WO2018216664A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
WO2018216664A1
WO2018216664A1 PCT/JP2018/019549 JP2018019549W WO2018216664A1 WO 2018216664 A1 WO2018216664 A1 WO 2018216664A1 JP 2018019549 W JP2018019549 W JP 2018019549W WO 2018216664 A1 WO2018216664 A1 WO 2018216664A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
aligning agent
diamine
Prior art date
Application number
PCT/JP2018/019549
Other languages
French (fr)
Japanese (ja)
Inventor
隆夫 堀
佳道 森本
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201880033793.3A priority Critical patent/CN110651221B/en
Priority to JP2019520248A priority patent/JP7131551B2/en
Priority to KR1020197037170A priority patent/KR102611592B1/en
Publication of WO2018216664A1 publication Critical patent/WO2018216664A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1092Polysuccinimides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
  • Liquid crystal display elements are now widely used as display devices that are thin and light.
  • a liquid crystal alignment film is used to control the alignment state of the liquid crystal.
  • liquid crystal display elements have become widely used in large-screen liquid crystal televisions and high-definition mobile applications (display parts of digital cameras and mobile phones).
  • the unevenness of the step of the substrate is getting larger. Even in such a situation, it is required that the liquid crystal alignment film be uniformly formed on a large substrate or a step from the viewpoint of display characteristics.
  • the liquid crystal alignment film is required to have high functions for controlling the alignment state of the liquid crystal (also referred to as liquid crystal alignment) and also for electrical characteristics such as reliability and image sticking characteristics in the liquid crystal display element.
  • a polyimide polymer of polyamic acid or soluble polyimide is generally used as the liquid crystal alignment film (see, for example, Patent Document 1).
  • the polyimide-based polymer used in the conventional liquid crystal alignment film is not necessarily sufficiently soluble in the solvent, and when the liquid crystal aligning agent is applied on the substrate, the polymer component is not present on the substrate. It may precipitate (also called whitening). This phenomenon called whitening has become a serious problem as the line for producing the liquid crystal alignment film becomes larger. This is considered to occur when the liquid crystal aligning agent contains moisture in the atmosphere and the solubility of the polymer is lowered.
  • An object of the present invention is to provide a liquid crystal aligning agent excellent in whitening resistance and coating film uniformity, and a liquid crystal alignment film excellent in liquid crystal alignment.
  • another object is to provide a liquid crystal display element having such a liquid crystal alignment film.
  • the present inventor has found that a liquid crystal aligning agent containing a polymer having a specific structure is extremely effective for achieving the above object, and has completed the present invention. That is, the present invention has the following gist. (1) It has a partial structure represented by the following formula [U] and has at least one side chain structure selected from a structure represented by the following formulas [S1] and [S2] and a structure having a steroid skeleton. A liquid crystal aligning agent containing at least one polymer selected from a polyimide precursor and polyimide.
  • Y 1 is a single bond, —O—, —S—, —COO— or —OCO—
  • K 1 and K 2 each independently represent a —CH 2 — group or a —CHR 1a — group ( R 1a represents an —OH group or a monovalent organic group.)
  • R 1a represents an —OH group or a monovalent organic group.
  • Any one of K 1 and K 2 may be replaced by a —C (O) group
  • R 3 and R 4 are each independently , An alkylene group having 1 to 7 carbon atoms, and * represents a site bonded to another group.
  • X 1 and X 2 are independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON (CH 3 ) —, —NH -, - O -, - COO -, - OCO-, or ((CH 2) a1 -A 1 ) m1 - ( each independently plurality of a1 represents an integer of 1 to 15, a plurality of a 1 each Independently represents an oxygen atom or COO—, and m 1 represents 1 to 2, and G 1 and G 2 independently represent a bivalent aromatic group having 6 to 12 carbon atoms or 3 carbon atoms.
  • a divalent alicyclic group selected from divalent alicyclic groups of 8 to 8, wherein any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, Substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • R 1 is alkyl of 1 to 20 carbon atoms, from 1 to 20 carbon atoms alkoxy, or carbon atoms 2-20 alkoxyalkyl, any hydrogen in these groups may be replaced by fluorine.
  • X 3 represents a single bond, —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —COO— or OCO—, and R 2 represents carbon An alkyl having 1 to 20 carbon atoms or an alkoxyalkyl having 2 to 20 carbon atoms, and any hydrogen in these groups may be replaced by fluorine.
  • the liquid crystal aligning agent of the present invention is excellent in whitening resistance and coating film uniformity, can obtain a liquid crystal aligning film excellent in liquid crystal aligning property, and has a liquid crystal aligning film obtained from the liquid crystal aligning agent of the present invention. Is excellent in display quality and can be suitably used for various display devices.
  • the liquid crystal aligning agent of the present invention has a partial structure represented by the formula [U] (also referred to as a specific partial structure), and at least one selected from the formulas [S1], [S2] and a steroid skeleton.
  • a polymer (also referred to as a specific polymer) having a side chain structure (also referred to as a specific side chain structure) is contained.
  • the meanings of Y 1 , Y 2 , K 1 , K 2 , R 3 , R 4 , and * in the formula [U] are as described above.
  • the monovalent organic group constituting R 1a when K 1 and K 2 are —CHR 1a — group includes a hydrocarbon group; a hydroxyl group, a carboxyl group, a hydroxyl group, a thiol group, or a carboxyl group.
  • the hydrocarbon group herein may be any of a straight chain, a branched chain or a cyclic chain, and may be a saturated hydrocarbon or an unsaturated hydrocarbon.
  • some of the hydrogen atoms of the hydrocarbon group may be replaced by carboxyl groups, hydroxyl groups, thiol groups, silicon atoms, halogen atoms, etc., and are linked by a linking group such as an ether bond, an ester bond, or an amide bond. It may be.
  • the alkylene group having 1 to 7 carbon atoms constituting R 3 and R 4 may be any of linear, branched or cyclic. Specifically, methylene group, ethylene group, n-propylene group, isopropylene group, cyclopropylene group, 1-methyl-cyclopropylene group, 2-methyl-cyclopropylene group, 1,1-dimethyl-n-propylene group 1,2-dimethyl-n-propylene group, 2,2-dimethyl-n-propylene group, 1-ethyl-n-propylene group, 1,2-dimethyl-cyclopropylene group, 2,3-dimethyl-cyclopropylene 1-ethyl-cyclopropylene group, 2-ethyl-cyclopropylene group, 1,1,2-trimethyl-n-propylene group, 1,2,2-trimethyl-n-propylene group, 1-ethyl-1- Methyl-n-propylene group, 1-ethyl-2-methyl-n-propylene group,
  • Y 1 and Y 2 in the formula [U] are preferably —O—, —COO—, or —OCO— from the viewpoint of polymer supply.
  • K 1 and K 2 are each a —CH 2 — group, —CH (OH) — group, —CO— group, —CH (CH 3 ) — group, —CH (O—Boc) — group. preferable. “Boc” refers to a tert-butoxycarbonyl group.
  • R 3 and R 4 are preferably a methylene group, an ethylene group, or an n-propylene group.
  • Preferred examples of the partial structure represented by the above formula [U] include the following formula [U-Ar].
  • the specific polymer further has at least one specific side chain structure selected from the group consisting of the following formulas [S1] and [S2] and a steroid skeleton.
  • the meanings of X 1 , X 2 , G 1 , G 2 , R 1 , m and n in the formula [S1] are as described above.
  • X 1 and X 2 are each a single bond, — (CH 2 ) a — (a is 1 to 15), —O—, from the viewpoint of availability of raw materials and ease of synthesis.
  • —CH 2 O— or COO— is preferred. More preferably, it is a single bond, — (CH 2 ) a — (wherein a is 1 to 10), —O—, —CH 2 O—, or COO—.
  • Examples of the divalent aromatic group having 6 to 12 carbon atoms in G 1 and G 2 include phenylene, biphenylene, naphthalene and the like.
  • Examples of the divalent alicyclic group having 3 to 8 carbon atoms include cyclopropylene and cyclohexylene.
  • G 1 and G 2 are preferably phenylene, biphenylene, naphthalene, cyclopropylene, or cyclohexylene.
  • R 1 is more preferably an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms.
  • formula [S1] include the following formulas [S1-x1] to [S1-x7].
  • R 1 is an alkyl group having 1 to 20 carbon atoms
  • X p is — (CH 2 ) a — (a is an integer of 1 to 15).
  • a 1 is —O— or —COO— * (where a bond marked with “*” binds to (CH 2 ) a2 ), and A 2 is —O— or * —COO— (where a "*" is a bond marked with (CH 2) binds to a2)
  • a 1, a 3 are each independently 0 or 1
  • a 2 is 2 ⁇ 10, Cy Is a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • X 3 and R 2 in the formula [S2] are as described above.
  • X 3 is preferably —CONH—, —NHCO—, —O—, —CH 2 O—, —COO— or OCO— from the viewpoint of liquid crystal alignment.
  • R 2 is preferably alkyl having 3 to 20 carbons or alkoxyalkyl having 2 to 20 carbons from the viewpoint of liquid crystal orientation.
  • the structure having a steroid skeleton can be represented by the following formula [S3].
  • X 4 represents —CONH—, —NHCO—, —O—, —COO— or OCO—
  • R 3 represents a structure having the steroid skeleton.
  • a preferred specific example of the formula [S3] is the following formula [S3-x]. In the formula, * indicates a bonding position.
  • the structure having a steroid skeleton include a structure obtained by removing a hydroxy group from a steroid compound described in paragraph [0024] of Japanese Patent Application Laid-Open No. 4-281427, and an acid chloride group removed from a steroid compound described in paragraph [0030].
  • the structure described in [0022] can be given.
  • the specific polymer in the present invention is at least one polymer selected from a polyimide precursor and a polyimide (also collectively referred to as a polyimide polymer).
  • a polyimide precursor also collectively referred to as a polyimide polymer.
  • the polyimide which is a polyimide precursor obtained by making a diamine component and a tetracarboxylic-acid component react, or its imidation thing is preferable.
  • the polyimide precursor is represented by the following formula [A].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group
  • a 1 and A 2 are each independently a hydrogen atom or an alkylene group having 1 to 5 carbon atoms
  • a 3 and A 4 are each independently a hydrogen atom, an alkylene group having 1 to 5 carbon atoms or an acetyl group
  • n is a positive integer.
  • the diamine component include diamines having two primary or secondary amino groups in the molecule.
  • tetracarboxylic acid component examples include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide.
  • a diamine having two primary or secondary amino groups in the molecule a tetracarboxylic acid or a tetracarboxylic acid It can be obtained by reacting with an anhydride.
  • a polyamic acid alkyl ester in which A 1 and A 2 in the formula [A] are an alkylene group having 1 to 5 carbon atoms the diamine, a tetracarboxylic acid dihalide, a tetracarboxylic acid dialkyl ester, or a tetracarboxylic acid It can be obtained by reacting with a dialkyl ester dihalide.
  • an alkylene group having 1 to 5 carbon atoms of A 1 and A 2 represented by the formula [A] can be introduced into the polyamic acid obtained by the above method.
  • the specific polymer at least one side selected from a structural unit having a partial structure of the formula [U], a structure of the formulas [S1] and [S2], and a structure having a steroid skeleton.
  • a polymer containing a structural unit having a chain structure hereinafter also referred to as a copolymer
  • a polymer containing a structural unit having a partial structure of the formula [U] the formulas [S1], [S2]
  • a mixture hereinafter also referred to as polymer blend
  • the method for introducing the partial structure of the formula [U] into the polymer is not particularly limited, but a diamine having the structure of the formula [U], specifically, a diamine represented by the following formula [U-1] is used. It is preferable to use a part of the raw material.
  • Y A represents an organic group having the structure of Formula [U]
  • a 1 and A 2 each independently represent a hydrogen atom or an alkylene group having 1 to 5 carbon atoms. Show. More specifically, a diamine represented by the following formula [Ua] is preferable.
  • Y 1 and Y 2 are each independently a single bond, —O—, —S—, —COO— or —OCO—.
  • K 1 and K 2 each independently represent a —CH 2 — group or —CHR 1a — group (R 1a represents an —OH group or a monovalent organic group), where K 1 and K Either one of 2 may be replaced by a —C (O) group.
  • R 3 and R 4 are each independently an alkylene group having 1 to 7 carbon atoms. Any hydrogen atom of the benzene ring may be substituted with a monovalent organic group.
  • a 1 and A 2 each independently represents a hydrogen atom or an alkylene group having 1 to 5 carbon atoms.
  • amine [Ua] include the following formulas [U-1a] to [U-6a].
  • a 1 to A 2 each independently represents a hydrogen atom or an alkylene group having 1 to 5 carbon atoms, and the Boc group represents tert-butoxycarbonyl. Indicates a group.
  • diamine [Ua] More preferred specific examples of the diamine [Ua] include the following formulas [UM-1] to [UM-13].
  • the method for introducing at least one side chain structure selected from the structures of the formulas [S1] and [S2] and a structure having a steroid skeleton into the polymer is not particularly limited, but the formulas [S1] and [S2 It is preferable to use a diamine having a side chain structure selected from a structure having a steroid skeleton as a part of the raw material.
  • a diamine represented by the following formula [S1-a] is preferably used as a part of the raw material.
  • B is the formula [S1], [S2] or [S3], and A 1 and A 2 are each independently a hydrogen atom or an alkylene group having 1 to 5 carbon atoms.
  • a hydrogen atom or an alkylene group having 1 or 2 carbon atoms is preferable.
  • m is 1 to 4, and 1 is particularly preferable from the viewpoint of easy synthesis.
  • Preferred examples of the formulas [S1] to [S3] are as described above.
  • the amount of the diamine represented by the formula [Ua] and the diamine represented by the formula [S1-a] in obtaining the copolymer is the total diamine component, respectively.
  • the total amount of the diamine represented by the formula [Ua] and the diamine represented by the formula [S1-a] is preferably 5 to 100 mol% in 100 mol% of all diamine components. ⁇ 100 mol% is preferred, and 20 ⁇ 100 mol% is particularly preferred.
  • the amount of the diamine represented by the formula [Ua] is whitening resistance in 100 mol% of the diamine component used in the polymer containing the residue of the formula [Ua] as a constituent unit. Is preferably 5 mol% or more, more preferably 10 mol% or more, and still more preferably 20 mol% or more. Further, the amount of the diamine of the formula [S1-a] used is that the liquid crystal orientation is improved in 100 mol% of the diamine component used in the polymer containing the residue of the formula [S1-a] as a structural unit. 1 mol% or more is preferable, 2 mol% or more is more preferable, and 5 mol% or more is still more preferable. A particularly preferred specific example is 20 mol% or more.
  • the diamine of the formula [Ua] and the diamine of the formula [S1-a] are the solubility of the specific polymer in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal alignment property when the liquid crystal alignment film is used, the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
  • a diamine other than the diamine of the formula [Ua] and the diamine of the formula [S1-a] (also referred to as other diamine) can be used.
  • a diamine having a nitrogen-containing heterocyclic ring a diamine having a nitrogen-containing structure described in paragraph [0050] of JP-A-2016-218149, 1,3-bis (3-aminopropyl) -1,1,3,3 -Increase the response speed of liquid crystals when using organosiloxane-containing diamines such as tetramethyldisiloxane, 1,3-bis (4-aminobutyl) -1,1,3,3-tetramethyldisiloxane, and liquid crystal display devices.
  • Functional group capable of forming a covalent bond I can be exemplified diamines having.
  • More preferred specific examples include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-difluoro-4,4 ′.
  • diamines of the present invention are soluble in the solvent of the polymer of the present invention, coating properties of the liquid crystal aligning agent, liquid crystal alignment properties when used as a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc.
  • One type or a mixture of two or more types can also be used.
  • the amount of the diamine of the formula [Ua] is 100 mol% of the diamine component used in the polymer containing the residue of the formula [Ua] as a constituent unit. 20 to 100 mol% can be mentioned.
  • tetracarboxylic acid component for producing the polymer of the present invention that is, the polyimide polymer
  • a tetracarboxylic dianhydride represented by the following formula [4] it is preferable to use a tetracarboxylic dianhydride represented by the following formula [4].
  • the tetracarboxylic dianhydride represented by the formula [4] but also the tetracarboxylic acid derivative tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester or tetracarboxylic acid dialkyl ester dihalide It can also be used.
  • Z represents at least one structure selected from the following [4a] to [4k].
  • Z 1 to Z 4 represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Preferable specific examples of Z 1 to Z 4 include the following structures [4a-1] and [4a-2].
  • Z 5 and Z 6 represent a hydrogen atom or a methyl group, and may be the same or different.
  • Z in the formula [4] from the viewpoint of easy synthesis and ease of polymerization reactivity when producing a polymer, the formula [4a], the formula [4c] to the formula [4g] or the formula [4k] ]
  • the tetracarboxylic dianhydride of the structure shown by these and its tetracarboxylic acid derivative are preferable. More preferable is the structure represented by the formula [4a] or the formula [4e] to the formula [4g].
  • tetracarboxylic dianhydrides and their tetracarboxylic acid derivatives having the structure represented by [4a], formula [4e] or formula [4f]. More preferable specific examples include tetracarboxylic dianhydrides having the structures represented by [4a-1], formula [4a-2], formula [4e], and formula [4f] and their tetracarboxylic acid derivatives. .
  • the tetracarboxylic acid component represented by the formula [4] in the polymer of the present invention is preferably 1 to 100 mol% in 100 mol% of all tetracarboxylic acid components. Among these, 5 to 95 mol% is preferable. More preferred is 20 to 80 mol%.
  • the tetracarboxylic acid component of the present invention has properties such as solubility of the polymer of the present invention in a solvent, coating properties of a liquid crystal aligning agent, liquid crystal alignment properties, voltage holding ratio, and accumulated charge when used as a liquid crystal alignment film. Depending on the situation, one kind or a mixture of two or more kinds may be used.
  • tetracarboxylic acid components other than the specific tetracarboxylic acid component can also be used in the polyimide polymer of the polymer of the present invention.
  • examples of other tetracarboxylic acid components include the following tetracarboxylic acids, tetracarboxylic dianhydrides, tetracarboxylic acid dihalides, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides.
  • tetracarboxylic acid components include 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4 ′ -Benzophenone tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1, 1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane
  • the other tetracarboxylic acid components of the present invention are properties such as solubility of the polymer of the present invention in a solvent, coating properties of a liquid crystal aligning agent, liquid crystal alignment properties, voltage holding ratio, accumulated charge, etc. Depending on the situation, one kind or a mixture of two or more kinds may be used.
  • the method for producing a polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. In general, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic dianhydrides and derivatives of the tetracarboxylic acid is reacted with a diamine component consisting of one or more diamines. And a method of obtaining a polyamic acid.
  • tetracarboxylic dianhydride and primary or secondary diamine are polycondensed to obtain polyamic acid
  • tetracarboxylic acid and primary or secondary diamine are subjected to dehydration polycondensation reaction.
  • a method of obtaining a polyamic acid or a method of polycondensing a tetracarboxylic acid dihalide and a primary or secondary diamine to obtain a polyamic acid is used.
  • the polymer can be obtained by reacting the tetracarboxylic acid component and the diamine component as described above together with a molecular weight modifier as necessary.
  • the molecular weight modifier include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamines such as aniline, cyclohexylamine and n-butylamine, and monoisocyanates such as phenyl isocyanate and naphthyl isocyanate. Can do.
  • the use ratio of the molecular weight modifier is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less, with respect to 100 parts by mass in total of the tetracarboxylic acid component and the diamine component to be used.
  • a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine, a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and 1 A method of polycondensation with a secondary or secondary diamine or a method of converting a carboxyl group of a polyamic acid into an ester is used.
  • polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out in a solvent with the diamine component and the tetracarboxylic acid component.
  • the solvent used at that time is not particularly limited as long as the produced polyimide precursor is soluble. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-2-imidazolidinone Is mentioned.
  • the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]
  • the indicated solvents can be used.
  • D 1 represents an alkylene group having 1 to 3 carbon atoms
  • D 2 represents an alkylene group having 1 to 3 carbon atoms
  • D-3 represents an alkylene group having 1 to 4 carbon atoms.
  • solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced
  • the reaction can be performed at an arbitrary concentration. However, if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and the concentration is high. If it is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration, and then a solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose. Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalytic imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. it can.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is redissolved in a solvent and then re-precipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. It is.
  • the molecular weight distribution (Mw / Mn) represented by the ratio between Mw and the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • the liquid crystal aligning agent of this invention is a coating solution for forming a liquid crystal aligning film (it is also called a resin film), and is a coating solution for forming the liquid crystal aligning film containing a specific polymer and a solvent.
  • a specific polymer any polyimide polymer such as polyamic acid, polyamic acid alkyl ester, and polyimide may be used. All of the polymers in the liquid crystal aligning agent of the present invention may be specific polymers, or other polymers may be mixed. Other polymers include polyimide having no side chain structure selected from the partial structure represented by the formula [U], the structure represented by the formulas [S1] to [S2], and the structure having a steroid skeleton.
  • a cellulose polymer an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, or polysiloxane may be used.
  • the content of the other polymer is preferably 5 to 90 parts by mass, preferably 10 to 60 parts by mass with respect to 100 parts by mass of the polymer including the specific polymer and the other polymer. Is more preferable.
  • the content of the solvent in the liquid crystal aligning agent of the present invention is preferably 70 to 99.9% by mass. This content can be appropriately changed depending on the application method of the liquid crystal aligning agent and the film thickness of the target liquid crystal alignment film.
  • the solvent used for the liquid crystal aligning agent of this invention will not be specifically limited if it is a solvent (it is also called a good solvent) which dissolves a polymer. Although the specific example of a good solvent is given to the following, it is not limited to these examples.
  • N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, ⁇ -valero Lactone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy- 4-methyl-2-pentanone and the like can be mentioned.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, 1,3-dimethyl-2-imidazolidinone, 3- Methoxy-N, N-dimethylpropanamide or 3-butoxy-N, N-dimethylpropanamide is preferred.
  • the solubility of the polymer in the solvent is high, it is preferable to use the solvents represented by the formulas [D-1] to [D-3].
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 5 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 10 to 90% by mass is preferable.
  • the liquid crystal aligning agent of this invention can use the solvent (it is also called a poor solvent) which improves the coating property and surface smoothness of a liquid crystal aligning film at the time of apply
  • a poor solvent is given to the following, it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propaned
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl -2-Pentanone, propylene glycol diacetate, dipropylene glycol monomethyl ether or propylene carbonate are preferred.
  • These poor solvents are preferably 1 to 95% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 10 to 90% by mass is preferable.
  • the liquid crystal aligning agent of the present invention has a crosslinkable property having at least one substituent selected from a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group.
  • a compound or a crosslinkable compound having a polymerizable unsaturated bond may be contained. It is preferable to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • Examples of the crosslinkable compound having an epoxy group or an isocyanate group include compounds described in paragraph [0087] of International Publication No. WO2015 / 008846.
  • crosslinkable compound having a cyclocarbonate group examples include the crosslinkability represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication WO2012 / 014898.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include compounds described in paragraphs [0090] to [0092] of International Publication No. WO2015 / 008846.
  • crosslinkable compound having a polymerizable unsaturated bond examples include the compounds described in paragraph [0186] of International Publication No. WO2011 / 132751.
  • a compound represented by the formula [5] described in paragraph [0188] of International Publication No. WO2011 / 132751 can also be used.
  • the said compound is an example of a crosslinkable compound, It is not limited to these.
  • the crosslinkable compound used for the liquid crystal aligning agent of this invention may be one type, and may combine two or more types.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components. More preferred is 1 to 50 parts by mass.
  • the liquid crystal aligning agent of this invention can use the compound which improves the uniformity of the film thickness of a liquid crystal aligning film at the time of apply
  • the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. is there.
  • the liquid crystal aligning agent of the present invention includes compounds represented on pages 69 to 73 of International Publication No. WO2011 / 132751 as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the device. Nitrogen-containing heterocyclic amines represented by [M1] to formula [M156] can also be added.
  • the amine may be added directly to the liquid crystal aligning agent, but it is preferable to add the amine after making a solution with a suitable solvent at a concentration of 0.1 to 10%, preferably 1 to 7%.
  • the solvent is not particularly limited as long as it is a solvent that dissolves the polyimide polymer described above.
  • the liquid crystal aligning agent of the present invention includes a liquid crystal in addition to the above poor solvent, crosslinkable compound, resin film or compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film, and a compound that promotes charge removal.
  • a dielectric material or conductive material for changing the electrical properties such as the dielectric constant and conductivity of the alignment film may be added.
  • the liquid crystal aligning agent of this invention can be used as a liquid crystal aligning film by apply
  • it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like is common.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
  • the heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven is used, depending on the solvent used for the liquid crystal aligning agent, 30 to 300 ° C., preferably 30
  • the liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of ⁇ 250 ° C. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then producing a liquid crystal cell by a known method.
  • the liquid crystal aligning agent of this invention has a liquid crystal layer between a pair of board
  • a liquid crystal display element produced by a step of polymerizing a polymerizable compound by disposing a liquid crystal composition and applying a voltage between electrodes while at least one of irradiation with active energy rays and heating.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm.
  • the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C.
  • the above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a PSA method a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound.
  • the pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer.
  • the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
  • a liquid crystal cell is prepared, and a polymerizable compound is applied by at least one of ultraviolet irradiation and heating. Polymerization can control the orientation of liquid crystal molecules.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded and the liquid crystal is injected under reduced pressure and sealed, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed and then the substrate is bonded and sealed. Can be mentioned.
  • a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases and the liquid crystal display element.
  • the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferable to use it for a liquid crystal display element manufactured through a process of disposing a liquid crystal alignment film containing and applying a voltage between electrodes, that is, an SC-PVA mode.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C.
  • a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent or a polymer containing a polymerizable group examples include methods using components.
  • Specific examples of the polymer containing a polymerizable group are not particularly limited as long as the polymer has the photoreactive group, and a polymer obtained by using the diamine having the photoreactive group can be exemplified. .
  • a pair of substrates on which the liquid crystal alignment film of the present invention is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is prepared.
  • the other substrate is bonded so that the inner side is inside, the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • the method of performing etc. is mentioned.
  • the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
  • the liquid crystal aligning agent of the present invention can provide a liquid crystal aligning film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time.
  • a liquid crystal alignment film that suppresses a decrease in the voltage holding ratio and quickly relaxes the residual charges accumulated by a DC voltage is obtained. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability and is suitable for a large-screen high-definition liquid crystal television, a small and medium-sized car navigation system, a smartphone, and the like. Can be used.
  • the molecular weight of the polyimide precursor and polyimide is as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). It measured as follows.
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • NEP was added to the polyamic acid solution (1) (30.0 g) obtained in Synthesis Example 1 and diluted to 6%, and then acetic anhydride (3.42 g) and pyridine (2.65 g) were added as imidization catalysts. And reacted at 60 ° C. for 2 hours.
  • This reaction solution was put into methanol (1946 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • Table 1 shows the polyimide polymers obtained in the above synthesis examples.
  • * 1 represents polyamic acid.
  • Example 1 NEP (0.55 g), GBL (0.55 g) and PB (1.40 g) are added to the polyamic acid solution (1) (3.50 g) obtained in Synthesis Example 1, and the mixture is stirred at 25 ° C. for 6 hours. Thus, a liquid crystal aligning agent (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • Example 2 NMP (0.05 g), BCS (1.05 g) and DME (1.05 g) were added to the polyamic acid solution (2) (3.50 g) obtained in Synthesis Example 2, and the mixture was stirred at 25 ° C. for 6 hours. Thus, a liquid crystal aligning agent (2) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • Example 3 CHN (22.5 g), ⁇ -VL (11.6 g), and PGME (22.5 g) were added to the polyimide powder (3) (1.75 g) obtained in Synthesis Example 3, and the mixture was stirred at 50 ° C. for 6 hours. did. Further, K1 (0.17 g) was added, and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal aligning agent (3).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • Example 4 NMP (2.70 g) was added to the polyimide powder (4) (0.30 g) obtained in Synthesis Example 4, and the mixture was stirred at 50 ° C. for 6 hours. Further, 7.00 g of the polyamic acid solution (5) obtained in Synthesis Example 5 was added, PC (6.58 g), NEP (6.50 g) and NMP (10.25 g) were added, and the mixture was stirred at 25 ° C. for 4 hours. Thus, a liquid crystal aligning agent (4) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • a liquid crystal aligning agent (R1) was obtained in the same manner as in Example 1 except that the polyamic acid solution (R-1) obtained in Comparative Synthesis Example 1 was used.
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • * 1, * 2, and * 3 represent the following meanings.
  • * 1 The mass part of the crosslinkable compound with respect to 100 mass parts of all the polymers is shown.
  • * 2 Indicates parts by mass of each solvent relative to 100 parts by mass of all solvents.
  • * 3 Indicates the ratio of all the polymers in the liquid crystal aligning agent.
  • the liquid crystal aligning agents (1) to (4) were subjected to pressure filtration with a membrane filter having a pore diameter of 1 ⁇ m, and the inkjet coating property was evaluated.
  • As the ink jet coater HIS-200 (manufactured by Hitachi Plant Technology) was used. Coating is performed on an ITO (indium tin oxide) deposition substrate cleaned with pure water and isopropyl alcohol (IPA), the nozzle pitch is 0.423 mm, the scan pitch is 0.5 mm, the coating speed is 40 mm / second, and the coating is performed. The time from to the temporary drying was 60 seconds, and the temporary drying was performed on a hot plate at 70 ° C. for 5 minutes.
  • the coating properties of the obtained substrate with a liquid crystal alignment film were confirmed. Specifically, the coating film was visually observed under a sodium lamp to confirm the presence or absence of pinholes. As a result, in any of the liquid crystal alignment films obtained in any of the examples, no pinhole was found on the coating film, and a liquid crystal alignment film having excellent coating properties was obtained.
  • the liquid crystal aligning agent (1) or (3) obtained in the examples was filtered under pressure with a membrane filter having a pore diameter of 1 ⁇ m to produce a liquid crystal cell (normal cell).
  • the liquid crystal aligning agent was spin-coated on the ITO surface of a 40 ⁇ 30 mm ITO electrode substrate (length 40 mm ⁇ width 30 mm, thickness 0.7 mm) washed with pure water and IPA, on a hot plate A heat treatment was performed at 100 ° C. for 5 minutes and at 230 ° C. for 30 minutes in a thermal circulation clean oven to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm.
  • the liquid crystal aligning agent (2) or (4) obtained by the Example produced the board
  • the coated surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm. .
  • Two ITO substrates with the obtained liquid crystal alignment film were prepared, combined with a liquid crystal alignment film surface inside and sandwiched by a spacer having a pore diameter of 6 ⁇ m, and the periphery was adhered with a sealant to prepare an empty cell.
  • a liquid crystal cell ordinary cell
  • liquid crystal MLC-6608, manufactured by Merck Japan
  • any liquid crystal cell it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystals were uniformly aligned.
  • the polymerizable compound (1) represented by the following formula was used except that a liquid crystal obtained by mixing 0.3 part by mass of the polymerizable compound (1) with respect to 100 parts by mass of the nematic liquid crystal (MLC-6608) was used as described above.
  • a liquid crystal cell was prepared in the same procedure as in “Preparation of liquid crystal cell and evaluation of pretilt angle (normal cell)”.
  • the polymer of the present invention showed higher solubility when mixed with water than the polymer obtained from the comparative synthesis example.
  • the liquid crystal aligning agent from Table 3 showed higher whitening resistance than the liquid crystal aligning agent of the comparative example.
  • Example 5 As shown in Table 5, a liquid crystal aligning agent was obtained in the same manner as in Example 4 except that the polyamic acid solution (6) obtained in Synthesis Example 6 or the polyimide powder (7) obtained in Synthesis Example 7 was used. (5) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation. When the PSA cell was prepared using the liquid crystal aligning agent (5), the liquid crystal was uniformly aligned.
  • the liquid crystal aligning agent of the present invention can be suitably used for, for example, a large-screen, high-definition liquid crystal television, a small-to-medium-sized car navigation system, a smartphone, and the like, and is a TN element, STN element, TFT liquid crystal element, particularly a vertical alignment type. Useful for liquid crystal display elements. Furthermore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is also useful for a liquid crystal display element that needs to be irradiated with ultraviolet rays when producing a liquid crystal display element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided are: a liquid crystal aligning agent which has excellent whitening resistance and coating film uniformity; a liquid crystal alignment film; and a liquid crystal display element. A liquid crystal aligning agent which is characterized by containing at least one polymer that is selected from the group consisting of polyimide precursors having a partial structure represented by formula [U] and a side chain structure selected from the group consisting of structures of formulae [S1] and [S2] and a steroid skeleton and polyimides that are imidized products of the polyimide precursors. (In the formulae, the symbols are as defined in the description.)

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向剤、この液晶配向剤から得られる液晶配向膜、及びこの液晶配向膜を使用した液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
 液晶表示素子は、薄型・軽量を実現する表示デバイスとして、現在、広く使用されている。通常、この液晶表示素子には、液晶の配向状態を制御するために液晶配向膜が使用されている。
 近年、液晶表示素子が、大画面の液晶テレビや高精細なモバイル用途(デジタルカメラや携帯電話の表示部分)に広く実用化されていることに伴い、従来に比べて使用される基板の大型化、基板段差の凹凸が大きくなってきている。そのような状況においても、表示特性の点から大型基板や段差に対して、均一に液晶配向膜が形成されることが求められている。
Liquid crystal display elements are now widely used as display devices that are thin and light. Usually, in this liquid crystal display element, a liquid crystal alignment film is used to control the alignment state of the liquid crystal.
In recent years, liquid crystal display elements have become widely used in large-screen liquid crystal televisions and high-definition mobile applications (display parts of digital cameras and mobile phones). The unevenness of the step of the substrate is getting larger. Even in such a situation, it is required that the liquid crystal alignment film be uniformly formed on a large substrate or a step from the viewpoint of display characteristics.
 また、液晶配向膜には、液晶の配向状態を制御すること(液晶配向性ともいう)とともに、液晶表示素子における信頼性や焼き付き特性などの電気特性についても高い機能が求められている。液晶配向膜としては、従来、ポリアミド酸又は可溶性ポリイミドのポリイミド系重合体が一般的に用いられている(例えば、特許文献1参照)。 In addition, the liquid crystal alignment film is required to have high functions for controlling the alignment state of the liquid crystal (also referred to as liquid crystal alignment) and also for electrical characteristics such as reliability and image sticking characteristics in the liquid crystal display element. Conventionally, a polyimide polymer of polyamic acid or soluble polyimide is generally used as the liquid crystal alignment film (see, for example, Patent Document 1).
国際公開公報WO2009/093709International Publication WO2009 / 093709
 しかし、従来の液晶配向膜に使用されているポリイミド系重合体は、溶媒に対しての溶解性が必ずしも十分でなく、液晶配向剤を基板上に塗布した際に、基板上で重合体成分が析出する(白化ともいう)する場合がある。この白化と呼ばれる現象は、液晶配向膜を生産するラインが大型化するに伴い深刻な問題となっている。これは、液晶配向剤が大気中の水分を含み、重合体の溶解性が低下することで発生するものと考えられる。 However, the polyimide-based polymer used in the conventional liquid crystal alignment film is not necessarily sufficiently soluble in the solvent, and when the liquid crystal aligning agent is applied on the substrate, the polymer component is not present on the substrate. It may precipitate (also called whitening). This phenomenon called whitening has become a serious problem as the line for producing the liquid crystal alignment film becomes larger. This is considered to occur when the liquid crystal aligning agent contains moisture in the atmosphere and the solubility of the polymer is lowered.
 また、白化が起こった場合は、液晶配向膜の塗膜均一性が低下して、均一な塗膜性が得られず、液晶表示素子における表示欠陥となる。
 本発明の目的は、白化耐性及び塗膜均一性に優れる液晶配向剤、並びに液晶配向性に優れる液晶配向膜を提供することを目的とする。加えて、かかる液晶配向膜を有する液晶表示素子を提供することにある。
Moreover, when whitening occurs, the coating film uniformity of a liquid crystal aligning film falls, and uniform coating film property is not obtained and it becomes a display defect in a liquid crystal display element.
An object of the present invention is to provide a liquid crystal aligning agent excellent in whitening resistance and coating film uniformity, and a liquid crystal alignment film excellent in liquid crystal alignment. In addition, another object is to provide a liquid crystal display element having such a liquid crystal alignment film.
 本発明者は、特定構造を有する重合体を含有する液晶配向剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の要旨を有するものである。
(1)下記式[U]で示される部分構造を有し、且つ、下記式[S1]、[S2]で示される構造及びステロイド骨格を有する構造から選ばれる少なくとも1種の側鎖構造を有するポリイミド前駆体及びポリイミドから選ばれる少なくとも一種の重合体を含有する液晶配向剤。
Figure JPOXMLDOC01-appb-C000012
 Yは、単結合、-O-、-S-、-COO-又は-OCO-であり、K及びK2は、それぞれ独立して-CH-基、-CHR1a-基を表し(R1aは-OH基又は1価の有機基を表す。)、K及びKのいずれか一方が-C(O)基に置き換わってもよく、R及びRは、それぞれ独立して、炭素数1~7のアルキレン基であり、*は、他の基に結合する部位を表す。
Figure JPOXMLDOC01-appb-C000013
 X及びXは独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-、又は((CHa1-Am1-(複数のa1はそれぞれ独立して1~15の整数を示し、複数のAはそれぞれ独立して、酸素原子又はCOO-を示し、mは1~2である。)を示し、G及びGは独立して炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基であり、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、m及びnは独立して0~3の整数であって、これらの合計は1~4であり、Rは炭素数1~20のアルキル、炭素数1~20のアルコキシ、又は炭素数2~20のアルコキシアルキルであり、これらの基における任意の水素はフッ素で置き換えられてもよい。
Figure JPOXMLDOC01-appb-C000014
 Xは、単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又はOCO-を示し、Rは炭素数1~20のアルキル又は炭素数2~20のアルコキシアルキルであり、これらの基における任意の水素はフッ素で置き換えられてもよい。
The present inventor has found that a liquid crystal aligning agent containing a polymer having a specific structure is extremely effective for achieving the above object, and has completed the present invention.
That is, the present invention has the following gist.
(1) It has a partial structure represented by the following formula [U] and has at least one side chain structure selected from a structure represented by the following formulas [S1] and [S2] and a structure having a steroid skeleton. A liquid crystal aligning agent containing at least one polymer selected from a polyimide precursor and polyimide.
Figure JPOXMLDOC01-appb-C000012
Y 1 is a single bond, —O—, —S—, —COO— or —OCO—, and K 1 and K 2 each independently represent a —CH 2 — group or a —CHR 1a — group ( R 1a represents an —OH group or a monovalent organic group.), Any one of K 1 and K 2 may be replaced by a —C (O) group, and R 3 and R 4 are each independently , An alkylene group having 1 to 7 carbon atoms, and * represents a site bonded to another group.
Figure JPOXMLDOC01-appb-C000013
X 1 and X 2 are independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON (CH 3 ) —, —NH -, - O -, - COO -, - OCO-, or ((CH 2) a1 -A 1 ) m1 - ( each independently plurality of a1 represents an integer of 1 to 15, a plurality of a 1 each Independently represents an oxygen atom or COO—, and m 1 represents 1 to 2, and G 1 and G 2 independently represent a bivalent aromatic group having 6 to 12 carbon atoms or 3 carbon atoms. A divalent alicyclic group selected from divalent alicyclic groups of 8 to 8, wherein any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, Substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Good, m and n are integers of 0 to 3 independently, their sum is 1 ~ 4, R 1 is alkyl of 1 to 20 carbon atoms, from 1 to 20 carbon atoms alkoxy, or carbon atoms 2-20 alkoxyalkyl, any hydrogen in these groups may be replaced by fluorine.
Figure JPOXMLDOC01-appb-C000014
X 3 represents a single bond, —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —COO— or OCO—, and R 2 represents carbon An alkyl having 1 to 20 carbon atoms or an alkoxyalkyl having 2 to 20 carbon atoms, and any hydrogen in these groups may be replaced by fluorine.
 本発明の液晶配向剤は、白化耐性及び塗膜均一性に優れ、液晶配向性に優れる液晶配向膜を得ることができ、本発明の液晶配向剤から得られた液晶配向膜を有する液晶表示素子は、表示品位に優れたものとなり、種々の表示デバイスに好適に使用できる。 The liquid crystal aligning agent of the present invention is excellent in whitening resistance and coating film uniformity, can obtain a liquid crystal aligning film excellent in liquid crystal aligning property, and has a liquid crystal aligning film obtained from the liquid crystal aligning agent of the present invention. Is excellent in display quality and can be suitably used for various display devices.
<特定部分構造>
 本発明の液晶配向剤には、式[U]で示される部分構造(特定部分構造ともいう。)を有し、且つ、式[S1]、[S2]及びステロイド骨格から選ばれる少なくとも1種の側鎖構造(特定側鎖構造ともいう。)を有する重合体(特定重合体ともいう。)が含有される。
Figure JPOXMLDOC01-appb-C000015
 式[U]における、Y、Y、K、K2、R、R、及び*の意味は、上記したとおりである。
<Specific partial structure>
The liquid crystal aligning agent of the present invention has a partial structure represented by the formula [U] (also referred to as a specific partial structure), and at least one selected from the formulas [S1], [S2] and a steroid skeleton. A polymer (also referred to as a specific polymer) having a side chain structure (also referred to as a specific side chain structure) is contained.
Figure JPOXMLDOC01-appb-C000015
The meanings of Y 1 , Y 2 , K 1 , K 2 , R 3 , R 4 , and * in the formula [U] are as described above.
 なお、K及びK2が、-CHR1a-基である場合のR1aを構成する1価の有機基としては、炭化水素基;ヒドロキシル基、カルボキシル基、ヒドロキシル基、チオール基又はカルボキシル基を有する炭化水素基;エーテル結合、エステル結合、アミド結合等の結合基によって連結された炭化水素基;ケイ素原子を含有する炭化水素基;ハロゲン化炭化水素基;アミノ基;アミノ基がtert-ブトキシカルボニル基等のカルバメート系の保護基によって保護された不活性基等が挙げられる。
 ここにおける炭化水素基は、直鎖、分岐鎖若しくは環状鎖のいずれでもよく、また、飽和炭化水素でも不飽和炭化水素でもよい。また、炭化水素基の水素原子の一部は、カルボキシル基、ヒドロキシル基、チオール基、ケイ素原子、ハロゲン原子等に置き換えられてもよく、エーテル結合、エステル結合、アミド結合等の結合基によって連結されていてもよい。
The monovalent organic group constituting R 1a when K 1 and K 2 are —CHR 1a — group includes a hydrocarbon group; a hydroxyl group, a carboxyl group, a hydroxyl group, a thiol group, or a carboxyl group. Hydrocarbon group having; hydrocarbon group linked by a bond group such as an ether bond, ester bond or amide bond; hydrocarbon group containing silicon atom; halogenated hydrocarbon group; amino group; amino group is tert-butoxycarbonyl And an inert group protected by a carbamate-based protecting group such as a group.
The hydrocarbon group herein may be any of a straight chain, a branched chain or a cyclic chain, and may be a saturated hydrocarbon or an unsaturated hydrocarbon. In addition, some of the hydrogen atoms of the hydrocarbon group may be replaced by carboxyl groups, hydroxyl groups, thiol groups, silicon atoms, halogen atoms, etc., and are linked by a linking group such as an ether bond, an ester bond, or an amide bond. It may be.
 また、R及びRを構成する炭素数1~7のアルキレン基としては、直鎖、分岐鎖若しくは環状鎖のいずれでもよい。具体的には、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、シクロプロピレン基、1-メチル-シクロプロピレン基、2-メチル-シクロプロピレン基、1,1-ジメチル-n-プロピレン基、1,2-ジメチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基、1-エチル-n-プロピレン基、1,2-ジメチル-シクロプロピレン基、2,3-ジメチル-シクロプロピレン基、1-エチル-シクロプロピレン基、2-エチル-シクロプロピレン基、1,1,2-トリメチル-n-プロピレン基、1,2,2-トリメチル-n-プロピレン基、1-エチル-1-メチル-n-プロピレン基、1-エチル-2-メチル-n-プロピレン基、2-n-プロピル-シクロプロピレン基、1-イソプロピル-シクロプロピレン基、2-イソプロピル-シクロプロピレン基、1,2,2-トリメチル-シクロプロピレン基、1,2,3-トリメチル-シクロプロピレン基、2,2,3-トリメチル-シクロプロピレン基、1-エチル-2-メチル-シクロプロピレン基、2-エチル-1-メチル-シクロプロピレン基、2-エチル-2-メチル-シクロプロピレン基及び2-エチル-3-メチル-シクロプロピレン基等が挙げられる。 Further, the alkylene group having 1 to 7 carbon atoms constituting R 3 and R 4 may be any of linear, branched or cyclic. Specifically, methylene group, ethylene group, n-propylene group, isopropylene group, cyclopropylene group, 1-methyl-cyclopropylene group, 2-methyl-cyclopropylene group, 1,1-dimethyl-n-propylene group 1,2-dimethyl-n-propylene group, 2,2-dimethyl-n-propylene group, 1-ethyl-n-propylene group, 1,2-dimethyl-cyclopropylene group, 2,3-dimethyl-cyclopropylene 1-ethyl-cyclopropylene group, 2-ethyl-cyclopropylene group, 1,1,2-trimethyl-n-propylene group, 1,2,2-trimethyl-n-propylene group, 1-ethyl-1- Methyl-n-propylene group, 1-ethyl-2-methyl-n-propylene group, 2-n-propyl-cyclopropylene group, 1-isopropyl-cyclopropyl group Pyrene group, 2-isopropyl-cyclopropylene group, 1,2,2-trimethyl-cyclopropylene group, 1,2,3-trimethyl-cyclopropylene group, 2,2,3-trimethyl-cyclopropylene group, 1-ethyl Examples include -2-methyl-cyclopropylene group, 2-ethyl-1-methyl-cyclopropylene group, 2-ethyl-2-methyl-cyclopropylene group and 2-ethyl-3-methyl-cyclopropylene group.
 なかでも、式[U]におけるY及びYは、重合体の供給性の観点から、-O-、-COO-、又は-OCO-が好ましい。
 また、K及びK2は、なかでも、-CH-基、-CH(OH)-基、-CO-基、-CH(CH)-基、-CH(O-Boc)-基が好ましい。「Boc」は、tert-ブトキシカルボニル基を示す。また、R及びRは、なかでも、メチレン基、エチレン基、n-プロピレン基、が好ましい。
Among these, Y 1 and Y 2 in the formula [U] are preferably —O—, —COO—, or —OCO— from the viewpoint of polymer supply.
K 1 and K 2 are each a —CH 2 — group, —CH (OH) — group, —CO— group, —CH (CH 3 ) — group, —CH (O—Boc) — group. preferable. “Boc” refers to a tert-butoxycarbonyl group. R 3 and R 4 are preferably a methylene group, an ethylene group, or an n-propylene group.
 上記の式[U]で示される部分構造としては、好ましくは下記式[U-Ar]を挙げることができる。
Figure JPOXMLDOC01-appb-C000016
 上記[U-Ar]中、Y、Y、K、K2、R及びRは、前記式(U)中におけるY、Y、K、K2、R及びRと同義であり、*は、他の基に結合する部位を表す。
Preferred examples of the partial structure represented by the above formula [U] include the following formula [U-Ar].
Figure JPOXMLDOC01-appb-C000016
The in [U-Ar], Y 1 , Y 2, K 1, K 2, R 3 and R 4, Y 1 in the above formula (U), Y 2, K 1, K 2, R 3 and R It is synonymous with 4 , and * represents the site | part couple | bonded with another group.
<特定側鎖構造>
 特定重合体は、更に、下記式[S1]、[S2]及びステロイド骨格からなる群から選ばれる少なくとも1種の特定側鎖構造を有する。
Figure JPOXMLDOC01-appb-C000017
 式[S1]におけるX、X、G、G、R、m及びnの意味は上記したとおりである。
<Specific side chain structure>
The specific polymer further has at least one specific side chain structure selected from the group consisting of the following formulas [S1] and [S2] and a steroid skeleton.
Figure JPOXMLDOC01-appb-C000017
The meanings of X 1 , X 2 , G 1 , G 2 , R 1 , m and n in the formula [S1] are as described above.
 X及びXは、なかでも、原料の入手性や合成の容易さの点からの観点から、単結合、-(CH-(aは1~15である)、-O-、-CHO-又はCOO-が好ましい。より好ましいくは、単結合、-(CH-(aは1~10である)、-O-、-CHO-、又はCOO-である。 X 1 and X 2 are each a single bond, — (CH 2 ) a — (a is 1 to 15), —O—, from the viewpoint of availability of raw materials and ease of synthesis. —CH 2 O— or COO— is preferred. More preferably, it is a single bond, — (CH 2 ) a — (wherein a is 1 to 10), —O—, —CH 2 O—, or COO—.
 G及びGにおける炭素数6~12の2価の芳香族基としては、例えば、フェニレン、ビフェニレン、ナフタレン等を挙げることができる。また、炭素数3~8の2価の脂環式基としては、例えば、シクロプロピレン、シクロヘキシレン等を挙げられる。
 G及びGは、なかでも、フェニレン、ビフェニレン、ナフタレン、シクロプロピレン又はシクロヘキシレンが好ましい。
 Rは、なかでも、炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基がより好ましい。
Examples of the divalent aromatic group having 6 to 12 carbon atoms in G 1 and G 2 include phenylene, biphenylene, naphthalene and the like. Examples of the divalent alicyclic group having 3 to 8 carbon atoms include cyclopropylene and cyclohexylene.
Among these, G 1 and G 2 are preferably phenylene, biphenylene, naphthalene, cyclopropylene, or cyclohexylene.
R 1 is more preferably an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms.
 式[S1]の好ましい具体例として、下記式[S1-x1]~[S1-x7]が挙げられる。
Figure JPOXMLDOC01-appb-C000018
Preferable specific examples of the formula [S1] include the following formulas [S1-x1] to [S1-x7].
Figure JPOXMLDOC01-appb-C000018
 式[S1-x1]~[S1-x7]中、Rは炭素数1~20のアルキル基であり、Xは、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-、又は-OCO-である。Aは、-O-又は-COO-*(但し、「*」を付した結合手が(CHa2と結合する)であり、Aは、-O-又は*-COO-(ただし、「*」を付した結合手が(CHa2と結合する)であり、a、aは、それぞれ独立して、0又は1であり、aは2~10であり、Cyは1,4-シクロへキシレン基又は1,4-フェニレン基である。 In the formulas [S1-x1] to [S1-x7], R 1 is an alkyl group having 1 to 20 carbon atoms, and X p is — (CH 2 ) a — (a is an integer of 1 to 15). , —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —COO—, or —OCO—. A 1 is —O— or —COO— * (where a bond marked with “*” binds to (CH 2 ) a2 ), and A 2 is —O— or * —COO— (where a "*" is a bond marked with (CH 2) binds to a2), a 1, a 3 are each independently 0 or 1, a 2 is 2 ~ 10, Cy Is a 1,4-cyclohexylene group or a 1,4-phenylene group.
Figure JPOXMLDOC01-appb-C000019
 式[S2]におけるX、Rの定義は、上記したとおりである。
 なかでも、Xは、液晶配向性の観点から、-CONH-、-NHCO-、-O-、-CHO-、-COO-又はOCO-が好ましい。また、Rは、液晶配向性の観点から、炭素数3~20のアルキル又は炭素数2~20のアルコキシアルキルが好ましい。
Figure JPOXMLDOC01-appb-C000019
The definitions of X 3 and R 2 in the formula [S2] are as described above.
Among these, X 3 is preferably —CONH—, —NHCO—, —O—, —CH 2 O—, —COO— or OCO— from the viewpoint of liquid crystal alignment. R 2 is preferably alkyl having 3 to 20 carbons or alkoxyalkyl having 2 to 20 carbons from the viewpoint of liquid crystal orientation.
 ステロイド骨格を有する構造は、下記式[S3]で表すことができる。
Figure JPOXMLDOC01-appb-C000020
 式[S3]中、Xは、-CONH-、-NHCO-、-O-、-COO-又はOCO-であり、Rは前記ステロイド骨格を有する構造を示す。
 式[S3]の好ましい具体例として、下記式[S3-x]が挙られる。式中、*は結合位置を示す。
The structure having a steroid skeleton can be represented by the following formula [S3].
Figure JPOXMLDOC01-appb-C000020
In the formula [S3], X 4 represents —CONH—, —NHCO—, —O—, —COO— or OCO—, and R 3 represents a structure having the steroid skeleton.
A preferred specific example of the formula [S3] is the following formula [S3-x]. In the formula, * indicates a bonding position.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式[S3-x]としては、下記する組み合わせが好ましい。
 式[X1]-式[Col1]-[G1]、式[X1]-式[Col1]-[G2]、式[X1]-式[Col2]-[G1]、式[X1]-式[Col2]-[G2]、式[X1]-式[Col3]-[G2]、式[X1]-式[Col4]-[G2]、式[X1]-式[Col3]-[G1]、式[X1]-式[Col4]-[G1]、式[X2]-式[Col1]-[G2]、式[X2]-式[Col2]-[G2]、式[X2]-式[Col1]-[G2]、式[X2]-式[Col2]-[G2]、式[X2]-式[Col1]-[G1]、式[X2]-式[Col2]-[G1]、式[X2]-式[Col3]-[G2]、式[X2]-式[Col4]-[G2]、式[X2]-式[Col1]-[G1]、式[X2]-式[Col4]-[G1]。
As the formula [S3-x], the following combinations are preferable.
Formula [X1] -Formula [Col1]-[G1], Formula [X1] -Formula [Col1]-[G2], Formula [X1] -Formula [Col2]-[G1], Formula [X1] -Formula [Col2 ]-[G2], Formula [X1] -Formula [Col3]-[G2], Formula [X1] -Formula [Col4]-[G2], Formula [X1] -Formula [Col3]-[G1], Formula [ X1] -formula [Col4]-[G1], formula [X2] -formula [Col1]-[G2], formula [X2] -formula [Col2]-[G2], formula [X2] -formula [Col1]- [G2], Formula [X2] -Formula [Col2]-[G2], Formula [X2] -Formula [Col1]-[G1], Formula [X2] -Formula [Col2]-[G1], Formula [X2] -Formula [Col3]-[G2], Formula [X2]-Formula [Col4]-[G2], Formula [X2]-Formula [Col1]-[G1], Formula [X2]-Formula [Co 4] - [G1].
 ステロイド骨格を有する構造の具体例として、日本特開平4-281427号の段落[0024]に記載のステロイド化合物からヒドロキシ基を除いた構造、段落[0030]に記載のステロイド化合物から酸クロライド基を除いた構造、段落[0038]に記載のステロイド化合物からアミノ基を除いた構造、段落[0042]にステロイド化合物からハロゲン基を除いた構造や、日本特開平8-146421に記載の段落[0018]~[0022]に記載の構造を挙げることができる。 Specific examples of the structure having a steroid skeleton include a structure obtained by removing a hydroxy group from a steroid compound described in paragraph [0024] of Japanese Patent Application Laid-Open No. 4-281427, and an acid chloride group removed from a steroid compound described in paragraph [0030]. A structure in which an amino group is removed from a steroid compound described in paragraph [0038], a structure in which a halogen group is removed from a steroid compound in paragraph [0042], or a paragraph [0018] to a paragraph described in Japanese Patent Laid-Open No. 8-146421. The structure described in [0022] can be given.
<特定重合体>
 本発明における特定重合体は、ポリイミド前駆体及びポリイミドから選ばれる少なくとも一種の重合体(総称してポリイミド系重合体ともいう。)である。なかでも、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体又はそのイミド化物であるポリイミドが好ましい。
 ポリイミド前駆体は、下記式[A]で表される。
Figure JPOXMLDOC01-appb-C000022
<Specific polymer>
The specific polymer in the present invention is at least one polymer selected from a polyimide precursor and a polyimide (also collectively referred to as a polyimide polymer). Especially, the polyimide which is a polyimide precursor obtained by making a diamine component and a tetracarboxylic-acid component react, or its imidation thing is preferable.
The polyimide precursor is represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000022
 式[A]中、Rは4価の有機基であり、Rは2価の有機基であり、A及びAはそれぞれ独立して、水素原子又は炭素数1~5のアルキレン基であり、A及びAはそれぞれ独立して、水素原子、炭素数1~5のアルキレン基又はアセチル基であり、nは正の整数である。
 前記ジアミン成分としては、分子内に1級又は2級のアミノ基を2個有するジアミンが挙げられる。また、前記テトラカルボン酸成分としては、テトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドが挙げられる。
In the formula [A], R 1 is a tetravalent organic group, R 2 is a divalent organic group, and A 1 and A 2 are each independently a hydrogen atom or an alkylene group having 1 to 5 carbon atoms. A 3 and A 4 are each independently a hydrogen atom, an alkylene group having 1 to 5 carbon atoms or an acetyl group, and n is a positive integer.
Examples of the diamine component include diamines having two primary or secondary amino groups in the molecule. Examples of the tetracarboxylic acid component include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide.
 式[A]中のA及びAが水素原子であるポリアミド酸を得るためには、前記分子内に1級又は2級のアミノ基を2個有するジアミンと、テトラカルボン酸又はテトラカルボン酸無水物とを反応させることで得ることができる。
 式[A]中のA及びAが炭素数1~5のアルキレン基であるポリアミド酸アルキルエステルを得るためには、前記ジアミンと、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドとを反応させることで得ることができる。また、前記方法で得られたポリアミド酸に、式[A]で示されるA及びAの炭素数1~5のアルキレン基を導入することもできる。
In order to obtain a polyamic acid in which A 1 and A 2 in the formula [A] are hydrogen atoms, a diamine having two primary or secondary amino groups in the molecule, a tetracarboxylic acid or a tetracarboxylic acid It can be obtained by reacting with an anhydride.
In order to obtain a polyamic acid alkyl ester in which A 1 and A 2 in the formula [A] are an alkylene group having 1 to 5 carbon atoms, the diamine, a tetracarboxylic acid dihalide, a tetracarboxylic acid dialkyl ester, or a tetracarboxylic acid It can be obtained by reacting with a dialkyl ester dihalide. In addition, an alkylene group having 1 to 5 carbon atoms of A 1 and A 2 represented by the formula [A] can be introduced into the polyamic acid obtained by the above method.
 特定重合体の具体的な態様としては、前記式[U]の部分構造を有する構造単位と、前記式[S1]、[S2]の構造及びステロイド骨格を有する構造から選ばれる少なくとも1種の側鎖構造を有する構造単位とを含む重合体(以下、共重合体ともいう。)、前記式[U]の部分構造を有する構造単位を含む重合体と、前記式[S1]、[S2]及びステロイド骨格から選ばれる少なくとも1種の側鎖構造を有する構造単位を含む重合体と、の混合物(以下、重合体ブレンドともいう。)を挙げることができる。 As a specific embodiment of the specific polymer, at least one side selected from a structural unit having a partial structure of the formula [U], a structure of the formulas [S1] and [S2], and a structure having a steroid skeleton. A polymer containing a structural unit having a chain structure (hereinafter also referred to as a copolymer), a polymer containing a structural unit having a partial structure of the formula [U], the formulas [S1], [S2] and And a mixture (hereinafter also referred to as polymer blend) of a polymer containing a structural unit having at least one side chain structure selected from steroid skeletons.
 前記式[U]の部分構造を重合体中に導入する方法に特に制限は無いが、式[U]の構造を有するジアミン、具体的には、下記式[U-1]で示されるジアミンを原料の一部に用いることが好ましい。
Figure JPOXMLDOC01-appb-C000023
The method for introducing the partial structure of the formula [U] into the polymer is not particularly limited, but a diamine having the structure of the formula [U], specifically, a diamine represented by the following formula [U-1] is used. It is preferable to use a part of the raw material.
Figure JPOXMLDOC01-appb-C000023
 式[U-1]中、Yは、前記式[U]の構造を有する有機基を示し、A及びAは、それぞれ独立して、水素原子又は炭素数1~5のアルキレン基を示す。
より具体的には、下記式[Ua]で示されるジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000024
In Formula [U-1], Y A represents an organic group having the structure of Formula [U], and A 1 and A 2 each independently represent a hydrogen atom or an alkylene group having 1 to 5 carbon atoms. Show.
More specifically, a diamine represented by the following formula [Ua] is preferable.
Figure JPOXMLDOC01-appb-C000024
 式[Ua]中、Y及びYは、それぞれ独立して、単結合、-O-、-S-、-COO-又は-OCO-である。K及びK2は、それぞれ独立して-CH-基、又は-CHR1a-基を表し(R1aは-OH基又は1価の有機基を表す。)、ここで、K及びKのいずれか一方が-C(O)基に置き換わってもよい。R及びRは、それぞれ独立して、炭素数1~7のアルキレン基である。ベンゼン環の任意の水素原子は、一価の有機基に置換されていてもよい。A及びAはそれぞれ独立して、水素原子又は炭素数1~5のアルキレン基を示す。 In the formula [Ua], Y 1 and Y 2 are each independently a single bond, —O—, —S—, —COO— or —OCO—. K 1 and K 2 each independently represent a —CH 2 — group or —CHR 1a — group (R 1a represents an —OH group or a monovalent organic group), where K 1 and K Either one of 2 may be replaced by a —C (O) group. R 3 and R 4 are each independently an alkylene group having 1 to 7 carbon atoms. Any hydrogen atom of the benzene ring may be substituted with a monovalent organic group. A 1 and A 2 each independently represents a hydrogen atom or an alkylene group having 1 to 5 carbon atoms.
 上記アミン[Ua]の具体的構造としては、下記式[U-1a]~式[U-6a]が挙げられる。
Figure JPOXMLDOC01-appb-C000025
Specific examples of the amine [Ua] include the following formulas [U-1a] to [U-6a].
Figure JPOXMLDOC01-appb-C000025
 上記式[U-1a]~式[U-6a]中、A~Aは、それぞれ独立して、水素原子又は炭素数1~5のアルキレン基を示し、Boc基は、tert-ブトキシカルボニル基を示す。 In the above formulas [U-1a] to [U-6a], A 1 to A 2 each independently represents a hydrogen atom or an alkylene group having 1 to 5 carbon atoms, and the Boc group represents tert-butoxycarbonyl. Indicates a group.
 ジアミン[Ua]のより好まし具体例としては、下記式[UM-1]~式[UM-13]が挙げられる。
Figure JPOXMLDOC01-appb-C000026
More preferred specific examples of the diamine [Ua] include the following formulas [UM-1] to [UM-13].
Figure JPOXMLDOC01-appb-C000026
 前記式[S1]、[S2]の構造及びステロイド骨格を有する構造から選ばれる少なくとも1種の側鎖構造を重合体中に導入する方法は特に制限は無いが、前記式[S1]、[S2]の構造及びステロイド骨格を有する構造から選ばれる側鎖構造を有するジアミンを原料の一部に用いることが好ましい。 The method for introducing at least one side chain structure selected from the structures of the formulas [S1] and [S2] and a structure having a steroid skeleton into the polymer is not particularly limited, but the formulas [S1] and [S2 It is preferable to use a diamine having a side chain structure selected from a structure having a steroid skeleton as a part of the raw material.
 具体的には、下記式[S1-a]で示されるジアミンを原料の一部に用いることが好ましい。
Figure JPOXMLDOC01-appb-C000027
Specifically, a diamine represented by the following formula [S1-a] is preferably used as a part of the raw material.
Figure JPOXMLDOC01-appb-C000027
 式[S1-a]中、Bは、前記式[S1]、[S2]又は[S3]であり、A及びAは、それぞれ独立して、水素原子又は炭素数1~5のアルキレン基であり、特に、水素原子又は炭素数1又は2のアルキレン基が好ましい。mは1~4であり、特に、合成が容易である点で1が好ましい。
 なお、式[S1]~[S3]の好ましい例は、前記の通りである。
In the formula [S1-a], B is the formula [S1], [S2] or [S3], and A 1 and A 2 are each independently a hydrogen atom or an alkylene group having 1 to 5 carbon atoms. In particular, a hydrogen atom or an alkylene group having 1 or 2 carbon atoms is preferable. m is 1 to 4, and 1 is particularly preferable from the viewpoint of easy synthesis.
Preferred examples of the formulas [S1] to [S3] are as described above.
 特定重合体が前記共重合体の場合、該共重合体を得る場合における前記式[Ua]で示されるジアミン及び前記式[S1-a]で示されるジアミンの使用量は、それぞれ、全ジアミン成分100モル%中、1~99モル%が好ましく、2~98モル%がより好ましい。
 また、この場合における前記式[Ua]で示されるジアミン及び前記式[S1-a]で示されるジアミンの合計の使用量は、全ジアミン成分100モル%中、5~100モル%が好ましく、10~100モル%が好ましく、20~100モル%が特に好ましい。
When the specific polymer is the copolymer, the amount of the diamine represented by the formula [Ua] and the diamine represented by the formula [S1-a] in obtaining the copolymer is the total diamine component, respectively. In 100 mol%, 1 to 99 mol% is preferable, and 2 to 98 mol% is more preferable.
In this case, the total amount of the diamine represented by the formula [Ua] and the diamine represented by the formula [S1-a] is preferably 5 to 100 mol% in 100 mol% of all diamine components. ˜100 mol% is preferred, and 20˜100 mol% is particularly preferred.
 特定重合体が前記ブレンドの場合、前記式[Ua]で示されるジアミンの使用量は、前記式[Ua]の残基を構成単位に含む重合体に用いられるジアミン成分100モル%中、白化耐性を高める点で5モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上が更に好ましい。
 また、前記式[S1-a]のジアミンの使用量は、前記式[S1-a]の残基を構成単位に含む重合体に用いられるジアミン成分100モル%中、液晶配向性を高める点で1モル%以上が好ましく、2モル%以上がより好ましく、5モル%以上が更に好ましい。とりわけ好ましい具体例として、20モル%以上を挙げることができる。
When the specific polymer is the blend, the amount of the diamine represented by the formula [Ua] is whitening resistance in 100 mol% of the diamine component used in the polymer containing the residue of the formula [Ua] as a constituent unit. Is preferably 5 mol% or more, more preferably 10 mol% or more, and still more preferably 20 mol% or more.
Further, the amount of the diamine of the formula [S1-a] used is that the liquid crystal orientation is improved in 100 mol% of the diamine component used in the polymer containing the residue of the formula [S1-a] as a structural unit. 1 mol% or more is preferable, 2 mol% or more is more preferable, and 5 mol% or more is still more preferable. A particularly preferred specific example is 20 mol% or more.
 前記式[Ua]のジアミン及び前記式[S1-a]のジアミンは、特定重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 特定重合体を得る場合のジアミン成分としては、前記式[Ua]のジアミン及び前記式[S1-a]のジアミン以外のその他のジアミン(その他ジアミンともいう)を用いることもできる。
The diamine of the formula [Ua] and the diamine of the formula [S1-a] are the solubility of the specific polymer in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal alignment property when the liquid crystal alignment film is used, the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
As the diamine component for obtaining the specific polymer, a diamine other than the diamine of the formula [Ua] and the diamine of the formula [S1-a] (also referred to as other diamine) can be used.
 具体的には、国際公開公報WO2015/046374の段落[0169]に記載のジアミン、段落[0171]~[0172]に記載のカルボキシル基や水酸基を有するジアミン、段落[0173]~[0188]に記載の窒素含有複素環を有するジアミンや特開2016-218149号公報の段落[0050]に記載の窒素含有構造を有するジアミン、1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)-1,1,3,3-テトラメチルジシロキサン等のオルガノシロキサン含有ジアミン、液晶表示素子とした際の液晶の応答速度を上げる目的で国際公開公報WO2015/033921に記載のラジカルが発生する部位を側鎖として有するジアミン、光照射によって共有結合を形成しうる官能基(光反応性基ともいう。)を有するジアミン等を挙げることができる。 Specifically, the diamine described in paragraph [0169] of WO2015 / 046374, the diamine having a carboxyl group or a hydroxyl group described in paragraphs [0171] to [0172], and described in paragraphs [0173] to [0188]. A diamine having a nitrogen-containing heterocyclic ring, a diamine having a nitrogen-containing structure described in paragraph [0050] of JP-A-2016-218149, 1,3-bis (3-aminopropyl) -1,1,3,3 -Increase the response speed of liquid crystals when using organosiloxane-containing diamines such as tetramethyldisiloxane, 1,3-bis (4-aminobutyl) -1,1,3,3-tetramethyldisiloxane, and liquid crystal display devices. A diamine having a radical-generating moiety as a side chain described in International Publication No. WO2015 / 033921 for the purpose, for light irradiation (Also referred to as a photoreactive group.) Functional group capable of forming a covalent bond I can be exemplified diamines having.
 より好ましい具体例として、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,6-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、ビス(4-アミノシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸又は3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、下記式(D-2-1)~式(D-2-8)のそれぞれで表される化合物、更には、これらのアミノ基が2級のアミノ基であるジアミンを挙げることができる。 More preferred specific examples include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-difluoro-4,4 ′. -Diaminobiphenyl, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, 4,4'-diaminobenzophenone, 1,4-diaminonaphthalene, 2,6-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,4-bis (4-aminophenyl) ) Butane, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene Zen, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4 -Phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (4 -Aminophenyl) isophthalate, N, N '-(1,4-phenylene) bis (4-aminobenzamide), N, N'-bis (4-aminophenyl) terephthalamide, N, N'-bis (4 -Aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propyl Lopan, 2,2′-bis (4-aminophenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,5-bis (4- Aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, bis (4-aminocyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid, 4,4′-diaminobiphenyl- -Carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 4,4'-diaminodiphenylethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4 '-Diaminobiphenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl-4,4'-dicarboxylic acid, 3,3'-diaminobiphenyl-2,4'-dicarboxylic acid, 4,4'- Diaminodiphenylmethane-3,3'-dicarboxylic acid, 4,4'-diaminodiphenylethane-3,3'-dicarboxylic acid, 4,4'-diaminodiphenyl ether-3,3'-dicarboxylic acid, 2,6-diaminopyridine 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazol 1,4-bis- (4-aminophenyl) -piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, N, N′- Bis (4-aminophenyl) -benzidine, N, N′-bis (4-aminophenyl) -N, N′-dimethylbenzidine, represented by the following formulas (D-2-1) to (D-2-8) Examples thereof include compounds represented by the respective compounds, and diamines in which these amino groups are secondary amino groups.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 本発明のその他ジアミンは、本発明の重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 また、前記重合体ブレンドがその他のジアミンを含む場合、前記式[Ua]のジアミンの量は、前記式[Ua]の残基を構成単位に含む重合体に用いられるジアミン成分100モル%中、20~100モル%を挙げることができる。
Other diamines of the present invention are soluble in the solvent of the polymer of the present invention, coating properties of the liquid crystal aligning agent, liquid crystal alignment properties when used as a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc. One type or a mixture of two or more types can also be used.
When the polymer blend contains another diamine, the amount of the diamine of the formula [Ua] is 100 mol% of the diamine component used in the polymer containing the residue of the formula [Ua] as a constituent unit. 20 to 100 mol% can be mentioned.
 本発明の重合体、すなわち、ポリイミド系重合体を作製するためのテトラカルボン酸成分としては、下記の式[4]で示されるテトラカルボン酸二無水物を用いることが好ましい。その際、式[4]で示されるテトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドを用いることもできる。
Figure JPOXMLDOC01-appb-C000029
As the tetracarboxylic acid component for producing the polymer of the present invention, that is, the polyimide polymer, it is preferable to use a tetracarboxylic dianhydride represented by the following formula [4]. At that time, not only the tetracarboxylic dianhydride represented by the formula [4] but also the tetracarboxylic acid derivative tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester or tetracarboxylic acid dialkyl ester dihalide It can also be used.
Figure JPOXMLDOC01-appb-C000029
 Zは下記[4a]~[4k]から選ばれる少なくとも1種の構造を示す。
Figure JPOXMLDOC01-appb-C000030
Z represents at least one structure selected from the following [4a] to [4k].
Figure JPOXMLDOC01-appb-C000030
 式[4a]中、Z~Zは水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環を示し、それぞれ同じであっても異なってもよい。Z~Zの好ましい具体例として、下記[4a-1]、[4a-2]の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000031
In the formula [4a], Z 1 to Z 4 represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a benzene ring, and may be the same or different. Preferable specific examples of Z 1 to Z 4 include the following structures [4a-1] and [4a-2].
Figure JPOXMLDOC01-appb-C000031
 式[4g]中、Z及びZは水素原子又はメチル基を示し、それぞれ同じであっても異なってもよい。
 式[4]中のZのなかで、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[4a]、式[4c]~式[4g]又は式[4k]で示される構造のテトラカルボン酸二無水物及びそのテトラカルボン酸誘導体が好ましい。より好ましいのは、式[4a]又は式[4e]~式[4g]で示される構造のものである。特に好ましいのは、[4a]、式[4e]又は式[4f]で示される構造のテトラカルボン酸二無水物及びそのテトラカルボン酸誘導体である。更に好ましい具体例として、[4a-1]、式[4a-2]、式[4e]、式[4f]で示される構造のテトラカルボン酸二無水物及びそのテトラカルボン酸誘導体を挙げることができる。
In formula [4g], Z 5 and Z 6 represent a hydrogen atom or a methyl group, and may be the same or different.
Among Z in the formula [4], from the viewpoint of easy synthesis and ease of polymerization reactivity when producing a polymer, the formula [4a], the formula [4c] to the formula [4g] or the formula [4k] ] The tetracarboxylic dianhydride of the structure shown by these and its tetracarboxylic acid derivative are preferable. More preferable is the structure represented by the formula [4a] or the formula [4e] to the formula [4g]. Particularly preferred are tetracarboxylic dianhydrides and their tetracarboxylic acid derivatives having the structure represented by [4a], formula [4e] or formula [4f]. More preferable specific examples include tetracarboxylic dianhydrides having the structures represented by [4a-1], formula [4a-2], formula [4e], and formula [4f] and their tetracarboxylic acid derivatives. .
 本発明の重合体における式[4]で示されるテトラカルボン酸成分は、すべてのテトラカルボン酸成分100モル%中、1~100モル%であることが好ましい。なかでも、5~95モル%が好ましい。より好ましいのは、20~80モル%である。
 本発明のテトラカルボン酸成分は、本発明の重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
The tetracarboxylic acid component represented by the formula [4] in the polymer of the present invention is preferably 1 to 100 mol% in 100 mol% of all tetracarboxylic acid components. Among these, 5 to 95 mol% is preferable. More preferred is 20 to 80 mol%.
The tetracarboxylic acid component of the present invention has properties such as solubility of the polymer of the present invention in a solvent, coating properties of a liquid crystal aligning agent, liquid crystal alignment properties, voltage holding ratio, and accumulated charge when used as a liquid crystal alignment film. Depending on the situation, one kind or a mixture of two or more kinds may be used.
 本発明の重合体のポリイミド系重合体には、特定テトラカルボン酸成分以外のその他のテトラカルボン酸成分を用いることもできる。
 その他のテトラカルボン酸成分としては、以下に示すテトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドが挙げられる。
Other tetracarboxylic acid components other than the specific tetracarboxylic acid component can also be used in the polyimide polymer of the polymer of the present invention.
Examples of other tetracarboxylic acid components include the following tetracarboxylic acids, tetracarboxylic dianhydrides, tetracarboxylic acid dihalides, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides.
 すなわち、その他のテトラカルボン酸成分としては、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸などが挙げられる。 That is, other tetracarboxylic acid components include 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4 ′ -Benzophenone tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1, 1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4 Examples include '-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid.
 本発明のその他のテトラカルボン酸成分は、本発明の重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The other tetracarboxylic acid components of the present invention are properties such as solubility of the polymer of the present invention in a solvent, coating properties of a liquid crystal aligning agent, liquid crystal alignment properties, voltage holding ratio, accumulated charge, etc. Depending on the situation, one kind or a mixture of two or more kinds may be used.
<特定重合体の作製方法>
 本発明において、重合体、すなわち、ポリイミド系重合体を作製するための方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸二無水物及びそのテトラカルボン酸の誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミンからなるジアミン成分とを反応させて、ポリアミド酸を得る方法が挙げられる。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミンとを重縮合させてポリアミド酸を得る方法、テトラカルボン酸と1級又は2級のジアミンとを脱水重縮合反応させてポリアミド酸を得る方法又はテトラカルボン酸ジハライドと1級又は2級のジアミンとを重縮合させてポリアミド酸を得る方法が用いられる。
<Method for producing specific polymer>
In the present invention, the method for producing a polymer, that is, a polyimide polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. In general, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic dianhydrides and derivatives of the tetracarboxylic acid is reacted with a diamine component consisting of one or more diamines. And a method of obtaining a polyamic acid. Specifically, tetracarboxylic dianhydride and primary or secondary diamine are polycondensed to obtain polyamic acid, tetracarboxylic acid and primary or secondary diamine are subjected to dehydration polycondensation reaction. A method of obtaining a polyamic acid or a method of polycondensing a tetracarboxylic acid dihalide and a primary or secondary diamine to obtain a polyamic acid is used.
 上記重合体は、上記のようなテトラカルボン酸成分とジアミン成分とを、必要に応じて分子量調整剤とともに反応させることによって得ることができる。分子量調整剤としては、例えば無水マレイン酸、無水フタル酸、無水イタコン酸などの酸一無水物、アニリン、シクロヘキシルアミン、n-ブチルアミンなどのモノアミン、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート等を挙げることができる。分子量調整剤の使用割合は、使用するテトラカルボン酸成分及びジアミン成分の合計100質量部に対して、20質量部以下とすることが好ましく、10質量部以下とすることがより好ましい。 The polymer can be obtained by reacting the tetracarboxylic acid component and the diamine component as described above together with a molecular weight modifier as necessary. Examples of the molecular weight modifier include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamines such as aniline, cyclohexylamine and n-butylamine, and monoisocyanates such as phenyl isocyanate and naphthyl isocyanate. Can do. The use ratio of the molecular weight modifier is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less, with respect to 100 parts by mass in total of the tetracarboxylic acid component and the diamine component to be used.
 ポリアミド酸アルキルエステルを得るためには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミンとを重縮合させる方法、カルボン酸基をジアルキルエステル化したテトラカルボン酸ジハライドと1級又は2級のジアミンとを重縮合させる方法又はポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。 In order to obtain the polyamic acid alkyl ester, a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine, a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and 1 A method of polycondensation with a secondary or secondary diamine or a method of converting a carboxyl group of a polyamic acid into an ester is used.
 ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されるものではない。
In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
The reaction between the diamine component and the tetracarboxylic acid component is usually carried out in a solvent with the diamine component and the tetracarboxylic acid component. The solvent used at that time is not particularly limited as long as the produced polyimide precursor is soluble. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples.
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。 For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-2-imidazolidinone Is mentioned. When the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3] The indicated solvents can be used.
Figure JPOXMLDOC01-appb-C000032
 式[D-1]中、Dは炭素数1~3のアルキレン基を示し、式[D-2]中、Dは炭素数1~3のアルキレン基を示し、式[D-3]中、Dは炭素数1~4のアルキレン基を示す。
Figure JPOXMLDOC01-appb-C000032
In the formula [D-1], D 1 represents an alkylene group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkylene group having 1 to 3 carbon atoms, and the formula [D-3] In the formula, D 3 represents an alkylene group having 1 to 4 carbon atoms.
 これら溶媒は単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、更には生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することができる。
These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Further, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a dehydrated and dried solvent.
When the diamine component and the tetracarboxylic acid component are reacted in a solvent, the reaction can be performed at an arbitrary concentration. However, if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and the concentration is high. If it is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial reaction can be carried out at a high concentration, and then a solvent can be added.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 本発明のポリイミドは前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
The polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose.
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
The temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
The catalytic imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. it can. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類又は炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. Further, when the polymer collected by precipitation is redissolved in a solvent and then re-precipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
 ポリイミド前駆体及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶表示素子の良好な配向性を確保することができる。 The weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. It is. Moreover, the molecular weight distribution (Mw / Mn) represented by the ratio between Mw and the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. By being in such a molecular weight range, it is possible to ensure good orientation of the liquid crystal display element.
<液晶配向剤>
 本発明の液晶配向剤は、液晶配向膜(樹脂被膜ともいう)を形成するための塗布溶液であり、特定重合体及び溶媒を含有する液晶配向膜を形成するための塗布溶液である。特定重合体は、ポリアミド酸、ポリアミド酸アルキルエステル及びポリイミドのいずれのポリイミド系重合体を用いても良い。
 本発明の液晶配向剤におけるすべての重合体は、全てが特定重合体であってもよく、それ以外の他の重合体が混合されていても良い。それ以外の重合体としては、前記式[U]で示される部分構造、及び、前記式[S1]~[S2]で示される構造及びステロイド骨格を有する構造から選ばれる側鎖構造を持たないポリイミド系重合体が挙げられる。更には、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド又はポリシロキサンなども挙げられる。その際、それ以外の他の重合体の含有量として、特定重合体と上記他の重合体とを合わせた重合体100質量部に対して、5~90質量部が好ましく、10~60質量部がより好ましい。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention is a coating solution for forming a liquid crystal aligning film (it is also called a resin film), and is a coating solution for forming the liquid crystal aligning film containing a specific polymer and a solvent. As the specific polymer, any polyimide polymer such as polyamic acid, polyamic acid alkyl ester, and polyimide may be used.
All of the polymers in the liquid crystal aligning agent of the present invention may be specific polymers, or other polymers may be mixed. Other polymers include polyimide having no side chain structure selected from the partial structure represented by the formula [U], the structure represented by the formulas [S1] to [S2], and the structure having a steroid skeleton. System polymers. Furthermore, a cellulose polymer, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, or polysiloxane may be used. At that time, the content of the other polymer is preferably 5 to 90 parts by mass, preferably 10 to 60 parts by mass with respect to 100 parts by mass of the polymer including the specific polymer and the other polymer. Is more preferable.
 また、本発明の液晶配向剤中の溶媒の含有量は、70~99.9質量%が好ましい。この含有量は、液晶配向剤の塗布方法や目的とする液晶配向膜の膜厚によって、適宜変更することができる。
 本発明の液晶配向剤に用いる溶媒は、重合体を溶解させる溶媒(良溶媒ともいう)であれば特に限定されない。下記に、良溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。
In addition, the content of the solvent in the liquid crystal aligning agent of the present invention is preferably 70 to 99.9% by mass. This content can be appropriately changed depending on the application method of the liquid crystal aligning agent and the film thickness of the target liquid crystal alignment film.
The solvent used for the liquid crystal aligning agent of this invention will not be specifically limited if it is a solvent (it is also called a good solvent) which dissolves a polymer. Although the specific example of a good solvent is given to the following, it is not limited to these examples.
For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, γ-valero Lactone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy- 4-methyl-2-pentanone and the like can be mentioned.
 なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、又は3-ブトキシ-N,N-ジメチルプロパンアミドが好ましい。
 更に、重合体の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。
 本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の5~99質量%であることが好ましい。なかでも、10~90質量%が好ましい。
Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, 1,3-dimethyl-2-imidazolidinone, 3- Methoxy-N, N-dimethylpropanamide or 3-butoxy-N, N-dimethylpropanamide is preferred.
Furthermore, when the solubility of the polymer in the solvent is high, it is preferable to use the solvents represented by the formulas [D-1] to [D-3].
The good solvent in the liquid crystal aligning agent of the present invention is preferably 5 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 10 to 90% by mass is preferable.
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、前記式[D-1]~式[D-3]で示される溶媒又は、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル又は4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。
The liquid crystal aligning agent of this invention can use the solvent (it is also called a poor solvent) which improves the coating property and surface smoothness of a liquid crystal aligning film at the time of apply | coating a liquid crystal aligning agent. Although the specific example of a poor solvent is given to the following, it is not limited to these examples.
For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentane Diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2 Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, the above formula [D-1] To a solvent represented by the formula [D-3], propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomer Nopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, propylene glycol monobutyl ether, 1- (butoxyethoxy) Propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, Tylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate Tart, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methyl Ethyl xylpropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, lactate n-propyl ester, lactate n-butyl ester And isoamyl lactate or 4-hydroxy-4-methyl-2-pentanone.
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル又はプロピレンカーボネートが好ましい。
 これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~95質量%であることが好ましい。なかでも、10~90質量%が好ましい。
Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl -2-Pentanone, propylene glycol diacetate, dipropylene glycol monomethyl ether or propylene carbonate are preferred.
These poor solvents are preferably 1 to 95% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 10 to 90% by mass is preferable.
 本発明の液晶配向剤は、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基から選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を含有してもよい。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有することが好ましい。
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、国際公開公報WO2015/008846の段落[0087]に記載の化合物などが挙げられる。
 オキセタン基を有する架橋性化合物は、具体的には、国際公開公報WO2011/132751の58頁~59頁に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。より好ましい具体例として、式[4b]、式[4d]、式[4k]でn=5の化合物を挙げることができる。
The liquid crystal aligning agent of the present invention has a crosslinkable property having at least one substituent selected from a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. A compound or a crosslinkable compound having a polymerizable unsaturated bond may be contained. It is preferable to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
Examples of the crosslinkable compound having an epoxy group or an isocyanate group include compounds described in paragraph [0087] of International Publication No. WO2015 / 008846.
Specific examples of the crosslinkable compound having an oxetane group include crosslinkable compounds represented by the formulas [4a] to [4k] described on pages 58 to 59 of International Patent Publication WO2011 / 132751. More preferred specific examples include compounds of formula [4b], formula [4d] and formula [4k] where n = 5.
 シクロカーボネート基を有する架橋性化合物としては、具体的には、国際公開公報WO2012/014898の76頁~82頁に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、国際公開公報WO2015/008846の段落[0090]~[0092]に記載の化合物が挙げられる。 Specific examples of the crosslinkable compound having a cyclocarbonate group include the crosslinkability represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication WO2012 / 014898. Compounds. Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include compounds described in paragraphs [0090] to [0092] of International Publication No. WO2015 / 008846.
 重合性不飽和結合を有する架橋性化合物としては、例えば国際公開公報WO2011/132751の段落[0186]に記載の化合物が挙げられる。加えて、国際公開公報WO2011/132751の段落[0188]に記載の式[5]で示される化合物を用いることもできる。
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向剤に用いる架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
 本発明の液晶配向剤における、架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部であることが好ましい。なかでも、架橋反応が進行し目的の効果を発現させるためには、全ての重合体成分100質量部に対して0.1~100質量部が好ましい。より好ましいのは、1~50質量部である。
Examples of the crosslinkable compound having a polymerizable unsaturated bond include the compounds described in paragraph [0186] of International Publication No. WO2011 / 132751. In addition, a compound represented by the formula [5] described in paragraph [0188] of International Publication No. WO2011 / 132751 can also be used.
The said compound is an example of a crosslinkable compound, It is not limited to these. Moreover, the crosslinkable compound used for the liquid crystal aligning agent of this invention may be one type, and may combine two or more types.
The content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components. Among these, in order for the crosslinking reaction to proceed and to exhibit the desired effect, the amount is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components. More preferred is 1 to 50 parts by mass.
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。
The liquid crystal aligning agent of this invention can use the compound which improves the uniformity of the film thickness of a liquid crystal aligning film at the time of apply | coating a liquid crystal aligning agent, and surface smoothness.
Examples of the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
 これらの界面活性剤の使用割合は、液晶配向剤に含有される全ての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 更に、本発明の液晶配向剤には、液晶配向膜中の電荷移動を促進して素子の電荷抜けを促進させる化合物として、国際公開公報WO2011/132751の69頁~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミンを添加することもできる。このアミンは、液晶配向剤に直接添加しても構わないが、適当な溶媒で濃度0.1~10%、好ましくは1~7%の溶液にしてから添加することが好ましい。この溶媒としては、上述したポリイミド系重合体を溶解させる溶媒であれば特に限定されない。
The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. is there.
Further, the liquid crystal aligning agent of the present invention includes compounds represented on pages 69 to 73 of International Publication No. WO2011 / 132751 as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the device. Nitrogen-containing heterocyclic amines represented by [M1] to formula [M156] can also be added. The amine may be added directly to the liquid crystal aligning agent, but it is preferable to add the amine after making a solution with a suitable solvent at a concentration of 0.1 to 10%, preferably 1 to 7%. The solvent is not particularly limited as long as it is a solvent that dissolves the polyimide polymer described above.
 本発明の液晶配向剤には、上記の貧溶媒、架橋性化合物、樹脂被膜又は液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物及び電荷抜けを促進させる化合物の他に、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。 The liquid crystal aligning agent of the present invention includes a liquid crystal in addition to the above poor solvent, crosslinkable compound, resin film or compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film, and a compound that promotes charge removal. A dielectric material or conductive material for changing the electrical properties such as the dielectric constant and conductivity of the alignment film may be added.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミニウムなどの光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal aligning agent of this invention can be used as a liquid crystal aligning film by apply | coating and baking on a board | substrate and performing alignment processing by a rubbing process, light irradiation, etc. In the case of vertical alignment, etc., it can be used as a liquid crystal alignment film without alignment treatment. The substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、目的に応じてこれらを用いてもよい。 The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、液晶配向剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビング又は偏光紫外線照射などで処理する。
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。
After the liquid crystal aligning agent is applied on the substrate, the heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven is used, depending on the solvent used for the liquid crystal aligning agent, 30 to 300 ° C., preferably 30 The liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of ˜250 ° C. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm. When the liquid crystal is horizontally aligned or tilted, the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then producing a liquid crystal cell by a known method.
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。
 更に、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。
As a method for manufacturing a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
Furthermore, the liquid crystal aligning agent of this invention has a liquid crystal layer between a pair of board | substrates provided with the electrode, and contains the polymeric compound superposed | polymerized by at least one of an active energy ray and a heat | fever between a pair of board | substrates. It is also preferably used for a liquid crystal display element produced by a step of polymerizing a polymerizable compound by disposing a liquid crystal composition and applying a voltage between electrodes while at least one of irradiation with active energy rays and heating. Here, ultraviolet rays are suitable as the active energy ray. The wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルトを制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルトを制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。 The above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method. In the PSA method, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound. The pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. The PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
 すなわち、本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射及び加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御するものとすることができる。
 PSA方式の液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。
That is, in the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, a liquid crystal cell is prepared, and a polymerizable compound is applied by at least one of ultraviolet irradiation and heating. Polymerization can control the orientation of liquid crystal molecules.
To give an example of manufacturing a PSA type liquid crystal cell, a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded and the liquid crystal is injected under reduced pressure and sealed, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed and then the substrate is bonded and sealed. Can be mentioned.
 液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。
In the liquid crystal, a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases and the liquid crystal display element. The seizure characteristics of the steel deteriorate.
After the liquid crystal cell is produced, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
 加えて、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子、すなわち、SC-PVAモードにも用いることが好ましい。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。 In addition, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferable to use it for a liquid crystal display element manufactured through a process of disposing a liquid crystal alignment film containing and applying a voltage between electrodes, that is, an SC-PVA mode. Here, ultraviolet rays are suitable as the active energy ray. The wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
 活性エネルギー線及び熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。重合性基を含む重合体の具体例としては、前記光反応性基を有する重合体であれば特に限定されず、前記光反応性基を有するジアミンを用いて得られる重合体を挙げることができる。
 SC-PVAモードの液晶セル作製の一例を挙げるならば、本発明の液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射することで、液晶分子の配向を制御することができる。
In order to obtain a liquid crystal alignment film containing a polymerizable group that is polymerized from at least one of active energy rays and heat, a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent or a polymer containing a polymerizable group Examples include methods using components. Specific examples of the polymer containing a polymerizable group are not particularly limited as long as the polymer has the photoreactive group, and a polymer obtained by using the diamine having the photoreactive group can be exemplified. .
To give an example of SC-PVA mode liquid crystal cell preparation, a pair of substrates on which the liquid crystal alignment film of the present invention is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is prepared. The other substrate is bonded so that the inner side is inside, the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed The method of performing etc. is mentioned.
After the liquid crystal cell is manufactured, the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
 以上のようにして、本発明の液晶配向剤は、長時間高温及び光の照射に曝された後でも、安定なプレチルト角が発現できる液晶配向膜を得ることができる。加えて、長時間光の照射に曝された後でも、電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜となる。よって、本発明の液晶配向剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビや中小型のカーナビゲーションシステムやスマートフォンなどに好適に利用することができる。 As described above, the liquid crystal aligning agent of the present invention can provide a liquid crystal aligning film that can exhibit a stable pretilt angle even after being exposed to high temperature and light irradiation for a long time. In addition, even after being exposed to light irradiation for a long time, a liquid crystal alignment film that suppresses a decrease in the voltage holding ratio and quickly relaxes the residual charges accumulated by a DC voltage is obtained. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability and is suitable for a large-screen high-definition liquid crystal television, a small and medium-sized car navigation system, a smartphone, and the like. Can be used.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、これらに限定して解釈されるものではない。下記で使用される化合物の略語及び評価方法等は、以下の通りである。
(ジアミン成分)
Figure JPOXMLDOC01-appb-C000033
The present invention will be described more specifically with reference to the following examples, but should not be construed as being limited thereto. Abbreviations and evaluation methods for the compounds used below are as follows.
(Diamine component)
Figure JPOXMLDOC01-appb-C000033
C1:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
C2:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン
C3:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
C4:下記の式[C4]で示されるジアミン
C5:1,3-ジアミノ-4-オクタデシルオキシベンゼン
C1: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene C2: 1,3-diamino-4- [4- (trans-4-n-heptylcyclo) Hexyl) phenoxymethyl] benzene C3: 1,3-diamino-4- {4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy} benzene C4: Diamine C5: 1,3-diamino-4-octadecyloxybenzene represented by C4]
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(テトラカルボン酸成分)
Figure JPOXMLDOC01-appb-C000038
(Tetracarboxylic acid component)
Figure JPOXMLDOC01-appb-C000038
(架橋性化合物)
Figure JPOXMLDOC01-appb-C000039
(溶媒)
 NMP:N-メチル-2-ピロリドン、 NEP:N-エチル-2-ピロリドン
 γ-BL:γ-ブチロラクトン    γ-VL:γ-バレロラクトン
 CHN:シクロヘキサノン       BCS:エチレングリコールモノブチルエーテル
 PB:プロピレングリコールモノブチルエーテル
 EC:ジエチレングリコールモノエチルエーテル
 DME:ジプロピレングリコールジメチルエーテル: PC:プロピレンカーボネート
 DAA:4-ヒドロキシ-4-メチル-2-ペンタノン
 PGDA:プロピレングリコールジアセテート:
(Crosslinkable compound)
Figure JPOXMLDOC01-appb-C000039
(solvent)
NMP: N-methyl-2-pyrrolidone, NEP: N-ethyl-2-pyrrolidone γ-BL: γ-butyrolactone γ-VL: γ-valerolactone CHN: cyclohexanone BCS: ethylene glycol monobutyl ether PB: propylene glycol monobutyl ether EC : Diethylene glycol monoethyl ether DME: Dipropylene glycol dimethyl ether: PC: Propylene carbonate DAA: 4-hydroxy-4-methyl-2-pentanone PGDA: Propylene glycol diacetate:
(分子量の測定)
 ポリイミド前駆体及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
(Measurement of molecular weight)
The molecular weight of the polyimide precursor and polyimide is as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). It measured as follows.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
(ポリイミドのイミド化率の測定)
 ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of imidization ratio of polyimide)
20 mg of polyimide powder is put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (Kusano Kagaku)) and mixed with deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane)). Product) (0.53 ml) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
(ポリイミド系重合体の合成)
<合成例1>
 E2(7.10g,28.5mmol)、A1(5.00g,9.00mmol)及びC1(8.00g,21.0mmol)の混合物に、樹脂固形分濃度が25%となるようにNMPを加えて、50℃で6時間反応させた。次いで、樹脂固形分濃度が10%になるまでNMPで希釈し、ポリアミド酸溶液(1)を得た。このポリアミド酸のMnは、10,200、Mwは、24,500であった。
(Synthesis of polyimide polymer)
<Synthesis Example 1>
To a mixture of E2 (7.10 g, 28.5 mmol), A1 (5.00 g, 9.00 mmol) and C1 (8.00 g, 21.0 mmol), NMP was added so that the resin solid concentration was 25%. And reacted at 50 ° C. for 6 hours. Subsequently, it diluted with NMP until the resin solid content density | concentration became 10%, and the polyamic-acid solution (1) was obtained. Mn of this polyamic acid was 10,200, and Mw was 24,500.
<合成例2>
 E1(5.60g,28.5mmol)、A1(5.00g,9.00mmol)及びC3(9.10g,21.0mmol)の混合物に、樹脂固形分濃度が25%となるようにNMPを加えて、50℃で6時間反応させた。次いで、樹脂固形分濃度が10%になるまでNMPで希釈し、ポリアミド酸溶液(2)を得た。このポリアミド酸のMnは、14,000、Mwは、30,500であった。
<Synthesis Example 2>
To a mixture of E1 (5.60 g, 28.5 mmol), A1 (5.00 g, 9.00 mmol) and C3 (9.10 g, 21.0 mmol), NMP was added so that the resin solid concentration was 25%. And reacted at 50 ° C. for 6 hours. Subsequently, it diluted with NMP until the resin solid content density | concentration became 10%, and the polyamic-acid solution (2) was obtained. Mn of this polyamic acid was 14,000, and Mw was 30,500.
<合成例3>
 合成例1で得られたポリアミド酸溶液(1)(30.0g)に、NEPを加え6%に希釈した後、イミド化触媒として無水酢酸(3.42g)及びピリジン(2.65g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(1946ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は50%であり、Mnは11,500、Mwは31,300であった。
<Synthesis Example 3>
NEP was added to the polyamic acid solution (1) (30.0 g) obtained in Synthesis Example 1 and diluted to 6%, and then acetic anhydride (3.42 g) and pyridine (2.65 g) were added as imidization catalysts. And reacted at 60 ° C. for 2 hours. This reaction solution was put into methanol (1946 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (3). The imidation ratio of this polyimide was 50%, Mn was 11,500, and Mw was 31,300.
<合成例4>
 表1に示す組成にした以外は、合成例3と同様に実施してポリイミド粉末(4)を得た。
<合成例5>
 E1(5.60g,28.5mmol)、A2(4.84g,14.3mmol)、D1(0.62g,5.70mmol)及びD2(1.30g,8.55mmol)を加え、更に樹脂固形分濃度が10%となるようにNMPを加えた。25℃で4時間反応させた後、ポリアミド酸溶液(5)を得た。このポリアミド酸のMnは、11,000、Mwは、25,100であった。
<Synthesis Example 4>
Except having set it as the composition shown in Table 1, it implemented similarly to the synthesis example 3, and obtained the polyimide powder (4).
<Synthesis Example 5>
E1 (5.60 g, 28.5 mmol), A2 (4.84 g, 14.3 mmol), D1 (0.62 g, 5.70 mmol) and D2 (1.30 g, 8.55 mmol) were added, and the resin solids were further added. NMP was added so that the concentration was 10%. After reacting at 25 ° C. for 4 hours, a polyamic acid solution (5) was obtained. Mn of this polyamic acid was 11,000, and Mw was 25,100.
<比較合成例1>
 E2(9.50g,38.0mmol)、D3(2.60g,12.0mmol)及びC1(10.7g,28.0mmol)の混合物に、樹脂固形分濃度が25%となるようにNMPを加えて、50℃で6時間反応させた。次いで、樹脂固形分濃度が10%になるまでNMPで希釈し、ポリアミド酸溶液(R-1)を得た。このポリアミド酸のMnは、12,000、Mwは、28,500であった。
<Comparative Synthesis Example 1>
To a mixture of E2 (9.50 g, 38.0 mmol), D3 (2.60 g, 12.0 mmol) and C1 (10.7 g, 28.0 mmol), NMP was added so that the resin solid concentration was 25%. And reacted at 50 ° C. for 6 hours. Next, the solution was diluted with NMP until the resin solid content concentration reached 10% to obtain a polyamic acid solution (R-1). Mn of this polyamic acid was 12,000, and Mw was 28,500.
 上記合成例で得られたポリイミド系重合体を表1に示す。表1、4中、*1はポリアミド酸を表す。
Figure JPOXMLDOC01-appb-T000040
Table 1 shows the polyimide polymers obtained in the above synthesis examples. In Tables 1 and 4, * 1 represents polyamic acid.
Figure JPOXMLDOC01-appb-T000040
<参考例1>
 合成例1の合成手法で得られた樹脂固形分濃度10%のポリアミド酸溶液(1)(0.73g)に、純水(0.90g)を加え、25℃で攪拌した。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Reference Example 1>
Pure water (0.90 g) was added to the polyamic acid solution (1) (0.73 g) having a resin solid content concentration of 10% obtained by the synthesis method of Synthesis Example 1, and stirred at 25 ° C. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<比較参考例1>
 比較合成例1の合成手法で得られた樹脂固形分濃度10%のポリアミド酸溶液(R-1)(0.73g)に、純水(0.90g)を加え、25℃で攪拌した。この液晶配向剤に、析出が見られ、均一な溶液は確認されなかった。
<Comparative Reference Example 1>
Pure water (0.90 g) was added to the polyamic acid solution (R-1) (0.73 g) having a resin solid content concentration of 10% obtained by the synthesis method of Comparative Synthesis Example 1, and stirred at 25 ° C. Precipitation was observed in this liquid crystal aligning agent, and a uniform solution was not confirmed.
(液晶配向剤の製造)
 下記する実施例1~4及び比較例1では、液晶配向剤の製造例を記載する。この液晶配向剤は、評価のためにも使用される。
(Manufacture of liquid crystal aligning agent)
In Examples 1 to 4 and Comparative Example 1 described below, production examples of liquid crystal aligning agents are described. This liquid crystal aligning agent is also used for evaluation.
<実施例1>
 合成例1で得られたポリアミド酸溶液(1)(3.50g)に、NEP(0.55g)、GBL(0.55g)及びPB(1.40g)を加え、25℃で6時間攪拌して、液晶配向剤(1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<実施例2>
 合成例2で得られたポリアミド酸溶液(2)(3.50g)に、NMP(0.05g)、BCS(1.05g)及びDME(1.05g)を加え、25℃で6時間攪拌して、液晶配向剤(2)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
NEP (0.55 g), GBL (0.55 g) and PB (1.40 g) are added to the polyamic acid solution (1) (3.50 g) obtained in Synthesis Example 1, and the mixture is stirred at 25 ° C. for 6 hours. Thus, a liquid crystal aligning agent (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<Example 2>
NMP (0.05 g), BCS (1.05 g) and DME (1.05 g) were added to the polyamic acid solution (2) (3.50 g) obtained in Synthesis Example 2, and the mixture was stirred at 25 ° C. for 6 hours. Thus, a liquid crystal aligning agent (2) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<実施例3>
 合成例3で得られたポリイミド粉末(3)(1.75g)に、CHN(22.5g)、γ-VL(11.6g)、PGME(22.5g)を加え、50℃で6時間攪拌した。更に及びK1(0.17g)を加え、25℃で4時間攪拌して、液晶配向剤(3)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 3>
CHN (22.5 g), γ-VL (11.6 g), and PGME (22.5 g) were added to the polyimide powder (3) (1.75 g) obtained in Synthesis Example 3, and the mixture was stirred at 50 ° C. for 6 hours. did. Further, K1 (0.17 g) was added, and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal aligning agent (3). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<実施例4>
 合成例4で得られたポリイミド粉末(4)(0.30g)に、NMP(2.70g)を加え、50℃で6時間攪拌した。更に合成例5で得られたポリアミド酸溶液(5)を7.00g加え、PC(6.58g)、NEP(6.50g)及びNMP(10.25g)を加え、25℃で4時間攪拌して、液晶配向剤(4)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 4>
NMP (2.70 g) was added to the polyimide powder (4) (0.30 g) obtained in Synthesis Example 4, and the mixture was stirred at 50 ° C. for 6 hours. Further, 7.00 g of the polyamic acid solution (5) obtained in Synthesis Example 5 was added, PC (6.58 g), NEP (6.50 g) and NMP (10.25 g) were added, and the mixture was stirred at 25 ° C. for 4 hours. Thus, a liquid crystal aligning agent (4) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<比較例1>
 表2に示すように、比較合成例1で得られたポリアミド酸溶液(R-1)を使用した以外は、実施例1と同様にして、液晶配向剤(R1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 1>
As shown in Table 2, a liquid crystal aligning agent (R1) was obtained in the same manner as in Example 1 except that the polyamic acid solution (R-1) obtained in Comparative Synthesis Example 1 was used. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
Figure JPOXMLDOC01-appb-T000041
なお、表2、5中、*1、*2、*3は、以下の意味を表わす。

*1:全ての重合体100質量部に対する架橋性化合物の質量部を示す。
*2:全ての溶媒100質量部に対する各溶媒の質量部を示す。
*3:液晶配向剤中のすべての重合体の占める割合を示す。
Figure JPOXMLDOC01-appb-T000041
In Tables 2 and 5, * 1, * 2, and * 3 represent the following meanings.

* 1: The mass part of the crosslinkable compound with respect to 100 mass parts of all the polymers is shown.
* 2: Indicates parts by mass of each solvent relative to 100 parts by mass of all solvents.
* 3: Indicates the ratio of all the polymers in the liquid crystal aligning agent.
 (液晶配向剤の評価)
 実施例及び比較例で得られたについて、下記する「白化耐性の評価」、「インクジェット塗布性の評価」、「液晶セルの作製及び液晶配向性の評価(通常セル)」、及び「液晶セルの作製及び液晶配向性の評価(PSAセル)」を行った。
(Evaluation of liquid crystal aligning agent)
Regarding the results obtained in Examples and Comparative Examples, the following “Evaluation of whitening resistance”, “Evaluation of inkjet coating property”, “Preparation of liquid crystal cell and evaluation of liquid crystal orientation (ordinary cell)”, “ Preparation and evaluation of liquid crystal orientation (PSA cell) "were performed.
「白化耐性の評価」
 縦横10cm角のCr製基板に液晶配向剤を1滴垂らして、温度40℃、湿度65%の条件下にて、液晶配向剤が白化するまでの時間を計測した。該時間が、30分未満をC、30分以上2時間未満をA、2時間以上をSとした。時間が長いほど良好とした。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000042
"Evaluation of resistance to whitening"
One drop of a liquid crystal aligning agent was dropped on a 10 cm long and horizontal Cr substrate, and the time until the liquid crystal aligning agent was whitened was measured under the conditions of a temperature of 40 ° C. and a humidity of 65%. The time was defined as C for less than 30 minutes, A for 30 minutes to less than 2 hours, and S for 2 hours or more. The longer the time, the better. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000042
(インクジェット塗布性の評価)
 液晶配向剤(1)~(4)を、細孔径1μmのメンブランフィルタで加圧濾過し、インクジェット塗布性の評価を行った。インクジェット塗布機には、HIS-200(日立プラントテクノロジー社製)を用いた。塗布は、純水及びイソプロピルアルコール(IPA)にて洗浄を行ったITO(酸化インジウムスズ)蒸着基板上に、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から仮乾燥までの時間が60秒、仮乾燥はホットプレート上にて70℃で5分間の条件で行った。
 得られた液晶配向膜付き基板の塗膜性を確認した。具体的には、塗膜をナトリウムランプの下で目視観察することで行い、ピンホールの有無を確認した。その結果、いずれの実施例で得られた液晶配向膜とも、塗膜上にピンホールは見られず、塗膜性に優れた液晶配向膜が得られた。
(Evaluation of inkjet coating properties)
The liquid crystal aligning agents (1) to (4) were subjected to pressure filtration with a membrane filter having a pore diameter of 1 μm, and the inkjet coating property was evaluated. As the ink jet coater, HIS-200 (manufactured by Hitachi Plant Technology) was used. Coating is performed on an ITO (indium tin oxide) deposition substrate cleaned with pure water and isopropyl alcohol (IPA), the nozzle pitch is 0.423 mm, the scan pitch is 0.5 mm, the coating speed is 40 mm / second, and the coating is performed. The time from to the temporary drying was 60 seconds, and the temporary drying was performed on a hot plate at 70 ° C. for 5 minutes.
The coating properties of the obtained substrate with a liquid crystal alignment film were confirmed. Specifically, the coating film was visually observed under a sodium lamp to confirm the presence or absence of pinholes. As a result, in any of the liquid crystal alignment films obtained in any of the examples, no pinhole was found on the coating film, and a liquid crystal alignment film having excellent coating properties was obtained.
(液晶セルの作製及び液晶配向性の評価(通常セル))
 実施例で得られた液晶配向剤(1)又は(3)を、細孔径1μmのメンブランフィルタで加圧濾過し、液晶セルの作製(通常セル)を行った。次に、上記液晶配向剤を純水及びIPAにて洗浄を行った40×30mmITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。なお、実施例で得られた液晶配向剤(2)又は(4)は、上記「液晶配向剤のインクジェット塗布性の評価」と同様の条件で、液晶配向膜付き基板を作製し、その後、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。
 次いで、このITO基板の塗膜面をロール径が120mmのラビング装置でレーヨン布を用いて、ロール回転数が1000rpm、ロール進行速度が50mm/sec、押し込み量が0.1mmの条件でラビング処理した。
(Production of liquid crystal cell and evaluation of liquid crystal orientation (normal cell))
The liquid crystal aligning agent (1) or (3) obtained in the examples was filtered under pressure with a membrane filter having a pore diameter of 1 μm to produce a liquid crystal cell (normal cell). Next, the liquid crystal aligning agent was spin-coated on the ITO surface of a 40 × 30 mm ITO electrode substrate (length 40 mm × width 30 mm, thickness 0.7 mm) washed with pure water and IPA, on a hot plate A heat treatment was performed at 100 ° C. for 5 minutes and at 230 ° C. for 30 minutes in a thermal circulation clean oven to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm. In addition, the liquid crystal aligning agent (2) or (4) obtained by the Example produced the board | substrate with a liquid crystal aligning film on the conditions similar to the said "evaluation of the inkjet applicability | paintability of a liquid crystal aligning agent", and then heat | fever Heat treatment was performed at 230 ° C. for 30 minutes in a circulation type clean oven to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm.
Next, the coated surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm. .
 得られた液晶配向膜付きのITO基板を2枚用意し、液晶配向膜面を内側にして孔径が6μmのスペーサーで挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、液晶(MLC-6608、メルク・ジャパン社製)を注入し、注入口を封止して液晶セル(通常セル)を得た。いずれの液晶セルとも、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)での観察により、液晶は均一に配向していることを確認した。 Two ITO substrates with the obtained liquid crystal alignment film were prepared, combined with a liquid crystal alignment film surface inside and sandwiched by a spacer having a pore diameter of 6 μm, and the periphery was adhered with a sealant to prepare an empty cell. A liquid crystal cell (ordinary cell) was obtained by injecting liquid crystal (MLC-6608, manufactured by Merck Japan) into the empty cell by a reduced pressure injection method and sealing the injection port. In any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystals were uniformly aligned.
(液晶セルの作製及び液晶配向性の評価(PSAセル))
 下記の式で示される重合性化合物(1)を、ネマティック液晶(MLC-6608)100質量部に対して重合性化合物(1)を0.3質量部混合した液晶を使用した以外は、上記の「液晶セルの作製及びプレチルト角の評価(通常セル)」と同様の手順で液晶セルを作製した。
Figure JPOXMLDOC01-appb-C000043
(Production of liquid crystal cell and evaluation of liquid crystal orientation (PSA cell))
The polymerizable compound (1) represented by the following formula was used except that a liquid crystal obtained by mixing 0.3 part by mass of the polymerizable compound (1) with respect to 100 parts by mass of the nematic liquid crystal (MLC-6608) was used as described above. A liquid crystal cell was prepared in the same procedure as in “Preparation of liquid crystal cell and evaluation of pretilt angle (normal cell)”.
Figure JPOXMLDOC01-appb-C000043
 得られた液晶セルに、交流5Vの電圧を印加しながら、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で20J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セル(PSAセル)を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、50℃であった。いずれの液晶セルも、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)での観察により、液晶は均一に配向していることを確認した。 While applying an AC voltage of 5 V to the obtained liquid crystal cell, using a metal halide lamp with an illuminance of 60 mW, the wavelength of 350 nm or less was cut, and ultraviolet irradiation of 20 J / cm 2 in terms of 365 nm was performed, and the alignment direction of the liquid crystal A liquid crystal cell (PSA cell) was controlled. The temperature in the irradiation apparatus when the liquid crystal cell was irradiated with ultraviolet rays was 50 ° C. In any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystal was uniformly aligned.
 上記の参考例から、本発明の重合体は、比較合成例から得られる重合体に比べて、水分が混入した場合に高い溶解性を示した。表3からの液晶配向剤は、比較例の液晶配向剤に比べて、高い白化耐性を示した。また、上記の「液晶配向剤のインクジェット塗布性の評価」、「液晶配向性の評価(通常セル)」、及び「液晶配向性の評価(PSAセル)」から、各種特性に優れることが明らかとなった。 From the above reference examples, the polymer of the present invention showed higher solubility when mixed with water than the polymer obtained from the comparative synthesis example. The liquid crystal aligning agent from Table 3 showed higher whitening resistance than the liquid crystal aligning agent of the comparative example. In addition, it is clear from the above "Evaluation of ink-jet coating property of liquid crystal alignment agent", "Evaluation of liquid crystal alignment property (normal cell)" and "Evaluation of liquid crystal alignment property (PSA cell)". became.
<合成例6~7>
 表4に示す組成にした以外は、合成例1~5と同様にしてポリアミド酸溶液(6)及びポリイミド粉末(7)を得た。
Figure JPOXMLDOC01-appb-T000044
<Synthesis Examples 6-7>
A polyamic acid solution (6) and a polyimide powder (7) were obtained in the same manner as in Synthesis Examples 1 to 5 except that the compositions shown in Table 4 were used.
Figure JPOXMLDOC01-appb-T000044
<実施例5>
 表5に示すように、合成例6で得られたポリアミド酸溶液(6)又は合成例7で得られたポリイミド粉末(7)を使用した以外は、実施例4と同様にして、液晶配向剤(5)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。液晶配向剤(5)を用いて前記PSAセルを作製したところ、液晶は均一に配向していた。
Figure JPOXMLDOC01-appb-T000045
<Example 5>
As shown in Table 5, a liquid crystal aligning agent was obtained in the same manner as in Example 4 except that the polyamic acid solution (6) obtained in Synthesis Example 6 or the polyimide powder (7) obtained in Synthesis Example 7 was used. (5) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation. When the PSA cell was prepared using the liquid crystal aligning agent (5), the liquid crystal was uniformly aligned.
Figure JPOXMLDOC01-appb-T000045
 本発明の液晶配向剤は、例えば、大画面で高精細の液晶テレビや、中小型のカーナビゲーションシステムやスマートフォンなどに好適に使用でき、TN素子、STN素子、TFT液晶素子、特に垂直配向型の液晶表示素子に有用である。更に、本発明の液晶配向剤から得られた液晶配向膜は、液晶表示素子を作製する際に、紫外線を照射する必要がある液晶表示素子に対しても有用である。 The liquid crystal aligning agent of the present invention can be suitably used for, for example, a large-screen, high-definition liquid crystal television, a small-to-medium-sized car navigation system, a smartphone, and the like, and is a TN element, STN element, TFT liquid crystal element, particularly a vertical alignment type. Useful for liquid crystal display elements. Furthermore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is also useful for a liquid crystal display element that needs to be irradiated with ultraviolet rays when producing a liquid crystal display element.
 なお、2017年5月22日に出願された日本特許出願2017-101174号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 Note that the entire content of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2017-101174 filed on May 22, 2017 is cited herein as the disclosure of the specification of the present invention. Incorporate.

Claims (17)

  1.  下記式[U]で示される部分構造を有し、且つ、下記式[S1]、[S2]及びステロイド骨格からなる群から選ばれる側鎖構造を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも一種の重合体を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     (Y及びYは、それぞれ独立して、単結合、-O-、-S-、-COO-又は-OCO-である。K及びK2は、それぞれ独立して、-CH-基、-CHR1a-基(R1aは-OH基又は1価の有機基を表す。)であり、ここで、K及びKのいずれか一方が-C(O)基に置き換わってもよい。R及びRは、それぞれ独立して、炭素数1~7のアルキレン基である。*は、他の基に結合する部位を表す。)
    Figure JPOXMLDOC01-appb-C000002
     (X及びXは独立して、単結合、-(CH-(aは1~15である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-(a1は1~15であり、Aは酸素原子又はCOO-であり、mは1~2である。)である。G及びGは、それぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基であり、該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。m及びnは独立して0~3であって、これらの合計は1~4である。Rは、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数2~20のアルコキシアルキル基であり、これらの基における任意の水素原子はフッ素原子で置き換わっていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
     (Xは、単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又はOCO-である。Rは炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基である。これらの基における任意の水素原子はフッ素原子で置き換わっていてもよい。)
    A polyimide precursor having a partial structure represented by the following formula [U] and having a side chain structure selected from the group consisting of the following formulas [S1], [S2] and a steroid skeleton, and an imidized product of the polyimide precursor A liquid crystal aligning agent comprising at least one polymer selected from the group consisting of polyimides.
    Figure JPOXMLDOC01-appb-C000001
    (Y 1 and Y 2 are each independently a single bond, —O—, —S—, —COO— or —OCO—. K 1 and K 2 are each independently —CH 2 — A group, —CHR 1a — group (R 1a represents an —OH group or a monovalent organic group), wherein either one of K 1 and K 2 may be replaced by a —C (O) group. R 3 and R 4 each independently represents an alkylene group having 1 to 7 carbon atoms, and * represents a site bonded to another group.)
    Figure JPOXMLDOC01-appb-C000002
    (X 1 and X 2 are independently a single bond, — (CH 2 ) a — (a is 1 to 15), —CONH—, —NHCO—, —CON (CH 3 ) —, —NH —, —O—, —COO—, —OCO— or — ((CH 2 ) a1 —A 1 ) m1 — (a1 is 1 to 15, A 1 is an oxygen atom or COO—, and m 1 is G 1 and G 2 are each independently selected from a divalent aromatic group having 6 to 12 carbon atoms or a divalent alicyclic group having 3 to 8 carbon atoms. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with a fluorine-containing alkoxyl group or a fluorine atom having a number of 1 to 3. m and n are independently 0 to 3, Total al is 1 ~ 4 .R 1 is an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group of an alkoxy group or a C 2-20 having 1 to 20 carbon atoms, any of these groups (The hydrogen atom may be replaced by a fluorine atom.)
    Figure JPOXMLDOC01-appb-C000003
    (X 3 is a single bond, -CONH -, - NHCO -, - CON (CH 3) -, - NH -, - O -, - CH 2 O -, - COO- or OCO- .R 2 is An alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms, and any hydrogen atom in these groups may be replaced by a fluorine atom.)
  2.  前記式[U]で示される部分構造が、下記式[U-Ar]である請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
     (Y、Y、K、K2、R及びRは、前記式(U)における定義と同じである。)
    The liquid crystal aligning agent according to claim 1, wherein the partial structure represented by the formula [U] is represented by the following formula [U-Ar].
    Figure JPOXMLDOC01-appb-C000004
    (Y 1 , Y 2 , K 1 , K 2 , R 3 and R 4 are the same as defined in the formula (U).)
  3.  前記ポリイミド前駆体が、下記式[U-1]で示されるジアミンを原料の一部に用いて得られる請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
     (Yは、前記式[U]で示される構造を有する有機基である。A及びAは、それぞれ独立して、水素原子又は炭素数1~5のアルキレン基である。)
    The liquid crystal aligning agent of Claim 1 or 2 with which the said polyimide precursor is obtained using the diamine shown by following formula [U-1] as a part of raw material.
    Figure JPOXMLDOC01-appb-C000005
    (Y A is an organic group having the structure represented by the formula [U]. A 1 and A 2 are each independently a hydrogen atom or an alkylene group having 1 to 5 carbon atoms.)
  4.  前記ジアミンが、下記式[Ua]で示されるジアミンである請求項3に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
     (Y、Y、K、K2、R及びRは、前記式(U)における定義と同じであり、A及びAは、前記式[U-1]における定義と同じである。)
    The liquid crystal aligning agent according to claim 3, wherein the diamine is a diamine represented by the following formula [Ua].
    Figure JPOXMLDOC01-appb-C000006
    (Y 1 , Y 2 , K 1 , K 2 , R 3 and R 4 are the same as defined in the formula (U), and A 1 and A 2 are the same as defined in the formula [U-1]. .)
  5.  前記ジアミンが、下記式[U-1a]~式[U-6a]で示されるジアミンからなる群から選ばれる少なくとも1種のジアミンである請求項3又は4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
     (A及びAは、前記式(U)における定義と同じであり、Bocは、tert-ブトキシカルボニル基である。)
    5. The liquid crystal aligning agent according to claim 3, wherein the diamine is at least one diamine selected from the group consisting of diamines represented by the following formulas [U-1a] to [U-6a].
    Figure JPOXMLDOC01-appb-C000007
    (A 1 and A 2 are the same as defined in the formula (U), and Boc is a tert-butoxycarbonyl group.)
  6.  前記ポリイミド前駆体が、下記の式[S1-a]で示されるジアミンを原料の一部に用いた請求項1~5のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
     (Bは、前記式[S1]、[S2]又は下記式[3]であり、A及びAは、それぞれ独立して、水素原子又は炭素数1~5のアルキレン基である。mは1~4である。)
    Figure JPOXMLDOC01-appb-C000009
     (Xは、-CONH-、-NHCO-、-O-、-COO-又はOCO-であり、Rはステロイド骨格を有する構造である。)
    6. The liquid crystal aligning agent according to claim 1, wherein the polyimide precursor uses a diamine represented by the following formula [S1-a] as a part of a raw material.
    Figure JPOXMLDOC01-appb-C000008
    (B is the formula [S1], [S2] or the following formula [3], and A 1 and A 2 are each independently a hydrogen atom or an alkylene group having 1 to 5 carbon atoms. 1 to 4)
    Figure JPOXMLDOC01-appb-C000009
    (X 4 is —CONH—, —NHCO—, —O—, —COO— or OCO—, and R 3 is a structure having a steroid skeleton.)
  7.  前記ポリイミド前駆体が、下記式[4]で示されるテトラカルボン酸無水物を含むテトラカルボン酸成分を用いて得られるポリイミド前駆体である請求項1~6のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000010
    (Zは、下記の式[4a]~式[4k]からなる群から選ばれる少なくとも1種の構造を示す。)
    Figure JPOXMLDOC01-appb-C000011
     (式[4a]中、Z~Zは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環である。式[4g]中、Z及びZは、それぞれ独立して、水素原子又はメチル基である。)
    The liquid crystal alignment according to any one of claims 1 to 6, wherein the polyimide precursor is a polyimide precursor obtained using a tetracarboxylic acid component containing a tetracarboxylic acid anhydride represented by the following formula [4]. Agent.
    Figure JPOXMLDOC01-appb-C000010
    (Z represents at least one structure selected from the group consisting of the following formulas [4a] to [4k].)
    Figure JPOXMLDOC01-appb-C000011
    (In formula [4a], Z 1 to Z 4 are each independently a hydrogen atom, methyl group, ethyl group, propyl group, chlorine atom or benzene ring. In formula [4g], Z 5 and Z 6 Are each independently a hydrogen atom or a methyl group.)
  8.  前記テトラカルボン酸無水物が、前記式[4]中のZが前記式[4a]及び式[4e]~式[4g]からなる群から選ばれる少なくとも1種の構造を有するテトラカルボン酸無水物である請求項7に記載の液晶配向剤。 The tetracarboxylic acid anhydride is a tetracarboxylic acid anhydride in which the Z in the formula [4] has at least one structure selected from the group consisting of the formula [4a] and the formulas [4e] to [4g]. The liquid crystal aligning agent according to claim 7.
  9.  前記ポリイミド前駆体が、これを得るための全ジアミン成分100モル%中、前記式[Ua]で示されるジアミンを1~99モル%含有し、前記式[S1-a]で示されるジアミンを1~99モル%含有し、かつそれらの合計量として、5~100モル%含有するジアミンを用いて得られるポリイミド前駆体である請求項4~8のいずれか一項に記載の液晶配向剤。 The polyimide precursor contains 1 to 99 mol% of the diamine represented by the formula [Ua] in 100 mol% of the total diamine component for obtaining the same, and the diamine represented by the formula [S1-a] is 1 The liquid crystal aligning agent according to any one of claims 4 to 8, which is a polyimide precursor obtained by using a diamine containing ˜99 mol% and a total amount thereof containing 5 to 100 mol%.
  10.  前記ポリイミド前駆体が、前記式[Ua]で示されるジアミンを、全ジアミン成分100モル%中、5モル%以上含有するジアミンを用いて得られるポリイミド前駆体と、前記式[S1-a]で示されるジアミンを、全ジアミン成分100モル%中1モル以上%含有するジアミンを用いて得られるポリイミド前駆体との混合物である請求項4~9のいずれか一項に記載の液晶配向剤。 The polyimide precursor is obtained by using a diamine having a diamine represented by the formula [Ua] in a diamine component containing 5 mol% or more in 100 mol% of the total diamine component, and the formula [S1-a]. The liquid crystal aligning agent according to any one of claims 4 to 9, which is a mixture with a polyimide precursor obtained by using a diamine containing 1 mol% or more of the diamine shown in 100 mol% of all diamine components.
  11.  N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、及び3-ブトキシ-N,N-ジメチルプロパンアミドからなる群から選ばれる少なくとも1種の溶媒を含有する請求項1~10のいずれか一項に記載の液晶配向剤。 N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N The liquid crystal aligning agent according to any one of claims 1 to 10, comprising at least one solvent selected from the group consisting of N, dimethylpropanamide, and 3-butoxy-N, N-dimethylpropanamide.
  12.  1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル及びジプロピレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル及びプロピレンカーボネートからなる群から選ばれる少なくとも1種の溶媒を更に含有する請求項1~11のいずれか一項に記載の液晶配向剤。 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether and dipropylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2- The liquid crystal aligning agent according to any one of claims 1 to 11, further comprising at least one solvent selected from the group consisting of pentanone, propylene glycol diacetate, dipropylene glycol monomethyl ether and propylene carbonate.
  13.  エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基又は低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、及び重合性不飽和結合を有する架橋性化合物からなる群から選ばれる少なくとも1種の架橋性化合物を含有する請求項1~12のいずれか一項に記載の液晶配向剤。 Crosslinkable compound having epoxy group, isocyanate group, oxetane group or cyclocarbonate group, crosslinkable compound having at least one substituent selected from the group consisting of hydroxyl group, hydroxyalkyl group or lower alkoxyalkyl group, and polymerizability The liquid crystal aligning agent according to any one of claims 1 to 12, comprising at least one crosslinkable compound selected from the group consisting of crosslinkable compounds having an unsaturated bond.
  14.  請求項1~13のいずれか一項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of claims 1 to 13.
  15.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられる請求項14に記載の液晶配向膜。 A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes The liquid crystal aligning film of Claim 14 used for the liquid crystal display element manufactured through the process of superposing | polymerizing the said polymeric compound, applying a voltage in between.
  16.  前記液晶配向膜が、活性エネルギー線及び熱の少なくとも一方により重合する重合性基を有する化合物を含有する液晶配向膜である請求項15に記載の液晶配向膜。 The liquid crystal alignment film according to claim 15, wherein the liquid crystal alignment film is a liquid crystal alignment film containing a compound having a polymerizable group that is polymerized by at least one of active energy rays and heat.
  17.  請求項14~16のいずれか一項に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display device having the liquid crystal alignment film according to any one of claims 14 to 16.
PCT/JP2018/019549 2017-05-22 2018-05-21 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element WO2018216664A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880033793.3A CN110651221B (en) 2017-05-22 2018-05-21 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2019520248A JP7131551B2 (en) 2017-05-22 2018-05-21 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR1020197037170A KR102611592B1 (en) 2017-05-22 2018-05-21 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017101174 2017-05-22
JP2017-101174 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018216664A1 true WO2018216664A1 (en) 2018-11-29

Family

ID=64395622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019549 WO2018216664A1 (en) 2017-05-22 2018-05-21 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7131551B2 (en)
KR (1) KR102611592B1 (en)
CN (1) CN110651221B (en)
TW (1) TWI765046B (en)
WO (1) WO2018216664A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103205A (en) * 2019-12-24 2021-07-15 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973495A (en) * 1972-10-10 1974-07-16
WO2009093709A1 (en) * 2008-01-25 2009-07-30 Nissan Chemical Industries, Ltd. Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
WO2018066607A1 (en) * 2016-10-06 2018-04-12 日産化学工業株式会社 Diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103946738B (en) * 2011-09-15 2018-03-30 日产化学工业株式会社 Manufacture method, liquid crystal orientation film and the liquid crystal display cells of liquid crystal orientation film
KR102035366B1 (en) * 2012-02-22 2019-10-22 닛산 가가쿠 가부시키가이샤 Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
KR102159410B1 (en) * 2013-03-14 2020-09-23 제이엔씨 주식회사 Liquid crystal aligning agents and liquid crystal display devices
JP6497520B2 (en) * 2013-05-23 2019-04-10 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN105765452B (en) * 2013-09-26 2019-04-12 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal expression element for having used it
CN105849631B (en) * 2013-10-23 2019-04-16 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
WO2015060357A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015072554A1 (en) * 2013-11-15 2015-05-21 日産化学工業株式会社 Liquid crystal aligning agent, and liquid crystal display element using same
JP6350045B2 (en) * 2014-07-07 2018-07-04 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6716966B2 (en) * 2015-03-11 2020-07-01 Jnc株式会社 Liquid crystal aligning agent for forming liquid crystal aligning film, liquid crystal aligning film, and liquid crystal display device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973495A (en) * 1972-10-10 1974-07-16
WO2009093709A1 (en) * 2008-01-25 2009-07-30 Nissan Chemical Industries, Ltd. Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
WO2018066607A1 (en) * 2016-10-06 2018-04-12 日産化学工業株式会社 Diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103205A (en) * 2019-12-24 2021-07-15 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP7322694B2 (en) 2019-12-24 2023-08-08 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element

Also Published As

Publication number Publication date
CN110651221B (en) 2021-10-22
JP7131551B2 (en) 2022-09-06
CN110651221A (en) 2020-01-03
TWI765046B (en) 2022-05-21
JPWO2018216664A1 (en) 2020-03-19
TW201906990A (en) 2019-02-16
KR20200010341A (en) 2020-01-30
KR102611592B1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
JP5387793B2 (en) Liquid crystal alignment agent
WO2013125595A1 (en) Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
TWI669344B (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2015046374A1 (en) Liquid crystal aligning agent and liquid crystal display element using same
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2012133820A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
WO2015033922A1 (en) Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element
WO2015053394A1 (en) Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6617878B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JPWO2014119682A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013115387A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7131551B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2014024892A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2019244939A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using same, and production method for said liquid crystal display element, and diamine compound
WO2019163904A1 (en) Method for producing liquid crystal display element
JP7375766B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN110770645B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element using same, and method for producing liquid crystal alignment film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18804927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019520248

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197037170

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18804927

Country of ref document: EP

Kind code of ref document: A1