141a、142a-螺纹段;15a-无人机。
具体实施方式
以下结合实施例及附图对本发明作进一步说明。
实施例1
本实施例提供的一种无人机停机库包括控制器、若干库单元、温控模块、电源模块、通信模块及定位模块,其中所述控制器与所述库单元、温控模块、电源模块、通信模块、定位模块分别电连接。
具体地,请参见图1,本实施例提供的一种无人机停机库包括五个库单元,其自下而上分别为第一库单元1、第二库单元21、第三库单元22、第四库单元23及顶部库单元24,其中相邻的两层库单元之间通过固定件可拆卸地固定连接。本实施例在此处对于库单元的设置数量的描述仅为示例性的,在实际使用中,可根据需要停靠的无人机的数量配置与本实施例不同层数的库单元。
在本实施例中,顶部库单元24的顶板241为由直线电机沿滑轨驱动的太阳能电池板,因此顶部库单元24不仅能够进行库单元的启闭,还能够产生电能。
本实施例以底部的第一库单元1为例对库单元的结构进行说明,请参见图1,第一库单元1包括支撑框架11、保护壳和及安装在保护壳内的推拉式抽屉结构,支撑框架11为一个长方体框架,保护壳包括图1中所示的侧板12、侧板13及图中未示出的底板、顶板与另外两个分别与侧板12、侧板13相对的侧板,所述推拉式抽屉结构设有停机坪,所述停机坪上设有充电结构。
对于顶部库单元24,在无人机需要释放时,顶板推出并在无人机起飞后收回,在无人机需要降落时,顶板推出并在无人机降落后收回。
对于其余每层库单元,在无人机需要释放时,推拉式抽屉结构推出并在无人机起飞后收回,在无人机需要降落时,推拉式抽屉结构推出并在无人机降落后收回。
控制器同时对所有库单元进行控制,并将每层库单元的抽拉方向设置成 不同方向,在本实施例中,下部四个库单元的推拉式抽屉结构的出口方向各不相同,可允许四架以上的无人机同时起降。
在本实施例中,
控制器是无人机停机库的控制中枢,其通过内部的电子电路,采集各部件工作状态信息,产生控制指令,控制各执行机构协同动作,以实现无人机停机库的功能。控制器包括存储器和处理器。
所述电源模块包括电缆、电源、继电器、指示灯及供电接口,其中,
所述电缆沿所述库单元的支撑框架布置,以避免对库单元的活动机构造成干涉;所述电缆连接所述电源的输出极。优选地使电缆采用柔性的弹簧式电缆,通过这种柔性的弹簧式电缆将电能输送至各无人机停机位上;
所述电源是通过充电平台接口接入的直流电源、交流电源或者在库单元上设置的本体太阳能电源供电,并通过内部的电源转换装置,提供无人机充电所需的电源制式;
所述继电器直接控制供电接口电压的输出;
所述指示灯用于检测供电接口工作状态。
所述温控模块包括温度检测传感器和恒温模块,其中,温度检测传感器用于检测库单元内的温度,恒温模块可选内置/外置微型空调,为无人机提供合适的温度、湿度环境。例如,在环境温度低于10℃时启动空调为无人机预热,在环境温度高于30℃时启动空调为无人机降温。
所述通信模块用于与一无人机智能调度管理平台通信,所述通信模块发送充电预约信息,此外通信模块还实时上传无人机停机库的工作状态参数,包括电源供给参数、充电电极是否正常接触、保护装置是否正常等关键性参数至该无人机智能调度管理平台上。
所述定位模块用于获取本无人机停机库的位置信息,并通过所述通信模块将这一信息发送至无人机智能调度管理平台,为无人机提供参考。
请结合参见图2至图3,本实施例以底部的库单元1为例对库单元的结构进行说明。库单元1包括支撑框架11、由侧板12和侧板13等各个板组成的 保护壳及安装在保护壳内的推拉式抽屉结构,其中,推拉式抽屉结构包括推拉板3、停机坪4、一对卡压组件5及驱动推拉板3沿导杆61、62滑动的推拉致动器63。其中,所述卡压组件5作为上述的充电结构的一种实施方式。
其中,停机坪4与卡压组件5均安装在推拉板3上,以便能够随着推拉板3被推出或拉进保护壳内。
停机坪4上固设有对正引导装置7,对正引导装置7包括U型指示灯71及位于U型指示灯71所围区域内的方形指示灯72、圆形指示灯73与三角形指示灯74。对正引导装置7安装在停机坪4的停机位中间位置上。
卡压组件5包括行走机构、卡爪51及致动器8。其中,
行走机构包括两根相互平行的横向支撑杆52、两根相互平行的纵向导杆53及可沿纵向导杆53滑动的滑块54,其中,
每根横向支撑杆52的两个端部分别与一所述的滑块54固定连接,从而使横向支撑杆52可沿纵向导杆53滑动;
横向支撑杆52的横截面为半圆结构,卡爪51上设有与横向支撑杆52相配合的半圆固定通孔,每根横向支撑杆52上固定有三个卡爪51;纵向导杆53构成本实施例中的纵向导轨,卡爪51通过横向支撑杆52实现与滑块54的固定连接。
行走机构的两根横向支撑杆52在相向运动的过程中,可以将原本降落位置有所偏差的无人机推正至正中央。在推动的过程中,无人机的机头偏移角度也同时可以被修正(偏移量不大的情况下,小于正负45度),即实现了定位的效果。
卡爪51为具有一个楔形面511的楔形卡爪,在楔形卡爪的楔形面511上附着有导电纤维布及微动开关,所述导电纤维布作为充电电极,所述楔形面作为卡压面。此外,可采用附着在楔形卡压面上的网状金属电极替代导电纤维布作为充电电极。本发明的无人机停机库的充电电极能够与多种机型的充电口匹配,兼容多种机型,通用性好。
固定在同一根横向支撑杆52上的三个卡爪51构成的一组卡爪上固设正 极充电电极,固定在另一组横向支撑杆上的三个卡爪上固设负极充电电极。
在本实施例中,停机坪4下方空间通过柔性弹簧电缆分别连接电源的正负两极,将电源引至无人机停机位上并与设于卡爪51上的充电电极电连接。
致动器8包括丝杆螺母机构与驱动电机,所述驱动电机与所述丝杆螺母机构的丝杆传动连接,丝杆螺母机构中的螺母与位于中间位置的一卡爪51固定连接,从而可推动中间卡爪51,并同时通过横向支撑杆52带动侧旁的两个卡爪51一起向停机坪4上的对正引导装置7移动或移离,即向停机坪4的停机位移动或移离。
推拉板3通过固定在推拉板3上的多个滑块64与导杆61、62滑动连接。
推拉致动器63包括丝杆螺母机构与驱动电机,驱动电机与丝杆螺母机构的丝杆传动连接,丝杆螺母机构中的螺母与推拉板3的底面固定连接,以将推拉板3及安装其上的停机坪4、卡压组件5等一起推出或推进库单元的保护壳。
库单元的保护壳中沿推拉板的推拉方向的其中一个侧板与推拉板3上的固定杆31固定连接,从而可随推拉板3一起移动,保护壳的其他板则固定在支撑框架11上。
本发明的无人机停机库在工作过程中,通常是配合无人机智能调度管理平台、多台无人机一起运行的,通过无人机智能调度管理平台协同控制多台无人机及多个无人机停机库,以控制无人机的定点巡航、任务执行和返航停机、充电等功能。
本实施例的无人机停机库部分的工作流程如下:
无人机停机库的控制器通过通信模块接收无人机的起飞降落指令或接收无人机智能调度管理平台发出的控制无人机的起飞降落指令控制分配的库单元的打开或闭合,同时控制器也可以通过检测到无人机是否到达,来控制分配的充电机库的打开或闭合;
当检测到无人机到达之后,控制器控制卡爪固定好无人机并闭合库单元的保护壳,闭合之后根据无人机是否需要充电执行对应的充电功能;在此过 程中,
若温度检测传感器检测到库单元内的温度过低或过高,将发送信号给控制器,控制器会开启温控模块,以将温度调整至适合温度;同时控制器也可以接收无人机智能调度管理平台的温度调控指令控制无人机停机库或某个库单元的温度到达指定的范围内,始终使无人机处于适合的温度范围。
除此之外,无人机停机库的控制器还能够将采集的温度信息、无人机的充电状况、无人机停机库和/或位于其内的无人机的位置状态等状态信息以及无人机停机库的温度信息、无人机停机库内的无人机是否可以运行等状态信息,并将这些信息发送给无人机智能调度管理平台进行保存并反馈给用户。
并且,无人机停机库的控制器还能够将该停机库是否能够接收无人机以及停机库温度等状态信息发送给无人机,使其执行应急功能,比如,降落到应急工作点。
除上述描述提到的具体工作流程之外,无人机智能调度管理平台和控制器、控制器与无人机、控制器和机库的库单元之间的工作内容还包括其他的功能,在此不一一列举。
本实施例还提供一种无人机工作***,包括若干上述无人机停机库、若干无人机和无人机智能调度管理平台,所述无人机停机库、所述无人机和无人机智能调度管理平台分别设有无线通信装置,所述无人机智能调度管理平台分别与每个无人机停机库、每个无人机无线通信连接。
请参见图2,在本实施例中,无人机01为一旋翼式无人机,其由与之匹配的遥控操控。该无人机01主要由飞控***、通讯***、定位***、动力***以及电池组成,其中,定位***为GPS和类似卫星定位单元与视觉定位***,首先通过GPS将无人机自动调度至视觉定位范围之内,然后通过视觉定位***实现降落至停机坪上以进行充电。无人机01可接收无人机智能调度管理平台的指令并以该指令巡航至某特定范围(即无人机巡航范围)内任意一点。
请参见图4,无人机01的起落架011的横向杆012上固设有开放式电极。该开放式电极为镶嵌在横向杆012上的导电纤维布,其与固设在推拉板3的卡压组件5的卡爪51的楔形面上的导电纤维布配合。本实施例还通过设置在 无人机停机库的充电卡爪上的电压感应探头进行电压检测,以防止无人机未正确降落的工况下可能出现反向电流,同时无人机机架上的用于引出无人机机体内电池电极并与起落架上的电极相连的电缆中串联了保护电路,具有过流保护熔断功能,以防止意外短路对无人机及自动充电平台造成损坏。
在无人机向停机坪4降落时,由无人机01的机载摄像头采集安装在停机坪的停机位中间位置的对正引导装置的图像后,通过无人机图像识别功能进行识别,并参考无人机陀螺仪产生的定位数据,用于无人机的定位、对正。
并且,对正引导装置的指示灯的标识中内嵌低发散LED光珠,以利于无人机的摄像头在低照度环境下采集图像。
此外,本实施例在停机坪4的无人机停机位上设置标签识别装置(例如为NFC/RFID读卡器),用于读取无人机的电子标签信息,对无人机身份验证,验证成功后,方可对无人机进行充电。
本实施例的无人机工作***的工作过程如下:无人机根据机载BMS的参数(BATTERY MANAGEMENT SYSTEM,电池管理***),适时发出充电请求;调度管理平台获取所辖范围内的无人机和停机库的位置、停机位占用状态以及其他工作状态信息,为其匹配一个合理的充电停机库,并指引其巡航至相应位置;当无人机巡航至停机库附近时,通过设置在停机库的停机位上的对正引导装置对正降落,通过身份验证,即可开始自动充电。当充电完成后,无人机起飞离开停机位。
本实施例的无人机工作***的工作过程具体示例如下:
(1)无人机根据机载BMS的参数,适时发出充电请求;
无人机智能调度管理平台获取所辖范围内的无人机和无人机停机库的位置、无人机停机库的停机位占用状态以及其他工作状态信息,并根据无人机的充电请求给无人机停机库的通信模块发送充电预约信息,为无人机匹配一个合理的无人机停机库,并指引其巡航至相应位置;
无人机停机库接到无人机降落指令时,自动充电装置获得响应,控制器将指定一个空置的库单元推出停机坪,例如控制顶部库单元开启顶板241或 其他库单元推出停机坪4;
(2)无人机根据定位导航***巡航至相应的无人机停机库的自动充电装置上方,开始缓慢下落,并在降落过程中,不断根据无人机停机库的对正引导装置7进行姿态调整,对正降落;
(3)在无人机稳定停靠到停机库的停机坪4上后,此时与控制器通讯连接的标签识别装置开始扫描无人机底部的标签,进行身份验证,在识别成功后,顶板241或者停机坪4收回,同时,控制器发送指令控制致动器8推动卡爪51向中间移动,直到卡压住无人机起落架的横向杆012,从而将无人机固定,并使卡爪51的充电电极与无人机起落架的横向杆012的开放式电极的接触,并且还通过布置在卡爪51上的微动开关以反馈是否紧固到位,同时避免损伤起落架011;
(4)在卡爪51抓牢无人机后,电源模块的继电器闭合,电源模块的指示灯点亮,输送电流给无人机电池充电,同时,通过通信模块告知调度管理平台,该无人机停机库的相应停机位正处于充电状态;
在无人机电池充满后,电源模块的继电器断开,其指示灯熄灭,并通过通信模块告知无人机智能调度管理平台相应无人机电池已经充满,同时停机库接收到无人机准备起飞的指令,推顶板241或者退出停机坪4,两组卡爪向两侧移动,释放无人机起落架,即致动器8推动卡爪51在卡压充电位置与释放位置间移动,无人机处于待飞状态;
(5)待无人机离开停机位,飞离停机库继续续航后,顶板241或者停机坪4关闭,该库单元处于待机状态,同时,该无人机停机库通过通信模块向无人机智能调度管理平台更新本地的无人机停机位占用信息。
对于上述无人机工作***来说,整个***的工作区域可划分为飞行区、停机库工作区和服务区三个区间。其中,
飞行区是无人机的工作场所,无人机在工作场所飞行并通过随身携带的设备测量目标环境、采集对应数据并且将采集到的目标信息发送到无人机智能调度管理平台的云端,或者也可以将自身的状态信息发送到无人机智能调度管理平台的云端或***控制器,完成信息的交互;
停机库工作区是停机库的所在地,其通常安装有停机库单元、控制器、遥控器等设备,可根据需求将这三者集成在一起或分开,这三者之间可以通过有线或无线的方式实现信息的交流。其中控制器是***的核心部分,控制器获取外部对机库的指令,比如获取无人机起飞和降落的指令、云端发送的控制温度等指令,并解析这些指令,给对应库单元的从控发送相应的指令,从控通过获取解析指令之后,控制致动器、温控模块以及充电设备等执行机构的执行动作,从控也可以将采集的机库的状态信息发送给控制器,比如停机库单元是闭合还是开启、是否正在充电、无人机状态、温度状态等一系列状态信息,控制器可以将这些信息发送给无人机智能调度管理平台的云端,也可以直接对数据进行解析,之后根据解析的结果反馈给无人机和用户,比如,用于控制无人机的飞行以及执行其他的一些状态;
服务区是数据集中分析处理数据的区域,同时也是人机交互的区域。服务区的云端业务***的***控制器获取大量的数据,将这些数据详细的分析之后,将最终的结果反馈给用户,用户获取这些信息之后,可以下达各项指令,并通过云端发送给无人机或无人机停机库的***控制器,实现远程监控的功能。
实施例2
作为对本发明实施例2的阐述,以下仅对本实施例与上述实施例1的不同之处进行说明。
所述保护壳包括顶板、底板、前面板、后面板、两侧板。
请参见图5和图7,本实施例的停机坪4’为一镂空板结构,其与推拉板32间通过多块支撑板支撑,构成两侧透风的架空层结构;抽屉结构设置的两侧板33上均设有两排通孔及用于黑夜环境下照明的LED灯带35,抽屉结构设置的前面板34与推拉板32间通过铰链铰接,通过致动器36推动前面板34绕铰链的铰轴转动,以控制前面板34在平铺位置与竖立位置间切换。通过在停机坪4’与侧板33上设置通孔,并且在无人机起落过程中使前面板34处于平铺状态,可有效地减少对旋翼下洗气流的反弹,提高无人机飞行的稳定性。
请参见图7,在本实施例中,采用设于停机坪4’上的二维码42作为对正引导装置,此外,还设有NFC/RFID读卡器,用于读取设于无人机上的电子标签所包含的身份认证信息。
请参见图6,在库单元侧壁上安装有运行状态警示灯91、防水工业插头95、电源输出插座与空气开关94、进退2位按钮及紧停开关97。
请参见图7和图8,在停机坪4’上设有供卡爪51’滑动通过的槽口41,为了减少槽口41对无人机降落过程的影响,在该槽口41上设置用于对其进行启闭的封口拉链(图中未示出),封口拉链的两布条通过粘接等方式固定在槽口41的两侧壁上,且使其边与停机坪4’的上表面水平对齐,封口拉链的滑动件与卡爪51’上的固定部86固定连接而受其拉动或推动,以在卡爪51从卡压充电位置退至释放位置时,对槽口41进行封闭,而在卡压时打开。
在使用过程,卡爪51’会对降落至停机坪4’上的无人机的位置进行调整,但是其为沿纵向调整,为了使无人机能够位于预设位置而进行充电,在停机位两侧各设有沿纵向布置的推杆92、93,二者两端通过滑块而可沿图中未示出的横向导轨滑动,从而可通过一致动器推动推杆92、93沿横向导轨滑动,即可对无人机在横向上的位移进行调整。推杆92、93、横向导轨及与之配合的滑块一起构成本实施例中的位置矫正机构。
请参见图8,在本实施例中,卡爪51’上固定有电压探测针82,用于检测无人机上电池极性,以防充电电极接反而出现反向电流,主要是在无人机未正确降落的情况下出现。两根电压探测针82与设于无人机的起落架上的导电电极电连接,而该导电电极与无人机电池的电压检测脚电连接,即其反馈了无人机上电池电压在充电过程中的变化情况,以能对无人机电池进行远端电压补偿,与两根充电电极一起构成本实施例中四线带有电压补偿的反馈检测充电结构,当然了,也可以将它们设置成五线以上带有电压补偿的反馈检测充电结构。
请参见图8,在卡爪51’的基体上开设有用于安装卡托87的安装槽,卡托87上安装有热电偶,该热电偶用于在充电过程中对卡爪51的温度变化情况进行监控。
如图8所示,卡爪51’的安装单元包括可沿纵向导轨81滑动的滑座84、光轴85、直线法兰轴承88、可调预紧力弹簧机构83、后座89及固定座98,其中:
后座89固定于滑座84上,两根光轴85沿纵向导轨81布置且一端固定在后座89上,即光轴85的长度方向沿卡压充电位置指向释放位置的方向布置地固设在后座89上,直线法兰轴承88可沿光轴85滑动地套装在光轴85上,固定座98与两个直线法兰轴承88固定连接,即固定座98可沿光轴85滑动地安装在光轴85上,卡爪51’为可拆卸地安装在固定座98上的快拆式隼接充电头,以便于充电电极出现老化时进行更换。
可调预紧力弹簧机构83设置在固定座98与后座89之间,即可通过调整压于二者间弹簧的压缩量,以改变卡爪51’沿纵向的预紧力,便于其在卡压无人机起落架时形成缓冲压力与缓冲位移,有效确保卡压紧密性及避免出现硬挤压而挤坏无人机起落架或卡爪51’。该弹簧机构83包括压于后座89与固定座98之间的压簧,及用于调节固定座98与后座89间可压缩间距阈值的拉杆。
在工作过程中,控制器的处理器基于卡托87上的热电偶的温度检测数据,执行存储在控制器存储器内的计算机程序以实现以下步骤:
(1)在充电过程中,若检测到卡爪51’的温度高于第一温度阈值时,控制致动器驱动卡爪51’释放无人机起落架,并重新移至卡压充电位置进行充电,重复释放步骤与重新卡压充电步骤直至卡爪51’的温度低于第一温度阈值。
通过对卡爪51’在充电过程中温度变化的检测,以对卡爪51’的充电接触是否良好进行判断,以确保充电过程的安全。
(2)若连续两次以上的充电过程都检测到卡爪51’的温度超过第二温度阈值,则发送更换电极的提醒。
电极随着使用时间的延长会不断老化,导致其电阻变大,即其在充电过程中的发热量会比新电极的高,从而可通过温度监控而对其老化情况进行监控,以提醒更换充电电极。
其中,第一温度阈值高于第二温度阈值,具体数值需根据实际情况进行检测确定。
实施例3
作为对本发明实施例3的阐述,以下仅对与上述实施例1的不同之处进行说明。
请参见图9,在库单元的外侧壁上固设有传感器96,传感器96集成了风传感器、光传感器及雨传感器,以对停机库周围的环境状况进行检测,并将检测数据发送给控制器的处理器,处理器根据相关检测数据判断当前环境状态是否适于无人机停靠,并将判断结果通过通讯模块反馈给无人机或无人机智能调度管理平台。在本实施例中,传感器96安装在推拉式盖板241上。
顶部库单元24的停机坪4的下方安装有用于将其沿垂向推出保护壳外的升降机构,在本实施例中,升降机构选为千斤顶。
在本实施例中,无人机停机库的通讯模块可以为3G、4G、wifi或其他类似的无线通讯模块,用于接收无人机智能调度管理平台的调度控制命令和上传无人机停机库状态。
实施例4
请参见图10-图16,本实施例提供的一种用于无人机停机库的无人机归正与夹持机构,主要包括设置在停机坪1a上的一对X轴方向推杆2a和一对Y轴方向推杆3a,所述的一对X轴方向推杆2a的两个推杆(推杆21a、推杆22a)相对设置且同步移动,所述的一对Y轴方向推杆3a的两个推杆(推杆31a、推杆32a)相对设置且同步移动,所述的一对X轴方向推杆2a和一对Y轴方向推杆3a通过动力及传动机构带动实现移动,在所述一对X轴方向推杆2a的两个推杆(推杆21a、推杆22a)上分别设有两个卡爪4a,每个卡爪4a包括一个夹头41a,每个夹头41a具有弧形卡压面411a,在每个弧形卡压面上设有充电电极。
在其他可替换实施方式中,也可以在一对Y轴方向推杆3a上设置卡爪, 卡爪的数量还可以是两个以外的其他数量,此外还可以设置为仅一部分卡爪上设有充电电极,而剩余的一部分不设置充电电极。
在本实施例中,所述一对X轴方向推杆2a的动力及传动机构包括两组带轮、两个传动带6a、一个动力源7a,两组带轮分别设置在停机坪1a的相反的两侧边,所述停机坪的侧边是与所述X轴方向推杆2a相垂直的侧边,每根X轴方向推杆的两端分别固定在停机坪1a的两侧边的传动带上,并且两根X轴方向推杆的位于同一侧边的端部分别设置在该侧传动带的上半部和下半部。其中,第一组带轮包括第一带轮51a、第二带轮52a,第二组带轮包括第三带轮53a、第四带轮54a,所述动力源7a驱动所述第一带轮51a,所述第一带轮51a通过传动带6a带动所述第二带轮52a转动,所述第二带轮52a通过一长轴8a带动所述第三带轮53a转动,所述第三带轮53a通过另一传动带6a带动所述第四带轮54a。在本实施例中,两根X轴方向推杆使用同一个动力源7a,并通过上述带轮、传动带和长轴的组合传动结构实现同步移动。以上所命名的第一带轮、第二带轮、第三带轮、第四带轮中的第一、第二、第三、第四仅用作区分,而没有限制含义。
在其他实施方式中,所述一对X轴方向推杆的动力及传动机构还可以包括多于一个动力源,即每根X轴方向推杆设置一个动力源,每根X轴方向推杆的传动机构中可根据需要和实际情况设置其它数量组的带轮和其它数量的套在每组带轮上的传动带。
在本实施例中,所述一对Y轴方向推杆3a的动力及传动机构包括两根丝杆14a、四个滑块9a、一个动力源7a,两根丝杆14a设置在停机坪1a的相反的两侧边,所述停机坪1a的侧边是与所述Y轴方向推杆3a相垂直的侧边,每根Y轴方向推杆3a的两端分别固定在两侧的滑块上;每根丝杆14a上设有螺纹方向相反的两段螺纹(螺纹段141a、螺纹段142a),所述动力源7a驱动第一根丝杆14a,所述第一根丝杆14a转动继而带动安装在其上的两个滑块9a相向移动或相背离移动,所述第一根丝杆14a和第二根丝杆14a的轴的端部通过同步带10a实现传动,进而所述第一根丝杆14a带动所述第二根丝杆14a转动,继而所述第二根丝杆14a上的两个滑块9a相向移动或相背离移动。 使两根Y轴方向推杆使用同一个动力源7a,并通过上述丝杆、滑块和同步带的组合传动结构,实现了两根Y轴方向推杆的同步移动。
在其他实施方式中,所述一对Y轴方向推杆的动力及传动机构还可以包括多于一个动力源,即每根Y轴方向推杆设置一个动力源,丝杆的数量及丝杆上滑块的数量可根据需要进行变形和替换。
在本实施例中,所述X轴方向推杆2a的两端通过多个连接件11a固设有一动力源7a及一丝杆14a,同时,设置在所述X轴方向推杆2a上的所述卡爪4a与其中一些连接件11a接触或连接,所述丝杆14a上设有螺纹段,上述动力源7a带动所述丝杆14a转动时,与所述卡爪4a接触或连接的所述一些连接件11a能够沿所述丝杆14a滑动,进而带动所述卡爪4a沿着X轴方向推杆2a移动。该结构能使两端的两个卡爪4a从两侧向中间推进,从而夹持住无人机起落架。
在本实施例中,所述卡爪4a后还安装有弹性元件(图中未示),具体为弹簧,在所述弹性元件压缩至预定形变量时触发一微动开关,进而使驱动卡爪4a沿X轴方向推杆2a推进的动力源7a停止。该弹性元件和微动开关结构保证卡爪4a与无人机起落架上电极的接触力。
在本实施例中,多个动力源7a均为步进电机。
在其他变形的实施方式中,上述实施例的同步带结构可以用链条传动来代替,具体的结构是本领域技术人员可根据现有技术知识替换的,此处不做详述和展开。
请参见图10和图11,本实施例还提供一种无人机停机库,其包括停机坪,并设有上述任一的无人机归正与夹持机构。
在本实施例中,所述停机坪1a的中部设有对正引导标识,所述对正引导标识包括一圆形轮廓标识及位于所述圆形轮廓标识内的工字形标识。
在本实施例中,所述停机坪1a的背面设有若干结构加强件13a。
在本实施例中,所述结构加强件13a为杆状,并且为两条相互平行的加强杆,每个加强杆的两端分别连接在所述停机坪1a的两条长边上。
在其他实施方式中,结构加强件的形状、数量和相对位置关系还可以在上述结构的基础上进行变形,或者采用本领域常用的其他加强件结构,本实施例的图示及上述描述不对结构加强件的形状、数量和相对位置关系做出限定。
请参见图15,当无人机15a停在停机坪1a上后,两根X轴方向推杆21a、22a和两根Y轴方向推杆31a、32a向停机坪1a中间位置推进,并推压在无人机15a的起落架上,请参见图7,同时,连接设置在两根X轴方向推杆21a、22a上的卡爪4a的弧形卡压面411a抵在无人机起落架的竖向杆上,并且,弧形卡压面411a上设置的充电电极与无人机起落架的竖向杆上对应设置的充电结构配合,对无人机15a进行充电。
本实施例提供的一种无人机归正与夹持机构能够对降落在停机坪上的无人机进行推正,由X轴方向一对推杆与Y轴方向一对推杆实现自动推正(井字形推正),并保证了一组推杆中的两个推杆移动的同步性,同时还采用了竖向夹紧无人机机脚的充电卡爪,与现有的横向夹持相比,成功实现了另一种夹持方式。
以上实施例1-4中的各个技术特征之间可根据需要进行组合和相互替换,所有实施例的技术特征不仅限于在该实施例中使用,而是还可以使用在其他的实施例的相同或类似的场景中。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (23)

  1. 一种无人机停机库,包括停机坪,其特征在于:还包括控制器及受所述控制器控制的自动充电装置,其中,
    所述自动充电装置包括一对卡压组件,所述卡压组件包括卡压无人机起落架的横向杆或支撑脚的若干卡爪、带动所述卡爪移动的行走机构、驱动所述行走机构移动进而使所述卡爪在卡压充电位置与释放位置之间移动的致动器及固设在所述卡爪上的充电电极。
  2. 根据权利要求1所述的无人机停机库,其特征在于:
    所述行走机构包括设置在停机坪的相对两侧的两根相互平行的横向支撑杆、分别设置在停机坪的另外的相对两侧的两根相互平行的纵向导杆及分别与两侧的两纵向导杆相接触并可沿所述纵向导杆滑动的若干滑块,其中,每根横向支撑杆的两个端部分别与一所述的滑块固定连接;
    若干所述卡爪分组设置在两根所述横向支撑杆上。
  3. 根据权利要求1所述的无人机停机库,其特征在于:
    所述行走机构包括纵向导轨及可沿所述纵向导轨滑动的一对滑座,所述纵向导轨沿卡压充电位置指向释放位置的方向布置,若干所述卡爪分别设置在所述一对滑座上;在所述停机坪上还设有供所述卡爪滑动时通过的槽口。
  4. 根据权利要求3所述的无人机停机库,其特征在于:
    每个所述槽口的两侧之间固设有封口拉链,在所述卡爪从卡压充电位置退至释放位置时,所述封口拉链同步对所述槽口进行封闭,而在所述卡爪从释放位置进至所述卡压充电位置时,所述封口拉链同步将所述槽口打开。
  5. 根据权利要求4所述的无人机停机库,其特征在于:所述卡爪上具有一固定部,所述封口拉链的滑动件与所述卡爪上的固定部固定连接。
  6. 根据权利要求3所述的无人机停机库,其特征在于:
    所述行走机构上还设有弹性缓冲机构,所述弹性缓冲机构主要包括:
    固定设置在所述滑座后部的后座、沿所述纵向导轨的方向布置且一端固设在所述后座上的光轴、设置在所述滑座中部且滑动地套装在所述光轴上的直线法兰轴承、可调预紧力弹性机构,所述可调预紧力弹性机构设置在所述直线 法兰轴承与所述后座之间。
  7. 根据权利要求6所述的无人机停机库,其特征在于:所述行走机构上还设有固定座,所述固定座与所述直线法兰轴承固定连接,所述卡爪为可拆卸地安装在所述固定座上的快拆式隼接充电头。
  8. 根据权利要求6所述的无人机停机库,其特征在于:所述可调预紧力弹性机构包括压于所述后座与所述直线法兰轴承之间的压簧,及用于调节所述直线法兰轴承与所述后座之间可压缩间距阈值的拉杆。
  9. 根据权利要求1所述的无人机停机库,其特征在于:
    所述行走机构包括设置在停机坪上的一对X轴方向推杆和一对Y轴方向推杆,所述的一对X轴方向推杆的两个推杆相对设置且同步移动,所述的一对Y轴方向推杆的两个推杆相对设置且同步移动,所述的一对X轴方向推杆和一对Y轴方向推杆通过动力及传动机构带动而实现移动,在所述一对X轴方向推杆或所述一对Y轴方向推杆的两个推杆上分别设有所述若干卡爪。
  10. 根据权利要求1所述的无人机停机库,其特征在于:所述停机坪的中间位置设有对正引导装置。
  11. 根据权利要求10所述的无人机停机库,其特征在于:所述对正引导装置包括U型指示灯及位于所述U型指示灯所围区域内的方形指示灯、圆形指示灯与三角形指示灯。
  12. 根据权利要求10所述的无人机停机库,其特征在于:所述对正引导装置为二维码。
  13. 根据权利要求10所述的无人机停机库,其特征在于:所述对正引导装置包括圆形轮廓及设置在所述圆形轮廓内的工字标识。
  14. 根据权利要求1所述的无人机停机库,其特征在于:
    所述卡爪上安装有卡压到位检测开关。
  15. 根据权利要求1所述的无人机停机库,其特征在于:
    所述卡爪上固定有若干电压探测针,所述电压探测针与所述充电电极一起构成四线以上带有电压补偿的反馈检测充电结构。
  16. 根据权利要求1所述的无人机停机库,其特征在于:
    所述充电电极为附着在所述卡爪的卡压面上的导电纤维布或网状金属电极。
  17. 根据权利要求1所述的无人机停机库,其特征在于:
    所述停机坪在其停机位处设有NFC/RFID读卡器;
    所述无人机停机库的外壁上安装有风传感器、光传感器及雨传感器。
  18. 根据权利要求1所述的无人机停机库,其特征在于:
    所述无人机停机库包括两层以上的库单元,位于最上层的为顶部库单元,每个所述库单元包括支撑框架、保护壳及安装在所述保护壳内的所述停机坪与所述自动充电装置;
    位于所述顶部库单元下方的库单元还包括安装在所述保护壳内的推拉式抽屉结构,所述推拉式抽屉结构包括推拉板及驱动所述推拉板沿横向导轨滑动的致动器,所述停机坪与所述卡压组件安装在所述推拉板上。
  19. 根据权利要求18所述的无人机停机库,其特征在于:
    所述停机坪为镂空结构,并且所述停机坪与所述推拉板之间通过多块支撑板支撑,构成两侧透风的架空层结构;所述推拉式抽屉结构具有若干侧板,所述侧板上设有多个通孔。
  20. 根据权利要求18所述的无人机停机库,其特征在于:
    相邻两层库单元的推拉板的推拉方向为相反或相正交。
  21. 根据权利要求18所述的无人机停机库,其特征在于:
    所述保护壳包括顶板、底板、后面板、两侧板,所述推拉式抽屉结构的推拉板与一前面板铰接,所述推拉式抽屉结构上设有推动所述前面板绕铰轴在闭合位置与平铺位置间转动的致动器。
  22. 根据权利要求1所述的无人机停机库,其特征在于:还包括温控模块、电源模块、通信模块及定位模块,其中,所述控制器与温控模块、电源模块、通信模块、定位模块分别电连接。
  23. 根据权利要求1所述的无人机停机库,其特征在于:
    所述卡爪上设有测温元件,所述控制器具有存储器和处理器,在工作过程中,所述控制器的处理器基于所述测温元件的温度检测数据,执行存储在所述控制器存储器内的计算机程序以实现以下步骤:
    在充电过程中,若检测到所述卡爪的温度高于一设定的第一温度阈值时,控制所述致动器驱动所述卡爪释放所述无人机起落架的横向杆或支撑脚,并重新移至卡压充电位置进行充电,重复释放步骤与重新卡压充电步骤直至所述卡爪的温度低于第一温度阈值;
    若连续两次以上的充电过程都检测到卡爪的温度超过一设定的第二温度阈值,则发送更换电极的提醒。
PCT/CN2018/088435 2017-05-27 2018-05-25 无人机停机库 WO2018219226A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2009295.3A GB2583418B (en) 2017-05-27 2018-05-25 Drone parking garage

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710391868.2 2017-05-27
CN201720614879.8 2017-05-27
CN201710391868.2A CN107176047A (zh) 2017-05-27 2017-05-27 一种无人机停机库
CN201720614879.8U CN207028881U (zh) 2017-05-27 2017-05-27 一种无人机停机库

Publications (1)

Publication Number Publication Date
WO2018219226A1 true WO2018219226A1 (zh) 2018-12-06

Family

ID=64455213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088435 WO2018219226A1 (zh) 2017-05-27 2018-05-25 无人机停机库

Country Status (2)

Country Link
GB (1) GB2583418B (zh)
WO (1) WO2018219226A1 (zh)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109502040A (zh) * 2018-12-29 2019-03-22 深圳市多翼创新科技有限公司 一种无人机的固定存放装置及其平台固定方法
CN110077616A (zh) * 2019-06-12 2019-08-02 广东电网有限责任公司 一种能无线充电的无人机停机装置和无人机停机方法
CN110155358A (zh) * 2019-06-11 2019-08-23 北京理工大学 无人机承载机构及无人机起降***
CN110182376A (zh) * 2019-06-21 2019-08-30 广州宾模工程管理有限公司 一种无人机驻留站
CN110217402A (zh) * 2019-04-23 2019-09-10 青海炫飞电子科技有限公司 一种用于无人机的着陆防震缓冲结构
CN110386257A (zh) * 2018-07-30 2019-10-29 魏荣亮 用于垂直升降飞行器的着舰装置及舰船
CN110485868A (zh) * 2019-08-08 2019-11-22 国网江苏省电力有限公司泰州供电分公司 一种翻转式舱门
CN110654259A (zh) * 2019-09-09 2020-01-07 广东工业大学 一种无人机充电***
CN110794870A (zh) * 2019-10-30 2020-02-14 众芯汉创(北京)科技有限公司 无人机巡检固定机场、巡检业务***及自主巡检方法
CN111483385A (zh) * 2019-01-28 2020-08-04 中光电智能机器人股份有限公司 监控***及其控制方法
CN112292321A (zh) * 2019-11-13 2021-01-29 深圳市大疆创新科技有限公司 无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质
CN112722306A (zh) * 2020-12-22 2021-04-30 福建翼展科技发展有限公司 无人机停机坪
CN112937896A (zh) * 2021-01-29 2021-06-11 天津航天中为数据***科技有限公司 一种垂起固定翼无人值守风向自适应辅助降落***及方法
CN113034072A (zh) * 2021-03-12 2021-06-25 华南理工大学 一种基于物联网的无人机智能配送***及方法
CN113071697A (zh) * 2020-01-03 2021-07-06 中航空管***装备有限公司 适用于无人机视觉引导着陆的无线充电装置及充电方法
CN113148211A (zh) * 2021-06-03 2021-07-23 广东省智能机器人研究院 一种具有夹持机身和开合旋翼功能的无人机自动收纳仓
CN113250516A (zh) * 2021-06-11 2021-08-13 西安冰果智能航空科技有限公司 一种可移动式无人机机库
CN113264199A (zh) * 2021-05-19 2021-08-17 刘国祥 一种森林防火用无人机监控发射箱
CN113291484A (zh) * 2021-07-07 2021-08-24 西安羚控电子科技有限公司 一种基于机巢的无人机起飞降落方法
CN113320708A (zh) * 2021-04-07 2021-08-31 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 一种纳米农药无人机起降平台
CN113799996A (zh) * 2021-09-18 2021-12-17 河北工业大学 基于限位开关的无人机复位平台
CN113824928A (zh) * 2021-08-27 2021-12-21 诺宏(海南)科技有限公司 一种可全天候巡逻的安防装置
CN113815891A (zh) * 2021-11-02 2021-12-21 延安大学 一种航空拍摄无人机的组装台
CN113954673A (zh) * 2021-12-08 2022-01-21 深圳市企知政科技有限公司 一种便于调节的可移动式新能源充电桩及其使用方法
CN113961021A (zh) * 2021-10-22 2022-01-21 北京数字绿土科技有限公司 基于二维码定位的电力巡检无人机自主起降方法
US20220032795A1 (en) * 2020-07-29 2022-02-03 Ronald Koelsch Autonomous charging systems for battery powered transport refrigeration units
CN114056591A (zh) * 2021-11-17 2022-02-18 山东交通学院 一种多功能的交通施工监理管理的无人机安放装置
CN114148534A (zh) * 2021-11-22 2022-03-08 国网山东省电力公司泰安供电公司 一种具有室内定位结构的巡检无人机
CN114161967A (zh) * 2021-12-03 2022-03-11 国网智能科技股份有限公司 一种无人机上倾式复位充电平台及其方法
CN114188646A (zh) * 2021-12-07 2022-03-15 安徽汉星能源有限公司 一种方便检修的光伏储能电池箱
CN114228549A (zh) * 2021-12-08 2022-03-25 海宁量益智能装备有限公司 一种无人机定位充电设备
CN114408199A (zh) * 2022-01-28 2022-04-29 广东皓耘科技有限公司 无人机定位矫正机构及起落架定位辅助装置
CN114425958A (zh) * 2022-02-28 2022-05-03 深圳黑砂科技有限公司 一种具有电池快速降温功能的无人机智能充电柜
CN114435614A (zh) * 2020-11-05 2022-05-06 北星空间信息技术研究院(南京)有限公司 一种无人机动态降落地面机器人的方法
CN114572412A (zh) * 2022-03-09 2022-06-03 中国人民解放军海军工程大学 一种提升移载的无人机库***及其控制方法
CN115092411A (zh) * 2022-08-02 2022-09-23 江苏阳铭互联智能***有限公司 无人机基站的自动充电机构
CN115107945A (zh) * 2022-08-05 2022-09-27 青岛地质工程勘察院(青岛地质勘查开发局) 一种海洋测绘无人机用具有稳定防护功能的中继站
CN115285005A (zh) * 2022-08-24 2022-11-04 河南省鑫源土地科技有限责任公司 一种有自动回收功能的车载无人机作业装置
CN115571091A (zh) * 2022-08-29 2023-01-06 中国热带农业科学院农业机械研究所 无人机自动换电平台及更换电池的方法
CN115610275A (zh) * 2022-11-16 2023-01-17 泰昌科技(杭州)有限公司 一种无人机自动换电***及方法
CN115671605A (zh) * 2022-11-02 2023-02-03 南京云创大数据科技股份有限公司 一种森林智能自动灭火***
CN115723982A (zh) * 2022-11-14 2023-03-03 众芯汉创(北京)科技有限公司 一种适用于寒冷地区的无人机便携式充电补给装置
CN115743664A (zh) * 2022-11-24 2023-03-07 中科蓝光科技(广州)有限公司 一种便携式无人机停机坪
CN115946862A (zh) * 2022-12-27 2023-04-11 广州优飞智能设备有限公司 一种无人机自动换电机场
CN116198739A (zh) * 2023-05-04 2023-06-02 四川省天域航通科技有限公司 大型无人机智能调度方法及装置
US11705743B2 (en) 2021-10-30 2023-07-18 Beta Air, Llc Systems and methods for emergency shutdown of an electric charger in response to a disconnection
CN116639288A (zh) * 2023-07-24 2023-08-25 国网四川省电力公司成都供电公司 一种无人机智能移动机场及其自动升降平台
CN116835006A (zh) * 2023-06-30 2023-10-03 送飞实业集团有限公司 一种具有防滑效果的铝合金停机坪
WO2023184975A1 (zh) * 2022-03-29 2023-10-05 南方电网电力科技股份有限公司 一种无人机自动充电机库、***及巡检方法
WO2024000748A1 (zh) * 2022-06-29 2024-01-04 天津航天中为数据***科技有限公司 一种轻质模块化无人机通用收藏平台
WO2024016807A1 (zh) * 2022-07-19 2024-01-25 比亚迪股份有限公司 无人机机架、机库和车辆
CN117799889A (zh) * 2024-02-29 2024-04-02 苏州物图科技有限公司 一种用于无人机的充电设备及其充电方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210269174A1 (en) * 2020-02-27 2021-09-02 Greg Douglas Shuff Drone docking port and method of use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238414B2 (en) * 2014-01-02 2016-01-19 The Boeing Company Charging system for battery-powered unmanned aerial vehicles
CN105871001A (zh) * 2016-04-12 2016-08-17 西安天鹰防务科技有限公司 一种车载起落平台上无人机的在位自动充电装置
CN105863353A (zh) * 2016-06-09 2016-08-17 徐洪军 一种小型无人机机群的起降补给机器人
CN106026313A (zh) * 2016-08-03 2016-10-12 安徽钰龙信息科技有限公司 一种船载无人机充电装置
CN106542109A (zh) * 2016-11-04 2017-03-29 上海云犀智能***有限公司 一种无人机自主充电平台
CN107176047A (zh) * 2017-05-27 2017-09-19 先测电子科技(上海)有限公司 一种无人机停机库
CN207028881U (zh) * 2017-05-27 2018-02-23 星逻智能科技(苏州)有限公司 一种无人机停机库

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY185833A (en) * 2015-04-30 2021-06-11 Chung Kiak Poh Intelligent docking system with automated stowage for uavs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238414B2 (en) * 2014-01-02 2016-01-19 The Boeing Company Charging system for battery-powered unmanned aerial vehicles
CN105871001A (zh) * 2016-04-12 2016-08-17 西安天鹰防务科技有限公司 一种车载起落平台上无人机的在位自动充电装置
CN105863353A (zh) * 2016-06-09 2016-08-17 徐洪军 一种小型无人机机群的起降补给机器人
CN106026313A (zh) * 2016-08-03 2016-10-12 安徽钰龙信息科技有限公司 一种船载无人机充电装置
CN106542109A (zh) * 2016-11-04 2017-03-29 上海云犀智能***有限公司 一种无人机自主充电平台
CN107176047A (zh) * 2017-05-27 2017-09-19 先测电子科技(上海)有限公司 一种无人机停机库
CN207028881U (zh) * 2017-05-27 2018-02-23 星逻智能科技(苏州)有限公司 一种无人机停机库

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386257A (zh) * 2018-07-30 2019-10-29 魏荣亮 用于垂直升降飞行器的着舰装置及舰船
CN110386257B (zh) * 2018-07-30 2024-06-04 魏荣亮 用于垂直升降飞行器的着舰装置及舰船
CN109502040A (zh) * 2018-12-29 2019-03-22 深圳市多翼创新科技有限公司 一种无人机的固定存放装置及其平台固定方法
CN111483385A (zh) * 2019-01-28 2020-08-04 中光电智能机器人股份有限公司 监控***及其控制方法
CN111483385B (zh) * 2019-01-28 2023-08-29 中光电智能机器人股份有限公司 监控***及其控制方法
CN110217402A (zh) * 2019-04-23 2019-09-10 青海炫飞电子科技有限公司 一种用于无人机的着陆防震缓冲结构
CN110155358A (zh) * 2019-06-11 2019-08-23 北京理工大学 无人机承载机构及无人机起降***
CN110077616A (zh) * 2019-06-12 2019-08-02 广东电网有限责任公司 一种能无线充电的无人机停机装置和无人机停机方法
CN110182376A (zh) * 2019-06-21 2019-08-30 广州宾模工程管理有限公司 一种无人机驻留站
CN110182376B (zh) * 2019-06-21 2024-06-11 广州宾模工程管理有限公司 一种无人机驻留站
CN110485868A (zh) * 2019-08-08 2019-11-22 国网江苏省电力有限公司泰州供电分公司 一种翻转式舱门
CN110654259A (zh) * 2019-09-09 2020-01-07 广东工业大学 一种无人机充电***
CN110794870A (zh) * 2019-10-30 2020-02-14 众芯汉创(北京)科技有限公司 无人机巡检固定机场、巡检业务***及自主巡检方法
CN112292321A (zh) * 2019-11-13 2021-01-29 深圳市大疆创新科技有限公司 无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质
CN112292321B (zh) * 2019-11-13 2024-05-14 深圳市大疆创新科技有限公司 无人机起降平台、无人机起降控制方法、无人机起降控制装置及机器可读存储介质
CN113071697A (zh) * 2020-01-03 2021-07-06 中航空管***装备有限公司 适用于无人机视觉引导着陆的无线充电装置及充电方法
US12012009B2 (en) * 2020-07-29 2024-06-18 Ronald Koelsch Autonomous charging systems for battery powered transport refrigeration units
US20220032795A1 (en) * 2020-07-29 2022-02-03 Ronald Koelsch Autonomous charging systems for battery powered transport refrigeration units
CN114435614A (zh) * 2020-11-05 2022-05-06 北星空间信息技术研究院(南京)有限公司 一种无人机动态降落地面机器人的方法
CN112722306A (zh) * 2020-12-22 2021-04-30 福建翼展科技发展有限公司 无人机停机坪
CN112722306B (zh) * 2020-12-22 2022-06-03 福建翼展科技发展有限公司 无人机停机坪
CN112937896A (zh) * 2021-01-29 2021-06-11 天津航天中为数据***科技有限公司 一种垂起固定翼无人值守风向自适应辅助降落***及方法
CN113034072A (zh) * 2021-03-12 2021-06-25 华南理工大学 一种基于物联网的无人机智能配送***及方法
CN113034072B (zh) * 2021-03-12 2023-01-06 华南理工大学 一种基于物联网的无人机智能配送***及方法
CN113320708A (zh) * 2021-04-07 2021-08-31 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 一种纳米农药无人机起降平台
CN113264199A (zh) * 2021-05-19 2021-08-17 刘国祥 一种森林防火用无人机监控发射箱
CN113148211A (zh) * 2021-06-03 2021-07-23 广东省智能机器人研究院 一种具有夹持机身和开合旋翼功能的无人机自动收纳仓
CN113250516A (zh) * 2021-06-11 2021-08-13 西安冰果智能航空科技有限公司 一种可移动式无人机机库
CN113291484B (zh) * 2021-07-07 2023-06-09 西安羚控电子科技有限公司 一种基于机巢的无人机起飞降落方法
CN113291484A (zh) * 2021-07-07 2021-08-24 西安羚控电子科技有限公司 一种基于机巢的无人机起飞降落方法
CN113824928A (zh) * 2021-08-27 2021-12-21 诺宏(海南)科技有限公司 一种可全天候巡逻的安防装置
CN113799996B (zh) * 2021-09-18 2023-05-23 河北工业大学 基于限位开关的无人机复位平台
CN113799996A (zh) * 2021-09-18 2021-12-17 河北工业大学 基于限位开关的无人机复位平台
CN113961021A (zh) * 2021-10-22 2022-01-21 北京数字绿土科技有限公司 基于二维码定位的电力巡检无人机自主起降方法
US11705743B2 (en) 2021-10-30 2023-07-18 Beta Air, Llc Systems and methods for emergency shutdown of an electric charger in response to a disconnection
CN113815891A (zh) * 2021-11-02 2021-12-21 延安大学 一种航空拍摄无人机的组装台
CN113815891B (zh) * 2021-11-02 2024-02-23 延安大学 一种航空拍摄无人机的组装台
CN114056591B (zh) * 2021-11-17 2023-05-02 山东交通学院 一种多功能的交通施工监理管理的无人机安放装置
CN114056591A (zh) * 2021-11-17 2022-02-18 山东交通学院 一种多功能的交通施工监理管理的无人机安放装置
CN114148534A (zh) * 2021-11-22 2022-03-08 国网山东省电力公司泰安供电公司 一种具有室内定位结构的巡检无人机
CN114161967B (zh) * 2021-12-03 2023-09-05 国网智能科技股份有限公司 一种无人机上倾式复位充电平台及其方法
CN114161967A (zh) * 2021-12-03 2022-03-11 国网智能科技股份有限公司 一种无人机上倾式复位充电平台及其方法
CN114188646A (zh) * 2021-12-07 2022-03-15 安徽汉星能源有限公司 一种方便检修的光伏储能电池箱
CN114188646B (zh) * 2021-12-07 2024-02-20 安徽汉星能源有限公司 一种方便检修的光伏储能电池箱
CN114228549B (zh) * 2021-12-08 2024-03-19 海宁量益智能装备有限公司 一种无人机定位充电设备
CN113954673B (zh) * 2021-12-08 2024-03-15 深圳市卓永杭电子有限公司 一种便于调节的可移动式新能源充电桩及其使用方法
CN113954673A (zh) * 2021-12-08 2022-01-21 深圳市企知政科技有限公司 一种便于调节的可移动式新能源充电桩及其使用方法
CN114228549A (zh) * 2021-12-08 2022-03-25 海宁量益智能装备有限公司 一种无人机定位充电设备
CN114408199A (zh) * 2022-01-28 2022-04-29 广东皓耘科技有限公司 无人机定位矫正机构及起落架定位辅助装置
CN114425958A (zh) * 2022-02-28 2022-05-03 深圳黑砂科技有限公司 一种具有电池快速降温功能的无人机智能充电柜
CN114425958B (zh) * 2022-02-28 2024-04-12 深圳黑砂科技有限公司 一种具有电池快速降温功能的无人机智能充电柜
CN114572412B (zh) * 2022-03-09 2023-06-06 中国人民解放军海军工程大学 一种提升移载的无人机库***及其控制方法
CN114572412A (zh) * 2022-03-09 2022-06-03 中国人民解放军海军工程大学 一种提升移载的无人机库***及其控制方法
WO2023184975A1 (zh) * 2022-03-29 2023-10-05 南方电网电力科技股份有限公司 一种无人机自动充电机库、***及巡检方法
WO2024000748A1 (zh) * 2022-06-29 2024-01-04 天津航天中为数据***科技有限公司 一种轻质模块化无人机通用收藏平台
WO2024016807A1 (zh) * 2022-07-19 2024-01-25 比亚迪股份有限公司 无人机机架、机库和车辆
CN115092411A (zh) * 2022-08-02 2022-09-23 江苏阳铭互联智能***有限公司 无人机基站的自动充电机构
CN115092411B (zh) * 2022-08-02 2024-03-01 江苏阳铭互联智能***有限公司 无人机基站的自动充电机构
CN115107945A (zh) * 2022-08-05 2022-09-27 青岛地质工程勘察院(青岛地质勘查开发局) 一种海洋测绘无人机用具有稳定防护功能的中继站
CN115107945B (zh) * 2022-08-05 2024-05-03 青岛地质工程勘察院(青岛地质勘查开发局) 一种海洋测绘无人机用具有稳定防护功能的中继站
CN115285005B (zh) * 2022-08-24 2024-01-09 河南省鑫源土地科技有限责任公司 一种有自动回收功能的车载无人机作业装置
CN115285005A (zh) * 2022-08-24 2022-11-04 河南省鑫源土地科技有限责任公司 一种有自动回收功能的车载无人机作业装置
CN115571091B (zh) * 2022-08-29 2023-09-22 中国热带农业科学院农业机械研究所 无人机自动换电平台及更换电池的方法
CN115571091A (zh) * 2022-08-29 2023-01-06 中国热带农业科学院农业机械研究所 无人机自动换电平台及更换电池的方法
CN115671605B (zh) * 2022-11-02 2023-08-04 南京云创大数据科技股份有限公司 一种森林智能自动灭火***
CN115671605A (zh) * 2022-11-02 2023-02-03 南京云创大数据科技股份有限公司 一种森林智能自动灭火***
CN115723982A (zh) * 2022-11-14 2023-03-03 众芯汉创(北京)科技有限公司 一种适用于寒冷地区的无人机便携式充电补给装置
CN115610275A (zh) * 2022-11-16 2023-01-17 泰昌科技(杭州)有限公司 一种无人机自动换电***及方法
CN115743664A (zh) * 2022-11-24 2023-03-07 中科蓝光科技(广州)有限公司 一种便携式无人机停机坪
CN115946862A (zh) * 2022-12-27 2023-04-11 广州优飞智能设备有限公司 一种无人机自动换电机场
CN116198739A (zh) * 2023-05-04 2023-06-02 四川省天域航通科技有限公司 大型无人机智能调度方法及装置
CN116835006A (zh) * 2023-06-30 2023-10-03 送飞实业集团有限公司 一种具有防滑效果的铝合金停机坪
CN116835006B (zh) * 2023-06-30 2023-12-29 送飞实业集团有限公司 一种具有防滑效果的铝合金停机坪
CN116639288B (zh) * 2023-07-24 2023-11-10 国网四川省电力公司成都供电公司 一种无人机智能移动机场及其自动升降平台
CN116639288A (zh) * 2023-07-24 2023-08-25 国网四川省电力公司成都供电公司 一种无人机智能移动机场及其自动升降平台
CN117799889A (zh) * 2024-02-29 2024-04-02 苏州物图科技有限公司 一种用于无人机的充电设备及其充电方法
CN117799889B (zh) * 2024-02-29 2024-05-17 苏州物图科技有限公司 一种用于无人机的充电设备及其充电方法

Also Published As

Publication number Publication date
GB2583418A (en) 2020-10-28
GB2583418B (en) 2022-08-03
GB202009295D0 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
WO2018219226A1 (zh) 无人机停机库
CN108502201B (zh) 无人机停机库
CN207028881U (zh) 一种无人机停机库
KR102394878B1 (ko) 자동 이·착륙 및 무선자동충전 기능을 포함한 드론 스테이션 장치
CN110032121B (zh) 一种无人机机场***
EP3487760B1 (en) Methods and systems of anchoring an unmanned aerial vehicle on a ground station
EP4053021A1 (en) Unmanned aerial vehicle airport, unmanned aerial vehicle system, patrol inspection system, method, control apparatus, device, storage medium, and unmanned aerial vehicle cruising system
JP6395835B2 (ja) Uavのバッテリー電源バックアップシステムおよび方法
US20200369408A1 (en) Detachable power cable for unmanned aerial vehicle
JP6538214B2 (ja) Uavにエネルギーを供給する方法、及びuav
US20200044463A1 (en) Unmanned aerial vehicle and unmanned aerial vehicle automatic charging device
CN105204522B (zh) 一种输电线路无人机接力飞行巡视方法
JP6791561B2 (ja) Uavにエネルギーを供給する方法、及び装置
CN206136123U (zh) 长滞空无人机基站通信及监控***
KR102221783B1 (ko) 무선 충전 스테이션
CN207029561U (zh) 一种无人机及其充电装置
CN112693334A (zh) 一种基于无人机机场的无线充电控制方法及***
CN110254737A (zh) 一种多功能无人机综合管理平台及其控制方法
CN205770202U (zh) 一种系留式无人机自动收放箱
CN214689064U (zh) 一种用于电力巡检无人机无线充电的机库
CN110794870A (zh) 无人机巡检固定机场、巡检业务***及自主巡检方法
CN109775482A (zh) 用于系留无人机的自适应收放线装置
CN112406583B (zh) 一种无人机专用充电设备及使用方法
CN112278307B (zh) 一种无人机定位夹紧充电机构、控制方法及机库
CN210503212U (zh) 一种无人机空中更换电池***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202009295

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180525

122 Ep: pct application non-entry in european phase

Ref document number: 18810692

Country of ref document: EP

Kind code of ref document: A1