WO2018218771A1 - 栽培载体和栽培*** - Google Patents

栽培载体和栽培*** Download PDF

Info

Publication number
WO2018218771A1
WO2018218771A1 PCT/CN2017/094571 CN2017094571W WO2018218771A1 WO 2018218771 A1 WO2018218771 A1 WO 2018218771A1 CN 2017094571 W CN2017094571 W CN 2017094571W WO 2018218771 A1 WO2018218771 A1 WO 2018218771A1
Authority
WO
WIPO (PCT)
Prior art keywords
cultivation
hole
plant
carrier
venting
Prior art date
Application number
PCT/CN2017/094571
Other languages
English (en)
French (fr)
Inventor
卓杰强
刘春宇
赵慧
杨琪
Original Assignee
深圳前海弘稼科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海弘稼科技有限公司 filed Critical 深圳前海弘稼科技有限公司
Publication of WO2018218771A1 publication Critical patent/WO2018218771A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the invention relates to the field of plant cultivation technology, in particular to a cultivation carrier and a cultivation system.
  • hydroponic vegetable production mainly uses foam planting board.
  • the top and bottom of the conventional planting board are flat structures.
  • the bottom of the planting board is directly in contact with the nutrient solution, and the vegetable roots are completely immersed in the nutrient solution, so that the vegetable roots cannot be exposed to the air.
  • the oxygen is very easy to fester the roots of vegetables when the temperature is high in summer, so the quality of the vegetables is very poor.
  • the related art provides a blow molding growth pipe for vegetable hydroponic growth, in particular to a plastic cultivation pipe, comprising a plate floating body, a plurality of planting holes distributed on the plate floating body, and a plate type between the planting holes
  • the floating body is hollow.
  • the vegetable root in the planting hole cannot be in contact with oxygen in the air.
  • the present invention aims to solve at least one of the technical problems existing in the prior art or related art.
  • Another object of the present invention is to provide a cultivation system.
  • an embodiment of the first aspect of the present invention provides a cultivation carrier comprising: a floating carrier body, the carrier body is provided with at least one cultivation hole, and further comprising: at least one ventilation structure communicating with the cultivation hole, the ventilation structure is capable of allowing outside air to enter the cultivation hole, wherein the cultivation hole comprises an upper part and a lower part, and the plant is from the upper part The opening enters and supports the upper portion, and at least a portion of the roots of the plant are located at the lower portion.
  • plants include, but are not limited to, vegetables.
  • cultivation carrier in the above embodiment provided by the present invention may further have the following additional technical features:
  • the lower space is larger than the upper space.
  • the root system of the plant is mainly distributed in the lower part of the cultivation hole, the lower space of the cultivation hole is larger than the upper space, on the one hand, it is convenient to accommodate the root system of the plant, and on the other hand, it is convenient to accommodate more oxygen, and to improve the root system.
  • the amount of oxygen in contact further reduces the probability of root rot.
  • the venting structure is in direct communication with the lower portion.
  • the oxygen can directly reach the lower part of the cultivation hole without passing through the upper part of the cultivation hole, shortening the path of oxygen circulation, and making the oxygen and the root system in the lower part of the cultivation hole. Quick contact, not blocked by some plants in the upper part of the cultivation hole.
  • the upper part is a cylindrical hole section
  • the lower part is a flared hole section
  • the upper part and the lower part are integrally formed or segmentedly connected.
  • the upper part is a cylindrical hole section
  • the lower part is a flared hole section.
  • the surface is convenient for accommodating plants, and on the other hand, it is suitable for accommodating more oxygen, increasing the amount of oxygen in contact with the roots, and further reducing the probability of root rot.
  • the segmented connection makes it more flexible, and the shape of the cultivation hole can be changed according to different needs.
  • the integrally formed cultivation hole has high structural strength, good sealing property, and is more stable and reliable.
  • the ventilation structure comprises: at least one ventilation groove formed on the inner wall of the cultivation hole, the first end of the ventilation groove is on the inner wall surface of the flared hole section, and the ventilation groove is The second end is on the outer wall surface of the carrier body.
  • the internal structure of the cultivation hole can be fully utilized to achieve the purpose of ventilation and ventilation, and when the plant is placed in the cultivation hole for cultivation, the ventilation is concave.
  • the trough can allow external oxygen to directly enter the flared hole section and contact with the roots of the plant, thereby reducing the root rot that occurs during the cultivation of the plant, improving the quality of the plant, and thereby improving production efficiency.
  • the use of materials for the cultivation carrier is reduced, and the competitiveness of the product is improved.
  • venting groove is easier to clean than the hole type design, and the clogging of the venting structure is effectively reduced.
  • the ventilation structure comprises: at least one ventilation hole disposed on the carrier body, the first end of the ventilation hole is on the inner wall surface of the flared hole section, and the second end of the ventilation hole is in the carrier The outer wall of the body.
  • the vent hole can be disposed at any position of the cultivation carrier, as long as it can connect the flared hole section of one or more cultivation holes, and has high practicability, and can also reduce the material use of the cultivation carrier and improve the competitiveness of the product. .
  • the plurality of ventilation structures are arranged in a circumferential array in an axis of the cylindrical hole segments.
  • the oxygen content of each position in the cultivation hole is uniform, thereby enabling the root system of the plant to fully contact with oxygen, thereby effectively reducing the partial root system.
  • a plurality of venting grooves are arranged in a circumferential array of the cylindrical hole segments, and/or a plurality of vent holes are arranged in a circumferential array of the cylindrical hole segments, thereby increasing the amount of oxygen in contact with the roots of the plants to make oxygen Ability to circulate.
  • the open end of the surrounding cylindrical hole section is disposed on the first end surface of the carrier body, and the size of the convex structure matches the flared hole section,
  • the large end of the flared hole section is flush with the second end surface of the carrier body, and when the plurality of carrier bodies are stacked, the convex structure on one carrier body can be placed in the flared hole section of the other carrier body .
  • a convex structure is arranged on the first end surface of the carrier body by surrounding the open end of the cylindrical hole section, and the size of the convex structure is matched with the flared hole section, on the one hand, it is convenient to support the plant, and the other is convenient to support the plant, and the other
  • the aspect can be inserted into the flared hole section on the other carrier body to facilitate stacking and storing a plurality of cultivation carriers.
  • the embodiment of the second aspect of the present invention provides a cultivation system comprising: the cultivation carrier provided by any one of the first aspects of the present invention, and the plant placed in the cultivation hole of the cultivation carrier, the cultivation carrier floating in the nutrient solution On the surface of the plant, the roots of the plant absorb oxygen through the aeration structure on the cultivation carrier.
  • the lower part of the plant root system can directly contact the liquid surface, which is convenient for absorbing nutrients in the nutrient solution, and can also maintain a certain distance to further reduce the problem of root rot.
  • the nutrient solution of the vaporization is used to provide nutrients for the root system in the early stage of plant growth.
  • the distance between the root and the liquid surface of the plant is less than 10 mm or more than 50 mm, for example, 0-9 mm or 51-60 mm. . Because the root system still needs to be exposed to the nutrient solution to ensure the absorption of sufficient nutrients, the distance should not be too large. It is better to set it below 10mm (ie ⁇ 10mm) or 50-60mm, and it is limited by the cultivation hole. The depth, the distance is not likely to be unlimited.
  • the distance between the root and the liquid surface of the plant is set to be less than 10 mm, so that the root of the plant is not easily rotted, and the root system can quickly contact the nutrient solution. In order to absorb sufficient nutrients, plants grow faster.
  • the distance between the root system and the liquid surface of the plant is greater than 50 mm, it should be noted that the distance is limited by the depth of the cultivation hole, and the distance has an upper limit value, and the growth range of the plant is combined, and the preferred range of the distance is 51-60 mm.
  • the roots of the plants grow to the second stage, they are automatically contacted with the nutrient solution. That is to say, in the first stage, the largest part of the nutrient requirements of the developing plants are provided by the environment, ie by air or matrix. Therefore, it is not easy to cause root rot, and only when the plant grows to the second stage, the nutrient solution is directly supplied with nutrients, thereby significantly improving the quality of the plant.
  • Figure 1 shows a schematic structural view of a cultivation carrier according to an embodiment of the present invention
  • Figure 2 is a schematic view showing the structure of a cultivation carrier according to another embodiment of the present invention.
  • Figure 3 is a schematic view showing the structure of a cultivation system according to an embodiment of the present invention.
  • Figure 4 is a schematic view showing the structure of a cultivation carrier according to still another embodiment of the present invention.
  • Fig. 5 is a view showing the structure of a cultivation hole of the cultivation carrier of Fig. 4.
  • 102 carrier body 104 cultivation holes, 106 convex structure, 108 ventilation structure, 110 plants, 104A cylindrical hole section, 104B flared hole section, 110A root system.
  • the cultivation carrier according to the embodiment of the present invention will be specifically described below with reference to Figs. 1 to 5 .
  • a cultivation carrier includes: a floating carrier body 102, the carrier body 102 is provided with at least one cultivation hole 104, and further includes: at least one ventilation structure 108, and cultivation The holes 104 communicate, the aeration structure 108 enables external air to enter the cultivation hole 104, wherein the cultivation hole 104 includes an upper portion and a lower portion, and the plant 110 enters from the upper opening and is supported by the upper portion (ie, supported at the upper portion), at least a part of the plant 110 Root system 110A is located at the lower portion.
  • the cultivation hole 104 by providing at least one aeration structure 108 in communication with the cultivation hole 104, external air can be introduced into the cultivation hole 104 during the cultivation of the plant 110, thereby causing the root 110A of the plant 110 and oxygen in the air.
  • the contact reduces the rot of the root system 110A which occurs during the cultivation of the plant 110, improves the quality of the plant 110, and further improves the production efficiency.
  • the opening of the lower portion of the cultivation hole 104 is often closed, and at the same time, since the plant 110 enters from the upper opening and is supported at the upper portion, It is often caused that the opening of the upper portion of the cultivation hole 104 is also closed, so that the root system 110A of the plant 110 cannot be in contact with oxygen in the air, and the problem of root rot is extremely likely to occur.
  • the ventilation structure 108 By providing the ventilation structure 108, the problem can be effectively solved.
  • the plant 110 includes, but is not limited to, vegetables.
  • the carrier body 102 is preferably made of a foam material made of a hard plastic, such as a polystyrene material. It should be understood that the carrier body 102 may also be formed of another material or a combination of different parts, and the plant 110 is placed in the cultivation hole 104. When inside, the cultivation carrier can float on the surface of the liquid and sink shallow.
  • the liquid includes water and nutrients incorporated into the water, that is, nutrient solution, for cultivating the plant
  • the substance 110 and preferably maintains a flowing liquid, to prevent the growth of bacteria.
  • a plurality of cultivation holes 104 are formed on the cultivation carrier, and are distributed in a matrix, and a plurality of plants 110 can be cultured at the same time to realize mass production.
  • Each of the ventilation structures 108 may communicate with only one cultivation hole 104 or may communicate with a plurality of cultivation holes 104 to reduce the decay of the root system 110A which occurs during the cultivation of the plant 110, and realize the root system 110A of the plant 110. Protection, thereby increasing the production efficiency of the plant 110.
  • the inner wall of the venting structure 108 is smooth, has low friction, is not easily adhered to impurities, and is blocked by the venting structure 108, and is preferably provided with a straight passage to supply oxygen to the root system 110A in the cultivation hole 104 to ensure sufficient oxygen.
  • each of the cultivation holes 104 preferably has two or more ventilation passages, so that the air can be circulated well, and the ventilation effect is enhanced, thereby improving the quality of the plant 110.
  • the plant 110 is housed in a planting cup, and then the planting cup is placed on the cultivation hole 104, and an opening is provided at the bottom of the planting cup, and the root 110A of the plant 110 can pass through the opening while passing through The above opening can discharge excess water in the planting cup.
  • the carrier body 102 when the carrier body 102 floats on the liquid, at least 50% of the carrier body portion is above the liquid surface, and correspondingly, the root 110A of the plant 110 and the corresponding liquid surface can maintain a certain distance to enhance ventilation. Ventilation effect.
  • the lower space is larger than the upper space.
  • the root system 110A of the plant 110 is mainly distributed in the lower portion of the cultivation hole 104, the lower space provided by the cultivation hole 104 is larger than the upper space, on the one hand, it is convenient to accommodate the root system 110A of the plant 110, and on the other hand, it is advantageous to accommodate more.
  • Oxygen increases the amount of oxygen in contact with root system 110A, further reducing the probability of root system 110A rot.
  • the aeration structure 108 is in direct communication with the lower portion.
  • the ventilation structure 108 to directly communicate with the lower portion of the cultivation hole 104, the oxygen does not have to pass through the upper portion of the cultivation hole 104 to directly reach the lower portion of the cultivation hole 104, shortening the path of oxygen circulation, and making the oxygen and cultivation
  • the root system 110A in the lower portion of the hole 104 is in rapid contact and is not blocked by a portion of the plant 110 in the upper portion of the cultivation hole 104.
  • the upper portion is a cylindrical hole portion 104A
  • the lower portion is a flared hole portion 104B
  • the upper portion and the lower portion are integrally formed or segmentedly connected.
  • the upper portion as a cylindrical hole portion 104A and the lower portion as a flared hole portion 104B, on the one hand, it is convenient to accommodate the plant 110, and on the other hand, it is advantageous to accommodate more oxygen and increase the amount of oxygen in contact with the root system 110A. Further reduce the probability of root system 110A rot.
  • the segmented connection makes it more flexible, and the shape of the cultivation hole 104 can be changed according to different needs.
  • the integrally formed cultivation hole 104 has high structural strength, good sealing property, and is more stable and reliable.
  • the small end diameter of the flared hole section 104B is equal to the diameter of the cylindrical hole section 104A, and the large end of the flared hole section 104B is flush with the lower end surface of the carrier body 102, wherein the partially flared hole section 104B is immersed In the liquid.
  • the axis of the cylindrical bore segment 104A is collinear with the axis of the flared bore segment 104B.
  • the large end of the flared hole section 104B is flush with the lower end surface of the carrier body 102, and the partially flared hole section 104B is immersed in the liquid.
  • the axis of the cylindrical section 104A is collinear with the axis of the flared section 104B.
  • the ventilation structure 108 comprises: at least one ventilation groove formed on the inner wall of the cultivation hole 104, the first end of the ventilation groove being flared On the inner wall surface of the hole section 104B, the second end of the vent groove is on the outer wall surface of the carrier body 102.
  • the internal structure of the cultivation hole 104 can be fully utilized to achieve the purpose of ventilation and ventilation, and when the plant 110 is placed in the cultivation hole 104 for cultivation.
  • the venting groove Through the venting groove, external oxygen can be directly entered into the flared hole section 104B and contacted with the root system 110A of the plant 110, thereby reducing the root system 110A rot that occurs during the cultivation of the plant 110, and lifting the plant 110 Quality, which in turn increases production efficiency.
  • the use of materials for the cultivation carrier is reduced, and the competitiveness of the product is improved.
  • venting groove is also easier to clean than the hole type design, and the clogging of the venting structure 108 is effectively reduced.
  • the cross section of the ventilation groove is semicircular or U-shaped.
  • the cross section of the ventilation groove is semi-circular or U-shaped, wherein the semi-circular ventilation groove has no dead angle, which is not easy to accumulate dust, and has high reliability, and the circulation area of the square ventilation groove of the same size is larger. Some can improve the air circulation effect, thereby improving the quality of the plant 110.
  • the venting structure 108 comprises: at least one venting hole disposed on the carrier body 102, the first end of the venting hole is on the inner wall surface of the flared hole section 104B, and the second venting hole The end is on the outer wall surface of the carrier body 102.
  • the purpose of ventilation and ventilation can be achieved.
  • oxygen can be directly entered through the vent hole.
  • the flared hole section 104B is in contact with the root system 110A of the plant 110, thereby reducing the rot of the root system 110A which occurs during the cultivation of the plant 110, improving the quality of the plant 110, and thereby improving the production efficiency.
  • the vent hole may be disposed at any position of the cultivation carrier, as long as it can communicate with the flared hole section 104B of the one or more cultivation holes 104, and has high practicability, and at the same time, can reduce the material use of the cultivation carrier and improve the product. Competitiveness.
  • the vent has a circular or square cross section.
  • the cross section of the vent hole is circular or square, wherein the circular vent hole has no dead angle, which is not easy to accumulate dust, and has high reliability, and the square vent hole of the same size has a larger flow area, which can improve the air circulation effect. , thereby improving the quality of the plant 110.
  • the plurality of ventilation structures 108 are arranged in a circumferential array in the axis of the cylindrical hole segments 104A.
  • the oxygen content at each position in the cultivation hole 104 is made uniform, thereby enabling the root system 110A of the plant 110 to be in full contact with oxygen, effectively Reduces the problem of decay due to the inability of some roots to contact oxygen.
  • a plurality of venting grooves are circumferentially arrayed in the axial direction of the cylindrical hole segments 104A, and/or a plurality of vent holes are circumferentially arranged in the axial direction of the cylindrical hole segments 104A, which can increase oxygen in contact with the root system 110A of the plant 110. Amount and allow oxygen to circulate.
  • the array of the arrays is 4 rows ⁇ 10 columns, 6 rows ⁇ 15 columns or 8 One of the rows ⁇ 20 columns.
  • the cultivation holes 104 of the entire cultivation carrier can reach 40 holes, 90 holes, and 160 holes, so that the multi-column plants 110 can be simultaneously cultured, the yield can be increased, and mass production can be realized.
  • the material of the carrier body 102 comprises polystyrene foam, polystyrene, polyvinyl chloride and polypropylene.
  • the cultivation carrier can be floated on the nutrient solution while reducing the temperature change in the cultivation hole 104.
  • Plant 110 produces effects and reduces harmful substances in the air, as well as reducing the growth inhibition effect of ultraviolet light on plant 110.
  • the open end of the cylindrical hole section 104A is disposed on the first end surface of the carrier body 102, and the size of the convex structure 106 Matching the flared hole segment 104B,
  • the large end of the flared hole segment 104B is flush with the second end surface of the carrier body 102.
  • the raised structure 106 on one of the carrier bodies 102 can be placed on the other carrier body 102.
  • the raised structure 106 is disposed on the first end surface of the carrier body 102 by the open end of the cylindrical hole section 104A, and the size of the raised structure 106 matches the flared hole section 104B, on the one hand
  • the support plant 110 on the other hand, can be inserted into the flared section 104B of the other carrier body 102 to facilitate stacking and storing a plurality of cultivation carriers.
  • a cultivation system includes: the cultivation carrier provided by any of the above embodiments of the present invention, and the plant 110 placed in the cultivation hole 104 of the cultivation carrier, the cultivation carrier floating in the nutrition On the liquid surface of the liquid, the root system 110A of the plant 110 absorbs oxygen through the aeration structure 108 on the cultivation carrier.
  • the opening of the lower portion of the cultivation hole 104 is often closed, and at the same time, since the plant 110 enters from the upper opening and is supported at the upper portion. It often causes the opening in the upper part of the cultivation hole 104 to be closed, so that the root system 110A of the plant 110 cannot be in contact with oxygen in the air, which is highly prone to occur.
  • the problem of root rot by providing at least one venting structure 108 in communication with the cultivation hole 104, allows outside air to enter the cultivation hole 104 during the cultivation of the plant 110, thereby bringing the root 110A of the plant 110 into contact with oxygen in the air.
  • the root 110A rot which occurs during the process of cultivating the plant 110 is reduced, the quality of the plant 110 is improved, and the production efficiency is improved.
  • the lower part of the root system 110A of the plant 110 can directly contact the liquid surface, so as to absorb the nutrients in the nutrient solution, and can also maintain a certain distance, further reducing the problem of root system 110A rot, at this time, the plant 110 uses the vaporized nutrient solution in the early stage of growth. Provide nutrients to root system 110A.
  • the distance between the root 110A of the plant 110 and the liquid surface is less than 10 mm or more than 50 mm, for example, 0-9 mm. Or 51-60mm.
  • the distance between the root system 110A of the plant 110 and the liquid surface is set to be less than 10 mm, so that the root system 110A of the plant 110 is not easily rotted, and the root system 110A can The nutrient solution is quickly contacted to absorb sufficient nutrients, and the plant 110 grows faster.
  • the distance between the root system 110A of the plant 110 and the liquid surface is greater than 50 mm, it should be noted that the depth of the cultivation hole 104 is limited, and the distance has an upper limit value, and the growth rate of the plant 110 is combined, and the preferred range of the distance.
  • the root system 110A of the plant 110 is grown to the second stage, it is automatically contacted with the nutrient solution, that is, in the first stage, the maximum nutrient demand of the developing plant 110 is provided by the environment. That is, it is supplied by air or a matrix, and therefore, it is not easy to cause the root system 110A to rot. Only when the plant 110 grows to the second stage, the nutrient solution is directly supplied with nutrients, thereby significantly improving the quality of the plant 110.
  • the cultivation carrier provided by the present invention is used for hydroponic plants, which adopts EPS (polystyrene foam) material, has low density, light weight and is in nutrition.
  • EPS polystyrene foam
  • the surface of the liquid is shallow and shallow, and except for the cultivation hole 104 and the venting structure 108, each part has a solid structure.
  • cultivation holes 104 are uniformly distributed on the cultivation carrier, and a tapered boss is protruded on the upper surface of the cultivation carrier around the edge of each cultivation hole 104, and the boss facilitates the planting of the plant 110. cup.
  • a concave tapered hole is formed in the lower surface of the cultivation carrier, and this concave tapered hole facilitates contact of the root system 110A at the bottom of the planting cup with air to absorb oxygen.
  • the convex concave structure facilitates the stacking of the cultivation carriers.
  • vent hole arcs are formed on the inner wall of the cultivation hole 104, and the cultivation carrier in which the planting cup is placed floats on the surface of the nutrient solution, and the oxygen in the air passes through the vent hole arc (ie, the ventilating structure 108) It is in contact with the root system 110A at the bottom of the planting cup, thereby reducing the rot of the root system 110A which occurs during the cultivation of the plant 110, improving the quality of the plant 110, and thereby improving the production efficiency.
  • the present invention provides a cultivation carrier and a cultivation system.
  • a cultivation carrier By providing at least one ventilation structure in communication with the cultivation hole, external air can be introduced into the cultivation process.
  • the roots of the plants are brought into contact with the oxygen in the air, thereby reducing the root rot that occurs during the cultivation of the plants, improving the quality of the plants, and thereby improving the production efficiency.
  • the terms “first”, “second”, and “third” are used for the purpose of description only, and are not to be construed as indicating or implying relative importance; the term “plurality” means two or two. Above, unless otherwise explicitly defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly. For example, “connecting” may be a fixed connection, a detachable connection, or an integral connection; “connected” may They are directly connected or indirectly connected through an intermediary. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the description of the terms “one embodiment”, “some embodiments”, “specific embodiments” and the like means that the specific features, structures, materials, or characteristics described in connection with the embodiments or examples are included in the present invention. At least one embodiment or example.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)

Abstract

一种栽培载体和栽培***,其中,栽培载体,包括:漂浮的载体本体(102),载体本体(102)设有至少一个栽培孔(104),还包括:至少一个通气结构(108),与栽培孔(104)相通,通气结构(108)能够使外部空气进入栽培孔(104)内,其中,栽培孔(104)包括上部和下部,植物(110)从上部的开口进入并支撑在上部,至少一部分植物(110)的根系(110A)位于下部。该栽培载体和栽培***能够在培养植物(110)的过程中,使外部空气进入栽培孔(104)内,从而使植物(110)的根系(110A)与空气中的氧气接触,减少在培养植物(110)的过程中出现的根系(110A)腐烂的情况,提升植物(110)的品质,进而提高生产效率。

Description

栽培载体和栽培***
本申请要求2017年05月31日在中国国家知识产权局提交的申请号为201710399460.X、发明名称为“栽培载体和栽培***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及植物栽培技术领域,具体而言,涉及一种栽培载体和一种栽培***。
背景技术
目前,水培蔬菜生产主要采用泡沫定植板,常规的定植板顶部和底部都是平面结构,定植板的底部直接与营养液接触,蔬菜根系完全浸泡在营养液中,导致蔬菜根系不能接触空气中的氧气,极易在夏天温度高的时候使蔬菜的根部溃烂,因此,导致蔬菜的质量很差。
相关技术中提供了一种蔬菜水培生长用的吹塑生长管道,具体涉及一种塑料栽培管道,包括板式漂浮本体,在板式漂浮本体上分布有若干个定植孔,且定植孔之间的板式漂浮本体部位中空。然而,相关技术中,在培养蔬菜时,由于定植孔的下端被水封闭,同时定植孔的上端被容纳有植物的种植杯封闭,导致处于定植孔内的蔬菜根系不能与空气中的氧气接触,进而容易导致蔬菜的根部溃烂,生产效率很低。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的一个目的在于提供一种栽培载体。
本发明的另一个目的在于提供一种栽培***。
为实现上述目的,本发明第一方面的实施例提供了一种栽培载体,包括: 漂浮的载体本体,载体本体设有至少一个栽培孔,还包括:至少一个通气结构,与栽培孔相通,通气结构能够使外部空气进入栽培孔内,其中,栽培孔包括上部和下部,植物从上部的开口进入并支撑在上部,至少一部分植物的根系位于下部。
在该技术方案中,通过设置与栽培孔相通的至少一个通气结构,能够在培养植物的过程中,使外部空气进入栽培孔内,从而使植物的根系与空气中的氧气接触,减少在培养植物的过程中出现的根系腐烂的情况,提升植物的品质,进而提高生产效率。
可以理解的是,在培养植物时,由于载体本体漂浮在液体的液面上,往往会导致栽培孔下部的开口被封闭,同时,由于植物从上部的开口进入并支撑在上部,往往会导致栽培孔上部的开口也被封闭,从而导致植物的根系不能与空气中的氧气接触,极易出现根部腐烂的问题,通过设置通气结构,能够有效解决该问题。
其中,植物包括但不限于蔬菜。
另外,本发明提供的上述实施例中的栽培载体还可以具有如下附加技术特征:
在上述技术方案中,优选地,下部空间大于上部空间。
在该技术方案中,由于植物的根系主要分布在栽培孔的下部,通过设置栽培孔的下部空间大于上部空间,一方面便于容纳植物的根系,另一方面利于容纳更多的氧气,提高与根系接触的氧气量,进一步降低根系发生腐烂的概率。
在上述任一技术方案中,优选地,通气结构与下部直接相通。
在该技术方案中,通过设置通气结构与栽培孔的下部直接相通,氧气不必经过栽培孔的上部即可直接到达栽培孔的下部,缩短了氧气流通的路径,使氧气与处于栽培孔下部的根系快速接触,不会被栽培孔上部的部分植物遮挡。
在上述任一技术方案中,优选地,上部为柱形孔段,下部为扩口孔段,上部和下部为一体形成或分段式连接。
在该技术方案中,通过设置上部为柱形孔段,下部为扩口孔段,一方 面便于容纳植物,另一方面利于容纳更多的氧气,提高与根系接触的氧气量,进一步降低根系发生腐烂的概率。其中,分段式连接,使其更加灵活,可以根据不同的需求来改变栽培孔的形状。然而,一体形成的栽培孔结构强度高,封闭性好,更加稳定可靠。
在上述任一技术方案中,优选地,通气结构包括:至少一个通气凹槽,形成于栽培孔的内壁上,通气凹槽的第一端处于扩口孔段的内壁面上,通气凹槽的第二端处于载体本体的外壁面上。
在该技术方案中,通过在栽培孔的内壁上形成至少一个通气凹槽,能够充分利用栽培孔的内部构造,达到通风换气的目的,在植物置于栽培孔内进行培养时,通过通气凹槽能够使外部的氧气直接进入到扩口孔段内,并与植物的根系接触,从而减少在培养植物的过程中出现的根系腐烂的情况,提升植物的品质,进而提高生产效率。与此同时,还减少了栽培载体的材料使用,提高产品的竞争力。
另外,设置通气凹槽相较孔类设计而言,还便于对其进行清理,有效减少通气结构堵塞的情况发生。
可以理解的是,在植物从上部的开口进入并支撑在上部时,不会覆盖通气凹槽的第一端的开口。
在上述任一技术方案中,优选地,通气结构包括:至少一个通气孔,设置在载体本体上,通气孔的第一端处于扩口孔段的内壁面上,通气孔的第二端处于载体本体的外壁面上。
在该技术方案中,通过在栽培孔的内壁上形成至少一个通气孔,可以达到通风换气的目的,在植物置于栽培孔内进行培养时,通过通气孔能够使氧气直接进入到扩口孔段内,并与植物的根系接触,从而减少在培养植物的过程中出现的根系腐烂的情况,提升植物的品质,进而提高生产效率。其中,通气孔可以设置在栽培载体的任意位置,只要能够连通一个或多个栽培孔的扩口孔段即可,实用性很高,同时还能减少栽培载体的材料使用,提高产品的竞争力。
在上述任一技术方案中,优选地,在通气结构的数量为多个时,多个通气结构以柱形孔段的轴线呈圆周阵列设置。
在该技术方案中,通过以柱形孔段的轴线圆周阵列设置多个通气结构,使栽培孔内各个位置的氧气含量均匀,进而使植物的根系能够与氧气充分接触,有效减少由于部分根系不能与氧气接触而导致腐烂的问题发生。
具体地,以柱形孔段的轴线圆周阵列设置多个通气凹槽,和/或以柱形孔段的轴线圆周阵列设置多个通气孔,从而提高与植物的根系接触的氧气量,使氧气能够循环流动。
在上述任一技术方案中,优选地,还包括凸起结构,环绕柱形孔段的开放端设置在载体本体的第一端面上,凸起结构的尺寸与扩口孔段相匹配,
其中,扩口孔段的大端与载体本体的第二端面平齐,在多个载体本体堆叠时,一个载体本体上的凸起结构,能够置于另一个载体本体上的扩口孔段内。
在该技术方案中,通过环绕柱形孔段的开放端在载体本体的第一端面上设置凸起结构,且凸起结构的尺寸与扩口孔段相匹配,一方面便于支撑植物,另一方面能够***另一个载体本体上的扩口孔段内,便于堆叠存放多个栽培载体。
本发明第二方面的实施例提供了一种栽培***,包括:本发明第一方面中任一实施例提供的栽培载体,以及放置于栽培载体的栽培孔内的植物,栽培载体漂浮在营养液的液面上,植物的根系通过栽培载体上的通气结构吸收氧气。
在该技术方案中,在培养植物时,由于载体本体漂浮在液体的液面上,往往会导致栽培孔下部的开口被封闭,同时,由于植物从上部的开口进入并支撑在上部,往往会导致栽培孔上部的开口也被封闭,从而导致植物的根系不能与空气中的氧气接触,极易出现根部腐烂的问题,通过设置与栽培孔相通的至少一个通气结构,能够在培养植物的过程中,使外部空气进入栽培孔内,从而使植物的根系与空气中的氧气接触,减少在培养植物的过程中出现的根系腐烂的情况,提升植物的品质,进而提高生产效率。
其中,植物根系的下部可直接接触液面,便于吸收营养液内的养分,也可以保持一定距离,进一步减小根系腐烂的问题,此时,植物生长前期利用汽化的营养液为根系提供养分。
在上述任一技术方案中,优选地,在植物刚放入栽培载体的栽培孔内进行培养时,植物的根系与液面之间的距离小于10mm或者大于50mm,例如0-9mm或者51-60mm。因为根系最终还是需要接触到营养液以保证充足的营养成分的吸收,因此,距离不能太大,设置在10mm以下(即<10mm)或者50-60mm之间会比较好,而且受限于栽培孔的深度,该距离也不可能会无限制大。
在该技术方案中,通过在植物刚放入栽培孔内进行培养时,设置植物的根系与液面之间的距离小于10mm,使得植物的根系不易腐烂,同时根系能够很快的接触到营养液以吸收充足的营养成分,植物的生长速度较快。
通过设置植物的根系与液面之间的距离大于50mm,需要说明的是,受限于栽培孔的深度,该距离具有上限值,结合植物的生长速度,该距离的优选范围为51-60mm,待植物的根系生长到第二阶段时,便会自动与营养液接触,也就是说,在第一阶段时,发育中的植物的最大部分养分需求由环境提供,即由空气或基质提供,因此,不容易发生根系腐烂的情况,只有在植物生长到第二阶段期间,才由营养液直接提供养分,从而显著提高植物的品质。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
图1示出了根据本发明的一个实施例的栽培载体的结构示意图;
图2示出了根据本发明的另一个实施例的栽培载体的结构示意图;
图3示出了根据本发明的一个实施例的栽培***的结构示意图;
图4示出了根据本发明的再一个实施例的栽培载体的结构示意图;
图5示出了图4中的栽培载体的一个栽培孔的结构示意图。
其中,图1至图5中附图标记与部件名称之间的对应关系为:
102载体本体,104栽培孔,106凸起结构,108通气结构,110植物,104A柱形孔段,104B扩口孔段,110A根系。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不限于下面公开的具体实施例的限制。
下面结合图1至图5对根据本发明的实施例的栽培载体进行具体说明。
如图1至图5所示,根据本发明的一个实施例的栽培载体,包括:漂浮的载体本体102,载体本体102设有至少一个栽培孔104,还包括:至少一个通气结构108,与栽培孔104相通,通气结构108能够使外部空气进入栽培孔104内,其中,栽培孔104包括上部和下部,植物110从上部的开口进入并由上部支撑(即支撑在上部),至少一部分植物110的根系110A位于下部。
在该实施例中,通过设置与栽培孔104相通的至少一个通气结构108,能够在培养植物110的过程中,使外部空气进入栽培孔104内,从而使植物110的根系110A与空气中的氧气接触,减少在培养植物110的过程中出现的根系110A腐烂的情况,提升植物110的品质,进而提高生产效率。
可以理解的是,在培养植物110时,由于载体本体102漂浮在液体的液面上,往往会导致栽培孔104下部的开口被封闭,同时,由于植物110从上部的开口进入并支撑在上部,往往会导致栽培孔104上部的开口也被封闭,从而导致植物110的根系110A不能与空气中的氧气接触,极易出现根部腐烂的问题,通过设置通气结构108,能够有效解决该问题。
其中,植物110包括但不限于蔬菜。
具体地,载体本体102优选采用硬塑料制成的泡沫材料,例如聚苯乙烯材料,应当理解,载体本体102还可以由另一种材料或不同部分的组合形成,在植物110置于栽培孔104内时,栽培载体能够漂浮在液体表面上,且下沉较浅。
其中,液体包括水以及融入水中的营养成分,即营养液,用于培养植 物110,并优选保持流动的液体,以防发生滋生细菌。
优选地,在栽培载体上形成多个栽培孔104,且呈矩阵式分布,能够同时培养多个植物110,实现批量生产。其中,每个通气结构108可以只与一个栽培孔104相通,也可以与数个栽培孔104相通,减少在培养植物110的过程中出现的根系110A腐烂的情况,实现对植物110的根系110A的保护,从而提高植物110的生产效率。
优选地,通气结构108的内壁光滑,摩擦力小,不易粘连杂质,以防通气结构108堵塞,并优选直通道来为栽培孔104内的根系110A提供氧气,以保证氧气量充足。同时,每个栽培孔104优选两条以上的通气通道,使空气能够很好的进行循环,提升换气效果,进而提升植物110的品质。
如图3所示,优选地,植物110容纳于种植杯中,然后将该种植杯放置在栽培孔104上,在种植杯底部设有开口,植物110的根系110A可以穿过上述开口,同时通过上述开口能够将种植杯内的多余的水排出。
另外,当载体本体102漂浮在液体上时,至少50%以上的载体本体部分处于液面的上方,相应的,植物110的根系110A与对应的液面之间可以保持一定的距离,以增强通风换气效果。
如图3所示,在上述实施例中,优选地,下部空间大于上部空间。
在该实施例中,由于植物110的根系110A主要分布在栽培孔104的下部,通过设置栽培孔104的下部空间大于上部空间,一方面便于容纳植物110的根系110A,另一方面利于容纳更多的氧气,提高与根系110A接触的氧气量,进一步降低根系110A发生腐烂的概率。
如图2和图3所示,在上述任一实施例中,优选地,通气结构108与下部直接相通。
在该实施例中,通过设置通气结构108与栽培孔104的下部直接相通,氧气不必经过栽培孔104的上部即可直接到达栽培孔104的下部,缩短了氧气流通的路径,使氧气与处于栽培孔104下部的根系110A快速接触,不会被栽培孔104上部的部分植物110遮挡。
如图3所示,在上述任一实施例中,优选地,上部为柱形孔段104A,下部为扩口孔段104B,上部和下部为一体形成或分段式连接。
在该实施例中,通过设置上部为柱形孔段104A,下部为扩口孔段104B,一方面便于容纳植物110,另一方面利于容纳更多的氧气,提高与根系110A接触的氧气量,进一步降低根系110A发生腐烂的概率。其中,分段式连接,使其更加灵活,可以根据不同的需求来改变栽培孔104的形状。然而,一体形成的栽培孔104结构强度高,封闭性好,更加稳定可靠。
优选地,扩口孔段104B的小端直径与柱形孔段104A的直径相等,且扩口孔段104B的大端与载体本体102的下端面平齐,其中,部分扩口孔段104B浸入液体中。
优选地,柱形孔段104A的轴线与扩口孔段104B的轴线共线。
通过设置扩口孔段104B的小端直径与柱形孔段104A的直径相等,扩口孔段104B的大端与载体本体102的下端面平齐,并使部分扩口孔段104B浸入液体中,且柱形孔段104A的轴线与扩口孔段104B的轴线共线,在培养植物110时,植物110的根系110A一般处在扩口孔段104B内,这有利于植物110的根系110A与空气接触并吸收氧气,不会出现气流死角,进一步减少水培过程中植物110的根系110A溃烂的问题发生,提高了植物110的品质,同时提高植物110的生长效率。
如图4和图5所示,在上述任一实施例中,优选地,通气结构108包括:至少一个通气凹槽,形成于栽培孔104的内壁上,通气凹槽的第一端处于扩口孔段104B的内壁面上,通气凹槽的第二端处于载体本体102的外壁面上。
在该实施例中,通过在栽培孔104的内壁上形成至少一个通气凹槽,能够充分利用栽培孔104的内部构造,达到通风换气的目的,在植物110置于栽培孔104内进行培养时,通过通气凹槽能够使外部的氧气直接进入到扩口孔段104B内,并与植物110的根系110A接触,从而减少在培养植物110的过程中出现的根系110A腐烂的情况,提升植物110的品质,进而提高生产效率。与此同时,还减少了栽培载体的材料使用,提高产品的竞争力。
另外,设置通气凹槽相较孔类设计而言,还便于对其进行清理,有效减少通气结构108堵塞的情况发生。
可以理解的是,在植物110从上部的开口进入并支撑在上部时,不会覆盖通气凹槽的第一端的开口。
优选地,通风凹槽的横截面呈半圆形或U形。
通过设置通风凹槽的横截面呈半圆形或U形,其中,半圆形的通风凹槽无死角,其不易积存尘土,可靠性高,而同样大小的方形通风凹槽的流通面积较大一些,能够提高空气流通效果,进而提高植物110的质量。
在上述任一实施例中,优选地,通气结构108包括:至少一个通气孔,设置在载体本体102上,通气孔的第一端处于扩口孔段104B的内壁面上,通气孔的第二端处于载体本体102的外壁面上。
在该实施例中,通过在栽培孔104的内壁上形成至少一个通气孔,可以达到通风换气的目的,在植物110置于栽培孔104内进行培养时,通过通气孔能够使氧气直接进入到扩口孔段104B内,并与植物110的根系110A接触,从而减少在培养植物110的过程中出现的根系110A腐烂的情况,提升植物110的品质,进而提高生产效率。其中,通气孔可以设置在栽培载体的任意位置,只要能够连通一个或多个栽培孔104的扩口孔段104B即可,实用性很高,同时还能减少栽培载体的材料使用,提高产品的竞争力。
优选地,通气孔的横截面呈圆形或方形。
通过通气孔的横截面呈圆形或方形,其中,圆形的通气孔无死角,其不易积存尘土,可靠性高,而同样大小的方形通气孔的流通面积较大一些,能够提高空气流通效果,进而提高植物110的质量。
如图5所示,在上述任一实施例中,优选地,在通气结构108的数量为多个时,多个通气结构108以柱形孔段104A的轴线呈圆周阵列设置。
在该实施例中,通过以柱形孔段104A的轴线圆周阵列设置多个通气结构108,使栽培孔104内各个位置的氧气含量均匀,进而使植物110的根系110A能够与氧气充分接触,有效减少由于部分根系不能与氧气接触而导致腐烂的问题发生。
具体地,以柱形孔段104A的轴线圆周阵列设置多个通气凹槽,和/或以柱形孔段104A的轴线圆周阵列设置多个通气孔,能够提高与植物110的根系110A接触的氧气量,并使氧气能够循环流动。
如图1、图2和图5所示,在上述任一实施例中,优选地,栽培孔104的数量为多个时,排列的阵列为4行×10列、6行×15列或8行×20列中的一种。
在该实施例中,整个栽培载体的栽培孔104可达到40孔、90孔和160孔,如此能够同时培养多柱植物110,提高产量,实现批量生产。
在上述任一实施例中,优选地,载体本体102的材质包括聚苯泡沫、聚苯乙烯、聚氯乙烯和聚丙烯。
在该实施例中,通过选用聚苯泡沫、聚苯乙烯、聚氯乙烯和/或聚丙烯材质的载体本体102,能够使栽培载体漂浮在营养液上,同时降低温度变化对栽培孔104内的植物110产生的影响,并减少空气中有害物质,以及减小紫外线对植物110的生长抑制效果。
如图3所示,在上述任一实施例中,优选地,还包括凸起结构106,环绕柱形孔段104A的开放端设置在载体本体102的第一端面上,凸起结构106的尺寸与扩口孔段104B相匹配,
其中,扩口孔段104B的大端与载体本体102的第二端面平齐,在多个载体本体102堆叠时,一个载体本体102上的凸起结构106,能够置于另一个载体本体102上的扩口孔段104B内。
在该实施例中,通过环绕柱形孔段104A的开放端在载体本体102的第一端面上设置凸起结构106,且凸起结构106的尺寸与扩口孔段104B相匹配,一方面便于支撑植物110,另一方面能够***另一个载体本体102上的扩口孔段104B内,便于堆叠存放多个栽培载体。
如图3所示,根据本发明的一个实施例的栽培***,包括:本发明上述任一实施例提供的栽培载体,以及放置于栽培载体的栽培孔104内的植物110,栽培载体漂浮在营养液的液面上,植物110的根系110A通过栽培载体上的通气结构108吸收氧气。
在该实施例中,在培养植物110时,由于载体本体102漂浮在液体的液面上,往往会导致栽培孔104下部的开口被封闭,同时,由于植物110从上部的开口进入并支撑在上部,往往会导致栽培孔104上部的开口也被封闭,从而导致植物110的根系110A不能与空气中的氧气接触,极易出现 根部腐烂的问题,通过设置与栽培孔104相通的至少一个通气结构108,能够在培养植物110的过程中,使外部空气进入栽培孔104内,从而使植物110的根系110A与空气中的氧气接触,减少在培养植物110的过程中出现的根系110A腐烂的情况,提升植物110的品质,进而提高生产效率。
其中,植物110的根系110A的下部可直接接触液面,便于吸收营养液内的养分,也可以保持一定距离,进一步减小根系110A腐烂的问题,此时,植物110生长前期利用汽化的营养液为根系110A提供养分。
在上述任一实施例中,优选地,在植物110刚放入栽培载体的栽培孔104内进行培养时,植物110的根系110A与液面之间的距离小于10mm或者大于50mm,例如0-9mm或者51-60mm。
在该实施例中,通过在植物110刚放入栽培孔104内进行培养时,设置植物110的根系110A与液面之间的距离小于10mm,使得植物110的根系110A不易腐烂,同时根系110A能够很快的接触到营养液以吸收充足的营养成分,植物110的生长速度较快。
通过设置植物110的根系110A与液面之间的距离大于50mm,需要说明的是,受限于栽培孔104的深度,该距离具有上限值,结合植物110的生长速度,该距离的优选范围为51-60mm,待植物110的根系110A生长到第二阶段时,便会自动与营养液接触,也就是说,在第一阶段时,发育中的植物110的最大部分养分需求由环境提供,即由空气或基质提供,因此,不容易发生根系110A腐烂的情况,只有在植物110生长到第二阶段期间,才由营养液直接提供养分,从而显著提高植物110的品质。
在本发明的一个具体实施例中,如图1至图5所示,本发明提供的栽培载体用于水培植物,其采用EPS(聚苯乙烯泡沫)材质,密度小,质量轻,在营养液表面下沉浅,且除栽培孔104以及通气结构108以外,各部分均为实体结构。
优选地,在栽培载体上均匀分布40个栽培孔104,且环绕每个栽培孔104的边缘在栽培载体的上表面凸起一个锥形凸台,这个凸台便于拿取容纳有植物110的种植杯。在栽培载体的下表面形成凹入的锥形孔,这个凹入的锥形孔便于种植杯底部的根系110A与空气接触吸收氧气。同时这种上 凸下凹的结构便于栽培载体的堆叠。
进一步地,在栽培孔104的内壁上形成4个通气孔圆弧(即通气结构108),放置种植杯的栽培载体漂浮在营养液表面,空气中的氧气通过通气孔圆弧(即通气结构108)与种植杯底部的根系110A接触,从而减少在培养植物110的过程中出现的根系110A腐烂的情况,提升植物110的品质,进而提高生产效率。
以上结合附图详细说明了本发明的技术方案,本发明提供了一种栽培载体和栽培***,通过设置与栽培孔相通的至少一个通气结构,能够在培养植物的过程中,使外部空气进入栽培孔内,从而使植物的根系与空气中的氧气接触,减少在培养植物的过程中出现的根系腐烂的情况,提升植物的品质,进而提高生产效率。
在本发明中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本发明的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种栽培载体,包括:漂浮的载体本体,所述载体本体设有至少一个栽培孔,其特征在于,还包括:
    至少一个通气结构,与所述栽培孔相通,所述通气结构能够使外部空气进入所述栽培孔内,
    其中,所述栽培孔包括上部和下部,植物从所述上部的开口进入并支撑在所述上部,至少一部分所述植物的根系位于所述下部。
  2. 根据权利要求1所述的栽培载体,其特征在于,所述下部空间大于所述上部空间。
  3. 根据权利要求1所述的栽培载体,其特征在于,所述通气结构与所述下部直接相通。
  4. 根据权利要求2所述的栽培载体,其特征在于,所述上部为柱形孔段,所述下部为扩口孔段,所述上部和下部为一体形成或分段式连接。
  5. 根据权利要求4所述的栽培载体,其特征在于,所述通气结构包括:
    至少一个通气凹槽,形成于所述栽培孔的内壁上,所述通气凹槽的第一端处于所述扩口孔段的内壁面上,所述通气凹槽的第二端处于所述载体本体的外壁面上。
  6. 根据权利要求4所述的栽培载体,其特征在于,所述通气结构包括:
    至少一个通气孔,设置在所述载体本体上,所述通气孔的第一端处于所述扩口孔段的内壁面上,所述通气孔的第二端处于所述载体本体的外壁面上。
  7. 根据权利要求4所述的栽培载体,其特征在于,
    在所述通气结构的数量为多个时,多个所述通气结构以所述柱形孔段的轴线呈圆周阵列设置。
  8. 根据权利要求5所述的栽培载体,其特征在于,还包括:
    凸起结构,环绕所述柱形孔段的开放端设置在所述载体本体的第一端面上,所述凸起结构的尺寸与所述扩口孔段相匹配,
    其中,所述扩口孔段的大端与所述载体本体的第二端面平齐,在多个 所述载体本体堆叠时,一个所述载体本体上的所述凸起结构,能够置于另一个所述载体本体上的所述扩口孔段内。
  9. 一种栽培***,其特征在于,包括:
    如权利要求1至8中任一项所述的栽培载体,以及
    放置于所述栽培载体的栽培孔内的植物,所述栽培载体漂浮在营养液的液面上,所述植物的根系通过所述栽培载体上的通气结构吸收氧气。
  10. 根据权利要求9所述的栽培***,其特征在于,在所述植物刚放入所述栽培载体的栽培孔内进行培养时,所述植物的根系与所述液面之间的距离小于10mm或者大于50mm。
PCT/CN2017/094571 2017-05-31 2017-07-26 栽培载体和栽培*** WO2018218771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710399460.X 2017-05-31
CN201710399460.XA CN107148903A (zh) 2017-05-31 2017-05-31 栽培载体和栽培***

Publications (1)

Publication Number Publication Date
WO2018218771A1 true WO2018218771A1 (zh) 2018-12-06

Family

ID=59796069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094571 WO2018218771A1 (zh) 2017-05-31 2017-07-26 栽培载体和栽培***

Country Status (2)

Country Link
CN (1) CN107148903A (zh)
WO (1) WO2018218771A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115088607A (zh) * 2022-06-29 2022-09-23 广东浩禹建设有限公司 一种改善水域水质的生态浮草种植装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112136679B (zh) * 2020-10-06 2022-08-30 萧县华恒静电科技有限公司 一种鱼塘专用无土栽培漂浮式蔬菜种植机构及其使用方法
CN114303924B (zh) * 2021-12-27 2023-06-23 陈永彬 一种家用植物种植机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103203A (ja) * 1995-10-12 1997-04-22 C I Kasei Co Ltd 養液栽培用パネルとそれを使用した養液栽培装置
JPH1056892A (ja) * 1996-08-16 1998-03-03 Mitsui Sekika Sanshi Kk 浮遊式水耕栽培システム及びこれを利用する水質浄化 装置
CN2440315Y (zh) * 2000-08-09 2001-08-01 范建华 自浮式水上栽培盘
JP2011142902A (ja) * 2009-12-16 2011-07-28 Nishiken:Kk 水耕栽培法
JP2013220037A (ja) * 2012-04-13 2013-10-28 Sasso Kogyo Kk 水耕栽培用定植プレート
JP2013223448A (ja) * 2012-04-20 2013-10-31 Sharp Corp 水耕栽培器
JP2014045732A (ja) * 2012-08-31 2014-03-17 Sharp Corp 水耕栽培器
CN205671176U (zh) * 2016-05-10 2016-11-09 侯坤 双层分根定植板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202104074U (zh) * 2011-06-16 2012-01-11 汪晓云 立柱栽培设施
CN103125359A (zh) * 2011-11-28 2013-06-05 上海市农业科学院 多孔型家庭式蔬菜栽培盘
CN202496268U (zh) * 2012-01-30 2012-10-24 朱大恒 一种带通气孔的漂浮育苗盘
CN202949813U (zh) * 2012-12-25 2013-05-29 李光伟 一种漂浮育苗盘
CN105230463A (zh) * 2015-10-30 2016-01-13 北京绿东国创农业科技有限公司 一种潮汐式水培方法及装置
CN205671183U (zh) * 2016-06-17 2016-11-09 建宁县一米阳台农业开发有限公司 一种多功能的水培植物种植槽
CN106258916B (zh) * 2016-08-31 2022-04-08 北京农业智能装备技术研究中心 一种多功能无土栽培装置及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103203A (ja) * 1995-10-12 1997-04-22 C I Kasei Co Ltd 養液栽培用パネルとそれを使用した養液栽培装置
JPH1056892A (ja) * 1996-08-16 1998-03-03 Mitsui Sekika Sanshi Kk 浮遊式水耕栽培システム及びこれを利用する水質浄化 装置
CN2440315Y (zh) * 2000-08-09 2001-08-01 范建华 自浮式水上栽培盘
JP2011142902A (ja) * 2009-12-16 2011-07-28 Nishiken:Kk 水耕栽培法
JP2013220037A (ja) * 2012-04-13 2013-10-28 Sasso Kogyo Kk 水耕栽培用定植プレート
JP2013223448A (ja) * 2012-04-20 2013-10-31 Sharp Corp 水耕栽培器
JP2014045732A (ja) * 2012-08-31 2014-03-17 Sharp Corp 水耕栽培器
CN205671176U (zh) * 2016-05-10 2016-11-09 侯坤 双层分根定植板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115088607A (zh) * 2022-06-29 2022-09-23 广东浩禹建设有限公司 一种改善水域水质的生态浮草种植装置
CN115088607B (zh) * 2022-06-29 2023-09-01 广东浩禹建设有限公司 一种改善水域水质的生态浮草种植装置

Also Published As

Publication number Publication date
CN107148903A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
US9357714B2 (en) Method for cultivating plants as well as a floating carrier
WO2018218771A1 (zh) 栽培载体和栽培***
US9439362B2 (en) System and method for growing plants
KR102043623B1 (ko) 조류 양식용 광생물반응기 및 조류 양식 시스템
CN1668186A (zh) 育苗装置
WO2018196795A1 (zh) 双控盆
CN109832182B (zh) 一种栽培水槽
CN207574219U (zh) 一种水培蔬菜漂浮板
CN108029544B (zh) 一种用于水稻秧苗的培养装置
CN105660344B (zh) 一种无土栽培装置
US20170303482A1 (en) Hydroponic Plant Growing Apparatus
WO2012050220A1 (ja) 光合成微生物の培養方法及び装置
CN209017604U (zh) 一种植物培养基
CN107509626A (zh) 家用小型栽培装置
JP2018068142A (ja) 養液栽培装置および養液栽培方法
JP2018064462A (ja) 栽培装置、栽培方法
CN216722297U (zh) 一种用于蔬菜育苗的孔盘结构
CN203429183U (zh) 三维细胞培养板
CN205337008U (zh) 一种甜叶菊育苗装置
CN221460408U (zh) 一种护城河式微孔培养板
EP3927143A1 (en) An assembly for hydroculture of plants
CN216088149U (zh) 用于种子营养液培养幼苗的育苗盒
CN212993489U (zh) 一种食用菌种植用培养液滴灌装置
CN214758085U (zh) 一种节能灌溉盆栽装置
CN214155580U (zh) 人工气候室及种植盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17911999

Country of ref document: EP

Kind code of ref document: A1