WO2018209867A1 - 纳米流体切削液热物理性质参数集成在线测量*** - Google Patents

纳米流体切削液热物理性质参数集成在线测量*** Download PDF

Info

Publication number
WO2018209867A1
WO2018209867A1 PCT/CN2017/103323 CN2017103323W WO2018209867A1 WO 2018209867 A1 WO2018209867 A1 WO 2018209867A1 CN 2017103323 W CN2017103323 W CN 2017103323W WO 2018209867 A1 WO2018209867 A1 WO 2018209867A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofluid
fluid
workpiece
measuring device
grinding
Prior art date
Application number
PCT/CN2017/103323
Other languages
English (en)
French (fr)
Inventor
李长河
杨敏
李润泽
张彦彬
张仙朋
纪合聚
侯亚丽
张乃庆
吴启东
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to GB1807718.0A priority Critical patent/GB2566138B/en
Publication of WO2018209867A1 publication Critical patent/WO2018209867A1/zh
Priority to US16/672,540 priority patent/US11047818B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Definitions

  • the invention relates to a thermophysical property parameter measuring system for a nanofluid cutting fluid, in particular to an integrated online measuring system for a thermal conductivity of a nanofluid, a convective heat transfer coefficient and a fluid/workpiece energy proportional coefficient.
  • Nano-particles are slightly lubricated (Nano-particle) Jet Minimum Quantity Lubrication (Nano-MQL for short) has entered people's sight.
  • nanoparticles refer to ultrafine microscopic solid particles having at least one dimension of less than 100 nm in three dimensions.
  • the nanoparticle jet is slightly lubricated.
  • nano-scale solid particles are added to the cutting fluid, and the nanoparticles, the cutting fluid and the compressed air are mixed and atomized, and then sprayed into the cutting zone as a jet for cooling and lubrication.
  • solid enhanced heat transfer based on the fact that the thermal conductivity of solid particles is much larger than that of liquids and gases, the surface area and heat capacity of nanoparticles are much larger than those of millimeters or micrometers at the same particle volume, and the nanoparticles are mixed with cutting fluid.
  • the thermal conductivity of the nanofluidic cutting fluid after formation will increase significantly.
  • Table 1 lists the thermal conductivity of commonly used nanoparticles.
  • the nanofluid mass fraction is generally 2%-8%.
  • a certain proportion of nanoparticles is added to the base liquid to form a nanoparticle suspension, and then the corresponding surface dispersant is added and ultrasonically added according to the type and physical and chemical properties of the base liquid. Vibration can be used to obtain a suspension-stable nanofluid cutting fluid.
  • the excellent lubrication and cooling effect of nano-particle jet micro-lubrication has been confirmed by a large number of researchers.
  • the heat transfer coefficient of the nanofluid cutting fluid in the cutting zone is measured by the thermal conductivity (k), the convective heat transfer coefficient (h) and the nanofluid/workpiece energy ratio coefficient (R).
  • Thermal conductivity is an inherent property of nanofluidic cutting fluids, and once the nanofluid configuration is complete, its thermal conductivity is determined.
  • Li Changhe from Qingdao University of Technology invented a nanofluid thermal conductivity coefficient and convective heat transfer coefficient measuring device (Patent No.: ZL 201110221334.8), which can measure the thermal conductivity of nanofluids on the same equipment.
  • the convection heat transfer coefficient is measured, and the grinding fluid supply system is simulated by a hydraulic pump, and the nano-fluid is heated by a nickel-chromium alloy resistance wire to obtain the same heat flow boundary condition as the grinding condition, not only equipment integration
  • High rate, high utilization rate, high measurement accuracy and good reliability have solved the problem that the current thermal conductivity and convective heat transfer coefficient of nanofluids are measured by different devices.
  • Zhang Kuan et al. (Patent No.: ZL 201320422680.7) of Wenzhou University disclosed a nanofluid thermal conductivity measuring device.
  • the container for placing the nanofluid is a heat conductive container, and the heating device and the heat absorbing device are respectively disposed on both sides.
  • the heat provided by the heating device is completely transmitted to the heat absorbing device, and the heat absorbing device is provided with a heat absorbing measuring device.
  • the thermal conductivity of the nanofluid is measured by heating the outside of the container, thereby avoiding the possibility that the particles in the liquid may be unevenly distributed due to uneven distribution of the inside of the container, and the heat absorption device and the heat absorption measuring device are passed.
  • the heat transferred through the container and the nanofluid is measured, and finally the thermal conductivity of the nanofluid is obtained by a calculation formula.
  • Zheng Huaan et al. invented a nanofluid heat and mass transfer monitoring device and method (Patent No.: ZL201610333181.9), by recording the ultrasonic attenuation amplitude and measuring probe of the nanofluid with non-Newtonian fluid as the base liquid at the measuring point. The distance between the reflectors is repeatedly adjusted to adjust the positional relationship between the probe and the measuring point. The acoustic frequency signal is obtained by the computer data processing system to obtain the thermal conductivity increment of the nanofluid and the nanofluid diffusion coefficient, which can increase the thermal conductivity of the nanofluid under the flowing state. The quantity and diffusion coefficient are monitored in real time with high precision.
  • the convective heat transfer coefficient is the comprehensive influence parameter of the fluid integral number, thermal conductivity, specific heat capacity and density of the nanofluid.
  • the convective heat transfer coefficient directly determines the strength of the convective heat transfer of the nanofluid in the cutting zone.
  • the main factors affecting the convective heat transfer coefficient are: (1) the cause and flow state of convective motion; (2) the thermophysical properties of the fluid; (3) the shape, size and relative position of the heat transfer surface; (4) the presence or absence of fluid change.
  • thermoelectric power generation system Patent No.: ZL 201610505891.5
  • the convective heat transfer performance of the nanofluid is calculated according to the isothermal boundary conditions at a temperature T 1 , T 2 , T w from the inlet end 20-30 cm and in the cold water bath.
  • the heat sink arranged from top to bottom on the heat sink, the heat carried by the nanofluid is estimated, and the thermoelectric conversion efficiency is determined by combining the conversion power of the thermoelectric device.
  • the nano-fluid heat transfer coefficient under different working conditions and the influence of the enhanced heat transfer characteristics of nanofluids on the cold-end cooling effect of thermoelectric devices and the thermoelectric conversion efficiency under different working conditions are simultaneously tested, which reduces the measurement error and improves the measurement error.
  • the accuracy of the test the prior art measures and calculates the convective heat transfer coefficient by using convection heat transfer in the tube, which does not conform to the three-dimensional velocity field and pressure field of the nano-particle jet gas, liquid and solid three-phase flow in the nano-particle jet micro-lubrication cutting.
  • the fluid/workpiece energy ratio factor refers to the ratio of the heat flux density of the nanofluid and the heat flux density flowing into the workpiece, which directly determines the maximum temperature of the workpiece.
  • a nanofluid cutting fluid convection heat transfer coefficient measuring device or method can simulate the actual cutting process nozzle airflow field, and there is no more The device or method can realize the on-line measurement of the thermal conductivity of the nanofluid, the convective heat transfer coefficient and the fluid/workpiece energy ratio coefficient.
  • the present invention provides a nanofluid cutting fluid thermophysical property parameter measuring system, specifically a nanofluid cutting fluid thermal conductivity coefficient, convective heat transfer coefficient and fluid / workpiece energy ratio
  • the coefficient integrated online measurement system can effectively measure the thermal conductivity of the nanofluid while simulating the airflow field at the exit of the nano-fluid micro-lubrication nozzle, and accurately measure the convective heat transfer coefficient of the nanofluid cutting fluid and the fluid/workpiece energy proportional coefficient.
  • Nano-fluid cutting fluid thermal physical property parameter integrated online measuring system air compressor, hydraulic pump, nano-fluid thermal conductivity measuring device, micro-lubricating device, nano-fluid cutting fluid convection heat transfer coefficient and fluid / workpiece energy proportional coefficient measuring device and a grinding force and a grinding temperature measuring device or a nanoparticle jet micro-lubricating milling force and a milling temperature measuring device; wherein the nanofluid thermal conductivity measuring device is in a liquid path of an integrated measuring system, which uses a transient double hot wire
  • the long and short platinum wires are respectively fixed in the two glass tubes by the platinum wire brackets, and the two glass tubes are connected by the rubber tube through the connection port, and the two platinum wires serve as both the heating wire source and the temperature measuring component.
  • the check valve When the check valve is opened, the nanofluid can only flow into the thermal conductivity measuring device and cannot flow out.
  • the constant temperature container is kept at a constant temperature by the constant temperature circulating water.
  • the Wheatstone bridge is used to accurately measure the thermal conductivity.
  • the check valve After the measurement is completed, the check valve is opened and the nanofluid is discharged from the nanofluid outlet. Compared with the existing nanofluid thermal conductivity measuring device, the error caused by the natural convection of the nanofluid can be better avoided, and the measurement is convenient without repeated disassembly and assembly.
  • the convective heat transfer coefficient of the nanofluid cutting fluid and the fluid/workpiece energy proportional coefficient measuring device are at the terminal of the integrated measuring system.
  • the heat insulating device is made of a composite material composed of alumina ceramics and carbon nanotubes, wherein the carbon nanotubes are arranged perpendicular to the direction of heat transfer, ensuring that heat generated by the heat source can only be transmitted to the surface of the workpiece in a vertical direction, and can be avoided.
  • the heat is dissipated to the outside of the insulated container through the insulating sidewall during the transfer process, thereby improving the thermal insulation performance of the measuring device, so that the heat can only be transmitted to a predetermined direction, thereby improving the final measurement accuracy.
  • the nano-particle jet micro-lubricating grinding force and grinding temperature measuring device adopts a thermocouple to accurately measure the surface temperature of the workpiece under the micro-lubrication condition of the nano-particle jet, and the grinding force is measured by a grinding dynamometer.
  • the grinding dynamometer platform consists of a monolithic component and two piezoelectric quartz crystal three-dimensional force sensors, which can decompose the grinding force of the workpiece during the grinding process into three component forces that are orthogonal to each other. After the measurement, the thermal conductivity of the nanofluid, the convective heat transfer coefficient of the nanofluid cutting fluid under the grinding conditions and the fluid/workpiece energy ratio coefficient under the grinding conditions can be obtained.
  • Nanoparticle jet micro-lubrication milling force and milling temperature measuring device because the Mohs spindle, piezoelectric force measuring crystal group, electrode lead, wire connecting block, roller, spindle lower end and tapered roller bearing inner ring rotate together with the machine tool spindle,
  • the fixed outer casing, the end cover, the outer ring of the tapered roller bearing and the high-voltage electric conversion device are fixed on the machine tool to be stationary, thereby realizing the milling force measurement on the rotary tool.
  • the thermal conductivity of the nanofluid, the convective heat transfer coefficient of the nanofluid cutting fluid under milling conditions and the fluid/workpiece energy ratio coefficient under the milling conditions can be obtained.
  • Nano-fluid thermal conductivity, convective heat transfer coefficient and fluid/workpiece energy proportional coefficient integrated online measurement system consisting of gas path system, liquid path system, nano-fluid thermal conductivity measuring device, convective heat transfer coefficient of nanofluid cutting fluid and fluid/workpiece energy a proportional coefficient measuring device and a grinding force and grinding temperature measuring device or a milling force and a milling temperature measuring device;
  • the nanofluid thermal conductivity measuring device is located in the liquid path system, including a glass tube I and a glass tube II connected to each other, a long platinum wire is installed in the glass tube I, and a short platinum wire is installed in the glass tube II, and the length is long.
  • the platinum wire and the short platinum wire serve as both a heating wire source and a temperature measuring element; and the glass tube with the long platinum wire is provided with a nano fluid inlet and a nano fluid outlet, and the nano fluid inlet and the nano fluid outlet respectively pass through a one-way valve
  • the liquid system is connected;
  • the gas path system provides pressure for the nanofluid in the liquid path system, and the liquid path system extracts two nozzles, and the nanofluid aerosol sprayed from the nozzle I is sprayed onto the surface of the workpiece I to form a convective heat transfer coefficient and fluid of the nano fluid.
  • the nano fluid aerosol sprayed from the nozzle II is sprayed onto the surface of the workpiece II to form a grinding force and a grinding temperature measuring device.
  • the air circuit system includes an air compressor, a filter, a gas storage tank, a pressure regulating valve II, a throttle valve II, and a turbine flow meter II which are sequentially connected.
  • the liquid path system comprises a nano fluid storage tank, a hydraulic pump, a pressure regulating valve I, a throttle valve I, a turbine flow meter I, a check valve I, and a check valve II which are sequentially connected;
  • the one-way valve I and the thermal conductivity of the nanofluid The nanofluid inlet of the measuring device is connected, and the one-way valve II is connected to the nanofluid outlet of the nanofluid thermal conductivity measuring device.
  • the temperature difference between the long platinum wire and the short platinum wire in the nanofluid thermal conductivity measuring device is accurately measured by a Wheatstone bridge.
  • the glass tube I and the glass tube II are connected by a rubber tube through the connection port I and the connection port II; the one-way valve I is opened, and the nano fluid flows out of the one-way valve I and enters the glass tube II from the nano fluid inlet. Then enter the glass tube I through the connection port II, the rubber tube, and the connection port I. At this time, the one-way valve II is closed, and the nanofluid can only flow into the thermal conductivity measuring device and cannot flow out; after measuring the temperature difference, the one-way valve II is opened, and the nanofluid flows out from the nanofluid outlet.
  • the nanofluidic fluid cutting fluid convection heat transfer coefficient and the fluid/workpiece energy proportional coefficient measuring device comprise a heat insulating device, a heating plate and two thermocouples, wherein the heating plate is horizontally placed in the heat insulating device, and is heated
  • the workpiece I is disposed on the plate, and the two thermocouples are fixed in the through holes of the workpiece I and placed on the surface of the heating plate.
  • the two thermocouples are respectively introduced into the two through holes of the bottom wall of the heat insulating device through the edges of the heating plate.
  • the heat insulating device is a rectangular parallelepiped, and the side wall, the bottom wall and the end cover of the heat insulating device are all made of a composite material formed of alumina ceramics and carbon nanotubes; the composite material is based on alumina ceramics, carbon nanometer.
  • the tube is formed by plasma sintering of the filler.
  • the carbon nanotubes are arranged perpendicular to the direction of heat transfer, that is, the carbon nanotubes are arranged perpendicular to the thickness direction of the heat insulating sidewall, the bottom wall and the end cap of the heat insulating device.
  • the nozzles I and II have the same structure, and are composed of a positioning card, an intermediate sleeve and a nozzle body.
  • the spherical radius of the lower end of the positioning card, the spherical opening of the upper end of the intermediate sleeve and the spherical radius of the lower end and the radius of the spherical end of the upper end of the nozzle body are equal.
  • the spherical shape of the lower end of the positioning card can be installed in the spherical hole at the upper end of the intermediate sleeve, and the spherical shape of the lower end of the intermediate sleeve can be installed in the spherical hole at the upper end of the nozzle body.
  • the liquid injection channel joint of the nozzle body is a nano fluid inlet
  • the nano fluid enters the liquid injection channel joint of the nozzle body through the liquid pipeline
  • the high pressure gas enters the gas injection passage joint of the nozzle body through the air pipeline.
  • the high-pressure gas enters the mixing chamber through the vent hole distributed in the wall of the vent hole, and is fully mixed and atomized with the nano-fluid from the nozzle of the liquid-filling channel in the nozzle mixing chamber, and accelerated into the vortex chamber after being accelerated by the acceleration chamber, so that the high-pressure gas and the nano-fluid Further mixing and accelerating, spraying into the cutting zone through the nozzle outlet in the form of atomized droplets.
  • the grinding force and the grinding temperature measuring device comprise a thermocouple III, a thermocouple IV and a grinding force measuring instrument; the thermocouple is used to accurately measure the surface temperature of the workpiece under the micro-lubrication condition of the nanoparticle jet, and the grinding is performed by using a grinding torch.
  • the force gauge measures the grinding force; the grinding force gauge platform consists of a monolithic component and two piezoelectric quartz crystal three-dimensional force sensors, which can decompose the grinding force of the workpiece during the grinding process into three spaces orthogonal to each other. Divided by force. After the measurement, the thermal conductivity of the nanofluid, the convective heat transfer coefficient of the nanofluid cutting fluid under the grinding conditions and the fluid/workpiece energy ratio coefficient under the grinding conditions can be obtained.
  • the milling force and milling temperature measuring device comprises a piezoelectric force measuring crystal group, an electrode lead, a wire connecting block, a high voltage electric conversion device; and the piezoelectric force measuring crystal group is installed on a Mohs spindle The lower end rotates along with the spindle and the tool; the electrode lead is fixed to the high-voltage electric conversion device after being fixed by the wire connecting block, and the high-voltage electric conversion device is fixed, thereby realizing the cutting force measurement on the rotary tool.
  • the nanofluid thermal conductivity measuring device is specifically a nanofluid flowable thermal conductivity measuring device.
  • the nanofluid flows into the two connected glass tubes from the nanofluid inlet, and flows out from the nanofluid outlet after the measurement is completed.
  • the error caused by the natural convection of the nanofluid can be better avoided, and the measurement is convenient without repeated disassembly and assembly;
  • Measuring device for convective heat transfer coefficient and fluid/workpiece energy proportional coefficient of nanofluid cutting fluid specifically a device for measuring convective heat transfer coefficient of nanofluid and fluid/workpiece energy proportional coefficient under high pressure and high velocity jet conditions, simulating actual nanometer
  • the particle jet slightly lubricates the gas flow field
  • the thermal insulation device of the workpiece is made of a composite material composed of alumina ceramics and carbon nanotubes, which ensures that the heat generated by the heat source can only be transferred to the surface of the workpiece in the vertical direction, and the heat balance from the workpiece
  • the convective heat transfer coefficient of the nanofluid cutting fluid and the fluid/workpiece energy ratio coefficient are accurately inverted by using the inversion principle and the surface temperature of the workpiece measured by the thermocouple;
  • the Mohs main shaft, the piezoelectric force measuring crystal group, the electrode lead, the wire connecting block, the roller, the lower end of the main shaft and the inner ring of the tapered roller bearing rotate together with the machine tool spindle, and the outer casing is fixed.
  • the end cap, the tapered roller bearing outer ring and the high-voltage electric conversion device are fixed on the machine tool to be stationary, thereby realizing the cutting force measurement on the rotary cutter.
  • Figure 1 is an integrated measurement system diagram of thermal conductivity, convective heat transfer coefficient and fluid/workpiece energy proportional coefficient of nanofluid cutting fluid
  • FIG. 2 is a diagram showing a liquid path and a gas path system of a nanofluid thermal conductivity coefficient, a convective heat transfer coefficient, and a fluid/workpiece energy proportional coefficient measuring system;
  • Figure 3 is a cross-sectional view of the thermal conductivity measuring device
  • Figure 4 is a glass tube connection diagram of the thermal conductivity measuring device
  • Figure 5 is a diagram of a thermal conductivity transient hot line measurement system
  • FIG. 6 is a cross-sectional view of a convective heat transfer coefficient of a nanofluid cutting fluid and a fluid/workpiece energy proportional coefficient measuring device
  • Figure 7 is a diagram showing the installation of the heat insulating device and the heating plate
  • Figure 8 is a perspective view of the arrangement of carbon nanotubes in the heat insulating device
  • Figure 9 is a cross-sectional view of the nozzle structure
  • Figure 10 is a positioning card installation diagram
  • Figure 11 is a cross-sectional view of the intermediate sleeve
  • Figure 12 is a cross-sectional view showing the structure of the nozzle body
  • Figure 13 is a nanofluid elliptical spray boundary
  • Figure 14 is a schematic view of heat conduction inside the workpiece
  • Figure 15 is a temperature graph obtained by thermocouple measurement and simulation
  • Figure 16 is a first embodiment of a grinding force and grinding temperature measuring device
  • Figure 17 is a diagram showing the mounting manner of the workpiece on the grinding dynamometer
  • Figure 18 is a grinding dynamometer platform
  • Figure 19 is a cross-sectional view showing the structure of a milling dynamometer according to a second embodiment
  • Figure 20 is a diagram of a piezoelectric force measurement crystal set installation.
  • 1-nano fluid thermal conductivity measuring device 2-air compressor, 3-hydraulic pump, 4-minor lubricating device, 5-nanofluid cutting fluid convection heat transfer coefficient and fluid/workpiece energy proportional coefficient measuring device, 6- Grinding force and grinding temperature measuring device, 7-recovery box, 8-overflow valve, 9-nanometer fluid storage tank, 10-pressure regulator I, 11-throttle valve I, 12-turbine flowmeter I, 13-check valve I, 14-check valve II, 15-filter, 16-gas tank, 17-pressure gauge, 18-pressure regulator II, 19-throttle valve II, 20-turbine flowmeter II , 21-nozzle I, 22-nozzle II, 23-workpiece I, 24-workpiece II, 25-liquid pipe, 26-gas pipe;
  • 21-1-positioning card 21-2-intermediate sleeve, 21-3-nozzle body;
  • 21-3-1-mixing chamber 21-3-2-ventilation, 21-3-3-ventilation wall, 21-3-4-acceleration chamber, 21-3-5-vortex chamber, 21-3- 6-Injection channel connector, 21-3-7-injection channel connector;
  • 601-grinding wheel 602-thermocouple III, 603-thermocouple IV, 604-grinding force gauge;
  • Figure 1 shows the nanofluid thermal conductivity, convective heat transfer coefficient and fluid/workpiece energy proportional coefficient measurement system, including nanofluid thermal conductivity measurement device 1, air compressor 2, hydraulic pump 3, micro-lubrication device 4, nanofluid cutting
  • nanofluid thermal conductivity measurement device 1 air compressor 2, hydraulic pump 3, micro-lubrication device 4, nanofluid cutting
  • FIG. 2 shows a schematic diagram of the liquid and gas system of the measuring system.
  • the air compressor 2, the filter 15, the gas storage tank 16, the pressure regulating valve II18, and the throttle valve II19 are connected in series.
  • Turbine flowmeter II20 constitutes gas path; nano fluid storage tank 9 in series, hydraulic pump 3, pressure regulating valve I10, throttle valve I11, turbine flowmeter I12, check valve I13, thermal conductivity measuring device 1, single A liquid path is formed to the valve II14.
  • the hydraulic pump 3 is activated, and the nanofluid stored in the liquid storage tank 9 is passed through the fluid pressure regulating valve I10, the fluid throttle valve I11, the turbine flow meter I12, the check valve I13, the thermal conductivity measuring device 1 and the check valve. II14 enters the nanofluid inlet of the micro-lubrication device 4.
  • the overflow valve 8 and the nano fluid recovery tank 7 form a protection circuit, and the relief valve 8 functions as a safety valve.
  • the relief valve 8 opens to allow the nanofluid to pass through the relief valve. 8 flows back to the recovery tank 7.
  • the air compressor 2 is activated, and the high-pressure gas enters the compressed gas inlet of the micro-lubricating device 4 through the filter 15, the gas storage tank 16, the gas pressure regulating valve II18, the gas throttle valve II19, and the turbine flow meter II20.
  • the pressure gauge 17 is used to monitor the air pressure of the air reservoir 16.
  • the nanofluid gas sprayed from the nozzle I21 is sprayed onto the surface of the workpiece I23 to form a nanofluidic convective heat transfer coefficient and a fluid/workpiece energy proportional coefficient measuring device 5; the nanofluid aerosol sprayed from the nozzle II22 is sprayed onto the surface of the workpiece II24.
  • a grinding force and a grinding temperature measuring device 6 are formed.
  • the nanofluid thermal conductivity measuring device 1 is in the liquid path of the integrated measuring system, and adopts a transient double hot wire method.
  • the long and short platinum wires are respectively fixed in the two glass tubes by the platinum wire bracket, and the two glass tubes are passed through the connecting port by the rubber tube. Connected, the two platinum wires serve as both a heating wire source and a temperature measuring element.
  • the check valve When the check valve is opened, the nanofluid can only flow into the thermal conductivity measuring device and cannot flow out.
  • the constant temperature container is kept at a constant temperature by the constant temperature circulating water. After the system is stabilized, the Wheatstone bridge is used to accurately measure the thermal conductivity. After the measurement is completed, the check valve is opened and the nanofluid is discharged from the nanofluid outlet.
  • the specific structure is as follows:
  • the long platinum wire 1016 and the short platinum wire 105 have a diameter of 20 ⁇ m and a length of 150 mm and 50 mm, respectively, and the glass tube I107 and the glass tube II1013 have a diameter of 30 mm.
  • the two glass tubes are connected by a rubber tube 109 through a connection port I108 and a connection port II1015 (Fig. 4).
  • the constant temperature container 106 is kept at a constant temperature by the constant temperature circulating water, and the circulating water enters from the constant temperature water inlet 1010 and flows out from the constant temperature water outlet 1018.
  • the rubber stopper I101 and the rubber stopper II1019 are fixed on the thermostatic container cover 102, and the platinum wire holder I103 and the platinum wire holder II104 are passed through the rubber stopper I101 into the glass tube I107, and the platinum wire holder III1017 and the platinum wire holder IV1014 are passed through the rubber stopper II1019 into the glass. Tube II1013.
  • the platinum wire holders I103, II104, III1017, and IV1014 are respectively connected to the connection copper wires I1023, II1022, III1021, and IV1020, and are connected to the power source by the connection copper wire V1024.
  • the one-way valve I13 is opened, and the nano-fluid flows out of the one-way valve I13, enters the glass tube II1013 from the nano-fluid inlet 1012, and enters the glass tube I107 through the connection port II1015, the rubber tube 109, and the connection port I108.
  • the check valve II14 is closed, and the nanofluid can only flow into the thermal conductivity measuring device 1 and cannot flow out. After the system is stabilized, the thermal conductivity of the nanofluid is measured.
  • the measurement principle is:
  • the two hot wires When the two hot wires are only different in length and the same current is applied to the two hot wires, the two hot wires produce the same end heat dissipation effect.
  • the temperature difference between the two platinum wires is equivalent to the temperature rise of a limited portion of an infinitely long hot wire, which can eliminate the heat dissipation effect at the end of the hot wire and improve the measurement accuracy of the experimental data.
  • the resistance value of the platinum wire changes with temperature
  • the surface-insulated platinum wire inserted into the nanofluid serves both as a heating wire source and as a temperature measuring element.
  • Figure 5 shows a diagram of the transient hot line measurement system. The difference in resistance between the two hot wires (ie, the temperature difference between the two hot wires) is accurately measured using a Wheatstone bridge.
  • R r is a precision resistor of 1 ⁇ , and the voltage drop across it is the current I output from the constant current source.
  • R 2 and R 4 are precision resistors having a resistance of 100 ⁇
  • R 1 'and R 3 ' are manganese-copper adjustable resistors having extremely low temperature coefficient of resistance
  • R 1 and R s represent resistances of long and short platinum wires, respectively.
  • the constant current source outputs a constant current I to the bridge.
  • the temperature of the long and short hot wires will rise, and the resistance values will increase by dR l and dRs, respectively.
  • the relationship between the bridge output voltage dU bd and the two filament resistance change amounts dR is
  • R(T) R(0)[1+a(T-273.15)] (3)
  • a is the temperature coefficient of platinum wire resistance, which can be pre-calibrated.
  • L L
  • It is the resistance of the platinum wire which is the difference between the lengths of the two hot filaments.
  • the thermal conductivity of the nanofluid can be calculated by taking the relevant data measured by the thermal conductivity data acquisition system into the equation.
  • the time of one experimental measurement is controlled within 5 s.
  • the check valve II14 is opened, and the nanofluid flows out from the nanofluid outlet 1011.
  • the nanofluid thermal conductivity measuring device of the invention can better avoid the error caused by the natural convection of the nanofluid, and does not need to be repeatedly disassembled and assembled, and the measurement is convenient.
  • Figure 6 shows the convective heat transfer coefficient of the nanofluid cutting fluid and the fluid/workpiece energy proportional coefficient measuring device.
  • a groove 507 is machined at the bottom of the workpiece I23 and two through holes are machined in the groove.
  • the thermocouple I508 and the thermocouple II509 are respectively introduced into the two through holes from the bottom of the workpiece I23, and the nodes of the two thermocouples are placed on the same plane as the surface of the workpiece I23.
  • the workpiece I23 is placed in the heat insulating device 505, and the heating plate 506 (Fig. 7) is provided at the bottom of the workpiece I23.
  • Heating plate 506 so that a constant heat flux q t work, heat is transferred only from the bottom of the workpiece to the workpiece I23 I23 surface.
  • the nanofluid is ejected from the nozzle I21 and sprayed on the surface of the workpiece I23 in the form of a jet.
  • the two thermocouples transmit the collected temperature signal to the data processor, and complete the nanometer through a computer inversion processing program. Measurement of convective heat transfer coefficient of fluid cutting fluid and fluid/workpiece energy ratio coefficient.
  • the heat insulating device 505 has a rectangular parallelepiped shape, and the heating plate 506 is installed in the heat insulating device 505.
  • the two thermocouples are fixed in the through holes of the workpiece I23 and placed on the upper surface of the heating plate 506.
  • the two thermocouples pass through the edge of the heating plate (Fig. 7). After that, they are respectively introduced into the two through holes of the bottom wall of the heat insulating device 505, and the inner space length of the heat insulating device 505, the length of the heating plate, and the length of the workpiece are all l.
  • the heat insulating device end cover 503 is fixed on the heat insulating device 505 by the screw I501 and the gasket I502, and the gasket II504 can adjust the heat insulating device end.
  • the side wall, the bottom wall and the heat insulating device end cover 503 of the heat insulating device 505 are all made of a composite material formed of alumina ceramics and carbon nanotubes.
  • the composite material is based on alumina ceramics, and the carbon nanotubes are filled with plasma. Sintered.
  • the carbon nanotubes are arranged perpendicular to the direction of heat transfer (Fig. 8), that is, the carbon nanotubes are arranged perpendicular to the thickness direction of the insulating sidewall, the bottom wall and the end cap of the heat insulating device.
  • the carbon nanotube is a tubular material obtained by crimping carbon atoms of a graphite layer, and has a diameter of several nanometers to several tens of nanometers, and may be continuous or discontinuous.
  • Carbon nanotubes have unique thermal conductivity, and their axial thermal conductivity is excellent, but they are not thermally conductive in the radial direction.
  • the heat insulating device has excellent heat insulating performance, and has higher heat insulating effect than the conventional alumina ceramic, ensuring that the heat generated by the heat source can only be transmitted to the surface of the workpiece in the vertical direction, and the heat can be prevented from passing through during the transfer process.
  • the insulated sidewalls are emitted outside the insulated container, thereby increasing the thermal insulation performance of the measuring device so that heat can only be transferred in a predetermined direction, improving the final measurement accuracy.
  • the nozzle I and the nozzle II have the same structure, and the nozzle I is taken as an example.
  • the nozzle I21 is a cross-sectional view of the structure.
  • 25 is the liquid pipe of the whole system
  • 26 is the gas pipe of the whole system.
  • 21-1 is a positioning card of the nozzle I21
  • 21-2 is an intermediate sleeve
  • 21-3 is a nozzle body.
  • the positioning card 21-1 is a resin material
  • the solid line pattern in FIG. 10 has its original shape, and can be changed into a broken line pattern after being pressed, and the positioning card 21-1 is deformed by force and then loaded into the end cover of the heat insulating device. 503.
  • the spherical radius of the lower end of the positioning card 21-1, the spherical shape of the upper end of the intermediate sleeve 21-2 (Fig. 11) and the spherical radius of the lower end and the radius of the upper end of the nozzle body 21-3 are all r, so that the lower end of the positioning card 21-1 is spherical.
  • the ball is mounted in the upper end of the intermediate sleeve 21-2, and the lower end of the intermediate sleeve 21-2 is spherically mounted in the upper end of the nozzle body 21-3.
  • Figure 12 is a cross-sectional view of the nozzle body 21-3.
  • the nanofluid enters the injection channel joint 21-3-6 of the nozzle body through the liquid pipe 25, and the high pressure gas enters the gas injection passage joint 21-3-7 of the nozzle body through the gas pipe 26.
  • the heat insulating device end cover 503 is fixed on the heat insulating device 505, and the heating plate 506 is turned on to operate the heating plate 506 at a constant heat flux density q t .
  • the micro-lubrication device 4 is turned on to spray the nanofluid droplets on the surface of the workpiece I23 at a certain angle, speed and height.
  • the measurement principle of convective heat transfer coefficient and fluid/workpiece energy proportional coefficient of nanofluid cutting fluid is:
  • the nozzle spray angle is ⁇
  • the spray cone angle is ⁇
  • the nozzle height is H, assuming that the nozzle always maintains its impact region formed on the heat source surface tangent to the heat source.
  • the spray boundary of the inclined nozzle is a closed ellipse or parabola.
  • the spray boundary should be elliptical, that is, 0 ⁇ /2- ⁇ /2- ⁇ /2.
  • the grinding temperature field can be simplified to a two-dimensional heat transfer analysis.
  • the field variable T(x, z, t) satisfies the heat balance differential equation of heat balance:
  • k x , k z are the thermal conductivity of the material along the x and z directions.
  • the workpiece is assumed to be a rectangular plane and discretized into a planar grid structure.
  • x i , z j are the coordinate values of the ith horizontal line constituting the differential mesh in the x direction and the coordinate values of the jth vertical line in the z direction, respectively, and a and b are the lengths of the workpiece, respectively. Height, M and N are natural numbers, respectively.
  • T 0 which is the initial condition:
  • the heat flux density ranges from q 1 to q 2 , and the search is performed in steps of 1 q .
  • the value of the convective heat transfer coefficient ranges from h 1 to h 2 , and the search is performed in steps of 1 h , and the convective heat transfer coefficient is common.
  • a value of heat flux and convection heat transfer coefficient consensus N '(N' (N q + N h)! / N q! / N h!) Combinations.
  • the temperature curves of each combination at P 1 and P 2 are calculated by using equations (11) to (14), and the N' combinations are combined to obtain a 2N' temperature curve, as compared with the temperature curves measured by the two thermocouples. As shown in Fig.
  • c 1 and c 3 are respectively (q', h'), (q", h” ) temperature profile P 1 point analog obtained, c 4, c 6 for the introduction of (q ', h'), (q ", h") temperature profile P 2 point analog obtained, c 2, c 5, respectively
  • the temperature curve measured by two thermocouples Then, the 2N' temperature curve is searched for the combination with the smallest coincidence degree of the c 2 and c 5 curves, and the combination is the heat flux density q and the convective heat transfer coefficient value h obtained by the inversion process.
  • q wf is the heat flux density of convective heat transfer between the nanofluid and the surface of the workpiece
  • t w and t f are the surface temperature of the workpiece and the temperature of the fluid, respectively.
  • the heat flux density q obtained by the inversion process is q wf , and it is known that the heating plate 506 operates at a constant heat flux density q t , and the heat flux density carried away by the nanofluid:
  • the nanofluid/workpiece energy ratio factor can be obtained:
  • the convective heat transfer coefficient and the fluid/workpiece energy proportional coefficient measuring device and method of the nanofluid cutting fluid of the present invention simulate the airflow field of the actual nanoparticle jet micro-lubricating nozzle outlet, and the heat insulating device of the workpiece is Made of composite materials made of alumina ceramics and carbon nanotubes, it can ensure that the heat generated by the heat source can only be transmitted to the surface of the workpiece in the vertical direction.
  • the inversion principle to accurately invert the convective heat transfer coefficient of the nanofluid cutting fluid and the fluid/workpiece energy ratio coefficient.
  • the embodiment shown in Fig. 16 is a grinding force and a grinding temperature measuring device.
  • the circumferential speed of the grinding wheel 601 is v s
  • the feeding speed of the workpiece II24 is v w
  • the grinding depth is a p
  • the nano fluid mist is sprayed by the nozzle II22 to
  • the surface of the workpiece II24, the thermocouple III602 and the thermocouple IV603 measure the surface temperature of the workpiece II24, and the grinding force is measured by the grinding force gauge 604.
  • the clamping method of the workpiece II24 on the grinding dynamometer 604 is as shown in FIG. 17, and the front and rear dynamometer bases 604-6 are fixed to the dynamometer and clamped by screws IV604-5 and screws V604-7, and the two bases 604
  • the material property of -6 is a magnetically permeable metal.
  • the surface grinder workbench is turned on, and the workbench is magnetized to allow the base 604-6 of the force gauge to be adsorbed on the workbench.
  • the annular block 604-3 is fixed on the table of the dynamometer, and the workpiece II24 is placed on the table of the dynamometer. The six degrees of freedom of the workpiece II24 can pass through the ring block 604-3 and the table of the dynamometer.
  • the Y-axis direction of the workpiece II24 is clamped using two screws II604-1, and the workpiece II24 is clamped using the two screws III604-4 in the X direction of the workpiece.
  • the stopper 604-2 is in contact with the side surface of the workpiece II24, and is in contact with the two screws II604-1, and the screw II604-1 is tightened to clamp the stopper 604-2 in the Y direction of the workpiece II24.
  • the workpiece II24 is clamped in the Z direction by three pressure plates 604-11, and the three pressure plates 604-11 are formed by the flat plate I604-10, the flat plate II604-16, the spacer III604-14, the screw VI604-12, and the nut 604-13.
  • the platen was adjusted and the plate II604-16 was secured to the stop 604-2 by screws VII604-15.
  • the workpiece II24 is changed in length, width and height, it can be installed by two screws III604-4, two screws II604-1 and three flat plates I604-10. It is adjustable to meet the dimensional change requirements of workpiece II24.
  • Stop 604-2 is clamped with screw VII604-15 and screw II604-1.
  • the measurement signal is transmitted to the data collector 604-8 via the force meter signal transmission line 604-9 and transmitted to the control system.
  • Figure 18 shows a grinding dynamometer platform consisting of a unitary member and two piezoelectric quartz crystal three-dimensional force sensors.
  • the sensor has three pairs of differently cut quartz wafers built into the housing. One pair uses a slice with a longitudinal piezoelectric effect and can only measure the Z-direction force of the vertical platform; while the other two pairs of wafers are cut with a tangential effect and the mutual sensitivity direction is placed at 90°, so X can be measured. , the direction of the Y direction.
  • the sensor can automatically decompose the force into three components whose spaces are orthogonal to each other.
  • the total heat flux density q total generated by the grinding zone includes the heat flux density q w flowing into the workpiece, the heat flux density q ch flowing to the chippings , the heat flux density q f entering the grinding fluid, and the heat flux density q s flowing to the grinding wheel, which is:
  • F t is the measured grinding tangential force
  • l c is the workpiece/grinding wheel contact arc length
  • b is the grinding wheel width
  • the embodiment shown in Fig. 19 is a cross-sectional view of the structure of the milling force gauge.
  • the positioning shaft 6 ⁇ 025 is fixed to the machine tool. Since the positioning shaft 6 ⁇ 025 is integral with the fixed jacket 6 022, the fixed jacket 6 022 is also fixed.
  • the Mohs spindle 6 ⁇ 01 is connected to the machine tool spindle and rotates the bed spindle.
  • the cutter 6 ⁇ 019 is subjected to the reaction cutting force of the workpiece during the cutting process.
  • the cutting force is transmitted from the cutter 6 ⁇ 019 through the collet 6 ⁇ 017 to the lower end of the main shaft 6 ⁇ 016.
  • the lower end of the spindle 6 ⁇ 016 and the Mohs spindle 6 ⁇ 01 clamp the piezoelectric force measuring group 6 ⁇ 010 between the two by the pre-tightening screw 6 ⁇ 021 and the spacer V6 ⁇ 020, and the cutting force acts directly on the piezoelectric force measuring group 6 ⁇ 010 through the lower end of the spindle 6 ⁇ 016.
  • the device uses tapered roller bearings I6 ⁇ 05 and tapered roller bearings II6 ⁇ 08.
  • the tapered roller bearing I6 ⁇ 05 is positioned by the end cap 6 ⁇ 024 and the sleeve 6 ⁇ 06
  • the tapered roller bearing II6 ⁇ 08 is positioned by the fixed jacket 6 ⁇ 022 and the sleeve 6 ⁇ 07. Both ends of the bearing are sealed with sealing ring I6 ⁇ 04 and sealing ring II6 ⁇ 09 to prevent oil leakage.
  • the end cap 6 ⁇ 024 is fixed on the fixed outer sleeve 6 ⁇ 022 by the screw VIII6 ⁇ 02 and the spacer IV6 ⁇ 03, and the spacer VI6 ⁇ 023 can adjust the bearing clearance, the play and the axial position of the shaft.
  • the piezoelectric crystal group 6 ⁇ 010 is forced to generate electric charge, and the electric signal is transmitted to the wire connecting block 6 ⁇ 015 through the electrode lead 6 ⁇ 012, to the roller 6 ⁇ 014 by the wire connecting block 6 ⁇ 015, and then transmitted to the high voltage electric conversion device by the roller 6 ⁇ 014. 6 ⁇ 013, and then enter the charge amplifier through the external wire 6 ⁇ 027 for signal amplification processing, and finally enter the computer through the data collector to complete the data processing.
  • the high-voltage conversion device 6 ⁇ 013 is fixed to the fixed jacket 6 ⁇ 022 by screws IX6 ⁇ 026 and spacers VII6 ⁇ 028, and the wire connection block 6 ⁇ 015 is fixed on the lower end 6 ⁇ 016 of the main shaft by the spacers VIII6 ⁇ 029 and the screws X6 ⁇ 030.
  • the nanofluid droplets are sprayed onto the surface of the workpiece II24 by the nozzle II22.
  • the Mohs spindle 6 ⁇ 01, the piezoelectric force measuring group 6 ⁇ 010, the electrode lead 6 ⁇ 012, the wire connecting block 6 ⁇ 015, the roller 6 ⁇ 014, the lower end of the spindle 6 ⁇ 016 and the tapered roller bearing The inner ring rotates with the machine tool spindle, and the fixed outer casing 6 ⁇ 022, the end cover 6 ⁇ 024, the tapered roller bearing outer ring and the high-voltage electric conversion device 6 ⁇ 013 are fixed on the machine tool to be stationary, thereby realizing the cutting force measurement on the rotary tool.
  • the wire connection block 6 ⁇ 015 is fixed on the lower end of the main shaft 6 ⁇ 016, and the high-voltage electric conversion device 6 ⁇ 013 is fixed on the fixed casing 6 ⁇ 022, and the piezoelectric force measuring crystal group 6 ⁇ 010, the lower end of the main shaft 6 ⁇ 016 and the key 6 ⁇ 011 are sequentially loaded into the Mohs spindle.
  • F c is the cutting force in the tool feed direction
  • F f is the cutting force perpendicular to the tool feed direction
  • F c and F f are measured by the force gauge
  • a c is the cutting thickness
  • a ch is the chip thickness
  • Lf is the knife-to-chip contact length
  • ⁇ 0 is the tool rake angle
  • a w is the cutting width
  • V c is the cutting speed.
  • Nanofluid thermal physical property parameter integrated online measurement system specifically an integrated online measurement system for nanofluid thermal conductivity, convective heat transfer coefficient of nanofluid cutting fluid and fluid/workpiece energy proportional coefficient, by air compressor 2, hydraulic pump 3,
  • the nanofluid thermal conductivity measuring device 1 the micro-lubricating device 4, the nanofluidic cutting fluid convection heat transfer coefficient, the fluid/workpiece energy proportional coefficient measuring device 5, the grinding force and the grinding temperature measuring device 6 are composed.
  • the hydraulic pump 3 When the system is used to measure the thermal property parameters of the nanofluid cutting fluid, the hydraulic pump 3 is activated, and the nanofluid stored in the liquid storage tank 9 is passed through the fluid pressure regulating valve I10, the fluid throttle valve I11, the turbine flowmeter I12, and the single The valve I13 flows out of the check valve I13 and enters the glass tube II1013 from the nanofluid inlet 1012, and then enters the glass tube I107 through the connection port II1015, the rubber tube 109, and the connection port I108, so that the two glass tubes are filled with the nanofluid.
  • the copper wire V1024 power supply After the system is stable, the copper wire V1024 power supply is connected, and the heat conductivity of the nanofluid is measured by a Wheatstone bridge.
  • the thermal conductivity of the fluid is measured.
  • the effect of the quantity, the measurement time of one experiment is controlled within the range of 5s.
  • the one-way valve II14 is opened, and the nanofluid flows out from the nanofluid outlet 1011 through the check valve II14 into the nanofluid inlet of the micro-lubrication device 4.
  • the air compressor 2 is started while the hydraulic pump 3 is started, and the high pressure gas enters the compressed gas inlet of the minute lubricating device 4 through the filter 15, the gas storage tank 16, the gas pressure regulating valve II18, the gas throttle valve II19, and the turbine flow meter II20.
  • the nanofluid aerosol sprayed from the nozzle I21 is sprayed onto the surface of the workpiece I23 to form a convective heat transfer coefficient of the nanofluid cutting fluid and a fluid/workpiece energy proportional coefficient measuring device 5.
  • a groove 507 is machined at the bottom of the workpiece I23, and two through holes are machined in the groove.
  • thermocouple I508 and the thermocouple II509 are respectively introduced into the two through holes from the bottom of the workpiece I23, and the nodes of the two thermocouples are located on the same plane as the surface of the workpiece I23.
  • the workpiece I23 is placed in the heat insulating device 505, and the heating plate 506 is provided at the bottom of the workpiece I23. Heating plate 506 so that a constant heat flux q t work, heat is transferred only from the bottom of the workpiece to the workpiece I23 I23 surface.
  • the nanofluid is ejected from the nozzle I21 and sprayed on the surface of the workpiece I23 in the form of a jet.
  • the two thermocouples transmit the collected temperature signal to the data processor, and complete the nanometer through a computer inversion processing program. Accurate measurement of convective heat transfer coefficient of fluid cutting fluid and fluid/workpiece energy ratio coefficient.
  • the first embodiment of the present invention is a grinding force and a grinding temperature measuring device for a nano-particle jet under a micro-lubrication condition, and a surface grinder table is opened, and the table is magnetized to adsorb the base 604-6 of the force measuring instrument on the workbench. .
  • the annular block 604-3 is fixed to the table of the dynamometer, and the workpiece II24 is placed on the table of the dynamometer. The six degrees of freedom of the workpiece II24 are fully positioned by the annular block 604-3 and the table of the force gauge.
  • the Y-axis direction of the workpiece II24 is clamped using two screws II604-1, and the workpiece II24 is clamped using the two screws III604-4 in the X direction of the workpiece.
  • the stopper 604-2 is in contact with the side surface of the workpiece II24, and is in contact with the two screws II604-1, and the screw II604-1 is tightened to clamp the stopper 604-2 in the Y direction of the workpiece II24.
  • the workpiece II24 is clamped in the Z direction by three platens 604-11.
  • the second embodiment of the present invention is a milling force and a milling temperature measuring device under the condition of micro-lubrication of a nanoparticle jet.
  • the wire connecting block 6 ⁇ 015 is fixed on the lower end of the main shaft 6 ⁇ 016, and the high-voltage electric conversion device 6 ⁇ 013 is fixed on the fixed casing 6 ⁇ 022.
  • the piezoelectric force measuring crystal group 6 ⁇ 010, the lower end of the main shaft 6 ⁇ 016 and the key 6 ⁇ 011 are sequentially loaded into the lower end of the Mohs spindle 6 ⁇ 01 and tightened with the gasket V6 ⁇ 020 and the pre-tightening screw 6 ⁇ 021, and the cutter 6 ⁇ 019 is loaded into the hole at the lower end of the lower end of the spindle 6 ⁇ 016, and then the clamp is mounted.
  • the nanofluid droplets are sprayed onto the surface of the workpiece II24 by the nozzle II22.
  • the Mohs spindle 6 ⁇ 01, the piezoelectric force measuring group 6 ⁇ 010, the electrode lead 6 ⁇ 012, the wire connecting block 6 ⁇ 015, the roller 6 ⁇ 014, the lower end of the spindle 6 ⁇ 016 and the tapered roller bearing The inner ring rotates with the machine tool spindle, and the fixed outer casing 6 ⁇ 022, the end cover 6 ⁇ 024, the tapered roller bearing outer ring and the high-voltage electric conversion device 6 ⁇ 013 are fixed on the machine tool to be stationary, thereby realizing the cutting force measurement on the rotary tool.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种纳米流体切削液热物理性质参数集成在线测量***由气路***、液路***、纳米流体导热系数测量装置、纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置以及磨削力及磨削温度测量装置铣削力或铣削温度测量装置组成;所述的纳米流体导热系数测量装置位于所述的液路***中;气路***为液路***中的纳米流体提供压力,且液路***引出两个喷嘴,喷嘴Ⅰ喷出的纳米流体气雾喷到工件Ⅰ表面,组成纳米流体对流换热系数及流体/工件能量比例系数测量装置;喷嘴Ⅱ喷出的纳米流体气雾喷到工件Ⅱ表面,组成磨削力及磨削温度测量装置。

Description

纳米流体切削液热物理性质参数集成在线测量*** 技术领域
本发明涉及纳米流体切削液热物理性质参数测量***,具体是一种纳米流体导热系数、对流换热系数及流体/工件能量比例系数集成在线测量***。
背景技术
在机械加工中,传统浇注式冷却由于使用大量切削液,对环境造成了严重的污染,已不适用于当前绿色生产的时代要求;干式切削和微量润滑满足环保的要求但冷却润滑效果较差,难以获得较好的工件表面质量;在微量润滑基油中添加一定比例的纳米粒子,改善射流整体的换热能力,同时提高油膜在切削区的润滑效果的纳米粒子射流微量润滑(Nano-particle jet Minimum Quantity Lubrication,简称Nano-MQL)进入了人们的视线。所谓的纳米粒子是指三维尺寸中至少有一维尺寸小于100nm的超细微小固体颗粒。纳米粒子射流微量润滑,在微量润滑的基础上,向切削液中添加纳米级固体粒子,将纳米粒子、切削液与压缩空气混合经雾化后以射流的形式喷入切削区进行冷却润滑。根据固体强化换热理论,基于固体粒子导热系数远大于液体和气体的事实,在相同粒子体积含量下,纳米粒子的表面积和热容量远大于毫米或微米级的固体粒子,将纳米粒子与切削液混合后形成纳米流体切削液的导热能力将大幅度增加。表1列出了常用的纳米粒子的导热系数。纳米流体质量分数一般为2%-8%,将一定比例的纳米粒子添加到基液中,形成纳米粒子悬浮液,再根据基液的种类和理化属性,添加相应的表面分散剂并辅以超声波振动,便可以获得悬浮稳定的纳米流体切削液。
表1常用纳米粒子的导热系数
Figure PCTCN2017103323-appb-000001
纳米粒子射流微量润滑优异的润滑冷却效果已得到大量研究者的证实。在机械加工中,用导热系数(k)、对流换热系数(h)及纳米流体/工件能量比例系数(R)衡量纳米流体切削液在切削区的换热性能。导热系数是纳米流体切削液的固有性质,一旦纳米流体配置完成,其导热系数就确定了。
经检索,青岛理工大学李长河等发明了一种纳米流体导热系数及对流换热系数测量装置(专利号:ZL 201110221334.8),在同一台设备上既能完成纳米流体导热系数的测量,又能 完成对流换热系数的测量,而且用液压泵模拟磨削加工的磨削液供液***,用镍铬合金电阻丝给纳米流体加热来获得和磨削工况相同的热流边界条件,不仅设备集成率高、利用率高,而且测量精度高,可靠性好,解决了目前纳米流体导热系数和对流换热系数分别用不同设备测量的难题。
经检索,温州大学张宽等(专利号:ZL 201320422680.7)公开了一种纳米流体导热系数测量装置,放置纳米流体的容器为可导热容器,两侧分别设置有供热装置和吸热装置,容器将供热装置提供的热量完全传递至吸热装置,吸热装置上设置有吸热量测量装置。通过对容器外侧进行加热来测量纳米流体导热系数,避免了对容器内侧进行加热测量时液体中的颗粒有可能分布部不均匀导致测量数值不准确的情况,通过吸热装置和吸热量测量装置对经容器及纳米流体传导后的热量进行测量,最终通过计算公式得出纳米流体的导热系数。
经检索,郑化安等发明了一种纳米流体传热传质监测装置及方法(专利号:ZL201610333181.9),通过记录测量点处非牛顿流体为基液的纳米流体超声衰减幅值和测量探头与反射板之间的距离,重复调节探头与测量点的位置关系,通过计算机数据处理***将声波频率信号获得纳米流体的导热系数增量和纳米流体扩散系数,可对流动状态下纳米流体导热系数增量和扩散系数进行实时高精度监量。
经检索,华北电力大学孙伟娜等提供了一种Au-H2O纳米流体导热系数计算方法(专利号:ZL 201610783769.4),获取纳米流体纳米颗粒的体积分数和纳米颗粒形状因子,计算Au-H2O纳米流体静态导热系数,计算Au-H2O纳米流体动态导热系数,计算与基液导热系数相比,Au-H2O纳米流体有效导热系数的增长占比。通过计算Au-H2O纳米流体有效导热系数,揭示极低体积分数Au-H2O纳米流体的导热机理。
对流换热系数是纳米流体切削液体积分数、导热系数、比热容及密度的综合影响参数,对流换热系数的大小直接决定了纳米流体在切削区对流换热的强弱。影响对流换热系数的主要因素有:(1)对流运动成因和流动状态;(2)流体的热物理性质;(3)传热表面的形状、尺寸和相对位置;(4)流体有无相变。
经检索,上海第二工业大学吴子华等发明了同步测试纳米流体传热系数及其对热电发电***发电效率影响规律的***和方法(专利号:ZL 201610505891.5),测量纳米流体进入冷水浴的进口端、距进口端20-30cm处以及冷水浴中的温度T1、T2、Tw,按等温边界条件计算纳米流体的强化对流传热性能。依据热沉上面从上到下布置热电偶估算被纳米流体所带走的热量,结合热电器件转换功率,求得不同纳米流体工况下的热电转换效率。实现了不同工况下的纳米流体强化传热系数以及不同工况下纳米流体强化传热特性对热电器件冷端冷却效果影 响及其热电转换效率的影响规律同步测试,减小了测量误差,提高了测试的准确性。然而,现有技术对对流换热系数的测量及计算均采用管内对流换热,并不符合实际纳米粒子射流微量润滑切削中纳米粒子射流气、液、固三相流三维速度场和压力场的相关理论。
流体/工件能量比例系数指纳米流体带走热流密度及流入工件热流密度的比例,直接决定了切削工件的最高温度。然而,目前并没有一种装置或方法能对流体/工件能量比例系数进行有效测量,也没有一种纳米流体切削液对流换热系数测量装置或方法能模拟实际切削加工喷嘴气流场,更没有一种装置或方法能实现纳米流体导热系数、对流换热系数及流体/工件能量比例系数同时在线测量。
发明内容
针对上述问题,为了解决现有技术的不足,本发明提供一种纳米流体切削液热物理性质参数测量***,具体的是一种纳米流体切削液导热系数、对流换热系数及流体/工件能量比例系数集成在线测量***,对纳米流体导热系数进行有效测量的同时还能模拟纳米粒子射流微量润滑喷嘴出口的气流场,对纳米流体切削液对流换热系数及流体/工件能量比例系数进行精确测量。
纳米流体切削液热物理性质参数集成在线测量***,由空气压缩机、液压泵、纳米流体导热系数测量装置、微量润滑装置、纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置以及磨削力及磨削温度测量装置或者纳米粒子射流微量润滑铣削力及铣削温度测量装置组成;其中,所述的纳米流体导热系数测量装置处于集成测量***的液路中,其采用瞬态双热线法,长、短铂丝由铂丝支架分别固定在两玻璃管中,两玻璃管通过连接口由胶皮管相连,两铂丝既作为加热线源又作为测温元件。打开单向阀,纳米流体只能流入导热系数测量装置而不能流出。恒温容器由恒温循环水保持恒温,待***稳定后,利用惠斯通电桥对导热系数进行精确测量。测量结束后后打开单向阀,纳米流体由纳米流体出口流出。与现有纳米流体导热系数测量装置比较,能更好的避免纳米流体自然对流引起的误差,且不用反复拆装,测量方便。
纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置处于集成测量***的终端。绝热装置由氧化铝陶瓷及碳纳米管形成的复合材料制成,其中碳纳米管垂直于热量传递的方向排布,可确保热源产生的热量仅能沿竖直方向向工件表面传递,且可避免热量在传递过程中透过绝热侧壁散发到绝热容器外面,从而提高测量装置的绝热性能,使得热量只能向预定方向传递,提高最终测量精度。设置喷嘴角度及高度并将绝热装置端盖固定在绝热装置上,接通加热板电源,使加热板以恒定热流密度工作。待***稳定后,打开微量润滑装置, 使纳米流体液滴以一定角度、速度及高度喷射在工件表面。由于绝热装置中工件只有上表面与外界有热量的交换,其余三个界面绝热。根据传热学的基本理论,采用流体动力学及傅立叶传热定律,基于精确解的数学模型,从工件导热微分方程的解析解出发,利用反演原理及热电偶测得的工件表面温度精确反演出纳米流体切削液对流换热系数及流体/工件能量比例系数。
纳米粒子射流微量润滑磨削力及磨削温度测量装置,采用热电偶精确测量纳米粒子射流微量润滑条件下工件表面温度,采用磨削测力仪测量磨削力。磨削测力仪平台由一块整体构件与两个压电石英晶体三维力传感器构成,可将磨削过程中工件受到的磨削力分解为空间相互正交的三个分力。测量结束后可得到纳米流体的导热系数、磨削加工条件下纳米流体切削液对流换热系数及磨削加工条件下流体/工件能量比例系数。
纳米粒子射流微量润滑铣削力及铣削温度测量装置,由于莫氏主轴、压电测力晶组、电极引线、导线连接块、滚轮、主轴下端及圆锥滚子轴承内圈随着机床主轴一起旋转,而固定外套、端盖、圆锥滚子轴承外圈及高压电转换装置固定在机床上保持静止,从而实现旋转刀具上的铣削力测量。测量结束后可得到纳米流体的导热系数、铣削加工条件下纳米流体切削液对流换热系数及铣削加工条件下流体/工件能量比例系数。
为了实现以上目的,本发明采用如下技术方案:
纳米流体导热系数、对流换热系数及流体/工件能量比例系数集成在线测量***,由气路***、液路***、纳米流体导热系数测量装置、纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置以及磨削力及磨削温度测量装置或铣削力及铣削温度测量装置组成;
所述的纳米流体导热系数测量装置位于所述的液路***中,包括相连通的玻璃管I、玻璃管II,在玻璃管I中安装长铂丝,玻璃管II中安装短铂丝,长铂丝、短铂丝既作为加热线源又作为测温元件;且安装长铂丝的玻璃管设有纳米流体入口和纳米流体出口,且纳米流体入口和纳米流体出口各自通过一个单向阀与液路***相连;
所述的气路***为液路***中的纳米流体提供压力,且液路***引出两个喷嘴,喷嘴I喷出的纳米流体气雾喷到工件I表面,组成纳米流体对流换热系数及流体/工件能量比例系数测量装置;喷嘴II喷出的纳米流体气雾喷到工件II表面,组成磨削力及磨削温度测量装置。
进一步的,所述的气路***包括依次连接的空气压缩机、过滤器、储气罐、调压阀II、节流阀II、涡轮流量计II。
进一步的,所述的液路***包括依次连接的纳米流体储液罐、液压泵、调压阀I、节流阀I、涡轮流量计I、单向阀I、单向阀II组成液路;所述的单向阀I与纳米流体导热系数 测量装置的纳米流体入口相连,所述的单向阀II与纳米流体导热系数测量装置的纳米流体出口相连。
进一步的,所述的纳米流体导热系数测量装置中的长铂丝和短铂丝的温度差,采用惠斯通电桥精确测量。
进一步的,所述的玻璃管I与玻璃管II通过连接口I和连接口II由胶皮管连接;打开单向阀I,纳米流体由单向阀I流出后由纳米流体入口进入玻璃管II,再经连接口II、胶皮管、连接口I进入玻璃管I。此时单向阀II关闭,纳米流体只能流入导热系数测量装置而不能流出;测量温度差之后打开单向阀II,纳米流体由纳米流体出口流出。
进一步的,所述纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置包括绝热装置、加热板和两热电偶,所述的加热板水平放置在所述的绝热装置中,在加热板上设有工件I,将两热电偶固定在工件I的通孔中并放在加热板上表面,两热电偶通过加热板的边缘后分别引入绝热装置底壁的两通孔中。
进一步的,所述绝热装置为一个长方体,其侧壁、底壁及绝热装置端盖均由氧化铝陶瓷及碳纳米管形成的复合材料制成;该复合材料以氧化铝陶瓷为基体,碳纳米管为填充物经等离子体烧结而成。其中碳纳米管垂直于热量传递的方向排布,即碳纳米管垂直于绝热侧壁、底壁及绝热装置端盖的厚度方向而排列。
进一步的,所述的喷嘴I、喷嘴II结构相同,均由定位卡,中间套,喷嘴体组成,定位卡下端球形半径、中间套上端球形孔及下端球形半径及喷嘴体的上端球形孔半径相等;定位卡下端球形可装在中间套上端球形孔中,中间套下端球形可装在喷嘴体的上端球形孔中。
进一步的,所述喷嘴体的注液通道接头是纳米流体入口,纳米流体经液路管进入到喷嘴体的注液通道接头,高压气体经气路管进入到喷嘴体的注气通道接头。高压气体经通气孔壁中分布的通气孔进入混合室,与来自注液通道接头中的纳米流体在喷嘴混合室中充分混合雾化,经加速室加速后进入涡流室,使高压气体和纳米流体进一步混合并加速,以雾化液滴的形式经喷嘴出口喷射至切削区。
进一步的,所述磨削力及磨削温度测量装置,包括热电偶Ⅲ、热电偶Ⅳ和磨削测力仪;采用热电偶精确测量纳米粒子射流微量润滑条件下工件表面温度,采用磨削测力仪测量磨削力;磨削测力仪平台由一块整体构件与两个压电石英晶体三维力传感器构成,可将磨削过程中工件受到的磨削力分解为空间相互正交的三个分力。测量结束后可得到纳米流体的导热系数、磨削加工条件下纳米流体切削液对流换热系数及磨削加工条件下流体/工件能量比例系数。
进一步的,所述的铣削力及铣削温度测量装置,其包括压电测力晶组、电极引线、导线连接块、高压电转换装置;所述的压电测力晶组安装在莫氏主轴下端随着主轴以及刀具一起旋转;电极引线通过所述的导线连接块固定后与高压电转换装置相连,高压电转换装置固定不动,从而实现了旋转刀具上的切削力测量。
本发明的有益效果是:
(1)在同一***中实现纳米流体导热系数、纳米流体切削液对流换热系数及流体/工件能量比例系数在线测量,不仅设备集成率高、利用率高,而且测量精度高,可靠性好,解决了目前流体/工件能量比例系数不可测量及纳米流体热物理性质参数分别用不同设备测量的难题;
(2)纳米流体导热系数测量装置,具体的是一种纳米流体可流通导热系数测量装置,纳米流体从纳米流体入口流入后依次进入两相连的玻璃管,测量结束后从纳米流体出口流出。与现有纳米流体导热系数测量装置比较,能更好的避免纳米流体自然对流引起的误差,且不用反复拆装,测量方便;
(3)纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置,具体的是一种高压高速射流条件下纳米流体对流换热系数及流体/工件能量比例系数测量装置,模拟实际纳米粒子射流微量润滑气流场,且工件所处的绝热装置由氧化铝陶瓷及碳纳米管形成的复合材料制成,可确保热源产生的热量仅能沿竖直方向向工件表面传递,从工件热量平衡导热微分方程的解析解出发,利用反演原理及热电偶测得的工件表面温度精确反演出纳米流体切削液对流换热系数及流体/工件能量比例系数;
(4)实施例铣削力测量装置中,莫氏主轴、压电测力晶组、电极引线、导线连接块、滚轮、主轴下端及圆锥滚子轴承内圈随着机床主轴一起旋转,而固定外套、端盖、圆锥滚子轴承外圈及高压电转换装置固定在机床上保持静止,从而实现旋转刀具上的切削力测量。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为纳米流体切削液导热系数、对流换热系数及流体/工件能量比例系数集成测量***图;
图2为纳米流体导热系数、对流换热系数及流体/工件能量比例系数测量***的液路和气路***图;
图3为导热系数测量装置剖视图;
图4为导热系数测量装置的玻璃管连接图;
图5为导热系数瞬态热线测量***图;
图6为纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置剖视图;
图7为绝热装置及加热板安装图;
图8为绝热装置碳纳米管排布方向图;
图9为喷嘴结构剖视图;
图10为定位卡安装图;
图11为中间套剖视图;
图12为喷嘴体结构剖视图;
图13为纳米流体椭圆形喷雾边界;
图14为工件内部热传导示意图;
图15为热电偶测得及模拟得到的温度曲线图;
图16为第一种实施例磨削力及磨削温度测量装置;
图17为工件在磨削测力仪上的装夹方式图;
图18为磨削测力仪平台;
图19为第二种实施例铣削测力仪结构剖视图;
图20为压电测力晶组安装图。
其中,1-纳米流体导热系数测量装置,2-空气压缩机,3-液压泵,4-微量润滑装置,5-纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置,6-磨削力及磨削温度测量装置,7-回收箱,8-溢流阀,9-纳米流体储液罐,10-调压阀I,11-节流阀I,12-涡轮流量计I,13-单向阀I,14-单向阀II,15-过滤器,16-储气罐,17-压力表,18-调压阀II,19-节流阀II,20-涡轮流量计II,21-喷嘴I,22-喷嘴II,23-工件I,24-工件II,25-液路管,26-气路管;
21-1-定位卡,21-2-中间套,21-3-喷嘴体;
21-3-1-混合室,21-3-2-通气孔,21-3-3-通气孔壁,21-3-4-加速室,21-3-5-涡流室,21-3-6-注液通道接头,21-3-7-注气通道接头;
101-橡胶塞I,102-恒温容器盖,103-铂丝支架I,104-铂丝支架II,105-短铂丝,106-恒温容器,107-玻璃管I,108-连接口I,109-胶皮管,1010-恒温水入口,1011-纳米流体出口,1012-纳米流体入口,1013-玻璃管II,1014-铂丝支架Ⅳ,1015-连接口II,1016-长铂丝,1017-铂丝支架Ⅲ,1018-恒温水出口,1019-橡胶塞II,1020-连接铜线Ⅳ,1021-连接 铜线Ⅲ,1022-连接铜线II,1023-连接铜线I,1024-连接铜线V;
501-螺钉I,502-垫片I,503-绝热装置端盖,504-垫片II,505-绝热装置,506-加热板,507-工件底槽,508-热电偶I,509-热电偶II;
601-砂轮,602-热电偶Ⅲ,603-热电偶Ⅳ,604-磨削测力仪;
604-1-螺钉Ⅱ,604-2-挡块,604-3-环形块,604-4-螺钉Ⅲ,604-5-螺钉Ⅳ,604-6-测力仪底座,604-7-螺钉Ⅴ,604-8-数据采集器,604-9-信号传输线,604-10-平板I,604-11-压板,604-12-螺钉Ⅵ,604-13-螺母,604-14-垫片Ⅲ,604-15-螺钉Ⅶ,604-16-平板Ⅱ;
6ˊ01-莫氏主轴,6ˊ02-螺钉Ⅷ,6ˊ03-垫片Ⅳ,6ˊ04-密封圈Ⅰ,6ˊ05-圆锥滚子轴承Ⅰ,6ˊ06-套筒,6ˊ07-套筒,6ˊ08-圆锥滚子轴承Ⅱ,6ˊ09-密封圈Ⅱ,6ˊ010-压电测力晶组,6ˊ011-键,6ˊ012-电极引线,6ˊ013-高压电转换装置,6ˊ014-滚轮,6ˊ015-导线连接块,6ˊ016-主轴下端,6ˊ017-夹头,6ˊ018-锁紧螺母,6ˊ019-刀具,6ˊ020-垫片Ⅴ,6ˊ021-预紧螺钉,6ˊ022-固定外套,6ˊ023-垫片Ⅵ,6ˊ024-端盖,6ˊ025-定位轴,6ˊ026-螺钉Ⅸ,6ˊ027-外部导线,6ˊ028-垫片Ⅶ,6ˊ029-垫片Ⅷ,6ˊ030-螺钉Ⅹ。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
下面结合说明书附图具体实施例对本发明作进一步的描述:
图1所示为纳米流体导热系数、对流换热系数及流体/工件能量比例系数测量***,包括纳米流体导热系数测量装置1,空气压缩机2,液压泵3,微量润滑装置4,纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置5以及磨削力及磨削温度测量装置6或者如图19所示的纳米粒子射流微量润滑铣削力及铣削温度测量装置。
图2所示为这种测量***的液路和气路***简图,如图所示,由依次串联的空气压缩机2、过滤器15、储气罐16、调压阀II18、节流阀II19、涡轮流量计II20组成气路;依次串联的纳米流体储液罐9、液压泵3、调压阀I10、节流阀I11、涡轮流量计I12、单向阀I13、导热系数测量装置1、单向阀II14组成液路。
工作时,启动液压泵3,储存在储液罐9中的纳米流体经流体调压阀I10、流体节流阀I11、涡轮流量计I12、单向阀I13、导热系数测量装置1和单向阀II14进入微量润滑装置4的纳米流体入口。溢流阀8和纳米流体回收箱7形成保护回路,溢流阀8起到安全阀的作用,当液路中的压力超过调定压力时,溢流阀8打开,使纳米流体经溢流阀8流回到回收箱7中。启动液压泵3的同时,启动空气压缩机2,高压气体经过滤器15、储气罐16、气体调压阀II18、气体节流阀II19和涡轮流量计II20进入微量润滑装置4的压缩气体入口,压力表17用来监测储气罐16的气压。其中,喷嘴I21喷出的纳米流体气雾喷到工件I23表面,组成纳米流体对流换热系数及流体/工件能量比例系数测量装置5;喷嘴II22喷出的纳米流体气雾喷到工件II24表面,组成磨削力及磨削温度测量装置6。
纳米流体导热系数测量装置1处于集成测量***的液路中,其采用瞬态双热线法,长、短铂丝由铂丝支架分别固定在两玻璃管中,两玻璃管通过连接口由胶皮管相连,两铂丝既作为加热线源又作为测温元件。打开单向阀,纳米流体只能流入导热系数测量装置而不能流出。恒温容器由恒温循环水保持恒温,待***稳定后,利用惠斯通电桥对导热系数进行精确测量。测量结束后后打开单向阀,纳米流体由纳米流体出口流出。与现有纳米流体导热系数测量装置比较,能更好的避免纳米流体自然对流引起的误差,且不用反复拆装,测量方便;具体的结构如下:
如图3所示,采用瞬态双热线法,长铂丝1016、短铂丝105的直径为20μm,长度分别为为150mm、50mm,玻璃管I107、玻璃管II1013的直径为30mm。两玻璃管通过连接口I108和连接口II1015由胶皮管109连接(图4)。恒温容器106由恒温循环水保持恒温,循环水由恒温水入口1010进入,由恒温水出口1018流出。橡胶塞I101、橡胶塞II1019固定在恒温容器盖102上,铂丝支架I103、铂丝支架II104通过橡胶塞I101通入玻璃管I107,铂丝支架Ⅲ1017、铂丝支架Ⅳ1014通过橡胶塞II1019通入玻璃管II1013。铂丝支架I103、II104、Ⅲ1017、Ⅳ1014分别与连接铜线I1023、II1022、Ⅲ1021、Ⅳ1020连接,由连接铜线V1024与电源连接。打开单向阀I13,纳米流体由单向阀I13流出后由纳米流体入口1012进入玻璃管II1013,再经连接口II1015、胶皮管109、连接口I108进入玻璃管I107。此时单向阀II14关闭,纳米流体只能流入导热系数测量装置1而不能流出。待***稳定后,测量纳米流体的导热系数。其测量原理为:
两根热丝仅长度不同,同时给两根热丝加相同的电流时,两根热丝产生同样的端部散热效应。这样,两根铂丝的温度差就等同于一根无限长热线的有限部分的温升,可以消除热丝端部散热影响,提高实验数据的测量精度。因为铂丝的电阻值随温度发生变化,***纳米流 体中的表面绝缘的铂丝既作为加热线源又作为测温元件。图5给出了瞬态热线测量***图,两根热丝的电阻差(即两根热丝的温度差)采用惠斯通电桥精确测量。图中Rr为1Ω的精密电阻,其两端的电压降即为恒流源输出的电流I。R2和R4为阻值为100Ω的精密电阻,R1′和R3′为电阻温度系数极低的锰铜可调电阻,R1和Rs分别表示长短铂丝的电阻。测试前,先输出5mA的小电流至桥路,调节R1′和R3′使电桥处于平衡状态,此时电桥输出为零(Ubd=0),即
(R1′+Rl)R4=(R3′+Rs)R2                           (1)
测量开始时,恒流源输出一恒定的电流I至桥路,长、短热丝的温度将升高,电阻值分别升高dRl和dRs。则电桥输出电压dUbd与两热丝电阻变化量dR之间的关系为
dUbd=I(R1′+Rl+dRl)/2-I(R3′+Rs+dRs)/2=I(dRl-dRs)/2=IdR/2       (2)
在较小的温度范围内,铂丝电阻与温度的关系可用下式表示:
R(T)=R(0)[1+a(T-273.15)]                         (3)式中:a为铂丝电阻温度系数,可预先标定,R(0)为0℃时长度为L(L是两根热丝长度之差)的铂丝的电阻。对式(3)微分得
dR=R(0)adT                                 (4)
又已知瞬态热线法测量流体导热系数的基本方程式:
Figure PCTCN2017103323-appb-000002
将式(4)和式(2)代入式(5),可得导热系数的实验表达式:
Figure PCTCN2017103323-appb-000003
将导热系数数据采集***测得的相关数据带入式即可计算得到纳米流体的导热系数。为了抑制流体自然对流对流体导热系数测量的影响,一次实验测量时间控制在5s范围内。测量完毕后打开单向阀II14,纳米流体由纳米流体出口1011流出。与现有纳米流体导热系数测量装置比较,本发明的纳米流体导热系数测量装置能更好的避免纳米流体自然对流引起的误差,且不用反复拆装,测量方便。
图6为纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置。如图所示,在工件I23底部加工槽507,并在槽内加工两通孔。分别将热电偶I508、热电偶II509从工件 I23的底部通入两通孔内,且使两热电偶的节点与工件I23表面位于同一平面上。将工件I23放入绝热装置505内,工件I23底部有加热板506(图7)。令加热板506以恒定热流密度qt工作,则热量只能从工件I23底部传递到工件I23上表面。当***达到热稳定状态时,纳米流体从喷嘴I21喷出后以射流的形式喷到工件I23表面,两热电偶将采集到的温度信号传递给数据处理器,通过计算机的反演处理程序完成纳米流体切削液对流换热系数及流体/工件能量比例系数的测量。
绝热装置505外观为长方体,将加热板506装入绝热装置505,将两热电偶固定在工件I23的通孔中并放在加热板506上表面,两热电偶通过加热板的边缘(图7)后分别引入绝热装置505底壁的两通孔中,绝热装置505内部空间长度、加热板长度及工件长度都为l。将喷嘴I21固定在绝热装置端盖503中并调整好喷嘴I21的高度及角度后,通过螺钉I501及垫片I502将绝热装置端盖503固定在绝热装置505上,垫片II504可以调整绝热装置端盖503与绝热装置505之间的间隙及游隙。绝热装置505的侧壁、底壁及绝热装置端盖503均由氧化铝陶瓷及碳纳米管形成的复合材料制成,该复合材料以氧化铝陶瓷为基体,碳纳米管为填充物经等离子体烧结而成。其中碳纳米管垂直于热量传递的方向排布(图8),即碳纳米管垂直于绝热侧壁、底壁及绝热装置端盖的厚度方向而排列。碳纳米管是一种由石墨层碳原子卷曲而成的管状材料,其直径为几纳米到几十纳米,可为连续排列,也可为不连续排列。碳纳米管具有独特的导热性能,其轴向导热性极优异,但径向不导热,因此,当热量垂直碳纳米管传递时,不会沿其径向传递,碳纳米管将热量反射回去。因此,该绝热装置具有优良的绝热性能,较传统的氧化铝陶瓷具有更高绝热效果,可确保热源产生的热量仅能沿竖直方向向工件表面传递,且可避免热量在传递过程中透过绝热侧壁散发到绝热容器外面,从而提高测量装置的绝热性能,使得热量只能向预定方向传递,提高最终测量精度。
本发明中喷嘴I、喷嘴II结构相同,以喷嘴I为例,如图9所示为喷嘴I21结构剖视图,如图所示,25为整个***的液路管,26为整个***的气路管,21-1为喷嘴I21的定位卡,21-2为中间套,21-3为喷嘴体。如图10所示,定位卡21-1为树脂材料,图10中实线图形为其原形状,受力后可变为虚线图形,定位卡21-1受力变形后装入绝热装置端盖503中。定位卡21-1下端球形半径、中间套21-2(图11)上端球形孔及下端球形半径及喷嘴体21-3的上端球形孔半径都为r,因此,定位卡21-1下端球形可装在中间套21-2上端球形孔中,中间套21-2下端球形可装在喷嘴体21-3的上端球形孔中。
图12为喷嘴体21-3剖视图。工作时,纳米流体经液路管25进入到喷嘴体的注液通道接头21-3-6,高压气体经气路管26进入到喷嘴体的注气通道接头21-3-7。高压气体经通气孔 壁21-3-3中分布的通气孔21-3-2进入混合室21-3-1,与来自注液通道接头21-3-6中的纳米流体在喷嘴混合室21-3-1中充分混合雾化,经加速室21-3-4加速后进入涡流室21-3-5,使高压气体和纳米流体进一步混合并加速,以雾化液滴的形式经喷嘴出口喷射至磨削区。
所述喷嘴I21角度及高度经调整后将绝热装置端盖503固定在绝热装置505上,接通加热板506电源,使加热板506以恒定热流密度qt工作。待***稳定后(即两热电偶测得的温度不再变化时),打开微量润滑装置4,使纳米流体液滴以一定角度、速度及高度喷射在工件I23表面。纳米流体切削液对流换热系数及流体/工件能量比例系数测量原理为:
如图13所示,喷嘴喷雾倾角为β,喷雾锥角为α,喷嘴高度为H,假设喷嘴始终保持其在热源表面形成的冲击区域与热源相切。倾斜喷嘴的喷雾边界为封闭椭圆或抛物线,为使更多的液滴喷入加工区域,应使喷雾边界为椭圆,即应使0<π/2-β<π/2-α/2。设椭圆长轴为2A,短轴为2B,引入中间变量C,令C=2cos(α+β/2)cos(α-β/2)。则椭圆的边界方程:
Figure PCTCN2017103323-appb-000004
式中:
Figure PCTCN2017103323-appb-000005
在温度场模型中,热源连续输入热量与工件基体内热传导、工件表面对流换热遵循热力学第一定律和傅立叶传热定律。假设在热源带的两侧不发生热量的交换,则可将磨削温度场简化为二维传热分析。在瞬态温度场中场变量T(x,z,t)满足热量平衡导热微分方程:
Figure PCTCN2017103323-appb-000006
式中:kx、kz为材料沿x、z方向的导热系数。将工件假定为一矩形平面,并将其离散化分解为平面网格结构。如图14所示,取等长的空间步长Δx=Δz=Δl,作两组等间隔的平行线,对矩形工件进行剖分,平行线方程:
Figure PCTCN2017103323-appb-000007
式中:xi,zj分别为构成差分网格的第i条横线在x方向上的坐标值和第j条竖线在z方向上的坐标值,a和b分别为工件的长度和高度,M和N分别为自然数。经过剖分,得到了差分计算的网格区域,如图14所示。以二阶差商为基础建立差分方程组,即:
Figure PCTCN2017103323-appb-000008
可得到内部网格各节点的差分方程为:
Figure PCTCN2017103323-appb-000009
图6绝热装置中工件只有上表面与外界有热量的交换,其余三个界面绝热。根据牛顿冷却定律,工件边界层与冷却换热介质之间的温度对流换热表示为:
Qw=h(T|s-Ta)                              (12)式中:Qw是工件热流加载面与换热介质对流热流量,T|s是热流加载面的温度,Ta是冷却换热介质的温度。在第三类边界上的微分方程可表示为:
Figure PCTCN2017103323-appb-000010
假设室温为T0,即初始条件:
T|t=0=T0                                (14)
反演程序:
热流密度取值范围为q1~q2,以步长lq进行搜索,则热流密度共有
Figure PCTCN2017103323-appb-000011
个取值;对流换热系数取值范围为h1~h2,以步长lh进行搜索,则对流换热系数共有
Figure PCTCN2017103323-appb-000012
个取值,热流密度及对流换热系数共有N’(N’=(Nq+Nh)!/Nq!/Nh!)个组合。利用式(11)~式(14)计算每个组合在P1、P2点的温度曲线,N’个组合共得到2N’条温度曲线,与两热电偶测得的温度曲线相比,如图15所示,以其中两个组合(q’,h’),(q”,h”)为例,c1,c3分别为采用(q’,h’),(q”,h”)在P1点模拟得到的温度曲线,c4,c6为采用(q’,h’),(q”,h”)在P2点模拟得到的温度曲线,c2,c5 分别为两热电偶测得的温度曲线。则从2N’条温度曲线中搜索与c2,c5曲线重合度最小的组合,该组合便是反演处理得到的热流密度q及对流换热系数值h。
对流换热系数的定义式:
qw-f=h·(tw-tf)                             (15)
式中:qw-f为纳米流体与工件表面之间对流传热的热流密度,tw、tf分别为工件表面和流体的温度。由反演处理得到的热流密度q即为qw-f,已知加热板506以恒定热流密度qt工作,则由纳米流体带走的热流密度:
qf=qt-qw-f                                (16)
已知纳米流体带走的热量与传入工件的热量,则可得纳米流体/工件能量比例系数:
Figure PCTCN2017103323-appb-000013
与现有技术相比,本发明的纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置及方法模拟实际纳米粒子射流微量润滑喷嘴出口的气流场,且工件所处的绝热装置由氧化铝陶瓷及碳纳米管形成的复合材料制成,可确保热源产生的热量仅能沿竖直方向向工件表面传递,基于精确解的数学模型,从工件热量平衡导热微分方程的解析解出发,利用反演原理精确反演出纳米流体切削液对流换热系数及流体/工件能量比例系数。
图16所示实施例为磨削力及磨削温度测量装置,砂轮601圆周速度为vs,工件Ⅱ24进给速度为vw,磨削深度为ap,纳米流体雾滴由喷嘴Ⅱ22喷射到工件Ⅱ24表面,热电偶Ⅲ602及热电偶Ⅳ603测量工件Ⅱ24表面温度,采用磨削测力仪604测量磨削力。
工件Ⅱ24在磨削测力仪604上的装夹方式如图17所示,前后两个测力仪底座604-6固定测力仪并用螺钉Ⅳ604-5和螺钉Ⅴ604-7夹紧,两底座604-6的材料属性为可导磁性金属。开启平面磨床工作台,工作台充磁可使测力仪的底座604-6吸附在工作台上。环形块604-3固定在测力仪的工作台上,将工件Ⅱ24放在测力仪的工作台上,工件Ⅱ24的六个自由度通过环形块604-3和测力仪的工作台便可实现完全定位。工件Ⅱ24的Y轴方向使用两个螺钉Ⅱ604-1进行夹紧,在工件的X方向,使用两个螺钉Ⅲ604-4对工件Ⅱ24进行夹紧。挡块604-2一面与工件Ⅱ24侧面接触,一面与两个螺钉Ⅱ604-1接触,拧紧螺钉Ⅱ604-1使挡块604-2在工件Ⅱ24的Y方向上夹紧。工件Ⅱ24在Z方向上采用三个压板604-11夹紧,三个压板604-11借助平板I604-10、平板Ⅱ604-16、垫片Ⅲ604-14和螺钉Ⅵ604-12、螺母604-13构成自调节压板,平板Ⅱ604-16由螺钉Ⅶ604-15固定在挡块604-2上。当工件Ⅱ24长宽高三个尺寸发生变化时,可通过两个螺钉Ⅲ604-4、两个螺钉Ⅱ604-1和三个平板I604-10实现装 备可调,满足工件Ⅱ24的尺寸变化要求。挡块604-2用螺钉Ⅶ604-15和螺钉Ⅱ604-1进行夹紧。工件Ⅱ24受到磨削力时,测量信号经测力仪信号传输线604-9传递给数据采集器604-8并传递到控制***。
图18所示为磨削测力仪平台,其是由一块整体构件与二个压电石英晶体三维力传感器构成。传感器有三对不同切型的石英晶片装入壳体内构成。其中一对采用具有纵向压电效应的切片,只能测量垂直平台的Z向力;而另外两对晶片由于采用具有切向效应的切型,且相互灵敏度方向成90°放置,因此可测X,Y向的分力。这样空间任何方向的力作用在传感器上时,传感器便能自动将力分解为空间相互正交的三个分力。
磨削过程中所消耗的磨削能,除了极少部分消耗于新生面形成所需要的表面能、残留于磨削表层的应变能和磨屑飞出的动能外,绝大部分都在接触区内转化为热能,这些热能以热传导、热对流的形式传入到工件、砂轮、磨屑和磨削液中。因此,磨削区产生的总热流密度qtotal包括流入工件的热流密度qw,流到磨屑的热流密度qch,进入磨削液的热流密度qf,以及流向砂轮的热流密度qs,即:
qtotal=qw+qch+qf+qs                             (18)
其中,总热流密度:
Figure PCTCN2017103323-appb-000014
式中:Ft为测得的磨削切向力,lc为工件/砂轮接触弧长,b为砂轮宽度。
图19所示实施例为铣削测力仪结构剖视图。如图所示,将定位轴6ˊ025固定在机床上,由于定位轴6ˊ025与固定外套6ˊ022是一体的,固定外套6ˊ022也是固定不动的。莫氏主轴6ˊ01与机床主轴连接并随机床主轴旋转。刀具6ˊ019在切削过程中,受到工件的反作用切削力,由于刀具6ˊ019通过锁紧螺母6ˊ018与夹头6ˊ017固定在主轴下端6ˊ016上,切削力从刀具6ˊ019通过夹头6ˊ017传递到主轴下端6ˊ016。主轴下端6ˊ016与莫氏主轴6ˊ01通过预紧螺钉6ˊ021与垫片Ⅴ6ˊ020将压电测力晶组6ˊ010夹紧在二者之间,切削力通过主轴下端6ˊ016直接作用在压电测力晶组6ˊ010上。由于铣削过程中莫氏主轴6ˊ01要承受轴向和径向两个方向的力,因此本装置采用圆锥滚子轴承Ⅰ6ˊ05和圆锥滚子轴承Ⅱ6ˊ08。圆锥滚子轴承Ⅰ6ˊ05由端盖6ˊ024和套筒6ˊ06定位,圆锥滚子轴承Ⅱ6ˊ08由固定外套6ˊ022和套筒6ˊ07定位。轴承两端采用密封圈Ⅰ6ˊ04和密封圈Ⅱ6ˊ09密封以防止润滑油漏油。端盖6ˊ024由螺钉Ⅷ6ˊ02和垫片Ⅳ6ˊ03固定在固定外套6ˊ022上,垫片Ⅵ6ˊ023可以调整轴承间隙、游隙以及轴的轴向位置。
如图20所示,压电晶组6ˊ010受力产生电荷,电信号通过电极引线6ˊ012传输到导线连接块6ˊ015,由导线连接块6ˊ015传递给滚轮6ˊ014,再由滚轮6ˊ014传输到高压电转换装置6ˊ013,进而通过外部导线6ˊ027进入电荷放大器进行信号放大处理,最后通过数据采集器进入计算机完成数据处理。高压电转换装置6ˊ013由螺钉Ⅸ6ˊ026和垫片Ⅶ6ˊ028固定在固定外套6ˊ022上,导线连接块6ˊ015由垫片Ⅷ6ˊ029和螺钉Ⅹ6ˊ030固定在主轴下端6ˊ016上。纳米流体雾滴由喷嘴Ⅱ22喷射到工件Ⅱ24表面,整个过程中,莫氏主轴6ˊ01、压电测力晶组6ˊ010、电极引线6ˊ012、导线连接块6ˊ015、滚轮6ˊ014、主轴下端6ˊ016及圆锥滚子轴承内圈随着机床主轴一起旋转,而固定外套6ˊ022、端盖6ˊ024、圆锥滚子轴承外圈及高压电转换装置6ˊ013固定在机床上保持静止,从而实现了旋转刀具上的切削力测量。安装时先将导线连接块6ˊ015固定在主轴下端6ˊ016上,将高压电转换装置6ˊ013固定在固定外套6ˊ022上,将压电测力晶组6ˊ010、主轴下端6ˊ016及键6ˊ011依次装入莫氏主轴6ˊ01下端并用垫片Ⅴ6ˊ020及预紧螺钉6ˊ021拧紧,将刀具6ˊ019装入主轴下端6ˊ016下端的孔中,再装上夹头6ˊ017,最后通过主轴下端6ˊ016与锁紧螺母6ˊ018的螺纹将锁紧螺母6ˊ018拧紧。
铣削过程中热流密度:
Figure PCTCN2017103323-appb-000015
式中:Fc为刀具进给方向切削力,Ff为垂直于刀具进给方向的切削力,Fc与Ff均通过测力仪测得;ac为切削厚度,ach为切屑厚度,Lf为刀-屑接触长度,γ0为刀具前角,aw为切削宽度,Vc为切削速度。
本方案具体工作过程如下:
纳米流体热物理性质参数集成在线测量***,具体是一种纳米流体导热系数、纳米流体切削液对流换热系数及流体/工件能量比例系数集成在线测量***,由空气压缩机2、液压泵3、纳米流体导热系数测量装置1、微量润滑装置4、纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置5、磨削力及磨削温度测量装置6组成。
当使用该***对纳米流体切削液热物性参数进行测量时,启动液压泵3,储存在储液罐9中的纳米流体经流体调压阀I10、流体节流阀I11、涡轮流量计I12、单向阀I13,由单向阀I13流出后由纳米流体入口1012进入玻璃管II1013,再经连接口II1015、胶皮管109、连接口I108进入玻璃管I107,使两玻璃管充满纳米流体。***稳定后接通连接铜线V1024电源,采用惠斯通电桥对纳米流体的导热系数进行测量。为了抑制流体自然对流对流体导热系数测 量的影响,一次实验测量时间控制在5s范围内。测量完毕后打开单向阀II14,纳米流体由纳米流体出口1011流出经单向阀II14进入微量润滑装置4的纳米流体入口。
启动液压泵3的同时启动空气压缩机2,高压气体经过滤器15、储气罐16、气体调压阀II18、气体节流阀II19和涡轮流量计II20进入微量润滑装置4的压缩气体入口。喷嘴I21喷出的纳米流体气雾喷到工件I23表面,组成纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置5。在工件I23底部加工槽507,并在槽内加工两通孔。分别将热电偶I508、热电偶II509从工件I23的底部通入两通孔内,且使两热电偶的节点与工件I23表面位于同一平面上。将工件I23放入绝热装置505内,工件I23底部有加热板506。令加热板506以恒定热流密度qt工作,则热量只能从工件I23底部传递到工件I23上表面。当***达到热稳定状态时,纳米流体从喷嘴I21喷出后以射流的形式喷到工件I23表面,两热电偶将采集到的温度信号传递给数据处理器,通过计算机的反演处理程序完成纳米流体切削液对流换热系数及流体/工件能量比例系数的精确测量。
本发明第一种实施例为纳米粒子射流微量润滑条件下磨削力及磨削温度测量装置,开启平面磨床工作台,工作台充磁可使测力仪的底座604-6吸附在工作台上。环形块604-3固定在测力仪的工作台上,将工件Ⅱ24放在测力仪的工作台上。工件Ⅱ24的六个自由度通过环形块604-3和测力仪的工作台便可实现完全定位。工件Ⅱ24的Y轴方向使用两个螺钉Ⅱ604-1进行夹紧,在工件的X方向,使用两个螺钉Ⅲ604-4对工件Ⅱ24进行夹紧。挡块604-2一面与工件Ⅱ24侧面接触,一面与两个螺钉Ⅱ604-1接触,拧紧螺钉Ⅱ604-1使挡块604-2在工件Ⅱ24的Y方向上夹紧。工件Ⅱ24在Z方向上采用三个压板604-11夹紧。工件Ⅱ24受到磨削力时,测量信号经测力仪信号传输线604-9传递给数据采集器604-8并传递到控制***。
本发明第二种实施例为纳米粒子射流微量润滑条件下铣削力及铣削温度测量装置,将导线连接块6ˊ015固定在主轴下端6ˊ016上,将高压电转换装置6ˊ013固定在固定外套6ˊ022上,将压电测力晶组6ˊ010、主轴下端6ˊ016及键6ˊ011依次装入莫氏主轴6ˊ01下端并用垫片Ⅴ6ˊ020及预紧螺钉6ˊ021拧紧,将刀具6ˊ019装入主轴下端6ˊ016下端的孔中,再装上夹头6ˊ017,最后通过主轴下端6ˊ016与锁紧螺母6ˊ018的螺纹将锁紧螺母6ˊ018拧紧。纳米流体雾滴由喷嘴Ⅱ22喷射到工件Ⅱ24表面,整个过程中,莫氏主轴6ˊ01、压电测力晶组6ˊ010、电极引线6ˊ012、导线连接块6ˊ015、滚轮6ˊ014、主轴下端6ˊ016及圆锥滚子轴承内圈随着机床主轴一起旋转,而固定外套6ˊ022、端盖6ˊ024、圆锥滚子轴承外圈及高压电转换装置6ˊ013固定在机床上保持静止,从而实现了旋转刀具上的切削力测量。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围内。

Claims (10)

  1. 纳米流体切削液热物理性质参数集成在线测量***,其特征在于,由气路***、液路***、纳米流体导热系数测量装置、纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置以及磨削力及磨削温度测量装置或铣削力及铣削温度组成;
    所述的纳米流体导热系数测量装置位于所述的液路***中,包括相连通的玻璃管I、玻璃管II,在玻璃管I中安装长铂丝,玻璃管II中安装短铂丝,长铂丝、短铂丝既作为加热线源又作为测温元件;且安装长铂丝的玻璃管设有纳米流体入口和纳米流体出口,且纳米流体入口和纳米流体出口各自通过一个单向阀与液路***相连;
    所述的气路***为液路***中的纳米流体提供压力,且液路***引出两个喷嘴,喷嘴I喷出的纳米流体气雾喷到工件I表面,组成纳米流体对流换热系数及流体/工件能量比例系数测量装置;喷嘴II喷出的纳米流体气雾喷到工件II表面,组成磨削力及磨削温度测量装置。
  2. 如权利要求1所述的纳米流体切削液热物理性质参数集成在线测量***,其特征在于,所述的气路***包括依次连接的空气压缩机、过滤器、储气罐、调压阀II、节流阀II、涡轮流量计II。
  3. 如权利要求1所述的纳米流体切削液热物理性质参数集成在线测量***,其特征在于,所述的液路***包括依次连接的纳米流体储液罐、液压泵、调压阀I、节流阀I、涡轮流量计I、单向阀I、单向阀II组成液路;所述的单向阀I与纳米流体导热系数测量装置的纳米流体入口相连,所述的单向阀II与纳米流体导热系数测量装置的纳米流体出口相连。
  4. 如权利要求3所述的纳米流体切削液热物理性质参数集成在线测量***,其特征在于,所述玻璃管I与玻璃管II通过连接口I和连接口II由胶皮管连接;打开单向阀I,纳米流体由单向阀I流出后由纳米流体入口进入玻璃管II,再经连接口II、胶皮管、连接口I进入玻璃管I。此时单向阀II关闭,纳米流体只能流入导热系数测量装置而不能流出;测量温度差之后打开单向阀II,纳米流体由纳米流体出口流出。
  5. 如权利要求1所述的纳米流体切削液热物理性质参数集成在线测量***,其特征在于,所述的纳米流体导热系数测量装置中的长铂丝和短铂丝的温度差,采用惠斯通电桥精确测量。
  6. 如权利要求1所述的纳米流体切削液热物理性质参数集成在线测量***,其特征在于,所述纳米流体切削液对流换热系数及流体/工件能量比例系数测量装置包括绝热装置、加热板和两热电偶,所述的加热板水平放置在所述的绝热装置中,在加热板上设有工件I,将两热电偶固定在工件I的通孔中并放在加热板上表面,两热电偶通过加热板的边缘后分别引入绝热装置底壁的两通孔中。
  7. 如权利要求6所述的纳米流体切削液热物理性质参数集成在线测量***,其特征在于,
    所述绝热装置为一个长方体,其侧壁、底壁及绝热装置端盖均由氧化铝陶瓷及碳纳米管形成的复合材料制成;该复合材料以氧化铝陶瓷为基体,碳纳米管为填充物经等离子体烧结而成。其中碳纳米管垂直于热量传递的方向排布,即碳纳米管垂直于绝热侧壁、底壁及绝热装置端盖的厚度方向而排列。
  8. 如权利要求6所述的纳米流体切削液热物理性质参数集成在线测量***,其特征在于,所述的喷嘴I、喷嘴II结构相同,均由定位卡,中间套,喷嘴体组成,定位卡下端球形半径、中间套上端球形孔及下端球形半径及喷嘴体的上端球形孔半径相等;定位卡下端球形可装在中间套上端球形孔中,中间套下端球形可装在喷嘴体的上端球形孔中。
  9. 如权利要求1所述的纳米流体切削液热物理性质参数集成在线测量***,其特征在于,所述磨削力及磨削温度测量装置,包括热电偶Ⅲ、热电偶Ⅳ和磨削测力仪;采用热电偶精确测量纳米粒子射流微量润滑条件下工件表面温度,采用磨削测力仪测量磨削力;所述的磨削测力仪平台由一块整体构件与两个压电石英晶体三维力传感器构成,可将磨削过程中工件受到的磨削力分解为空间相互正交的三个分力。
  10. 如权利要求1所述的纳米流体切削液热物理性质参数集成在线测量***,其特征在于,所述的铣削力及铣削温度测量装置,其包括压电测力晶组、电极引线、导线连接块、高压电转换装置;所述的压电测力晶组安装在莫氏主轴下端随着主轴以及刀具一起旋转;电极引线通过所述的导线连接块固定后与高压电转换装置相连,高压电转换装置固定不动,从而实现了旋转刀具上的切削力测量。
PCT/CN2017/103323 2017-05-17 2017-09-26 纳米流体切削液热物理性质参数集成在线测量*** WO2018209867A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1807718.0A GB2566138B (en) 2017-05-17 2017-09-26 Integrated online measurement system for thermophysical property parameters of nanofluid cutting fluid
US16/672,540 US11047818B2 (en) 2017-05-17 2019-11-04 Integrated online measurement system for thermophysical property parameters of nanofluid cutting fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710348464.5 2017-05-17
CN201710348464.5A CN106918623B (zh) 2017-05-17 2017-05-17 纳米流体切削液热物理性质参数集成在线测量***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/672,540 Continuation US11047818B2 (en) 2017-05-17 2019-11-04 Integrated online measurement system for thermophysical property parameters of nanofluid cutting fluid

Publications (1)

Publication Number Publication Date
WO2018209867A1 true WO2018209867A1 (zh) 2018-11-22

Family

ID=59462213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103323 WO2018209867A1 (zh) 2017-05-17 2017-09-26 纳米流体切削液热物理性质参数集成在线测量***

Country Status (3)

Country Link
US (1) US11047818B2 (zh)
CN (1) CN106918623B (zh)
WO (1) WO2018209867A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006944A (zh) * 2019-04-28 2019-07-12 扬州大学 橡胶支座内部结构导热性能实验研究方法及装置
CN113567493A (zh) * 2021-07-27 2021-10-29 深圳市玄羽科技有限公司 一种智能主轴温度数据检测方法及其***

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918623B (zh) 2017-05-17 2019-08-27 青岛理工大学 纳米流体切削液热物理性质参数集成在线测量***
GB2566138B (en) * 2017-05-17 2022-01-19 Univ Qingdao Technological Integrated online measurement system for thermophysical property parameters of nanofluid cutting fluid
CN107966471B (zh) * 2017-11-14 2020-01-31 东南大学 一种土体热导率和地热梯度的原位测试装置及测试方法
CN107894334B (zh) * 2017-12-29 2020-04-07 重庆大学 基于高压水射流的高速电主轴柔性加载***
CN108241787B (zh) * 2018-01-12 2022-05-03 哈尔滨理工大学 极端工况下静压回转工作台热特性研究方法
CN108256202B (zh) * 2018-01-12 2022-04-19 哈尔滨理工大学 静压支承旋转工作台对流换热系数计算方法
CL2018000341A1 (es) * 2018-02-06 2018-07-06 Ingeagro Eirl Dispositivo y método de aplicación electrostática.
CN108917986B (zh) * 2018-09-30 2024-04-23 郑州运达造纸设备有限公司 一种压力筛传动部轴承温升检测装置
CN109839405B (zh) * 2018-11-22 2021-04-30 湖南大学 曲面成形磨削中磨削液对流换热系数测量方法及相应装置
CN111215310A (zh) * 2020-01-13 2020-06-02 杭州电子科技大学 一种多档位超声波发生控制采集电器柜
CN111950096B (zh) * 2020-07-16 2022-11-01 中南大学 一种识别超声振动对材料应力影响系数的方法
CN112198186A (zh) * 2020-07-28 2021-01-08 重庆安美新材料有限公司 一种切削液高温稳定性测试方法
CN113478393B (zh) * 2021-07-26 2022-07-15 云南北方光学科技有限公司 纳米流体微量润滑和雾化冷却超精密切削介质供给***
CN115248231B (zh) * 2022-07-19 2024-06-11 北京工业大学 一种用于磁性液体导热性能的测量装置和***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201429577Y (zh) * 2009-06-29 2010-03-24 长沙理工大学 磁纳米流体真空热管换热装置
CN102323293A (zh) * 2011-07-28 2012-01-18 青岛理工大学 纳米流体导热系数及对流换热系数测量装置
TW201536480A (zh) * 2014-03-24 2015-10-01 Wei-Tai Huang 奈米流體微量潤滑設備
KR20160034633A (ko) * 2014-09-22 2016-03-30 한국전력공사 열선을 이용한 회전원판 방식 유체 대류열전달계수 측정 장치
CN106198616A (zh) * 2016-06-30 2016-12-07 上海第二工业大学 同步测试纳米流体传热系数及其对热电发电***发电效率影响规律的***和方法
CN106181596A (zh) * 2016-09-14 2016-12-07 青岛理工大学 多角度二维超声波振动辅助纳米流体微量润滑磨削装置
CN106324025A (zh) * 2016-08-30 2017-01-11 华北电力大学 一种Au‑H2O纳米流体导热系数计算方法
CN106918623A (zh) * 2017-05-17 2017-07-04 青岛理工大学 纳米流体切削液热物理性质参数集成在线测量***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676352B1 (en) 2004-04-19 2010-03-09 Invensys Systems, Inc. System and method for efficient computation of simulated thermodynamic property and phase equilibrium characteristics using comprehensive local property models
US8469587B2 (en) 2009-06-30 2013-06-25 Korea Electric Power Corporation Apparatus and method for measuring convective heat transfer coefficients of nanofluids
US9511478B2 (en) * 2013-02-04 2016-12-06 Qingdao Technological University Nano fluid electrostatic atomization controllable jet minimal quantity lubrication grinding system
CN103364032B (zh) 2013-07-15 2015-09-16 中国科学院半导体研究所 半导体发光器件或模组在线多功能测试***及方法
CN206832725U (zh) * 2017-05-17 2018-01-02 青岛理工大学 纳米流体切削液热物理性质参数集成在线测量***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201429577Y (zh) * 2009-06-29 2010-03-24 长沙理工大学 磁纳米流体真空热管换热装置
CN102323293A (zh) * 2011-07-28 2012-01-18 青岛理工大学 纳米流体导热系数及对流换热系数测量装置
TW201536480A (zh) * 2014-03-24 2015-10-01 Wei-Tai Huang 奈米流體微量潤滑設備
KR20160034633A (ko) * 2014-09-22 2016-03-30 한국전력공사 열선을 이용한 회전원판 방식 유체 대류열전달계수 측정 장치
CN106198616A (zh) * 2016-06-30 2016-12-07 上海第二工业大学 同步测试纳米流体传热系数及其对热电发电***发电效率影响规律的***和方法
CN106324025A (zh) * 2016-08-30 2017-01-11 华北电力大学 一种Au‑H2O纳米流体导热系数计算方法
CN106181596A (zh) * 2016-09-14 2016-12-07 青岛理工大学 多角度二维超声波振动辅助纳米流体微量润滑磨削装置
CN106918623A (zh) * 2017-05-17 2017-07-04 青岛理工大学 纳米流体切削液热物理性质参数集成在线测量***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006944A (zh) * 2019-04-28 2019-07-12 扬州大学 橡胶支座内部结构导热性能实验研究方法及装置
CN110006944B (zh) * 2019-04-28 2023-12-26 扬州大学 橡胶支座内部结构导热性能实验研究方法及装置
CN113567493A (zh) * 2021-07-27 2021-10-29 深圳市玄羽科技有限公司 一种智能主轴温度数据检测方法及其***

Also Published As

Publication number Publication date
CN106918623B (zh) 2019-08-27
US20200072774A1 (en) 2020-03-05
CN106918623A (zh) 2017-07-04
US11047818B2 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2018209867A1 (zh) 纳米流体切削液热物理性质参数集成在线测量***
Chen Heat and mass transfer in MHD flow by natural convection from a permeable, inclined surface with variable wall temperature and concentration
US20200164476A1 (en) Milling system and method under different lubrication conditions
Saad et al. Confined multiple impinging slot jets without crossflow effects
CN102323293B (zh) 纳米流体导热系数及对流换热系数测量装置
Noghrehabadi et al. Experimental investigation of forced convective heat transfer enhancement of γ-Al 2 O 3/water nanofluid in a tube
CN206832725U (zh) 纳米流体切削液热物理性质参数集成在线测量***
Shi et al. A thermal characteristic analytic model considering cutting fluid thermal effect for gear grinding machine under load
Shah et al. Radiation and slip effects on MHD Maxwell nanofluid flow over an inclined surface with chemical reaction
Fan Research on the machine tool’s temperature spectrum and its application in a gear form grinding machine
Qian et al. Start-up behavior of oscillating heat pipe in grinding wheel under axial-rotation conditions
Zhao et al. Thermal analysis of ultrasonic vibration-assisted grinding with moment-triangle heat sources
Hadipour et al. Effects of nano-dust particles on heat transfer from multiple jets impinging on a flat plate
Su et al. An experimental investigation on heat transfer performance of electrostatic spraying used in machining
Thomas et al. Heat transfer between a plane surface and air containing suspended water droplets
GB2566138A (en) Integrated online measurement system for thermophysical property parameters of nanofluid cutting liquid
Mao et al. Study on flow field and convective heat transfer characteristics in grinding zone of large spiral angle flow disturbance grooved wheel
Dahiya et al. RETRACTED ARTICLE: An experimental study on microchannel heat sink via different manifold arrangements
Ma et al. Local convective heat transfer from a vertical flat surface to oblique submerged impinging jets of large Prandtl number liquid
Su et al. Study on diesel cylinder-head cooling using nanofluid coolant with jet impingement
A Kaska et al. Performance enhancement of the vertical double pipe heat exchanger by applying of bubbling generation on the shell side
CN202256213U (zh) 纳米流体热特性测量装置
Chen et al. Study of temperature field for UVAG of CFRP based on FBG
Li et al. Experimental study on thermal deformation suppression and cooling structure optimization of double pendulum angle milling head
Kirmaci Performance assessment of parallel connected Ranque–Hilsch vortex tubes using nitrogen, oxygen, and air with brass and polyamide nozzles: An experimental analysis

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 201807718

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170926

WWE Wipo information: entry into national phase

Ref document number: 1807718.0

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909784

Country of ref document: EP

Kind code of ref document: A1