WO2015053394A1 - Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element - Google Patents

Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2015053394A1
WO2015053394A1 PCT/JP2014/077219 JP2014077219W WO2015053394A1 WO 2015053394 A1 WO2015053394 A1 WO 2015053394A1 JP 2014077219 W JP2014077219 W JP 2014077219W WO 2015053394 A1 WO2015053394 A1 WO 2015053394A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
composition
formula
carbon atoms
Prior art date
Application number
PCT/JP2014/077219
Other languages
French (fr)
Japanese (ja)
Inventor
徳俊 三木
橋本 淳
暁子 若林
保坂 和義
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2015541652A priority Critical patent/JP6668754B2/en
Priority to KR1020167011818A priority patent/KR102259997B1/en
Priority to CN201480067004.XA priority patent/CN105814141B/en
Publication of WO2015053394A1 publication Critical patent/WO2015053394A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a composition used for forming a polyimide film, a liquid crystal alignment treatment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film. Is.
  • a film made of an organic material such as a polymer material is widely used as an interlayer insulating film, a protective film, and the like in electronic devices because of its ease of formation and insulation performance.
  • an organic film made of an organic material is used as a liquid crystal alignment film.
  • liquid crystal display devices have been widely put into practical use for large-screen liquid crystal televisions and high-definition mobile applications (display portions of digital cameras and mobile phones).
  • the size of the substrate to be used is increased compared to the conventional one, and the unevenness of the step of the substrate has become larger. Even in such a situation, it has been demanded that the liquid crystal alignment film is uniformly coated on a large substrate or a step from the viewpoint of display characteristics.
  • liquid crystal alignment film when a liquid crystal alignment treatment agent using a polyimide polymer (also referred to as resin) such as polyamic acid or solvent-soluble polyimide (also referred to as polyimide) is applied to a substrate, industrially In general, the flexographic printing method or the ink jet coating method is used. At that time, as a solvent for the liquid crystal alignment treatment agent, N-methyl-2-pyrrolidone (also referred to as NMP) or ⁇ -butyrolactone (also referred to as ⁇ -BL), which is a solvent having excellent resin solubility (also referred to as a good solvent), is used.
  • NMP N-methyl-2-pyrrolidone
  • ⁇ -BL ⁇ -butyrolactone
  • ethylene glycol monobutyl ether which is a solvent having low resin solubility (also referred to as a poor solvent), or the like is mixed (for example, see Patent Document 1).
  • Polyimide-based organic films are widely used as interlayer insulating films and protective films in electronic devices in addition to liquid crystal alignment films.
  • the liquid crystal alignment film it can be formed from a composition (also referred to as a coating solution) containing a polyamic acid or polyimide solution that is a polyimide precursor.
  • a coating solution containing a polyamic acid or polyimide solution that is a polyimide precursor.
  • the liquid crystal aligning agent using the polyamic acid and polyimide obtained by using the diamine compound which has a side chain has the tendency for the coating property of a liquid crystal aligning film to fall because the hydrophobicity of a side chain site
  • uniform coating properties cannot be obtained, that is, when pinholes accompanying repelling occur, when the liquid crystal display element is formed, that portion becomes a display defect. Therefore, in order to obtain uniform coating properties, it is necessary to increase the mixing amount of a poor solvent having high wettability of the coating solution to the substrate.
  • a poor solvent is inferior in the ability to dissolve a polyamic acid or a polyimide, there exists a problem that resin precipitation will occur when it mixes in large quantities.
  • liquid crystal display elements have been used for mobile applications such as smartphones and mobile phones.
  • the substrates of the liquid crystal display elements are bonded together.
  • the sealant used in is present at a position close to the end of the liquid crystal alignment film. Therefore, when the coating property of the end portion of the liquid crystal alignment film is lowered, that is, when the end portion of the liquid crystal alignment film is not a straight line, or when the end portion is raised, the liquid crystal alignment film and the sealing agent Adhesive (also referred to as adhesion) effect is reduced, and the display characteristics and reliability of the liquid crystal display element are lowered.
  • the composition or the liquid crystal alignment treatment agent using polyimide since the boiling point of NMP and ⁇ -BL which are the solvents used for them is high, a polyimide film such as an interlayer insulating film and a protective film and a liquid crystal alignment film are produced. In this case, firing at a high temperature is required. Therefore, from the viewpoint of reducing energy costs, baking at a low temperature is required when producing these polyimide films and liquid crystal alignment films.
  • an object of the present invention is to provide a composition having the above characteristics. That is, an object of the present invention is to provide a composition that can suppress the occurrence of pinholes accompanying repelling when forming a polyimide film and is excellent in the coating properties at the end. In that case, it aims also at becoming the composition which can produce a polyimide film also by baking at low temperature.
  • an object of the present invention is to provide a liquid crystal aligning agent excellent in these characteristics even when it is a liquid crystal aligning agent using a polyamic acid or polyimide obtained by using a diamine compound having a side chain. It is another object of the present invention to provide a liquid crystal alignment treatment agent which is excellent in electrical characteristics, particularly voltage holding ratio (also referred to as VHR) in a liquid crystal display element even when firing at the time of producing a liquid crystal alignment film is at a low temperature.
  • VHR voltage holding ratio
  • another object is to provide a polyimide film obtained from the composition, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display device having the liquid crystal alignment film.
  • the present invention has the following gist.
  • Component (A) Formula [A] below: (Wherein, X 1 and X 2 each independently represent an alkyl group having 1 to 3 carbon atoms, and X 3 and X 4 each independently represent an alkyl group having 1 to 3 carbon atoms) And (B) component: a composition containing at least one polymer selected from polyimide precursors and polyimides.
  • the solvent of the component (A) is represented by the following formula [A-1]: The composition as described in said (1) which is a solvent shown by these.
  • the component (B) is represented by the following formula [1-1] and formula [1-2]: Wherein Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —CONH—, —NHCO—, —CON At least one linking group selected from (CH 3 ) —, —N (CH 3 ) CO—, —COO— and —OCO—, wherein Y 2 represents a single bond or — (CH 2 ) b — (b Is an integer of 1 to 15, and Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO Y represents at least one linking group selected from — and —OCO—, and Y 4 represents a carbon having a divalent cyclic group of at least one ring selected from a benzene ring, a cycl
  • Y 7 is a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —COO— and At least one linking group selected from —OCO—
  • Y 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms) (1) or (2) above, which is at least one polymer selected from polyimide precursors and polyimides using a diamine compound having at least one structure selected from the structure represented by A composition according to 1.
  • a diamine compound having a structure represented by the formula [1-1] and the formula [1-2] is represented by the following formula [1a]: (Wherein Y represents at least one structure selected from the structures represented by the formulas [1-1] and [1-2], and m represents an integer of 1 to 4)
  • the composition as described in said (3) which is a diamine compound shown by these.
  • the diamine compound having a carboxyl group and a hydroxyl group is represented by the following formula [2a]: ⁇ In the formula, A represents the following formula [2-1] and formula [2-2]: (In the formula [2-1], a represents an integer of 0 to 4, and in the formula [2-2], b represents an integer of 0 to 4). M represents an integer of 1 to 4 ⁇
  • the polymer of the component (B) is represented by the following formula [3a]: Wherein B 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — and Represents at least one linking group selected from —N (CH 3 ) CO—, wherein B 2 is a single bond, a divalent group of an aliphatic hydrocarbon having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon; And B 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—.
  • At least one selected linking group B 4 represents a nitrogen-containing heterocyclic group, and n represents an integer of 1 to 4.
  • B 1 represents —CONH—
  • B 2 represents an alkylene group having 1 to 5 carbon atoms
  • B 3 represents a single bond
  • B 4 represents an imidazolyl group or a pyridyl group.
  • the polymer of the component (B) is represented by the following formula [4]: ⁇ In the formula, Z represents the following formula [4a] to formula [4k]: (In formula [4a], Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, a chlorine atom or a phenyl group, and in formula [4g], Z 5 and Z 6 are each independently Represents a hydrogen atom or a methyl group) and represents a group having at least one structure selected from The composition according to any one of the above (1) to (8), which is at least one polymer selected from a polyimide precursor and a polyimide using a tetracarboxylic acid compound represented by the formula:
  • composition according to any one of (1) to (9) above, wherein the polymer of the component (B) is at least one polymer selected from polyamic acid alkyl ester and polyimide.
  • composition at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group.
  • a crosslinkable compound having an epoxy group an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group.
  • a liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • a liquid crystal display device comprising the liquid crystal alignment film according to (23).
  • a liquid crystal alignment film having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • a liquid crystal display element comprising the liquid crystal alignment film according to (25).
  • composition containing a solvent having a specific structure of the present invention and at least one polymer selected from polyimide precursors or polyimides can suppress the generation of pinholes accompanying repelling when forming a polyimide film.
  • the polyimide film which is excellent also in the coating property of the edge part can be produced. At that time, the polyimide film can be formed by baking at a low temperature.
  • an object of the present invention is to provide a liquid crystal aligning agent excellent in these characteristics even when it is a liquid crystal aligning agent using a polyamic acid or polyimide obtained by using a diamine compound having a side chain. It is another object of the present invention to provide a liquid crystal alignment treatment agent that is excellent in electrical characteristics, particularly voltage holding ratio (VHR) in a liquid crystal display element even when firing at the time of producing a liquid crystal alignment film is at a low temperature.
  • VHR voltage holding ratio
  • the composition of the present invention as a liquid crystal alignment treatment agent, it is possible to suppress the occurrence of pinholes due to repellency, and to provide a liquid crystal alignment film having excellent coating properties at the end portions Can do.
  • the liquid crystal aligning film which is excellent in these characteristics can be provided.
  • the liquid crystal aligning film which is excellent in the electrical property in a liquid crystal display element, especially a voltage holding ratio (VHR) can be provided.
  • the liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention has excellent reliability, and is used for a large-screen high-definition liquid crystal television, a small-sized car navigation system, a smartphone, and the like. It can be suitably used.
  • the present invention provides a composition containing the following components (A) and (B), a liquid crystal alignment treatment agent, a liquid crystal alignment film obtained using the liquid crystal alignment treatment agent, and a liquid crystal having the liquid crystal alignment film It is a display element.
  • Component (B) at least one polymer selected from a polyimide precursor and polyimide (also referred to as a specific polymer).
  • the specific solvent of the present invention can be used as a solvent capable of dissolving a polyimide polymer such as a polyimide precursor and polyimide (also referred to as a good solvent), and further, coating properties of a polyimide film and a liquid crystal alignment film There is also an effect to increase. That is, the specific solvent of the present invention usually has a lower surface tension as a solvent than NMP that is used as a good solvent, so that a coating solution using the specific solvent is compared with a coating solution that does not use it. As a result, the spreadability of the coating solution on the substrate is increased. As a result, the linearity of the end portions of these films becomes high when the polyimide film and the liquid crystal alignment film are formed. Furthermore, since the wettability of the coating solution on the substrate is increased, the occurrence of pinholes accompanying repelling can be suppressed.
  • the specific solvent of the present invention has a lower boiling point than NMP or ⁇ -BL, which is usually used as a good solvent. Therefore, baking at the time of producing a polyimide film and a liquid crystal alignment film can be performed at a low temperature. Therefore, a liquid crystal alignment film excellent in VHR in a liquid crystal display element can be obtained even when firing at the time of producing the liquid crystal alignment film is at a low temperature.
  • the component (B) of the present invention is at least one polymer selected from a polyimide precursor or a polyimide.
  • a liquid crystal alignment film is produced using the composition of the present invention as a liquid crystal alignment treatment agent, at least selected from structures represented by the following formulas [1-1] and [1-2]: It is preferable to use at least one polymer (also referred to as a specific polymer) selected from polyimide precursors or polyimides having one type of side chain (also referred to as a specific side chain structure).
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —CONH—, — At least one linking group selected from NHCO-, -CON (CH 3 )-, -N (CH 3 ) CO-, -COO- and -OCO-, and Y 2 represents a single bond or-(CH 2 ) B — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 Represents at least one linking group selected from O—, —COO— and —OCO—, and Y 4 represents a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or A divalent organic group having 17 to
  • Y 5 represents a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups has 1 to 3 carbon atoms.
  • Y 6 represents an alkyl group having 1 to 22 carbon atoms, an alkenyl group having 2 to 22 carbon atoms, a fluorine-containing alkyl group having 1 to 22 carbon atoms, an alkoxyl group having 1 to 22 carbon atoms, and 1 carbon atom.
  • ⁇ 22 At least one selected from fluorine-containing alkoxyl groups).
  • Y 7 represents a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— , -COO- and -OCO-, Y 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms).
  • the specific side chain structure represented by the formula [1-1] has a carbon number of 17 to 51 having a benzene ring, a cyclohexyl ring or a heterocyclic divalent cyclic group, or a steroid skeleton in the side chain portion. Having a valent organic group.
  • divalent cyclic groups such as a benzene ring, a cyclohexyl ring or a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms and having a steroid skeleton have a rigid structure.
  • the composition containing the specific solvent of the present invention and at least one polymer selected from polyimide precursors or polyimides is excellent in coating properties and forms a polyimide film even at low temperature firing. It becomes the composition which can be obtained.
  • the liquid crystal aligning agent obtained from the composition of the present invention can provide a liquid crystal alignment film having excellent coating properties. Furthermore, a liquid crystal alignment film having excellent VHR in a liquid crystal display element can be obtained even when the baking for producing the liquid crystal alignment film is performed at a low temperature. Therefore, by using this liquid crystal alignment film, a highly reliable liquid crystal display element having excellent display characteristics can be provided.
  • the liquid crystal alignment treatment obtained from the composition containing the specific solvent of the present invention and the polyimide precursor having the specific side chain structure represented by the formula [1-1] or at least one polymer selected from polyimides can obtain a liquid crystal alignment film having excellent VHR in the liquid crystal display element even when the above-described effects, that is, baking during the production of the liquid crystal alignment film is at a low temperature. Therefore, by using this liquid crystal alignment film, a highly reliable liquid crystal display element having more excellent display characteristics can be provided.
  • the specific solvent of the present invention is a solvent represented by the following formula [A].
  • X 1 and X 2 each independently represent an alkyl group having 1 to 3 carbon atoms (eg, a methyl group, an ethyl group, a propyl group or an isopropyl group), preferably a methyl group or ethyl Group, particularly preferably a methyl group.
  • X 3 and X 4 each independently represent an alkyl group having 1 to 3 carbon atoms (eg, a methyl group, an ethyl group, a propyl group, or an isopropyl group), preferably a methyl group or an ethyl group Group, particularly preferably a methyl group.
  • the amount of the specific solvent of the present invention is preferably 5 to 80% by mass of the total solvent contained in the composition and the liquid crystal aligning agent in order to further improve the wettability of the coating solution to the substrate described above. Among these, 5 to 75% by mass is preferable. A more preferred range is 5 to 70% by mass, and a further more preferred range is 10 to 60% by mass.
  • the specific polymer which is the component (B) of the present invention is at least one polymer selected from a polyimide precursor and a polyimide (also collectively referred to as a polyimide polymer).
  • the polyimide-type polymer of this invention is a polyimide precursor or a polyimide obtained by making a diamine component and a tetracarboxylic acid component react.
  • the polyimide precursor has a structure represented by the following formula [a].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group
  • a 1 and A 2 are each independently a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • a 3 and A 4 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group
  • n represents a positive integer
  • diamine component examples include diamine compounds having two primary or secondary amino groups in the molecule.
  • examples of the tetracarboxylic acid component include a tetracarboxylic acid compound, a tetracarboxylic dianhydride, a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound, and a tetracarboxylic acid dialkyl ester dihalide compound.
  • a diamine compound having two primary or secondary amino groups in the molecule a tetracarboxylic acid compound or tetra It can be obtained by reacting with a carboxylic anhydride.
  • the diamine compound, a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound, or It can be obtained by reacting with a tetracarboxylic acid dialkyl ester dihalide compound.
  • an alkyl group having 1 to 5 carbon atoms can be introduced into A 1 and A 2 represented by the formula [a] in the polyamic acid obtained by the above method.
  • the polyimide polymer of the present invention uses a diamine compound having at least one specific side chain structure selected from the structures represented by the following formulas [1-1] and [1-2] as a part of the raw material. It is preferably at least one polymer selected from polyimide precursors and polyimides.
  • Y 1 is a bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —CONH—, —NHCO—. , —CON (CH 3 ) —, —N (CH 3 ) CO—, —COO— and —OCO—.
  • a single bond — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO -Is preferred. More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— and —OCO.
  • Y 4 is a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is a carbon It may be substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 4 may be a divalent organic group selected from organic groups having 17 to 51 carbon atoms and having a steroid skeleton.
  • a divalent cyclic group of a benzene ring or a cyclohexane ring, or a divalent organic group having 17 to 51 carbon atoms and having a steroid skeleton is preferable.
  • Y 5 represents a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is carbon It may be substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • a benzene ring or a cyclohexane ring is preferable.
  • n represents an integer of 0 to 4.
  • 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
  • Y 6 represents an alkyl group having 1 to 22 carbon atoms, an alkenyl group having 2 to 22 carbon atoms, a fluorine-containing alkyl group having 1 to 22 carbon atoms, an alkoxyl group having 1 to 22 carbon atoms, and At least one selected from fluorine-containing alkoxyl groups having 1 to 22 carbon atoms is shown.
  • Groups are preferred. More preferably, it is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • Y 1 to Y 6 and n in the formula [1-1] are listed in Tables 6 to 47 on pages 13 to 34 of International Publication No. 2011/132751 (published 2011.10.27). (2-1) to (2-629) are the same combinations.
  • Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 .
  • the organic group having 17 to 51 carbon atoms having a steroid skeleton in the present invention has 12 to 20 carbon atoms having a steroid skeleton.
  • An organic group having 12 to 25 carbon atoms having a steroid skeleton is to be read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.
  • Y 7 represents a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, — It represents at least one linking group selected from COO— and —OCO—.
  • a single bond, —O—, —CH 2 O—, —CONH—, —CON (CH 3 ) — or —COO— is preferable. More preferably, they are a single bond, —O—, —CONH— or —COO—.
  • Y 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms. Of these, an alkyl group having 8 to 18 carbon atoms is preferable.
  • the method for introducing the specific side chain structure of the present invention into the specific polymer is not particularly limited, but a diamine compound having a specific side chain structure is preferably used for the diamine component.
  • a diamine compound also referred to as a specific side chain diamine compound
  • the diamine compound whose amino group in following formula [1a] is a secondary amino group can also be used.
  • Y represents at least one structure selected from the structures represented by Formula [1-1] and Formula [1-2].
  • a preferable combination of Y 1 to Y 6 and n when Y in the formula [1a] represents the formula [1-1] is as described above.
  • m represents an integer of 1 to 4. Of these, 1 is preferable.
  • Specific examples of the specific side chain type diamine compound of the present invention include, for example, diamine compounds represented by the following formulas [1a-1] to [1a-34], and these amino groups are secondary amino groups. A certain diamine compound is mentioned.
  • R 1 , R 3 and R 5 are each independently —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — Or —CH 2 OCO—, wherein R 2 , R 4 and R 6 are each independently linear or branched having 1 to 22 carbon atoms in the formulas [1a-1] to [1a-3] And a linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 22 carbon atoms).
  • R 1 , R 3 and R 5 are each independently —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or —CH 2 —, in which R 2 , R 4 and R 6 are represented by the formulas [1a-4] to [1a-6] Each independently containing a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched alkoxyl group having 1 to 22 carbon atoms, or a linear or branched fluorine group having 1 to 22 carbon atoms An alkyl group or a fluorine-containing alkoxyl group having 1 to 22 carbon atoms).
  • R 1 and R 3 are each independently —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, — CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O— or —NH—, wherein R 2 and R 4 are each independently fluorine, cyano, trifluoro A methyl group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
  • R 1 and R 2 each independently represents a linear or branched alkyl group having 3 to 12 carbon atoms, and 1,4-cyclohexene
  • the cis-trans isomerism of silene is the trans isomer, respectively).
  • R 1 and R 2 each independently represents a linear or branched alkyl group having 3 to 12 carbon atoms, and represents 1,4-cyclohexene.
  • the cis-trans isomerism of silene is the trans isomer, respectively).
  • a 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 is a 1,4-cyclohexylene group or A 2 -phenylene group, A 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 3 ), and A 1 is an oxygen atom or —COO— * (However, the bond marked with “*” binds to (CH 2 ) a 2 )).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • a 1 to A 4 each independently represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
  • the particularly preferred side chain type diamine compounds having the particularly preferred structures are those represented by the formulas [1a-1] to [1a- 6], formula [1a-9] to formula [1a-13] or formula [1a-24] to formula [1a-31].
  • the specific side chain diamine compound in the specific polymer of the present invention is preferably 10 mol% or more and 80 mol% or less of the entire diamine component. Particularly preferred is 10 mol% or more and 70 mol% or less.
  • the specific side chain type diamine compound of the present invention includes the solubility of the specific polymer of the present invention in a solvent, the coating properties of the composition and the liquid crystal alignment agent, the alignment property of liquid crystal when used as a liquid crystal alignment film, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
  • the specific polymer of the present invention is preferably a polymer using, as a diamine component, a diamine compound having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group).
  • diamine compound represented by the following formula [2a] it is preferable to use a diamine compound represented by the following formula [2a].
  • the diamine compound whose amino group in following formula [2a] is a secondary amino group can also be used.
  • A represents a substituent having at least one structure selected from the following formulas [2-1] and [2-2].
  • a represents an integer of 0 to 4.
  • b represents an integer of 0 to 4.
  • m represents an integer of 1 to 4.
  • 2,4-diaminophenol 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid.
  • 2,4-diaminobenzoic acid 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid is preferable.
  • diamine compounds represented by the following formulas [2a-1] to [2a-4] and diamine compounds in which these amino groups are secondary amino groups can also be used.
  • a 1 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 — , —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON And represents at least one linking group selected from (CH 3 ) — and —N (CH 3 ) CO—, each of m 1 and m 2 independently represents an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and in formula [2a-2], m 3 and m 4 each independently represent an integer of
  • the diamine compound having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group) in the specific polymer of the present invention is 10 mol% or more and 80 mol% or less of the entire diamine component. Is preferred. Particularly preferred is 10 mol% or more and 70 mol% or less.
  • the diamine compound having at least one substituent selected from the carboxyl group (COOH group) and hydroxyl group (OH group) of the present invention is soluble in the solvent of the specific polymer of the present invention, composition and liquid crystal alignment treatment.
  • One type or a mixture of two or more types can be used depending on the properties such as the coating property of the agent, the orientation of the liquid crystal in the case of the liquid crystal alignment film, the voltage holding ratio, and the accumulated charge.
  • B 1 represents —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ).
  • at least one linking group selected from — and —N (CH 3 ) CO— represents a diamine compound. It is preferable because it is easy to synthesize.
  • Particularly preferred is —O—, —CONH— or —CH 2 O—.
  • B 2 is a single bond, a divalent group of an aliphatic hydrocarbon having 1 to 20 carbon atoms, a divalent group of a non-aromatic cyclic hydrocarbon, or a divalent group of an aromatic hydrocarbon. At least one selected from the group is shown.
  • the divalent group of the aliphatic hydrocarbon having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond. Of these, an alkylene group having 1 to 10 carbon atoms is preferable.
  • non-aromatic hydrocarbon examples include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, a cyclodecane ring, a cycloundecane ring, a cyclododecane ring, a cyclo Tridecane ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicycloheptane ring, decahydr
  • a cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, norbornene ring or adamantane ring is preferred.
  • the aromatic hydrocarbon group include a benzene ring, naphthalene ring, tetrahydronaphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring or phenalene ring.
  • a benzene ring, naphthalene ring, tetrahydronaphthalene ring, fluorene ring or anthracene ring is preferred.
  • Preferred B 2 in the formula [3a] is a single bond, an alkylene group having 1 to 10 carbon atoms, or a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, an adamantane ring, or a benzene ring.
  • a single bond, an alkylene group having 1 to 5 carbon atoms, or a divalent group of a cyclohexane ring or a benzene ring is preferable.
  • B 3 represents a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— and —O (CH 2 ) m — (m is an integer of 1 to 5).
  • a single bond, —O—, —COO—, —OCO— or —O (CH 2 ) m — (m is an integer of 1 to 5) is preferable. More preferred is a single bond, —O—, —OCO— or —O (CH 2 ) m — (m is an integer of 1 to 5).
  • B 4 is a nitrogen-containing heterocyclic group, and contains at least one structure selected from the following formulas [3a-1], [3a-2] and [3a-3] Heterocyclic group.
  • Z 11 represents an alkyl group having 1 to 5 carbon atoms).
  • pyrrole ring imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline ring, carbazole ring, purine ring, thiadiazole ring, pyridazine ring, pyrazoline ring , Triazine ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, cinnoline ring, phenanthroline ring, indole ring, quinoxaline ring, benzothiazole ring, phenothiazine ring, oxadiazole ring or acridine ring.
  • a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, a triazole ring, a pyrazine ring, or a benzimidazole ring is preferable. More preferred are a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring or a pyrimidine ring. Also, B 3 in the formula [3a] are expressions included in the B 4 [3a-1], that is bonded to the structure and not adjacent ring atoms of the formula [3a-2] and the formula [3a-3] Is preferred.
  • n is an integer of 1 to 4, preferably 1 or 2 from the viewpoint of reactivity with the tetracarboxylic acid component.
  • B 1 represents —CONH—
  • B 2 represents an alkylene group having 1 to 5 carbon atoms
  • B 3 represents a single bond
  • 4 is a diamine compound in which 4 represents an imidazole ring or a pyridine ring and n represents 1.
  • the bonding position of the two amino groups (—NH 2 ) in the formula [3a] is not limited. Specifically, with respect to the side chain linking group (—B 1 —), 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position on the benzene ring, 3, 6 4 positions or 3, 5 positions. Among these, from the viewpoint of reactivity when synthesizing the polyamic acid, the 2,4 position, the 2,5 position, or the 3,5 position is preferable. Considering the ease in synthesizing the diamine compound, the positions 2, 4 or 2, 5 are more preferable.
  • the diamine compound having a nitrogen-containing heterocycle represented by the formula [3a] in the specific polymer of the present invention is preferably 10 mol% or more and 80 mol% or less of the entire diamine component. Particularly preferred is 10 mol% or more and 70 mol% or less.
  • the diamine compound having a nitrogen-containing heterocyclic ring represented by the above formula [3a] of the present invention is soluble in the solvent of the specific polymer of the present invention, the coating property of the composition and the liquid crystal aligning agent, and the liquid crystal alignment film.
  • the liquid crystal orientation voltage holding ratio, accumulated charge, etc., one kind or a mixture of two or more kinds can be used.
  • the specific polymer of the present invention includes diamine compounds represented by the following formulas [a-1] to [a-13] and amino groups thereof as other diamine compounds.
  • a diamine compound which is a secondary amino group can also be used.
  • a 1 and A 3 each independently represent —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— and Represents at least one linking group selected from —NH—
  • a 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear or branched fluorine group having 1 to 22 carbon atoms.
  • a 4 and A 6 are each independently —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—. , —CO— and —NH—, wherein A 5 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear group having 1 to 22 carbon atoms. Or a branched fluorine-containing alkyl group).
  • a 1 and A 3 each independently represent —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— and Represents at least one linking group selected from —NH—, and A 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear or branched fluorine group having 1 to 22 carbon atoms.
  • a 4 and A 6 are each independently —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—.
  • a 5 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear group having 1 to 22 carbon atoms. Or a branched fluorine-containing alkyl group).
  • a 1 and A 3 each independently represent —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— and Represents at least one linking group selected from —NH—
  • a 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear or branched fluorine group having 1 to 22 carbon atoms.
  • a 4 and A 6 each independently represent —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—. , —CO— and —NH—, wherein A 5 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear group having 1 to 22 carbon atoms. Or a branched fluorine-containing alkyl group).
  • p represents an integer of 1 to 10
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • n represents an integer of 1 to 10).
  • diamine compounds the following diamine compounds and diamine compounds in which these amino groups are secondary amino groups can also be used.
  • p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m- Phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4 '-Diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobipheny
  • the other diamine compound of the present invention includes the solubility of the specific polymer of the present invention in a solvent, the coating property of the composition and the liquid crystal alignment treatment agent, the alignment property of the liquid crystal when used as a liquid crystal alignment film, the voltage holding ratio, and the accumulated charge. Depending on the characteristics, one kind or a mixture of two or more kinds can be used.
  • tetracarboxylic acid component for producing these polyimide polymers
  • a tetracarboxylic dianhydride represented by the following formula [4] not only the tetracarboxylic dianhydride represented by the formula [4] but also the tetracarboxylic acid derivative tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester compound or tetracarboxylic acid dialkyl ester di Halide compounds can also be used (the tetracarboxylic dianhydride represented by the formula [4] and its derivatives are collectively referred to as a specific tetracarboxylic acid component). (In Formula [4], Z represents at least one structure selected from structures represented by Formula [4a] to Formula [4k] below).
  • Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a phenyl group.
  • Z 5 and Z 6 each independently represent a hydrogen atom or a methyl group.
  • formula [4a], formula [4c] to formula [4g] or formula [4k] The tetracarboxylic dianhydride of the structure shown by these and its tetracarboxylic acid derivative are preferable. More preferable is the structure represented by the formula [4a] or the formula [4e] to the formula [4g]. Particularly preferred are tetracarboxylic dianhydrides and their tetracarboxylic acid derivatives having the structure represented by [4a], formula [4e] or formula [4f].
  • the specific tetracarboxylic acid component in the specific polymer of the present invention is preferably 1 mol% to 100 mol% in 100 mol% of all tetracarboxylic acid components. Of these, 5 mol% to 95 mol% is preferable. More preferred is 20 mol% to 80 mol%.
  • the specific tetracarboxylic acid component of the present invention includes the solubility of the specific polymer of the present invention in a solvent, the coating properties of the composition and the liquid crystal alignment treatment agent, the alignment of liquid crystals when used as a liquid crystal alignment film, the voltage holding ratio, One type or a mixture of two or more types can be used depending on characteristics such as accumulated charge.
  • tetracarboxylic acid components other than the specific tetracarboxylic acid component can be used as long as the effects of the present invention are not impaired.
  • examples of other tetracarboxylic acid components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl ester compounds, and tetracarboxylic acid dialkyl ester dihalide compounds.
  • tetracarboxylic acid components include 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4 ′ -Benzophenone tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1, 1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane
  • the other tetracarboxylic acid components of the present invention are the solubility of the specific polymer of the present invention in a solvent, the coating properties of the composition and the liquid crystal aligning agent, the orientation of the liquid crystal when used as a liquid crystal alignment film, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
  • the specific polymer that is, the method for producing these polyimide polymers is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. In general, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic dianhydrides and their derivatives is reacted with a diamine component consisting of one or more diamine compounds. And a method of obtaining a polyamic acid.
  • a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and primary or secondary diamine compound, dehydration polycondensation reaction of tetracarboxylic acid and primary or secondary diamine compound A method of obtaining polyamic acid by polycondensation of a tetracarboxylic acid dihalide and a primary or secondary diamine compound is used.
  • polyimide In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the reaction of the diamine component and the tetracarboxylic acid component is usually carried out in a solvent with the diamine component and the tetracarboxylic acid component.
  • the solvent used in that case may be the specific solvent of the present invention, but is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples.
  • Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
  • the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]
  • the indicated solvents can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms
  • solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not melt
  • the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration, and then a solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalytic imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. it can.
  • the amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid groups, and the amount of the acid anhydride is 1 mol times to 50 mol times of the amic acid groups, The amount is preferably 3 mole times to 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine.
  • pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is redissolved in a solvent and then re-precipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • composition of the present invention and the liquid crystal alignment treatment agent using the composition are coating solutions for forming a polyimide film and a liquid crystal alignment film (also collectively referred to as a resin film), and contain a specific solvent and a specific polymer.
  • a coating solution for forming a resin film is a coating solution for forming a resin film.
  • the specific polymer of the present invention may be any polyimide polymer such as polyamic acid, polyamic acid alkyl ester and polyimide. Of these, polyamic acid alkyl ester or polyimide is preferable. More preferably, it is a polyimide.
  • All the polymer components in the composition and the liquid crystal aligning agent of the present invention may all be the specific polymer of the present invention. In that case, you may use 2 or more types of specific polymers of this invention in mixture.
  • other polymers may be mixed with the specific polymer. Examples of other polymers include cellulosic polymers, acrylic polymers, methacrylic polymers, polystyrene, polyamides, and polysiloxanes.
  • the content of the other polymer is 0.5 to 30 parts by mass with respect to 100 parts by mass of the specific polymer of the present invention. Of these, 1 to 20 parts by mass is preferable.
  • the specific polymer has a specific side chain structure represented by the formula [1-1] of the present invention. Is preferably used. Among these, it is preferable to use a specific polymer using the specific side chain diamine compound represented by the formula [1a] having the specific side chain structure represented by the formula [1-1].
  • a liquid crystal alignment film for a mode that requires a pretilt angle of liquid crystal such as a TN (twisted nematic) mode or a VA (vertical alignment) mode, may be a specific polymer using a specific side chain type diamine compound. good.
  • a specific polymer using a specific side chain diamine compound and a specific polymer not using a specific side chain diamine compound may be mixed and used.
  • the content of the specific polymer not using the specific side chain diamine compound is 10 to 300 parts by mass with respect to 100 parts by mass of the specific polymer using the specific side chain diamine compound. preferable. Of these, 20 to 200 parts by mass is preferable.
  • the solvent in the composition of the present invention and the liquid crystal aligning agent is preferably 70 to 99.9% by mass from the viewpoint of forming a uniform resin film by coating. This content can be appropriately changed depending on the film thickness of the target polyimide film and liquid crystal alignment film.
  • the solvent at that time all may be the specific solvent of the present invention, but a solvent for dissolving the specific polymer of the present invention, that is, a good solvent may be used at the same time.
  • a good solvent is given to the following, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyllactone (also referred to as component (C) above) is preferably used.
  • components (C) are preferably 1 to 70% by mass of the entire solvent contained in the composition and the liquid crystal aligning agent. Among these, 5 to 65% by mass is preferable. A more preferred range is 5 to 60% by mass, and a further more preferred range is 10 to 60% by mass.
  • the good solvent may be used alone or in combination of two or more depending on the solubility of the specific polymer of the present invention in the solvent and the applicability of the composition and the liquid crystal alignment treatment agent.
  • the composition of the present invention and the liquid crystal aligning agent are organic solvents that improve the coating properties and surface smoothness of the resin film when the composition and the liquid crystal aligning agent are applied, That is, it is also preferable to use a poor solvent.
  • a poor solvent is given to the following, it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether or the above formulas [D-1] to [D -3] (also referred to as component (D) above) is preferably used.
  • components (D) are preferably 10 to 80% by mass of the total solvent contained in the composition and the liquid crystal aligning agent.
  • 10 to 70% by mass is preferable.
  • a more preferred range is 20 to 70% by mass, and a further more preferred range is 20 to 60% by mass.
  • the poor solvent may be used alone or in combination of two or more depending on the solubility of the specific polymer of the present invention in the solvent and the applicability of the composition and the liquid crystal alignment treatment agent.
  • composition and the liquid crystal aligning agent of the present invention include at least one substitution selected from a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is preferable to introduce a crosslinkable compound having a group or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl , Triglycidyl-p-
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4A].
  • crosslinkable compounds represented by the formulas [4a] to [4k] described in the 58th to 59th items of International Publication No. 2011/132751 (published 2011.10.27) can be mentioned.
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A].
  • crosslinkable compounds represented by the formulas [5-1] to [5-42] described in the paragraphs 76 to 82 of International Publication No. 2012/014898 (published in 2012.2.2) Can be mentioned.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine resin, a urea resin, a guanamine resin, and a glycoluril such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( (sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene Cold di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether
  • E 1 represents at least one selected from a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring, and a phenanthrene ring
  • E 2 represents And represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
  • crosslinkable compound used for the composition of this invention and a liquid-crystal aligning agent may be one type, and may combine two or more types.
  • the content of the crosslinkable compound in the composition and the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components.
  • the amount is preferably 0.1 parts by mass to 100 parts by mass with respect to 100 parts by mass of all the polymer components. More preferred is 1 to 50 parts by mass.
  • composition and liquid crystal alignment treatment agent of the present invention improve the uniformity of the film thickness and surface smoothness of the resin film when the composition and the liquid crystal alignment treatment agent are applied. Can be used.
  • Examples of the compound that improves the uniformity of the film thickness and the surface smoothness of the resin coating include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the ratio of these surfactants to be used is preferably 0.01 parts by mass to 2 parts by mass, and more preferably 0.00 parts by mass with respect to 100 parts by mass of all the polymer components contained in the composition and the liquid crystal aligning agent. 01 parts by mass to 1 part by mass.
  • the composition and liquid crystal alignment treatment agent of the present invention include As long as the effects of the invention are not impaired, a dielectric material or a conductive material for the purpose of changing electrical characteristics such as dielectric constant and conductivity of the resin coating may be added.
  • the composition of the present invention can be used as a polyimide film after coating and baking on a substrate.
  • a plastic substrate such as a glass substrate, a silicon wafer, an acrylic substrate, a polycarbonate substrate, or a PET (polyethylene terephthalate) substrate can be used depending on a target device.
  • a polyimide film can also be used as a film substrate as it is.
  • the coating method of the composition is not particularly limited, but industrially, there are methods such as a dipping method, a roll coater method, a slit coater method, a spinner method, a spray method, screen printing, offset printing, flexographic printing, or an inkjet method. It is common. You may use these according to the objective.
  • the solvent is evaporated at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven, and the polyimide film and can do.
  • a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven
  • the polyimide film can be produced even at a temperature of 200 ° C. or lower.
  • the thickness of the polyimide film after firing can be adjusted to 0.01 to 100 ⁇ m depending on the purpose.
  • the liquid crystal alignment treatment agent using the composition of the present invention can be used as a liquid crystal alignment film by applying alignment treatment by rubbing treatment or light irradiation after coating and baking on a substrate.
  • alignment treatment by rubbing treatment or light irradiation after coating and baking on a substrate.
  • VA mode it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used in this case is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate, a polycarbonate substrate, or a PET (polyethylene terephthalate) substrate can also be used.
  • a substrate on which an ITO (indium tin oxide) electrode or the like for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • the liquid crystal aligning agent After applying the liquid crystal aligning agent on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal aligning agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of 30 to 250 ° C.
  • a liquid crystal aligning film can be produced also at the temperature of 200 degrees C or less. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 150 nm. When the liquid crystal is horizontally aligned or tilted, the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, and then preparing a liquid crystal cell by a known method.
  • a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of bonding the substrate after dropping the liquid crystal on the surface of the liquid crystal alignment film on which the spacers are dispersed, and the like.
  • the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board
  • the liquid crystal composition is also preferably used for a liquid crystal display device produced through a step of polymerizing a polymerizable compound by at least one of irradiation with active energy rays and heating while applying a voltage between electrodes.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
  • the liquid crystal display element controls a pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a PSA method a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound.
  • the pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer.
  • the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
  • liquid crystal display element of the present invention after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above method, a liquid crystal cell is prepared, and a polymerizable compound is applied by at least one of ultraviolet irradiation and heating. Polymerization can control the orientation of liquid crystal molecules.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • the substrate is bonded and sealed.
  • a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled. The seizure characteristics of the steel deteriorate.
  • the polymerizable compound After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferable to use it for a liquid crystal display element manufactured through a step of arranging a liquid crystal alignment film containing a group and applying a voltage between electrodes, that is, an SC-PVA mode.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C.
  • a pair of substrates on which the liquid crystal alignment film of the present invention is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is prepared.
  • the other substrate is bonded so that the inner side is on the inside and the liquid crystal is injected under reduced pressure to seal, or the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is bonded and sealed.
  • the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
  • the liquid crystal aligning agent of the present invention becomes a liquid crystal alignment film having excellent coating properties, and furthermore, even when firing at the time of producing the liquid crystal alignment film is at a low temperature, It becomes a liquid crystal alignment film excellent in VHR which is a characteristic. Therefore, the liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention has excellent reliability, and is used for a large-screen high-definition liquid crystal television, a small-sized car navigation system, a smartphone, and the like. It can be suitably used.
  • ⁇ Monomer for producing the polyimide polymer of the present invention (Specific side chain diamine compound of the present invention) A1: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene (specific side chain having a specific side chain structure represented by the formula [1-1] of the present invention) Type diamine compound) A2: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxymethyl] benzene (specific side having a specific side chain structure represented by the formula [1-1] of the present invention) Chain-type diamine compounds) A3: 1,3-diamino-4- ⁇ 4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy ⁇ benzene (shown by the formula [1-1] of the present invention) Specific side chain type diamine compound having specific side chain structure)
  • C1 A diamine compound represented by the following formula [C1] (a diamine compound having a nitrogen-containing heterocycle represented by the formula [3a] of the present invention)
  • C2 a diamine compound represented by the following formula [C2] (a diamine compound having a nitrogen-containing heterocycle represented by the formula [3a] of the present invention)
  • E1 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • E2 bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • E3 the following formula [E3
  • E4 tetracarboxylic dianhydride represented by the following formula [E4]
  • E5 tetracarboxylic dianhydride represented by the following formula [E5]
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • ⁇ -BL ⁇ -butyrolactone
  • BCS ethylene glycol monobutyl ether
  • PB propylene glycol monobutyl ether
  • EC diethylene glycol monoethyl ether
  • DME dipropylene glycol dimethyl ether
  • the imidation ratio of polyimide of the present invention was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05 mass% TMS (tetramethylsilane). ) Mixture) (0.53 ml) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • NMR nuclear magnetic resonance
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • NEP was added to the obtained polyamic acid solution (30.0 g), diluted to 6% by mass, acetic anhydride (4.40 g) and pyridine (3.30 g) were added as an imidization catalyst, and 3.80 ° C. was added. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • Tables 1 and 2 show the polyimide polymers of the present invention.
  • Tables 3 to 5 show the compositions and liquid crystal aligning agents of the present invention.
  • the printing area was in the range of 80 ⁇ 80 mm with respect to the center of the substrate, the printing pressure was 0.2 mm, the number of discarded substrates was 5, and printing was temporarily performed.
  • the time until drying was 90 seconds, temporary drying was performed on a hot plate at 70 ° C. for 5 minutes, and main firing was performed in a heat-circulating clean oven at 160 ° C. for 15 minutes.
  • the number of pinholes in the obtained substrate with the polyimide film was confirmed. Specifically, this polyimide film-coated substrate was visually observed under a sodium lamp, and the number of pinholes on the polyimide film was counted. The smaller the number of pinholes, the fewer the precipitates in the composition, and the better the evaluation.
  • Tables 6 to 8 show the number of pinholes obtained in the examples and comparative examples.
  • compositions obtained in the examples and comparative examples of the present invention can be used for liquid crystal alignment treatment agents. Therefore, the evaluation of pinholes in the polyimide film of the compositions obtained in the examples and comparative examples of the present invention was also evaluated as pinholes in the liquid crystal alignment film.
  • evaluation of printability of composition and liquid crystal aligning agent evaluation of coating film edge
  • evaluation of the coating film end of the polyimide film that is, polyimide film end Evaluation of linearity (also referred to as evaluation of linearity) and swell of the polyimide film end (also referred to as evaluation of swell) were performed.
  • Evaluation of the linearity of the end of the polyimide film was performed by observing the polyimide film at the right end with respect to the printing direction using an optical microscope. More specifically, the difference between (1) and (2) in FIG. 1 of the polyimide film image obtained by observing at an optical microscope magnification of 25 times, that is, the length of A in FIG. did. At that time, images of all polyimide films were obtained at the same magnification. The shorter the length of A, the better the linearity of the end of the polyimide film.
  • the evaluation of the bulge at the end of the polyimide film was performed by observing the polyimide film at the right end with respect to the printing direction with an optical microscope. Specifically, the length of B in FIG. 2 of the polyimide film image obtained by observing at an optical microscope magnification of 25 was measured. At that time, all polyimide film images were obtained at the same magnification. The shorter the length of B, the better the rise of the end of the polyimide film.
  • Tables 6 to 8 show the lengths A and B obtained in the examples and comparative examples.
  • compositions obtained in the examples and comparative examples of the present invention can be used for liquid crystal alignment treatment agents. Therefore, evaluation of the coating film edge part of the polyimide film obtained by the present Example and the comparative example was also made evaluation of the coating film edge part of a liquid crystal aligning film.
  • VHR voltage holding ratio
  • these liquid crystal alignment treatment agents were pressure filtered through a membrane filter having a pore size of 1 ⁇ m and washed with pure water and IPA (isopropyl alcohol) (40 mm long ⁇ 30 mm wide, thickness) 0.7mm)) is spin-coated on the ITO surface and heat-treated on a hot plate at 80 ° C. for 3 minutes and in a heat-circulating clean oven at 160 ° C. for 15 minutes with a liquid crystal alignment film with a thickness of 100 nm
  • An ITO substrate was obtained.
  • a rubbing apparatus having a roll diameter of 120 mm is used to rub the coated surface of this ITO substrate under the conditions of roll rotation speed: 300 rpm, roll progression speed: 20 mm / sec, push-in amount: 0.4 mm. It was.
  • the liquid crystal aligning agent (19) obtained by 19 methods, the liquid crystal aligning agent (21) obtained by the method of Comparative Example 1 and the liquid crystal aligning agent (22) obtained by the method of Comparative Example 2 were used.
  • the liquid crystal cell used was MLC-2003 (manufactured by Merck Japan) as the liquid crystal.
  • MLC-6608 manufactured by Merck Japan was used for the liquid crystal in the liquid crystal cell using the liquid crystal aligning agent obtained in the examples and comparative examples other than the above.
  • VHR voltage holding ratio
  • liquid crystal cell in which the measurement of VHR was completed was stored in a high-temperature bath at a temperature of 80 ° C. for 720 hours, and VHR was measured again (also referred to after storage in a high-temperature bath) under the same conditions as described above.
  • the evaluation was made better as the decrease in the VHR value after storage in the high-temperature bath was smaller than the VHR value immediately after production of the liquid crystal cell.
  • Tables 9 to 11 show the voltage holding ratio (VHR) values obtained in the examples and comparative examples.
  • Liquid crystal aligning agent (4) obtained by the method of Example 4 of the present invention Liquid crystal aligning agent (7) obtained by the method of Example 7 and Liquid crystal aligning agent obtained by the method of Example 15 (15) was used to evaluate ink jet coatability.
  • these liquid crystal alignment treatment agents are pressure filtered through a membrane filter having a pore size of 1 ⁇ m, and washed with pure water and IPA using an HIS-200 (manufactured by Hitachi Plant Technology) as an inkjet coating machine.
  • the coating area is 70 ⁇ 70 mm
  • the nozzle pitch is 0.423 mm
  • the scan pitch is 0.5 mm
  • the coating speed is 40 mm / second
  • the time from coating to temporary drying is 60 Second, preliminary drying was performed on a hot plate at 70 ° C. for 5 minutes, and main baking was performed in a heat circulation type clean oven at 160 ° C. for 15 minutes.
  • the obtained substrate with a liquid crystal alignment film was visually observed under a sodium lamp and the number of pinholes on the liquid crystal alignment film was counted. It was less than 5. Moreover, the liquid crystal aligning film excellent in the coating-film uniformity was obtained in any Example.
  • VHR voltage holding ratio
  • Liquid crystal aligning agent (6) obtained by the method of Example 6 of the present invention
  • Liquid crystal aligning agent (9) obtained by the method of Example 9
  • Liquid crystal aligning agent obtained by the method of Example 14 Using (14), production of a liquid crystal cell and evaluation of liquid crystal orientation (PSA cell) were performed. Specifically, these liquid crystal aligning agents were pressure filtered through a membrane filter having a pore size of 1 ⁇ m, washed with pure water and IPA, and a substrate with ITO electrodes (length: 40 mm ⁇ width) of 10 ⁇ 10 mm and a pattern spacing of 20 ⁇ m.
  • the response speed of the liquid crystal before and after UV irradiation of this liquid crystal cell was measured.
  • T90 ⁇ T10 from 90% transmittance to 10% transmittance was measured.
  • the PSA cell obtained in any of the examples confirmed that the alignment direction of the liquid crystal was controlled because the response speed of the liquid crystal cell after ultraviolet irradiation was higher than that of the liquid crystal cell before ultraviolet irradiation. . Further, in any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystal was uniformly aligned.
  • ECLIPSE E600WPOL polarizing microscope
  • Liquid crystal aligning agent (6) obtained by the method of Example 6 of the present invention Liquid crystal aligning agent (9) obtained by the method of Example 9 and Liquid crystal aligning agent obtained by the method of Example 14 Using (14), production of a liquid crystal cell and evaluation of liquid crystal orientation (SC-PVA cell) were performed.
  • the polymerizable compound (1) shown above is added to these liquid crystal aligning agents in an amount of 2% by mass with respect to 100% by mass of the total polymer components in the liquid crystal aligning agent, and at 25 ° C. for 4 hours. Stir.
  • the obtained liquid crystal aligning agent was pressure filtered through a membrane filter having a pore size of 1 ⁇ m, washed with pure water and IPA, and a 10 ⁇ 10 mm substrate with an ITO electrode having a pattern spacing of 20 ⁇ m (length 40 mm ⁇ width 30 mm).
  • Thickness 0.7mm and the center of the 10x40mm ITO electrode substrate (length 40mm x width 30mm, thickness 0.7mm) on the ITO surface is spin-coated on a hot plate at 80 ° C for 3 minutes, A heat treatment was performed at 160 ° C. for 15 minutes in a heat circulation type clean oven to obtain a substrate with a liquid crystal alignment film having a film thickness of 100 nm.
  • the response speed of the liquid crystal before and after UV irradiation of this liquid crystal cell was measured.
  • T90 ⁇ T10 from 90% transmittance to 10% transmittance was measured.
  • the response speed of the liquid crystal cell after ultraviolet irradiation was higher than that of the liquid crystal cell before ultraviolet irradiation. confirmed. Further, in any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystal was uniformly aligned.
  • ECLIPSE E600WPOL polarizing microscope
  • Example 1 To the polyamic acid solution (1) (10.0 g) having a resin solid concentration of 25% by mass obtained by the synthesis method of Synthesis Example 1, S1 (8.17 g), K1 (0.18 g), NEP (3.92 g) ) And PB (19.6 g) were added, and the mixture was stirred at 25 ° C. for 8 hours to obtain a composition (1). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (1) was used for evaluation also as a liquid-crystal aligning agent (1).
  • composition (1) and liquid crystal aligning agent (1) “evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)”, “composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
  • VHR voltage holding ratio
  • Example 2 S1 (16.8 g) and BCS (16.4 g) were added to the polyamic acid solution (2) (10.5 g) having a resin solid content concentration of 25% by mass obtained by the synthesis method of Synthesis Example 2, and at 25 ° C. The mixture was stirred for 4 hours to obtain a composition (2). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (2) was used for evaluation also as a liquid-crystal aligning agent (2).
  • composition (2) and liquid crystal aligning agent (2) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 3 S1 (13.8 g) was added to the polyimide powder (3) (1.60 g) obtained by the synthesis method of Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. BCS (11.3 g) was added to this solution and stirred at 40 ° C. for 3 hours to obtain a composition (3). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (3) was used for evaluation also as a liquid-crystal aligning agent (3).
  • composition (3) and liquid crystal aligning agent (3) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 4 S1 (14.1 g) and NEP (9.37 g) were added to the polyimide powder (4) (1.70 g) obtained by the synthesis method of Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours. BCS (9.37 g) and PB (14.1 g) were added to this solution, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (4). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (4) was used for evaluation as a liquid-crystal aligning agent (4).
  • composition (4) and liquid crystal aligning agent (4) evaluation of printability of composition and liquid crystal aligning agent (pinhole evaluation)", evaluation of voltage holding ratio (VHR)” (Normal cell) "and” Evaluation of ink-jet coating property of liquid crystal aligning agent ".
  • Example 5 S1 (14.0 g) and BCS (17.7 g) were added to a polyamic acid solution (5) (10.0 g) having a resin solid content concentration of 25 mass% obtained by the synthesis method of Synthesis Example 5, and the mixture was added at 25 ° C. The mixture was stirred for 4 hours to obtain a composition (5). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (5) was used for evaluation also as a liquid-crystal aligning agent (5).
  • composition and liquid crystal aligning agent (5) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 6 S1 (14.7 g) was added to the polyimide powder (6) (1.70 g) obtained by the synthesis method of Synthesis Example 6, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (12.0 g) was added and stirred at 40 ° C. for 3 hours to obtain a composition (6). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (6) was used for evaluation also as a liquid-crystal aligning agent (6).
  • composition and liquid crystal aligning agent (6) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent evaluation of printability (evaluation of coating film edge)
  • VHR voltage holding ratio
  • PSA cell Preparation of liquid crystal cell and evaluation of liquid crystal orientation
  • SC-PVA Cell Liquid crystal cell Preparation and Evaluation of Liquid Crystal Orientation
  • Example 7 S1 (9.10 g) and NEP (13.7 g) were added to the polyimide powder (6) (1.65 g) obtained by the synthesis method of Synthesis Example 6, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (22.8 g) was added and stirred at 40 ° C. for 3 hours to obtain a composition (7). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (7) was used for evaluation as a liquid-crystal aligning agent (7).
  • composition (7) and liquid crystal aligning agent (7) evaluation of printability of composition and liquid crystal aligning agent (pinhole evaluation)” and “evaluation of voltage holding ratio (VHR)” (Normal cell) "and” Evaluation of ink-jet coating property of liquid crystal aligning agent ".
  • Example 8 S1 (6.27 g) and NEP (7.52 g) were added to the polyimide powder (7) (1.60 g) obtained by the synthesis method of Synthesis Example 7, and dissolved by stirring at 70 ° C. for 24 hours. BCS (2.51 g) and PB (8.77 g) were added to this solution, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (8). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (8) was used for evaluation also as a liquid-crystal aligning agent (8).
  • composition and liquid crystal aligning agent (8) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 9 S1 (7.52 g) and NMP (5.01 g) were added to the polyimide powder (8) (1.60 g) obtained by the synthesis method of Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. PB (10.0 g) and DME (2.51 g) were added to this solution, and the mixture was stirred at 40 ° C. for 5 hours to obtain a composition (9). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (9) was used for evaluation also as a liquid-crystal aligning agent (9).
  • composition (9) and liquid crystal aligning agent (9) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent evaluation of printability (evaluation of coating film edge)
  • VHR voltage holding ratio
  • PSA cell Preparation of liquid crystal cell and evaluation of liquid crystal orientation
  • SC-PVA Cell Liquid crystal cell Preparation and Evaluation of Liquid Crystal Orientation
  • Example 10 S1 (10.3 g) and NEP (7.76 g) were added to the polyimide powder (9) (1.65 g) obtained by the synthesis method of Synthesis Example 9, and the mixture was dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (6.46 g) and EC (1.29 g) were added, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (10). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (10) was used for evaluation also as a liquid-crystal aligning agent (10).
  • composition (10) and liquid crystal alignment treatment agent (10) evaluation of printability of composition and liquid crystal alignment treatment agent (evaluation of pinhole)
  • composition and liquid crystal alignment treatment agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 11 S1 (3.76 g) and NEP (10.0 g) were added to the polyimide powder (10) (1.60 g) obtained by the synthesis method of Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. BCS (11.3 g) was added to this solution, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (11). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (11) was used for evaluation also as a liquid-crystal aligning agent (11).
  • Example 12 S1 (5.33 g) and ⁇ -BL (13.3 g) were added to the polyimide powder (11) (1.70 g) obtained by the synthesis method of Synthesis Example 11, and dissolved by stirring at 70 ° C. for 24 hours. It was. To this solution, BCS (7.9 g) was added and stirred at 40 ° C. for 3 hours to obtain a composition (12). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (12) was used for evaluation also as a liquid-crystal aligning agent (12).
  • composition (12) and liquid crystal aligning agent (12) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 13 S1 (7.76 g) and NMP (5.17 g) were added to the polyimide powder (12) (1.65 g) obtained by the synthesis method of Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (5.17 g) and PB (7.76 g) were added and stirred at 40 ° C. for 3 hours to obtain a composition (13). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (13) was used for evaluation also as a liquid-crystal aligning agent (13).
  • composition (13) and liquid crystal alignment treatment agent (13) evaluation of printability of composition and liquid crystal alignment treatment agent (evaluation of pinhole)
  • composition and liquid crystal alignment treatment agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 14 S1 (5.01 g) and NEP (7.52 g) were added to the polyimide powder (13) (1.60 g) obtained by the synthesis method of Synthesis Example 13, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (12.5 g) was added and stirred at 40 ° C. for 3 hours to obtain a composition (14). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (14) was used for evaluation also as a liquid-crystal aligning agent (14).
  • composition (14) and liquid crystal aligning agent (14) “evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)”, “composition and liquid crystal aligning agent “Evaluation of printability (evaluation of coating film edge)”, “Evaluation of voltage holding ratio (VHR) (normal cell)”, “Preparation of liquid crystal cell and evaluation of liquid crystal orientation (PSA cell)” and “Liquid crystal cell Preparation and Evaluation of Liquid Crystal Orientation (SC-PVA Cell) ”were performed.
  • VHR voltage holding ratio
  • PSA cell Preparation of liquid crystal cell and evaluation of liquid crystal orientation
  • SC-PVA Cell Liquid Crystal Cell Preparation and Evaluation of Liquid Crystal Orientation
  • Example 15 S1 (4.69 g) and ⁇ -BL (18.8 g) were added to the polyimide powder (13) (1.70 g) obtained by the synthesis method of Synthesis Example 13, and dissolved by stirring at 70 ° C. for 24 hours. It was. To this solution, BCS (9.37 g) and PB (14.1 g) were added and stirred at 40 ° C. for 3 hours to obtain a composition (15). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (15) was used for evaluation as a liquid-crystal aligning agent (15).
  • Example 16 S1 (12.5 g) and NEP (2.51 g) were added to the polyimide powder (14) (1.60 g) obtained by the synthesis method of Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, K1 (0.08 g) and BCS (10.0 g) were added and stirred at 40 ° C. for 5 hours to obtain a composition (16). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (16) was used for evaluation also as a liquid-crystal aligning agent (16).
  • composition (16) and liquid crystal alignment treatment agent (16) evaluation of printability of composition and liquid crystal alignment treatment agent (pinhole evaluation)
  • composition and liquid crystal alignment treatment agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 17 S1 (15.0 g) and ⁇ -BL (2.51 g) were added to the polyimide powder (15) (1.60 g) obtained by the synthesis method of Synthesis Example 15, and dissolved by stirring at 70 ° C. for 24 hours. It was. To this solution, K1 (0.08 g), BCS (2.51 g) and PB (5.01 g) were added and stirred at 40 ° C. for 5 hours to obtain a composition (17). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (17) was used for evaluation also as a liquid-crystal aligning agent (17).
  • composition (17) and liquid crystal aligning agent (17) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 18 S1 (2.66 g) and NEP (10.7 g) were added to the polyimide powder (16) (1.70 g) obtained by the synthesis method of Synthesis Example 16, and dissolved by stirring at 70 ° C. for 24 hours. To this solution were added BCS (5.33 g) and PB (7.99 g), and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (18). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (18) was used for evaluation also as a liquid-crystal aligning agent (18).
  • composition (18) and liquid crystal aligning agent (18) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 19 S1 (8.77 g) and NMP (5.01 g) were added to the polyimide powder (17) (1.60 g) obtained by the synthesis method of Synthesis Example 17, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (8.77 g) and EC (2.51 g) were added, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (19). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (19) was used for evaluation also as a liquid-crystal aligning agent (19).
  • composition (19) and liquid crystal aligning agent (19) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • Example 20 S1 (10.0 g) and NEP (3.76 g) were added to the polyimide powder (18) (1.60 g) obtained by the synthesis method of Synthesis Example 18, and dissolved by stirring at 70 ° C. for 24 hours. BCS (3.76 g) and PB (7.52 g) were added to this solution, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (20). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (20) was used for evaluation also as a liquid-crystal aligning agent (20).
  • composition (20) and liquid crystal aligning agent (20) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • composition (21) and liquid crystal aligning agent (21) evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • NMP (14.7 g) was added to the polyimide powder (3) (1.70 g) obtained by the synthesis method of Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (12.0 g) was added and stirred at 40 ° C. for 3 hours to obtain a composition (22).
  • this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (22) was used for evaluation also as a liquid-crystal aligning agent (22).
  • composition and liquid crystal aligning agent evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • composition and liquid crystal aligning agent evaluation of printability of composition and liquid crystal aligning agent evaluation of pinhole
  • composition and liquid crystal aligning agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • NMP (14.2 g) was added to the polyimide powder (6) (1.65 g) obtained by the synthesis method of Synthesis Example 6 and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (11.6g) was added to this solution, and it stirred at 40 degreeC for 3 hours, and obtained the composition (24).
  • this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (24) was used for evaluation also as a liquid-crystal aligning agent (24).
  • composition and liquid crystal aligning agent evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)
  • composition and liquid crystal aligning agent Evaluation of printability evaluation of coating film edge
  • VHR voltage holding ratio
  • the polyimide film obtained from the composition of the example of the present invention has a uniform coating property that does not generate pinholes compared to the polyimide film obtained from the composition of the comparative example. Furthermore, the linearity of the end portion of the polyimide film was high, and the rise of the end portion was small.
  • a comparison between the composition using the specific solvent which is the component (A) of the present invention and a composition not using it that is, comparison between Example 2 and Comparative Example 1, Example 3
  • Example 6 and Comparative Example 2 The comparison between Example 6 and Comparative Example 2
  • Example 5 and Comparative Example 3 the comparison between Example 6 and Comparative Example 4.
  • the number of pinholes on the polyimide film was large as compared with the corresponding examples, and furthermore, the coating property at the coating film end portion of the polyimide film was also poor.
  • the composition of these Examples was used also for evaluation as a liquid-crystal aligning agent, the result of the Example using these compositions was also made into the result of a liquid-crystal aligning agent.
  • the liquid crystal aligning film obtained from the liquid crystal aligning agent using the composition of the present invention is fired when producing a liquid crystal aligning film as compared with the liquid crystal aligning film obtained from the liquid crystal aligning agent of the comparative example. Even when the temperature was low, a result of excellent voltage holding ratio (also referred to as VHR) in the liquid crystal display element was obtained.
  • VHR voltage holding ratio
  • a comparison between a liquid crystal aligning agent using a specific solvent which is the component (A) of the present invention and a liquid crystal aligning agent not using the same that is, a comparison between Example 2 and Comparative Example 1.
  • the comparison between Example 3 and Comparative Example 2 the comparison between Example 5 and Comparative Example 3
  • the value of VHR was lower than in the corresponding examples.
  • the VHR was greatly reduced with high temperature.
  • the composition of the present invention can suppress the generation of pinholes accompanying repelling when forming a polyimide film, and can provide a polyimide film having excellent coating properties at the edges. At that time, a polyimide film can be produced even by baking at a low temperature.
  • the composition of the present invention when used for a liquid crystal alignment treatment agent, the generation of pinholes accompanying repelling can be suppressed, and a liquid crystal alignment film having excellent coating properties at the end can be obtained. Furthermore, even when the firing for producing the liquid crystal alignment film is performed at a low temperature, the liquid crystal alignment film has excellent electrical characteristics, particularly voltage holding ratio (also referred to as VHR). Therefore, the liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention has excellent reliability, and is used for a large-screen high-definition liquid crystal television, a small-sized car navigation system, a smartphone, and the like. It can be suitably used, and is useful for a TN element, STN element, TFT liquid crystal element, particularly a vertical alignment type liquid crystal display element such as VA mode, PSA mode and SC-PVA mode.

Abstract

The present invention provides a composition that contains: a component (A) that is a solvent that is represented by formula [A] (in the formula, X1 and X2 each independently represent an alkyl group having 1-3 carbon atoms and X3 and X4 each independently represent an alkyl group having 1-3 carbon atoms); and a component (B) that is at least one polymer selected from among polyimide precursors and polyimides.

Description

組成物、液晶配向処理剤、液晶配向膜および液晶表示素子Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、ポリイミド膜の形成に用いられる組成物、液晶表示素子の製造において用いられる液晶配向処理剤、この液晶配向処理剤から得られる液晶配向膜およびこの液晶配向膜を使用した液晶表示素子に関するものである。 The present invention relates to a composition used for forming a polyimide film, a liquid crystal alignment treatment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film. Is.
 高分子材料など有機材料からなる膜は、形成の容易さや絶縁性能などが着目され、電子デバイスにおいて、層間絶縁膜や保護膜などとして広く用いられている。なかでも、表示デバイスとして良く知られた液晶表示素子では、有機材料からなる有機膜が液晶配向膜として使用されている。 A film made of an organic material such as a polymer material is widely used as an interlayer insulating film, a protective film, and the like in electronic devices because of its ease of formation and insulation performance. Among them, in a liquid crystal display element well known as a display device, an organic film made of an organic material is used as a liquid crystal alignment film.
 近年、液晶表示素子が、大画面の液晶テレビや高精細なモバイル用途(デジタルカメラや携帯電話の表示部分)に広く実用化されている。それに伴い、従来に比べて使用される基板が大型化され、さらには、基板段差の凹凸が大きくなってきている。そのような状況においても、表示特性の点から大型基板や段差に対して、均一に液晶配向膜が塗膜されることが求められてきた。この液晶配向膜の作製の工程において、ポリアミド酸や溶媒可溶性ポリイミド(ポリイミドともいう)などのポリイミド系重合体(樹脂ともいう)を用いた液晶配向処理剤を基板に塗布する場合、工業的にはフレキソ印刷法やインクジェット塗布法などで行うことが一般的である。その際、液晶配向処理剤の溶媒には、樹脂の溶解性に優れる溶媒(良溶媒ともいう)であるN-メチル-2-ピロリドン(NMPともいう)やγ-ブチロラクトン(γ-BLともいう)などに加えて、液晶配向膜の塗膜性を高めるために、樹脂の溶解性が低い溶媒(貧溶媒ともいう)であるエチレングリコールモノブチルエーテルなどが混合されている(例えば特許文献1参照)。 In recent years, liquid crystal display devices have been widely put into practical use for large-screen liquid crystal televisions and high-definition mobile applications (display portions of digital cameras and mobile phones). Along with this, the size of the substrate to be used is increased compared to the conventional one, and the unevenness of the step of the substrate has become larger. Even in such a situation, it has been demanded that the liquid crystal alignment film is uniformly coated on a large substrate or a step from the viewpoint of display characteristics. In the process of producing the liquid crystal alignment film, when a liquid crystal alignment treatment agent using a polyimide polymer (also referred to as resin) such as polyamic acid or solvent-soluble polyimide (also referred to as polyimide) is applied to a substrate, industrially In general, the flexographic printing method or the ink jet coating method is used. At that time, as a solvent for the liquid crystal alignment treatment agent, N-methyl-2-pyrrolidone (also referred to as NMP) or γ-butyrolactone (also referred to as γ-BL), which is a solvent having excellent resin solubility (also referred to as a good solvent), is used. In addition to the above, in order to improve the coating properties of the liquid crystal alignment film, ethylene glycol monobutyl ether, which is a solvent having low resin solubility (also referred to as a poor solvent), or the like is mixed (for example, see Patent Document 1).
日本特開平2-37324号公報Japanese Unexamined Patent Publication No. 2-37324
 ポリイミド系の有機膜(ポリイミド膜ともいう)は、液晶配向膜の他に、電子デバイスにおける層間絶縁膜や保護膜などに広く用いられている。液晶配向膜の場合と同様、ポリイミド前駆体であるポリアミド酸またはポリイミドの溶液を含む組成物(塗布溶液ともいう)から形成することが可能である。そして、他の電子デバイスにおいても、ポリイミド膜の塗膜性を高めることが求められている。すなわち、ポリイミド膜の塗膜性の向上は、塗布に伴い発生する欠陥を抑制するために有効となる。 Polyimide-based organic films (also referred to as polyimide films) are widely used as interlayer insulating films and protective films in electronic devices in addition to liquid crystal alignment films. As in the case of the liquid crystal alignment film, it can be formed from a composition (also referred to as a coating solution) containing a polyamic acid or polyimide solution that is a polyimide precursor. And also in other electronic devices, it is calculated | required to improve the coating property of a polyimide film. That is, the improvement of the coating property of the polyimide film is effective for suppressing defects that occur with application.
 また、側鎖を有するジアミン化合物を使用して得られるポリアミド酸やポリイミドを用いた液晶配向処理剤は、側鎖部位の疎水性が高いために液晶配向膜の塗膜性が低下する傾向にある。特に、均一な塗膜性が得られない場合、すなわち、はじきに伴うピンホールが発生した場合、液晶表示素子にした際に、その部分が表示欠陥となる。そのため、均一な塗膜性を得るために、基板への塗布溶液の濡れ拡がり性が高い貧溶媒の混合量を多くする必要がある。しかしながら、貧溶媒は、ポリアミド酸やポリイミドを溶解させる能力に劣るため、大量に混合すると樹脂の析出が起こる問題がある。 Moreover, the liquid crystal aligning agent using the polyamic acid and polyimide obtained by using the diamine compound which has a side chain has the tendency for the coating property of a liquid crystal aligning film to fall because the hydrophobicity of a side chain site | part is high. . In particular, when uniform coating properties cannot be obtained, that is, when pinholes accompanying repelling occur, when the liquid crystal display element is formed, that portion becomes a display defect. Therefore, in order to obtain uniform coating properties, it is necessary to increase the mixing amount of a poor solvent having high wettability of the coating solution to the substrate. However, since a poor solvent is inferior in the ability to dissolve a polyamic acid or a polyimide, there exists a problem that resin precipitation will occur when it mixes in large quantities.
 加えて、近年、スマートフォンや携帯電話などのモバイル用途向けに、液晶表示素子が用いられているが、これら用途では、できるだけ多くの表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤が、液晶配向膜の端部に近接した位置に存在する。そのため、液晶配向膜の端部の塗膜性が低下する場合、すなわち、液晶配向膜の端部が直線ではない場合、あるいはその端部が盛り上がっている状態である場合、液晶配向膜とシール剤との接着(密着ともいう)効果が低くなり、液晶表示素子の表示特性や信頼性を低下させてしまう。 In addition, in recent years, liquid crystal display elements have been used for mobile applications such as smartphones and mobile phones. In these applications, in order to secure as many display surfaces as possible, the substrates of the liquid crystal display elements are bonded together. The sealant used in is present at a position close to the end of the liquid crystal alignment film. Therefore, when the coating property of the end portion of the liquid crystal alignment film is lowered, that is, when the end portion of the liquid crystal alignment film is not a straight line, or when the end portion is raised, the liquid crystal alignment film and the sealing agent Adhesive (also referred to as adhesion) effect is reduced, and the display characteristics and reliability of the liquid crystal display element are lowered.
 さらには、ポリイミドを用いた組成物または液晶配向処理剤においては、それらに用いる溶媒であるNMPやγ-BLの沸点が高いため、層間絶縁膜や保護膜などのポリイミド膜および液晶配向膜を作製する際に、高温での焼成が必要となる。そのため、エネルギーコストの削減の点から、これらポリイミド膜および液晶配向膜を作製する際に、低温での焼成が求められている。 Furthermore, in the composition or the liquid crystal alignment treatment agent using polyimide, since the boiling point of NMP and γ-BL which are the solvents used for them is high, a polyimide film such as an interlayer insulating film and a protective film and a liquid crystal alignment film are produced. In this case, firing at a high temperature is required. Therefore, from the viewpoint of reducing energy costs, baking at a low temperature is required when producing these polyimide films and liquid crystal alignment films.
 そこで本発明は、上記特性を兼ね備えた組成物を提供することを目的とする。すなわち、本発明の目的は、ポリイミド膜を形成する際に、はじきに伴うピンホールの発生を抑制することができ、その端部の塗膜性にも優れる組成物を提供することである。その際、低温での焼成でも、ポリイミド膜が作製できる組成物となることも目的とする。 Therefore, an object of the present invention is to provide a composition having the above characteristics. That is, an object of the present invention is to provide a composition that can suppress the occurrence of pinholes accompanying repelling when forming a polyimide film and is excellent in the coating properties at the end. In that case, it aims also at becoming the composition which can produce a polyimide film also by baking at low temperature.
 また、本発明の組成物を用いた液晶配向処理剤において、液晶配向膜を形成する際に、はじきに伴うピンホールの発生を抑制することができ、さらに、その端部の塗膜性にも優れる液晶配向処理剤を提供することである。特に、側鎖を有するジアミン化合物を使用して得られるポリアミド酸やポリイミドを用いた液晶配向処理剤であっても、これら特性に優れる液晶配向処理剤を提供することにある。さらには、液晶配向膜を作製する際の焼成が低温であっても、液晶表示素子における電気特性、特に電圧保持率(VHRともいう)に優れる液晶配向処理剤を提供することにある。 In addition, in the liquid crystal alignment treatment agent using the composition of the present invention, when forming a liquid crystal alignment film, it is possible to suppress the occurrence of pinholes due to repellency, and also to the coating properties at the end. It is to provide an excellent liquid crystal alignment treatment agent. In particular, an object of the present invention is to provide a liquid crystal aligning agent excellent in these characteristics even when it is a liquid crystal aligning agent using a polyamic acid or polyimide obtained by using a diamine compound having a side chain. It is another object of the present invention to provide a liquid crystal alignment treatment agent which is excellent in electrical characteristics, particularly voltage holding ratio (also referred to as VHR) in a liquid crystal display element even when firing at the time of producing a liquid crystal alignment film is at a low temperature.
 加えて、前記の組成物から得られるポリイミド膜、前記の液晶配向処理剤から得られる液晶配向膜および前記の液晶配向膜を有する液晶表示素子を提供することにある。 In addition, another object is to provide a polyimide film obtained from the composition, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display device having the liquid crystal alignment film.
 本発明者は、鋭意研究を行った結果、特定構造を有する溶媒とポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体を含有する組成物が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。 As a result of diligent research, the present inventors have found that a composition containing a solvent having a specific structure and at least one polymer selected from a polyimide precursor or a polyimide is extremely effective for achieving the above object. As a result, the present invention has been completed.
 すなわち、本発明は以下の要旨を有するものである。 That is, the present invention has the following gist.
(1)(A)成分:下記の式[A]:
Figure JPOXMLDOC01-appb-C000012

(式中、XおよびXは、それぞれ独立して、炭素数1~3のアルキル基を示し、XおよびXは、それぞれ独立して、炭素数1~3のアルキル基を示す)で示される溶媒;および
(B)成分:ポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体
を含有する組成物。
(1) Component (A): Formula [A] below:
Figure JPOXMLDOC01-appb-C000012

(Wherein, X 1 and X 2 each independently represent an alkyl group having 1 to 3 carbon atoms, and X 3 and X 4 each independently represent an alkyl group having 1 to 3 carbon atoms) And (B) component: a composition containing at least one polymer selected from polyimide precursors and polyimides.
(2)前記(A)成分の溶媒が、下記の式[A-1]:
Figure JPOXMLDOC01-appb-C000013

で示される溶媒である、上記(1)に記載の組成物。
(2) The solvent of the component (A) is represented by the following formula [A-1]:
Figure JPOXMLDOC01-appb-C000013

The composition as described in said (1) which is a solvent shown by these.
(3)前記(B)成分が、下記の式[1-1]および式[1-2]:
Figure JPOXMLDOC01-appb-C000014

(式中、Yは、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示し、Yは、単結合または-(CH-(bは1~15の整数である)を示し、Yは、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示し、Yは、ベンゼン環、シクロヘキサン環および複素環から選ばれる少なくとも1種の環の2価の環状基、またはステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、Yは、ベンゼン環、シクロヘキサン環および複素環から選ばれる少なくとも1種の環の2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは、0~4の整数を示し、Yは、炭素数1~22のアルキル基、炭素数2~22のアルケニル基、炭素数1~22のフッ素含有アルキル基、炭素数1~22のアルコキシル基および炭素数1~22のフッ素含有アルコキシル基から選ばれる少なくとも1種を示す);
Figure JPOXMLDOC01-appb-C000015

(式中、Yは、単結合、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示し、Yは、炭素数8~22のアルキル基または炭素数6~18のフッ素含有アルキル基を示す)
で示される構造から選ばれる少なくとも1種の構造を有するジアミン化合物を原料の一部に用いたポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体である、上記(1)または上記(2)に記載の組成物。
(3) The component (B) is represented by the following formula [1-1] and formula [1-2]:
Figure JPOXMLDOC01-appb-C000014

Wherein Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —CONH—, —NHCO—, —CON At least one linking group selected from (CH 3 ) —, —N (CH 3 ) CO—, —COO— and —OCO—, wherein Y 2 represents a single bond or — (CH 2 ) b — (b Is an integer of 1 to 15, and Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO Y represents at least one linking group selected from — and —OCO—, and Y 4 represents a carbon having a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a steroid skeleton A divalent organic group of formula 17 to 51, wherein any hydrogen atom on the cyclic group is a carbon atom Alkyl group having 1 to 3, an alkoxyl group having 1 to 3 carbon atoms, fluorine-containing alkyl group having 1 to 3 carbon atoms may be substituted with a fluorine-containing alkoxyl group or a fluorine atom having 1 to 3 carbon atoms, Y 5 represents a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, and n represents an integer of 0 to 4 Y 6 represents an alkyl group having 1 to 22 carbon atoms, an alkenyl group having 2 to 22 carbon atoms, a fluorine-containing alkyl group having 1 to 22 carbon atoms, an alkoxyl group having 1 to 22 carbon atoms, and fluorine having 1 to 22 carbon atoms. Contains At least one selected from alkoxyl groups);
Figure JPOXMLDOC01-appb-C000015

Wherein Y 7 is a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —COO— and At least one linking group selected from —OCO—, and Y 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms)
(1) or (2) above, which is at least one polymer selected from polyimide precursors and polyimides using a diamine compound having at least one structure selected from the structure represented by A composition according to 1.
(4)前記式[1-1]および式[1-2]で示される構造を有するジアミン化合物が、下記の式[1a]:
Figure JPOXMLDOC01-appb-C000016

(式中、Yは、前記式[1-1]および式[1-2]で示される構造から選ばれる少なくとも1種の構造を示し、mは、1~4の整数を示す)
で示されるジアミン化合物である、上記(3)に記載の組成物。
(4) A diamine compound having a structure represented by the formula [1-1] and the formula [1-2] is represented by the following formula [1a]:
Figure JPOXMLDOC01-appb-C000016

(Wherein Y represents at least one structure selected from the structures represented by the formulas [1-1] and [1-2], and m represents an integer of 1 to 4)
The composition as described in said (3) which is a diamine compound shown by these.
(5)前記(B)成分の重合体が、カルボキシル基(COOH基)およびヒドロキシル基(OH基)から選ばれる少なくとも1種の置換基を有するジアミン化合物を原料の一部に用いたポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体である、上記(1)~上記(4)のいずれかに記載の組成物。 (5) A polyimide precursor in which the polymer of the component (B) uses a diamine compound having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group) as a part of the raw material. The composition according to any one of (1) to (4) above, which is at least one polymer selected from the group consisting of polyimide and polyimide.
(6)前記カルボキシル基およびヒドロキシル基を有するジアミン化合物が、下記の式[2a]:
Figure JPOXMLDOC01-appb-C000017

{式中、Aは、下記の式[2-1]および式[2-2]:
Figure JPOXMLDOC01-appb-C000018

(式[2-1]中、aは、0~4の整数を示し、式[2-2]中、bは、0~4の整数を示す)から選ばれる少なくとも1つの構造の置換基を示し、mは、1~4の整数を示す}
で示されるジアミン化合物である、上記(5)に記載の組成物。
(6) The diamine compound having a carboxyl group and a hydroxyl group is represented by the following formula [2a]:
Figure JPOXMLDOC01-appb-C000017

{In the formula, A represents the following formula [2-1] and formula [2-2]:
Figure JPOXMLDOC01-appb-C000018

(In the formula [2-1], a represents an integer of 0 to 4, and in the formula [2-2], b represents an integer of 0 to 4). M represents an integer of 1 to 4}
The composition according to (5) above, which is a diamine compound represented by:
(7)前記(B)成分の重合体が、下記の式[3a]:
Figure JPOXMLDOC01-appb-C000019

(式中、Bは、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-および-N(CH)CO-から選ばれる少なくとも1種の結合基を示し、Bは、単結合、炭素数1~20の脂肪族炭化水素の2価の基、非芳香族環式炭化水素の2価の基および芳香族炭化水素の2価の基から選ばれる少なくとも1種を示し、Bは、単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-および-O(CH-(mは1~5の整数である)から選ばれる少なくとも1種の結合基を示し、Bは、窒素含有複素環基を示し、nは、1~4の整数を示す)で示されるジアミン化合物を原料の一部に用いたポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体である、上記(1)~上記(6)のいずれかに記載の組成物。
(7) The polymer of the component (B) is represented by the following formula [3a]:
Figure JPOXMLDOC01-appb-C000019

Wherein B 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — and Represents at least one linking group selected from —N (CH 3 ) CO—, wherein B 2 is a single bond, a divalent group of an aliphatic hydrocarbon having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon; And B 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—. , —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— and —O (CH 2 ) m — (m is an integer of 1 to 5) At least one selected linking group, B 4 represents a nitrogen-containing heterocyclic group, and n represents an integer of 1 to 4. The composition according to any one of (1) to (6) above, which is at least one polymer selected from a polyimide precursor using a diamine compound as part of a raw material and a polyimide.
(8)前記式[3a]中のBが-CONH-を示し、Bが炭素数1~5のアルキレン基を示し、Bが単結合を示し、Bがイミダゾリル基またはピリジル基を示し、nが1を示すジアミン化合物である、上記(7)に記載の組成物。 (8) In the formula [3a], B 1 represents —CONH—, B 2 represents an alkylene group having 1 to 5 carbon atoms, B 3 represents a single bond, and B 4 represents an imidazolyl group or a pyridyl group. The composition according to (7) above, wherein n is a diamine compound wherein 1.
(9)前記(B)成分の重合体が、下記の式[4]:
Figure JPOXMLDOC01-appb-C000020

{式中、Zは、下記の式[4a]~式[4k]:
Figure JPOXMLDOC01-appb-C000021

(式[4a]中、Z~Zは、それぞれ独立して、水素原子、メチル基、塩素原子またはフェニル基を示し、式[4g]中、ZおよびZは、それぞれ独立して、水素原子またはメチル基を示す)から選ばれる少なくとも1種の構造の基を示す}
で示されるテトラカルボン酸化合物を原料の一部に用いたポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体である、上記(1)~上記(8)のいずれかに記載の組成物。
(9) The polymer of the component (B) is represented by the following formula [4]:
Figure JPOXMLDOC01-appb-C000020

{In the formula, Z represents the following formula [4a] to formula [4k]:
Figure JPOXMLDOC01-appb-C000021

(In formula [4a], Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, a chlorine atom or a phenyl group, and in formula [4g], Z 5 and Z 6 are each independently Represents a hydrogen atom or a methyl group) and represents a group having at least one structure selected from
The composition according to any one of the above (1) to (8), which is at least one polymer selected from a polyimide precursor and a polyimide using a tetracarboxylic acid compound represented by the formula:
(10)前記(B)成分の重合体が、ポリアミド酸アルキルエステルおよびポリイミドから選ばれる少なくとも1種の重合体である、上記(1)~上記(9)のいずれかに記載の組成物。 (10) The composition according to any one of (1) to (9) above, wherein the polymer of the component (B) is at least one polymer selected from polyamic acid alkyl ester and polyimide.
(11)(C)成分として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンおよびγ-ブチロラクトンから選ばれる少なくとも1種の溶媒を含有する、上記(1)~上記(10)のいずれかに記載の組成物。 (11) The components (1) to (10) above containing at least one solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone and γ-butyrolactone as component (C) A composition according to any one of the above.
(12)(D)成分として、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテルおよび下記の式[D-1]~式[D-3]:
Figure JPOXMLDOC01-appb-C000022

(式[D-1]中、Dは、炭素数1~3のアルキル基を示し、式[D-2]中、Dは、炭素数1~3のアルキル基を示し、式[D-3]中、Dは、炭素数1~4のアルキル基を示す)
で示される溶媒から選ばれる少なくとも1種の溶媒を含有する、上記(1)~上記(11)のいずれかに記載の組成物。
(12) As component (D), 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether and the following formula [D -1] to formula [D-3]:
Figure JPOXMLDOC01-appb-C000022

(In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms. In the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms. -3], D 3 represents an alkyl group having 1 to 4 carbon atoms)
The composition according to any one of (1) to (11) above, which contains at least one solvent selected from the solvents represented by:
(13)組成物中に、エポキシ基、イソシアネート基、オキセタン基またはシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基および低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、および重合性不飽和結合を有する架橋性化合物から選ばれる少なくとも1種の架橋性化合物を含む、上記(1)~上記(12)のいずれかに記載の組成物。 (13) In the composition, at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. The composition according to any one of (1) to (12) above, comprising at least one crosslinkable compound selected from a crosslinkable compound having a polymerizable unsaturated bond and a crosslinkable compound having a polymerizable unsaturated bond.
(14)前記(A)成分が、組成物に含まれる溶媒全体の5~70質量%である、上記(1)~上記(13)のいずれかに記載の組成物。 (14) The composition according to any one of (1) to (13) above, wherein the component (A) is 5 to 70% by mass of the total solvent contained in the composition.
(15)前記(C)成分が、組成物に含まれる溶媒全体の40~80質量%である、上記(11)~上記(14)のいずれかに記載の組成物。 (15) The composition according to any one of (11) to (14) above, wherein the component (C) is 40 to 80% by mass of the total solvent contained in the composition.
(16)前記(D)成分が、組成物に含まれる溶媒全体の1~50質量%である、上記(12)~上記(15)のいずれかに記載の組成物。 (16) The composition according to any one of (12) to (15) above, wherein the component (D) is 1 to 50% by mass of the total solvent contained in the composition.
(17)前記(B)成分が、組成物中に0.1質量%~30質量%である、上記(1)~上記(16)のいずれかに記載の組成物。 (17) The composition according to any one of (1) to (16) above, wherein the component (B) is 0.1% by mass to 30% by mass in the composition.
(18)上記(1)~上記(17)のいずれかに記載の組成物から得られるポリイミド膜。 (18) A polyimide film obtained from the composition according to any one of (1) to (17) above.
(19)上記(1)~上記(17)のいずれかに記載の組成物から得られる液晶配向処理剤。 (19) A liquid crystal aligning agent obtained from the composition according to any one of (1) to (17).
(20)上記(19)に記載の液晶配向処理剤を用いて得られる液晶配向膜。 (20) A liquid crystal alignment film obtained by using the liquid crystal alignment treatment agent according to (19).
(21)上記(19)に記載の液晶配向処理剤を用いて、インクジェット法にて得られる液晶配向膜。 (21) A liquid crystal alignment film obtained by an ink jet method using the liquid crystal alignment treatment agent according to (19).
(22)上記(20)または上記(21)に記載の液晶配向膜を有する液晶表示素子。 (22) A liquid crystal display device having the liquid crystal alignment film according to (20) or (21).
(23)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする上記(20)または上記(21)に記載の液晶配向膜。 (23) A liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film according to (20) or (21), wherein the liquid crystal alignment film is used for a liquid crystal display device produced through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
(24)上記(23)に記載の液晶配向膜を有することを特徴とする液晶表示素子。 (24) A liquid crystal display device comprising the liquid crystal alignment film according to (23).
(25)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする上記(20)または上記(21)に記載の液晶配向膜。 (25) A liquid crystal alignment film having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film according to (20) or (21), wherein the liquid crystal alignment film is used for a liquid crystal display device produced through a step of polymerizing the polymerizable group while applying a voltage between the electrodes.
(26)上記(25)に記載の液晶配向膜を有することを特徴とする液晶表示素子。 (26) A liquid crystal display element comprising the liquid crystal alignment film according to (25).
 本発明の特定構造を有する溶媒とポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体を含有する組成物は、ポリイミド膜を形成する際に、はじきに伴うピンホールの発生を抑制することができ、その端部の塗膜性にも優れるポリイミド膜が作製できる。その際、低温での焼成でもポリイミド膜を作製することができる。 The composition containing a solvent having a specific structure of the present invention and at least one polymer selected from polyimide precursors or polyimides can suppress the generation of pinholes accompanying repelling when forming a polyimide film. The polyimide film which is excellent also in the coating property of the edge part can be produced. At that time, the polyimide film can be formed by baking at a low temperature.
 また、本発明の組成物を用いた液晶配向処理剤において、液晶配向膜を形成する際に、はじきに伴うピンホールの発生を抑制することができ、さらに、その端部の塗膜性にも優れる液晶配向処理剤を提供することである。特に、側鎖を有するジアミン化合物を使用して得られるポリアミド酸やポリイミドを用いた液晶配向処理剤であっても、これら特性に優れる液晶配向処理剤を提供することにある。さらには、液晶配向膜を作製する際の焼成が低温であっても、液晶表示素子における電気特性、特に電圧保持率(VHR)に優れる液晶配向処理剤を提供することにある。 In addition, in the liquid crystal alignment treatment agent using the composition of the present invention, when forming a liquid crystal alignment film, it is possible to suppress the occurrence of pinholes due to repellency, and also to the coating properties at the end. It is to provide an excellent liquid crystal alignment treatment agent. In particular, an object of the present invention is to provide a liquid crystal aligning agent excellent in these characteristics even when it is a liquid crystal aligning agent using a polyamic acid or polyimide obtained by using a diamine compound having a side chain. It is another object of the present invention to provide a liquid crystal alignment treatment agent that is excellent in electrical characteristics, particularly voltage holding ratio (VHR) in a liquid crystal display element even when firing at the time of producing a liquid crystal alignment film is at a low temperature.
 また、本発明の組成物を液晶配向処理剤として用いることで、はじきに伴うピンホールの発生を抑制することができ、さらに、その端部の塗膜性にも優れる液晶配向膜を提供することができる。特に、側鎖を有するジアミン化合物を使用して得られるポリアミド酸やポリイミドを用いた液晶配向処理剤であっても、これら特性に優れる液晶配向膜を提供することができる。さらには、液晶配向膜を作製する際の焼成が低温であっても、液晶表示素子における電気特性、特に電圧保持率(VHR)に優れる液晶配向膜を提供することができる。よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビや中小型のカーナビゲーションシステムやスマートフォンなどに好適に利用することができる。 In addition, by using the composition of the present invention as a liquid crystal alignment treatment agent, it is possible to suppress the occurrence of pinholes due to repellency, and to provide a liquid crystal alignment film having excellent coating properties at the end portions Can do. In particular, even if it is a liquid crystal aligning agent using the polyamic acid and polyimide obtained using the diamine compound which has a side chain, the liquid crystal aligning film which is excellent in these characteristics can be provided. Furthermore, even when baking at the time of producing a liquid crystal aligning film is low temperature, the liquid crystal aligning film which is excellent in the electrical property in a liquid crystal display element, especially a voltage holding ratio (VHR) can be provided. Therefore, the liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention has excellent reliability, and is used for a large-screen high-definition liquid crystal television, a small-sized car navigation system, a smartphone, and the like. It can be suitably used.
ガラス基板に塗布したポリイミド膜の端部の直線性を表した図である。It is a figure showing the linearity of the edge part of the polyimide film apply | coated to the glass substrate. ガラス基板に塗布したポリイミド膜の端部の盛り上がりを表した図である。It is a figure showing the swelling of the edge part of the polyimide film apply | coated to the glass substrate.
 以下に、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明は、下記の(A)成分および(B)成分を含有する組成物、液晶配向処理剤、該液晶配向処理剤を用いて得られる液晶配向膜、さらには、該液晶配向膜を有する液晶表示素子である。
 (A)成分:下記の式[A]で示される溶媒(特定溶媒ともいう)。
Figure JPOXMLDOC01-appb-C000023

(式[A]中、XおよびXは、それぞれ独立して、炭素数1~3のアルキル基を示し、XおよびXは、それぞれ独立して、炭素数1~3のアルキル基を示す)。
The present invention provides a composition containing the following components (A) and (B), a liquid crystal alignment treatment agent, a liquid crystal alignment film obtained using the liquid crystal alignment treatment agent, and a liquid crystal having the liquid crystal alignment film It is a display element.
Component (A): A solvent represented by the following formula [A] (also referred to as a specific solvent).
Figure JPOXMLDOC01-appb-C000023

(In the formula [A], X 1 and X 2 each independently represent an alkyl group having 1 to 3 carbon atoms, and X 3 and X 4 each independently represent an alkyl group having 1 to 3 carbon atoms. Showing).
 (B)成分:ポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体(特定重合体ともいう)。 Component (B): at least one polymer selected from a polyimide precursor and polyimide (also referred to as a specific polymer).
 本発明の特定溶媒は、ポリイミド前駆体およびポリイミドなどのポリイミド系重合体を溶解させることができる溶媒(良溶媒ともいう)として用いることができ、さらには、ポリイミド膜および液晶配向膜の塗膜性を高める効果もある。すなわち、本発明の特定溶媒は、通常、良溶媒に用いられているNMPに比べて、溶媒としての表面張力が低いため、特定溶媒を用いた塗布溶液は、それを用いていない塗布溶液に比べて、基板への塗布溶液の濡れ拡がり性が高くなる。それにより、ポリイミド膜および液晶配向膜にした際の、これら膜の端部の直線性が高くなる。さらに、基板への塗布溶液の濡れ拡がり性が高くなることで、はじきに伴うピンホールの発生も抑制することができる。 The specific solvent of the present invention can be used as a solvent capable of dissolving a polyimide polymer such as a polyimide precursor and polyimide (also referred to as a good solvent), and further, coating properties of a polyimide film and a liquid crystal alignment film There is also an effect to increase. That is, the specific solvent of the present invention usually has a lower surface tension as a solvent than NMP that is used as a good solvent, so that a coating solution using the specific solvent is compared with a coating solution that does not use it. As a result, the spreadability of the coating solution on the substrate is increased. As a result, the linearity of the end portions of these films becomes high when the polyimide film and the liquid crystal alignment film are formed. Furthermore, since the wettability of the coating solution on the substrate is increased, the occurrence of pinholes accompanying repelling can be suppressed.
 さらに、本発明の特定溶媒は、通常、良溶媒として用いられているNMPやγ-BLに比べて沸点が低い。そのため、ポリイミド膜および液晶配向膜を作製する際の焼成を低温で行うことができる。そのため、特に、液晶配向膜を作製する際の焼成が低温であっても、液晶表示素子におけるVHRに優れる液晶配向膜を得ることができる。 Furthermore, the specific solvent of the present invention has a lower boiling point than NMP or γ-BL, which is usually used as a good solvent. Therefore, baking at the time of producing a polyimide film and a liquid crystal alignment film can be performed at a low temperature. Therefore, a liquid crystal alignment film excellent in VHR in a liquid crystal display element can be obtained even when firing at the time of producing the liquid crystal alignment film is at a low temperature.
 加えて、本発明の(B)成分は、ポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体である。なかでも、本発明の組成物を液晶配向処理剤に用いて、液晶配向膜を作製する場合には、下記の式[1-1]および式[1-2]で示される構造から選ばれる少なくとも1種の側鎖(合わせて特定側鎖構造ともいう)を有するポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体(特定重合体ともいう)を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000024

(式[1-1]中、Yは、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示し、Yは、単結合または-(CH-(bは1~15の整数である)を示し、Yは、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示し、Yは、ベンゼン環、シクロヘキサン環および複素環から選ばれる少なくとも1種の環の2価の環状基、またはステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、Yは、ベンゼン環、シクロヘキサン環および複素環から選ばれる少なくとも1種の環の2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは、0~4の整数を示し、Yは、炭素数1~22のアルキル基、炭素数2~22のアルケニル基、炭素数1~22のフッ素含有アルキル基、炭素数1~22のアルコキシル基および炭素数1~22のフッ素含有アルコキシル基から選ばれる少なくとも1種を示す)。
Figure JPOXMLDOC01-appb-C000025

(式[1-2]中、Yは、単結合、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示し、Yは、炭素数8~22のアルキル基または炭素数6~18のフッ素含有アルキル基を示す)。
In addition, the component (B) of the present invention is at least one polymer selected from a polyimide precursor or a polyimide. In particular, when a liquid crystal alignment film is produced using the composition of the present invention as a liquid crystal alignment treatment agent, at least selected from structures represented by the following formulas [1-1] and [1-2]: It is preferable to use at least one polymer (also referred to as a specific polymer) selected from polyimide precursors or polyimides having one type of side chain (also referred to as a specific side chain structure).
Figure JPOXMLDOC01-appb-C000024

(In the formula [1-1], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —CONH—, — At least one linking group selected from NHCO-, -CON (CH 3 )-, -N (CH 3 ) CO-, -COO- and -OCO-, and Y 2 represents a single bond or-(CH 2 ) B — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 Represents at least one linking group selected from O—, —COO— and —OCO—, and Y 4 represents a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or A divalent organic group having 17 to 51 carbon atoms having a steroid skeleton, and any hydrogen on the cyclic group The child is substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Y 5 represents a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups has 1 to 3 carbon atoms. It may be substituted with an alkyl group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, and n is 0 to 4 Y 6 represents an alkyl group having 1 to 22 carbon atoms, an alkenyl group having 2 to 22 carbon atoms, a fluorine-containing alkyl group having 1 to 22 carbon atoms, an alkoxyl group having 1 to 22 carbon atoms, and 1 carbon atom. ~ 22 At least one selected from fluorine-containing alkoxyl groups).
Figure JPOXMLDOC01-appb-C000025

(In Formula [1-2], Y 7 represents a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— , -COO- and -OCO-, Y 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms).
 なかでも、前記式[1-1]で示される特定側鎖構造は、側鎖部分にベンゼン環、シクロヘキシル環もしくは複素環の2価の環状基、またはステロイド骨格を有する炭素数17~51の2価の有機基を有する。これらベンゼン環、シクロヘキシル環もしくは複素環の2価の環状基、またはステロイド骨格を有する炭素数17~51の2価の有機基は、剛直な構造を示す。これにより、側鎖部位の熱に対する安定性が向上し、液晶配向膜を作製する際の焼成による側鎖部位の分解が抑制され、VHRに優れる液晶配向膜を得ることができる。 In particular, the specific side chain structure represented by the formula [1-1] has a carbon number of 17 to 51 having a benzene ring, a cyclohexyl ring or a heterocyclic divalent cyclic group, or a steroid skeleton in the side chain portion. Having a valent organic group. These divalent cyclic groups such as a benzene ring, a cyclohexyl ring or a heterocyclic ring, or a divalent organic group having 17 to 51 carbon atoms and having a steroid skeleton have a rigid structure. Thereby, the stability with respect to the heat of a side chain site | part improves, decomposition | disassembly of the side chain site | part by baking at the time of producing a liquid crystal aligning film is suppressed, and the liquid crystal aligning film excellent in VHR can be obtained.
 以上の点から、本発明の特定溶媒とポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体を含有する組成物は、塗膜性に優れ、かつ低温での焼成でもポリイミド膜を形成することができる組成物となる。 From the above points, the composition containing the specific solvent of the present invention and at least one polymer selected from polyimide precursors or polyimides is excellent in coating properties and forms a polyimide film even at low temperature firing. It becomes the composition which can be obtained.
 また、本発明の組成物から得られる液晶配向処理剤は、塗膜性に優れる液晶配向膜を得ることができる。さらに、液晶配向膜を作製する際の焼成が低温であっても、液晶表示素子におけるVHRに優れる液晶配向膜を得ることができる。そのため、この液晶配向膜を用いることで、表示特性に優れた信頼性の高い液晶表示素子を提供することができる。 Moreover, the liquid crystal aligning agent obtained from the composition of the present invention can provide a liquid crystal alignment film having excellent coating properties. Furthermore, a liquid crystal alignment film having excellent VHR in a liquid crystal display element can be obtained even when the baking for producing the liquid crystal alignment film is performed at a low temperature. Therefore, by using this liquid crystal alignment film, a highly reliable liquid crystal display element having excellent display characteristics can be provided.
 加えて、本発明の特定溶媒と前記式[1-1]で示される特定側鎖構造を有するポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体を含有する組成物から得られる液晶配向処理剤は、より前記の効果、すなわち、液晶配向膜を作製する際の焼成が低温であっても、液晶表示素子におけるVHRに優れる液晶配向膜を得ることができる。そのため、この液晶配向膜を用いることで、より表示特性に優れた信頼性の高い液晶表示素子を提供することができる。 In addition, the liquid crystal alignment treatment obtained from the composition containing the specific solvent of the present invention and the polyimide precursor having the specific side chain structure represented by the formula [1-1] or at least one polymer selected from polyimides The agent can obtain a liquid crystal alignment film having excellent VHR in the liquid crystal display element even when the above-described effects, that is, baking during the production of the liquid crystal alignment film is at a low temperature. Therefore, by using this liquid crystal alignment film, a highly reliable liquid crystal display element having more excellent display characteristics can be provided.
 以下、本発明の実施形態をより詳細に説明する。 Hereinafter, embodiments of the present invention will be described in more detail.
<特定溶媒>
 本発明の特定溶媒は、下記の式[A]で示される溶媒である。
Figure JPOXMLDOC01-appb-C000026
<Specific solvent>
The specific solvent of the present invention is a solvent represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000026
 式[A]中、XおよびXは、それぞれ独立して、炭素数1~3のアルキル基(例えば、メチル基、エチル基、プロピル基またはイソプロピル基)を示し、好ましくはメチル基またはエチル基を示し、特に好ましくはメチル基を示す。 In the formula [A], X 1 and X 2 each independently represent an alkyl group having 1 to 3 carbon atoms (eg, a methyl group, an ethyl group, a propyl group or an isopropyl group), preferably a methyl group or ethyl Group, particularly preferably a methyl group.
 式[A]中、XおよびXは、それぞれ独立して、炭素数1~3のアルキル基(例えば、メチル基、エチル基、プロピル基またはイソプロピル基)を示し、好ましくはメチル基またはエチル基を示し、特に好ましくはメチル基を示す。 In the formula [A], X 3 and X 4 each independently represent an alkyl group having 1 to 3 carbon atoms (eg, a methyl group, an ethyl group, a propyl group, or an isopropyl group), preferably a methyl group or an ethyl group Group, particularly preferably a methyl group.
 具体的には、下記の式[A-1]で示されるものが好ましい。
Figure JPOXMLDOC01-appb-C000027
Specifically, those represented by the following formula [A-1] are preferable.
Figure JPOXMLDOC01-appb-C000027
 本発明の特定溶媒の量は、上述した基板への塗布溶液の濡れ拡がり性をより高めるため、組成物および液晶配向処理剤に含まれる溶媒全体の5~80質量%であることが好ましい。なかでも、5~75質量%が好ましい。より好ましいのは、5~70質量%であり、さらに好ましくは、10~60質量%である。 The amount of the specific solvent of the present invention is preferably 5 to 80% by mass of the total solvent contained in the composition and the liquid crystal aligning agent in order to further improve the wettability of the coating solution to the substrate described above. Among these, 5 to 75% by mass is preferable. A more preferred range is 5 to 70% by mass, and a further more preferred range is 10 to 60% by mass.
 組成物および液晶配向処理剤中の溶媒全体の中で、本発明の特定溶媒の量が多いほど、本発明の効果、すなわち、基板への塗布溶液の濡れ拡がり性が高くなり、塗膜性に優れたポリイミド膜および液晶配向膜を得ることができる。 The greater the amount of the specific solvent of the present invention in the entire solvent in the composition and the liquid crystal alignment treatment agent, the higher the effect of the present invention, that is, the wettability of the coating solution on the substrate, and the better the coating properties. An excellent polyimide film and liquid crystal alignment film can be obtained.
<特定重合体>
 本発明の(B)成分である特定重合体は、ポリイミド前駆体およびポリイミド(総称してポリイミド系重合体ともいう)から選ばれる少なくとも1種の重合体である。なかでも、本発明のポリイミド系重合体は、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体またはポリイミドであることが好ましい。
<Specific polymer>
The specific polymer which is the component (B) of the present invention is at least one polymer selected from a polyimide precursor and a polyimide (also collectively referred to as a polyimide polymer). Especially, it is preferable that the polyimide-type polymer of this invention is a polyimide precursor or a polyimide obtained by making a diamine component and a tetracarboxylic acid component react.
 ポリイミド前駆体とは、下記の式[a]で示される構造である。
Figure JPOXMLDOC01-appb-C000028

(式[a]中、Rは、4価の有機基であり、Rは、2価の有機基であり、AおよびAは、それぞれ独立して、水素原子または炭素数1~5のアルキル基を示し、AおよびAは、それぞれ独立して、水素原子、炭素数1~5のアルキル基またはアセチル基を示し、nは正の整数を示す)。
The polyimide precursor has a structure represented by the following formula [a].
Figure JPOXMLDOC01-appb-C000028

(In the formula [a], R 1 is a tetravalent organic group, R 2 is a divalent organic group, and A 1 and A 2 are each independently a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group, and A 3 and A 4 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group, and n represents a positive integer).
 前記ジアミン成分としては、分子内に1級または2級のアミノ基を2個有するジアミン化合物が挙げられる。 Examples of the diamine component include diamine compounds having two primary or secondary amino groups in the molecule.
 また、前記テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物またはテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。 In addition, examples of the tetracarboxylic acid component include a tetracarboxylic acid compound, a tetracarboxylic dianhydride, a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound, and a tetracarboxylic acid dialkyl ester dihalide compound.
 式[a]中のAおよびAが水素原子であるポリアミド酸を得るためには、前記分子内に1級または2級のアミノ基を2個有するジアミン化合物と、テトラカルボン酸化合物またはテトラカルボン酸無水物とを反応させることで得ることができる。 In order to obtain a polyamic acid in which A 1 and A 2 in the formula [a] are hydrogen atoms, a diamine compound having two primary or secondary amino groups in the molecule, a tetracarboxylic acid compound or tetra It can be obtained by reacting with a carboxylic anhydride.
 式[a]中のAおよびAが炭素数1~5のアルキル基であるポリアミド酸アルキルエステルを得るためには、前記ジアミン化合物と、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物またはテトラカルボン酸ジアルキルエステルジハライド化合物とを反応させることで得ることができる。また、前記方法で得られたポリアミド酸に、式[a]で示されるAおよびAに炭素数1~5のアルキル基を導入することもできる。 In order to obtain a polyamic acid alkyl ester in which A 1 and A 2 in formula [a] are alkyl groups having 1 to 5 carbon atoms, the diamine compound, a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound, or It can be obtained by reacting with a tetracarboxylic acid dialkyl ester dihalide compound. In addition, an alkyl group having 1 to 5 carbon atoms can be introduced into A 1 and A 2 represented by the formula [a] in the polyamic acid obtained by the above method.
 本発明のポリイミド系重合体は、下記の式[1-1]および式[1-2]で示される構造から選ばれる少なくとも1種の特定側鎖構造を有するジアミン化合物を原料の一部に用いたポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
The polyimide polymer of the present invention uses a diamine compound having at least one specific side chain structure selected from the structures represented by the following formulas [1-1] and [1-2] as a part of the raw material. It is preferably at least one polymer selected from polyimide precursors and polyimides.
Figure JPOXMLDOC01-appb-C000029
 式[1-1]中、Yは、結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-または-COO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-または-COO-である。 In Formula [1-1], Y 1 is a bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —CONH—, —NHCO—. , —CON (CH 3 ) —, —N (CH 3 ) CO—, —COO— and —OCO—. Among these, from the viewpoint of availability of raw materials and ease of synthesis, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO -Is preferred. More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[1-1]中、Yは、単結合または-(CH-(bは1~15の整数である)を示す。なかでも、単結合または-(CH-(bは1~10の整数である)が好ましい。 In formula [1-1], Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
 式[1-1]中、Yは、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示す。なかでも、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-または-COO-が好ましい。より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-または-COO-である。 In the formula [1-1], Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— and —OCO. At least one linking group selected from-; Of these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[1-1]中、Yは、ベンゼン環、シクロヘキサン環および複素環から選ばれる少なくとも1種の環の2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数17~51の有機基から選ばれる2価の有機基であってもよい。なかでも、合成の容易さの点から、ベンゼン環もしくはシクロへキサン環の2価の環状基、またはステロイド骨格を有する炭素数17~51の2価の有機基が好ましい。 In the formula [1-1], Y 4 is a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is a carbon It may be substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Furthermore, Y 4 may be a divalent organic group selected from organic groups having 17 to 51 carbon atoms and having a steroid skeleton. Among these, from the viewpoint of easy synthesis, a divalent cyclic group of a benzene ring or a cyclohexane ring, or a divalent organic group having 17 to 51 carbon atoms and having a steroid skeleton is preferable.
 式[1-1]中、Yは、ベンゼン環、シクロヘキサン環および複素環から選ばれる少なくとも1種の環の2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。なかでも、ベンゼン環またはシクロへキサン環が好ましい。 In Formula [1-1], Y 5 represents a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is carbon It may be substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Of these, a benzene ring or a cyclohexane ring is preferable.
 式[1-1]中、nは、0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0~3が好ましい。より好ましいのは、0~2である。 In the formula [1-1], n represents an integer of 0 to 4. Among these, 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
 式[1-1]中、Yは、炭素数1~22のアルキル基、炭素数2~22のアルケニル基、炭素数1~22のフッ素含有アルキル基、炭素数1~22のアルコキシル基および炭素数1~22のフッ素含有アルコキシル基から選ばれる少なくとも1種を示す。なかでも、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基、炭素数2~12のアルケニル基または炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基または炭素数1~9のアルコキシル基である。 In the formula [1-1], Y 6 represents an alkyl group having 1 to 22 carbon atoms, an alkenyl group having 2 to 22 carbon atoms, a fluorine-containing alkyl group having 1 to 22 carbon atoms, an alkoxyl group having 1 to 22 carbon atoms, and At least one selected from fluorine-containing alkoxyl groups having 1 to 22 carbon atoms is shown. Among them, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl having 1 to 10 carbon atoms. Groups are preferred. More preferably, it is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[1-1]におけるY~Yおよびnの好ましい組み合わせとしては、国際公開公報第2011/132751(2011.10.27公開)の13頁~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるY~Yが、Y1~Y6として示されているが、Y1~Y6は、Y~Yと読み替えるものとする。また、国際公開公報の各表に掲載される(2-605)~(2-629)では、本発明におけるステロイド骨格を有する炭素数17~51の有機基が、ステロイド骨格を有する炭素数12~25の有機基と示されているが、ステロイド骨格を有する炭素数12~25の有機基は、ステロイド骨格を有する炭素数17~51の有機基と読み替えるものとする。
Figure JPOXMLDOC01-appb-C000030
Preferred combinations of Y 1 to Y 6 and n in the formula [1-1] are listed in Tables 6 to 47 on pages 13 to 34 of International Publication No. 2011/132751 (published 2011.10.27). (2-1) to (2-629) are the same combinations. In each table of the International Publication, Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 . Further, in (2-605) to (2-629) listed in each table of the International Publication, the organic group having 17 to 51 carbon atoms having a steroid skeleton in the present invention has 12 to 20 carbon atoms having a steroid skeleton. An organic group having 12 to 25 carbon atoms having a steroid skeleton is to be read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.
Figure JPOXMLDOC01-appb-C000030
 式[1-2]中、Yは単結合、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示す。なかでも、単結合、-O-、-CHO-、-CONH-、-CON(CH)-または-COO-が好ましい。より好ましくは、単結合、-O-、-CONH-または-COO-である。 In the formula [1-2], Y 7 represents a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, — It represents at least one linking group selected from COO— and —OCO—. Of these, a single bond, —O—, —CH 2 O—, —CONH—, —CON (CH 3 ) — or —COO— is preferable. More preferably, they are a single bond, —O—, —CONH— or —COO—.
 式[1-2]中、Yは炭素数8~22のアルキル基または炭素数6~18のフッ素含有アルキル基を示す。なかでも、炭素数8~18のアルキル基が好ましい。 In formula [1-2], Y 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms. Of these, an alkyl group having 8 to 18 carbon atoms is preferable.
 本発明の特定側鎖構造としては、高くて安定な液晶の垂直配向性を得ることができる点から、式[1-1]で示される構造を用いることが好ましい。 As the specific side chain structure of the present invention, it is preferable to use a structure represented by the formula [1-1] from the viewpoint that a high and stable liquid crystal vertical alignment can be obtained.
 本発明の特定側鎖構造を特定重合体に導入する方法に、特に制限は無いが、特定側鎖構造を有するジアミン化合物をジアミン成分に用いることが好ましい。 The method for introducing the specific side chain structure of the present invention into the specific polymer is not particularly limited, but a diamine compound having a specific side chain structure is preferably used for the diamine component.
 具体的には、下記の式[1a]で示されるジアミン化合物(特定側鎖型ジアミン化合物ともいう)を用いることが好ましい。その際、下記の式[1a]中のアミノ基が2級のアミノ基であるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000031
Specifically, it is preferable to use a diamine compound (also referred to as a specific side chain diamine compound) represented by the following formula [1a]. In that case, the diamine compound whose amino group in following formula [1a] is a secondary amino group can also be used.
Figure JPOXMLDOC01-appb-C000031
 式[1a]中、Yは前記式[1-1]および式[1-2]で示される構造から選ばれる少なくとも1種の構造を示す。なお、式[1a]中のYが式[1-1]を示した場合のY~Yおよびnの好ましい組み合わせは、前記の通りである。 In Formula [1a], Y represents at least one structure selected from the structures represented by Formula [1-1] and Formula [1-2]. A preferable combination of Y 1 to Y 6 and n when Y in the formula [1a] represents the formula [1-1] is as described above.
 式[1a]中、mは1~4の整数を示す。なかでも、1が好ましい。
 本発明の特定側鎖型ジアミン化合物の具体例には、例えば下記の式[1a-1]~式[1a-34]で示されるジアミン化合物、さらに、これらのアミノ基が2級のアミノ基であるジアミン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000032

(式[1a-1]~式[1a-3]中、R、RおよびRは、それぞれ独立して、-O-、-OCH-、-CHO-、-COOCH-または-CHOCO-を示し、式[1a-1]~式[1a-3]中、R、RおよびRは、それぞれ独立して、炭素数1~22の直鎖状または分岐状アルキル基、炭素数1~22の直鎖状または分岐状アルコキシル基、炭素数1~22の直鎖状または分岐状フッ素含有アルキル基または炭素数1~22のフッ素含有アルコキシル基を示す)。
Figure JPOXMLDOC01-appb-C000033

(式[1a-4]~式[1a-6]中、R、RおよびRは、それぞれ独立して、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-または-CH-を示し、式[1a-4]~式[1a-6]中、R、RおよびRは、それぞれ独立して、炭素数1~22の直鎖状または分岐状アルキル基、炭素数1~22の直鎖状または分岐状アルコキシル基、炭素数1~22の直鎖状または分岐状フッ素含有アルキル基または炭素数1~22のフッ素含有アルコキシル基を示す)。
Figure JPOXMLDOC01-appb-C000034

(式[1a-7]および式[1a-8]中、RおよびRは、それぞれ独立して、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-または-NH-を示し、RおよびRはそれぞれ独立して、フッ素基、シアノ基、トリフルオロメチル基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基または水酸基を示す)。
Figure JPOXMLDOC01-appb-C000035

(式[1a-9]および式[1a-10]中、RおよびRは、それぞれ独立して、炭素数3~12の直鎖状または分岐状アルキル基を示し、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である)。
Figure JPOXMLDOC01-appb-C000036

(式[1a-11]および式[1a-12]中、RおよびRは、それぞれ独立して、炭素数3~12の直鎖状または分岐状アルキル基を示し、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である)。
Figure JPOXMLDOC01-appb-C000037

(式[1a-13]中、Aはフッ素原子で置換されていてもよい炭素数3~20の直鎖状または分岐状アルキル基であり、Aは1,4-シクロへキシレン基または1,4-フェニレン基であり、Aは酸素原子または-COO-*(ただし、「*」を付した結合手がAと結合する)であり、Aは酸素原子または-COO-*(ただし、「*」を付した結合手が(CH)a)と結合する)である。また、aは0または1の整数であり、aは2~10の整数であり、aは0または1の整数である)。
Figure JPOXMLDOC01-appb-C000038

Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043

(式[1a-32]~式[1a-35]中、A~Aはそれぞれ独立して、炭素数1~22のアルキル基またはフッ素含有アルキル基を示す)。
In the formula [1a], m represents an integer of 1 to 4. Of these, 1 is preferable.
Specific examples of the specific side chain type diamine compound of the present invention include, for example, diamine compounds represented by the following formulas [1a-1] to [1a-34], and these amino groups are secondary amino groups. A certain diamine compound is mentioned.
Figure JPOXMLDOC01-appb-C000032

(In the formulas [1a-1] to [1a-3], R 1 , R 3 and R 5 are each independently —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — Or —CH 2 OCO—, wherein R 2 , R 4 and R 6 are each independently linear or branched having 1 to 22 carbon atoms in the formulas [1a-1] to [1a-3] And a linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 22 carbon atoms).
Figure JPOXMLDOC01-appb-C000033

(In the formulas [1a-4] to [1a-6], R 1 , R 3 and R 5 are each independently —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or —CH 2 —, in which R 2 , R 4 and R 6 are represented by the formulas [1a-4] to [1a-6] Each independently containing a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched alkoxyl group having 1 to 22 carbon atoms, or a linear or branched fluorine group having 1 to 22 carbon atoms An alkyl group or a fluorine-containing alkoxyl group having 1 to 22 carbon atoms).
Figure JPOXMLDOC01-appb-C000034

(In the formulas [1a-7] and [1a-8], R 1 and R 3 are each independently —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, — CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O— or —NH—, wherein R 2 and R 4 are each independently fluorine, cyano, trifluoro A methyl group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
Figure JPOXMLDOC01-appb-C000035

(In the formulas [1a-9] and [1a-10], R 1 and R 2 each independently represents a linear or branched alkyl group having 3 to 12 carbon atoms, and 1,4-cyclohexene The cis-trans isomerism of silene is the trans isomer, respectively).
Figure JPOXMLDOC01-appb-C000036

(In the formulas [1a-11] and [1a-12], R 1 and R 2 each independently represents a linear or branched alkyl group having 3 to 12 carbon atoms, and represents 1,4-cyclohexene. The cis-trans isomerism of silene is the trans isomer, respectively).
Figure JPOXMLDOC01-appb-C000037

(In the formula [1a-13], A 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 is a 1,4-cyclohexylene group or A 2 -phenylene group, A 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 3 ), and A 1 is an oxygen atom or —COO— * (However, the bond marked with “*” binds to (CH 2 ) a 2 )). A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is an integer of 0 or 1.
Figure JPOXMLDOC01-appb-C000038

Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043

(In the formulas [1a-32] to [1a-35], A 1 to A 4 each independently represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
 前記式[1a-1]~[1a-21]、[1a-24]~[1a-35]中、特に好ましい構造の特定側鎖型ジアミン化合物は、式[1a-1]~式[1a-6]、式[1a-9]~式[1a-13]または式[1a-24]~式[1a-31]である。 Of the formulas [1a-1] to [1a-21] and [1a-24] to [1a-35], the particularly preferred side chain type diamine compounds having the particularly preferred structures are those represented by the formulas [1a-1] to [1a- 6], formula [1a-9] to formula [1a-13] or formula [1a-24] to formula [1a-31].
 本発明の特定重合体における特定側鎖型ジアミン化合物は、ジアミン成分全体の10モル%以上80モル%以下であることが好ましい。特に好ましいのは、10モル%以上70モル%以下である。 The specific side chain diamine compound in the specific polymer of the present invention is preferably 10 mol% or more and 80 mol% or less of the entire diamine component. Particularly preferred is 10 mol% or more and 70 mol% or less.
 本発明の特定側鎖型ジアミン化合物は、本発明の特定重合体の溶媒への溶解性、組成物および液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The specific side chain type diamine compound of the present invention includes the solubility of the specific polymer of the present invention in a solvent, the coating properties of the composition and the liquid crystal alignment agent, the alignment property of liquid crystal when used as a liquid crystal alignment film, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
 本発明の特定重合体には、カルボキシル基(COOH基)およびヒドロキシル基(OH基)から選ばれる少なくとも1種の置換基を有するジアミン化合物をジアミン成分に用いた重合体であることが好ましい。 The specific polymer of the present invention is preferably a polymer using, as a diamine component, a diamine compound having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group).
 具体的には、下記の式[2a]で示されるジアミン化合物を用いることが好ましい。その際、下記の式[2a]中のアミノ基が2級のアミノ基であるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000044
Specifically, it is preferable to use a diamine compound represented by the following formula [2a]. In that case, the diamine compound whose amino group in following formula [2a] is a secondary amino group can also be used.
Figure JPOXMLDOC01-appb-C000044
 式[2a]中、Aは下記の式[2-1]および式[2-2]から選ばれる少なくとも1つの構造の置換基を示す。
Figure JPOXMLDOC01-appb-C000045
In the formula [2a], A represents a substituent having at least one structure selected from the following formulas [2-1] and [2-2].
Figure JPOXMLDOC01-appb-C000045
 式[2-1]中、aは0~4の整数を示す。 In the formula [2-1], a represents an integer of 0 to 4.
 式[2-2]中、bは0~4の整数を示す。 In the formula [2-2], b represents an integer of 0 to 4.
 式[2a]中、mは1~4の整数を示す。 In the formula [2a], m represents an integer of 1 to 4.
 より具体的には、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸または3,5-ジアミノ安息香酸を挙げることができる。なかでも、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸または3,5-ジアミノ安息香酸が好ましい。 More specifically, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid. Of these, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid is preferable.
 また、下記の式[2a-1]~式[2a-4]で示されるジアミン化合物およびこれらのアミノ基が2級のアミノ基であるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000046

(式[2a-1]中、Aは、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-および-N(CH)CO-から選ばれる少なくとも1種の結合基を示し、mおよびmは、それぞれ独立して、0~4の整数を示し、かつm+mは、1~4の整数を示し、式[2a-2]中、mおよびmは、それぞれ独立して、1~5の整数を示し、式[2a-3]中、Aは、炭素数1~5の直鎖または分岐アルキル基を示し、mは、1~5の整数を示し、式[2a-4]中、AおよびAは、それぞれ独立して、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-および-N(CH)CO-から選ばれる少なくとも1種の結合基を示し、mは、1~4の整数を示す)。
Further, diamine compounds represented by the following formulas [2a-1] to [2a-4] and diamine compounds in which these amino groups are secondary amino groups can also be used.
Figure JPOXMLDOC01-appb-C000046

(In the formula [2a-1], A 1 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 — , —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON And represents at least one linking group selected from (CH 3 ) — and —N (CH 3 ) CO—, each of m 1 and m 2 independently represents an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and in formula [2a-2], m 3 and m 4 each independently represent an integer of 1 to 5, and in formula [2a-3], A 2 represents represents a linear or branched alkyl group having 1 to 5 carbon atoms, m 5 is an integer of 1 to 5, wherein [2a-4], a 3 and a 4, respectively Standing a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3) 2 -, - O -, - CO-, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — and —N ( CH 3 ) represents at least one linking group selected from CO—, and m 6 represents an integer of 1 to 4.
 本発明の特定重合体におけるカルボキシル基(COOH基)およびヒドロキシル基(OH基)から選ばれる少なくとも1種の置換基を有するジアミン化合物は、ジアミン成分全体の10モル%以上80モル%以下であることが好ましい。特に好ましいのは、10モル%以上70モル%以下である。 The diamine compound having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group) in the specific polymer of the present invention is 10 mol% or more and 80 mol% or less of the entire diamine component. Is preferred. Particularly preferred is 10 mol% or more and 70 mol% or less.
 本発明のカルボキシル基(COOH基)およびヒドロキシル基(OH基)から選ばれる少なくとも1種の置換基を有するジアミン化合物は、本発明の特定重合体の溶媒への溶解性、組成物および液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The diamine compound having at least one substituent selected from the carboxyl group (COOH group) and hydroxyl group (OH group) of the present invention is soluble in the solvent of the specific polymer of the present invention, composition and liquid crystal alignment treatment. One type or a mixture of two or more types can be used depending on the properties such as the coating property of the agent, the orientation of the liquid crystal in the case of the liquid crystal alignment film, the voltage holding ratio, and the accumulated charge.
 本発明の特定重合体には、下記の式[3a]で示される窒素含有複素環を有するジアミン化合物およびこれらのアミノ基が2級のアミノ基であるジアミン化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000047
For the specific polymer of the present invention, it is preferable to use a diamine compound having a nitrogen-containing heterocyclic ring represented by the following formula [3a] and a diamine compound in which these amino groups are secondary amino groups.
Figure JPOXMLDOC01-appb-C000047
 式[3a]中、Bは、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-および-N(CH)CO-から選ばれる少なくとも1種の結合基を示す。なかでも、-O-、-NH-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-または-N(CH)CO-は、ジアミン化合物を合成し易いので好ましい。より好ましいのは、-O-、-NH-、-CONH-、-NHCO-、-CHO-、-OCO-または-CON(CH)-である。特に好ましいのは、-O-、-CONH-または-CHO-である。 In the formula [3a], B 1 represents —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ). And at least one linking group selected from — and —N (CH 3 ) CO—. Among them, —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO— represents a diamine compound. It is preferable because it is easy to synthesize. More preferred is —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCO— or —CON (CH 3 ) —. Particularly preferred is —O—, —CONH— or —CH 2 O—.
 式[3a]中、Bは、単結合、炭素数1~20の脂肪族炭化水素の2価の基、非芳香族環式炭化水素の2価の基および芳香族炭化水素の2価の基から選ばれる少なくとも1種を示す。炭素数1~20の脂肪族炭化水素の2価の基は、直鎖状でも良いし、分岐していても良い。また、不飽和結合を有していても良い。なかでも、炭素数1~10のアルキレン基が好ましい。また、非芳香族炭化水素の具体例としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環、シクロトリデカン環、シクロテトラデカン環、シクロペンタデカン環、シクロヘキサデカン環、シクロヘプタデカン環、シクロオクタデカン環、シクロノナデカン環、シクロイコサン環、トリシクロエイコサン環、トリシクロデコサン環、ビシクロヘプタン環、デカヒドロナフタレン環、ノルボルネン環またはアダマンタン環などが挙げられる。なかでも、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、ノルボルネン環またはアダマンタン環が好ましい。芳香族炭化水素基の具体例としては、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、アズレン環、インデン環、フルオレン環、アントラセン環、フェナントレン環またはフェナレン環などが挙げられる。なかでも、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、フルオレン環またはアントラセン環が好ましい。 In the formula [3a], B 2 is a single bond, a divalent group of an aliphatic hydrocarbon having 1 to 20 carbon atoms, a divalent group of a non-aromatic cyclic hydrocarbon, or a divalent group of an aromatic hydrocarbon. At least one selected from the group is shown. The divalent group of the aliphatic hydrocarbon having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond. Of these, an alkylene group having 1 to 10 carbon atoms is preferable. Specific examples of the non-aromatic hydrocarbon include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, a cyclodecane ring, a cycloundecane ring, a cyclododecane ring, a cyclo Tridecane ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicycloheptane ring, decahydronaphthalene And a ring, a norbornene ring, an adamantane ring, and the like. Of these, a cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, norbornene ring or adamantane ring is preferred. Specific examples of the aromatic hydrocarbon group include a benzene ring, naphthalene ring, tetrahydronaphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring or phenalene ring. Of these, a benzene ring, naphthalene ring, tetrahydronaphthalene ring, fluorene ring or anthracene ring is preferred.
 式[3a]における好ましいBとしては、単結合、炭素数1~10のアルキレン基、またはシクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、ノルボルネン環、アダマンタン環、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、フルオレン環およびアントラセン環から選ばれる少なくとも1種の環の2価基である。なかでも、単結合、炭素数1~5のアルキレン基、またはシクロヘキサン環もしくはベンゼン環の2価基が好ましい。 Preferred B 2 in the formula [3a] is a single bond, an alkylene group having 1 to 10 carbon atoms, or a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, an adamantane ring, or a benzene ring. , A divalent group of at least one ring selected from a naphthalene ring, a tetrahydronaphthalene ring, a fluorene ring, and an anthracene ring. Of these, a single bond, an alkylene group having 1 to 5 carbon atoms, or a divalent group of a cyclohexane ring or a benzene ring is preferable.
 式[3a]中、Bは、単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-および-O(CH-(mは1~5の整数である)から選ばれる少なくとも1種の結合基を示す。なかでも、単結合、-O-、-COO-、-OCO-または-O(CH-(mは1~5の整数である)が好ましい。より好ましいのは、単結合、-O-、-OCO-または-O(CH-(mは1~5の整数である)である。 In the formula [3a], B 3 represents a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— and —O (CH 2 ) m — (m is an integer of 1 to 5). Among these, a single bond, —O—, —COO—, —OCO— or —O (CH 2 ) m — (m is an integer of 1 to 5) is preferable. More preferred is a single bond, —O—, —OCO— or —O (CH 2 ) m — (m is an integer of 1 to 5).
 式[3a]中、Bは窒素含有複素環基であり、下記の式[3a-1]、式[3a-2]および式[3a-3]から選ばれる少なくとも1種の構造を含有する複素環の基である。
Figure JPOXMLDOC01-appb-C000048

(式[3a-3]中、Z11は炭素数1~5のアルキル基を示す)。
In the formula [3a], B 4 is a nitrogen-containing heterocyclic group, and contains at least one structure selected from the following formulas [3a-1], [3a-2] and [3a-3] Heterocyclic group.
Figure JPOXMLDOC01-appb-C000048

(In the formula [3a-3], Z 11 represents an alkyl group having 1 to 5 carbon atoms).
 より具体的には、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、ピラゾリン環、イソキノリン環、カルバゾール環、プリン環、チアジアゾール環、ピリダジン環、ピラゾリン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンゾイミダゾール環、シンノリン環、フェナントロリン環、インドール環、キノキサリン環、ベンゾチアゾール環、フェノチアジン環、オキサジアゾール環またはアクリジン環などを挙げることができる。なかでも、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、トリアゾール環、ピラジン環またはベンゾイミダゾール環が好ましい。より好ましいのは、ピロール環、イミダゾール環、ピラゾール環、ピリジン環またはピリミジン環である。また、式[3a]におけるBは、Bに含まれる式[3a-1]、式[3a-2]および式[3a-3]の構造と隣り合わない環原子と結合していることが好ましい。 More specifically, pyrrole ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline ring, carbazole ring, purine ring, thiadiazole ring, pyridazine ring, pyrazoline ring , Triazine ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, cinnoline ring, phenanthroline ring, indole ring, quinoxaline ring, benzothiazole ring, phenothiazine ring, oxadiazole ring or acridine ring. Among these, a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, a triazole ring, a pyrazine ring, or a benzimidazole ring is preferable. More preferred are a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring or a pyrimidine ring. Also, B 3 in the formula [3a] are expressions included in the B 4 [3a-1], that is bonded to the structure and not adjacent ring atoms of the formula [3a-2] and the formula [3a-3] Is preferred.
 式[3a]中、nは1~4の整数であり、好ましくはテトラカルボン酸成分との反応性の点から、1または2である。 In the formula [3a], n is an integer of 1 to 4, preferably 1 or 2 from the viewpoint of reactivity with the tetracarboxylic acid component.
 式[3a]における特に好ましいB~Bおよびnの組み合わせは、Bが-CONH-を示し、Bが炭素数1~5のアルキレン基を示し、Bが単結合を示し、Bがイミダゾール環またはピリジン環を示し、nが1を示すジアミン化合物である。 Particularly preferred combinations of B 1 to B 4 and n in the formula [3a] are as follows: B 1 represents —CONH—, B 2 represents an alkylene group having 1 to 5 carbon atoms, B 3 represents a single bond, 4 is a diamine compound in which 4 represents an imidazole ring or a pyridine ring and n represents 1.
 式[3a]における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基(-B-)に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置または3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置または3,5の位置が好ましい。ジアミン化合物を合成する際の容易性も加味すると、2,4の位置または2,5の位置がより好ましい。 The bonding position of the two amino groups (—NH 2 ) in the formula [3a] is not limited. Specifically, with respect to the side chain linking group (—B 1 —), 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position on the benzene ring, 3, 6 4 positions or 3, 5 positions. Among these, from the viewpoint of reactivity when synthesizing the polyamic acid, the 2,4 position, the 2,5 position, or the 3,5 position is preferable. Considering the ease in synthesizing the diamine compound, the positions 2, 4 or 2, 5 are more preferable.
 本発明の特定重合体における前記式[3a]で示される窒素含有複素環を有するジアミン化合物は、ジアミン成分全体の10モル%以上80モル%以下であることが好ましい。特に好ましいのは、10モル%以上70モル%以下である。 The diamine compound having a nitrogen-containing heterocycle represented by the formula [3a] in the specific polymer of the present invention is preferably 10 mol% or more and 80 mol% or less of the entire diamine component. Particularly preferred is 10 mol% or more and 70 mol% or less.
 本発明の前記式[3a]で示される窒素含有複素環を有するジアミン化合物は、本発明の特定重合体の溶媒への溶解性、組成物および液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The diamine compound having a nitrogen-containing heterocyclic ring represented by the above formula [3a] of the present invention is soluble in the solvent of the specific polymer of the present invention, the coating property of the composition and the liquid crystal aligning agent, and the liquid crystal alignment film. Depending on the liquid crystal orientation, voltage holding ratio, accumulated charge, etc., one kind or a mixture of two or more kinds can be used.
 本発明の特定重合体には、本発明の効果を損なわない限りにおいて、その他ジアミン化合物として、下記の式[a-1]~式[a-13]で示されるジアミン化合物およびこれらのアミノ基が2級のアミノ基であるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000049

(式[a-1]中、AおよびAは、それぞれ独立して、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-および-NH-から選ばれる少なくとも1種の結合基を示し、Aは、炭素数1~22の直鎖状もしくは分岐状のアルキル基、または炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示し、式[a-2]中、AおよびAは、それぞれ独立して、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-および-NH-から選ばれる少なくとも1種の結合基を示し、Aは、炭素数1~22の直鎖状もしくは分岐状のアルキル基、または炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示す)。
Figure JPOXMLDOC01-appb-C000050

(式[a-3]中、AおよびAは、それぞれ独立して、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-および-NH-から選ばれる少なくとも1種の結合基を示し、Aは、炭素数1~22の直鎖状もしくは分岐状のアルキル基、または炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示し、式[a-4]中、AおよびAは、それぞれ独立して、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-および-NH-から選ばれる少なくとも1種の結合基を示し、Aは、炭素数1~22の直鎖状もしくは分岐状のアルキル基、または炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示す)。
Figure JPOXMLDOC01-appb-C000051

(式[a-5]中、AおよびAは、それぞれ独立して、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-および-NH-から選ばれる少なくとも1種の結合基を示し、Aは、炭素数1~22の直鎖状もしくは分岐状のアルキル基、または炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示し、式[a-6]中、AおよびAは、それぞれ独立して、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-および-NH-から選ばれる少なくとも1種の結合基を示し、Aは、炭素数1~22の直鎖状もしくは分岐状のアルキル基、または炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示す)。
Figure JPOXMLDOC01-appb-C000052

(式[a-7]中、pは1~10の整数を示す)。
Figure JPOXMLDOC01-appb-C000053

Figure JPOXMLDOC01-appb-C000054

(式[a-12]中、Rは水素原子または炭素数1~5のアルキル基を示し、式[a-13]中、nは1~10の整数を示す)。
As long as the effects of the present invention are not impaired, the specific polymer of the present invention includes diamine compounds represented by the following formulas [a-1] to [a-13] and amino groups thereof as other diamine compounds. A diamine compound which is a secondary amino group can also be used.
Figure JPOXMLDOC01-appb-C000049

(In the formula [a-1], A 1 and A 3 each independently represent —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— and Represents at least one linking group selected from —NH—, and A 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear or branched fluorine group having 1 to 22 carbon atoms. In formula [a-2], A 4 and A 6 are each independently —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—. , —CO— and —NH—, wherein A 5 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear group having 1 to 22 carbon atoms. Or a branched fluorine-containing alkyl group).
Figure JPOXMLDOC01-appb-C000050

(In the formula [a-3], A 1 and A 3 each independently represent —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— and Represents at least one linking group selected from —NH—, and A 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear or branched fluorine group having 1 to 22 carbon atoms. In formula [a-4], A 4 and A 6 are each independently —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—. , —CO— and —NH—, wherein A 5 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear group having 1 to 22 carbon atoms. Or a branched fluorine-containing alkyl group).
Figure JPOXMLDOC01-appb-C000051

(In the formula [a-5], A 1 and A 3 each independently represent —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— and Represents at least one linking group selected from —NH—, and A 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear or branched fluorine group having 1 to 22 carbon atoms. In the formula [a-6], A 4 and A 6 each independently represent —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—. , —CO— and —NH—, wherein A 5 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear group having 1 to 22 carbon atoms. Or a branched fluorine-containing alkyl group).
Figure JPOXMLDOC01-appb-C000052

(In the formula [a-7], p represents an integer of 1 to 10).
Figure JPOXMLDOC01-appb-C000053

Figure JPOXMLDOC01-appb-C000054

(In the formula [a-12], R 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and in the formula [a-13], n represents an integer of 1 to 10).
 さらに、その他ジアミン化合物としては、下記のジアミン化合物およびこれらのアミノ基が2級のアミノ基であるジアミン化合物を用いることもできる。 Furthermore, as other diamine compounds, the following diamine compounds and diamine compounds in which these amino groups are secondary amino groups can also be used.
 具体的には、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン化合物、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン化合物、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン化合物が挙げられる。 Specifically, p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m- Phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4 '-Diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3 ' -Diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyl Dianiline, 3,3′-sulfonyldianiline, bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) Silane, 4,4'-thiodia Phosphorus, 3,3′-thiodianiline, 4,4′-diaminodiphenylamine, 3,3′-diaminodiphenylamine, 3,4′-diaminodiphenylamine, 2,2′-diaminodiphenylamine, 2,3′-diaminodiphenylamine, N -Methyl (4,4'-diaminodiphenyl) amine, N-methyl (3,3'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'- Diaminodiphenyl) amine, N-methyl (2,3′-diaminodiphenyl) amine, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5 -Diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2,8- Diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3- Aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4- Bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3 -Bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 '-[1,4-phenylenebis (methylene) )] Dianiline, 4,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,4 ′-[1,4-phenylenebis (methylene)] dianiline, 3,4 ′-[1,3- Phenylenebis (methylene)] dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1, -Phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate) ), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) Isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1 , 4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenze) Amide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis (4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2 '-Bis (3-aminophenyl) hexafluoropropane, 2,2'-bis (3-amino-4-methylphenyl) hexafluoropropane 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 1,3 -Bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, , 5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) Hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3 Aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3- Aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) ) Aromatic diamine compounds such as dodecane, alicyclic diamine compounds such as bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diamino Butane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-dia Nookutan, 1,9-diaminononane, 1,10-diaminodecane, 1,11-di-aminoundecanoic, 1,12 aliphatic diamine compounds such as diamino dodecane.
 本発明のその他ジアミン化合物は、本発明の特定重合体の溶媒への溶解性、組成物および液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The other diamine compound of the present invention includes the solubility of the specific polymer of the present invention in a solvent, the coating property of the composition and the liquid crystal alignment treatment agent, the alignment property of the liquid crystal when used as a liquid crystal alignment film, the voltage holding ratio, and the accumulated charge. Depending on the characteristics, one kind or a mixture of two or more kinds can be used.
 本発明の特定重合体、すなわち、これらポリイミド系重合体を作製するためのテトラカルボン酸成分としては、下記の式[4]で示されるテトラカルボン酸二無水物を用いることが好ましい。その際、式[4]で示されるテトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物またはテトラカルボン酸ジアルキルエステルジハライド化合物を用いることもできる(式[4]で示されるテトラカルボン酸二無水物およびその誘導体を総称して特定テトラカルボン酸成分ともいう)。
Figure JPOXMLDOC01-appb-C000055

(式[4]中、Zは、下記の式[4a]~式[4k]で示される構造から選ばれる少なくとも1種の構造を示す)。
Figure JPOXMLDOC01-appb-C000056
As the specific polymer of the present invention, that is, the tetracarboxylic acid component for producing these polyimide polymers, it is preferable to use a tetracarboxylic dianhydride represented by the following formula [4]. At that time, not only the tetracarboxylic dianhydride represented by the formula [4] but also the tetracarboxylic acid derivative tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester compound or tetracarboxylic acid dialkyl ester di Halide compounds can also be used (the tetracarboxylic dianhydride represented by the formula [4] and its derivatives are collectively referred to as a specific tetracarboxylic acid component).
Figure JPOXMLDOC01-appb-C000055

(In Formula [4], Z represents at least one structure selected from structures represented by Formula [4a] to Formula [4k] below).
Figure JPOXMLDOC01-appb-C000056
 式[4a]中、Z~Zは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子またはフェニル基を示す。 In the formula [4a], Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a phenyl group.
 式[4g]中、ZおよびZは、それぞれ独立して、水素原子またはメチル基を示す。 In the formula [4g], Z 5 and Z 6 each independently represent a hydrogen atom or a methyl group.
 式[4]中のZのなかで、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[4a]、式[4c]~式[4g]または式[4k]で示される構造のテトラカルボン酸二無水物およびそのテトラカルボン酸誘導体が好ましい。より好ましいのは、式[4a]または式[4e]~式[4g]で示される構造のものである。特に好ましいのは、[4a]、式[4e]または式[4f]で示される構造のテトラカルボン酸二無水物およびそのテトラカルボン酸誘導体である。 Among Z in formula [4], from the viewpoint of ease of synthesis and ease of polymerization reactivity in producing a polymer, formula [4a], formula [4c] to formula [4g] or formula [4k] ] The tetracarboxylic dianhydride of the structure shown by these and its tetracarboxylic acid derivative are preferable. More preferable is the structure represented by the formula [4a] or the formula [4e] to the formula [4g]. Particularly preferred are tetracarboxylic dianhydrides and their tetracarboxylic acid derivatives having the structure represented by [4a], formula [4e] or formula [4f].
 本発明の特定重合体における特定テトラカルボン酸成分は、すべてのテトラカルボン酸成分100モル%中、1モル%~100モル%であることが好ましい。なかでも、5モル%~95モル%が好ましい。より好ましいのは、20モル%~80モル%である。
 本発明の特定テトラカルボン酸成分は、本発明の特定重合体の溶媒への溶解性、組成物および液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
The specific tetracarboxylic acid component in the specific polymer of the present invention is preferably 1 mol% to 100 mol% in 100 mol% of all tetracarboxylic acid components. Of these, 5 mol% to 95 mol% is preferable. More preferred is 20 mol% to 80 mol%.
The specific tetracarboxylic acid component of the present invention includes the solubility of the specific polymer of the present invention in a solvent, the coating properties of the composition and the liquid crystal alignment treatment agent, the alignment of liquid crystals when used as a liquid crystal alignment film, the voltage holding ratio, One type or a mixture of two or more types can be used depending on characteristics such as accumulated charge.
 本発明の特定重合体には、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸成分以外のその他のテトラカルボン酸成分を用いることもできる。その他のテトラカルボン酸成分としては、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物またはテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。 In the specific polymer of the present invention, other tetracarboxylic acid components other than the specific tetracarboxylic acid component can be used as long as the effects of the present invention are not impaired. Examples of other tetracarboxylic acid components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl ester compounds, and tetracarboxylic acid dialkyl ester dihalide compounds.
 すなわち、その他のテトラカルボン酸成分としては、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸または1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸などが挙げられる。 That is, other tetracarboxylic acid components include 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4 ′ -Benzophenone tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1, 1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4 Examples include '-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid.
 本発明のその他のテトラカルボン酸成分は、本発明の特定重合体の溶媒への溶解性、組成物および液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The other tetracarboxylic acid components of the present invention are the solubility of the specific polymer of the present invention in a solvent, the coating properties of the composition and the liquid crystal aligning agent, the orientation of the liquid crystal when used as a liquid crystal alignment film, and the voltage holding ratio. Depending on the characteristics such as accumulated charge, one kind or a mixture of two or more kinds may be used.
<特定重合体の作製方法>
 本発明において、特定重合体、すなわち、これらのポリイミド系重合体を作製するための方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸二無水物およびそのテトラカルボン酸の誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種または複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る方法が挙げられる。具体的には、テトラカルボン酸二無水物と1級または2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸と1級または2級のジアミン化合物とを脱水重縮合反応させてポリアミド酸を得る方法またはテトラカルボン酸ジハライドと1級または2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法が用いられる。
<Method for producing specific polymer>
In the present invention, the specific polymer, that is, the method for producing these polyimide polymers is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. In general, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic dianhydrides and their derivatives is reacted with a diamine component consisting of one or more diamine compounds. And a method of obtaining a polyamic acid. Specifically, a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and primary or secondary diamine compound, dehydration polycondensation reaction of tetracarboxylic acid and primary or secondary diamine compound A method of obtaining polyamic acid by polycondensation of a tetracarboxylic acid dihalide and a primary or secondary diamine compound is used.
 ポリアミド酸アルキルエステルを得るためには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級または2級のジアミン化合物とを重縮合させる方法、カルボン酸基をジアルキルエステル化したテトラカルボン酸ジハライドと1級または2級のジアミン化合物とを重縮合させる方法またはポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。 In order to obtain a polyamic acid alkyl ester, a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine compound, a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group, and A method of polycondensation with a primary or secondary diamine compound or a method of converting a carboxyl group of a polyamic acid into an ester is used.
 ポリイミドを得るには、前記のポリアミド酸またはポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。 In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを溶媒中で行う。その際に用いる溶媒としては、本発明の特定溶媒を用いても良いが、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されるものではない。 The reaction of the diamine component and the tetracarboxylic acid component is usually carried out in a solvent with the diamine component and the tetracarboxylic acid component. The solvent used in that case may be the specific solvent of the present invention, but is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples.
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドまたは1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンまたは下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000057

(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す)。
Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done. When the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3] The indicated solvents can be used.
Figure JPOXMLDOC01-appb-C000057

(In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3 In the formula, D 3 represents an alkyl group having 1 to 4 carbon atoms).
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解しない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。 These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not melt | dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a dehydrated and dried solvent.
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、または溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分またはテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することができる。 When the diamine component and the tetracarboxylic acid component are reacted in a solvent, the solution in which the diamine component is dispersed or dissolved in the solvent is stirred, and the tetracarboxylic acid component is added as it is or dispersed or dissolved in the solvent. Methods, conversely, a method of adding a diamine component to a solution in which a tetracarboxylic acid component is dispersed or dissolved in a solvent, a method of alternately adding a diamine component and a tetracarboxylic acid component, etc., and any of these methods May be used. In addition, when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted to form a polymer. In this case, the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial reaction can be carried out at a high concentration, and then a solvent can be added.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。 In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
 本発明のポリイミドは前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。 The polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化またはポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 When the polyimide precursor is thermally imidized in a solution, the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍であり、酸無水物の量はアミド酸基の1モル倍~50モル倍、好ましくは3モル倍~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミンまたはトリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸または無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalytic imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. it can. The amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid groups, and the amount of the acid anhydride is 1 mol times to 50 mol times of the amic acid groups, The amount is preferably 3 mole times to 30 mole times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体またはポリイミドの反応溶液から、生成したポリイミド前駆体またはポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類または炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. Further, when the polymer collected by precipitation is redissolved in a solvent and then re-precipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
<組成物・液晶配向処理剤>
 本発明の組成物およびそれを用いた液晶配向処理剤は、ポリイミド膜および液晶配向膜(総称して樹脂被膜ともいう)を形成するための塗布溶液であり、特定溶媒および特定重合体を含有する樹脂被膜を形成するための塗布溶液である。
<Composition / Liquid crystal aligning agent>
The composition of the present invention and the liquid crystal alignment treatment agent using the composition are coating solutions for forming a polyimide film and a liquid crystal alignment film (also collectively referred to as a resin film), and contain a specific solvent and a specific polymer. A coating solution for forming a resin film.
 本発明の特定重合体は、ポリアミド酸、ポリアミド酸アルキルエステルおよびポリイミドのいずれのポリイミド系重合体を用いても良い。なかでも、ポリアミド酸アルキルエステルまたはポリイミドが好ましい。より好ましくは、ポリイミドである。 The specific polymer of the present invention may be any polyimide polymer such as polyamic acid, polyamic acid alkyl ester and polyimide. Of these, polyamic acid alkyl ester or polyimide is preferable. More preferably, it is a polyimide.
 本発明の組成物および液晶配向処理剤におけるすべての重合体成分は、すべてが本発明の特定重合体であってもよい。その際、本発明の特定重合体を2種類以上混合して用いても良い。また、特定重合体にそれ以外の他の重合体が混合されていても良い。それ以外の重合体としては、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミドまたはポリシロキサンなどが挙げられる。その際、それ以外の他の重合体の含有量は、本発明の特定重合体100質量部に対して、0.5質量部~30質量部である。なかでも、1質量部~20質量部が好ましい。 All the polymer components in the composition and the liquid crystal aligning agent of the present invention may all be the specific polymer of the present invention. In that case, you may use 2 or more types of specific polymers of this invention in mixture. In addition, other polymers may be mixed with the specific polymer. Examples of other polymers include cellulosic polymers, acrylic polymers, methacrylic polymers, polystyrene, polyamides, and polysiloxanes. At that time, the content of the other polymer is 0.5 to 30 parts by mass with respect to 100 parts by mass of the specific polymer of the present invention. Of these, 1 to 20 parts by mass is preferable.
 また、本発明の組成物を液晶配向処理剤として、液晶配向膜を形成する場合、特定重合体には、本発明の前記式[1-1]で示される特定側鎖構造を有する特定重合体を用いることが好ましい。なかでも、式[1-1]で示される特定側鎖構造を有する式[1a]で示される特定側鎖型ジアミン化合物を用いた特定重合体を用いることが好ましい。特に、TN(Twisted Nematic)モードやVA(Vertical Alignment)モードなど、液晶のプレチルト角が必要なモードに対する液晶配向膜に対しては、特定側鎖型ジアミン化合物を用いた特定重合体であることが良い。また、その際には、特定側鎖型ジアミン化合物を用いた特定重合体と、特定側鎖型ジアミン化合物を用いない特定重合体とを混合して用いても良い。その場合、特定側鎖型ジアミン化合物を用いない特定重合体の含有量は、特定側鎖型ジアミン化合物を用いた特定重合体100質量部に対して、10質量部~300質量部であることが好ましい。なかでも、20質量部~200質量部が好ましい。 In the case of forming a liquid crystal alignment film using the composition of the present invention as a liquid crystal aligning agent, the specific polymer has a specific side chain structure represented by the formula [1-1] of the present invention. Is preferably used. Among these, it is preferable to use a specific polymer using the specific side chain diamine compound represented by the formula [1a] having the specific side chain structure represented by the formula [1-1]. In particular, a liquid crystal alignment film for a mode that requires a pretilt angle of liquid crystal, such as a TN (twisted nematic) mode or a VA (vertical alignment) mode, may be a specific polymer using a specific side chain type diamine compound. good. In this case, a specific polymer using a specific side chain diamine compound and a specific polymer not using a specific side chain diamine compound may be mixed and used. In this case, the content of the specific polymer not using the specific side chain diamine compound is 10 to 300 parts by mass with respect to 100 parts by mass of the specific polymer using the specific side chain diamine compound. preferable. Of these, 20 to 200 parts by mass is preferable.
 本発明の組成物および液晶配向処理剤中の溶媒は、塗布により均一な樹脂被膜を形成するという観点から、溶媒の含有量が70~99.9質量%であることが好ましい。この含有量は、目的とするポリイミド膜および液晶配向膜の膜厚によって適宜変更することができる。 The solvent in the composition of the present invention and the liquid crystal aligning agent is preferably 70 to 99.9% by mass from the viewpoint of forming a uniform resin film by coating. This content can be appropriately changed depending on the film thickness of the target polyimide film and liquid crystal alignment film.
 また、その際の溶媒としては、すべてが本発明の特定溶媒であっても良いが、本発明の特定重合体を溶解させる溶媒、すなわち良溶媒を同時に用いても良い。下記に、良溶媒の具体例を挙げるが、これらの例に限定されるものではない。 In addition, as the solvent at that time, all may be the specific solvent of the present invention, but a solvent for dissolving the specific polymer of the present invention, that is, a good solvent may be used at the same time. Although the specific example of a good solvent is given to the following, it is not limited to these examples.
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンまたは4-ヒドロキシ-4-メチル-2-ペンタノンなどである。 For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone Cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone.
 なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチルラクトン(以上(C)成分ともいう)を用いることが好ましい。 Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyllactone (also referred to as component (C) above) is preferably used.
 これら(C)成分は、組成物および液晶配向処理剤に含まれる溶媒全体の1~70質量%であることが好ましい。なかでも、5~65質量%が好ましい。より好ましいのは5~60質量%であり、さらに好ましくは、10~60質量%である。 These components (C) are preferably 1 to 70% by mass of the entire solvent contained in the composition and the liquid crystal aligning agent. Among these, 5 to 65% by mass is preferable. A more preferred range is 5 to 60% by mass, and a further more preferred range is 10 to 60% by mass.
 前記良溶媒は、本発明の特定重合体の溶媒への溶解性、組成物および液晶配向処理剤の塗布性に応じて、1種類または2種類以上を混合して使用することもできる。 The good solvent may be used alone or in combination of two or more depending on the solubility of the specific polymer of the present invention in the solvent and the applicability of the composition and the liquid crystal alignment treatment agent.
 本発明の組成物および液晶配向処理剤には、本発明の効果を損なわない限り、組成物および液晶配向処理剤を塗布した際の樹脂被膜の塗膜性や表面平滑性を向上させる有機溶媒、すなわち貧溶媒を用いることも好ましい。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。 Unless the effects of the present invention are impaired, the composition of the present invention and the liquid crystal aligning agent are organic solvents that improve the coating properties and surface smoothness of the resin film when the composition and the liquid crystal aligning agent are applied, That is, it is also preferable to use a poor solvent. Although the specific example of a poor solvent is given to the following, it is not limited to these examples.
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミルまたは前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。 For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1 , 2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, -Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene Carbonate, 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1 -(Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol , Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol mono Acetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene Glycol monoethyl ether, Methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3- Ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isoamyl lactate or the formula [D-1] Examples thereof include a solvent represented by the formula [D-3].
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテルまたは前記式[D-1]~式[D-3]で示される溶媒(以上(D)成分ともいう)を用いることが好ましい。 Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether or the above formulas [D-1] to [D -3] (also referred to as component (D) above) is preferably used.
 これら(D)成分は、組成物および液晶配向処理剤に含まれる溶媒全体の10~80質量%であることが好ましい。なかでも、10~70質量%が好ましい。より好ましいのは20~70質量%であり、さらに好ましくは、20~60質量%である。 These components (D) are preferably 10 to 80% by mass of the total solvent contained in the composition and the liquid crystal aligning agent. Among these, 10 to 70% by mass is preferable. A more preferred range is 20 to 70% by mass, and a further more preferred range is 20 to 60% by mass.
 前記貧溶媒は、本発明の特定重合体の溶媒への溶解性、組成物および液晶配向処理剤の塗布性に応じて、1種類または2種類以上を混合して使用することもできる。 The poor solvent may be used alone or in combination of two or more depending on the solubility of the specific polymer of the present invention in the solvent and the applicability of the composition and the liquid crystal alignment treatment agent.
 本発明の組成物および液晶配向処理剤には、エポキシ基、イソシアネート基、オキセタン基またはシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基および低級アルコキシアルキル基から選ばれる少なくとも1種の置換基を有する架橋性化合物、または重合性不飽和結合を有する架橋性化合物を導入することが好ましい。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。 The composition and the liquid crystal aligning agent of the present invention include at least one substitution selected from a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is preferable to introduce a crosslinkable compound having a group or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
 エポキシ基またはイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパンまたは1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl , Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3- Epoxypropoxy) phenyl) ethyl) phenyl) propane or 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2, And 3-epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol.
 オキセタン基を有する架橋性化合物は、下記の式[4A]で示すオキセタン基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000058
The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4A].
Figure JPOXMLDOC01-appb-C000058
 具体的には、国際公開公報第2011/132751(2011.10.27公開)の58項~59項に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。 Specifically, crosslinkable compounds represented by the formulas [4a] to [4k] described in the 58th to 59th items of International Publication No. 2011/132751 (published 2011.10.27) can be mentioned.
 シクロカーボネート基を有する架橋性化合物としては、下記の式[5A]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000059
The crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A].
Figure JPOXMLDOC01-appb-C000059
 具体的には、国際公開公報第2012/014898(2012.2.2公開)の76項~82項に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。 Specifically, the crosslinkable compounds represented by the formulas [5-1] to [5-42] described in the paragraphs 76 to 82 of International Publication No. 2012/014898 (published in 2012.2.2) Can be mentioned.
 ヒドロキシル基およびアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基またはアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂またはエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基またはアルコキシメチル基またはその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、またはグリコールウリルを用いることができる。このメラミン誘導体またはベンゾグアナミン誘導体は、2量体または3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基またはアルコキシメチル基を平均3個以上6個以下有するものが好ましい。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril. -Formaldehyde resin, succinilamide-formaldehyde resin or ethylene urea-formaldehyde resin. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used. The melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体またはベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリルなど、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。 Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated eth Cymethylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
 ヒドロキシル基またはアルコキシル基を有するベンゼンまたはフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼンまたは2,6-ジヒドロキシメチル-p-tert-ブチルフェノールなどが挙げられる。 Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( (sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
 より具体的には、国際公開公報第2011/132751(2011.10.27公開)の62頁~66頁に掲載される、式[6-1]~式[6-48]で示される架橋性化合物が挙げられる。 More specifically, the crosslinkability represented by the formulas [6-1] to [6-48] described on pages 62 to 66 of International Publication No. 2011/132751 (published 2011.10.27). Compounds.
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパンまたはグリセリンポリグリシジルエーテルポリ(メタ)アクリレートなどの重合性不飽和基を分子内に3個有する架橋性化合物、さらに、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレートまたはヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステルまたはN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物などが挙げられる。 Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene Cold di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, phthalic acid diglycidyl ester di (meth) acrylate or hydroxypivalic acid neo A crosslinkable compound having two polymerizable unsaturated groups in the molecule, such as pentyl glycol di (meth) acrylate, in addition to 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3- One polymerizable unsaturated group such as chloro-2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester or N-methylol (meth) acrylamide in the molecule Examples thereof include crosslinkable compounds.
 加えて、下記の式[7A]で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000060

(式[7A]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環およびフェナントレン環から選ばれる少なくとも1種を示し、Eは下記の式[7a]または式[7b]から選ばれる基を示し、nは1~4の整数を示す)。
Figure JPOXMLDOC01-appb-C000061
In addition, a compound represented by the following formula [7A] can also be used.
Figure JPOXMLDOC01-appb-C000060

(In the formula [7A], E 1 represents at least one selected from a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring, and a phenanthrene ring, and E 2 represents And represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000061
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の組成物および液晶配向処理剤に用いる架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。 The above compound is an example of a crosslinkable compound and is not limited thereto. Moreover, the crosslinkable compound used for the composition of this invention and a liquid-crystal aligning agent may be one type, and may combine two or more types.
 本発明の組成物および液晶配向処理剤における、架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1質量部~150質量部であることが好ましい。なかでも、架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1質量部~100質量部が好ましい。より好ましいのは、1質量部~50質量部である。 The content of the crosslinkable compound in the composition and the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components. Among these, in order for the crosslinking reaction to proceed and to exhibit the desired effect, the amount is preferably 0.1 parts by mass to 100 parts by mass with respect to 100 parts by mass of all the polymer components. More preferred is 1 to 50 parts by mass.
 本発明の組成物および液晶配向処理剤には、本発明の効果を損なわない限り、組成物および液晶配向処理剤を塗布した際の樹脂被膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。 Unless the effects of the present invention are impaired, the composition and liquid crystal alignment treatment agent of the present invention improve the uniformity of the film thickness and surface smoothness of the resin film when the composition and the liquid crystal alignment treatment agent are applied. Can be used.
 樹脂被膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。 Examples of the compound that improves the uniformity of the film thickness and the surface smoothness of the resin coating include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。 More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
 これらの界面活性剤の使用割合は、組成物および液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、好ましくは0.01質量部~2質量部、より好ましくは0.01質量部~1質量部である。 The ratio of these surfactants to be used is preferably 0.01 parts by mass to 2 parts by mass, and more preferably 0.00 parts by mass with respect to 100 parts by mass of all the polymer components contained in the composition and the liquid crystal aligning agent. 01 parts by mass to 1 part by mass.
 さらに、本発明の組成物および液晶配向処理剤には、樹脂被膜中の電荷移動を促進して素子の電荷抜けを促進させる化合物として、国際公開公報第2011/132751(2011.10.27公開)の69頁~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、組成物および液晶配向処理剤に直接添加しても構わないが、適当な溶媒で濃度0.1質量%~10質量%、好ましくは1質量%~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した特定重合体を溶解させる溶媒であれば特に限定されない。 Furthermore, in the composition and the liquid crystal alignment treatment agent of the present invention, International Publication No. 2011/132751 (2011.10.27) is disclosed as a compound that promotes charge transfer in the resin film and promotes charge release of the device. The nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are listed on pages 69 to 73, can also be added. This amine compound may be added directly to the composition and the liquid crystal alignment treatment agent, but it is made into a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. It is preferable to add from the above. The solvent is not particularly limited as long as it is a solvent that dissolves the above-described specific polymer.
 本発明の組成物および液晶配向処理剤には、上記の貧溶媒、架橋性化合物、樹脂被膜の膜厚の均一性や表面平滑性を向上させる化合物および電荷抜けを促進させる化合物の他に、本発明の効果が損なわれない範囲であれば、樹脂被膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。 In addition to the above poor solvent, crosslinkable compound, compound that improves the film thickness uniformity and surface smoothness, and compound that promotes charge removal, the composition and liquid crystal alignment treatment agent of the present invention include As long as the effects of the invention are not impaired, a dielectric material or a conductive material for the purpose of changing electrical characteristics such as dielectric constant and conductivity of the resin coating may be added.
<ポリイミド膜>
 本発明の組成物は、基板上に塗布、焼成した後、ポリイミド膜として用いることができる。この際に用いる基板としては、目的とするデバイスに応じて、ガラス基板、シリコンウェハ、アクリル基板、ポリカーボネート基板またはPET(ポリエチレンテレフタレート)基板などのプラスチック基板なども用いることができる。また、ポリイミド膜をそのままフィルム基板として用いることもできる。組成物の塗布方法は、特に限定されないが、工業的には、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。これらは、目的に応じてこれらを用いてもよい。
<Polyimide film>
The composition of the present invention can be used as a polyimide film after coating and baking on a substrate. As a substrate used at this time, a plastic substrate such as a glass substrate, a silicon wafer, an acrylic substrate, a polycarbonate substrate, or a PET (polyethylene terephthalate) substrate can be used depending on a target device. Moreover, a polyimide film can also be used as a film substrate as it is. The coating method of the composition is not particularly limited, but industrially, there are methods such as a dipping method, a roll coater method, a slit coater method, a spinner method, a spray method, screen printing, offset printing, flexographic printing, or an inkjet method. It is common. You may use these according to the objective.
 組成物を基板上に塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50~300℃、好ましくは80~250℃で溶媒を蒸発させてポリイミド膜とすることができる。本発明の特定溶媒を用いた組成物の場合、200℃以下の温度でもポリイミド膜を作製することができる。焼成後のポリイミド膜の厚みは、目的に応じて、0.01~100μmに調整することができる。 After the composition is applied onto the substrate, the solvent is evaporated at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven, and the polyimide film and can do. In the case of the composition using the specific solvent of the present invention, the polyimide film can be produced even at a temperature of 200 ° C. or lower. The thickness of the polyimide film after firing can be adjusted to 0.01 to 100 μm depending on the purpose.
<液晶配向膜・液晶表示素子>
 本発明の組成物を用いた液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、VAモードなど垂直配向用途の場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板、ポリカーボネート基板またはPET(ポリエチレンテレフタレート)基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO(酸化インジウムスズ)電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent using the composition of the present invention can be used as a liquid crystal alignment film by applying alignment treatment by rubbing treatment or light irradiation after coating and baking on a substrate. In the case of vertical alignment applications such as VA mode, it can be used as a liquid crystal alignment film without alignment treatment. The substrate used in this case is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate, a polycarbonate substrate, or a PET (polyethylene terephthalate) substrate can also be used. From the viewpoint of simplifying the process, it is preferable to use a substrate on which an ITO (indium tin oxide) electrode or the like for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法またはスプレー法などがあり、目的に応じてこれらを用いてもよい。 The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により、液晶配向処理剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。本発明の特定溶媒を用いた液晶配向処理剤の場合、200℃以下の温度でも液晶配向膜を作製することができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~150nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビングまたは偏光紫外線照射などで処理する。 After applying the liquid crystal aligning agent on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal aligning agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. The liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of 30 to 250 ° C. In the case of the liquid crystal aligning agent using the specific solvent of this invention, a liquid crystal aligning film can be produced also at the temperature of 200 degrees C or less. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 150 nm. When the liquid crystal is horizontally aligned or tilted, the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、前記手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。 The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, and then preparing a liquid crystal cell by a known method.
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。 As a method for manufacturing a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of bonding the substrate after dropping the liquid crystal on the surface of the liquid crystal alignment film on which the spacers are dispersed, and the like.
 さらに、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射および加熱の少なくとも一方により重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。 Furthermore, the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board | substrates provided with the electrode, The polymeric compound superposed | polymerized by at least one of an active energy ray and a heat | fever between a pair of board | substrates. The liquid crystal composition is also preferably used for a liquid crystal display device produced through a step of polymerizing a polymerizable compound by at least one of irradiation with active energy rays and heating while applying a voltage between electrodes. Here, ultraviolet rays are suitable as the active energy ray. The wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
 前記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルトを制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルトを制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。 The liquid crystal display element controls a pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method. In the PSA method, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound. The pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. The PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
 すなわち、本発明の液晶表示素子は、前記手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射および加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御するものとすることができる。 That is, in the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above method, a liquid crystal cell is prepared, and a polymerizable compound is applied by at least one of ultraviolet irradiation and heating. Polymerization can control the orientation of liquid crystal molecules.
 PSA方式の液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。 To give an example of manufacturing a PSA type liquid crystal cell, a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed. Can be mentioned.
 液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。 In the liquid crystal, a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled. The seizure characteristics of the steel deteriorate.
 液晶セルを作製した後は、液晶セルに交流または直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。 After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
 加えて、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子、すなわち、SC-PVAモードにも用いることが好ましい。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。 In addition, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferable to use it for a liquid crystal display element manufactured through a step of arranging a liquid crystal alignment film containing a group and applying a voltage between electrodes, that is, an SC-PVA mode. Here, ultraviolet rays are suitable as the active energy ray. The wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
 活性エネルギー線および熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向処理剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。 In order to obtain a liquid crystal alignment film containing a polymerizable group that polymerizes from at least one of active energy rays and heat, a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent, A method using a coalescing component may be mentioned.
 SC-PVAモードの液晶セル作製の一例を挙げるならば、本発明の液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。 To give an example of SC-PVA mode liquid crystal cell preparation, a pair of substrates on which the liquid crystal alignment film of the present invention is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is prepared. The other substrate is bonded so that the inner side is on the inside and the liquid crystal is injected under reduced pressure to seal, or the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is bonded and sealed The method of performing etc. is mentioned.
 液晶セルを作製した後は、液晶セルに交流または直流の電圧を印加しながら、熱や紫外線を照射することで、液晶分子の配向を制御することができる。 After the liquid crystal cell is produced, the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
 以上のようにして、本発明の液晶配向処理剤は、塗膜性に優れた液晶配向膜となり、さらには、液晶配向膜を作製する際の焼成が低温であっても、液晶表示素子における電気特性であるVHRに優れる液晶配向膜となる。よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビや中小型のカーナビゲーションシステムやスマートフォンなどに好適に利用することができる。 As described above, the liquid crystal aligning agent of the present invention becomes a liquid crystal alignment film having excellent coating properties, and furthermore, even when firing at the time of producing the liquid crystal alignment film is at a low temperature, It becomes a liquid crystal alignment film excellent in VHR which is a characteristic. Therefore, the liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention has excellent reliability, and is used for a large-screen high-definition liquid crystal television, a small-sized car navigation system, a smartphone, and the like. It can be suitably used.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
「本発明の合成例、実施例および比較例で用いる略語」
 合成例、実施例および比較例で用いる略語は、以下の通りである。
"Abbreviations used in the synthesis examples, examples and comparative examples of the present invention"
Abbreviations used in the synthesis examples, examples and comparative examples are as follows.
<本発明のポリイミド系重合体を作製するためのモノマー>
(本発明の特定側鎖型ジアミン化合物)
 A1:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン(本発明の式[1-1]で示される特定側鎖構造を有する特定側鎖型ジアミン化合物)
 A2:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン(本発明の式[1-1]で示される特定側鎖構造を有する特定側鎖型ジアミン化合物)
 A3:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン(本発明の式[1-1]で示される特定側鎖構造を有する特定側鎖型ジアミン化合物)
 A4:下記の式[A4]で示されるジアミン化合物(本発明の式[1-1]で示される特定側鎖構造を有する特定側鎖型ジアミン化合物)
 A5:1,3-ジアミノ-4-オクタデシルオキシベンゼン(本発明の式[1-2]で示される特定側鎖構造を有する特定側鎖型ジアミン化合物)
Figure JPOXMLDOC01-appb-C000062

Figure JPOXMLDOC01-appb-C000063

Figure JPOXMLDOC01-appb-C000064
<Monomer for producing the polyimide polymer of the present invention>
(Specific side chain diamine compound of the present invention)
A1: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene (specific side chain having a specific side chain structure represented by the formula [1-1] of the present invention) Type diamine compound)
A2: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxymethyl] benzene (specific side having a specific side chain structure represented by the formula [1-1] of the present invention) Chain-type diamine compounds)
A3: 1,3-diamino-4- {4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy} benzene (shown by the formula [1-1] of the present invention) Specific side chain type diamine compound having specific side chain structure)
A4: a diamine compound represented by the following formula [A4] (a specific side chain diamine compound having a specific side chain structure represented by the formula [1-1] of the present invention)
A5: 1,3-diamino-4-octadecyloxybenzene (a specific side chain diamine compound having a specific side chain structure represented by the formula [1-2] of the present invention)
Figure JPOXMLDOC01-appb-C000062

Figure JPOXMLDOC01-appb-C000063

Figure JPOXMLDOC01-appb-C000064
(本発明の式[2a]で示されるジアミン化合物)
 B1:3,5-ジアミノ安息香酸(本発明の式[2a]で示されるカルボキシル基(COOH基)を有するジアミン化合物)
Figure JPOXMLDOC01-appb-C000065
(Diamine compound represented by the formula [2a] of the present invention)
B1: 3,5-diaminobenzoic acid (diamine compound having a carboxyl group (COOH group) represented by the formula [2a] of the present invention)
Figure JPOXMLDOC01-appb-C000065
(本発明の式[3a]で示されるジアミン化合物)
 C1:下記の式[C1]で示されるジアミン化合物(本発明の式[3a]で示される窒素含有複素環を有するジアミン化合物)
 C2:下記の式[C2]で示されるジアミン化合物(本発明の式[3a]で示される窒素含有複素環を有するジアミン化合物)
Figure JPOXMLDOC01-appb-C000066
(Diamine compound represented by the formula [3a] of the present invention)
C1: A diamine compound represented by the following formula [C1] (a diamine compound having a nitrogen-containing heterocycle represented by the formula [3a] of the present invention)
C2: a diamine compound represented by the following formula [C2] (a diamine compound having a nitrogen-containing heterocycle represented by the formula [3a] of the present invention)
Figure JPOXMLDOC01-appb-C000066
(その他ジアミン化合物)
 D1:p-フェニレンジアミン
 D2:m-フェニレンジアミン
Figure JPOXMLDOC01-appb-C000067
(Other diamine compounds)
D1: p-phenylenediamine D2: m-phenylenediamine
Figure JPOXMLDOC01-appb-C000067
(特定テトラカルボン酸成分)
 E1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 E2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 E3:下記の式[E3]で示されるテトラカルボン酸二無水物
 E4:下記の式[E4]で示されるテトラカルボン酸二無水物
 E5:下記の式[E5]で示されるテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000068
(Specific tetracarboxylic acid component)
E1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride E2: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride E3: the following formula [E3 E4: tetracarboxylic dianhydride represented by the following formula [E4] E5: tetracarboxylic dianhydride represented by the following formula [E5]
Figure JPOXMLDOC01-appb-C000068
<本発明に用いる架橋性化合物>
 K1:下記の式[K1]で示される架橋性化合物
Figure JPOXMLDOC01-appb-C000069
<Crosslinkable compound used in the present invention>
K1: Crosslinkable compound represented by the following formula [K1]
Figure JPOXMLDOC01-appb-C000069
<本発明の特定溶媒>
 S1:下記の式[S1]で示される溶媒(本発明の式[A-1]で示される特定溶媒)
Figure JPOXMLDOC01-appb-C000070
<Specific solvent of the present invention>
S1: Solvent represented by the following formula [S1] (specific solvent represented by the formula [A-1] of the present invention)
Figure JPOXMLDOC01-appb-C000070
<その他の溶媒>
 NMP:N-メチル-2-ピロリドン
 NEP:N-エチル-2-ピロリドン
 γ-BL:γ-ブチロラクトン
 BCS:エチレングリコールモノブチルエーテル
 PB:プロピレングリコールモノブチルエーテル
 EC:ジエチレングリコールモノエチルエーテル
 DME:ジプロピレングリコールジメチルエーテル
<Other solvents>
NMP: N-methyl-2-pyrrolidone NEP: N-ethyl-2-pyrrolidone γ-BL: γ-butyrolactone BCS: ethylene glycol monobutyl ether PB: propylene glycol monobutyl ether EC: diethylene glycol monoethyl ether DME: dipropylene glycol dimethyl ether
「本発明のポリイミド系重合体の分子量の測定」
 合成例におけるポリイミド前駆体およびポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000および30,000)(東ソー社製)およびポリエチレングリコール(分子量;約12,000、4,000および1,000)(ポリマーラボラトリー社製)。
"Measurement of molecular weight of polyimide polymer of the present invention"
The molecular weights of the polyimide precursor and the polyimide in the synthesis example are determined using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as follows.
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight: about 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
「本発明のポリイミドのイミド化率の測定」
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
"Measurement of imidization ratio of polyimide of the present invention"
The imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05 mass% TMS (tetramethylsilane). ) Mixture) (0.53 ml) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. Using the integrated value, the following formula was used.
Imidization rate (%) = (1−α · x / y) × 100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。 In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
「本発明のポリイミド系重合体の合成」
<合成例1>
 E1(5.21g,26.6mmol)、A1(5.12g,13.5mmol)およびB1(2.05g,13.5mmol)をS1(37.1g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度25質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量は、25,800、重量平均分子量は、86,900であった。
"Synthesis of polyimide polymer of the present invention"
<Synthesis Example 1>
E1 (5.21 g, 26.6 mmol), A1 (5.12 g, 13.5 mmol) and B1 (2.05 g, 13.5 mmol) were mixed in S1 (37.1 g) and reacted at 40 ° C. for 8 hours. To obtain a polyamic acid solution (1) having a resin solid content concentration of 25% by mass. The number average molecular weight of this polyamic acid was 25,800, and the weight average molecular weight was 86,900.
<合成例2>
 E2(3.40g,13.6mmol)、B1(4.19g,27.6mmol)およびD1(0.74g,6.89mmol)をS1(24.7g)中で混合し、80℃で5時間反応させた後、E1(4.00g,20.4mmol)とS1(12.3g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(2)を得た。このポリアミド酸の数平均分子量は、26,200、重量平均分子量は、86,400であった。
<Synthesis Example 2>
E2 (3.40 g, 13.6 mmol), B1 (4.19 g, 27.6 mmol) and D1 (0.74 g, 6.89 mmol) were mixed in S1 (24.7 g) and reacted at 80 ° C. for 5 hours. After that, E1 (4.00 g, 20.4 mmol) and S1 (12.3 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (2) having a resin solid content concentration of 25 mass%. . The number average molecular weight of this polyamic acid was 26,200, and the weight average molecular weight was 86,400.
<合成例3>
 合成例2の合成手法で得られたポリアミド酸溶液(2)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.95g)およびピリジン(2.50g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は53%であり、数平均分子量は22,100、重量平均分子量は60,900であった。
<Synthesis Example 3>
After adding NMP to the polyamic acid solution (2) (30.0 g) obtained by the synthesis method of Synthesis Example 2 and diluting to 6% by mass, acetic anhydride (3.95 g) and pyridine (2. 50 g) was added and reacted at 60 ° C. for 2 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (3). The imidation ratio of this polyimide was 53%, the number average molecular weight was 22,100, and the weight average molecular weight was 60,900.
<合成例4>
 E2(3.96g,15.8mmol)、B1(4.14g,27.2mmol)、C1(0.39g,1.60mmol)およびD2(0.35g,3.20mmol)をNEP(24.2g)中で混合し、80℃で5時間反応させた後、E1(3.10g,15.8mmol)とNEP(12.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 4>
E2 (3.96 g, 15.8 mmol), B1 (4.14 g, 27.2 mmol), C1 (0.39 g, 1.60 mmol) and D2 (0.35 g, 3.20 mmol) NEP (24.2 g) After mixing at 80 ° C. for 5 hours, E1 (3.10 g, 15.8 mmol) and NEP (12.1 g) were added and reacted at 40 ° C. for 6 hours to give a resin solid content concentration of 25 mass. % Polyamic acid solution was obtained.
 得られたポリアミド酸溶液(30.0g)にNEPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.40g)およびピリジン(3.30g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は19,900、重量平均分子量は55,100であった。 NEP was added to the obtained polyamic acid solution (30.0 g), diluted to 6% by mass, acetic anhydride (4.40 g) and pyridine (3.30 g) were added as an imidization catalyst, and 3.80 ° C. was added. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (4). The imidation ratio of this polyimide was 80%, the number average molecular weight was 19,900, and the weight average molecular weight was 55,100.
<合成例5>
 E2(3.22g,12.9mmol)、A2(4.62g,11.7mmol)、B1(1.78g,11.7mmol)およびD1(0.28g,2.60mmol)をS1(24.8g)中で混合し、80℃で5時間反応させた後、E1(2.52g,12.9mmol)とS1(12.4g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(5)を得た。このポリアミド酸の数平均分子量は、20,900、重量平均分子量は、72,100であった。
<Synthesis Example 5>
E2 (3.22 g, 12.9 mmol), A2 (4.62 g, 11.7 mmol), B1 (1.78 g, 11.7 mmol) and D1 (0.28 g, 2.60 mmol) into S1 (24.8 g) After mixing at 80 ° C. for 5 hours, E1 (2.52 g, 12.9 mmol) and S1 (12.4 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. % Polyamic acid solution (5) was obtained. The number average molecular weight of this polyamic acid was 20,900, and the weight average molecular weight was 72,100.
<合成例6>
 合成例5の合成手法で得られたポリアミド酸溶液(5)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.95g)およびピリジン(2.40g)を加え、70℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は73%であり、数平均分子量は19,900、重量平均分子量は53,900であった。
<Synthesis Example 6>
NMP was added to the polyamic acid solution (5) (30.0 g) obtained by the synthesis method of Synthesis Example 5 and diluted to 6% by mass, and then acetic anhydride (3.95 g) and pyridine (2. 40 g) was added and reacted at 70 ° C. for 3.5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (6). The imidation ratio of this polyimide was 73%, the number average molecular weight was 19,900, and the weight average molecular weight was 53,900.
<合成例7>
 E2(1.31g,5.23mmol)、A3(3.44g,7.94mmol)、C1(2.57g,10.6mmol)およびD2(0.86g,7.94mmol)をNMP(24.5g)中で混合し、80℃で5時間反応させた後、E1(4.10g,20.9mmol)とNMP(12.3g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 7>
E2 (1.31 g, 5.23 mmol), A3 (3.44 g, 7.94 mmol), C1 (2.57 g, 10.6 mmol) and D2 (0.86 g, 7.94 mmol) to NMP (24.5 g) After mixing at 80 ° C. for 5 hours, E1 (4.10 g, 20.9 mmol) and NMP (12.3 g) were added and reacted at 40 ° C. for 6 hours to give a resin solid concentration of 25 mass. % Polyamic acid solution was obtained.
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)およびピリジン(3.30g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(7)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は15,900、重量平均分子量は43,800であった。 After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and 3. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (7). The imidation ratio of this polyimide was 80%, the number average molecular weight was 15,900, and the weight average molecular weight was 43,800.
<合成例8>
 E2(1.23g,4.91mmol)、A2(3.92g,9.94mmol)、C2(2.58g,9.94mmol)およびD2(0.54g,4.97mmol)をNMP(24.2g)中で混合し、80℃で5時間反応させた後、E1(3.85g,19.6mmol)とNMP(12.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 8>
E2 (1.23 g, 4.91 mmol), A2 (3.92 g, 9.94 mmol), C2 (2.58 g, 9.94 mmol) and D2 (0.54 g, 4.97 mmol) to NMP (24.2 g) After mixing at 80 ° C. for 5 hours, E1 (3.85 g, 19.6 mmol) and NMP (12.1 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. % Polyamic acid solution was obtained.
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.85g)およびピリジン(2.50g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は16,900、重量平均分子量は46,900であった。 After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (3.85 g) and pyridine (2.50 g) were added as imidization catalysts, and the mixture was heated at 60 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (8). The imidation ratio of this polyimide was 55%, the number average molecular weight was 16,900, and the weight average molecular weight was 46,900.
<合成例9>
 E2(2.55g,10.2mmol)、A4(2.55g,5.17mmol)、B1(0.39g,2.58mmol)、C2(3.35g,12.9mmol)およびD2(0.56g,5.17mmol)をNEP(24.8g)中で混合し、80℃で5時間反応させた後、E1(3.00g,15.3mmol)とNEP(12.4g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 9>
E2 (2.55 g, 10.2 mmol), A4 (2.55 g, 5.17 mmol), B1 (0.39 g, 2.58 mmol), C2 (3.35 g, 12.9 mmol) and D2 (0.56 g, 5.17 mmol) was mixed in NEP (24.8 g) and reacted at 80 ° C. for 5 hours, then E1 (3.00 g, 15.3 mmol) and NEP (12.4 g) were added, and 6 ° C. The reaction was carried out for a time to obtain a polyamic acid solution having a resin solid content concentration of 25% by mass.
 得られたポリアミド酸溶液(30.5g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.95g)およびピリジン(2.55g)を加え、60℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は61%であり、数平均分子量は16,000、重量平均分子量は44,800であった。 To the obtained polyamic acid solution (30.5 g), NEP was added to dilute to 6% by mass, then acetic anhydride (3.95 g) and pyridine (2.55 g) were added as an imidization catalyst, and the mixture was heated at 60 ° C. for 3 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (9). The imidation ratio of this polyimide was 61%, the number average molecular weight was 16,000, and the weight average molecular weight was 44,800.
<合成例10>
 E2(1.20g,4.78mmol)、A5(3.65g,9.69mmol)、C2(2.51g,9.69mmol)およびD2(0.52g,4.84mmol)をNMP(23.3g)中で混合し、80℃で5時間反応させた後、E1(3.75g,19.1mmol)とNMP(11.6g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 10>
E2 (1.20 g, 4.78 mmol), A5 (3.65 g, 9.69 mmol), C2 (2.51 g, 9.69 mmol) and D2 (0.52 g, 4.84 mmol) were combined with NMP (23.3 g). After mixing at 80 ° C. for 5 hours, E1 (3.75 g, 19.1 mmol) and NMP (11.6 g) were added and reacted at 40 ° C. for 6 hours to give a resin solid content concentration of 25 mass. % Polyamic acid solution was obtained.
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.80g)およびピリジン(2.55g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は56%であり、数平均分子量は16,200、重量平均分子量は48,100であった。 After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (3.80 g) and pyridine (2.55 g) were added as imidization catalysts, and the mixture was heated at 60 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (10). The imidation ratio of this polyimide was 56%, the number average molecular weight was 16,200, and the weight average molecular weight was 48,100.
<合成例11>
 E3(7.50g,33.5mmol)、B1(3.61g,23.7mmol)、C1(0.41g,1.69mmol)およびD1(0.92g,8.47mmol)をNMP(37.3g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 11>
E3 (7.50 g, 33.5 mmol), B1 (3.61 g, 23.7 mmol), C1 (0.41 g, 1.69 mmol) and D1 (0.92 g, 8.47 mmol) to NMP (37.3 g) Then, the mixture was reacted at 40 ° C. for 8 hours to obtain a polyamic acid solution having a resin solid content concentration of 25% by mass.
 得られたポリアミド酸溶液(30.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.20g)およびピリジン(3.10g)を加え、80℃で2.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(11)を得た。このポリイミドのイミド化率は75%であり、数平均分子量は19,800、重量平均分子量は53,900であった。 After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.20 g) and pyridine (3.10 g) were added as an imidization catalyst, and 2. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (11). The imidation ratio of this polyimide was 75%, the number average molecular weight was 19,800, and the weight average molecular weight was 53,900.
<合成例12>
 E3(5.90g,26.3mmol)、A2(4.21g,10.7mmol)、B1(0.41g,2.67mmol)およびD2(1.44g,13.3mmol)をNMP(35.9g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 12>
E3 (5.90 g, 26.3 mmol), A2 (4.21 g, 10.7 mmol), B1 (0.41 g, 2.67 mmol) and D2 (1.44 g, 13.3 mmol) were added to NMP (35.9 g). Then, the mixture was reacted at 40 ° C. for 8 hours to obtain a polyamic acid solution having a resin solid content concentration of 25% by mass.
 得られたポリアミド酸溶液(30.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)およびピリジン(3.35g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(12)を得た。このポリイミドのイミド化率は81%であり、数平均分子量は18,200、重量平均分子量は51,600であった。 After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.50 g) and pyridine (3.35 g) were added as an imidization catalyst, and 3. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (12). The imidation ratio of this polyimide was 81%, the number average molecular weight was 18,200, and the weight average molecular weight was 51,600.
<合成例13>
 E3(5.50g,24.5mmol)、A4(2.45g,4.97mmol)、B1(0.19g,1.24mmol)、C2(3.54g,13.7mmol)およびD2(0.54g,4.97mmol)をNMP(36.7g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 13>
E3 (5.50 g, 24.5 mmol), A4 (2.45 g, 4.97 mmol), B1 (0.19 g, 1.24 mmol), C2 (3.54 g, 13.7 mmol) and D2 (0.54 g, 4.97 mmol) was mixed in NMP (36.7 g) and reacted at 40 ° C. for 8 hours to obtain a polyamic acid solution having a resin solid content concentration of 25 mass%.
 得られたポリアミド酸溶液(30.5g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(3.90g)およびピリジン(2.60g)を加え、60℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(13)を得た。このポリイミドのイミド化率は65%であり、数平均分子量は18,500、重量平均分子量は50,200であった。 After adding NMP to the obtained polyamic acid solution (30.5 g) and diluting to 6% by mass, acetic anhydride (3.90 g) and pyridine (2.60 g) were added as an imidization catalyst, and 3. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (13). The imidation ratio of this polyimide was 65%, the number average molecular weight was 18,500, and the weight average molecular weight was 50,200.
<合成例14>
 E4(5.21g,17.3mmol)、A1(4.60g,12.1mmol)、B1(0.67g,4.39mmol)およびD1(0.59g,5.49mmol)をNEP(23.8g)中で混合し、80℃で6時間反応させた後、E1(0.85g,4.33mmol)とNEP(11.9g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 14>
E4 (5.21 g, 17.3 mmol), A1 (4.60 g, 12.1 mmol), B1 (0.67 g, 4.39 mmol) and D1 (0.59 g, 5.49 mmol) to NEP (23.8 g) After mixing at 80 ° C. for 6 hours, E1 (0.85 g, 4.33 mmol) and NEP (11.9 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. % Polyamic acid solution was obtained.
 得られたポリアミド酸溶液(30.0g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.80g)およびピリジン(2.50g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(14)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は16,800、重量平均分子量は45,300であった。 To the obtained polyamic acid solution (30.0 g), NEP was added and diluted to 6% by mass, and then acetic anhydride (3.80 g) and pyridine (2.50 g) were added as an imidization catalyst, and the mixture was heated at 60 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (14). The imidation ratio of this polyimide was 55%, the number average molecular weight was 16,800, and the weight average molecular weight was 45,300.
<合成例15>
 E4(3.29g,11.0mmol)、A2(3.51g,8.88mmol)、C1(1.61g,6.66mmol)、C2(1.15g,4.44mmol)およびD2(0.24g,2.22mmol)をNMP(23.9g)中で混合し、80℃で6時間反応させた後、E1(2.15g,11.0mmol)とNMP(12.0g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 15>
E4 (3.29 g, 11.0 mmol), A2 (3.51 g, 8.88 mmol), C1 (1.61 g, 6.66 mmol), C2 (1.15 g, 4.44 mmol) and D2 (0.24 g, 2.22 mmol) was mixed in NMP (23.9 g) and reacted at 80 ° C. for 6 hours, and then E1 (2.15 g, 11.0 mmol) and NMP (12.0 g) were added. The reaction was carried out for a time to obtain a polyamic acid solution having a resin solid content concentration of 25% by mass.
 得られたポリアミド酸溶液(30.1g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.20g)およびピリジン(3.15g)を加え、80℃で2.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(15)を得た。このポリイミドのイミド化率は73%であり、数平均分子量は15,900、重量平均分子量は43,800であった。 After adding NMP to the obtained polyamic acid solution (30.1 g) and diluting to 6% by mass, acetic anhydride (4.20 g) and pyridine (3.15 g) were added as an imidization catalyst, and 2. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (15). The imidation ratio of this polyimide was 73%, the number average molecular weight was 15,900, and the weight average molecular weight was 43,800.
<合成例16>
 E5(4.30g,20.3mmol)、A3(3.89g,8.98mmol)、C2(1.33g,5.13mmol)およびD2(1.25g,11.6mmol)をNMP(23.5g)中で混合し、80℃で6時間反応させた後、E1(0.99g,5.07mmol)とNMP(11.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 16>
E5 (4.30 g, 20.3 mmol), A3 (3.89 g, 8.98 mmol), C2 (1.33 g, 5.13 mmol) and D2 (1.25 g, 11.6 mmol) NMP (23.5 g) After mixing at 80 ° C. for 6 hours, E1 (0.99 g, 5.07 mmol) and NMP (11.8 g) were added and reacted at 40 ° C. for 6 hours. The resin solid content concentration was 25 mass. % Polyamic acid solution was obtained.
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.85g)およびピリジン(2.40g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(16)を得た。このポリイミドのイミド化率は51%であり、数平均分子量は15,700、重量平均分子量は44,500であった。 After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (3.85 g) and pyridine (2.40 g) were added as an imidization catalyst, and the mixture was heated at 60 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (16). The imidation ratio of this polyimide was 51%, the number average molecular weight was 15,700, and the weight average molecular weight was 44,500.
<合成例17>
 E5(4.10g,19.3mmol)、B1(4.47g,29.4mmol)およびD2(0.35g,3.26mmol)をNMP(24.3g)中で混合し、80℃で6時間反応させた後、E2(3.22g,12.9mmol)とNMP(12.1g)を加え、80℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 17>
E5 (4.10 g, 19.3 mmol), B1 (4.47 g, 29.4 mmol) and D2 (0.35 g, 3.26 mmol) were mixed in NMP (24.3 g) and reacted at 80 ° C. for 6 hours. After that, E2 (3.22 g, 12.9 mmol) and NMP (12.1 g) were added and reacted at 80 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25 mass%.
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.20g)およびピリジン(3.20g)を加え、80℃で2.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(17)を得た。このポリイミドのイミド化率は73%であり、数平均分子量は16,200、重量平均分子量は48,100であった。 After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.20 g) and pyridine (3.20 g) were added as an imidization catalyst, and 2. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (17). The imidation ratio of this polyimide was 73%, the number average molecular weight was 16,200, and the weight average molecular weight was 48,100.
<合成例18>
 E5(2.95g,13.9mmol)、A2(3.71g,9.39mmol)、B1(0.36g,2.35mmol)、C1(1.14g,4.70mmol)、C2(1.22g,4.70mmol)およびD1(0.25g,2.35mmol)をNEP(23.9g)中で混合し、80℃で6時間反応させた後、E2(2.32g,9.27mmol)とNEP(11.9g)を加え、80℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
<Synthesis Example 18>
E5 (2.95 g, 13.9 mmol), A2 (3.71 g, 9.39 mmol), B1 (0.36 g, 2.35 mmol), C1 (1.14 g, 4.70 mmol), C2 (1.22 g, 4.70 mmol) and D1 (0.25 g, 2.35 mmol) were mixed in NEP (23.9 g), reacted at 80 ° C. for 6 hours, and then E2 (2.32 g, 9.27 mmol) and NEP ( 11.9 g) was added and reacted at 80 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25 mass%.
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.20g)およびピリジン(3.20g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(18)を得た。このポリイミドのイミド化率は68%であり、数平均分子量は15,500、重量平均分子量は45,100であった。 After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.20 g) and pyridine (3.20 g) were added as an imidization catalyst, and the mixture was heated at 80 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (18). The imidation ratio of this polyimide was 68%, the number average molecular weight was 15,500, and the weight average molecular weight was 45,100.
<合成例19>
 E2(3.10g,12.4mmol)、B1(3.82g,25.1mmol)およびD1(0.68g,6.28mmol)をNMP(22.5g)中で混合し、80℃で5時間反応させた後、E1(3.65g,18.6mmol)とNMP(11.3g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(19)を得た。このポリアミド酸の数平均分子量は、27,900、重量平均分子量は、88,900であった。
<Synthesis Example 19>
E2 (3.10 g, 12.4 mmol), B1 (3.82 g, 25.1 mmol) and D1 (0.68 g, 6.28 mmol) were mixed in NMP (22.5 g) and reacted at 80 ° C. for 5 hours. After that, E1 (3.65 g, 18.6 mmol) and NMP (11.3 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (19) having a resin solid content concentration of 25 mass%. . The number average molecular weight of this polyamic acid was 27,900, and the weight average molecular weight was 88,900.
<合成例20>
 E2(3.13g,12.5mmol)、A2(4.49g,11.4mmol)、B1(1.73g,11.4mmol)およびD1(0.27g,2.53mmol)をNMP(24.2g)中で混合し、80℃で5時間反応させた後、E1(2.45g,12.5mmol)とNMP(12.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(20)を得た。このポリアミド酸の数平均分子量は、22,200、重量平均分子量は、76,900であった。
<Synthesis Example 20>
E2 (3.13 g, 12.5 mmol), A2 (4.49 g, 11.4 mmol), B1 (1.73 g, 11.4 mmol) and D1 (0.27 g, 2.53 mmol) to NMP (24.2 g) After mixing at 80 ° C. for 5 hours, E1 (2.45 g, 12.5 mmol) and NMP (12.1 g) were added and reacted at 40 ° C. for 6 hours to give a resin solid content concentration of 25 mass. % Polyamic acid solution (20) was obtained. The number average molecular weight of this polyamic acid was 22,200, and the weight average molecular weight was 76,900.
 本発明のポリイミド系重合体を表1および表2に示す。 Tables 1 and 2 show the polyimide polymers of the present invention.
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
「本発明の組成物および液晶配向処理剤の製造」
 下記する実施例1~実施例20、比較例1~比較例4では、組成物の製造例を記載する。また、これら組成物は液晶配向処理剤の評価のためにも使用される。
“Production of Composition and Liquid Crystal Alignment Treatment Agent of the Present Invention”
In Examples 1 to 20 and Comparative Examples 1 to 4 described below, production examples of the composition will be described. These compositions are also used for evaluation of liquid crystal aligning agents.
 本発明の組成物および液晶配向処理剤を表3~表5に示す。 Tables 3 to 5 show the compositions and liquid crystal aligning agents of the present invention.
 本発明の実施例および比較例で得られた組成物および液晶配向処理剤を用い、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」、「電圧保持率(VHR)の評価(通常セル)」、「液晶配向処理剤のインクジェット塗布性の評価」、「液晶セルの作製および液晶配向性の評価(PSAセル)」および「液晶セルの作製および液晶配向性の評価(SC-PVAセル)」を行った。 “Evaluation of printability of composition and liquid crystal alignment treatment agent (pinhole evaluation)”, “Composition and liquid crystal alignment treatment” using the compositions and liquid crystal alignment treatment agents obtained in Examples and Comparative Examples of the present invention "Evaluation of printability of coating agent (evaluation of coating film edge)", "Evaluation of voltage holding ratio (VHR) (ordinary cell)", "Evaluation of inkjet coating property of liquid crystal alignment treatment agent", "Preparation of liquid crystal cell and Evaluation of liquid crystal alignment (PSA cell) ”and“ Preparation of liquid crystal cell and evaluation of liquid crystal alignment (SC-PVA cell) ”were performed.
「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」
 本発明の実施例および比較例の手法で得られた組成物を用いて、ポリイミド膜のピンホールの評価を行った。具体的には、これら組成物を細孔径1μmのメンブランフィルタで加圧濾過し、未洗浄のCr蒸着基板(縦100mm×横100mm,厚さ1.0mm)に対して印刷を行った。印刷機には簡易印刷機S15型(日本写真印刷社製)を用い、印刷面積が基板の中心に対して80×80mmの範囲、印圧が0.2mm、捨て基板が5枚、印刷から仮乾燥までの時間が90秒、仮乾燥がホットプレート上にて70℃で5分間、本焼成が熱循環型クリーンオーブンにて160℃で15分間の条件で行った。
"Evaluation of printability of composition and liquid crystal aligning agent (Evaluation of pinhole)"
Using the compositions obtained by the methods of Examples and Comparative Examples of the present invention, pinholes of polyimide films were evaluated. Specifically, these compositions were subjected to pressure filtration with a membrane filter having a pore diameter of 1 μm, and printed on an unwashed Cr vapor deposition substrate (length 100 mm × width 100 mm, thickness 1.0 mm). A simple printing machine S15 type (made by Nissha Printing Co., Ltd.) was used as the printing machine. The printing area was in the range of 80 × 80 mm with respect to the center of the substrate, the printing pressure was 0.2 mm, the number of discarded substrates was 5, and printing was temporarily performed. The time until drying was 90 seconds, temporary drying was performed on a hot plate at 70 ° C. for 5 minutes, and main firing was performed in a heat-circulating clean oven at 160 ° C. for 15 minutes.
 その後、得られたポリイミド膜付き基板のピンホールの数を確認した。具体的には、このポリイミド膜付き基板をナトリウムランプの下で目視観察をして、ポリイミド膜上のピンホールの数を数えた。なお、ピンホールの数が少ないものほど、組成物中の析出物が少なく、本評価に優れるとした。 Thereafter, the number of pinholes in the obtained substrate with the polyimide film was confirmed. Specifically, this polyimide film-coated substrate was visually observed under a sodium lamp, and the number of pinholes on the polyimide film was counted. The smaller the number of pinholes, the fewer the precipitates in the composition, and the better the evaluation.
 表6~表8に、実施例および比較例で得られたピンホールの数を示す。 Tables 6 to 8 show the number of pinholes obtained in the examples and comparative examples.
 なお、本発明の実施例および比較例で得られた組成物は、液晶配向処理剤に用いることができる。そのため、本発明の実施例および比較例で得られた組成物のポリイミド膜のピンホールの評価は、液晶配向膜のピンホールの評価ともした。 The compositions obtained in the examples and comparative examples of the present invention can be used for liquid crystal alignment treatment agents. Therefore, the evaluation of pinholes in the polyimide film of the compositions obtained in the examples and comparative examples of the present invention was also evaluated as pinholes in the liquid crystal alignment film.
「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」
 前記の「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」で得られたポリイミド膜付き基板を用いて、ポリイミド膜の塗膜端部の評価、すなわち、ポリイミド膜端部の直線性の評価(直線性の評価ともいう)およびポリイミド膜端部の盛り上がり(盛り上がりの評価ともいう)の評価を行った。
"Evaluation of printability of composition and liquid crystal aligning agent (evaluation of coating film edge)"
Using the polyimide film-coated substrate obtained in the above-mentioned “evaluation of printability of composition and liquid crystal alignment treatment agent (pinhole evaluation)”, evaluation of the coating film end of the polyimide film, that is, polyimide film end Evaluation of linearity (also referred to as evaluation of linearity) and swell of the polyimide film end (also referred to as evaluation of swell) were performed.
 ポリイミド膜の端部の直線性の評価は、印刷方向に対して右側端部のポリイミド膜を光学顕微鏡観察することで行った。より具体的には、光学顕微鏡の倍率が25倍で観察して得られたポリイミド膜画像の図1中の(1)と(2)の差、すなわち、図1中のAの長さを測定した。その際、すべてのポリイミド膜の画像は、同一倍率で得た。このAの長さが短いほど、ポリイミド膜の端部の直線性に優れるとした。 Evaluation of the linearity of the end of the polyimide film was performed by observing the polyimide film at the right end with respect to the printing direction using an optical microscope. More specifically, the difference between (1) and (2) in FIG. 1 of the polyimide film image obtained by observing at an optical microscope magnification of 25 times, that is, the length of A in FIG. did. At that time, images of all polyimide films were obtained at the same magnification. The shorter the length of A, the better the linearity of the end of the polyimide film.
 ポリイミド膜の端部の盛り上がりの評価は、印刷方向に対して右側端部のポリイミド膜を光学顕微鏡観察することで行った。具体的には、光学顕微鏡の倍率が25で観察して得られたポリイミド膜画像の図2中のBの長さを測定した。その際、すべてのポリイミド膜画像は、同一倍率で得た。このBの長さが短いほど、ポリイミド膜の端部の盛り上がりに優れるとした。 The evaluation of the bulge at the end of the polyimide film was performed by observing the polyimide film at the right end with respect to the printing direction with an optical microscope. Specifically, the length of B in FIG. 2 of the polyimide film image obtained by observing at an optical microscope magnification of 25 was measured. At that time, all polyimide film images were obtained at the same magnification. The shorter the length of B, the better the rise of the end of the polyimide film.
 表6~表8に、実施例および比較例で得られた前記Aの長さおよびBの長さを示す。 Tables 6 to 8 show the lengths A and B obtained in the examples and comparative examples.
 なお、本発明の実施例および比較例で得られた組成物は、液晶配向処理剤に用いることができる。そのため、本実施例および比較例で得られたポリイミド膜の塗膜端部の評価は、液晶配向膜の塗膜端部の評価ともした。 The compositions obtained in the examples and comparative examples of the present invention can be used for liquid crystal alignment treatment agents. Therefore, evaluation of the coating film edge part of the polyimide film obtained by the present Example and the comparative example was also made evaluation of the coating film edge part of a liquid crystal aligning film.
「電圧保持率(VHR)の評価(通常セル)」
 本発明の実施例および比較例で得られた液晶配向処理剤を用いて、電圧保持率(VHR)の評価を行った。具体的には、これら液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過し、純水およびIPA(イソプロピルアルコール)にて洗浄を行ったITO電極付き基板(縦40mm×横30mm、厚さ0.7mm))のITO面にスピンコートし、ホットプレート上にて80℃で3分間、熱循環型クリーンオーブンにて160℃で15分間加熱処理をして膜厚が100nmの液晶配向膜付きのITO基板を得た。このITO基板の塗膜面をロール径が120mmのラビング装置で、レーヨン布を用いて、ロール回転数:300rpm、ロール進行速度:20mm/sec、押し込み量:0.4mmの条件でラビング処理を行った。
"Evaluation of voltage holding ratio (VHR) (normal cell)"
The voltage holding ratio (VHR) was evaluated using the liquid crystal aligning agents obtained in the examples and comparative examples of the present invention. Specifically, these liquid crystal alignment treatment agents were pressure filtered through a membrane filter having a pore size of 1 μm and washed with pure water and IPA (isopropyl alcohol) (40 mm long × 30 mm wide, thickness) 0.7mm)) is spin-coated on the ITO surface and heat-treated on a hot plate at 80 ° C. for 3 minutes and in a heat-circulating clean oven at 160 ° C. for 15 minutes with a liquid crystal alignment film with a thickness of 100 nm An ITO substrate was obtained. A rubbing apparatus having a roll diameter of 120 mm is used to rub the coated surface of this ITO substrate under the conditions of roll rotation speed: 300 rpm, roll progression speed: 20 mm / sec, push-in amount: 0.4 mm. It was.
 得られた液晶配向膜付きのITO基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサー挟んで組み合わせ、紫外線硬化型のシール剤を印刷した。次いで、他方の基板と液晶配向膜面が向き合うようにして貼り合わせた後、紫外線硬化型のシール剤を硬化させるための処理を行い、空セルを得た。具体的には、照度60mWのメタルハライドランプを用いて、310nm以下の波長をカットし、365nm換算で5J/cmの紫外線を照射し、その後、熱循環型クリーンオーブン中にて120℃で60分間加熱処理をして空セルを得た。この空セルに、減圧注入法によって、ネマチック液晶を注入して液晶セル(通常セル)を得た。 Two obtained ITO substrates with a liquid crystal alignment film were prepared, combined with a 6 μm spacer sandwiched with the liquid crystal alignment film surface inside, and an ultraviolet curable sealant was printed. Subsequently, after bonding together so that the other board | substrate and the liquid crystal aligning film surface might face each other, the process for hardening an ultraviolet curing sealing agent was performed, and the empty cell was obtained. Specifically, using a metal halide lamp with an illuminance of 60 mW, the wavelength of 310 nm or less is cut and irradiated with ultraviolet rays of 5 J / cm 2 in terms of 365 nm, and then in a heat-circulating clean oven at 120 ° C. for 60 minutes. An empty cell was obtained by heat treatment. A nematic liquid crystal was injected into this empty cell by a reduced pressure injection method to obtain a liquid crystal cell (ordinary cell).
 なお、実施例2~実施例4の手法で得られた液晶配向処理剤(2)~液晶配向処理剤(4)、実施例12の手法で得られた液晶配向処理剤(12)、実施例19の手法で得られた液晶配向処理剤(19)、比較例1の手法で得られた液晶配向処理剤(21)および比較例2の手法で得られた液晶配向処理剤(22)を用いた液晶セルには、液晶にMLC-2003(メルク・ジャパン製)を用いた。 In addition, the liquid crystal aligning agent (2) to the liquid crystal aligning agent (4) obtained by the methods of Examples 2 to 4, the liquid crystal aligning agent (12) obtained by the method of Example 12, and the examples The liquid crystal aligning agent (19) obtained by 19 methods, the liquid crystal aligning agent (21) obtained by the method of Comparative Example 1 and the liquid crystal aligning agent (22) obtained by the method of Comparative Example 2 were used. The liquid crystal cell used was MLC-2003 (manufactured by Merck Japan) as the liquid crystal.
 また、前記以外の実施例および比較例で得られた液晶配向処理剤を用いた液晶セルには、液晶にMLC-6608(メルク・ジャパン製)を用いた。 Further, MLC-6608 (manufactured by Merck Japan) was used for the liquid crystal in the liquid crystal cell using the liquid crystal aligning agent obtained in the examples and comparative examples other than the above.
 得られた液晶セルに、80℃の温度下で1Vの電圧を60μs印加し、50ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHR)として計算した。なお、測定は、電圧保持率測定装置(VHR-1)(東陽テクニカ社製)を使用し、Voltage:±1V、Pulse Width:60μs、Flame Period:50msの設定で行った。 A voltage of 1 V was applied to the obtained liquid crystal cell at a temperature of 80 ° C. for 60 μs, the voltage after 50 ms was measured, and how much the voltage was held was calculated as a voltage holding ratio (VHR). The measurement was carried out using a voltage holding ratio measuring device (VHR-1) (manufactured by Toyo Technica Co., Ltd.) with settings of Voltage: ± 1 V, Pulse Width: 60 μs, and Frame Period: 50 ms.
 さらに、VHRの測定が終わった液晶セルを、温度80℃の高温槽内に720時間保管し、再度、上記と同様の条件でVHRの測定(高温槽保管後ともいう)を行った。 Furthermore, the liquid crystal cell in which the measurement of VHR was completed was stored in a high-temperature bath at a temperature of 80 ° C. for 720 hours, and VHR was measured again (also referred to after storage in a high-temperature bath) under the same conditions as described above.
 評価は、液晶セル作製直後のVHRの値に加え、液晶セル作製直後のVHRの値に対して、高温槽内保管後のVHRの値の低下が小さいものほど、良好とした。 In addition to the VHR value immediately after production of the liquid crystal cell, the evaluation was made better as the decrease in the VHR value after storage in the high-temperature bath was smaller than the VHR value immediately after production of the liquid crystal cell.
 表9~表11に、実施例および比較例で得られた電圧保持率(VHR)の値を示す。 Tables 9 to 11 show the voltage holding ratio (VHR) values obtained in the examples and comparative examples.
「液晶配向処理剤のインクジェット塗布性の評価」
 本発明の実施例4の手法で得られた液晶配向処理剤(4)、実施例7の手法で得られた液晶配向処理剤(7)および実施例15の手法で得られた液晶配向処理剤(15)を用いて、インクジェット塗布性の評価を行った。具体的には、これら液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過し、インクジェット塗布機に、HIS-200(日立プラントテクノロジー社製)を用いて、純水およびIPAにて洗浄を行ったITO(酸化インジウムスズ)蒸着基板上に、塗布面積が70×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から仮乾燥までの時間が60秒、仮乾燥がホットプレート上にて70℃で5分間、本焼成が熱循環型クリーンオーブンにて160℃で15分間の条件で行った。
"Evaluation of inkjet coating properties of liquid crystal alignment treatment agents"
Liquid crystal aligning agent (4) obtained by the method of Example 4 of the present invention, Liquid crystal aligning agent (7) obtained by the method of Example 7 and Liquid crystal aligning agent obtained by the method of Example 15 (15) was used to evaluate ink jet coatability. Specifically, these liquid crystal alignment treatment agents are pressure filtered through a membrane filter having a pore size of 1 μm, and washed with pure water and IPA using an HIS-200 (manufactured by Hitachi Plant Technology) as an inkjet coating machine. On the ITO (Indium Tin Oxide) vapor deposition substrate, the coating area is 70 × 70 mm, the nozzle pitch is 0.423 mm, the scan pitch is 0.5 mm, the coating speed is 40 mm / second, and the time from coating to temporary drying is 60 Second, preliminary drying was performed on a hot plate at 70 ° C. for 5 minutes, and main baking was performed in a heat circulation type clean oven at 160 ° C. for 15 minutes.
 得られた液晶配向膜付き基板をナトリウムランプの下で目視観察をして、液晶配向膜上のピンホールの数を数えたところ、いずれの実施例で得られた液晶配向膜とも、ピンホールは5個未満であった。また、いずれの実施例とも、塗膜均一性に優れた液晶配向膜が得られた。 The obtained substrate with a liquid crystal alignment film was visually observed under a sodium lamp and the number of pinholes on the liquid crystal alignment film was counted. It was less than 5. Moreover, the liquid crystal aligning film excellent in the coating-film uniformity was obtained in any Example.
 さらに、得られた液晶配向膜付きの基板を用いて、前記「電圧保持率(VHR)の評価(通常セル)」の条件で、VHR(通常セル)の評価を行った。 Furthermore, using the obtained substrate with a liquid crystal alignment film, VHR (normal cell) was evaluated under the conditions of “evaluation of voltage holding ratio (VHR) (normal cell)”.
「液晶セルの作製および液晶配向性の評価(PSAセル)」
 本発明の実施例6の手法で得られた液晶配向処理剤(6)、実施例9の手法で得られた液晶配向処理剤(9)および実施例14の手法で得られた液晶配向処理剤(14)を用いて、液晶セルの作製および液晶配向性の評価(PSAセル)を行った。具体的には、これら液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過し、純水およびIPAにて洗浄した中心に10×10mmのパターン間隔20μmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)と中心に10×40mmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて80℃で3分間、熱循環型クリーンオーブンにて160℃で15分間加熱処理をして膜厚が100nmの液晶配向膜付き基板を得た。
"Production of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell)"
Liquid crystal aligning agent (6) obtained by the method of Example 6 of the present invention, Liquid crystal aligning agent (9) obtained by the method of Example 9 and Liquid crystal aligning agent obtained by the method of Example 14 Using (14), production of a liquid crystal cell and evaluation of liquid crystal orientation (PSA cell) were performed. Specifically, these liquid crystal aligning agents were pressure filtered through a membrane filter having a pore size of 1 μm, washed with pure water and IPA, and a substrate with ITO electrodes (length: 40 mm × width) of 10 × 10 mm and a pattern spacing of 20 μm. 30mm, thickness 0.7mm) and spin coated on the ITO surface of the substrate with ITO electrode 10mm × 40mm in the center (length 40mm x width 30mm, thickness 0.7mm) and on hot plate at 80 ° C for 3 minutes Then, heat treatment was performed at 160 ° C. for 15 minutes in a heat-circulating clean oven to obtain a substrate with a liquid crystal alignment film having a film thickness of 100 nm.
 これら液晶配向膜付き基板を、液晶配向膜面を内側にして、6μmのスペーサー挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、ネマティック液晶(MLC-6608)(メルク・ジャパン社製)に、下記の式で示される重合性化合物(1)を、ネマティック液晶(MLC-6608)の100質量%に対して重合性化合物(1)を0.3質量%混合した液晶を注入し、注入口を封止して、液晶セルを得た。
Figure JPOXMLDOC01-appb-C000073
These substrates with a liquid crystal alignment film were combined with a 6 μm spacer sandwiched with the liquid crystal alignment film surface on the inside, and the periphery was adhered with a sealant to produce an empty cell. A nematic liquid crystal (MLC-6608) (manufactured by Merck Japan) was added to the empty cell by a reduced pressure injection method, and a polymerizable compound (1) represented by the following formula was added to 100% by mass of the nematic liquid crystal (MLC-6608). Liquid crystal mixed with 0.3% by mass of the polymerizable compound (1) was injected, and the injection port was sealed to obtain a liquid crystal cell.
Figure JPOXMLDOC01-appb-C000073
 得られた液晶セルに、交流5Vの電圧を印加しながら、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で20J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セル(PSAセル)を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、50℃であった。 While applying an AC voltage of 5 V to the obtained liquid crystal cell, using a metal halide lamp with an illuminance of 60 mW, the wavelength of 350 nm or less was cut, and ultraviolet irradiation of 20 J / cm 2 in terms of 365 nm was performed, and the alignment direction of the liquid crystal A liquid crystal cell (PSA cell) was controlled. The temperature in the irradiation apparatus when the liquid crystal cell was irradiated with ultraviolet rays was 50 ° C.
 この液晶セルの紫外線照射前と紫外線照射後の液晶の応答速度を測定した。応答速度は、透過率90%から透過率10%までのT90→T10を測定した。 The response speed of the liquid crystal before and after UV irradiation of this liquid crystal cell was measured. As the response speed, T90 → T10 from 90% transmittance to 10% transmittance was measured.
 いずれの実施例で得られたPSAセルは、紫外線照射前の液晶セルに比べて、紫外線照射後の液晶セルの応答速度が早くなったことから、液晶の配向方向が制御されたことを確認した。また、いずれの液晶セルとも、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)での観察により、液晶は均一に配向していることを確認した。 The PSA cell obtained in any of the examples confirmed that the alignment direction of the liquid crystal was controlled because the response speed of the liquid crystal cell after ultraviolet irradiation was higher than that of the liquid crystal cell before ultraviolet irradiation. . Further, in any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystal was uniformly aligned.
「液晶セルの作製および液晶配向性の評価(SC-PVAセル)」
 本発明の実施例6の手法で得られた液晶配向処理剤(6)、実施例9の手法で得られた液晶配向処理剤(9)および実施例14の手法で得られた液晶配向処理剤(14)を用いて、液晶セルの作製および液晶配向性の評価(SC-PVAセル)を行った。具体的には、これら液晶配向処理剤に、前記で示される重合性化合物(1)を、液晶配向処理剤中の全重合体成分100質量%に対して2質量%加え、25℃で4時間攪拌した。その後、得られた液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過し、純水およびIPAにて洗浄した中心に10×10mmのパターン間隔20μmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)と中心に10×40mmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて80℃で3分間、熱循環型クリーンオーブンにて160℃で15分間加熱処理をして膜厚が100nmの液晶配向膜付き基板を得た。
“Preparation of liquid crystal cell and evaluation of liquid crystal alignment (SC-PVA cell)”
Liquid crystal aligning agent (6) obtained by the method of Example 6 of the present invention, Liquid crystal aligning agent (9) obtained by the method of Example 9 and Liquid crystal aligning agent obtained by the method of Example 14 Using (14), production of a liquid crystal cell and evaluation of liquid crystal orientation (SC-PVA cell) were performed. Specifically, the polymerizable compound (1) shown above is added to these liquid crystal aligning agents in an amount of 2% by mass with respect to 100% by mass of the total polymer components in the liquid crystal aligning agent, and at 25 ° C. for 4 hours. Stir. Thereafter, the obtained liquid crystal aligning agent was pressure filtered through a membrane filter having a pore size of 1 μm, washed with pure water and IPA, and a 10 × 10 mm substrate with an ITO electrode having a pattern spacing of 20 μm (length 40 mm × width 30 mm). , Thickness 0.7mm) and the center of the 10x40mm ITO electrode substrate (length 40mm x width 30mm, thickness 0.7mm) on the ITO surface is spin-coated on a hot plate at 80 ° C for 3 minutes, A heat treatment was performed at 160 ° C. for 15 minutes in a heat circulation type clean oven to obtain a substrate with a liquid crystal alignment film having a film thickness of 100 nm.
 これら液晶配向膜付き基板を、液晶配向膜面を内側にして、6μmのスペーサー挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、ネマティック液晶(MLC-6608)(メルク・ジャパン社製)を注入し、注入口を封止して、液晶セルを得た。 These substrates with a liquid crystal alignment film were combined with a 6 μm spacer sandwiched with the liquid crystal alignment film surface inside, and an empty cell was prepared by adhering the periphery with a sealant. A nematic liquid crystal (MLC-6608) (manufactured by Merck Japan Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell.
 得られた液晶セルに、交流5Vの電圧を印加しながら、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で20J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セル(SC-PVAセル)を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、50℃であった。 While applying an AC voltage of 5 V to the obtained liquid crystal cell, using a metal halide lamp with an illuminance of 60 mW, the wavelength of 350 nm or less was cut, and ultraviolet irradiation of 20 J / cm 2 in terms of 365 nm was performed, and the alignment direction of the liquid crystal A liquid crystal cell (SC-PVA cell) was controlled. The temperature in the irradiation apparatus when the liquid crystal cell was irradiated with ultraviolet rays was 50 ° C.
 この液晶セルの紫外線照射前と紫外線照射後の液晶の応答速度を測定した。応答速度は、透過率90%から透過率10%までのT90→T10を測定した。 The response speed of the liquid crystal before and after UV irradiation of this liquid crystal cell was measured. As the response speed, T90 → T10 from 90% transmittance to 10% transmittance was measured.
 いずれの実施例で得られたSC-PVAセルは、紫外線照射前の液晶セルに比べて、紫外線照射後の液晶セルの応答速度が早くなったことから、液晶の配向方向が制御されたことを確認した。また、いずれの液晶セルとも、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)での観察により、液晶は均一に配向していることを確認した。 In the SC-PVA cell obtained in any of the examples, the response speed of the liquid crystal cell after ultraviolet irradiation was higher than that of the liquid crystal cell before ultraviolet irradiation. confirmed. Further, in any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) that the liquid crystal was uniformly aligned.
<実施例1>
 合成例1の合成手法で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(1)(10.0g)に、S1(8.17g)、K1(0.18g)、NEP(3.92g)およびPB(19.6g)を加え、25℃で8時間攪拌して、組成物(1)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(1)は、液晶配向処理剤(1)としても評価に用いた。
<Example 1>
To the polyamic acid solution (1) (10.0 g) having a resin solid concentration of 25% by mass obtained by the synthesis method of Synthesis Example 1, S1 (8.17 g), K1 (0.18 g), NEP (3.92 g) ) And PB (19.6 g) were added, and the mixture was stirred at 25 ° C. for 8 hours to obtain a composition (1). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (1) was used for evaluation also as a liquid-crystal aligning agent (1).
 得られた組成物(1)および液晶配向処理剤(1)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (1) and liquid crystal aligning agent (1), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例2>
 合成例2の合成手法で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(2)(10.5g)に、S1(16.8g)およびBCS(16.4g)を加え、25℃で4時間攪拌して、組成物(2)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(2)は、液晶配向処理剤(2)としても評価に用いた。
<Example 2>
S1 (16.8 g) and BCS (16.4 g) were added to the polyamic acid solution (2) (10.5 g) having a resin solid content concentration of 25% by mass obtained by the synthesis method of Synthesis Example 2, and at 25 ° C. The mixture was stirred for 4 hours to obtain a composition (2). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (2) was used for evaluation also as a liquid-crystal aligning agent (2).
 得られた組成物(2)および液晶配向処理剤(2)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (2) and liquid crystal aligning agent (2), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例3>
 合成例3の合成手法で得られたポリイミド粉末(3)(1.60g)に、S1(13.8g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(11.3g)を加え、40℃で3時間攪拌して、組成物(3)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(3)は、液晶配向処理剤(3)としても評価に用いた。
<Example 3>
S1 (13.8 g) was added to the polyimide powder (3) (1.60 g) obtained by the synthesis method of Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. BCS (11.3 g) was added to this solution and stirred at 40 ° C. for 3 hours to obtain a composition (3). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (3) was used for evaluation also as a liquid-crystal aligning agent (3).
 得られた組成物(3)および液晶配向処理剤(3)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (3) and liquid crystal aligning agent (3), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例4>
 合成例4の合成手法で得られたポリイミド粉末(4)(1.70g)に、S1(14.1g)およびNEP(9.37g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(9.37g)およびPB(14.1g)を加え、40℃で3時間攪拌して、組成物(4)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(4)は、液晶配向処理剤(4)として評価に用いた。
<Example 4>
S1 (14.1 g) and NEP (9.37 g) were added to the polyimide powder (4) (1.70 g) obtained by the synthesis method of Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours. BCS (9.37 g) and PB (14.1 g) were added to this solution, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (4). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (4) was used for evaluation as a liquid-crystal aligning agent (4).
 得られた組成物(4)および液晶配向処理剤(4)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「電圧保持率(VHR)の評価(通常セル)」および「液晶配向処理剤のインクジェット塗布性の評価」を行った。 Using the obtained composition (4) and liquid crystal aligning agent (4), "evaluation of printability of composition and liquid crystal aligning agent (pinhole evaluation)", "evaluation of voltage holding ratio (VHR)" (Normal cell) "and" Evaluation of ink-jet coating property of liquid crystal aligning agent ".
<実施例5>
 合成例5の合成手法で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(5)(10.0g)に、S1(14.0g)およびBCS(17.7g)を加え、25℃で4時間攪拌して、組成物(5)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(5)は、液晶配向処理剤(5)としても評価に用いた。
<Example 5>
S1 (14.0 g) and BCS (17.7 g) were added to a polyamic acid solution (5) (10.0 g) having a resin solid content concentration of 25 mass% obtained by the synthesis method of Synthesis Example 5, and the mixture was added at 25 ° C. The mixture was stirred for 4 hours to obtain a composition (5). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (5) was used for evaluation also as a liquid-crystal aligning agent (5).
 得られた組成物(5)および液晶配向処理剤(5)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (5) and liquid crystal aligning agent (5), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例6>
 合成例6の合成手法で得られたポリイミド粉末(6)(1.70g)に、S1(14.7g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(12.0g)を加え、40℃で3時間攪拌して、組成物(6)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(6)は、液晶配向処理剤(6)としても評価に用いた。
<Example 6>
S1 (14.7 g) was added to the polyimide powder (6) (1.70 g) obtained by the synthesis method of Synthesis Example 6, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (12.0 g) was added and stirred at 40 ° C. for 3 hours to obtain a composition (6). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (6) was used for evaluation also as a liquid-crystal aligning agent (6).
 得られた組成物(6)および液晶配向処理剤(6)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」、「電圧保持率(VHR)の評価(通常セル)」、「液晶セルの作製および液晶配向性の評価(PSAセル)」および「液晶セルの作製および液晶配向性の評価(SC-PVAセル)」を行った。 Using the obtained composition (6) and liquid crystal aligning agent (6), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent "Evaluation of printability (evaluation of coating film edge)", "Evaluation of voltage holding ratio (VHR) (normal cell)", "Preparation of liquid crystal cell and evaluation of liquid crystal orientation (PSA cell)" and "Liquid crystal cell Preparation and Evaluation of Liquid Crystal Orientation (SC-PVA Cell) ”were performed.
<実施例7>
 合成例6の合成手法で得られたポリイミド粉末(6)(1.65g)に、S1(9.10g)およびNEP(13.7g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(22.8g)を加え、40℃で3時間攪拌して、組成物(7)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(7)は、液晶配向処理剤(7)として評価に用いた。
<Example 7>
S1 (9.10 g) and NEP (13.7 g) were added to the polyimide powder (6) (1.65 g) obtained by the synthesis method of Synthesis Example 6, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (22.8 g) was added and stirred at 40 ° C. for 3 hours to obtain a composition (7). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (7) was used for evaluation as a liquid-crystal aligning agent (7).
 得られた組成物(7)および液晶配向処理剤(7)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「電圧保持率(VHR)の評価(通常セル)」および「液晶配向処理剤のインクジェット塗布性の評価」を行った。 Using the obtained composition (7) and liquid crystal aligning agent (7), "evaluation of printability of composition and liquid crystal aligning agent (pinhole evaluation)" and "evaluation of voltage holding ratio (VHR)" (Normal cell) "and" Evaluation of ink-jet coating property of liquid crystal aligning agent ".
<実施例8>
 合成例7の合成手法で得られたポリイミド粉末(7)(1.60g)に、S1(6.27g)およびNEP(7.52g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(2.51g)およびPB(8.77g)を加え、40℃で3時間攪拌して、組成物(8)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(8)は、液晶配向処理剤(8)としても評価に用いた。
<Example 8>
S1 (6.27 g) and NEP (7.52 g) were added to the polyimide powder (7) (1.60 g) obtained by the synthesis method of Synthesis Example 7, and dissolved by stirring at 70 ° C. for 24 hours. BCS (2.51 g) and PB (8.77 g) were added to this solution, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (8). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (8) was used for evaluation also as a liquid-crystal aligning agent (8).
 得られた組成物(8)および液晶配向処理剤(8)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (8) and liquid crystal aligning agent (8), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例9>
 合成例8の合成手法で得られたポリイミド粉末(8)(1.60g)に、S1(7.52g)およびNMP(5.01g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(10.0g)およびDME(2.51g)を加え、40℃で5時間攪拌して、組成物(9)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(9)は、液晶配向処理剤(9)としても評価に用いた。
<Example 9>
S1 (7.52 g) and NMP (5.01 g) were added to the polyimide powder (8) (1.60 g) obtained by the synthesis method of Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. PB (10.0 g) and DME (2.51 g) were added to this solution, and the mixture was stirred at 40 ° C. for 5 hours to obtain a composition (9). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (9) was used for evaluation also as a liquid-crystal aligning agent (9).
 得られた組成物(9)および液晶配向処理剤(9)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」、「電圧保持率(VHR)の評価(通常セル)」、「液晶セルの作製および液晶配向性の評価(PSAセル)」および「液晶セルの作製および液晶配向性の評価(SC-PVAセル)」を行った。 Using the obtained composition (9) and liquid crystal aligning agent (9), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent "Evaluation of printability (evaluation of coating film edge)", "Evaluation of voltage holding ratio (VHR) (normal cell)", "Preparation of liquid crystal cell and evaluation of liquid crystal orientation (PSA cell)" and "Liquid crystal cell Preparation and Evaluation of Liquid Crystal Orientation (SC-PVA Cell) ”were performed.
<実施例10>
 合成例9の合成手法で得られたポリイミド粉末(9)(1.65g)に、S1(10.3g)およびNEP(7.76g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(6.46g)およびEC(1.29g)を加え、40℃で3時間攪拌して、組成物(10)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(10)は、液晶配向処理剤(10)としても評価に用いた。
<Example 10>
S1 (10.3 g) and NEP (7.76 g) were added to the polyimide powder (9) (1.65 g) obtained by the synthesis method of Synthesis Example 9, and the mixture was dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (6.46 g) and EC (1.29 g) were added, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (10). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (10) was used for evaluation also as a liquid-crystal aligning agent (10).
 得られた組成物(10)および液晶配向処理剤(10)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (10) and liquid crystal alignment treatment agent (10), "evaluation of printability of composition and liquid crystal alignment treatment agent (evaluation of pinhole)", "composition and liquid crystal alignment treatment agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例11>
 合成例10の合成手法で得られたポリイミド粉末(10)(1.60g)に、S1(3.76g)およびNEP(10.0g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(11.3g)を加え、40℃で3時間攪拌して、組成物(11)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(11)は、液晶配向処理剤(11)としても評価に用いた。
<Example 11>
S1 (3.76 g) and NEP (10.0 g) were added to the polyimide powder (10) (1.60 g) obtained by the synthesis method of Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. BCS (11.3 g) was added to this solution, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (11). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (11) was used for evaluation also as a liquid-crystal aligning agent (11).
 得られた組成物(11)および液晶配向処理剤(11)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the composition (11) and the liquid crystal aligning agent (11) obtained, "Evaluation of printability of composition and liquid crystal aligning agent (pinhole evaluation)", "Composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例12>
 合成例11の合成手法で得られたポリイミド粉末(11)(1.70g)に、S1(5.33g)およびγ-BL(13.3g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(7.99g)を加え、40℃で3時間攪拌して、組成物(12)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(12)は、液晶配向処理剤(12)としても評価に用いた。
<Example 12>
S1 (5.33 g) and γ-BL (13.3 g) were added to the polyimide powder (11) (1.70 g) obtained by the synthesis method of Synthesis Example 11, and dissolved by stirring at 70 ° C. for 24 hours. It was. To this solution, BCS (7.9 g) was added and stirred at 40 ° C. for 3 hours to obtain a composition (12). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (12) was used for evaluation also as a liquid-crystal aligning agent (12).
 得られた組成物(12)および液晶配向処理剤(12)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (12) and liquid crystal aligning agent (12), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例13>
 合成例12の合成手法で得られたポリイミド粉末(12)(1.65g)に、S1(7.76g)およびNMP(5.17g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(5.17g)およびPB(7.76g)を加え、40℃で3時間攪拌して、組成物(13)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(13)は、液晶配向処理剤(13)としても評価に用いた。
<Example 13>
S1 (7.76 g) and NMP (5.17 g) were added to the polyimide powder (12) (1.65 g) obtained by the synthesis method of Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (5.17 g) and PB (7.76 g) were added and stirred at 40 ° C. for 3 hours to obtain a composition (13). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (13) was used for evaluation also as a liquid-crystal aligning agent (13).
 得られた組成物(13)および液晶配向処理剤(13)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (13) and liquid crystal alignment treatment agent (13), "evaluation of printability of composition and liquid crystal alignment treatment agent (evaluation of pinhole)", "composition and liquid crystal alignment treatment agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例14>
 合成例13の合成手法で得られたポリイミド粉末(13)(1.60g)に、S1(5.01g)およびNEP(7.52g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(12.5g)を加え、40℃で3時間攪拌して、組成物(14)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(14)は、液晶配向処理剤(14)としても評価に用いた。
<Example 14>
S1 (5.01 g) and NEP (7.52 g) were added to the polyimide powder (13) (1.60 g) obtained by the synthesis method of Synthesis Example 13, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (12.5 g) was added and stirred at 40 ° C. for 3 hours to obtain a composition (14). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (14) was used for evaluation also as a liquid-crystal aligning agent (14).
 得られた組成物(14)および液晶配向処理剤(14)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」、「電圧保持率(VHR)の評価(通常セル)」、「液晶セルの作製および液晶配向性の評価(PSAセル)」および「液晶セルの作製および液晶配向性の評価(SC-PVAセル)」を行った。 Using the obtained composition (14) and liquid crystal aligning agent (14), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent "Evaluation of printability (evaluation of coating film edge)", "Evaluation of voltage holding ratio (VHR) (normal cell)", "Preparation of liquid crystal cell and evaluation of liquid crystal orientation (PSA cell)" and "Liquid crystal cell Preparation and Evaluation of Liquid Crystal Orientation (SC-PVA Cell) ”were performed.
<実施例15>
 合成例13の合成手法で得られたポリイミド粉末(13)(1.70g)に、S1(4.69g)およびγ-BL(18.8g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(9.37g)およびPB(14.1g)を加え、40℃で3時間攪拌して、組成物(15)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(15)は、液晶配向処理剤(15)として評価に用いた。
<Example 15>
S1 (4.69 g) and γ-BL (18.8 g) were added to the polyimide powder (13) (1.70 g) obtained by the synthesis method of Synthesis Example 13, and dissolved by stirring at 70 ° C. for 24 hours. It was. To this solution, BCS (9.37 g) and PB (14.1 g) were added and stirred at 40 ° C. for 3 hours to obtain a composition (15). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (15) was used for evaluation as a liquid-crystal aligning agent (15).
 得られた組成物(15)および液晶配向処理剤(15)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「電圧保持率(VHR)の評価(通常セル)」および「液晶配向処理剤のインクジェット塗布性の評価」を行った。 Using the obtained composition (15) and liquid crystal aligning agent (15), "evaluation of printability of composition and liquid crystal aligning agent (pinhole evaluation)", "evaluation of voltage holding ratio (VHR)" (Normal cell) "and" Evaluation of ink-jet coating property of liquid crystal aligning agent ".
<実施例16>
 合成例14の合成手法で得られたポリイミド粉末(14)(1.60g)に、S1(12.5g)およびNEP(2.51g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、K1(0.08g)およびBCS(10.0g)を加え、40℃で5時間攪拌して、組成物(16)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(16)は、液晶配向処理剤(16)としても評価に用いた。
<Example 16>
S1 (12.5 g) and NEP (2.51 g) were added to the polyimide powder (14) (1.60 g) obtained by the synthesis method of Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, K1 (0.08 g) and BCS (10.0 g) were added and stirred at 40 ° C. for 5 hours to obtain a composition (16). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (16) was used for evaluation also as a liquid-crystal aligning agent (16).
 得られた組成物(16)および液晶配向処理剤(16)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (16) and liquid crystal alignment treatment agent (16), "evaluation of printability of composition and liquid crystal alignment treatment agent (pinhole evaluation)", "composition and liquid crystal alignment treatment agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例17>
 合成例15の合成手法で得られたポリイミド粉末(15)(1.60g)に、S1(15.0g)およびγ-BL(2.51g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、K1(0.08g)、BCS(2.51g)およびPB(5.01g)を加え、40℃で5時間攪拌して、組成物(17)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(17)は、液晶配向処理剤(17)としても評価に用いた。
<Example 17>
S1 (15.0 g) and γ-BL (2.51 g) were added to the polyimide powder (15) (1.60 g) obtained by the synthesis method of Synthesis Example 15, and dissolved by stirring at 70 ° C. for 24 hours. It was. To this solution, K1 (0.08 g), BCS (2.51 g) and PB (5.01 g) were added and stirred at 40 ° C. for 5 hours to obtain a composition (17). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (17) was used for evaluation also as a liquid-crystal aligning agent (17).
 得られた組成物(17)および液晶配向処理剤(17)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (17) and liquid crystal aligning agent (17), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例18>
 合成例16の合成手法で得られたポリイミド粉末(16)(1.70g)に、S1(2.66g)およびNEP(10.7g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(5.33g)およびPB(7.99g)を加え、40℃で3時間攪拌して、組成物(18)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(18)は、液晶配向処理剤(18)としても評価に用いた。
<Example 18>
S1 (2.66 g) and NEP (10.7 g) were added to the polyimide powder (16) (1.70 g) obtained by the synthesis method of Synthesis Example 16, and dissolved by stirring at 70 ° C. for 24 hours. To this solution were added BCS (5.33 g) and PB (7.99 g), and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (18). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (18) was used for evaluation also as a liquid-crystal aligning agent (18).
 得られた組成物(18)および液晶配向処理剤(18)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (18) and liquid crystal aligning agent (18), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例19>
 合成例17の合成手法で得られたポリイミド粉末(17)(1.60g)に、S1(8.77g)およびNMP(5.01g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(8.77g)およびEC(2.51g)を加え、40℃で3時間攪拌して、組成物(19)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(19)は、液晶配向処理剤(19)としても評価に用いた。
<Example 19>
S1 (8.77 g) and NMP (5.01 g) were added to the polyimide powder (17) (1.60 g) obtained by the synthesis method of Synthesis Example 17, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (8.77 g) and EC (2.51 g) were added, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (19). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (19) was used for evaluation also as a liquid-crystal aligning agent (19).
 得られた組成物(19)および液晶配向処理剤(19)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (19) and liquid crystal aligning agent (19), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<実施例20>
 合成例18の合成手法で得られたポリイミド粉末(18)(1.60g)に、S1(10.0g)およびNEP(3.76g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(3.76g)およびPB(7.52g)を加え、40℃で3時間攪拌して、組成物(20)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(20)は、液晶配向処理剤(20)としても評価に用いた。
<Example 20>
S1 (10.0 g) and NEP (3.76 g) were added to the polyimide powder (18) (1.60 g) obtained by the synthesis method of Synthesis Example 18, and dissolved by stirring at 70 ° C. for 24 hours. BCS (3.76 g) and PB (7.52 g) were added to this solution, and the mixture was stirred at 40 ° C. for 3 hours to obtain a composition (20). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (20) was used for evaluation also as a liquid-crystal aligning agent (20).
 得られた組成物(20)および液晶配向処理剤(20)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (20) and liquid crystal aligning agent (20), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<比較例1>
 合成例19の合成手法で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(19)(10.0g)に、NMP(16.0g)およびBCS(15.7g)を加え、25℃で4時間攪拌して、組成物(21)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(21)は、液晶配向処理剤(21)としても評価に用いた。
<Comparative Example 1>
NMP (16.0 g) and BCS (15.7 g) were added to a polyamic acid solution (19) (10.0 g) having a resin solid content concentration of 25 mass% obtained by the synthesis method of Synthesis Example 19, and the mixture was added at 25 ° C. The mixture was stirred for 4 hours to obtain a composition (21). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (21) was used for evaluation also as a liquid-crystal aligning agent (21).
 得られた組成物(21)および液晶配向処理剤(21)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (21) and liquid crystal aligning agent (21), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<比較例2>
 合成例3の合成手法で得られたポリイミド粉末(3)(1.70g)に、NMP(14.7g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(12.0g)を加え、40℃で3時間攪拌して、組成物(22)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(22)は、液晶配向処理剤(22)としても評価に用いた。
<Comparative example 2>
NMP (14.7 g) was added to the polyimide powder (3) (1.70 g) obtained by the synthesis method of Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (12.0 g) was added and stirred at 40 ° C. for 3 hours to obtain a composition (22). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (22) was used for evaluation also as a liquid-crystal aligning agent (22).
 得られた組成物(22)および液晶配向処理剤(22)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (22) and liquid crystal aligning agent (22), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<比較例3>
 合成例20の合成手法で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(20)(10.5g)に、NMP(14.7g)およびBCS(18.5g)を加え、25℃で4時間攪拌して、組成物(23)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(23)は、液晶配向処理剤(23)としても評価に用いた。
<Comparative Example 3>
NMP (14.7 g) and BCS (18.5 g) were added to a polyamic acid solution (20) (10.5 g) having a resin solid content concentration of 25 mass% obtained by the synthesis method of Synthesis Example 20, and the mixture was added at 25 ° C. The mixture was stirred for 4 hours to obtain a composition (23). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (23) was used for evaluation also as a liquid-crystal aligning agent (23).
 得られた組成物(23)および液晶配向処理剤(23)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (23) and liquid crystal aligning agent (23), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
<比較例4>
 合成例6の合成手法で得られたポリイミド粉末(6)(1.65g)に、NMP(14.2g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(11.6g)を加え、40℃で3時間攪拌して、組成物(24)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(24)は、液晶配向処理剤(24)としても評価に用いた。
<Comparative example 4>
NMP (14.2 g) was added to the polyimide powder (6) (1.65 g) obtained by the synthesis method of Synthesis Example 6 and dissolved by stirring at 70 ° C. for 24 hours. BCS (11.6g) was added to this solution, and it stirred at 40 degreeC for 3 hours, and obtained the composition (24). In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (24) was used for evaluation also as a liquid-crystal aligning agent (24).
 得られた組成物(24)および液晶配向処理剤(24)を用いて、「組成物および液晶配向処理剤の印刷性の評価(ピンホールの評価)」、「組成物および液晶配向処理剤の印刷性の評価(塗膜端部の評価)」および「電圧保持率(VHR)の評価(通常セル)」を行った。 Using the obtained composition (24) and liquid crystal aligning agent (24), "evaluation of printability of composition and liquid crystal aligning agent (evaluation of pinhole)", "composition and liquid crystal aligning agent Evaluation of printability (evaluation of coating film edge) ”and“ evaluation of voltage holding ratio (VHR) (normal cell) ”were performed.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000082
 上記の結果からわかるように、本発明の実施例の組成物から得られたポリイミド膜は、比較例の組成物から得られたポリイミド膜に比べて、ピンホールが発生しない均一な塗膜性を示し、さらに、ポリイミド膜の端部の直線性が高く、かつその端部の盛り上がりが小さくなった。具体的には、本発明の(A)成分である特定溶媒を用いた組成物と、それを用いていない組成物との比較、すなわち、実施例2と比較例1との比較、実施例3と比較例2との比較、実施例5と比較例3との比較および実施例6と比較例4との比較である。これら比較例では、対応する実施例に比べて、ポリイミド膜上のピンホールの数が多く、さらに、ポリイミド膜の塗膜端部の塗膜性も悪い結果となった。また、これら実施例の組成物は、液晶配向処理剤としても評価に用いたことから、これら組成物を用いた実施例の結果は、液晶配向処理剤の結果ともした。 As can be seen from the above results, the polyimide film obtained from the composition of the example of the present invention has a uniform coating property that does not generate pinholes compared to the polyimide film obtained from the composition of the comparative example. Furthermore, the linearity of the end portion of the polyimide film was high, and the rise of the end portion was small. Specifically, a comparison between the composition using the specific solvent which is the component (A) of the present invention and a composition not using it, that is, comparison between Example 2 and Comparative Example 1, Example 3 The comparison between Example 6 and Comparative Example 2, the comparison between Example 5 and Comparative Example 3, and the comparison between Example 6 and Comparative Example 4. In these comparative examples, the number of pinholes on the polyimide film was large as compared with the corresponding examples, and furthermore, the coating property at the coating film end portion of the polyimide film was also poor. Moreover, since the composition of these Examples was used also for evaluation as a liquid-crystal aligning agent, the result of the Example using these compositions was also made into the result of a liquid-crystal aligning agent.
 また、本発明の組成物を用いた液晶配向処理剤から得られた液晶配向膜は、比較例の液晶配向処理剤から得られた液晶配向膜に比べて、液晶配向膜を作製する際の焼成が低温であっても、液晶表示素子における電圧保持率(VHRともいう)に優れる結果が得られた。具体的には、本発明の(A)成分である特定溶媒を用いた液晶配向処理剤と、それを用いていない液晶配向処理剤との比較、すなわち、実施例2と比較例1との比較、実施例3と比較例2との比較、実施例5と比較例3との比較および実施例6と比較例4との比較である。これら比較例では、対応する実施例に比べて、VHRの値が低くなった。特に、液晶セル作製直後の値だけでなく、高温槽保管後の値が低い、すなわち、高温に伴うVHRの低下が大きい結果となった。 Moreover, the liquid crystal aligning film obtained from the liquid crystal aligning agent using the composition of the present invention is fired when producing a liquid crystal aligning film as compared with the liquid crystal aligning film obtained from the liquid crystal aligning agent of the comparative example. Even when the temperature was low, a result of excellent voltage holding ratio (also referred to as VHR) in the liquid crystal display element was obtained. Specifically, a comparison between a liquid crystal aligning agent using a specific solvent which is the component (A) of the present invention and a liquid crystal aligning agent not using the same, that is, a comparison between Example 2 and Comparative Example 1. The comparison between Example 3 and Comparative Example 2, the comparison between Example 5 and Comparative Example 3, and the comparison between Example 6 and Comparative Example 4. In these comparative examples, the value of VHR was lower than in the corresponding examples. In particular, not only the value immediately after the production of the liquid crystal cell but also the value after storage in the high-temperature bath was low, that is, the VHR was greatly reduced with high temperature.
 本発明の組成物は、ポリイミド膜を形成する際に、はじきに伴うピンホールの発生を抑制することができ、その端部の塗膜性にも優れるポリイミド膜を得ることができる。その際、低温での焼成でも、ポリイミド膜が作製できる。 The composition of the present invention can suppress the generation of pinholes accompanying repelling when forming a polyimide film, and can provide a polyimide film having excellent coating properties at the edges. At that time, a polyimide film can be produced even by baking at a low temperature.
 また、本発明の組成物を液晶配向処理剤に用いると、はじきに伴うピンホールの発生を抑制することができ、その端部の塗膜性にも優れる液晶配向膜を得ることができる。さらには、液晶配向膜を作製する際の焼成が低温であっても、液晶表示素子における電気特性、特に電圧保持率(VHRともいう)に優れる液晶配向膜となる。よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビや中小型のカーナビゲーションシステムやスマートフォンなどに好適に利用することができ、TN素子、STN素子、TFT液晶素子、特にVAモード、PSAモードおよびSC-PVAモードなどの垂直配向型の液晶表示素子に有用である。 In addition, when the composition of the present invention is used for a liquid crystal alignment treatment agent, the generation of pinholes accompanying repelling can be suppressed, and a liquid crystal alignment film having excellent coating properties at the end can be obtained. Furthermore, even when the firing for producing the liquid crystal alignment film is performed at a low temperature, the liquid crystal alignment film has excellent electrical characteristics, particularly voltage holding ratio (also referred to as VHR). Therefore, the liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention has excellent reliability, and is used for a large-screen high-definition liquid crystal television, a small-sized car navigation system, a smartphone, and the like. It can be suitably used, and is useful for a TN element, STN element, TFT liquid crystal element, particularly a vertical alignment type liquid crystal display element such as VA mode, PSA mode and SC-PVA mode.

Claims (26)

  1.  (A)成分:下記の式[A]:
    Figure JPOXMLDOC01-appb-C000001

    (式中、XおよびXは、それぞれ独立して、炭素数1~3のアルキル基を示し、XおよびXは、それぞれ独立して、炭素数1~3のアルキル基を示す)で示される溶媒;および
    (B)成分:ポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体
    を含有する組成物。
    Component (A): Formula [A] below:
    Figure JPOXMLDOC01-appb-C000001

    (Wherein, X 1 and X 2 each independently represent an alkyl group having 1 to 3 carbon atoms, and X 3 and X 4 each independently represent an alkyl group having 1 to 3 carbon atoms) And (B) component: a composition containing at least one polymer selected from polyimide precursors and polyimides.
  2.  前記(A)成分の溶媒が、下記の式[A-1]:
    Figure JPOXMLDOC01-appb-C000002

    で示される溶媒である、請求項1に記載の組成物。
    The solvent of the component (A) is represented by the following formula [A-1]:
    Figure JPOXMLDOC01-appb-C000002

    The composition of Claim 1 which is a solvent shown by these.
  3.  前記(B)成分が、下記の式[1-1]および式[1-2]:
    Figure JPOXMLDOC01-appb-C000003

    (式中、Yは、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示し、Yは、単結合または-(CH-(bは1~15の整数である)を示し、Yは、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示し、Yは、ベンゼン環、シクロヘキサン環および複素環から選ばれる少なくとも1種の環の2価の環状基、またはステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、Yは、ベンゼン環、シクロヘキサン環および複素環から選ばれる少なくとも1種の環の2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは、0~4の整数を示し、Yは、炭素数1~22のアルキル基、炭素数2~22のアルケニル基、炭素数1~22のフッ素含有アルキル基、炭素数1~22のアルコキシル基および炭素数1~22のフッ素含有アルコキシル基から選ばれる少なくとも1種を示す);
    Figure JPOXMLDOC01-appb-C000004

    (式中、Yは、単結合、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-および-OCO-から選ばれる少なくとも1種の結合基を示し、Yは、炭素数8~22のアルキル基または炭素数6~18のフッ素含有アルキル基を示す)
    で示される構造から選ばれる少なくとも1種の構造を有するジアミン化合物を原料の一部に用いたポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体である、請求項1または請求項2に記載の組成物。
    The component (B) is represented by the following formula [1-1] and formula [1-2]:
    Figure JPOXMLDOC01-appb-C000003

    Wherein Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —CONH—, —NHCO—, —CON At least one linking group selected from (CH 3 ) —, —N (CH 3 ) CO—, —COO— and —OCO—, wherein Y 2 represents a single bond or — (CH 2 ) b — (b Is an integer of 1 to 15, and Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO Y represents at least one linking group selected from — and —OCO—, and Y 4 represents a carbon having a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a steroid skeleton A divalent organic group of formula 17 to 51, wherein any hydrogen atom on the cyclic group is a carbon atom Alkyl group having 1 to 3, an alkoxyl group having 1 to 3 carbon atoms, fluorine-containing alkyl group having 1 to 3 carbon atoms may be substituted with a fluorine-containing alkoxyl group or a fluorine atom having 1 to 3 carbon atoms, Y 5 represents a divalent cyclic group of at least one ring selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, and n represents an integer of 0 to 4 Y 6 represents an alkyl group having 1 to 22 carbon atoms, an alkenyl group having 2 to 22 carbon atoms, a fluorine-containing alkyl group having 1 to 22 carbon atoms, an alkoxyl group having 1 to 22 carbon atoms, and fluorine having 1 to 22 carbon atoms. Contains At least one selected from alkoxyl groups);
    Figure JPOXMLDOC01-appb-C000004

    Wherein Y 7 is a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —COO— and At least one linking group selected from —OCO—, and Y 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms)
    The at least 1 type polymer selected from the polyimide precursor and polyimide which used the diamine compound which has at least 1 type of structure chosen from the structure shown by a part of raw material as described in any one of Claim 1 or Claim 2 Composition.
  4.  前記式[1-1]および式[1-2]で示される構造を有するジアミン化合物が、下記の式[1a]:
    Figure JPOXMLDOC01-appb-C000005

    (式中、Yは、前記式[1-1]および式[1-2]で示される構造から選ばれる少なくとも1種の構造を示し、mは、1~4の整数を示す)。
    で示されるジアミン化合物である、請求項3に記載の組成物。
    The diamine compound having the structure represented by the formula [1-1] and the formula [1-2] is represented by the following formula [1a]:
    Figure JPOXMLDOC01-appb-C000005

    (Wherein Y represents at least one structure selected from the structures represented by the formulas [1-1] and [1-2], and m represents an integer of 1 to 4).
    The composition of Claim 3 which is a diamine compound shown by these.
  5.  前記(B)成分の重合体が、カルボキシル基(COOH基)およびヒドロキシル基(OH基)から選ばれる少なくとも1種の置換基を有するジアミン化合物を原料の一部に用いたポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体である、請求項1~請求項4のいずれか一項に記載の組成物。 From the polyimide precursor and the polyimide in which the polymer of the component (B) is a diamine compound having at least one substituent selected from a carboxyl group (COOH group) and a hydroxyl group (OH group) as a part of the raw material The composition according to any one of claims 1 to 4, which is at least one polymer selected.
  6.  前記カルボキシル基およびヒドロキシル基を有するジアミン化合物が、下記の式[2a]:
    Figure JPOXMLDOC01-appb-C000006

    {式中、Aは、下記の式[2-1]および式[2-2]:
    Figure JPOXMLDOC01-appb-C000007

    (式[2-1]中、aは、0~4の整数を示し、式[2-2]中、bは、0~4の整数を示す)から選ばれる少なくとも1つの構造の置換基を示し、mは、1~4の整数を示す}
    で示されるジアミン化合物である、請求項5に記載の組成物。
    The diamine compound having a carboxyl group and a hydroxyl group is represented by the following formula [2a]:
    Figure JPOXMLDOC01-appb-C000006

    {In the formula, A represents the following formula [2-1] and formula [2-2]:
    Figure JPOXMLDOC01-appb-C000007

    (In the formula [2-1], a represents an integer of 0 to 4, and in the formula [2-2], b represents an integer of 0 to 4). M represents an integer of 1 to 4}
    The composition of Claim 5 which is a diamine compound shown by these.
  7.  前記(B)成分の重合体が、下記の式[3a]:
    Figure JPOXMLDOC01-appb-C000008

    (式中、Bは、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-および-N(CH)CO-から選ばれる少なくとも1種の結合基を示し、Bは、単結合、炭素数1~20の脂肪族炭化水素の2価の基、非芳香族環式炭化水素の2価の基および芳香族炭化水素の2価の基から選ばれる少なくとも1種を示し、Bは、単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-および-O(CH-(mは1~5の整数である)から選ばれる少なくとも1種の結合基を示し、Bは、窒素含有複素環基を示し、nは、1~4の整数を示す)
    で示されるジアミン化合物を原料の一部に用いたポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体である、請求項1~請求項6のいずれか一項に記載の組成物。
    The polymer of the component (B) is represented by the following formula [3a]:
    Figure JPOXMLDOC01-appb-C000008

    Wherein B 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — and Represents at least one linking group selected from —N (CH 3 ) CO—, wherein B 2 is a single bond, a divalent group of an aliphatic hydrocarbon having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon; And B 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—. , —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— and —O (CH 2 ) m — (m is an integer of 1 to 5) At least one linking group selected, B 4 represents a nitrogen-containing heterocyclic group, and n represents an integer of 1 to 4)
    The composition according to any one of claims 1 to 6, which is at least one polymer selected from a polyimide precursor and a polyimide obtained by using a diamine compound represented by the formula:
  8.  前記式[3a]中のBが-CONH-を示し、Bが炭素数1~5のアルキレン基を示し、Bが単結合を示し、Bがイミダゾリル基またはピリジル基を示し、nが1を示すジアミン化合物である、請求項7に記載の組成物。 In the formula [3a], B 1 represents —CONH—, B 2 represents an alkylene group having 1 to 5 carbon atoms, B 3 represents a single bond, B 4 represents an imidazolyl group or a pyridyl group, n The composition according to claim 7, wherein is a diamine compound exhibiting 1.
  9.  前記(B)成分の重合体が、下記の式[4]:
    Figure JPOXMLDOC01-appb-C000009

    {式中、Zは、下記の式[4a]~式[4k]:
    Figure JPOXMLDOC01-appb-C000010

    (式[4a]中、Z~Zは、それぞれ独立して、水素原子、メチル基、塩素原子またはフェニル基を示し、式[4g]中、ZおよびZは、それぞれ独立して、水素原子またはメチル基を示す)
    から選ばれる少なくとも1種の構造の基を示す}
    で示されるテトラカルボン酸成分を原料の一部に用いたポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体である、請求項1~請求項8のいずれか一項に記載の組成物。
    The polymer of the component (B) is represented by the following formula [4]:
    Figure JPOXMLDOC01-appb-C000009

    {In the formula, Z represents the following formula [4a] to formula [4k]:
    Figure JPOXMLDOC01-appb-C000010

    (In formula [4a], Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, a chlorine atom or a phenyl group, and in formula [4g], Z 5 and Z 6 are each independently Represents a hydrogen atom or a methyl group)
    Represents a group of at least one structure selected from
    The composition according to any one of claims 1 to 8, which is at least one polymer selected from polyimide precursors and polyimides using a tetracarboxylic acid component represented by formula (1) as part of a raw material.
  10.  前記(B)成分の重合体が、ポリアミド酸アルキルエステルおよびポリイミドから選ばれる少なくとも1種の重合体である、請求項1~請求項9のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 9, wherein the polymer of the component (B) is at least one polymer selected from polyamic acid alkyl ester and polyimide.
  11.  (C)成分として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンおよびγ-ブチロラクトンから選ばれる少なくとも1種の溶媒を含有する、請求項1~請求項10のいずれか一項に記載の組成物。 The component (C) contains at least one solvent selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and γ-butyrolactone, according to any one of claims 1 to 10. The composition as described.
  12.  (D)成分として、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテルおよび下記の式[D-1]~式[D-3]:
    Figure JPOXMLDOC01-appb-C000011

    (式[D-1]中、Dは、炭素数1~3のアルキル基を示し、式[D-2]中、Dは、炭素数1~3のアルキル基を示し、式[D-3]中、Dは、炭素数1~4のアルキル基を示す)
    で示される溶媒から選ばれる少なくとも1種の溶媒を含有する、請求項1~請求項11のいずれか一項に記載の組成物。
    As component (D), 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether and the following formula [D-1] Formula [D-3]:
    Figure JPOXMLDOC01-appb-C000011

    (In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms. In the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms. -3], D 3 represents an alkyl group having 1 to 4 carbon atoms)
    The composition according to any one of claims 1 to 11, comprising at least one solvent selected from the solvents represented by:
  13.  組成物中に、エポキシ基、イソシアネート基、オキセタン基またはシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基および低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、および重合性不飽和結合を有する架橋性化合物から選ばれる少なくとも1種の架橋性化合物を含む、請求項1~請求項12のいずれか一項に記載の組成物。 Crosslinkability having at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group in the composition The composition according to any one of claims 1 to 12, comprising a compound and at least one crosslinkable compound selected from crosslinkable compounds having a polymerizable unsaturated bond.
  14.  前記(A)成分が、組成物に含まれる溶媒全体の5~70質量%である、請求項1~請求項13のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 13, wherein the component (A) is 5 to 70 mass% of the entire solvent contained in the composition.
  15.  前記(C)成分が、組成物に含まれる溶媒全体の40~80質量%である、請求項11~請求項14のいずれか一項に記載の組成物。 The composition according to any one of claims 11 to 14, wherein the component (C) is 40 to 80% by mass of the total solvent contained in the composition.
  16.  前記(D)成分が、組成物に含まれる溶媒全体の1~50質量%である、請求項12~請求項15のいずれか一項に記載の組成物。 The composition according to any one of claims 12 to 15, wherein the component (D) is 1 to 50% by mass of the whole solvent contained in the composition.
  17.  前記(B)成分が、組成物中に0.1質量%~30質量%である、請求項1~請求項16のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 16, wherein the component (B) is 0.1% by mass to 30% by mass in the composition.
  18.  請求項1~請求項17のいずれか一項に記載の組成物から得られるポリイミド膜。 A polyimide film obtained from the composition according to any one of claims 1 to 17.
  19.  請求項1~請求項17のいずれか一項に記載の組成物から得られる液晶配向処理剤。 A liquid crystal aligning agent obtained from the composition according to any one of claims 1 to 17.
  20.  請求項19に記載の液晶配向処理剤を用いて得られる液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to claim 19.
  21.  請求項19に記載の液晶配向処理剤を用いて、インクジェット法にて得られる液晶配向膜。 A liquid crystal alignment film obtained by an ink jet method using the liquid crystal aligning agent according to claim 19.
  22.  請求項20または請求項21に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 20 or claim 21.
  23.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項20または請求項21に記載の液晶配向膜。 A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes The liquid crystal alignment film according to claim 20 or 21, wherein the liquid crystal alignment film is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable compound while applying a voltage therebetween.
  24.  請求項23に記載の液晶配向膜を有することを特徴とする液晶表示素子。 24. A liquid crystal display element comprising the liquid crystal alignment film according to claim 23.
  25.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項20または請求項21に記載の液晶配向膜。 A liquid crystal layer comprising a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates; The liquid crystal alignment film according to claim 20 or 21, wherein the liquid crystal alignment film is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable group while applying a voltage therebetween.
  26.  請求項25に記載の液晶配向膜を有することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 25.
PCT/JP2014/077219 2013-10-10 2014-10-10 Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element WO2015053394A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015541652A JP6668754B2 (en) 2013-10-10 2014-10-10 Composition, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
KR1020167011818A KR102259997B1 (en) 2013-10-10 2014-10-10 Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element
CN201480067004.XA CN105814141B (en) 2013-10-10 2014-10-10 Composition, aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-213117 2013-10-10
JP2013213117 2013-10-10

Publications (1)

Publication Number Publication Date
WO2015053394A1 true WO2015053394A1 (en) 2015-04-16

Family

ID=52813207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077219 WO2015053394A1 (en) 2013-10-10 2014-10-10 Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6668754B2 (en)
KR (1) KR102259997B1 (en)
CN (1) CN105814141B (en)
TW (1) TWI649362B (en)
WO (1) WO2015053394A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037136A (en) * 2015-08-07 2017-02-16 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display
JP2017197631A (en) * 2016-04-26 2017-11-02 宇部興産株式会社 Polyimide precursor, polyimide, polyimide film, polyimide laminate, and polyimide/hard coat laminate
CN109196412A (en) * 2016-03-31 2019-01-11 日产化学株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
WO2019097902A1 (en) * 2017-11-20 2019-05-23 Jsr株式会社 Method for manufacturing liquid crystal element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643038B (en) * 2016-08-24 2022-01-25 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN111171842A (en) * 2017-02-28 2020-05-19 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element and polymer
KR102558626B1 (en) * 2017-07-27 2023-07-21 닛산 가가쿠 가부시키가이샤 Resin composition, resin film and liquid crystal display element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107985A (en) * 1996-06-21 1998-01-13 Chisso Corp Varnish
JP2011144217A (en) * 2010-01-12 2011-07-28 Jnc Corp Thermosetting composition
WO2013108854A1 (en) * 2012-01-18 2013-07-25 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2014199446A (en) * 2013-03-14 2014-10-23 Jnc株式会社 Liquid crystal aligning agent and liquid crystal display element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237324A (en) 1988-07-27 1990-02-07 Sanyo Electric Co Ltd Production of polyimide oriented film
JP5911123B2 (en) * 2011-09-01 2016-04-27 とし子 岩井 Sanitary sheet set for wiping off the deposits of instruments that have come into contact with food, and method for wiping and reducing deposits on instruments that have touched food
JP5852411B2 (en) * 2011-10-31 2016-02-03 アスモ株式会社 Rotor and motor
JP6311343B2 (en) * 2013-05-09 2018-04-18 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, method for manufacturing liquid crystal alignment film, retardation film and method for manufacturing retardation film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107985A (en) * 1996-06-21 1998-01-13 Chisso Corp Varnish
JP2011144217A (en) * 2010-01-12 2011-07-28 Jnc Corp Thermosetting composition
WO2013108854A1 (en) * 2012-01-18 2013-07-25 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2014199446A (en) * 2013-03-14 2014-10-23 Jnc株式会社 Liquid crystal aligning agent and liquid crystal display element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037136A (en) * 2015-08-07 2017-02-16 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display
CN109196412A (en) * 2016-03-31 2019-01-11 日产化学株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
CN109196412B (en) * 2016-03-31 2021-08-24 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2017197631A (en) * 2016-04-26 2017-11-02 宇部興産株式会社 Polyimide precursor, polyimide, polyimide film, polyimide laminate, and polyimide/hard coat laminate
WO2019097902A1 (en) * 2017-11-20 2019-05-23 Jsr株式会社 Method for manufacturing liquid crystal element
JPWO2019097902A1 (en) * 2017-11-20 2020-07-16 Jsr株式会社 Liquid crystal element manufacturing method
JP7074142B2 (en) 2017-11-20 2022-05-24 Jsr株式会社 Manufacturing method of liquid crystal element

Also Published As

Publication number Publication date
KR102259997B1 (en) 2021-06-02
CN105814141A (en) 2016-07-27
JPWO2015053394A1 (en) 2017-03-09
CN105814141B (en) 2018-12-11
TWI649362B (en) 2019-02-01
KR20160070777A (en) 2016-06-20
TW201529659A (en) 2015-08-01
JP6668754B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
KR102224531B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6561834B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2020056034A (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP6501073B2 (en) Liquid crystal aligning agent and liquid crystal display device using the same
JP6497520B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2015053394A1 (en) Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element
JP6083382B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6281567B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6617878B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP6281568B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014061781A1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014119682A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6102752B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014126102A1 (en) Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent
WO2016076413A1 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2016076412A1 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541652

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167011818

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14851474

Country of ref document: EP

Kind code of ref document: A1