WO2018198976A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2018198976A1
WO2018198976A1 PCT/JP2018/016311 JP2018016311W WO2018198976A1 WO 2018198976 A1 WO2018198976 A1 WO 2018198976A1 JP 2018016311 W JP2018016311 W JP 2018016311W WO 2018198976 A1 WO2018198976 A1 WO 2018198976A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
atom
layer
compound
Prior art date
Application number
PCT/JP2018/016311
Other languages
English (en)
French (fr)
Inventor
慎一 稲員
元章 臼井
田中 正信
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2018568975A priority Critical patent/JP6642743B2/ja
Priority to KR1020197034217A priority patent/KR20190141210A/ko
Priority to US16/500,982 priority patent/US20200091438A1/en
Priority to CN201880027306.2A priority patent/CN110574181A/zh
Priority to EP18791146.6A priority patent/EP3618133A4/en
Publication of WO2018198976A1 publication Critical patent/WO2018198976A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/02Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention relates to a light emitting element.
  • Patent Document 1 discloses a light emitting layer containing a compound (H0-1), an electron transport layer containing a polymer compound containing the structural unit (E0), and an electron injection layer containing sodium fluoride.
  • Patent Document 2 describes a light-emitting element having a light-emitting layer containing a compound (H0-2) and an electron injection layer containing lithium fluoride.
  • an object of the present invention is to provide a light-emitting element that has an excellent luminance life.
  • the present invention provides the following [1] to [13].
  • a light emitting device having a third layer containing at least one selected from the group consisting of compounds, At least one selected from the group consisting of a simple substance consisting only of an alkali metal element contained in the second layer, a simple substance consisting only of
  • Ring R 1C , ring R 2C , ring R 3C, and ring R 4C each independently represent an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of such substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R C represents a carbon atom, a silicon atom, a germanium atom, a tin atom, or a lead atom.
  • at least one of the ring R 1C , the ring R 2C , the ring R 3C, and the ring R 4C has a group represented by the formula (D-1) as a substituent.
  • Ring RD represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • X D1 and X D2 each independently represent a single bond, an oxygen atom, a sulfur atom, a group represented by —N (R XD1 ) —, or a group represented by —C (R XD2 ) 2 —. .
  • R XD1 and R XD2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom. These groups may have a substituent.
  • a plurality of R XD2 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • E 1D , E 2D and E 3D each independently represent a nitrogen atom or a carbon atom.
  • R 1D , R 2D and R 3D are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group or halogen Represents an atom, and these groups optionally have a substituent.
  • E 1D is a nitrogen atom
  • R 1D does not exist.
  • E 2D is a nitrogen atom
  • R 2D does not exist.
  • E 3D is a nitrogen atom
  • R 1D and R 2D may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R 2D and R 3D may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R 1D and R XD1 may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 1D and R XD2 may be bonded to each other to form a ring together with the carbon atom to which they are bonded.
  • the substituent which the ring R D may have and R XD1 may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the substituent which the ring R D may have and R XD2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R 4D , R 5D , R 6D and R 7D are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group Represents a group or a halogen atom, and these groups optionally have a substituent.
  • E 4D is a nitrogen atom
  • R 4D does not exist.
  • E 5D is a nitrogen atom
  • R 5D does not exist.
  • E 6D is a nitrogen atom
  • R 6D does not exist.
  • E 7D is a nitrogen atom, R 7D does not exist.
  • Ring R 1C ′, ring R 2C ′, ring R 3C ′ and ring R 4C ′ each independently represent a benzene ring, a pyridine ring or a diazabenzene ring.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are respectively Independently, it represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom. You may have. When E 11C is a nitrogen atom, R 11C does not exist.
  • E 12C is a nitrogen atom
  • E 13C is a nitrogen atom
  • R 13C does not exist
  • E 14C is a nitrogen atom
  • E 21C is a nitrogen atom
  • E 22C is a nitrogen atom
  • E 23C is a nitrogen atom
  • E 24C is a nitrogen atom
  • E 31C is a nitrogen atom
  • E 32C is a nitrogen atom
  • E 33C is a nitrogen atom, R 33C does not exist.
  • E 34C is a nitrogen atom
  • R 34C does not exist.
  • E 41C is a nitrogen atom
  • R 42C does not exist.
  • E 43C is a nitrogen atom
  • R 43C does not exist.
  • E 44C is a nitrogen atom, R 44C does not exist.
  • R 11C and R 12C , R 12C and R 13C , R 13C and R 14C , R 14C and R 34C , R 34C and R 33C , R 33C and R 32C , R 32C and R 31C , R 31C and R 41C , R 41C And R 42C , R 42C and R 43C , R 43C and R 44C , R 44C and R 24C , R 24C and R 23C , R 23C and R 22C , R 22C and R 21C , and R 21C and R 11C are They may be bonded to form a ring together with the carbon atoms to which they are bonded.
  • M represents a ruthenium atom, a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 1 represents an integer of 1 or more
  • n 2 represents an integer of 0 or more.
  • M is a ruthenium atom, rhodium atom or iridium atom
  • n 1 + n 2 is 3
  • M is a palladium atom or platinum atom
  • n 1 + n 2 is 2.
  • E 1 and E 2 each independently represent a carbon atom or a nitrogen atom. However, at least one of E 1 and E 2 is a carbon atom.
  • Ring L 1 represents an aromatic heterocyclic ring which may have a substituent. When a plurality of such substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded. When a plurality of rings L 1 are present, they may be the same or different.
  • the ring L 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded. When a plurality of rings L 2 are present, they may be the same or different.
  • a 1 -G 1 -A 2 represents an anionic bidentate ligand.
  • a 1 and A 2 each independently represents a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 1 represents a single bond or an atomic group constituting a bidentate ligand together with A 1 and A 2 .
  • the phosphorescent compound represented by the formula (1) is a phosphorescent compound represented by the formula (1-A) or a phosphorescent compound represented by the formula (1-B).
  • M, n 1 , n 2 , E 1 and A 1 -G 1 -A 2 represent the same meaning as described above.
  • E 11A , E 12A , E 13A , E 21A , E 22A , E 23A and E 24A each independently represent a nitrogen atom or a carbon atom. When there are a plurality of E 11A , E 12A , E 13A , E 21A , E 22A , E 23A and E 24A , they may be the same or different.
  • E 11A When E 11A is a nitrogen atom, R 11A may or may not be present.
  • E 12A When E 12A is a nitrogen atom, R 12A may or may not be present.
  • E 13A When E 13A is a nitrogen atom, R 13A may or may not be present.
  • E 21A is a nitrogen atom, R 21A does not exist.
  • E 22A is a nitrogen atom, R 22A does not exist.
  • E 23A is a nitrogen atom
  • R 23A When E 24A is a nitrogen atom, R 24A does not exist.
  • R 11A, R 12A, R 13A , R 21A, R 22A, R 23A and R 24A each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, cycloalkoxy group, an aryl group, an aryloxy group, An alkenyl group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom is represented, and these groups may have a substituent.
  • R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A they may be the same or different.
  • R 11A and R 12A , R 12A and R 13A , R 11A and R 21A , R 21A and R 22A , R 22A and R 23A , and R 23A and R 24A are bonded to each other together with the atoms to which they are bonded.
  • a ring may be formed.
  • Ring L 1A represents a triazole ring or a diazole ring.
  • Ring L 2A represents a benzene ring, a pyridine ring or a diazabenzene ring. ] [Where: M, n 1 , n 2 and A 1 -G 1 -A 2 represent the same meaning as described above.
  • E11B , E12B , E13B , E14B , E21B , E22B , E23B and E24B each independently represent a nitrogen atom or a carbon atom.
  • E 11B , E 12B , E 13B , E 14B , E 21B , E 22B , E 23B and E 24B they may be the same or different.
  • E 11B is a nitrogen atom
  • R 11B does not exist.
  • E 12B is a nitrogen atom
  • E 13B is a nitrogen atom
  • R 13B does not exist.
  • E 14B is a nitrogen atom, R 14B does not exist.
  • E 21B is a nitrogen atom
  • R 21B does not exist.
  • E 22B is a nitrogen atom
  • R 22B does not exist.
  • E 23B is a nitrogen atom
  • R 23B does not exist.
  • E 24B is a nitrogen atom, R 24B does not exist.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryl It represents an oxy group, an alkenyl group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom, and these groups may have a substituent.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B they may be the same or different.
  • Ring L 1B represents a pyridine ring or a diazabenzene ring.
  • Ring L 2B represents a benzene ring, a pyridine ring or a diazabenzene ring.
  • the second layer is a layer containing at least one selected from the group consisting of a compound containing the alkali metal element and a compound containing the group 2 element.
  • the light emitting element in any one.
  • the third layer is a layer containing at least one selected from the group consisting of the compound containing the alkali metal element and the simple substance consisting only of the group 2 element.
  • the light emitting element in any one of.
  • the light emitting device according to any one of [1] to [12] wherein the first layer and the second layer are adjacent to each other.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • a solid line representing a bond with a metal means an ionic bond, a covalent bond, or a coordinate bond.
  • polymer compound means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • Structuretural unit means one or more units present in a polymer compound.
  • the “alkyl group” may be linear or branched.
  • the number of carbon atoms of the straight chain alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl, hexyl, heptyl, octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl, dodecyl
  • a group in which a hydrogen atom in these groups is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom or the like (for example, a trifluoromethyl group, a pentafluoroethyl group,
  • the number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
  • the “alkoxy group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent, for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and the hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, And a group substituted with a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
  • a substituent for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-buty
  • the number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, for example, phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and a group in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like.
  • the “p-valent heterocyclic group” (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom. Among the p-valent heterocyclic groups, it is the remaining atomic group obtained by removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from the aromatic heterocyclic compound. A “p-valent aromatic heterocyclic group” is preferable.
  • Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • a compound in which the ring itself exhibits aromaticity, and a heterocyclic ring such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, benzopyran itself does not exhibit aromaticity, but the aromatic ring is condensed to the heterocyclic ring Means a compound.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the monovalent heterocyclic group may have a substituent, for example, thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and these And a group in which the hydrogen atom in the group is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or the like.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent, and a substituted amino group is preferable.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
  • the amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, bis (3,5-di-tert- Butylphenyl) amino group.
  • the “alkenyl group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkenyl group is usually 2-30, preferably 3-20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent, for example, a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, Examples include a pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and groups in which these groups have a substituent.
  • the “alkynyl group” may be linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the alkynyl group and the cycloalkynyl group may have a substituent, for example, an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, 4- Examples include a pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
  • the “arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • the arylene group may have a substituent. Examples include chrysenediyl groups and groups in which these groups have substituents, and groups represented by formulas (A-1) to (A-20) are preferable.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group may have a substituent, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilol, phenoxazine, phenothiazine, acridine, Divalent acridine, furan, thiophene, azole, diazole, and triazole include divalent groups obtained by removing two hydrogen atoms from hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring, and preferably Is a group represented by formula (AA-1) to formula (AA-34).
  • the divalent heterocyclic group includes a group in which a plurality of these groups
  • crosslinking group is a group capable of forming a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, etc.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • * 1 represents a binding position.
  • “Substituent” means a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, amino group, substituted amino group, alkenyl group. Represents a cycloalkenyl group, an alkynyl group or a cycloalkynyl group.
  • the substituent may be a crosslinking group.
  • the first layer included in the light-emitting element of the present invention is a layer containing a compound represented by the formula (C-1).
  • the molecular weight of the compound represented by the formula (C-1) is preferably 2 ⁇ 10 2 to 5 ⁇ 10 4 , more preferably 2 ⁇ 10 2 to 5 ⁇ 10 3 , and still more preferably 3 ⁇ 10 2 to 3 ⁇ 10 3 , particularly preferably 4 ⁇ 10 2 to 1 ⁇ 10 3 .
  • the number of carbon atoms of the aromatic hydrocarbon ring represented by ring R 1C , ring R 2C , ring R 3C and ring R 4C is usually 6 to 60, not including the number of carbon atoms of the substituent, preferably It is 6 to 30, more preferably 6 to 18.
  • Examples of the aromatic hydrocarbon ring represented by ring R 1C , ring R 2C , ring R 3C, and ring R 4C include benzene ring, naphthalene ring, anthracene ring, indene ring, fluorene ring, spirobifluorene ring, and phenanthrene.
  • Ring, dihydrophenanthrene ring, pyrene ring, chrysene ring and triphenylene ring preferably benzene ring, naphthalene ring, anthracene ring, fluorene ring, spirobifluorene ring, phenanthrene ring or dihydrophenanthrene ring, more preferably A benzene ring, a naphthalene ring, a fluorene ring, or a spirobifluorene ring, more preferably a benzene ring, which may have a substituent.
  • the number of carbon atoms of the aromatic heterocyclic ring represented by ring R 1C , ring R 2C , ring R 3C and ring R 4C is usually 2 to 60, not including the number of carbon atoms of the substituent, It is 3 to 30, more preferably 4 to 15.
  • Examples of the aromatic heterocyclic ring represented by ring R 1C , ring R 2C , ring R 3C and ring R 4C include, for example, a pyrrole ring, a diazole ring, a triazole ring, a furan ring, a thiophene ring, an oxadiazole ring, and a thiadiazole ring.
  • At least one of the ring R 1C , the ring R 2C , the ring R 3C and the ring R 4C is preferably an aromatic hydrocarbon ring, and the ring R 1C , More preferably, at least two of R 2C , ring R 3C and ring R 4C are aromatic hydrocarbon rings, and all of ring R 1C , ring R 2C , ring R 3C and ring R 4C are aromatic hydrocarbons.
  • the ring is a ring, and it is particularly preferable that all of the ring R 1C , the ring R 2C , the ring R 3C, and the ring R 4C are benzene rings, and these rings may have a substituent.
  • the substituent that the ring R 1C , ring R 2C , ring R 3C, and ring R 4C may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or an aryloxy group.
  • it is a monovalent
  • the number of carbon atoms of the aryl group which is a substituent that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have is usually 6 to 60, not including the number of carbon atoms of the substituent. Yes, preferably 6 to 40, more preferably 6 to 25.
  • Examples of the aryl group which is a substituent that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have include, for example, a benzene ring, a naphthalene ring, an anthracene ring, an indene ring, a fluorene ring, and a spirobi A group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting the ring from a fluorene ring, a phenanthrene ring, a dihydrophenanthrene ring, a pyrene ring, a chrysene ring, a triphenylene ring or a ring obtained by condensing these rings;
  • the number of carbon atoms of the monovalent heterocyclic group that is a substituent that the ring R 1C , ring R 2C , ring R 3C, and ring R 4C may have is usually not including the number of carbon atoms of the substituent. It is 2 to 60, preferably 3 to 30, and more preferably 3 to 15.
  • Examples of the monovalent heterocyclic group which is a substituent that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have include, for example, a pyrrole ring, a diazole ring, a triazole ring, a furan ring, and a thiophene.
  • Sazine ring, phenothiazine ring, di A group obtained by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a hydroacridine ring or dihydrophenazine ring, and more preferably a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a phenoxazine ring , A phenothiazine ring, a dihydroacridine ring or a dihydrophenazine ring in which one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting the ring is removed, particularly preferably a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring Or a group obtained by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a dihydroacridine
  • the amino group may have an aryl group or a monovalent heterocyclic group.
  • an aryl group is more preferable, and these groups may further have a substituent.
  • Examples and preferred ranges of the aryl group which is a substituent of the amino group include examples and preferred ranges of the aryl group which is a substituent which the ring R 1C , the ring R 2C , the ring R 3C and the ring R 4C may have. Is the same.
  • Examples and preferred ranges of the monovalent heterocyclic group that is a substituent that the amino group has are monovalent that are substituents that the ring R 1C , the ring R 2C , the ring R 3C, and the ring R 4C may have.
  • the examples are the same as the examples and preferred ranges of the heterocyclic group.
  • the substituents that the ring R 1C , ring R 2C , ring R 3C, and ring R 4C may have further include an alkyl group, a cycloalkyl group, an alkoxy group, and a cycloalkoxy group.
  • An aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group or a halogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is more preferred, and an alkyl group or an aryl group is preferred. More preferred are alkyl groups, and these groups may further have a substituent, but these groups preferably have no substituent.
  • Ring R 1C , Ring R 2C , Ring R 3C and Ring R 4C may be further substituted with an aryl group, a monovalent heterocyclic group and a substituted amino group which may be further substituted.
  • Examples and preferred ranges are examples of an aryl group, a monovalent heterocyclic group and a substituted amino group, which are substituents that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have, respectively. It is the same as a preferable range.
  • R C is preferably a carbon atom, a silicon atom or a germanium atom, more preferably a carbon atom or a silicon atom, and even more preferably a carbon atom, because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • At least one of the ring R 1C , the ring R 2C , the ring R 3C and the ring R 4C has an aryl group or a monovalent heterocyclic group as a substituent. It is more preferable that at least one of the ring R 1C , the ring R 2C , the ring R 3C, and the ring R 4C has a group represented by the formula (D-1) as a substituent. The group may have a substituent.
  • ring R 1C , ring R 2C , ring R 3C, and ring R 4C has an aryl group or a monovalent heterocyclic group as a substituent, ring R 1C , ring R 2C , ring R 3C, and The total number of aryl groups and monovalent heterocyclic groups in ring R 4C is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1 or 2. Particularly preferred is one.
  • ring R 1C , ring R 2C , ring R 3C and ring R 4C has a group represented by the formula (D-1) as a substituent, ring R 1C , ring R 2C , ring R
  • the total number of groups represented by formula (D-1) in 3C and ring R 4C is preferably 1 to 5, more preferably 1 to 3, and still more preferably 1 or 2 And particularly preferably one.
  • Examples and preferred ranges of the aromatic hydrocarbon ring and aromatic heterocyclic ring represented by ring R D are ring R 1C , ring R 2C , ring R 3C and ring R 3C , respectively.
  • Examples and preferred ranges of the aromatic hydrocarbon ring and aromatic heterocyclic ring represented by ring R 4C are the same.
  • Examples of the substituent that the ring R D may have and preferred ranges thereof may include the substituent that the ring R 1C , ring R 2C , ring R 3C, and ring R 4C may further have. Examples of good substituents and preferred ranges are the same.
  • the ring R D is preferably an aromatic hydrocarbon ring and more preferably a benzene ring because the luminance life of the light emitting device of the present invention is more excellent.
  • X D1 and X D2 are preferably a single bond, an oxygen atom, a sulfur atom, or a group represented by —C (R XD2 ) 2 — because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • it is a single bond, an oxygen atom or a sulfur atom, more preferably a single bond or a sulfur atom, and particularly preferably one of X D1 and X D2 is a single bond and the other is a sulfur atom. is there.
  • At least one of X D1 and X D2 is preferably a single bond, and X D2 is more preferably a single bond.
  • R XD1 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group. These groups may have a substituent.
  • R XD2 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group or an aryl group, and these groups optionally have a substituent. .
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group represented by R XD1 and R XD2 are the ring R 1C , ring R 2C , ring R 3C and ring R 4C , respectively.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group, which may be substituents, and the preferred range are the same.
  • the combination of two R XD2 in the group represented by —C (R XD2 ) 2 — represented by X D1 and X D2 is preferably both an alkyl group or a cycloalkyl group, both an aryl group, Is a monovalent heterocyclic group, or one is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably both are an aryl group or one is an alkyl group or a cycloalkyl group.
  • An alkyl group and the other is an aryl group, more preferably both are aryl groups, and these groups may have a substituent.
  • R XD2 s are preferably bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the group represented by —C (R XD2 ) 2 — is preferably a group represented by the formula (Y-A1) -formula (Y-A5), more preferably Is a group represented by the formula (Y-A4), and these groups may have a substituent.
  • R XD1 and R XD2 may have further include the substituent that the ring R 1C , ring R 2C , ring R 3C, and ring R 4C may have. Examples of the substituents that may be present and the preferred ranges are the same.
  • E 1D , E 2D and E 3D are preferably carbon atoms.
  • R 1D , R 2D and R 3D are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and are a hydrogen atom, an alkyl group or an aryl group. Is more preferable, and a hydrogen atom is more preferable, and these groups may further have a substituent.
  • Examples of aryl groups, monovalent heterocyclic groups, and substituted amino groups represented by R 1D , R 2D, and R 3D and preferred ranges thereof include ring R 1C , ring R 2C , ring R 3C, and ring R 4C , respectively.
  • R 1D and R 2D , R 2D and R 3D , R 1D and R XD1 , R 1D and R XD2 , R XD1 and the substituent R DD may have, and R XD2 and R DD have
  • the substituents that may be bonded to each other may form a ring together with the carbon atoms to which they are bonded, but preferably do not form a ring.
  • the group represented by the formula (D-1) is preferably a group represented by the formula (D-2) because the luminance life of the light emitting device of the present invention is more excellent.
  • E 4D , E 5D , E 6D and E 7D are preferably carbon atoms.
  • Examples and preferred ranges of R 4D , R 5D , R 6D and R 7D are the same as examples and preferred ranges of R 1D , R 2D and R 3D .
  • Examples and preferred ranges of substituents that R 4D , R 5D , R 6D and R 7D may have are examples and preferred ranges of substituents which R 1D , R 2D and R 3D may have.
  • R 4D and R 5D , R 5D and R 6D , R 6D and R 7D may be bonded to each other to form a ring with the carbon atoms to which they are bonded, but it is preferable that no ring be formed.
  • the compound represented by the formula (C-1) is preferably a compound represented by the formula (C-2) because the luminance life of the light emitting device of the present invention is more excellent.
  • E 11C , E 12C , E 13C , E 14C , E 21C , E 22C , E 23C , E 24C , E 31C , E 32C , E 33C , E 34C , E 41C , E 42C , E 43C and E 44C are carbon An atom is preferred.
  • Ring R 1C ′, ring R 2C ′, ring R 3C ′ and ring R 4C ′ are preferably benzene rings.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are hydrogen It is preferably an atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably a hydrogen atom, an aryl group or a monovalent heterocyclic group, a hydrogen atom or
  • the group represented by the formula (D-1) is more preferable, and these groups may further have a substituent.
  • At least one is preferably an aryl group or a monovalent heterocyclic group, more preferably a group represented by the formula (D-1), and these groups further have a substituent. Also good.
  • R 11C, R 12C, R 13C , R 14C is represented by R 21C, R 22C, R 23C , R 24C, R 31C, R 32C, R 33C, R 34C, R 41C, R 42C, R 43C and R 44C
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group are aryl which is a substituent that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have respectively.
  • the examples are the same as the examples and preferred ranges of the monovalent heterocyclic group and substituted amino group.
  • R 11C, R 12C, R 13C , R 14C, R 21C, R 22C, R 23C, R 24C, R 31C, R 32C, R 33C, R 34C, R 41C, R 42C, R 43C and R 44C has Examples and preferred ranges of the substituent which may be present include examples of the substituent which the ring R 1C , ring R 2C , ring R 3C and ring R 4C may further have and It is the same as a preferable range.
  • the total number of 34C , R 41C , R 42C , R 43C and R 44C is an aryl group or a monovalent heterocyclic group is preferably 1 to 5, more preferably 1 to 3, The number is preferably 1 or 2, particularly preferably 1.
  • R 11C , R 12C , R 13C , R 14C , R 21C , R 22C , R 23C , R 24C , R 31C , R 32C , R 33C , R 34C , R 41C , R 42C , R 43C and R 44C are preferably 1 to 5, more preferably 1 to 3 in total, which is a group represented by the formula (D-1). More preferably, it is 1 or 2, particularly preferably 1.
  • R 11C , R 12C , R 14C , R 21C , R 22C , R 24C , R 31C , R 32C , R 34C , R 41C , R 42C and R it is preferred that at least one of 44C is an aryl group or a monovalent heterocyclic group, R 11C, R 12C, R 21C, R 22C, R 31C, at least one of the R 32C, R 41C and R 42C Is more preferably an aryl group or a monovalent heterocyclic group, and more preferably at least one of R 11C , R 12C , R 21C
  • R 11C , R 12C , R 14C , R 21C , R 22C , R 24C , R 31C , R 32C , R 34C , R 41C , R 42C And R 44C is preferably a group represented by the formula (D-1), and R 11C , R 12C , R 21C , R 22C , R 31C , R 32C , R 41C and R 42C More preferably, at least one of them is a group represented by the formula (D-1), and at least one of R 11C , R 12C , R 21C and R 22C is represented by the formula (D-1). more
  • R 11C and R 12C , R 12C and R 13C , R 13C and R 14C , R 14C and R 34C , R 34C and R 33C , R 33C and R 32C , R 32C and R 31C , R 31C and R 41C , R 41C And R 42C , R 42C and R 43C , R 43C and R 44C , R 44C and R 24C , R 24C and R 23C , R 23C and R 22C , R 22C and R 21C , and R 21C and R 11C are They may be bonded to form a ring together with the carbon atoms to which they are bonded, but it is preferable not to form a ring.
  • the compound represented by the formula (C-2) is preferably a compound represented by the formula (C-3) because the luminance life of the light emitting device of the present invention is more excellent.
  • Examples of the compound represented by the formula (C-1) include compounds represented by the formula (C-101) to the formula (C-137).
  • X represents an oxygen atom or a sulfur atom. When two or more X exists, they may be the same or different. ]
  • X is preferably a sulfur atom.
  • the compound represented by the formula (C-1) is, for example, Aldrich, Luminescence Technology Corp. Is available from Other examples of the compound represented by the formula (C-1) include, for example, International Publication No. 2014/023388, International Publication No. 2013/0445408, International Publication No. 2013/045410, International Publication No. 2013/045411, International Publication No. 2012. / 048820, International Publication No. 2012/048819, International Publication No. 2011/006574, “Organic-Electronics” vol. 14, 902-908 (2013) ”.
  • the first layer is preferably a layer containing a compound represented by the formula (C-1) and a phosphorescent compound.
  • the first layer may contain one compound represented by formula (C-1), or two or more compounds.
  • the phosphorescent compound may be contained alone. More than one species may be contained.
  • the content of the phosphorescent compound is such that the phosphorescent compound and the formula (C-1) ) Is generally 0.01 to 95 parts by mass, preferably 0.1 to 70 parts by mass, more preferably 1 to 50 parts by mass, and still more preferably Is 10 to 40 parts by mass.
  • the first layer is a layer containing a compound represented by the formula (C-1) and a phosphorescent compound
  • the compound represented by the formula (C-1) Since the luminance life is more excellent, a host material having at least one function selected from a hole injection property, a hole transport property, an electron injection property, and an electron transport property is preferable.
  • the first layer is a layer containing a compound represented by the formula (C-1) and a phosphorescent compound
  • the lowest excited triplet state of the compound represented by the formula (C-1) ( T 1 ) is an energy level equivalent to or higher than T 1 of the phosphorescent compound contained in the first layer because the luminance lifetime of the light-emitting element of the present invention is more excellent.
  • the energy level is higher.
  • the phosphorescent compound since the light-emitting element of the present invention can be produced by a coating method, the phosphorescent compound can be used for a solvent capable of dissolving the compound represented by the formula (C-1) contained in the first layer. It is preferable that it exhibits solubility.
  • Phosphorescent compound generally means a compound that exhibits phosphorescence at room temperature (25 ° C.), and is preferably a metal complex that emits light from a triplet excited state at room temperature.
  • This metal complex that emits light from a triplet excited state has a central metal atom and a ligand.
  • the central metal atom for example, a metal atom having an atomic number of 40 or more and having a spin-orbit interaction in a complex and capable of causing an intersystem crossing between a singlet state and a triplet state can be given.
  • the metal atom include a ruthenium atom, a rhodium atom, a palladium atom, an iridium atom, and a platinum atom.
  • an iridium atom or a platinum atom is preferable.
  • a neutral or anionic monodentate ligand that forms at least one bond selected from the group consisting of a coordination bond and a covalent bond with the central metal atom, or Neutral or anionic polydentate ligands may be mentioned.
  • the bond between the central metal atom and the ligand include a metal-nitrogen bond, a metal-carbon bond, a metal-oxygen bond, a metal-phosphorus bond, a metal-sulfur bond, and a metal-halogen bond.
  • the multidentate ligand usually means a bidentate to hexadentate ligand.
  • the phosphorescent compound is preferably a phosphorescent compound represented by Formula (1).
  • M is preferably an iridium atom or a platinum atom, and more preferably an iridium atom, because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • M is a ruthenium atom, a rhodium atom or an iridium atom, n 1 is preferably 2 or 3, and more preferably 3.
  • M is a palladium atom or a platinum atom
  • n 1 is preferably 2.
  • E 1 and E 2 are preferably carbon atoms.
  • Ring L 1 is preferably a 5-membered aromatic heterocyclic ring or a 6-membered aromatic heterocyclic ring, or a 5-membered aromatic heterocyclic ring having 2 to 4 nitrogen atoms as constituent atoms or one More preferably, it is a 6-membered aromatic heterocycle having 4 or less nitrogen atoms as constituent atoms, and a 5-membered aromatic heterocycle having 2 or more and 3 or less nitrogen atoms as constituent atoms or one More preferably, it is a 6-membered aromatic heterocyclic ring having 2 or less nitrogen atoms as constituent atoms, and these rings may have a substituent.
  • E 1 is preferably a carbon atom.
  • the ring L 1 include a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a triazine ring, an azanaphthalene ring and a diazanaphthalene ring.
  • An isoquinoline ring is preferred, a diazole ring, a triazole ring, a pyridine ring, a quinoline ring or an isoquinoline ring is more preferred, a diazole ring, a triazole ring or a pyridine ring is further preferred, a diazole ring or a pyridine ring is particularly preferred, and these rings are substituents. You may have.
  • Ring L 2 is preferably a 5-membered or 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle, and a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocycle More preferably, it is a ring, more preferably a 6-membered aromatic hydrocarbon ring, and these rings may have a substituent.
  • E 2 is preferably a carbon atom.
  • Examples of the ring L 2 include a benzene ring, naphthalene ring, fluorene ring, phenanthrene ring, indene ring, pyridine ring, diazabenzene ring and triazine ring, and a benzene ring, naphthalene ring, fluorene ring, pyridine ring or diazabenzene ring is included.
  • a benzene ring, a pyridine ring or a diazabenzene ring is more preferable, a benzene ring is more preferable, and these rings may have a substituent.
  • Examples of the substituent that the ring L 1 and the ring L 2 may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, and a substituted amino group.
  • a halogen atom is preferred, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom is more preferred, an alkyl group, a cycloalkyl group, an aryl group, A monovalent heterocyclic group or a substituted amino group is more preferable, an aryl group or a monovalent heterocyclic group is particularly preferable, and an aryl group is particularly preferable. These groups may further have a substituent.
  • aryl group which is a substituent that the ring L 1 and the ring L 2 may have, a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a dihydrophenanthrenyl group, a fluorenyl group, or a pyrenyl group is preferable.
  • a phenyl group, a naphthyl group or a fluorenyl group is more preferred, a phenyl group is still more preferred, and these groups may further have a substituent.
  • Examples of the monovalent heterocyclic group that may be substituted on the ring L 1 and the ring L 2 include a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a dibenzofuranyl group, and a dibenzothienyl group.
  • the amino group preferably has an aryl group or a monovalent heterocyclic group, more preferably an aryl group, These groups may further have a substituent.
  • Examples and preferred ranges of the aryl group in the substituent that the amino group has are the same as examples and preferred ranges of the aryl group in the substituent that the ring L 1 and the ring L 2 may have.
  • Examples and preferred ranges of the monovalent heterocyclic group in the substituent that the amino group has are the same as examples and preferred ranges of the monovalent heterocyclic group in the substituent that the ring L 1 and the ring L 2 may have. It is.
  • Examples of the substituent that the ring L 1 and the ring L 2 may have further include an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cyclo group
  • An alkoxy group or a substituted amino group is preferred, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferred, an alkyl group, a cycloalkyl group or an aryl group is further preferred, and an alkyl group or a cyclo Alkyl groups are particularly preferred, and these groups may further have a substituent, but these groups preferably have no further substituent.
  • Examples of the aryl group, monovalent heterocyclic group, and substituted amino group in the substituent that the substituent that the ring L 1 and the ring L 2 may have further have may each include a ring
  • Examples of the aryl group, monovalent heterocyclic group, and substituted amino group in the substituent that L 1 and ring L 2 may have are the same as the preferred range.
  • the aryl group, monovalent heterocyclic group or substituted amino group which is a substituent that the ring L 1 and the ring L 2 may have is preferably a compound represented by the formula: It is a group represented by (DA), formula (DB) or formula (DC), and more preferably a group represented by formula (DA) or formula (DC).
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group, or a heterocyclic group, and these groups may have a substituent.
  • a plurality of GDAs may be the same or different.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. Good.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 represents an integer of 0 or more.
  • Ar DA1 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are usually an integer of 10 or less, preferably an integer of 5 or less, more preferably an integer of 2 or less, Preferably 0 or 1.
  • m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are preferably the same integer, and m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are More preferably, they are the same integer.
  • GDA is preferably an aromatic hydrocarbon group or a heterocyclic group, more preferably hydrogen bonded directly to a carbon atom or a nitrogen atom constituting the ring from a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring or a carbazole ring. It is a group formed by removing three atoms, and these groups may have a substituent.
  • the substituent that GDA may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, A cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably an alkyl group or a cycloalkyl group, and these groups may further have a substituent, but these groups further have a substituent. It is preferable not to have it.
  • G DA is preferably a group represented by the formula (GDA-11) ⁇ formula (GDA-15), more preferably a group represented by the formula (GDA-11) ⁇ formula (GDA-14) And more preferably a group represented by the formula (GDA-11) or (GDA-14), and particularly preferably a group represented by the formula (GDA-11).
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent. When there are a plurality of RDA , they may be the same or different. ]
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 are preferably a phenylene group, a fluorenediyl group or a carbazolediyl group, more preferably a formula (ArDA-1) to a formula A group represented by formula (ArDA-5), more preferably a group represented by formula (ArDA-1) to formula (ArDA-3), particularly preferably formula (ArDA-1) or formula (ArDA -2), particularly preferably a group represented by the formula (ArDA-1), and these groups may have a substituent.
  • R DA represents the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of RDBs , they may be the same or different. ]
  • R DB is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group, The group may have a substituent.
  • Examples of the substituents that Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 , Ar DA7, and R DB may have and preferred ranges thereof may have the substituent that G DA may have The same as the examples and preferred ranges.
  • T DA is preferably a group represented by the formula (TDA-1) ⁇ formula (TDA-3), more preferably a group represented by the formula (TDA-1).
  • R DA and R DB represent the same meaning as described above.
  • the group represented by the formula (DA) is preferably a group represented by the formula (D-A1) to the formula (D-A5), more preferably the formula (D-A1) or the formula (D-A3).
  • a group represented by the formula (D-A5) more preferably a group represented by the formula (D-A1) or the formula (D-A3), and particularly preferably a group represented by the formula (D-A1).
  • R p1 , R p2 , R p3 and R p4 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom.
  • R p1 , R p2 and R p4 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer of 0 to 4.
  • a plurality of np1 may be the same or different.
  • the group represented by the formula (DB) is preferably a group represented by the formula (D-B1) to the formula (D-B6), more preferably the formula (D-B1) to the formula (D-B3). Or it is group represented by a formula (D-B5), More preferably, it is group represented by a formula (D-B1).
  • R p1 , R p2 , R p3 and R p4 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom.
  • R p1 , R p2 and R p4 they may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer of 0 to 4.
  • a plurality of np1 may be the same or different.
  • a plurality of np2 may be the same or different.
  • the group represented by the formula (DC) is preferably a group represented by the formula (D-C1) to the formula (D-C4), more preferably the formula (D-C1) or the formula (D-C2). And more preferably a group represented by the formula (D-C2).
  • R p4 , R p5 and R p6 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom. When there are a plurality of R p4 , R p5 and R p6 , they may be the same or different.
  • np4 represents an integer of 0 to 4
  • np5 represents an integer of 0 to 5
  • np6 represents an integer of 0 to 5.
  • Np1 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • np2 is preferably 0 or 1
  • np3 is preferably 0.
  • np4 is preferably an integer of 0 to 2
  • np5 is preferably an integer of 0 to 3, more preferably 0 or 1.
  • np6 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • the alkyl group or cycloalkyl group represented by R p1 , R p2 , R p3 , R p4 , R p5 and R p6 is preferably a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, 2-ethylhexyl group, cyclohexyl group or tert-octyl group.
  • the alkoxy group or cycloalkoxy group represented by R p1 , R p2 , R p3 , R p4 , R p5 and R p6 is preferably a methoxy group, a 2-ethylhexyloxy group or a cyclohexyloxy group.
  • R p1 , R p2 , R p3 , R p4 , R p5 and R p6 are preferably an optionally substituted alkyl group or an optionally substituted cycloalkyl group, and more An alkyl group which may have a substituent is preferable, and a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group or a tert-octyl group is more preferable.
  • the ring L 1 When there are a plurality of substituents that the ring L 1 may have, it is preferable that they are bonded to each other and do not form a ring together with the atoms to which they are bonded.
  • the ring L 2 When there are a plurality of substituents that the ring L 2 may have, it is preferable that they are bonded to each other and do not form a ring with the atoms to which they are bonded.
  • the substituent that the ring L 1 may have and the substituent that the ring L 2 may have are preferably bonded to each other and do not form a ring with the atoms to which they are bonded.
  • anionic bidentate ligand examples include a ligand represented by the following formula. However, the anionic bidentate ligand represented by A 1 -G 1 -A 2 is different from the ligand whose number is defined by the subscript n 1 .
  • R L1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a halogen atom, and these groups optionally have a substituent.
  • a plurality of R L1 may be the same or different.
  • R L2 represents an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a halogen atom, and these groups optionally have a substituent.
  • R L1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a fluorine atom, more preferably a hydrogen atom or an alkyl group, and these groups optionally have a substituent.
  • R L2 is preferably an alkyl group or an aryl group, and these groups optionally have a substituent.
  • the phosphorescent compound represented by the formula (1) has a higher luminance lifetime of the light emitting device of the present invention
  • the phosphorescent compound represented by the formula (1-A) or the formula (1-B) It is preferable that the phosphorescent compound be used.
  • ring L 1A is a diazole ring
  • an imidazole ring in which E 11A is a nitrogen atom or an imidazole ring in which E 12A is a nitrogen atom is preferable
  • An imidazole ring in which 11A is a nitrogen atom is more preferable.
  • ring L 1A is a triazole ring
  • a triazole ring in which E 11A and E 12A are nitrogen atoms or a triazole ring in which E 11A and E 13A are nitrogen atoms is preferable, and E 11A and E 13A are nitrogen atoms.
  • a triazole ring is more preferred.
  • Ring L 1A is preferably a diazole ring.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group represented by R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A are ring L 1 and Examples of the aryl group, monovalent heterocyclic group and substituted amino group, which are the substituents that the ring L 2 may have, are the same as the preferred range. Examples of the substituent which R 11A , R 12A , R 13A , R 21A , R 22A , R 23A and R 24A may have and preferred ranges thereof may have ring L 1 and ring L 2. It is the same as the example and preferable range of the substituent which the substituent may further have.
  • R 11A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and an aryl group or a monovalent heterocyclic ring It is more preferably a group, and further preferably an aryl group, and these groups may have a substituent.
  • R 11A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom, an alkyl group, a cycloalkyl group Or it is more preferably an aryl group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and particularly preferably a hydrogen atom, and these groups optionally have a substituent.
  • R 12A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and an aryl group or a monovalent heterocyclic ring It is more preferably a group, and further preferably an aryl group, and these groups may have a substituent.
  • R 12A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, a hydrogen atom, an alkyl group, a cycloalkyl group Or it is more preferably an aryl group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and particularly preferably a hydrogen atom, and these groups optionally have a substituent.
  • R 13A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and an aryl group or a monovalent heterocyclic ring It is more preferably a group, and further preferably an aryl group, and these groups may have a substituent.
  • R 13A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, a hydrogen atom, an alkyl group, a cycloalkyl group Or it is more preferably an aryl group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and particularly preferably a hydrogen atom, and these groups optionally have a substituent.
  • ring L 1A is a diazole ring
  • ring L 1A is preferably an imidazole ring in which E 11A is a nitrogen atom and R 11A is present, or E 12A is a nitrogen atom, and R 12A More preferably, E 11A is a nitrogen atom, and R 11A is an imidazole ring.
  • ring L 1A is a triazole ring
  • ring L 1A is preferably a triazole ring in which E 11A and E 12A are nitrogen atoms and R 11A is present but R 12A is absent, or E 11A and E 13A is a nitrogen atom, and a triazole ring in which R 11A is present and R 13A is not present. More preferably, E 11A and E 13A are nitrogen atoms, and R 11A is present and R 13A is present. Not a triazole ring.
  • R 11A , R 12A and R 13A are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, It is more preferably an aryl group, and these groups may have a substituent.
  • ring L 2A is a pyridine ring
  • ring L 2A is a pyridine ring
  • E 21A is a nitrogen atom
  • a pyridine ring E 22A is a nitrogen atom
  • E 23A is a pyridine ring is a nitrogen atom
  • E 22A is a pyridine ring which is a nitrogen atom.
  • ring L 2A is Jiazabenzen ring
  • ring L 2A is a pyrimidine ring
  • E 22A and E 24A is a nitrogen atom
  • E 22A and E 24A is a pyrimidine ring is a nitrogen atom
  • E 22A And E 24A is more preferably a pyrimidine ring which is a nitrogen atom.
  • Ring L 2A is preferably a benzene ring.
  • R 21A , R 22A , R 23A and R 24A may be a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom.
  • a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable, and a hydrogen atom, an alkyl group, a formula (DA), a formula (DB) Or a group represented by the formula (DC), more preferably a hydrogen atom or a group represented by the formula (DA), particularly preferably a hydrogen atom, These groups may have a substituent.
  • R 22A or R 23A is preferably an aryl group, monovalent heterocyclic group or substituted amino group, and R 22A is aryl. It is more preferably a group, a monovalent heterocyclic group or a substituted amino group.
  • R 11A and R 12A , R 12A and R 13A , R 11A and R 21A , R 21A and R 22A , R 22A and R 23A , and R 23A and R 24A are bonded to each other together with the atoms to which they are bonded. It is preferable not to form a ring.
  • the phosphorescent compound represented by the formula (1-A) has a further excellent luminance lifetime of the light emitting device of the present invention
  • the phosphorescent compound represented by the formulas (1-A1) to (1-A5) The phosphorescent compound represented by the formula (1-A1), the formula (1-A3) or the formula (1-A4) is more preferable, and the formula (1-A3) or the formula ( A phosphorescent compound represented by 1-A4) is more preferred, and a phosphorescent compound represented by formula (1-A4) is particularly preferred.
  • ring L 1B is a diazabenzene ring
  • ring L 1B is a pyrimidine ring in which E 11B is a nitrogen atom
  • E 13B is a nitrogen atom
  • It is preferably a ring, and more preferably a pyrimidine ring in which E 11B is a nitrogen atom.
  • Ring L 1B is preferably a pyridine ring.
  • ring L 2B is a pyridine ring
  • ring L 2B is a pyridine ring
  • E 21B is a nitrogen atom
  • a pyridine ring E 22B is a nitrogen atom
  • E 23B is a pyridine ring is a nitrogen atom
  • E 22B is a pyridine ring which is a nitrogen atom.
  • ring L 2B is Jiazabenzen ring
  • ring L 2B is a pyrimidine ring
  • E 22B and E 24B is a nitrogen atom
  • E 21B and E 23B is a pyrimidine ring is a nitrogen atom
  • E 22B And E 24B is more preferably a pyrimidine ring which is a nitrogen atom.
  • Ring L 2B is preferably a benzene ring.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group represented by R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are each a ring.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group, which are the substituents that L 1 and ring L 2 may have, are the same as the preferred ranges.
  • Examples of substituents that R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B may have and preferred ranges thereof include ring L 1 and ring L 2.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, alkenyl group, monovalent group
  • R 11B , R 12B or R 13B is preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, 12B or R 13B is more preferably an aryl group, monovalent heterocyclic group or substituted amino group, and R 13B is more preferably an aryl group, monovalent heterocyclic group or substituted amino group.
  • R 22B or R 23B is preferably an aryl group, monovalent heterocyclic group or substituted amino group, and R 22B is aryl. It is more preferably a group, a monovalent heterocyclic group or a substituted amino group.
  • the phosphorescent compound represented by the formula (1-B) has a further excellent luminance lifetime of the light emitting device of the present invention
  • the phosphorescent compound represented by the formulas (1-B1) to (1-B5) is more preferable, and the phosphorescent compound or the formula represented by the formula (1-B1)
  • the phosphorescent compound represented by (1-B2) is more preferred, and the phosphorescent compound represented by formula (1-B1) is particularly preferred.
  • n 11 and n 12 each independently represents an integer of 1 or more. However, when M is a ruthenium atom, rhodium atom or iridium atom, n 11 + n 12 is 3, and when M is a palladium atom or platinum atom, n 11 + n 12 is 2.
  • R 15B , R 16B , R 17B and R 18B are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, alkenyl group, monovalent heterocyclic group Represents a substituted amino group or a halogen atom, and these groups optionally have a substituent.
  • R 15B , R 16B , R 17B and R 18B may be the same or different.
  • R 13B and R 15B , R 15B and R 16B , R 16B and R 17B , R 17B and R 18B , and R 18B and R 21B are bonded to each other to form a ring together with the atoms to which they are bonded. Also good. ]
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group represented by R 15B , R 16B , R 17B and R 18B may be the ring L 1 and the ring L 2 , respectively.
  • Examples of preferred aryl groups, monovalent heterocyclic groups and substituted amino groups are the same as the preferred ranges.
  • Examples of substituents that R 15B , R 16B , R 17B and R 18B may have and preferred ranges thereof may be further included in the substituents which ring L 1 and ring L 2 may have. Examples of good substituents and preferred ranges are the same.
  • R 15B , R 16B , R 17B and R 18B are a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, fluorine atom, aryl group, alkenyl group, monovalent heterocyclic group or substituted amino group. It is preferably a hydrogen atom, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group or substituted amino group, more preferably a hydrogen atom, alkyl group or cycloalkyl group. In particular, a hydrogen atom is preferable, and these groups may have a substituent.
  • Examples of the phosphorescent compound include a phosphorescent compound represented by the following formula.
  • the first layer comprises a compound represented by the formula (C-1) and the phosphorescent compound, hole transport material, hole injection material, electron transport material, electron injection material, light emission It may be a layer containing a composition (hereinafter also referred to as “first composition”) containing at least one material selected from the group consisting of a material and an antioxidant.
  • first composition a composition containing at least one material selected from the group consisting of a material and an antioxidant.
  • the hole transport material, hole injection material, electron transport material, and electron injection material contained in the first composition are different from the compound represented by the formula (C-1) in the first composition.
  • the luminescent material contained in is different from the phosphorescent compound, unlike the compound represented by the formula (C-1).
  • the hole transport material is classified into a low molecular compound and a high molecular compound, and is preferably a high molecular compound.
  • the hole transport material may have a crosslinking group.
  • the polymer compound include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone, and fullerene is preferable.
  • the compounding amount of the hole transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts, when the compound represented by the formula (C-1) is 100 parts by mass. Part by mass.
  • a hole transport material may be used individually by 1 type, or may use 2 or more types together.
  • Electron transport materials are classified into low-molecular compounds and high-molecular compounds.
  • the electron transport material may have a crosslinking group.
  • Low molecular weight compounds include, for example, metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene and diphenoquinone.
  • Examples of the polymer compound include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the amount of the electron transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass, when the compound represented by the formula (C-1) is 100 parts by mass. Part.
  • An electron transport material may be used individually by 1 type, or may use 2 or more types together.
  • Hole injection material and electron injection material are each classified into a low molecular compound and a high molecular compound.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • the low molecular weight compound include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • the polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain.
  • the compounding amounts of the hole injecting material and the electron injecting material are each usually 1 to 400 parts by mass when the compound represented by the formula (C-1) is 100 parts by mass. The amount is preferably 5 to 150 parts by mass.
  • Each of the electron injection material and the hole injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm is there.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the type of ions to be doped is an anion for a hole injection material and a cation for an electron injection material. Examples of the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion. Examples of the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion. Doping ions may be used alone or in combination of two or more.
  • Luminescent materials are classified into low-molecular compounds and high-molecular compounds.
  • the light emitting material may have a crosslinking group.
  • the low molecular weight compound include naphthalene and derivatives thereof, anthracene and derivatives thereof, and perylene and derivatives thereof.
  • the polymer compound include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a fluorenediyl group, a phenanthrene diyl group, a dihydrophenanthenediyl group, a group represented by the following formula (X), a carbazole diyl group, a phenoxy group.
  • the blending amount of the light emitting material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass when the compound represented by the formula (C-1) is 100 parts by mass. It is.
  • a luminescent material may be used individually by 1 type, or may use 2 or more types together.
  • the antioxidant may be any compound that is soluble in the same solvent as the compound represented by the formula (C-1) and does not inhibit light emission and charge transport.
  • a phenolic antioxidant, Phosphorus antioxidant is mentioned.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by mass when the compound represented by the formula (C-1) is 100 parts by mass.
  • Antioxidants may be used alone or in combination of two or more.
  • First ink The compound represented by the formula (C-1) can be used by dissolving in a solvent, for example.
  • a composition containing a compound represented by the formula (C-1) and a solvent (hereinafter also referred to as “first ink”) is prepared by spin coating, casting, micro gravure coating, or gravure coating.
  • first ink Bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, ink jet printing method, capillary coating method, nozzle coating method, etc.
  • the viscosity of the first ink may be adjusted according to the type of coating method.
  • the solvent contained in the first ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, anisole and 4-methylanisole; toluene, Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl
  • the compounding amount of the solvent is usually 1000 to 100,000 parts by mass, preferably 2000 to 20000 parts by mass when the compound represented by the formula (C-1) is 100 parts by mass. .
  • the second layer and the third layer included in the light-emitting element of the present invention are each composed of an alkali metal element alone, Group 2 (meaning Group 2 of the periodic table, and the same applies in this specification).
  • the simple substance consisting only of the alkali metal element the simple substance consisting only of the Group 2 element, the compound containing the alkali metal element, and the compound containing the Group 2 element are respectively 1 type may be contained independently and 2 or more types may be contained.
  • the light-emitting element is composed of a simple substance consisting only of an alkali metal element contained in the second layer, a simple substance consisting of only a Group 2 element, a compound containing an alkali metal element, and a compound containing a Group 2 element.
  • At least one selected from the group (hereinafter also referred to as “a simple substance or a compound of the second layer”), a simple substance consisting only of an alkali metal element contained in the third layer, a simple substance consisting only of a Group 2 element, It is different from at least one selected from the group consisting of a compound containing an alkali metal element and a compound containing a Group 2 element (hereinafter also referred to as “the third layer alone or a compound”) (hereinafter referred to as “ Different relationships ”). “Different from each other” means that the second layer contains only one kind of “single or compound of the second layer” and the third layer contains only one kind of “single or compound of the third layer”.
  • the simple substance or compound of the second layer and the simple substance or compound of the third layer are different from each other.
  • “a different relationship” means that when the second layer contains two or more kinds of “a single element or compound of the second layer”, the third layer contains at least “a simple substance or compound of the third layer”. Means containing one species.
  • the “relationships different from each other” means that when the third layer contains two or more kinds of “a simple substance or a compound of the third layer”, the second layer contains at least “a simple substance or a compound of the second layer”. Means containing one species.
  • the “different relationship” is included in the third layer and all the components of the “single or compound of the second layer” contained in the second layer, since the luminance life of the light emitting device of the present invention is more excellent. It is preferable that all components of the “third layer simple substance or compound” are not completely the same, and one of the “second layer simple substance or compound” contained in the second layer is More preferably, it is not contained in the third layer, and it is further preferred that all components of the “second layer alone or compound” contained in the second layer are not contained in the third layer.
  • the alkali metal element is preferably lithium, sodium, potassium, or cesium, because the luminance life of the light emitting device of the present invention is more excellent, and more preferably. Lithium, sodium or cesium.
  • the group 2 element is preferably beryllium, magnesium, calcium or barium because the luminance life of the light emitting device of the present invention is more excellent. More preferably, it is calcium or barium.
  • the compound containing an alkali metal element may be a polymer compound containing an alkali metal element or a low molecular compound containing an alkali metal element, but the light-emitting element of the present invention can be produced by a coating method.
  • a polymer compound containing an alkali metal element is preferable.
  • the compound containing an alkali metal element may contain only one kind of alkali metal element or may contain two or more kinds.
  • the compound containing a Group 2 element may be a polymer compound containing a Group 2 element or a low molecular compound containing a Group 2 element. However, the luminance lifetime of the light emitting device of the present invention is higher. Since it is excellent, it is preferably a low molecular compound containing a Group 2 element.
  • the compound containing a Group 2 element may contain only one type of Group 2 element or two or more types.
  • the compound containing an alkali metal element and the compound containing a Group 2 element may each be a single salt, a
  • Examples of the low molecular weight compound containing an alkali metal element include a metal complex containing an alkali metal element and an inorganic compound containing an alkali metal element.
  • Examples of the inorganic compound containing an alkali metal element include an alkali metal halide, an alkali metal oxide, an alkali metal hydroxide, an alkali metal cyanide, an alkali metal salt of phosphoric acid, an alkali metal salt of carbonic acid, and an alkali metal of sulfuric acid. Salt and nitric acid alkali metal salt, and the luminance life of the light emitting device of the present invention is more excellent.
  • alkali metal halide alkali metal oxide, alkali metal hydroxide or alkali metal carbonate of carbonic acid is preferred, and alkali metal A halide, an alkali metal oxide or an alkali metal salt of carbonic acid is more preferable, and an alkali metal halide is further preferable.
  • These compounds may be hydrates or anhydrides.
  • the alkali metal halide is preferably an alkali metal fluoride or an alkali metal chloride, more preferably an alkali metal fluoride. These compounds may be hydrates or anhydrides. Good. Further, the alkali metal halide is preferably lithium halide, sodium halide, potassium halide or cesium halide, more preferably lithium halide or sodium halide. That is, the alkali metal halide is preferably lithium fluoride, sodium fluoride, potassium fluoride, or cesium fluoride, and more preferably lithium fluoride or sodium fluoride.
  • the alkali metal oxide is preferably lithium oxide, sodium oxide, potassium oxide or cesium oxide, more preferably lithium oxide or cesium oxide, still more preferably lithium oxide, and these compounds are hydrates. Or an anhydride.
  • the alkali metal hydroxide is preferably lithium hydroxide, sodium hydroxide, potassium hydroxide or cesium hydroxide, more preferably lithium hydroxide or cesium hydroxide. These compounds are hydrates. Or an anhydride.
  • the alkali metal cyanide is preferably lithium cyanide, sodium cyanide, potassium cyanide or cesium cyanide, and these compounds may be hydrates or anhydrides.
  • Examples of the alkali metal salt of phosphoric acid include a trialkali metal phosphate, a dialkali metal phosphate, and a dihydrogen alkali metal salt, preferably a trialkali metal phosphate.
  • the compound may be a hydrate or an anhydrate.
  • Examples of the trialkali metal phosphate include trilithium phosphate, trisodium phosphate, tripotassium phosphate, and tricesium phosphate, preferably trilithium phosphate or tricesium phosphate.
  • Examples of the dialkali metal hydrogen phosphate include dilithium hydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, and dicesium hydrogen phosphate.
  • Examples of the alkali metal dihydrogen phosphate include lithium dihydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, and cesium dihydrogen phosphate.
  • alkali metal salt of carbonic acid examples include alkali metal carbonates and alkali metal hydrogen carbonates, preferably alkali metal carbonates. These compounds may be hydrates or anhydrous. May be.
  • the alkali metal carbonate is preferably lithium carbonate, sodium carbonate, potassium carbonate or cesium carbonate, and more preferably cesium carbonate.
  • the alkali metal hydrogen carbonate is preferably lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate or cesium hydrogen carbonate.
  • alkali metal salts of sulfuric acid examples include alkali metal sulfates and alkali metal hydrogen sulfates, preferably alkali metal sulfates. These compounds may be hydrates or anhydrides. Good.
  • alkali metal sulfate examples include lithium sulfate, sodium sulfate, potassium sulfate, and cesium sulfate, and sodium sulfate or potassium sulfate is preferable.
  • alkali metal hydrogen sulfate examples include lithium hydrogen sulfate, sodium hydrogen sulfate, potassium hydrogen sulfate, and cesium hydrogen sulfate.
  • alkali metal salt of nitric acid examples include lithium nitrate, sodium nitrate, potassium nitrate, and cesium nitrate, preferably sodium nitrate or potassium nitrate. These compounds may be hydrates or hydrates. May be.
  • Examples of the low-molecular compound containing a Group 2 element include a metal complex containing a Group 2 element and an inorganic compound containing a Group 2 element.
  • Examples of inorganic compounds containing Group 2 elements include group 2 element halides, Group 2 element oxides, Group 2 element hydroxides, Group 2 element cyanides, and phosphoric acid Group 2 elements.
  • Examples include Group 2 element salts, Group 2 element salts of carbonic acid, Group 2 element salts of sulfuric acid, and Group 2 element salts of nitric acid.
  • Preferred are elemental halides, Group 2 element oxides, Group 2 element hydroxides, or Group 2 elemental salts of carbonic acid, Group 2 element halides, Group 2 element oxides, or More preferred are group 2 element salts of carbonic acid, and these compounds may be hydrates or anhydrides.
  • the group 2 element halide is preferably a group 2 element fluoride or a group 2 element chloride, more preferably a group 2 element fluoride, and these compounds are hydrates. Or an anhydride.
  • the alkali metal halide is preferably beryllium halide, magnesium halide, calcium halide or barium halide, more preferably calcium halide or barium halide. That is, the group 2 element halide is preferably beryllium fluoride, magnesium fluoride, calcium fluoride, or barium fluoride, and more preferably calcium fluoride or barium fluoride.
  • the oxide of the Group 2 element is preferably beryllium oxide, magnesium oxide, calcium oxide or barium oxide, more preferably calcium oxide or barium oxide. These compounds may be hydrated or anhydrous. Japanese products may be used.
  • the hydroxide of the Group 2 element is preferably beryllium hydroxide, magnesium hydroxide, calcium hydroxide or barium hydroxide, more preferably calcium hydroxide or barium hydroxide. These compounds are hydrated. It may be a product or an anhydride.
  • Group 2 element cyanide examples include magnesium cyanide, calcium cyanide and barium cyanide, and these compounds may be hydrates or anhydrides.
  • Examples of the Group 2 element salt of phosphoric acid include phosphates of Group 2 elements, hydrogen phosphates of Group 2 elements, and dihydrogen phosphates of Group 2 elements, preferably Group 2 elements. Elemental phosphates, and these compounds may be hydrates or anhydrides.
  • the Group 2 element phosphate is preferably calcium phosphate or barium phosphate.
  • Examples of Group 2 element hydrogen phosphates include calcium hydrogen phosphate and barium hydrogen phosphate.
  • Examples of the Group 2 element dihydrogen phosphate include calcium dihydrogen phosphate and barium hydrogen phosphate.
  • Examples of the Group 2 element salt of carbonic acid include carbonates of Group 2 elements and hydrogen carbonates of Group 2 elements, preferably Group 2 element carbonates, and these compounds are hydrated. It may be a product or an anhydride.
  • Examples of the carbonate of the Group 2 element include beryllium carbonate, magnesium carbonate, calcium carbonate, and barium carbonate, and calcium carbonate or barium carbonate is preferable.
  • Examples of the group 2 element hydrogen carbonate include beryllium hydrogen carbonate, magnesium hydrogen carbonate, calcium hydrogen carbonate or barium hydrogen carbonate, and preferably calcium hydrogen carbonate or barium hydrogen carbonate.
  • Group 2 element salts of sulfuric acid include Group 2 element sulfates and Group 2 element hydrogen sulfates, preferably Group 2 element sulfates, and these compounds are hydrates. Or an anhydride.
  • Examples of the Group 2 element sulfate include beryllium sulfate, magnesium sulfate, calcium sulfate, and barium sulfate, and calcium sulfate or barium sulfate is preferable.
  • Examples of the group 2 element hydrogen sulfate include beryllium sulfate, magnesium sulfate, calcium sulfate, and barium sulfate.
  • Group 2 element salt of nitric acid examples include beryllium nitrate, magnesium nitrate, calcium nitrate or barium nitrate, preferably calcium nitrate or barium nitrate. These compounds may be hydrated or anhydrous. Japanese products may be used.
  • the metal complex containing an alkali metal element has at least one organic ligand, and at least selected from the group consisting of an ionic bond, a coordinate bond, and a covalent bond between the organic ligand and the alkali metal atom. It is a metal complex forming one type of bond.
  • a metal complex containing a Group 2 element has at least one organic ligand, and an ionic bond, a coordinate bond, and a covalent bond between the organic ligand and a metal atom of Group 2 of the periodic table.
  • a metal complex forming at least one bond selected from the group consisting of Metal complexes including alkali metal elements and Group 2 elements include halide ions, hydroxide ions, cyanide ions, phosphate ions, carbonate ions, bicarbonate ions, sulfate ions and nitrate ions, respectively.
  • the inorganic ligand may be further included.
  • the metal complex containing an alkali metal element and the metal complex containing a Group 2 element have a plurality of organic ligands, they may be the same or different.
  • the metal complex containing an alkali metal element and the metal complex containing a Group 2 element have a plurality of inorganic ligands, they may be the same or different.
  • Each of the metal complex containing an alkali metal element and the metal complex containing a Group 2 element may be a hydrate or an anhydride.
  • an organic ligand possessed by a metal complex containing an alkali metal element and a metal complex containing a Group 2 element an ionic bond, a coordinate bond, and a covalent bond between an alkali metal atom or a metal atom of Group 2 of the periodic table
  • examples thereof include a neutral or anionic monodentate ligand or a neutral or anionic multidentate ligand that forms at least one type of bond selected from the group consisting of bonds.
  • Examples of the bond between the alkali metal atom or the metal atom of Group 2 of the periodic table and the ligand include a metal-nitrogen bond, a metal-oxygen bond, a metal-phosphorus bond, and a metal-sulfur bond.
  • a metal-nitrogen bond Preferably a metal-nitrogen bond, a metal-oxygen bond or a metal-sulfur bond, more preferably a metal-nitrogen bond or a metal-oxygen bond.
  • the multidentate ligand is usually a bidentate to hexadentate ligand, preferably a bidentate to tetradentate ligand, and more preferably a bidentate ligand.
  • the organic ligand contained in the metal complex containing an alkali metal element and the metal complex containing a Group 2 element is preferably a monodentate or higher and tetradentate or lower ligand, more preferably a monodentate ligand or a bidentate coordination.
  • a bidentate ligand more preferably a bidentate ligand.
  • the metal complex containing an alkali metal element and the metal complex containing a Group 2 element are preferably metal complexes consisting only of organic ligands. That is, it is preferable that the metal complex containing an alkali metal element and the metal complex containing a Group 2 element do not have an inorganic ligand.
  • Examples of organic ligands possessed by a metal complex containing an alkali metal element and a metal complex containing a Group 2 element include nitrogen-containing heterocyclic compounds such as pyridine, bipyridine, quinoline, isoquinoline, phenanthroline and azole; acetic acid and benzoic acid Conjugated bases of organic Bronsted acids such as acid, picolinic acid, hydroxyquinoline, acetylacetone, phenol, thiophenol, and methanol; and heterocyclic macrocycles such as crown ether, cryptant, azacrown ether and phthalocyanine.
  • nitrogen-containing heterocyclic compounds such as pyridine, bipyridine, quinoline, isoquinoline, phenanthroline and azole
  • acetic acid and benzoic acid Conjugated bases of organic Bronsted acids such as acid, picolinic acid, hydroxyquinoline, acetylacetone, phenol, thiophenol, and methanol
  • the metal complex containing an alkali metal element and the metal complex containing a Group 2 element are preferably compounds represented by the formula (S-1) because the luminance lifetime of the light-emitting element of the present invention is more excellent. That is, the metal complex containing an alkali metal element is preferably a compound represented by the formula (S-1), and M ES1 is preferably an alkali metal atom.
  • the metal complex containing a Group 2 element is preferably a compound represented by the formula (S-1), and M ES1 is preferably a Group 2 metal atom.
  • the compound represented by the formula (S-1) may be a hydrate or an anhydrate.
  • M ES1 represents an alkali metal atom or a metal atom of Group 2 of the periodic table.
  • n ES1 is 1.
  • M ES2 is a metal atom of Group 2 of the periodic table
  • n ES1 is 2.
  • X ES1 represents an oxygen atom, a sulfur atom or a group represented by —N (R ES2 ) —.
  • X ES2 represents an oxygen atom, a sulfur atom or a group represented by ⁇ N (R ES3 ). When a plurality of X ES2 are present, they may be the same or different.
  • R ES2 and R ES3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • G ES1 represents a single bond or a divalent group. When a plurality of G ES1 are present, they may be the same or different.
  • An amino group is represented, and these groups may have a substituent.
  • X ES3 represents an oxygen atom, a sulfur atom or a group represented by ⁇ N (R ES3 ). When a plurality of X ES3 are present, they may be the same or different.
  • R ES1 ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group or a substituted amino group, and these groups have a substituent. You may do it.
  • R ES3 represents the same meaning as described above.
  • the dotted line means a solid line. If there is no chemical bond between M ES1 and R ES1 , there is no dotted line. When there are a plurality of dotted lines, they may be the same or different. ]
  • the alkali metal atom represented by M ES1 is preferably a lithium atom, a sodium atom, a potassium atom, or a cesium atom, more preferably a lithium atom, sodium, because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • the metal atom of Group 2 of the periodic table represented by M ES1 is preferably a beryllium atom, a magnesium atom, a calcium atom, or a barium atom because the compound represented by the formula (S-1) can be easily synthesized.
  • M ES1 More preferably a beryllium atom, a calcium atom or a barium atom, and still more preferably a beryllium atom.
  • the metal atom of Group 2 of the periodic table in M ES1 is preferably a beryllium atom, a magnesium atom, a calcium atom, or a barium atom, more preferably a beryllium atom, since the luminance lifetime of the light emitting device of the present invention is more excellent.
  • M ES1 is preferably an alkali metal atom because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • M ES1 is preferably a lithium atom, a sodium atom, a cesium atom, a beryllium atom, because the luminance lifetime of the light emitting device of the present invention is more excellent and the compound represented by the formula (S-1) can be easily synthesized.
  • Calcium atom or barium atom more preferably lithium atom, sodium atom, cesium atom or beryllium atom.
  • X ES1 is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • X ES2 is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • R ES2 and R ES3 are preferably an alkyl group or an aryl group, more preferably an aryl group, and these groups may have a substituent.
  • the substituent that R ES2 and R ES3 may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, or a cycloalkoxy group because the compound represented by the formula (S-1) can be easily synthesized.
  • aryl groups, monovalent heterocyclic groups and substituted amino groups, which are substituents that R ES2 and R ES3 may have include aryl groups represented by R ES1 described below, and 1 This is the same as the examples and preferred ranges of the valent heterocyclic group and substituted amino group.
  • Examples of the divalent group represented by G ES1 include an alkylene group, a cycloalkylene group, an alkenediyl group, a cycloalkenediyl group, an alkynediyl group, a cycloalkynediyl group, an arylene group, a divalent heterocyclic group, and Examples thereof include groups in which 2 to 10 (preferably 2 to 5) of these groups are directly bonded, preferably an alkylene group, an alkenediyl group, an arylene group or a divalent heterocyclic group, more preferably an alkenediyl group. Or it is an arylene group and these groups may have a substituent.
  • the alkylene group represented by G ES1 is a group excluding one hydrogen atom directly bonded to the carbon atom of the aforementioned alkyl group, and is preferably a methylene group which may have a substituent.
  • the cycloalkylene group represented by G ES1 is a group obtained by removing one hydrogen atom directly bonded to the carbon atom of the cycloalkyl group described above.
  • the alkenediyl group represented by G ES1 is a group obtained by removing one hydrogen atom directly bonded to the carbon atom of the alkenyl group, and preferably a vinylidene group or a substituent which may have a substituent. It is a vinylene group which may have.
  • the cycloalkenediyl group represented by G ES1 is a group obtained by removing one hydrogen atom directly bonded to the carbon atom of the aforementioned cycloalkenyl group.
  • the alkynediyl group represented by G ES1 is a group obtained by removing one hydrogen atom directly bonded to the carbon atom of the aforementioned alkynyl group.
  • the cycloalkynediyl group represented by G ES1 is a group obtained by removing one hydrogen atom directly bonded to the carbon atom of the aforementioned cycloalkynyl group.
  • G ES1 is preferably a single bond, alkenediyl group or arylene group, more preferably a single bond, vinylene group or phenylene group, still more preferably a single bond or phenylene group, and particularly preferably a single bond. It is a bond.
  • Examples and preferred ranges of substituents that G ES1 may have are the same as examples and preferred ranges of substituents that R ES2 and R ES3 may have.
  • Examples and preferred ranges of the aryl group and substituted amino group represented by R ES1 include examples of the aryl group and substituted amino group, which are the substituents that the ring L 1 and ring L 2 may have, respectively. It is the same as a preferable range.
  • Examples of the monovalent heterocyclic group in R ES1 include examples of the monovalent heterocyclic group which is a substituent that the ring R 1C , ring R 2C , ring R 3C and ring R 4C may have. The same.
  • the monovalent heterocyclic group represented by R ES1 is preferably a benzodiazole ring, a benzotriazole ring, a benzooxadiazole ring, a benzothiadiazole ring, a pyridine because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • X ES3 is preferably an oxygen atom or a group represented by ⁇ N (R ES3 ), more preferably a group represented by ⁇ N (R ES3 ).
  • R ES1 ′ is a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R ES1 and R ES1 ′ may have are the same as examples and preferred ranges of substituents that R ES2 and R ES3 may have.
  • Examples of the metal complex containing an alkali metal element and the metal complex containing a Group 2 element include compounds represented by the following formulas, and these compounds may be hydrates or anhydrides. Also good.
  • M S1 represents an alkali metal atom.
  • M S2 represents a metal atom of Group 2 of the periodic table.
  • X S1 represents an oxygen atom or a sulfur atom. When a plurality of X S1 are present, they may be the same or different. ]
  • M S1 is preferably a lithium atom, a sodium atom, a potassium atom or a cesium atom, more preferably a lithium atom.
  • M S2 is a beryllium atom, a magnesium atom, a calcium atom or a barium atom, preferably a beryllium atom.
  • X S1 is preferably an oxygen atom.
  • the light-emitting element of the present invention has a higher luminance life, and therefore a polymer containing a structural unit represented by the formula (ET-1) Compounds are preferred. That is, the polymer compound containing an alkali metal element is a polymer compound containing a structural unit represented by the formula (ET-1), and M E1 in the formula (ET-1) is an alkali metal cation. It is preferable.
  • the polymer compound containing a Group 2 element is a polymer compound containing a structural unit represented by the formula (ET-1), and M E1 in the formula (ET-1) is 2 It is preferably a group metal cation.
  • nE1 represents an integer of 1 or more.
  • Ar E1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent other than R E1 .
  • R E1 represents a group represented by the formula (ES-1). When a plurality of R E1 are present, they may be the same or different. ]
  • nE3 represents an integer of 0 or more
  • aE1 represents an integer of 1 or more
  • bE1 represents an integer of 0 or more
  • mE1 represents an integer of 1 or more.
  • nE3, aE1, and bE1 may be the same or different.
  • mE1 is 1 when R E3 is a single bond.
  • aE1 and bE1 are selected so that the charge of the group represented by the formula (ES-1) becomes zero.
  • R E3 represents a single bond, a hydrocarbon group, a heterocyclic group or O—R E3 ′ (R E3 ′ represents a hydrocarbon group or a heterocyclic group), and these groups have a substituent.
  • Q E1 represents an alkylene group, a cycloalkylene group, an arylene group, an oxygen atom or a sulfur atom, and these groups optionally have a substituent. When a plurality of Q E1 are present, they may be the same or different.
  • Y E1 represents CO 2 ⁇ , SO 3 ⁇ , SO 2 — or PO 3 2 ⁇ . When a plurality of Y E1 are present, they may be the same or different.
  • M E1 represents an alkali metal cation or a metal cation of Group 2 of the periodic table. When a plurality of M E1 are present, they may be the same or different.
  • Z E1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R E4 ) 4 ⁇ , R E4 SO 3 ⁇ , R E4 COO ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ . , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ .
  • R E4 represents an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent. When a plurality of Z E1 are present, they may be the same or different. ]
  • NE1 is usually an integer of 1 to 10, preferably an integer of 1 to 4, and more preferably 1 or 2.
  • Examples of the aromatic hydrocarbon group represented by Ar E1 include a group obtained by removing nE1 hydrogen atoms from the aforementioned arylene group, and include a phenylene group, a naphthalenediyl group, a fluorenediyl group, or a phenanthrene diyl group.
  • a group in which nE1 hydrogen atoms directly bonded to atoms constituting the ring are removed is preferable, and a group in which nE1 hydrogen atoms directly bonded to atoms in the ring are removed from the fluorenediyl group is more preferable.
  • the group may have a substituent other than R E1 .
  • Examples of the heterocyclic group represented by Ar E1 include a group obtained by removing nE1 hydrogen atoms from the aforementioned divalent heterocyclic group, and are directly bonded to the atoms constituting the ring from the carbazolediyl group.
  • a group excluding nE1 hydrogen atoms is preferable, and may have a substituent other than R E1 .
  • Ar E1 is preferably an aromatic hydrocarbon group which may have a substituent other than R E1 .
  • Examples of the substituent other than R E1 that Ar E1 may have include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, and an aryloxy group.
  • Groups amino groups, substituted amino groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, cycloalkynyl groups, carboxyl groups, and groups represented by the formula (ES-3), preferably alkyl groups, cycloalkyl groups An aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, or a group represented by the formula (ES-3), more preferably an alkyl group or an aryl group, These groups may further have a substituent.
  • n ′, m ′ and nx each independently represents an integer of 1 or more.
  • nE3 is usually an integer of 0 to 10, and is preferably an integer of 0 to 8, more preferably, since it facilitates the synthesis of a polymer compound containing a structural unit represented by the formula (ET-1). It is an integer from 0 to 2.
  • aE1 is usually an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably 1 or 2.
  • bE1 is generally an integer of 0 to 10, preferably an integer of 0 to 4, more preferably 0 or 1.
  • mE1 is usually an integer of 1 to 5, and is preferably 1 or 2, and more preferably 1, since it facilitates the synthesis of a polymer compound containing a structural unit represented by the formula (ET-1). is there.
  • R E3 is —O—R E3 ′
  • the group represented by the formula (ES-1) is a group represented by the following formula. -O-R E3 '- ⁇ (Q E1 ) nE3 -Y E1 (M E1 ) aE1 (Z E1 ) bE1 ⁇ mE1
  • the number of carbon atoms of the hydrocarbon group does not include the number of carbon atoms of the substituent, and is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 6.
  • the hydrocarbon group may be an aliphatic hydrocarbon group which may have a substituent or an aromatic hydrocarbon group which may have a substituent.
  • the hydrocarbon group represented by R E3 is an aromatic hydrocarbon group which may have a substituent since the polymer compound containing the structural unit represented by the formula (ET-1) has excellent electron transport properties.
  • the hydrocarbon group represented by R E3 ′ facilitates the synthesis of a polymer compound containing the structural unit represented by the formula (ET-1), the aliphatic hydrocarbon which may have a substituent It is preferably a group.
  • the aliphatic hydrocarbon group includes, for example, a group excluding m1 hydrogen atom directly bonded to the carbon atom of the alkyl group, and this group has a substituent. You may have.
  • the aromatic hydrocarbon group includes, for example, a group excluding mE1 hydrogen atom directly bonded to the carbon atom of the aryl group, preferably a phenyl group These are groups obtained by removing one hydrogen atom mE directly bonded to a carbon atom, and these groups may have a substituent.
  • the number of carbon atoms of the heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 3 to 15, excluding the number of carbon atoms of the substituent. is there.
  • the heterocyclic group is preferably an aromatic heterocyclic group because it facilitates the synthesis of a polymer compound containing the structural unit represented by the formula (ET-1).
  • examples of the heterocyclic group include groups obtained by removing one hydrogen atom mE directly bonded to the above-mentioned monovalent heterocyclic group atom.
  • R E3 is preferably a hydrocarbon group or a heterocyclic group, more preferably an aromatic hydrocarbon group or an aromatic heterocyclic group, and even more preferably an aromatic group because the luminance lifetime of the light emitting device of the present invention is more excellent. Group, and these groups may have a substituent.
  • R E3 ′ is preferably a hydrocarbon group, more preferably an aliphatic hydrocarbon group, and these groups may have a substituent.
  • substituent that R E3 and R E3 ′ may have, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, and a group represented by the formula (ES-3) are preferable.
  • the group represented by (ES-3) is more preferable, and these groups may further have a substituent.
  • Q E1 is preferably an alkylene group, an arylene group or an oxygen atom, more preferably an alkylene group or an oxygen atom.
  • Examples and preferred ranges of the alkylene group and cycloalkylene group in Q E1 are the same as the examples and preferred ranges of the alkylene group and cycloalkylene group in G ES1 described above, respectively.
  • Y E1 is preferably CO 2 ⁇ , SO 2 ⁇ or PO 3 2 ⁇ , more preferably CO 2 ⁇ .
  • Examples of the alkali metal cation represented by M E1 include Li + , Na + , K + , Rb + and Cs + , Li + , Na + , K + or Cs + are preferred, and Li + , Na + or Cs +, more preferably, Cs + is more preferable.
  • Examples of the metal cations of Group 2 of the periodic table represented by M E1 include Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ , and preferably, Be 2+ and Mg 2. + , Ca 2+ or Ba 2+ , more preferably Ca 2+ or Ba 2+ .
  • M E1 is an alkali metal cation since the luminance lifetime of the light emitting device of the present invention is more excellent.
  • Z E1 is preferably F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R E4 ) 4 ⁇ , R E4 SO 3 ⁇ , R E4 COO ⁇ or NO 3 ⁇ , and F ⁇ , Cl ⁇ . , Br -, I -, OH -, R E4 SO 3 - or R E4 COO - are preferred.
  • R E4 is preferably an alkyl group.
  • Examples of the group represented by the formula (ES-1) include a group represented by the following formula.
  • M + represents Li + , Na + , K + , or Cs + .
  • M + represents Li + , Na + , K + , or Cs + .
  • Examples of the structural unit represented by the formula (ET-1) include structural units represented by the following formula.
  • the structural unit represented by the formula (Y) and the formula (X) It is preferable to include at least one structural unit selected from the group consisting of the structural units represented, and it is more preferable to include a structural unit represented by the formula (Y).
  • Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these This group may have a substituent.
  • the arylene group represented by Ar Y1 is more preferably a formula (A-1), a formula (A-2), a formula (A-6)-(A-10), a formula (A-19) or a formula (A A-20), more preferably a group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19) These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is more preferably a formula (AA-1)-(AA-4), a formula (AA-10)-(AA-15), a formula (AA-18) -(AA-21), a group represented by formula (AA-33) or formula (AA-34), more preferably formula (AA-4), formula (AA-10), formula (AA- 12) a group represented by formula (AA-14) or formula (AA-33), and these groups optionally have a substituent.
  • the ranges are the same as the more preferable ranges and further preferable ranges of the arylene group and divalent heterocyclic group represented by Ar Y1 described above.
  • divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded examples include groups represented by the following formulas, which have a substituent. You may do it.
  • R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R XX is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may further have a substituent.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-1)-(Y-10). From the viewpoint of the luminance life of the light emitting element, the structural unit is preferably It is a structural unit represented by (Y-1)-(Y-3), and from the viewpoint of electron transport properties, it is preferably a structural unit represented by the formula (Y-4)-(Y-7) From the viewpoint of hole transportability, a structural unit represented by the formula (Y-8)-(Y-10) is preferable.
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • the structural unit represented by the formula (Y-1) is preferably a structural unit represented by the formula (Y-1 ′).
  • R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y11 may be the same or different.
  • R Y11 is preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups optionally have a substituent.
  • R Y1 represents the same meaning as described above.
  • X Y1 is, -C (R Y2) 2 -
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. You may do it.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) 2 — is preferably both an alkyl group, both an aryl group, both a monovalent heterocyclic group, or , One is an alkyl group and the other is an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • Two R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R Y2 forms a ring
  • the group represented by —C (R Y2 ) 2 — Is preferably a group represented by the formula (Y-A1)-(Y-A5), more preferably a group represented by the formula (Y-A4), and these groups have a substituent. It may be.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) ⁇ C (R Y2 ) — is preferably such that both are alkyl groups or cycloalkyl groups, or one is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
  • R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded. When R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 —
  • the group represented is preferably a group represented by the formula (Y-B1)-(Y-B5), more preferably a group represented by the formula (Y-B3), and these groups are substituted. It may have a group.
  • R Y2 represents the same meaning as described above.
  • the structural unit represented by the formula (Y-2) is preferably a structural unit represented by the formula (Y-2 ′).
  • the structural unit represented by the formula (Y-3) is preferably a structural unit represented by the formula (Y-3 ′).
  • R Y1 represents the same meaning as described above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • the structural unit represented by the formula (Y-4) is preferably a structural unit represented by the formula (Y-4 ′), and the structural unit represented by the formula (Y-6) is represented by the formula (Y -6 ′) is preferred.
  • R Y1 represents the same meaning as described above.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • Examples of the structural unit represented by the formula (Y) include a structural unit composed of an arylene group represented by the formula (Y-101) -formula (Y-121), a formula (Y-201) -formula (Y- 206), a structural unit composed of a divalent heterocyclic group represented by formula (Y-300) -at least one arylene group represented by formula (Y-304) and at least one divalent heterocyclic ring Examples thereof include a structural unit composed of a divalent group directly bonded to a group.
  • the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, has a higher luminance lifetime of the light-emitting element, and thus includes a structural unit represented by the formula (ET-1).
  • the amount is preferably 0.5 to 80 mol%, more preferably 30 to 60 mol%, based on the total amount of structural units contained in the molecular compound.
  • a structural unit represented by the formula (Y), wherein Ar Y1 is a divalent heterocyclic group, or at least one arylene group and at least one divalent heterocyclic group are directly bonded.
  • the structural unit that is a group of is preferably 0.5% relative to the total amount of the structural units contained in the polymer compound including the structural unit represented by the formula (ET-1), because the charge transport property of the light-emitting element is excellent. -30 mol%, more preferably 3-20 mol%.
  • the structural unit represented by the formula (Y) may be included in the polymer compound including the structural unit represented by the formula (ET-1), or may be included in two or more types. Good.
  • a X1 and a X2 each independently represent an integer of 0 or more.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded. And these groups may have a substituent.
  • Ar X2 and Ar X4 When there are a plurality of Ar X2 and Ar X4 , they may be the same or different.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of R X2 and R X3 , they may be the same or different. ]
  • a X1 is preferably 2 or less, more preferably 1, because the luminance life of the light emitting device is more excellent.
  • a X2 is preferably 2 or less, more preferably 0, because the luminance life of the light emitting device is more excellent.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. Also good.
  • the arylene group represented by Ar X1 and Ar X3 is more preferably a group represented by the formula (A-1) or the formula (A-9), and more preferably a formula (A-1). These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar X1 and Ar X3 is more preferably represented by the formula (AA-1), the formula (AA-2), or the formula (AA-7)-(AA-26). These groups may have a substituent.
  • Ar X1 and Ar X3 are preferably an arylene group which may have a substituent.
  • the arylene group represented by Ar X2 and Ar X4 more preferably, the formula (A-1), the formula (A-6), the formula (A-7), the formula (A-9)-(A-11) Or it is group represented by a formula (A-19), and these groups may have a substituent.
  • the more preferable range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the more preferable range of the divalent heterocyclic group represented by Ar X1 and Ar X3 . More preferable range of the arylene group and the divalent heterocyclic group in the divalent group in which at least one kind of arylene group represented by Ar X2 and Ar X4 and at least one kind of divalent heterocyclic group are directly bonded.
  • arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 are the same as the more preferable ranges and further preferable ranges of the arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 , respectively.
  • the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded is at least represented by Ar Y1 in the formula (Y). Examples thereof include the same divalent groups in which one kind of arylene group and at least one kind of divalent heterocyclic group are directly bonded.
  • Ar X2 and Ar X4 are preferably an arylene group which may have a substituent.
  • the substituent which the groups represented by Ar X1 to Ar X4 and R X1 to R X3 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups further have a substituent. You may do it.
  • the structural unit represented by the formula (X) is preferably a structural unit represented by the formula (X-1)-(X-7), more preferably the formula (X-1)-(X-6) And more preferably a structural unit represented by the formula (X-3)-(X-6).
  • R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group or cyano. Represents a group, and these groups may have a substituent.
  • a plurality of R X4 may be the same or different.
  • a plurality of R X5 may be the same or different, and adjacent R X5 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the structural unit represented by the formula (X) Since the structural unit represented by the formula (X) has a higher luminance lifetime of the light emitting element, the structural unit is represented by the total amount of the structural units contained in the polymer compound including the structural unit represented by the formula (ET-1).
  • the content is preferably 0.1 to 50 mol%, more preferably 1 to 40 mol%, and still more preferably 5 to 30 mol%.
  • Examples of the structural unit represented by the formula (X) include structural units represented by the formula (X1-1) -formula (X1-11), preferably the formula (X1-3) -formula (X1 -10).
  • the structural unit represented by the formula (X) may be included in the polymer compound including the structural unit represented by the formula (ET-1), or may be included in two or more types. .
  • Examples of the polymer compound containing the structural unit represented by the formula (ET-1) include polymer compounds P-1 to P-14.
  • the “other” structural unit means a structural unit other than the structural units represented by Formula (ET-1), Formula (X), and Formula (Y).
  • p ′, q ′, r ′, s ′, t ′ and u ′ represent the molar ratio of each constituent unit.
  • p ′ + q ′ + r ′ + s ′ + t ′ + u ′ 100 and 100 ⁇ p ′ + q ′ + r ′ + s ′ + t ′ ⁇ 70.
  • Examples of the polymer compound containing the structural unit represented by the formula (ET-1) include, for example, JP2009-239279A, JP2012-033845A, JP2012-216281A, and JP2012-216822A. Can be synthesized according to the method described in JP-A-2012-216815.
  • the second layer of the light emitting device of the present invention Since the second layer of the light emitting device of the present invention has a higher luminance life, it is preferably a layer containing at least one selected from the group consisting of a compound containing an alkali metal element and a compound containing a Group 2 element. And more preferably a layer containing a compound containing an alkali metal element.
  • the compound containing an alkali metal element is more excellent in the luminance life of the light-emitting element of the present invention. Therefore, a metal complex containing an alkali metal element, an inorganic compound containing an alkali metal element, or a polymer containing an alkali metal element A compound is preferred.
  • the compound containing an alkali metal element is preferably a polymer compound containing an alkali metal element because the light-emitting element of the present invention can be produced by a coating method.
  • the compound containing a Group 2 element is superior in the luminance life of the light emitting device of the present invention, so that the metal complex containing the Group 2 element, the inorganic compound containing the Group 2 element, or the Group 2 element is used. It is preferable that it is a high molecular compound containing.
  • the compound containing a Group 2 element is preferably a polymer compound containing a Group 2 element because the light-emitting element of the present invention can be produced by a coating method.
  • the second layer is composed of a simple substance consisting of only an alkali metal element, a simple substance consisting of only a Group 2 element, a compound containing an alkali metal element, and a Group 2 element.
  • a layer containing at least one selected from the group consisting of compounds containing the compound represented by formula (H-1) (hereinafter referred to as “second layer”) is preferable.
  • the second ′ layer is preferably at least one selected from the group consisting of a compound containing an alkali metal element and a compound containing a Group 2 element, and a formula ( A layer containing a compound represented by H-1), more preferably a layer containing a compound containing an alkali metal element and a compound represented by formula (H-1).
  • the compound containing an alkali metal element is more excellent in the luminance life of the light emitting device of the present invention, so that a metal complex containing an alkali metal element, an inorganic compound containing an alkali metal element, or a high compound containing an alkali metal element is used.
  • a molecular compound is preferable, and a metal complex containing an alkali metal element is more preferable.
  • the compound containing a Group 2 element is more excellent in the luminance life of the light-emitting device of the present invention. Therefore, the metal complex containing the Group 2 element, the inorganic compound containing the Group 2 element, or the Group 2 A polymer compound containing an element is preferable, and a metal complex containing an alkali metal element is more preferable.
  • the second ′ layer may contain one type of compound represented by the formula (H-1), or may contain two or more types.
  • the content of the compound represented by the formula (H-1) is as follows: a simple substance consisting only of an alkali metal element, a simple substance consisting only of a Group 2 element, a compound containing an alkali metal element, and
  • a simple substance consisting only of an alkali metal element a simple substance consisting only of a Group 2 element, a compound containing an alkali metal element
  • the total of the compound containing the group 2 element and the compound represented by the formula (H-1) is 100 parts by mass, it is usually 1 to 99 parts by mass, preferably 10 to 95 parts by mass, More preferred is 50 to 90 parts by mass.
  • n H1 and n H2 each independently represent 0 or 1. When a plurality of n H1 are present, they may be the same or different. A plurality of n H2 may be the same or different. n H3 represents an integer of 0 or more.
  • L H1 represents an arylene group, a divalent heterocyclic group, or a group represented by — [C (R H11 ) 2 ] n H11 —, and these groups optionally have a substituent. When a plurality of L H1 are present, they may be the same or different.
  • n H11 represents an integer of 1 to 10.
  • R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • L H2 represents a group represented by —N (—L H21 —R H21 ) —. When a plurality of L H2 are present, they may be the same or different.
  • L H21 represents a single bond, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • R H21 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • Ar H1 and Ar H2 are phenyl group, fluorenyl group, spirobifluorenyl group, pyridyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, thienyl group, benzothienyl group, dibenzothienyl group, furyl group, benzofuryl Group, dibenzofuryl group, pyrrolyl group, indolyl group, azaindolyl group, carbazolyl group, azacarbazolyl group, diazacarbazolyl group, phenoxazinyl group or phenothiazinyl group, phenyl group, pyridyl group, pyrimidinyl group, triazinyl Group, dibenzothienyl group, dibenzofuryl group, carbazolyl group, azacarbazolyl group or diazacarbazolyl group, more preferably an
  • Ar H1 and Ar H2 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable.
  • An alkyl group, an alkoxy group or a cycloalkoxy group is more preferable, an alkyl group or a cycloalkyl group is further preferable, and these groups may further have a substituent.
  • n H1 is preferably 1.
  • n H2 is preferably 0.
  • n H3 is generally an integer of 0 or more and 10 or less, preferably an integer of 0 or more and 5 or less, more preferably an integer of 1 or more and 3 or less, and particularly preferably 1.
  • n H11 is preferably an integer of 1 or more and 5 or less, more preferably an integer of 1 or more and 3 or less, and even more preferably 1.
  • R H11 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and a hydrogen atom or an alkyl group. It is more preferable that these groups may have a substituent.
  • L H1 is preferably an arylene group or a divalent heterocyclic group, more preferably a divalent heterocyclic group, and these groups may have a substituent.
  • the arylene group in L H1 is preferably a group represented by the formula (A-1) to the formula (A-3) or the formula (A-8) to the formula (A-10), more preferably the formula (A A group represented by formula (A-1), formula (A-2), formula (A-8) or formula (A-9), more preferably in formula (A-1) or formula (A-2) It is a group represented.
  • the divalent heterocyclic group in L H1 is preferably a group represented by the formula (AA-1) to the formula (AA-6), the formula (AA-10) to the formula (AA-21), or the formula (AA-24) to the formula And more preferably a group represented by formula (AA-1) to formula (AA-4), formula (AA-10) to formula (AA-15) or formula (AA-29).
  • L H1 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable, and an alkyl group, an alkoxy group, an aryl group A group or a monovalent heterocyclic group is more preferred, an alkyl group, an aryl group or a monovalent heterocyclic group is more preferred, an alkyl group is particularly preferred, and these groups may further have a substituent.
  • L H21 is preferably a single bond or an arylene group, more preferably a single bond, and this arylene group may have a substituent.
  • the definition and examples of the arylene group or divalent heterocyclic group represented by L H21 are the same as the definitions and examples of the arylene group or divalent heterocyclic group represented by L H1 .
  • R H21 is preferably an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • aryl group and monovalent heterocyclic group represented by R H21 are the same as those of the aryl group and monovalent heterocyclic group represented by Ar H1 and Ar H2 .
  • the compound represented by the formula (H-1) is preferably a compound represented by the formula (H-2).
  • Examples of the compound represented by formula (H-1) include compounds represented by formula (H-101) to formula (H-121).
  • the second layer is At least one selected from the group consisting of simple substances consisting only of alkali metal elements, simple substances consisting only of group 2 elements, compounds containing alkali metal elements, and compounds containing group 2 elements; A compound represented by formula (H-1), a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, and at least one material selected from the group consisting of antioxidants. It may be a layer containing a composition (hereinafter also referred to as “second composition”).
  • the hole transport material, the hole injection material, the electron transport material, the electron injection material, and the light emitting material are each composed of a simple substance composed of only an alkali metal element, a simple substance composed of only a group 2 element, an alkali metal It is different from a compound containing an element, a compound containing a Group 2 element, and a compound represented by Formula (H-1).
  • Examples and preferred ranges of the hole transport material, electron transport material, hole injection material, electron injection material and light-emitting material contained in the second composition are the hole transport material contained in the first composition, The examples and preferred ranges of the electron transport material, hole injection material, electron injection material, and light emitting material are the same.
  • the compounding amounts of the hole transport material, the electron transport material, the hole injection material, the electron injection material, and the light emitting material are each a simple substance composed only of an alkali metal element, and a simple substance composed only of a group 2 element.
  • the total of the compound containing an alkali metal element and the compound containing a Group 2 element is 100 parts by mass, it is usually 1 to 10000 parts by mass, preferably 10 to 1000 parts by mass, more preferably 100 to 500 parts by mass.
  • the blending amount of the antioxidant is the sum of the simple substance consisting only of the alkali metal element, the simple substance consisting only of the Group 2 element, the compound containing the alkali metal element, and the compound containing the Group 2 element. Is usually 0.001 to 10 parts by mass.
  • At least one material selected from the group consisting of a simple substance consisting only of an alkali metal element, a simple substance consisting only of a Group 2 element, a compound containing an alkali metal element, and a compound containing a Group 2 element is, for example, a solvent. It can be dissolved and used.
  • a composition containing this material and a solvent (hereinafter also referred to as “second ink”) can be suitably used in the coating method described in the section of the first ink.
  • the preferable range of the viscosity of the second ink is the same as the preferable range of the viscosity of the first ink.
  • the solvent contained in the second ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent since the second layer can be laminated on the lower layer (for example, the first layer) by utilizing the difference in solubility, water, alcohol, ether, ester, nitrile compound, nitro compound, fluorinated alcohol , Thiol, sulfide, sulfoxide, thioketone, amide and carboxylic acid are preferred.
  • Examples of the solvent include methanol, ethanol, 2-propanol, 1-butanol, tert-butyl alcohol, acetonitrile, 1,2-ethanediol, N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, nitromethane, propylene carbonate, Examples thereof include pyridine, carbon disulfide, and a mixed solvent of these solvents.
  • a mixed solvent one or more solvents selected from water, alcohols, ethers, esters, nitrile compounds, nitro compounds, fluorinated alcohols, thiols, sulfides, sulfoxides, thioketones, amides, carboxylic acids, and the like, and chlorinated solvents Further, it may be a mixed solvent with one or more of an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, and a ketone solvent.
  • the blending amount of the solvent is 100 masses of the total of the simple substance consisting only of the alkali metal element, the simple substance consisting only of the Group 2 element, the compound containing the alkali metal element, and the compound containing the Group 2 element.
  • the amount is usually 1000 to 100,000 parts by mass, preferably 2000 to 20000 parts by mass.
  • the third layer of the light-emitting element of the present invention is a layer containing at least one selected from the group consisting of a compound containing an alkali metal element and a single group consisting of only a Group 2 element because the luminance life is more excellent. It is preferable.
  • the compound containing an alkali metal element is more excellent in the luminance life of the light-emitting element of the present invention.
  • a metal complex containing an alkali metal element, an inorganic compound containing an alkali metal element, or a polymer containing an alkali metal element It is preferably a compound, more preferably a metal complex containing an alkali metal element or an inorganic compound containing an alkali metal element, and more preferably an inorganic compound containing an alkali metal element.
  • the compound containing a Group 2 element is more excellent in the luminance life of the light emitting device of the present invention, so that the metal complex containing the Group 2 element, the inorganic compound containing the Group 2 element, or the Group 2 element is used.
  • it is a high molecular compound containing, a metal complex containing a Group 2 element or an inorganic compound containing a Group 2 element is more preferable, and an inorganic compound containing a Group 2 element is still more preferable.
  • the third layer is At least one selected from the group consisting of simple substances consisting only of alkali metal elements, simple substances consisting only of group 2 elements, compounds containing alkali metal elements, and compounds containing group 2 elements; A compound represented by formula (H-1), a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, and at least one material selected from the group consisting of antioxidants.
  • a layer containing a composition (hereinafter, also referred to as “third composition”) may be used.
  • the hole transport material, the hole injection material, the electron transport material, the electron injection material, and the light emitting material are each composed of a simple substance consisting of only an alkali metal element, a simple substance consisting of only a group 2 element, an alkali metal It is different from a compound containing an element, a compound containing a Group 2 element, and a compound represented by Formula (H-1).
  • Examples and preferred ranges of the hole transport material, the electron transport material, the hole injection material, the electron injection material, and the light emitting material contained in the third composition are the hole transport material contained in the first composition, The examples and preferred ranges of the electron transport material, hole injection material, electron injection material, and light emitting material are the same.
  • the compounding amounts of the hole transport material, the electron transport material, the hole injection material, the electron injection material, and the light emitting material are each composed of a simple substance consisting of only an alkali metal element and a simple substance consisting of only a group 2 element.
  • the total of the compound containing an alkali metal element and the compound containing a Group 2 element is 100 parts by mass, it is usually 1 to 10000 parts by mass, preferably 10 to 1000 parts by mass, more preferably 100 to 500 parts by mass.
  • antioxidants contained in the third composition are the same as examples and preferred ranges of antioxidants contained in the first composition.
  • the blending amount of the antioxidant is the sum of the simple substance consisting only of the alkali metal element, the simple substance consisting only of the Group 2 element, the compound containing the alkali metal element, and the compound containing the Group 2 element. Is usually 0.001 to 10 parts by mass.
  • the third layer contains a simple substance consisting only of an alkali metal element, a simple substance consisting of only a Group 2 element, a compound containing an alkali metal element, and a Group 2 element.
  • the layer is composed of only one or two or more kinds selected from the group consisting of the compound containing the compound, and one or two kinds selected from the group consisting of the compound containing the alkali metal element and the simple substance consisting only of the Group 2 element. More preferably, the layer is composed of only the above.
  • the simple substance consisting only of the alkali metal element, the simple substance consisting only of the Group 2 element, the compound containing the alkali metal element, and the Group 2 element It is preferably a layer consisting of only one or more and five or less selected from the group consisting of compounds containing, a simple substance consisting only of an alkali metal element, a simple substance consisting only of a Group 2 element, a compound containing an alkali metal element, and
  • the layer is composed of one or more and three or less selected from the group consisting of compounds containing Group 2 elements, and is composed of only simple elements consisting of only alkali metal elements, simple elements consisting of only Group 2 elements, and alkali metal elements. More preferably, the layer is composed of only one kind selected from the group consisting of a compound containing, and a compound containing a Group 2 element.
  • At least one material selected from the group consisting of a simple substance consisting only of an alkali metal element, a simple substance consisting only of a Group 2 element, a compound containing an alkali metal element, and a compound containing a Group 2 element is, for example, a solvent. It can be dissolved and used.
  • a composition containing this material and a solvent (hereinafter also referred to as “third ink”) can be suitably used in the coating method described in the section of the first ink.
  • the preferable range of the viscosity of the third ink is the same as the preferable range of the viscosity of the first ink.
  • Examples and preferred ranges of the solvent contained in the third ink are the same as examples and preferred ranges of the solvent contained in the first ink or the second ink.
  • the blending amount of the solvent is 100 masses of the total of the simple substance consisting only of the alkali metal element, the simple substance consisting only of the Group 2 element, the compound containing the alkali metal element, and the compound containing the Group 2 element.
  • the amount is usually 1000 to 100,000 parts by mass, preferably 2000 to 20000 parts by mass.
  • the light-emitting element of the present invention includes an anode, a cathode, a first layer provided between the anode and the cathode, a second layer provided between the first layer and the cathode, and a second layer. And a third layer provided in contact with the cathode between the cathode and the cathode.
  • each of the second layer and the third layer is one layer.
  • the first layer may be provided in two or more layers. However, since the production of the light emitting device of the present invention is facilitated, the first layer is preferably one layer.
  • the light emitting element of the present invention may have a layer other than the anode, the cathode, the first layer, the second layer, and the third layer.
  • the first layer is usually a light emitting layer (hereinafter referred to as “first light emitting layer”).
  • the second layer is preferably a light emitting layer (a light emitting layer separate from the first light emitting layer, hereinafter referred to as “second light emitting layer”), an electron transport layer.
  • it is an electron injection layer, More preferably, it is an electron carrying layer or an electron injection layer, More preferably, it is an electron carrying layer.
  • the third layer is preferably an electron transport layer or an electron injection layer, more preferably an electron injection layer.
  • the first layer is a light emitting layer
  • the second layer is an electron transport layer
  • the third layer is an electron injection layer.
  • the first layer and the second layer are preferably adjacent to each other because the luminance life of the light-emitting element of the present invention is more excellent.
  • the second layer and the third layer are preferably adjacent to each other because the luminance life of the light-emitting element of the present invention is more excellent.
  • the first layer, the second layer, and the third layer are preferably adjacent to each other because the luminance life of the light-emitting element of the present invention is further improved.
  • the second layer is preferably an electron transport layer or an electron injection layer provided between the cathode and the first layer because the luminance life of the light emitting device of the present invention is more excellent. More preferably, it is an electron transport layer provided between the cathode and the first layer.
  • the third layer is an electron injection layer provided adjacent to the cathode and the second layer between the cathode and the second layer because the luminance life of the light emitting device of the present invention is more excellent. preferable.
  • the light emitting device of the present invention has a higher luminance life, it is preferable to further include at least one of a hole injection layer and a hole transport layer between the anode and the first layer. It is more preferable to further include both an injection layer and a hole transport layer.
  • the luminance life of the light emitting device of the present invention is more excellent, so the anode and the hole injection layer are adjacent to each other. Is preferred.
  • the luminance life of the light emitting device of the present invention is more excellent, so the first layer and the hole transport layer are adjacent to each other.
  • the luminance life of the light emitting device of the present invention is more excellent. It is preferably a layer provided between the hole transport layer, more preferably a layer provided adjacent to the anode or the hole transport layer between the anode and the hole transport layer, More preferably, it is a layer provided adjacent to the anode and the hole transport layer between the anode and the hole transport layer.
  • the light emitting element of the present invention preferably has a second light emitting layer because the light emission color can be adjusted.
  • the luminance life is more excellent. Therefore, the first light emitting layer and the second light emitting layer are preferably adjacent to each other.
  • the second light emitting layer is preferably a layer provided between the anode and the first layer. More preferably, it is a layer provided adjacent to the first layer between the first layers.
  • the luminance life is more excellent. It is preferable to further include at least one of a hole injection layer and a hole transport layer, and more preferably to further include both a hole injection layer and a hole transport layer. In the case where the light-emitting element of the present invention has the second light-emitting layer, and the second light-emitting layer is a layer provided between the anode and the first layer, the luminance life is more excellent.
  • the light-emitting element of the present invention has a second light-emitting layer, the second light-emitting layer is a layer provided between the anode and the first layer, and between the anode and the second light-emitting layer.
  • the hole injection layer is preferably a layer provided adjacent to the anode or the second light emitting layer, and provided adjacent to the anode. A layer is preferred.
  • the light-emitting element of the present invention has a second light-emitting layer, the second light-emitting layer is a layer provided between the anode and the first layer, and between the anode and the second light-emitting layer.
  • the hole transport layer is preferably a layer provided adjacent to the anode or the second light-emitting layer, and adjacent to the second light-emitting layer. It is preferable that the layer is provided.
  • the light-emitting element of the present invention has a second light-emitting layer, the second light-emitting layer is a layer provided between the anode and the first layer, and between the anode and the second light-emitting layer.
  • the hole injection layer is preferably a layer provided between the anode and the hole transport layer. More preferably, it is a layer provided adjacent to the anode or the hole transport layer between the transport layer, and provided adjacent to the anode and the hole transport layer between the anode and the hole transport layer. More preferably, it is a layer formed.
  • Examples of the layer structure of the light emitting device of the present invention include the layer structures represented by (D1) to (D9), and the layer structures represented by (D3) to (D6) are preferable.
  • the light-emitting element of the present invention usually has a substrate, but may be laminated from the anode on the substrate, or may be laminated from the cathode on the substrate.
  • first light emitting layer (first layer) / electron transport layer (second layer) / electron injection layer (third layer) refers to the first light emitting layer (first layer).
  • Layer), an electron transport layer (second layer), and an electron injection layer (third layer) are adjacently laminated.
  • the anode, the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, and the cathode may each be provided in two or more layers as necessary. Since the production of the light emitting device of the present invention is facilitated, the anode, the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer and the cathode are each preferably one layer. When there are a plurality of anodes, hole injection layers, hole transport layers, light emitting layers, electron transport layers, electron injection layers, and cathodes, they may be the same or different.
  • the thickness of the anode, hole injection layer, hole transport layer, light-emitting layer, electron transport layer, electron injection layer and cathode is usually 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 150 nm.
  • the order, number, and thickness of stacked layers may be adjusted in consideration of the luminance life, driving voltage, and element life of the light-emitting element.
  • a 2nd light emitting layer is a layer containing a 2nd layer or a luminescent material normally, Preferably, it is a layer containing a luminescent material.
  • the second light emitting layer is a layer containing a light emitting material
  • examples of the light emitting material contained in the second light emitting layer include the light emitting material and phosphorescence that may be contained in the first composition described above.
  • a luminescent compound is mentioned.
  • the light emitting material contained in the second light emitting layer may be contained singly or in combination of two or more.
  • the second light-emitting layer is preferably the second layer.
  • the hole transport layer is usually a layer containing a hole transport material.
  • the hole transport material include a hole transport material that may be contained in the first composition described above.
  • the hole transport material contained in the hole transport layer may be contained singly or in combination of two or more.
  • the electron transport layer is usually a second layer, a third layer, or a layer containing an electron transport material, preferably the second layer or the third layer, more preferably the second layer.
  • the electron transport layer is a layer containing an electron transport material
  • examples of the electron transport material contained in the electron transport layer include the electron transport material that may be contained in the first composition described above.
  • the electron transport material contained in the electron transport layer may be contained singly or in combination of two or more.
  • the electron transport layer is preferably the second layer.
  • the electron transport layer is preferably the second layer. In the case where the light-emitting element of the present invention has an electron transport layer and the third layer is not an electron injection layer, the electron transport layer is preferably the third layer.
  • the electron transport layer is preferably a third layer.
  • the hole injection layer is usually a layer containing a hole injection material.
  • a hole injection material contained in a hole injection layer the hole injection material which the above-mentioned 1st composition may contain is mentioned, for example.
  • the hole injection material contained in the hole injection layer may be contained singly or in combination of two or more.
  • the electron injection layer is usually a second layer, a third layer, or a layer containing an electron injection material, preferably the second layer or the third layer, and more preferably the third layer. .
  • the electron injection material which the above-mentioned 1st composition may contain is mentioned, for example.
  • the electron injection material contained in the electron injection layer may be contained alone or in combination of two or more.
  • the electron injection layer is preferably the second layer.
  • the electron injection layer is preferably the third layer.
  • the electron injection layer is preferably a third layer.
  • the substrate in the light-emitting element may be any substrate that can form electrodes and does not change chemically when the organic layer is formed.
  • the substrate is made of a material such as glass, plastic, or silicon.
  • the electrode farthest from the substrate is transparent or translucent.
  • Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • ITO indium tin oxide
  • Examples of the material for the cathode include metals such as aluminum, zinc, and indium; two or more of these alloys; one or more of them; silver, copper, manganese, titanium, cobalt, nickel, tungsten, tin Alloys with one or more of them; and graphite and graphite intercalation compounds.
  • Examples of the alloy include an indium-silver alloy.
  • At least one of the anode and the cathode is usually transparent or translucent, but the anode is preferably transparent or translucent.
  • Examples of the method for forming the anode and the cathode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a laminating method.
  • the first layer, the second layer, the third layer, and other layers when a low molecular compound is used, for example, vacuum deposition from powder, solution Or the method by the film-forming from a molten state is mentioned, when using a high molecular compound, the method by the film-forming from a solution or a molten state is mentioned, for example.
  • the first layer, the second layer, the third layer, and the other layers are formed by using the above-described various inks and inks containing various materials by the coating method described in the above-mentioned first ink section. You may form, and you may form by dry methods, such as a vacuum evaporation method.
  • the first layer is preferably formed by a coating method because it facilitates the production of the light emitting device of the present invention.
  • the second layer is formed by a coating method, it is preferable to use the second ink.
  • the second layer is preferably formed by a coating method because it facilitates the production of the light emitting device of the present invention.
  • the third layer is formed by a coating method, it is preferable to use the third ink.
  • the third layer is preferably formed by a dry method because the luminance life of the light-emitting element of the present invention is more excellent.
  • the light emitting device of the present embodiment can be manufactured, for example, by sequentially laminating each layer on a substrate. Specifically, an anode is provided on a substrate, a layer such as a hole injection layer and a hole transport layer is provided thereon, a light emitting layer is provided thereon, and an electron transport layer, an electron injection layer, etc. are provided thereon.
  • a light emitting element can be manufactured by providing a layer and further stacking a cathode thereon.
  • a cathode is provided on a substrate, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, etc. are provided thereon, and an anode is further provided thereon.
  • a light-emitting element By stacking, a light-emitting element can be manufactured.
  • the anode side base material in which each layer is laminated on the anode and the cathode side base material in which each layer is laminated on the cathode or the cathode side base material which are laminated on each other are bonded to each other. it can.
  • the planar anode and the cathode may be arranged so as to overlap each other.
  • a method of forming an anode or a cathode, or both electrodes in a pattern is a method.
  • a segment type display device capable of displaying numbers, characters, and the like can be obtained.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively or can be driven actively in combination with TFTs. These display devices can be used for displays of computers, televisions, portable terminals and the like.
  • the planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can be used as a curved light source and display device.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by the following size exclusion chromatography (SEC) using tetrahydrofuran as the mobile phase. .
  • SEC size exclusion chromatography
  • the polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC.
  • the mobile phase was run at a flow rate of 1.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • the detector used was a UV-VIS detector (trade name: UV-8320GPC, manufactured by Tosoh Corporation).
  • NMR NMR was measured by the following method. About 5 to 10 mg of a measurement sample, about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethyl sulfoxide, heavy acetone, heavy N, N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol Alternatively, it was dissolved in methylene chloride and measured using an NMR apparatus (manufactured by JEOL RESONANCE, trade name: JNM-ECZ400S / L1).
  • HPLC high performance liquid chromatography
  • SUMPAX ODS Z-CLUE manufactured by Sumika Chemical Analysis Center, inner diameter: 4.6 mm, length: 250 mm, particle size: 3 ⁇ m
  • a photodiode array detector manufactured by Shimadzu Corporation, trade name: SPD-M20A was used.
  • the maximum peak wavelength of the emission spectrum of the compound was measured with a spectrophotometer (manufactured by JASCO Corporation, FP-6500) at room temperature.
  • a xylene solution in which the compound was dissolved in xylene at a concentration of about 0.8 ⁇ 10 ⁇ 4 mass% was used as a sample.
  • excitation light UV light having a wavelength of 325 nm was used.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 6.02 g of a polymer compound HTL-1.
  • the high molecular compound HTL-1 had Mn of 3.8 ⁇ 10 4 and Mw of 4.5 ⁇ 10 5 .
  • the polymer compound HTL-1 has a theoretical value determined from the amount of raw materials charged, a structural unit derived from the compound M1, a structural unit derived from the compound M2, a structural unit derived from the compound M3, a metal
  • a structural unit derived from the complex RM1 is a copolymer having a molar ratio of 40: 10: 47: 3.
  • the emission spectrum of the polymer compound HTL-1 had maximum wavelengths at 404 nm and 600 nm, and the maximum peak wavelength of the emission spectrum of the polymer compound HTL-1 was 404 nm.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.64 g of the polymer compound HTL-1.
  • the high molecular compound HTL-3 had Mn of 3.5 ⁇ 10 4 and Mw of 2.2 ⁇ 10 5 .
  • the theoretical value obtained from the amount of charged raw materials for polymer compound HTL-3 is that the structural unit derived from compound M1, the structural unit derived from compound M2, and the structural unit derived from compound M3 are: A copolymer composed of a molar ratio of 40:10:50.
  • the phosphorescent compound G2 was synthesized according to the method described in JP2013-237789A.
  • the phosphorescent compounds G3 and G4 were synthesized according to the method described in JP-A-2014-224101.
  • the phosphorescent compound R1 was synthesized according to the method described in JP-A-2006-188673.
  • the phosphorescent compound R2 was synthesized according to the method described in JP-A-2008-179617.
  • the phosphorescent compound R3 was synthesized according to the method described in WO2002 / 044189.
  • the phosphorescent compound R4 was synthesized according to the method described in JP2011-105701A.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound B1 was 471 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound B3 was 476 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound B4 was 469 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound G1 was 514 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound G2 was 508 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound G3 was 545 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound G4 was 514 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound R1 was 619 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound R2 was 594 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound R3 was 617 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound R4 was 611 nm.
  • the obtained residue L2-3-1 was washed with toluene and then dried under reduced pressure to obtain solid L2-3 ′ (24.5 g).
  • the aqueous layer was removed from the obtained filtrate L2-3-2, and the obtained organic layer was dried over magnesium sulfate and then filtered.
  • the obtained filtrate was concentrated under reduced pressure, and then crystallized with a mixed solvent of toluene and heptane.
  • the obtained solid was dried under reduced pressure to obtain a solid L2-3 ′′ (3.9 g).
  • the obtained solid L2-3 ′ and solid L2-3 ′′ were combined and crystallized using a mixed solvent of toluene and heptane.
  • the obtained solid was dried under reduced pressure to obtain Compound L2-3 (27.8 g, white solid).
  • the HPLC area percentage value of Compound L2-3 was 98.9%.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound B2 was 474 nm.
  • the maximum peak wavelength of the emission spectrum of phosphorescent compound B5 was 468 nm.
  • reaction mixture L6-1 ′ (Synthesis of reaction mixture L6-1 ′) The atmosphere in the reaction vessel was changed to a nitrogen gas atmosphere, then compound L6-1 (50 g) and thionyl chloride (100 mL) were added, and the mixture was stirred for 3 hours under reflux. The obtained reaction mixture was cooled to room temperature, and thionyl chloride was distilled off under reduced pressure to obtain a reaction mixture L6-1 ′.
  • the resulting reaction solution was cooled to room temperature and concentrated under reduced pressure, ethyl acetate (2 L) was added, and the mixture was washed with a 10 mass% aqueous sodium bicarbonate solution.
  • the obtained organic layer was dried over magnesium sulfate and then filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a crude product.
  • the obtained crude product was purified by silica gel column chromatography (mixed solvent of methanol and chloroform), crystallized using acetonitrile, and then dried under reduced pressure to obtain compound L6-3 (6 g). It was.
  • the HPLC area percentage value of Compound L6-3 was 99.1%.
  • the maximum peak wavelength of the emission spectrum of phosphorescent compound B6 was 464 nm.
  • the reaction vessel was filled with a nitrogen gas atmosphere, then compound HM-3a (13.5 g), compound HM-2b (8.9 g), toluene (404 mL), tetrakis (triphenylphosphine) palladium (0) (2.0 g) ) And a 20% by mass aqueous tetrabutylammonium hydroxide solution (166 g), and the mixture was stirred at 90 ° C. for 3 hours.
  • the resulting reaction solution was cooled to room temperature and then filtered through a filter with celite. The obtained filtrate was washed with ion-exchanged water, and then the obtained organic layer was dried over anhydrous sodium sulfate and filtered.
  • the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and chloroform), further crystallized using a mixed solvent of toluene and methanol, and then dried at 50 ° C. under reduced pressure to give compound HM- 3 (10.5 g) was obtained.
  • Compound HM-3 had an HPLC area percentage value of 99.5% or more.
  • the reaction vessel was filled with a nitrogen gas atmosphere, then compound HM-4a (1.6 g), compound HM-4b (1.3 g), xylene (63 mL), palladium acetate (II) (22 mg), tri-tert-butyl Phosphonium tetrafluoroborate (63 mg) and sodium tert-butoxide (1.9 g) were added, and the mixture was stirred with heating under reflux for 54 hours.
  • the resulting reaction solution was cooled to room temperature and then filtered through a filter with silica gel and celite. The obtained filtrate was washed with ion-exchanged water, and then the obtained organic layer was dried over anhydrous sodium sulfate and filtered.
  • HM-4 (1.0 g) was obtained.
  • Compound HM-4 had an HPLC area percentage value of 99.5% or more.
  • reaction vessel was filled with a nitrogen gas atmosphere, then compound HM-2a (1.64 g), compound HM-7b (1.00 g), toluene (40 mL), tetrakis (triphenylphosphine) palladium (0) (0.24 g) ) And a 20% by mass aqueous tetrabutylammonium hydroxide solution (20 g), and the mixture was stirred at 90 ° C. for 3 hours. After cooling the obtained reaction liquid to room temperature, toluene was added and it wash
  • the obtained filtrate was washed with ion-exchanged water, and then the obtained organic layer was concentrated to obtain a crude product.
  • the obtained crude product was purified by silica gel column chromatography (mixed solvent of hexane and ethyl acetate), and then crystallized using a mixed solvent of acetonitrile and toluene.
  • the obtained solid was dried under reduced pressure at 50 ° C. to obtain Compound EM-2 (8.0 g).
  • Compound EM-2 had an HPLC area percentage value of 99.5% or higher.
  • the polymer compound ETL-1a had an Mn of 3.2 ⁇ 10 4 and an Mw of 6.0 ⁇ 10 4 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound ETL-1a is that the structural unit derived from the compound M4 and the structural unit derived from the compound M5 are composed in a molar ratio of 50:50. It is a copolymer.
  • Example D1 Fabrication and evaluation of light-emitting element D1 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries
  • a hole injection layer was formed by heating on a hot plate at 50 ° C. for 3 minutes and further heating at 230 ° C. for 15 minutes.
  • the polymer compound HTL-1 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm is formed on the hole injection layer by spin coating, and heated in a nitrogen gas atmosphere on a hot plate at 180 ° C. for 60 minutes to form a second film. The light emitting layer was formed. By this heating, the polymer compound HTL-1 became a crosslinked product.
  • the polymer compound ETL-1 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm was formed on the first layer by spin coating. In a nitrogen gas atmosphere, the second layer (electron transport layer) was formed by heating at 130 ° C. for 10 minutes.
  • the substrate on which the second layer is formed is depressurized to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then, as a third layer (electron injection layer), sodium fluoride ( NaF) was deposited 4 nm.
  • the substrate on which the third layer was formed was depressurized to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then aluminum was vapor-deposited at about 80 nm as a cathode. After vapor deposition, the light emitting element D1 was produced by sealing using a glass substrate.
  • EL light emission was observed by applying a voltage to the light emitting element D1.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.44, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D2 Fabrication and evaluation of light-emitting element D2
  • Example D1 except that "Compound HM-3" was used instead of “Compound HM-2” in (Formation of first layer),
  • Example A light emitting device D2 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting element D2.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.43, 0.45).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D3 Fabrication and Evaluation of Light-Emitting Element D3
  • Example D1 In Example D1, except that "barium (Ba)" was used instead of “sodium fluoride” in (Formation of third layer), Example D1
  • a light-emitting element D3 was manufactured. EL light emission was observed by applying a voltage to the light emitting element D3.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.44, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D4 Production and Evaluation of Light-Emitting Element D4 In Example D2, except that "Barium (Ba)” was used instead of "Sodium fluoride” in (Formation of third layer), Example D2 In the same manner as described above, a light-emitting element D4 was manufactured. EL light emission was observed by applying a voltage to the light emitting element D4. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.42, 0.46). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D5 Production and Evaluation of Light-Emitting Element D5
  • “sodium fluoride (NaF) was deposited by 4 nm” in (formation of the third layer)
  • “calcium (Ca) was 5 nm.
  • a light emitting device D5 was produced in the same manner as in Example D1, except that “deposited”. EL light emission was observed by applying a voltage to the light emitting element D5.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.44, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D6 Fabrication and Evaluation of Light-Emitting Element D6
  • “formation of the third layer” “sodium fluoride (NaF) was deposited by 4 nm”
  • a light emitting device D6 was produced in the same manner as in Example D2 except that. EL light emission was observed by applying a voltage to the light emitting element D6.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.42, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D1 Fabrication and Evaluation of Light-Emitting Element CD1
  • Example D1 A light emitting device CD1 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting device CD1. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.43, 0.47). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Comparative Example CD3 Production and Evaluation of Light-Emitting Element CD3
  • Comparative Example CD1 instead of “sodium fluoride (NaF) was deposited by 4 nm” in “Formation of third layer”, “Calcium (Ca) was deposited by 5 nm.
  • a light emitting device CD3 was produced in the same manner as in Example D1, except that “deposited”. EL light emission was observed by applying a voltage to the light emitting device CD3.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.43, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example CD4 Production and Evaluation of Light-Emitting Element CD4
  • a light-emitting element CD4 was produced in the same manner as in Example D2, except that (second layer formation) was not performed in Example D2.
  • EL light emission was observed by applying a voltage to the light emitting device CD4.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.37, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example CD5 Production and Evaluation of Light-Emitting Element CD5
  • a light-emitting element CD5 was produced in the same manner as in Example D4, except that (formation of the second layer) was not performed in Example D4.
  • EL light emission was observed by applying a voltage to the light emitting device CD5.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.37, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example CD6 Production and Evaluation of Light-Emitting Element CD6
  • a light-emitting element CD6 was produced in the same manner as in Example D6, except that (formation of the second layer) was not performed in Example D6.
  • EL light emission was observed by applying a voltage to the light emitting device CD6.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.36, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Table 2 shows the results of Examples D1 to D6 and Comparative Examples CD1 to CD6. Until the luminance of the light emitting elements CD1 to D6 and the light emitting elements CD2 to CD6 reaches 80% of the initial luminance when the time (luminance life) until the luminance of the light emitting element CD1 reaches 80% of the initial luminance is 1.0 The relative value of the time (luminance life) is shown.
  • Example D7 Production and Evaluation of Light-Emitting Element D7
  • “sodium fluoride (NaF) was deposited by 4 nm” in (formation of third layer)
  • “lithium fluoride (LiF)” was made in the same manner as in Example D1, except that the thickness of the light-emitting element D7 was evaporated.
  • EL light emission was observed by applying a voltage to the light emitting element D7.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.43, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D8 Production and Evaluation of Light-Emitting Element D8
  • “sodium fluoride (NaF) was deposited by 4 nm”
  • “lithium fluoride (LiF)” was made in the same manner as in Example D2, except that the thickness of the light-emitting element D8 was evaporated.
  • EL light emission was observed by applying a voltage to the light emitting element D8.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.41, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D9 Fabrication and evaluation of light-emitting element D9
  • Example D7 except that "Compound HM-4" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D9 was fabricated in the same manner as D7. EL light emission was observed by applying a voltage to the light emitting element D9.
  • the CIE chromaticity coordinate (x, y) at 100 cd / m 2 was (0.33, 0.50).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D10 Production and Evaluation of Light-Emitting Element D10 (Formation of second layer) in Example D1 was changed to (Formation of second layer-D10) below, and A light emitting device D10 was produced in the same manner as in Example D1, except that the (layer formation) was changed to the following (formation of third layer-D10).
  • Second layer-D10 After depressurizing the substrate on which the first layer is formed to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, 4 nm of sodium fluoride is formed on the first layer as the second layer (electron transport layer). Vapor deposited.
  • Third layer-D10 The substrate on which the second layer is formed is depressurized to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then 1 nm of barium is deposited on the second layer as a third layer (electron injection layer). did.
  • EL light emission was observed by applying a voltage to the light emitting element D10.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.38, 0.49).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D11 Fabrication and Evaluation of Light-Emitting Element D11 In Example D10, except that “Compound HM-3” was used instead of “Compound HM-2” in (Formation of the first layer), Example A light emitting device D11 was fabricated in the same manner as D10. EL light emission was observed by applying a voltage to the light emitting element D11. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.37, 0.48). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D12 Fabrication and Evaluation of Light-Emitting Element D12
  • “sodium fluoride was deposited at 4 nm” “lithium fluoride at 1.8 nm was used.
  • the same procedure as in Example D10 was carried out except that “Calcium was deposited 5 nm” instead of “Barium deposited 1 nm” in (Third layer formation—D10).
  • a light emitting element D12 was manufactured.
  • EL light emission was observed by applying a voltage to the light emitting element D12.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.39, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D13 Fabrication and Evaluation of Light-Emitting Element D13
  • Example D12 except that "Compound HM-3" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D13 was fabricated in the same manner as D12. EL light emission was observed by applying a voltage to the light emitting element D13.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.38, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D14 Fabrication and evaluation of light-emitting element D14
  • Example D12 except that "Compound HM-4" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D14 was fabricated in the same manner as D12. EL light emission was observed by applying a voltage to the light emitting element D14.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.33, 0.48).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example CD7 Production and Evaluation of Light-Emitting Element CD7
  • a light-emitting element CD7 was produced in the same manner as in Example D7, except that (formation of the second layer) was not performed in Example D8.
  • EL light emission was observed by applying a voltage to the light emitting device CD7.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.37, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Table 3 shows the results of Examples D7 to D14 and Comparative Example CD7. Relative of the time (luminance life) until the luminance of the light emitting elements D7 to D14 becomes 80% of the initial luminance when the time until the luminance of the light emitting element CD7 becomes 80% of the initial luminance (luminance life) is 1. Indicates the value.
  • Example D15 Production and Evaluation of Light-Emitting Element D15
  • a light-emitting element D1 was produced in the same manner as in Example D1 (referred to as "light-emitting element D15" in this example).
  • EL light emission was observed by applying a voltage to the light emitting element D15.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.44, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D16 Production and Evaluation of Light-Emitting Element D16
  • a light emitting device D16 was produced in the same manner as in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D16.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.47, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D17 Fabrication and evaluation of light-emitting element D17
  • Example D1 except that "Compound HM-7" was used instead of “Compound HM-2" in (Formation of first layer), Example A light emitting device D17 was produced in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting element D17. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.46, 0.46). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D18 Fabrication and Evaluation of Light-Emitting Element D18 Example D1 except that “Compound HM-5” was used instead of “Compound HM-2” in (Formation of first layer) in Example D1.
  • a light emitting device D18 was fabricated in the same manner as D1.
  • EL light emission was observed by applying a voltage to the light emitting element D18.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.42, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D19 Fabrication and Evaluation of Light-Emitting Element D19 Example D1 except that “Compound HM-3” was used instead of “Compound HM-2” in (Formation of first layer) in Example D1.
  • a light emitting device D19 was produced in the same manner as D1.
  • EL light emission was observed by applying a voltage to the light emitting element D19.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.43, 0.45).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D20 Fabrication and evaluation of light-emitting element D20
  • Example D1 except that "Compound HM-8" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D20 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting element D20.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.46, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D21 Fabrication and Evaluation of Light-Emitting Element D21
  • Example D1 except that "Compound HM-6" was used instead of “Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D21 was fabricated in the same manner as D1. EL light emission was observed by applying a voltage to the light emitting element D21.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.44, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D1 Fabrication and Evaluation of Light-Emitting Element CD8
  • “Compound HM-1” was used instead of “Compound HM-2” in (Formation of first layer).
  • a light emitting device CD8 was produced in the same manner as in D1.
  • EL light emission was observed by applying a voltage to the light emitting device CD8.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.43, 0.47).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Table 4 shows the results of Examples D15 to D21 and Comparative Example CD8.
  • the time until the luminance of the light emitting elements D15 to D21 reaches 95% of the initial luminance (luminance life) when the time until the luminance of the light emitting element CD8 reaches 95% of the initial luminance (luminance life) is 1.0. Indicates the relative value of.
  • Example D22 Fabrication and Evaluation of Light-Emitting Element D22
  • (Formation of the first layer) was changed to (Formation of the first layer-D22) below, the same as Example D1, A light emitting device D22 was manufactured.
  • EL light emission was observed by applying a voltage to the light emitting element D22.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.41, 0.46).
  • a constant current drive was performed at an initial luminance of 6000 cd / m 2 , and the time until the luminance became 70% of the initial luminance was measured.
  • Example D22 Production and Evaluation of Light Emitting Element CD9
  • Compound HM-1 was used instead of “Compound HM-2” in (Formation of first layer-D22)
  • a light emitting device CD9 was produced in the same manner as in Example D22.
  • EL light emission was observed by applying a voltage to the light emitting device CD9.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.41, 0.44).
  • a constant current drive was performed at an initial luminance of 6000 cd / m 2 and the time until the luminance became 70% of the initial luminance was measured.
  • Table 5 shows the results of Example D22 and Comparative Example CD9. Relative of the time (luminance life) until the luminance of the light emitting element D22 becomes 70% of the initial luminance when the time until the luminance of the light emitting element CD9 becomes 70% of the initial luminance (luminance life) is 1.0. Indicates the value.
  • Example D23 Production and evaluation of light-emitting element D23
  • a light emitting device D23 was produced in the same manner as in Example D1. EL light emission was observed by applying a voltage to the light emitting element D23.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.46, 0.45).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D24 Production and Evaluation of Light-Emitting Element D24
  • Example D23 except that “Compound HM-3” was used instead of “Compound HM-2” in (Formation of first layer),
  • Example A light emitting device D24 was fabricated in the same manner as D23. EL light emission was observed by applying a voltage to the light emitting element D24.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.45, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D25 Fabrication and Evaluation of Light-Emitting Element D25
  • Example D23 except that "Compound HM-6" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D25 was fabricated in the same manner as D23. EL light emission was observed by applying a voltage to the light emitting element D25.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.45, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D26 Fabrication and evaluation of light-emitting device D26
  • Example D23 except that "Compound HM-7" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D26 was produced in the same manner as D23. EL light emission was observed by applying a voltage to the light emitting element D26.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.47, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D27 Production and Evaluation of Light-Emitting Element D27
  • Example D23 except that “Compound HM-8” was used instead of “Compound HM-2” in (Formation of first layer),
  • Example A light emitting device D27 was fabricated in the same manner as D23. EL light emission was observed by applying a voltage to the light emitting element D27. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.46, 0.46).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D23 Fabrication and Evaluation of Light Emitting Element CD10
  • Example D23 except that “Compound HM-1” was used instead of “Compound HM-2” in (Formation of first layer),
  • Example A light emitting device CD10 was produced in the same manner as in D23. EL light emission was observed by applying a voltage to the light emitting device CD10.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.48, 0.45).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Table 6 shows the results of Examples D23 to D27 and Comparative Example CD10.
  • the time until the luminance of the light emitting elements D23 to D27 reaches 75% of the initial luminance (luminance life) when the time until the luminance of the light emitting element CD10 reaches 75% of the initial luminance (luminance life) is 1.00. Indicates the relative value of.
  • Example D28 Fabrication and evaluation of light-emitting element D28 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries
  • a hole injection layer was formed by heating on a hot plate at 50 ° C. for 3 minutes and further heating at 230 ° C. for 15 minutes.
  • the polymer compound HTL-1 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm is formed on the hole injection layer by spin coating, and heated in a nitrogen gas atmosphere on a hot plate at 180 ° C. for 60 minutes to form a second film. The light emitting layer was formed. By this heating, the polymer compound HTL-1 became a crosslinked product.
  • the substrate on which the first organic layer is formed is depressurized to 3.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then a compound EM ⁇ is formed on the first layer as a second layer (electron transport layer).
  • the substrate on which the third layer was formed was depressurized to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then aluminum was vapor-deposited at about 80 nm as a cathode. After vapor deposition, the light emitting element D28 was produced by sealing using a glass substrate.
  • EL light emission was observed by applying a voltage to the light emitting element D28.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.32, 0.42).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D28 Fabrication and Evaluation of Light-Emitting Element CD11
  • Example D28 except that “Compound HM-1” was used instead of “Compound HM-2” in (Formation of first layer),
  • Example A light emitting device CD11 was fabricated in the same manner as D28. EL light emission was observed by applying a voltage to the light emitting device CD11.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.34, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example CD12 Fabrication and Evaluation of Light-Emitting Element CD12 Except for the (third layer formation) in Example D28 (third layer formation) was changed to the following (third layer formation-CD12). Produced a light emitting device CD12 in the same manner as in Example D28.
  • EL light emission was observed by applying a voltage to the light emitting device CD12.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.42).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example CD13 Production and Evaluation of Light-Emitting Element CD13
  • a light-emitting element CD13 was produced in the same manner as in Example D28, except that in Example D28 (formation of the second layer) was not performed.
  • EL light emission was observed by applying a voltage to the light emitting device CD13.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.34, 0.42).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Table 7 shows the results of Example D28 and Comparative Examples CD11 to CD13.
  • the time until the luminance of the light emitting elements D28, CD11, and CD13 reaches 80% of the initial luminance when the time until the luminance of the light emitting element CD12 reaches 80% of the initial luminance (luminance life) is 1.0 ( Indicates the relative value of (luminance life).
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.39, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 50% of the initial luminance was measured.
  • Example D29 Fabrication and Evaluation of Light Emitting Device CD14
  • Example A light emitting device CD14 was produced in the same manner as in D29. EL light emission was observed by applying a voltage to the light emitting device CD14.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.40, 0.42).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 50% of the initial luminance was measured.
  • Table 8 shows the results of Example D29 and Comparative Example CD14. Relative time (luminance life) until the luminance of the light emitting element D29 reaches 50% of the initial luminance when the time until the luminance of the light emitting element CD14 reaches 50% of the initial luminance (luminance life) is 1.0. Indicates the value.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.47, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 60% of the initial luminance was measured.
  • Example D31 Production and Evaluation of Light-Emitting Element D31 Except that Example 2 (Formation of second layer) was changed to the following (Formation of second layer-D31), light emission was performed in the same manner as Example D30. Element D31 was created.
  • Second layer-D31 The substrate on which the first organic layer is formed is depressurized to 3.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then a compound EM ⁇ is formed on the first layer as a second layer (electron transport layer). 1 was deposited by 4 nm.
  • EL light emission was observed by applying a voltage to the light emitting element D31.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.33, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 60% of the initial luminance was measured.
  • Example D32 Production and Evaluation of Light-Emitting Element D32
  • Example D31 except that "Compound EM-3” was used instead of "Compound EM-1" in (Second layer formation-D31), A light emitting device D32 was produced in the same manner as in Example D31. EL light emission was observed by applying a voltage to the light emitting element D32. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.33, 0.41). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 60% of the initial luminance was measured.
  • Example D33 Fabrication and evaluation of light-emitting element D33
  • Example D31 except that "Compound EM-4" was used instead of "Compound EM-1" in (Second layer formation-D31),
  • a light-emitting element D33 was produced.
  • EL light emission was observed by applying a voltage to the light emitting element D33.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.35, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 60% of the initial luminance was measured.
  • Example D34 Fabrication and evaluation of light-emitting element D34
  • Example D31 except that "Compound EM-5" was used instead of "Compound EM-1" in (Second layer formation-D31), A light emitting device D34 was produced in the same manner as in Example D31. EL light emission was observed by applying a voltage to the light emitting element D34. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.34, 0.40). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 60% of the initial luminance was measured.
  • Example CD15 Production and Evaluation of Light-Emitting Element CD15
  • a light-emitting element CD15 was produced in the same manner as in Example D31, except that (formation of the third layer) was not performed in Example D31.
  • EL light emission was observed by applying a voltage to the light emitting device CD15.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.33, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 60% of the initial luminance was measured.
  • Example CD16 Production and Evaluation of Light-Emitting Element CD16
  • a light-emitting element CD16 was produced in the same manner as in Example D33, except that (formation of the third layer) was not performed in Example D33.
  • EL light emission was observed by applying a voltage to the light emitting device CD16.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.32, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 60% of the initial luminance was measured.
  • Table 9 shows the results of Examples D30 to D34 and Comparative Examples CD15 to CD16. Time until the luminance of the light emitting elements D30 to D34 and the light emitting element CD15 reaches 60% of the initial luminance when the time until the luminance of the light emitting element CD16 reaches 60% of the initial luminance (luminance life) is 1.0 The relative value of (luminance life) is shown.
  • Example D35 Fabrication and Evaluation of Light-Emitting Element D35 Light emission was performed in the same manner as in Example D33, except that (Formation of third layer) in Example D33 was changed to (Formation of third layer-D35) below. Element D35 was produced.
  • EL light emission was observed by applying a voltage to the light emitting element D35.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.38, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 65% of the initial luminance was measured.
  • Example D36 Fabrication and Evaluation of Light-Emitting Element D36
  • Light-emitting element was performed in the same manner as in Example D35, except that (Formation of second layer) in Example D35 was changed to (Formation of second layer-D36) below. Element D35 was produced.
  • Second layer-D36 Compound EM-5 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.1% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 4 nm was formed on the first layer by spin coating. Then, the second layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • EL light emission was observed by applying a voltage to the light emitting element D36.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.40).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 65% of the initial luminance was measured.
  • EL emission was observed by applying a voltage to the light emitting element CD17.
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 65% of the initial luminance was measured.
  • Table 10 shows the results of Examples D35 to D36 and Comparative Example CD17.
  • the time until the luminance of the light emitting elements D35 to D36 reaches 65% of the initial luminance (luminance life) when the time until the luminance of the light emitting element CD17 reaches 65% of the initial luminance (luminance life) is 1.0. Indicates the relative value of.
  • Example D37 Production and Evaluation of Light-Emitting Element D37 Except that (Difference of third layer) in Example D30 was changed to (Formation of third layer-D37) below, light emission was performed in the same manner as in Example D30. Element D37 was produced.
  • EL light emission was observed by applying a voltage to the light emitting element D37.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.37, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D38 Production and Evaluation of Light-Emitting Element D38
  • Example D37 except that “Compound EM-3” was used instead of “Compound EM-1” in (Formation of third layer-D37), A light emitting element D38 was produced in the same manner as in Example D37. EL light emission was observed by applying a voltage to the light emitting element D38. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.40, 0.41). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D39 Fabrication and evaluation of light-emitting element D39
  • Example D37 except that "Compound EM-5" was used instead of "Compound EM-1" in (Formation of third layer-D37), A light emitting device D39 was produced in the same manner as in Example D37. EL light emission was observed by applying a voltage to the light emitting element D39. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.34, 0.41). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example CD18 Production and Evaluation of Light-Emitting Element CD18
  • a light-emitting element CD18 was produced in the same manner as in Example D30, except that the (formation of the third layer) of Example D30 was not performed.
  • EL light emission was observed by applying a voltage to the light emitting device CD18.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.34, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Table 11 shows the results of Examples D37 to D39 and Comparative Example CD18.
  • the time until the luminance of the light emitting elements D37 to D39 reaches 70% of the initial luminance (luminance life) when the time until the luminance of the light emitting element CD18 reaches 70% of the initial luminance (luminance life) is 1.0. Indicates the relative value of.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.47, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D41 Fabrication and Evaluation of Light-Emitting Element D41
  • Example D40 except that "Compound HM-3" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D41 was produced in the same manner as D40. EL light emission was observed by applying a voltage to the light emitting element D41.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.45, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example CD19 Production and Evaluation of Light-Emitting Element CD19
  • a light-emitting element CD19 was produced in the same manner as in Example D40, except that Example D40 (formation of the second layer) was not performed.
  • EL light emission was observed by applying a voltage to the light emitting device CD19.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.37, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D40 Fabrication and Evaluation of Light Emitting Element CD20
  • Example D40 except that "Compound HM-1" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device CD20 was produced in the same manner as in D40. EL light emission was observed by applying a voltage to the light emitting device CD20.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.45, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Table 12 shows the results of Examples D40 to D41 and Comparative Examples CD19 to CD20. Time until the luminance of the light emitting elements D40 to D41 and the light emitting element CD19 reaches 75% of the initial luminance when the time until the luminance of the light emitting element CD20 reaches 75% of the initial luminance (luminance life) is 1.0 The relative value of (luminance life) is shown.
  • Example D42 Fabrication and evaluation of light-emitting element D42 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries
  • a hole injection layer was formed by heating on a hot plate at 50 ° C. for 3 minutes and further heating at 230 ° C. for 15 minutes.
  • the polymer compound HTL-3 was dissolved in xylene at a concentration of 0.7 mass%. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by spin coating, and heated at 180 ° C. for 60 minutes on a hot plate in a nitrogen gas atmosphere. A transport layer was formed. By this heating, the polymer compound HTL-3 became a crosslinked product.
  • the polymer compound ETL-1 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm was formed on the first layer by spin coating. In a nitrogen gas atmosphere, the second layer (electron transport layer) was formed by heating at 130 ° C. for 10 minutes.
  • the substrate on which the second layer is formed is depressurized to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then, as a third layer (electron injection layer), sodium fluoride ( NaF) was deposited 4 nm.
  • the substrate on which the third layer was formed was depressurized to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then aluminum was vapor-deposited at about 80 nm as a cathode. After vapor deposition, the light emitting element D42 was produced by sealing using a glass substrate.
  • EL light emission was observed by applying a voltage to the light emitting element D42.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.35, 0.43).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 90% of the initial luminance was measured.
  • Example D42 Production and Evaluation of Light-Emitting Element CD21
  • Example D42 except that “Compound HM-1” was used instead of “Compound HM-2” in (Formation of the first layer),
  • Example A light emitting device CD21 was produced in the same manner as in D42. EL light emission was observed by applying a voltage to the light emitting device CD21.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.42).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 90% of the initial luminance was measured.
  • Table 13 shows the results of Example D42 and Comparative Example CD21. Relative of the time (luminance life) until the luminance of the light emitting element D42 becomes 90% of the initial luminance when the time (luminance life) until the luminance of the light emitting element CD21 becomes 90% of the initial luminance is 1.0. Indicates the value.
  • EL light emission was observed by applying a voltage to the light emitting element D43.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.35, 0.42).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D44 Production and Evaluation of Light-Emitting Element D44 Except for using “phosphorescent compound R3” in place of “phosphorescent compound R1” in (Formation of first layer) in Example D43, A light emitting device D44 was produced in the same manner as in Example D43. EL light emission was observed by applying a voltage to the light emitting element D44. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.41). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Example D45 Production and Evaluation of Light-Emitting Element D45
  • a light emitting device D45 was fabricated in the same manner as D43. EL light emission was observed by applying a voltage to the light emitting element D45.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.33, 0.43).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Table 14 shows the results of Examples D43 to D45.
  • the time until the luminance of the light emitting elements D43 to D44 reaches 80% of the initial luminance when the time until the luminance of the light emitting element D45 reaches 80% of the initial luminance (luminance life) is 1.0 (luminance life) Indicates the relative value of.
  • a light emitting device D46 was produced in the same manner as in Example D42 except that was used.
  • EL light emission was observed by applying a voltage to the light emitting element D46.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.32, 0.52).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D47 Production and Evaluation of Light-Emitting Element D47
  • a light emitting device D47 was produced in the same manner as D46.
  • EL light emission was observed by applying a voltage to the light emitting element D47.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.32, 0.52).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D48 Fabrication and Evaluation of Light-Emitting Element D48
  • a light emitting device D48 was produced in the same manner as D46.
  • EL light emission was observed by applying a voltage to the light emitting device D48.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.32, 0.52).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D49 Production and Evaluation of Light-Emitting Element D49
  • a light emitting device D49 was produced in the same manner as D46.
  • EL light emission was observed by applying a voltage to the light emitting element D49.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.51).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D50 Production and Evaluation of Light-Emitting Element D50 Except for using "phosphorescent compound G3" instead of “phosphorescent compound G1" in (Formation of first layer) in Example D46, A light emitting device D50 was produced in the same manner as in Example D46. EL light emission was observed by applying a voltage to the light emitting device D50. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.38, 0.51). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D51 Production and Evaluation of Light-Emitting Element D51 Except for using "phosphorescent compound G4" in place of "phosphorescent compound G1" in (Formation of first layer) in Example D46, A light emitting device D51 was produced in the same manner as in Example D46. EL light emission was observed by applying a voltage to the light emitting element D51. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.48). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D52 Production and Evaluation of Light-Emitting Element D52 Except for using “phosphorescent compound B4” in place of “phosphorescent compound B1” in (Formation of first layer) in Example D46, A light emitting device D52 was produced in the same manner as in Example D46. EL light emission was observed by applying a voltage to the light emitting element D52. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.32, 0.52). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D53 Production and Evaluation of Light-Emitting Element D53
  • a light emitting device D53 was produced in the same manner as D46.
  • EL light emission was observed by applying a voltage to the light emitting element D53.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.50).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D54 Fabrication and Evaluation of Light-Emitting Element D54 Example except that “Compound HM-4” was used instead of “Compound HM-2” in (Formation of first layer) in Example D46
  • a light emitting device D54 was fabricated in the same manner as D46. EL light emission was observed by applying a voltage to the light emitting element D53.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.36, 0.50).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D55 Fabrication and Evaluation of Light-Emitting Element D55 "Compound HM-2, Phosphorescent Compound B1 and Phosphorescent Compound R2 (Compound HM-2 / Phosphorescent Light)" in Example D42 (Formation of First Layer)
  • “luminescent compound B1 / phosphorescent compound R2 74.9% by mass / 25% by mass / 0.1% by mass)”
  • a light emitting device D55 was produced in the same manner as in Example D42 except that was used.
  • EL light emission was observed by applying a voltage to the light emitting element D55.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.53).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Example D46 to D55 are shown in Table 15.
  • the time until the luminance of the light emitting elements D46 to D54 reaches 70% of the initial luminance (luminance life) when the time until the luminance of the light emitting element D55 reaches 70% of the initial luminance (luminance life) is 1.0. Indicates the relative value of.
  • a light emitting device D56 was produced in the same manner as in Example D42 except that was used.
  • EL light emission was observed by applying a voltage to the light emitting element D56.
  • the CIE chromaticity coordinate (x, y) at 100 cd / m 2 was (0.34, 0.51).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • a light emitting device D57 was produced in the same manner as in Example D42 except that was used.
  • EL light emission was observed by applying a voltage to the light emitting element D57.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.38, 0.49).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • a light emitting device D58 was produced in the same manner as in Example D42 except that was used.
  • EL light emission was observed by applying a voltage to the light emitting element D58.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.36, 0.50).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • a light emitting device D59 was produced in the same manner as in Example D42 except that was used.
  • EL light emission was observed by applying a voltage to the light emitting element D59.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.39, 0.49).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • a light emitting device D59 was produced in the same manner as in Example D42 except that was used.
  • EL light emission was observed by applying a voltage to the light emitting element D60.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.51).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • EL light emission was observed by applying a voltage to the light emitting device CD22.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.30, 0.51).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • EL light emission was observed by applying a voltage to the light emitting device CD23.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.38, 0.49).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 80% of the initial luminance was measured.
  • Table 16 shows the results of Examples D56 to D60 and Comparative Examples CD22 to CD23.
  • the time until the luminance of the light emitting elements D56 to D60 and CD23 reaches 80% of the initial luminance (luminance) when the time until the luminance of the light emitting element CD22 reaches 80% of the initial luminance (luminance life) is 1.0. Indicates the relative value of (life).
  • EL light emission was observed by applying a voltage to the light emitting element D61.
  • the CIE chromaticity coordinate (x, y) at 100 cd / m 2 was (0.19, 0.41).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 70% of the initial luminance was measured.
  • Table 17 shows the results of Example D61 and Comparative Example CD24. Relative of the time (luminance life) until the luminance of the light emitting element D61 becomes 70% of the initial luminance when the time (luminance life) until the luminance of the light emitting element CD24 becomes 70% of the initial luminance is 1.0. Indicates the value.
  • Table 18 shows the results of Example D62 and Comparative Example CD25. Relative of the time (luminance life) until the luminance of the light emitting element D62 becomes 95% of the initial luminance when the time (luminance life) until the luminance of the light emitting element CD25 becomes 95% of the initial luminance is 1.0. Indicates the value.
  • Example D63 Production and Evaluation of Light-Emitting Element D63 Except for using "phosphorescent compound B6" instead of "phosphorescent compound B5" in (Formation of first layer) in Example D61, A light emitting element D63 was produced in the same manner as in Example D61. EL light emission was observed by applying a voltage to the light emitting element D63. The CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.19, 0.39). A constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Table 19 shows the results of Example D63 and Comparative Example CD26. Relative of the time (luminance life) until the luminance of the light emitting element D63 becomes 95% of the initial luminance when the time (luminance life) until the luminance of the light emitting element CD26 becomes 95% of the initial luminance is 1.0. Indicates the value.
  • Example D64 Fabrication and evaluation of light-emitting element D64 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries
  • a hole injection layer was formed by heating on a hot plate at 50 ° C. for 3 minutes and further heating at 230 ° C. for 15 minutes.
  • the polymer compound HTL-2 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by spin coating, and heated at 180 ° C. for 60 minutes on a hot plate in a nitrogen gas atmosphere. A transport layer was formed. By this heating, the polymer compound HTL-2 became a crosslinked product.
  • the polymer compound ETL-1 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm was formed on the first layer by spin coating. In a nitrogen gas atmosphere, the second layer (electron transport layer) was formed by heating at 130 ° C. for 10 minutes.
  • the substrate on which the second layer is formed is depressurized to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then, as a third layer (electron injection layer), sodium fluoride ( NaF) was deposited 4 nm.
  • the substrate on which the third layer was formed was depressurized to 1.0 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then aluminum was vapor-deposited at about 80 nm as a cathode. After vapor deposition, the light emitting element D64 was produced by sealing using a glass substrate.
  • EL light emission was observed by applying a voltage to the light emitting element D64.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.63).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D65 Fabrication and evaluation of light-emitting element D15
  • Example D64 except that "Compound HM-3" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D65 was fabricated in the same manner as D64. EL light emission was observed by applying a voltage to the light emitting element D65.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.30, 0.63).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D66 Fabrication and Evaluation of Light-Emitting Element D66
  • Example D64 except that "Compound HM-5" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D66 was fabricated in the same manner as D64. EL light emission was observed by applying a voltage to the light emitting element D66.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.30, 0.64).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D67 Fabrication and Evaluation of Light-Emitting Element D67
  • Example D64 except that "Compound HM-8" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D67 was fabricated in the same manner as D64. EL light emission was observed by applying a voltage to the light emitting element D67.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.63).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D68 Fabrication and evaluation of light-emitting element D68
  • Example D64 except that "Compound HM-7" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D68 was fabricated in the same manner as D64. EL light emission was observed by applying a voltage to the light emitting element D68.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.63).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D69 Fabrication and evaluation of light-emitting element D69
  • Example D64 except that "Compound HM-6" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D69 was produced in the same manner as D64. EL light emission was observed by applying a voltage to the light emitting element D69.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.30, 0.64).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Example D70 Production and Evaluation of Light-Emitting Element D70
  • Example D64 except that "Compound HM-10" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D70 was fabricated in the same manner as D64. EL light emission was observed by applying a voltage to the light emitting element D70.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.31, 0.63).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 95% of the initial luminance was measured.
  • Table 20 shows the results of Examples D64 to D70.
  • the time until the luminance of the light emitting elements D64 to D69 reaches 95% of the initial luminance when the time until the luminance of the light emitting element D70 reaches 95% of the initial luminance (luminance life) (luminance life) Indicates the relative value of.
  • Example D71 Production and Evaluation of Light-Emitting Element D71
  • “Compound HM-2 and Phosphorescent Compound G1 (Compound HM-2 / Phosphorescent Compound G1) 70”
  • “Compound HM-2 and phosphorescent compound R1 (Compound HM-2 / Phosphorescent compound R1 90 mass / 10% by mass)” instead of “mass% / 30 mass%)”
  • a light emitting device D71 was produced in the same manner as in Example D64. EL light emission was observed by applying a voltage to the light emitting element D71.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.67, 0.32).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D72 Fabrication and evaluation of light-emitting element D72
  • Example D71 except that "Compound HM-3" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D72 was fabricated in the same manner as D71. EL light emission was observed by applying a voltage to the light emitting element D72.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.67, 0.33).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D73 Production and Evaluation of Light-Emitting Element D73
  • Example D71 except that "Compound HM-11" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D73 was fabricated in the same manner as D71. EL light emission was observed by applying a voltage to the light emitting element D73.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.67, 0.32).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D74 Production and Evaluation of Light-Emitting Element D74
  • Example D71 except that "Compound HM-7" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D74 was fabricated in the same manner as D71. EL light emission was observed by applying a voltage to the light emitting element D74.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.67, 0.32).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D75 Production and Evaluation of Light-Emitting Element D75
  • Example D71 except that "Compound HM-6" was used instead of “Compound HM-2" in (Formation of the first layer),
  • Example A light emitting device D75 was produced in the same manner as D71. EL light emission was observed by applying a voltage to the light emitting element D75.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.67, 0.32).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Example D76 Fabrication and evaluation of light-emitting element D76
  • Example D71 except that "Compound HM-10" was used instead of "Compound HM-2" in (Formation of first layer),
  • Example A light emitting device D76 was fabricated in the same manner as D71. EL light emission was observed by applying a voltage to the light emitting element D76.
  • the CIE chromaticity coordinates (x, y) at 100 cd / m 2 were (0.67, 0.32).
  • a constant current drive was performed at a current value of 1 mA, and the time until the luminance became 75% of the initial luminance was measured.
  • Table 21 shows the results of Examples D71 to D76.
  • the time until the luminance of the light emitting elements D71 to D75 reaches 75% of the initial luminance (luminance life) when the time until the luminance of the light emitting element D76 reaches 75% of the initial luminance (luminance life) is 1.0. Indicates the relative value of.

Abstract

輝度寿命に優れる発光素子を提供する。 陽極と、陰極と、 陽極及び陰極の間に設けられ、式(C-1)で表される化合物を含有する第1の層と、 第1の層及び陰極の間に設けられ、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物から選ばれる少なくとも1種(第2の層の単体又は化合物)を含有する第2の層と、 第2の層及び陰極の間に陰極に接して設けられ、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物から選ばれる少なくとも1種(第3の層の単体又は化合物)を含有する第3の層とを有し、 第2の層の単体又は化合物の少なくとも1種と、第3の層の単体又は化合物の少なくとも1種とが互いに異なる、発光素子。[環R1C~環R4Cは芳香族炭化水素環等を、RCは炭素原子等を表す。]

Description

発光素子
 本発明は、発光素子に関する。
 有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することが可能である。例えば、特許文献1には、化合物(H0-1)を含有する発光層と、構成単位(E0)を含む高分子化合物を含有する電子輸送層と、フッ化ナトリウムを含有する電子注入層とを有する発光素子が記載されている。特許文献2には、化合物(H0-2)を含有する発光層と、フッ化リチウムを含有する電子注入層とを有する発光素子が記載されている。
Figure JPOXMLDOC01-appb-C000009
国際公開第2015/159932号 中国特許出願公開第102911145号明細書
 しかし、この発光素子は、輝度寿命が必ずしも十分ではなかった。そこで、本発明は、輝度寿命に優れる発光素子を提供することを目的とする。
 本発明は、以下の[1]~[13]を提供する。
[1]陽極と、陰極と、
 陽極及び陰極の間に設けられており、式(C-1)で表される化合物を含有する第1の層と、
 第1の層及び陰極の間に設けられており、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する第2の層と、
 第2の層及び陰極の間に陰極に接して設けられており、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する第3の層とを有する発光素子であって、
 第2の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、第3の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種とが互いに異なる、発光素子。
Figure JPOXMLDOC01-appb-C000010
[式中、
 環R1C、環R2C、環R3C及び環R4Cは、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 RCは、炭素原子、ケイ素原子、ゲルマニウム原子、スズ原子又は鉛原子を表す。]
[2]前記環R1C、前記環R2C、前記環R3C及び前記環R4Cのうちの少なくとも1つが、置換基として式(D-1)で表される基を有する、[1]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000011
[式中、
 環RDは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 XD1及びXD2は、それぞれ独立に、単結合、酸素原子、硫黄原子、-N(RXD1)-で表される基、又は、-C(RXD2)2-で表される基を表す。RXD1及びRXD2は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRXD2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 E1D、E2D及びE3Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
 R1D、R2D及びR3Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 E1Dが窒素原子の場合、R1Dは存在しない。E2Dが窒素原子の場合、R2Dは存在しない。E3Dが窒素原子の場合、R3Dは存在しない。
 R1DとR2Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R2DとR3Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R1DとRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R1DとRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
[3]前記式(D-1)で表される基が、式(D-2)で表される基である、[2]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000012
[式中、
 XD1、XD2、E1D、E2D、E3D、R1D、R2D及びR3Dは、前記と同じ意味を表す。
 E4D、E5D、E6D及びE7Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
 R4D、R5D、R6D及びR7Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 E4Dが窒素原子の場合、R4Dは存在しない。E5Dが窒素原子の場合、R5Dは存在しない。E6Dが窒素原子の場合、R6Dは存在しない。E7Dが窒素原子の場合、R7Dは存在しない。
 R4DとR5D、R5DとR6D、R6DとR7D、R4DとRXD1、R4DとRXD2、R7DとRXD1、及び、R7DとRXD2は、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[4]前記式(C-1)で表される化合物が、式(C-2)で表される化合物である、[1]~[3]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000013
[式中、
 RCは、前記と同じ意味を表す。
 E11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、それぞれ独立に、窒素原子又は炭素原子を表す。
 環R1C'、環R2C'、環R3C'及び環R4C'は、それぞれ独立に、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
 E11Cが窒素原子の場合、R11Cは存在しない。E12Cが窒素原子の場合、R12Cは存在しない。E13Cが窒素原子の場合、R13Cは存在しない。E14Cが窒素原子の場合、R14Cは存在しない。E21Cが窒素原子の場合、R21Cは存在しない。E22Cが窒素原子の場合、R22Cは存在しない。E23Cが窒素原子の場合、R23Cは存在しない。E24Cが窒素原子の場合、R24Cは存在しない。E31Cが窒素原子の場合、R31Cは存在しない。E32Cが窒素原子の場合、R32Cは存在しない。E33Cが窒素原子の場合、R33Cは存在しない。E34Cが窒素原子の場合、R34Cは存在しない。E41Cが窒素原子の場合、R41Cは存在しない。E42Cが窒素原子の場合、R42Cは存在しない。E43Cが窒素原子の場合、R43Cは存在しない。E44Cが窒素原子の場合、R44Cは存在しない。
 R11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
[5]前記式(C-2)で表される化合物が、式(C-3)で表される化合物である、[4]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000014
[式中、RC、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、前記と同じ意味を表す。]
[6]前記R11C、前記R12C、前記R14C、前記R21C、前記R22C、前記R24C、前記R31C、前記R32C、前記R34C、前記R41C、前記R42C及び前記R44Cのうちの少なくとも一つが、前記式(D-1)で表される基である、[4]又は[5]に記載の発光素子。
[7]前記第1の層が、更に燐光発光性化合物を含む、[1]~[6]のいずれかに記載の発光素子。
[8]前記燐光発光性化合物が、式(1)で表される燐光発光性化合物である、[7]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000015
[式中、
 Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 n1は1以上の整数を表し、n2は0以上の整数を表す。但し、Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1+n2は3であり、Mがパラジウム原子又は白金原子の場合、n1+n2は2である。
 E1及びE2は、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E1及びE2の少なくとも一方は炭素原子である。E1及びE2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 環L1は、置換基を有していてもよい芳香族複素環を表す。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L1が複数存在する場合、それらは同一でも異なっていてもよい。
 環L2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L2が複数存在する場合、それらは同一でも異なっていてもよい。
 環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 A1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
[9]前記式(1)で表される燐光発光性化合物が、式(1-A)で表される燐光発光性化合物又は式(1-B)で表される燐光発光性化合物である、[8]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000016
[式中、
 M、n1、n2、E1及びA1-G1-A2は、前記と同じ意味を表す。
 E11A、E12A、E13A、E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E11A、E12A、E13A、E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。E13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、アルケニル基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L1Aは、トリアゾール環又はジアゾール環を表す。
 環L2Aは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
Figure JPOXMLDOC01-appb-C000017
[式中、
 M、n1、n2及びA1-G1-A2は、前記と同じ意味を表す。
 E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、アルケニル基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 環L1Bは、ピリジン環又はジアザベンゼン環を表す。
 環L2Bは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
[10]前記第2の層が、前記アルカリ金属元素を含む化合物及び前記第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する層である、[1]~[9]のいずれかに記載の発光素子。
[11]前記第3の層が、前記アルカリ金属元素を含む化合物及び前記第2族元素のみからなる単体からなる群から選ばれる少なくとも1種を含有する層である、[1]~[10]のいずれかに記載の発光素子。
[12]前記第2の層と前記第3の層とが隣接している、[1]~[11]のいずれかに記載の発光素子。
[13]前記第1の層と前記第2の層とが隣接している、[1]~[12]のいずれかに記載の発光素子。
 本発明によれば、輝度寿命に優れる発光素子を提供することができる。
 以下、本発明の好適な実施形態について詳細に説明する。
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体及び燐光発光性化合物を表す式中、金属との結合を表す実線は、イオン結合、共有結合又は配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基)が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
[式中、R及びRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[式中、R及びRaは、前記と同じ意味を表す。]
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、架橋基A群の式(XL-1)~式(XL-17)で表される架橋基である。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000029
[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
 「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。置換基は架橋基であってもよい。
 <発光素子>
 [第1の層]
 本発明の発光素子が有する第1の層は、式(C-1)で表される化合物を含有する層である。
 [式(C-1)で表される化合物]
 式(C-1)で表される化合物の分子量は、好ましくは、2×102~5×104であり、より好ましくは、2×102~5×10であり、更に好ましくは3×102~3×103であり、特に好ましくは、4×102~1×103である。
 環R1C、環R2C、環R3C及び環R4Cで表される芳香族炭化水素環の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 環R1C、環R2C、環R3C及び環R4Cで表される芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、インデン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピレン環、クリセン環及びトリフェニレン環が挙げられ、好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環、スピロビフルオレン環、フェナントレン環又はジヒドロフェナントレン環であり、より好ましくはベンゼン環、ナフタレン環、フルオレン環又はスピロビフルオレン環であり、更に好ましくはベンゼン環であり、これらの環は置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cで表される芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、3~30であり、より好ましくは、4~15である。
 環R1C、環R2C、環R3C及び環R4Cで表される芳香族複素環としては、例えば、ピロール環、ジアゾール環、トリアゾール環、フラン環、チオフェン環、オキサジアゾール環、チアジアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、トリアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、ジベンゾホスホール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環及びジヒドロフェナジン環が挙げられ、好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、アザアントラセン環、ジアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環であり、より好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環又はカルバゾール環であり、更に好ましくは、ピリジン環又はジアザベンゼン環であり、これらの環は置換基を有していてもよい。
 本発明の発光素子の輝度寿命がより優れるので、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つが芳香族炭化水素環であることが好ましく、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも2つが芳香族炭化水素環であることがより好ましく、環R1C、環R2C、環R3C及び環R4Cのすべてが芳香族炭化水素環であることが更に好ましく、環R1C、環R2C、環R3C及び環R4Cのすべてがベンゼン環であることが特に好ましく、これらの環は置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アリール基又は1価の複素環基であり、特に好ましくは、1価の複素環基であり、これらの基は更に置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~25である。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、インデン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピレン環、クリセン環、トリフェニレン環又はこれらの環が縮合した環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基が挙げられ、好ましくは、ベンゼン環、ナフタレン環、フルオレン環、スピロビフルオレン環、フェナントレン環、ジヒドロフェナントレン環又はトリフェニレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ベンゼン環、フルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、更に好ましくはフルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、これらの基は更に置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、3~30であり、より好ましくは、3~15である。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基としては、例えば、ピロール環、ジアゾール環、トリアゾール環、フラン環、チオフェン環、オキサジアゾール環、チアジアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、トリアザフェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、ジベンゾシロール環、ジベンゾホスホール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環、ジヒドロフェナジン環又はこれらの環に芳香環が縮合した環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基が挙げられ、好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フェノキサジン環、フェノチアジン環、ジヒドロアクリジン環又はジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環又はジヒドロアクリジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、とりわけ好ましくは、ジベンゾフラン環又はジベンゾチオフェン環から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、これらの環は置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基であるアリール基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基である1価の複素環基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基の例及び好ましい範囲と同じである。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アリール基又は1価の複素環基がより好ましく、アルキル基又はアリール基が更に好ましく、アルキル基が特に好ましく、これらの基は更に置換基を有していてもよいが、これらの基は置換基を有さないことが好ましい。
 環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 RCは、本発明の発光素子の輝度寿命がより優れるので、好ましくは炭素原子、ケイ素原子又はゲルマニウム原子であり、より好ましくは炭素原子又はケイ素原子であり、更に好ましくは炭素原子である。
 本発明の発光素子の輝度寿命がより優れるので、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つは、置換基としてアリール基又は1価の複素環基を有することが好ましく、環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つは、置換基として式(D-1)で表される基を有することがより好ましく、これらの基は置換基を有していてもよい。
 環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つが、置換基としてアリール基又は1価の複素環基を有する場合、環R1C、環R2C、環R3C及び環R4Cが有するアリール基及び1価の複素環基の合計の個数は、好ましくは1~5個であり、より好ましくは、1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 環R1C、環R2C、環R3C及び環R4Cのうちの少なくとも1つが、置換基として式(D-1)で表される基を有する場合、環R1C、環R2C、環R3C及び環R4Cが有する式(D-1)で表される基の合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 ・式(D-1)で表される基
 環RDで表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cで表される芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲と同じである。
 環RDが有していてもよい置換基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 環RDは、本発明の発光素子の輝度寿命がより優れるので、芳香族炭化水素環であることが好ましく、ベンゼン環であることがより好ましい。
 XD1及びXD2は、本発明の発光素子の輝度寿命がより優れるので、好ましくは単結合、酸素原子、硫黄原子、又は、-C(RXD2)2-で表される基であり、より好ましくは、単結合、酸素原子又は硫黄原子であり、更に好ましくは、単結合、又は、硫黄原子であり、特に好ましくは、XD1及びXD2の一方が単結合であり、他方が硫黄原子である。
 XD1及びXD2のうち、少なくとも一方は、単結合であることが好ましく、XD2が単結合であることがより好ましい。
 RXD1は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アリール基又は1価の複素環基であり、更に好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
 RXD2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 RXD1及びRXD2で表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 XD1及びXD2で表される-C(RXD2)2-で表される基中の2個のRXD2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは、両方がアリール基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、更に好ましくは、両方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRXD2は互いに結合して、それぞれが結合する炭素原子と共に環を形成することが好ましい。RXD2が環を形成する場合、-C(RXD2)2-で表される基としては、好ましくは式(Y-A1)-式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000030
 RXD1及びRXD2が有していてもよい置換基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 E1D、E2D及びE3Dは、炭素原子であることが好ましい。
 R1D、R2D及びR3Dは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基又はアリール基であることがより好ましく、水素原子であることが更に好ましく、これらの基は更に置換基を有していてもよい。
 R1D、R2D及びR3Dで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R1D、R2D及びR3Dが有していてもよい置換基の例及び好ましい範囲は、RXD1及びRXD2が有していてもよい置換基の例及び好ましい範囲と同じである。
 R1DとR2D、R2DとR3D、R1DとRXD1、R1DとRXD2、RXD1と環RDが有していてもよい置換基、及び、RXD2と環RDが有していてもよい置換基は、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 式(D-1)で表される基は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、式(D-2)で表される基である。
 E4D、E5D、E6D及びE7Dは、炭素原子であることが好ましい。
 R4D、R5D、R6D及びR7Dの例及び好ましい範囲は、R1D、R2D及びR3Dの例及び好ましい範囲と同じである。
 R4D、R5D、R6D及びR7Dが有していてもよい置換基の例及び好ましい範囲は、R1D、R2D及びR3Dが有していてもよい置換基の例及び好ましい範囲と同じである。
 R4DとR5D、R5DとR6D、R6DとR7Dは互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 [式(C-2)で表される化合物]
 式(C-1)で表される化合物は、本発明の発光素子の輝度寿命がより優れるので、式(C-2)で表される化合物であることが好ましい。
 E11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、炭素原子であることが好ましい。
 環R1C'、環R2C'、環R3C'及び環R4C'は、好ましくはベンゼン環である。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アリール基又は1価の複素環基であることがより好ましく、水素原子又は式(D-1)で表される基であることが更に好ましく、これらの基は更に置換基を有していてもよい。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つは、アリール基又は1価の複素環基であることが好ましく、式(D-1)で表される基であることがより好ましく、これらの基は更に置換基を有していてもよい。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cが有していてもよい置換基の例及び好ましい範囲は、環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基である場合、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cがアリール基又は1価の複素環基である合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも1つが式(D-1)で表される基である場合、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cが式(D-1)で表される基である合計の個数は、好ましくは1~5個であり、より好ましくは1~3個であり、更に好ましくは1又は2個であり、特に好ましくは1個である。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基である場合、R11C、R12C、R14C、R21C、R22C、R24C、R31C、R32C、R34C、R41C、R42C及びR44Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが好ましく、R11C、R12C、R21C、R22C、R31C、R32C、R41C及びR42Cのうちの少なくとも一つがアリール基又は1価の複素環基であることがより好ましく、R11C、R12C、R21C及びR22Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが更に好ましく、R11C及びR12Cのうちの少なくとも一つがアリール基又は1価の複素環基であることが特に好ましく、これらの基は置換基を有していてもよい。
 R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cのうちの少なくとも一つが式(D-1)で表される基である場合、R11C、R12C、R14C、R21C、R22C、R24C、R31C、R32C、R34C、R41C、R42C及びR44Cのうちの少なくとも一つが式(D-1)で表される基であることが好ましく、R11C、R12C、R21C、R22C、R31C、R32C、R41C及びR42Cのうちの少なくとも一つが式(D-1)で表される基であることがより好ましく、R11C、R12C、R21C及びR22Cのうちの少なくとも一つが式(D-1)で表される基であることが更に好ましく、R11C及びR12Cのうちの少なくとも一つが式(D-1)で表される基であることが特に好ましく、R12Cが式(D-1)で表される基であることがとりわけ好ましい。
 R11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 [式(C-3)で表される化合物]
 式(C-2)で表される化合物は、本発明の発光素子の輝度寿命がより優れるので、式(C-3)で表される化合物であることが好ましい。
 式(C-1)で表される化合物としては、例えば、式(C-101)~式(C-137)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
[式中、Xは酸素原子又は硫黄原子を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
 Xは、硫黄原子であることが好ましい。
 式(C-1)で表される化合物は、例えば、Aldrich、Luminescence Technology Corp.から入手可能である。式(C-1)で表される化合物は、その他には、例えば、国際公開2014/023388号、国際公開2013/045408号、国際公開2013/045410号、国際公開2013/045411号、国際公開2012/048820号、国際公開2012/048819号、国際公開2011/006574号、「Organic Electronics vol.14、902-908(2013)」に記載されている方法に従って合成することができる。
 ・その他
 本発明の発光素子の輝度寿命がより優れるので、第1の層は、式(C-1)で表される化合物と、燐光発光性化合物とを含有する層であることが好ましい。
 第1の層には、式(C-1)で表される化合物が1種単独で含有されていてもよく、2種以上含有されていてもよい。また、第1の層が、式(C-1)で表される化合物と燐光発光性化合物とを含有する層である場合、燐光発光性化合物が1種単独で含有されていてもよく、2種以上含有されていてもよい。
 第1の層が、式(C-1)で表される化合物と燐光発光性化合物とを含有する層である場合、燐光発光性化合物の含有量は、燐光発光性化合物と式(C-1)で表される化合物との合計を100質量部とした場合、通常、0.01~95質量部であり、好ましくは0.1~70質量部であり、より好ましくは1~50質量部であり、更に好ましくは10~40質量部である。
第1の層が、式(C-1)で表される化合物と燐光発光性化合物とを含有する層である場合、式(C-1)で表される化合物は、本発明の発光素子の輝度寿命がより優れるので、正孔注入性、正孔輸送性、電子注入性及び電子輸送性から選ばれる少なくとも1つの機能を有するホスト材料であることが好ましい。
 第1の層が、式(C-1)で表される化合物と燐光発光性化合物とを含有する層である場合、式(C-1)で表される化合物の有する最低励起三重項状態(T1)は、本発明の発光素子の輝度寿命がより優れるので、第1の層に含有される燐光発光性化合物の有するT1と同等のエネルギー準位、又は、より高いエネルギー準位であることが好ましく、より高いエネルギー準位であることがより好ましい。
 燐光発光性化合物としては、本発明の発光素子を塗布法で作製できるので、第1の層に含有される式(C-1)で表される化合物を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。
 「燐光発光性化合物」は、通常、室温(25℃)で燐光発光性を示す化合物を意味するが、好ましくは、室温で三重項励起状態からの発光を示す金属錯体である。この三重項励起状態からの発光を示す金属錯体は、中心金属原子及び配位子を有する。
 中心金属原子としては、例えば、原子番号40以上の原子で、錯体にスピン-軌道相互作用があり、一重項状態と三重項状態との間の項間交差を起こし得る金属原子が挙げられる。金属原子としては、例えば、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子及び白金原子が挙げられ、本発明の発光素子の輝度寿命がより優れるので、好ましくはイリジウム原子又は白金原子である。
 配位子としては、例えば、中心金属原子との間に、配位結合及び共有結合からなる群から選ばれる少なくとも1種の結合を形成する、中性若しくはアニオン性の単座配位子、又は、中性若しくはアニオン性の多座配位子が挙げられる。中心金属原子と配位子との間の結合としては、例えば、金属-窒素結合、金属-炭素結合、金属-酸素結合、金属-リン結合、金属-硫黄結合及び金属-ハロゲン結合が挙げられる。多座配位子とは、通常、2座以上6座以下の配位子を意味する。
 ・式(1)で表される燐光発光性化合物
 燐光発光性化合物は、前記式(1)で表される燐光発光性化合物であることが好ましい。
 Mは、本発明の発光素子の輝度寿命がより優れるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
 Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1は2又は3であることが好ましく、3であることがより好ましい。
 Mがパラジウム原子又は白金原子の場合、n1は2であることが好ましい。
 E1及びE2は、炭素原子であることが好ましい。
 環L1は、5員の芳香族複素環又は6員の芳香族複素環であることが好ましく、2つ以上4つ以下の窒素原子を構成原子として有する5員の芳香族複素環又は1つ以上4つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることがより好ましく、2つ以上3つ以下の窒素原子を構成原子として有する5員の芳香族複素環又は1つ以上2つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることが更に好ましく、これらの環は置換基を有していてもよい。但し、環L1が6員の芳香族複素環である場合、E1は炭素原子であることが好ましい。
 環L1としては、例えば、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環及びジアザナフタレン環が挙げられ、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、キノリン環又はイソキノリン環が好ましく、ジアゾール環、トリアゾール環、ピリジン環、キノリン環又はイソキノリン環がより好ましく、ジアゾール環、トリアゾール環又はピリジン環が更に好ましく、ジアゾール環又はピリジン環が特に好ましく、これらの環は置換基を有していてもよい。
 環L2は、5員若しくは6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環であることが好ましく、6員の芳香族炭化水素環又は6員の芳香族複素環であることがより好ましく、6員の芳香族炭化水素環であることが更に好ましく、これらの環は置換基を有していてもよい。環R2が6員の芳香族複素環である場合、E2は炭素原子であることが好ましい。
 環L2としては、例えば、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、インデン環、ピリジン環、ジアザベンゼン環及びトリアジン環が挙げられ、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環又はジアザベンゼン環が好ましく、ベンゼン環、ピリジン環又はジアザベンゼン環がより好ましく、ベンゼン環が更に好ましく、これらの環は置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子がより好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基が更に好ましく、アリール基又は1価の複素環基が特に好ましく、アリール基がとりわけ好ましく、これらの基は更に置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基であるアリール基としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ジヒドロフェナントレニル基、フルオレニル基又はピレニル基が好ましく、フェニル基、ナフチル基又はフルオレニル基がより好ましく、フェニル基が更に好ましく、これらの基は更に置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基である1価の複素環基としては、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基が好ましく、ピリジル基、ピリミジニル基、トリアジニル基、カルバゾリル基、アザカルバゾリル基又はジアザカルバゾリル基がより好ましく、ピリジル基、ピリミジニル基又はトリアジニル基が更に好ましく、トリアジニル基が特に好ましく、これらの基は更に置換基を有していてもよい。
 環L1及び環L2が有していてもよい置換基である置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基におけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基における1価の複素環基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基における1価の複素環基の例及び好ましい範囲と同じである。
 環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基又はアリール基が更に好ましく、アルキル基又はシクロアルキル基が特に好ましく、これらの基は更に置換基を有していてもよいが、これらの基は更に置換基を有さないことが好ましい。
 環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基又は置換アミノ基は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、式(D-A)、式(D-B)又は式(D-C)で表される基であり、より好ましくは、式(D-A)又は式(D-C)で表される基である。
Figure JPOXMLDOC01-appb-C000039
[式中、
 mDA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000040
[式中、
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。複数あるGDAは、同一でも異なっていてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000041
[式中、
 mDA1は、0以上の整数を表す。
 ArDA1は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1が複数ある場合、それらは同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは2以下の整数であり、更に好ましくは0又は1である。mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、同一の整数であることが好ましく、mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、同一の整数であることがより好ましい。
 GDAは、好ましくは芳香族炭化水素基又は複素環基であり、より好ましくはベンゼン環、ピリジン環、ピリミジン環、トリアジン環又はカルバゾール環から環を構成する炭素原子又は窒素原子に直接結合する水素原子3個を除いてなる基であり、これらの基は置換基を有していてもよい。
 GDAが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、これらの基は更に置換基を有さないことが好ましい。
 GDAは、好ましくは式(GDA-11)~式(GDA-15)で表される基であり、より好ましくは式(GDA-11)~式(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は式(GDA-14)で表される基であり、特に好ましくは式(GDA-11)で表される基である。
Figure JPOXMLDOC01-appb-C000042
[式中、
 *は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、又は、式(D-B)におけるArDA3との結合を表す。
 **は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、又は、式(D-B)におけるArDA6との結合を表す。
 ***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、又は、式(D-B)におけるArDA7との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、好ましくは、フェニレン基、フルオレンジイル基又はカルバゾールジイル基であり、より好ましくは式(ArDA-1)~式(ArDA-5)で表される基であり、更に好ましくは式(ArDA-1)~式(ArDA-3)で表される基であり、特に好ましくは式(ArDA-1)又は式(ArDA-2)で表される基であり、とりわけ好ましくは式(ArDA-1)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000043
[式中、
 RDAは、前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
 RDBは、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6、ArDA7及びRDBが有していてもよい置換基の例及び好ましい範囲は、GDAが有していてもよい置換基の例及び好ましい範囲と同じである。
 TDAは、好ましくは式(TDA-1)~式(TDA-3)で表される基であり、より好ましくは式(TDA-1)で表される基である。
Figure JPOXMLDOC01-appb-C000044
[式中、RDA及びRDBは、前記と同じ意味を表す。]
 式(D-A)で表される基は、好ましくは式(D-A1)~式(D-A5)で表される基であり、より好ましくは式(D-A1)又は式(D-A3)~式(D-A5)で表される基であり、さらに好ましくは式(D-A1)又は式(D-A3)で表される基であり、特に好ましくは式(D-A1)で表される基である。
Figure JPOXMLDOC01-appb-C000045
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は、同一でも異なっていてもよい。]
 式(D-B)で表される基は、好ましくは式(D-B1)~式(D-B6)で表される基であり、より好ましくは式(D-B1)~式(D-B3)又は式(D-B5)で表される基であり、更に好ましくは式(D-B1)で表される基である。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 np1は0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は同一でも異なっていてもよい。複数あるnp2は、それらは同一でも異なっていてもよい。]
 式(D-C)で表される基は、好ましくは式(D-C1)~式(D-C4)で表される基であり、より好ましくは式(D-C1)又は式(D-C2)で表される基であり、更に好ましくは式(D-C2)で表される基である。
Figure JPOXMLDOC01-appb-C000048
[式中、
 Rp4、Rp5及びRp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp4、Rp5及びRp6が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np4は0~4の整数を表し、np5は0~5の整数を表し、np6は0~5の整数を表す。]
 np1は、好ましくは0~2の整数であり、より好ましくは0又は1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。np4は、好ましくは0~2の整数であり、より好ましくは0である。np5は、好ましくは0~3の整数であり、より好ましくは0又は1である。np6は、好ましくは0~2の整数であり、より好ましくは0又は1である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6で表されるアルキル基又はシクロアルキル基としては、好ましくは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、シクロヘキシル基又はtert-オクチル基である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6で表されるアルコキシ基又はシクロアルコキシ基としては、好ましくは、メトキシ基、2-エチルヘキシルオキシ基又はシクロへキシルオキシ基である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6は、好ましくは、置換基を有していてもよいアルキル基又は置換基を有していてもよいシクロアルキル基であり、より好ましくは、置換基を有していてもよいアルキル基であり、更に好ましくは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基である。
 環L1が有していてもよい置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
 環L2が有していてもよい置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
 環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
 [アニオン性の2座配位子]
 A1-G1-A2で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。但し、A1-G1-A2で表されるアニオン性の2座配位子は、添え字n1でその数を定義されている配位子とは異なる。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
[式中、
 *は、Mと結合する部位を表す。
 RL1は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRL1は、同一でも異なっていてもよい。
 RL2は、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
 RL1は、水素原子、アルキル基、シクロアルキル基、アリール基又はフッ素原子であることが好ましく、水素原子又はアルキル基であることがより好ましく、これらの基は置換基を有していてもよい。
 RL2は、アルキル基又はアリール基であることが好ましく、これらの基は置換基を有していてもよい。
 式(1)で表される燐光発光性化合物は、本発明の発光素子の輝度寿命がより優れるので、式(1-A)で表される燐光発光性化合物又は式(1-B)で表される燐光発光性化合物であることが好ましい。
 ・式(1-A)で表される燐光発光性化合物
 環L1Aがジアゾール環である場合、E11Aが窒素原子であるイミダゾール環、又は、E12Aが窒素原子であるイミダゾール環が好ましく、E11Aが窒素原子であるイミダゾール環がより好ましい。
 環L1Aがトリアゾール環である場合、E11A及びE12Aが窒素原子であるトリアゾール環、又は、E11A及びE13Aが窒素原子であるトリアゾール環が好ましく、E11A及びE13Aが窒素原子であるトリアゾール環がより好ましい。
 環L1Aはジアゾール環であることが好ましい。
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 E11Aが窒素原子であり、且つ、R11Aが存在する場合、R11Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E11Aが炭素原子である場合、R11Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 E12Aが窒素原子であり、且つ、R12Aが存在する場合、R12Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E12Aが炭素原子である場合、R12Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 E13Aが窒素原子であり、且つ、R13Aが存在する場合、R13Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E13Aが炭素原子である場合、R13Aは水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 環L1Aがジアゾール環である場合、環L1Aは、好ましくは、E11Aが窒素原子であり、且つ、R11Aが存在するイミダゾール環、又は、E12Aが窒素原子であり、且つ、R12Aが存在するイミダゾール環であり、より好ましくは、E11Aが窒素原子であり、且つ、R11Aが存在するイミダゾール環である。
 環L1Aがトリアゾール環である場合、環L1Aは、好ましくは、E11A及びE12Aが窒素原子であり、且つ、R11Aが存在しR12Aが存在しないトリアゾール環、又は、E11A及びE13Aが窒素原子であり、且つ、R11Aが存在しR13Aが存在しないトリアゾール環であり、より好ましくは、E11A及びE13Aが窒素原子であり、且つ、R11Aが存在しR13Aが存在しないトリアゾール環である。
 環L1Aがトリアゾール環である場合、R11A、R12A及びR13Aのうちの2つは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アルキル基又はアリール基であることがより好ましく、これらの基は置換基を有していてもよい。
 環L2Aがピリジン環である場合、環L2Aは、E21Aが窒素原子であるピリジン環、E22Aが窒素原子であるピリジン環、又は、E23Aが窒素原子であるピリジン環であることが好ましく、E22Aが窒素原子であるピリジン環であることがより好ましい。
 環L2Aがジアザベンゼン環である場合、環L2Aは、E22A及びE24Aが窒素原子であるピリミジン環、又は、E22A及びE24Aが窒素原子であるピリミジン環であることが好ましく、E22A及びE24Aが窒素原子であるピリミジン環であることがより好ましい。
 環L2Aは、ベンゼン環であることが好ましい。
 R21A、R22A、R23A及びR24Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基又は式(D-A)、式(D-B)若しくは式(D-C)で表される基であることが更に好ましく、水素原子又は式(D-A)で表される基であることが特に好ましく、水素原子であることがとりわけ好ましく、これらの基は置換基を有していてもよい。
 環L2Aがアリール基、1価の複素環基又は置換アミノ基を有する場合、R22A又はR23Aがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R22Aがアリール基、1価の複素環基又は置換アミノ基であることがより好ましい。
 R11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。
 式(1-A)で表される燐光発光性化合物は、本発明の発光素子の輝度寿命が更に優れるので、式(1-A1)~式(1-A5)で表される燐光発光性化合物であることが好ましく、式(1-A1)、式(1-A3)又は式(1-A4)で表される燐光発光性化合物であることがより好ましく、式(1-A3)又は式(1-A4)で表される燐光発光性化合物であることが更に好ましく、式(1-A4)で表される燐光発光性化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
[式中、M、n1、n2、R11A、R12A、R13A、R21A、R22A、R23A、R24A及びA1-G1-A2は、前記と同じ意味を表す。]
 ・式(1-B)で表される燐光発光性化合物
 環L1Bがジアザベンゼン環である場合、環L1Bは、E11Bが窒素原子であるピリミジン環、又は、E13Bが窒素原子であるピリミジン環であることが好ましく、E11Bが窒素原子であるピリミジン環であることがより好ましい。
 環L1Bは、ピリジン環であることが好ましい。
 環L2Bがピリジン環である場合、環L2Bは、E21Bが窒素原子であるピリジン環、E22Bが窒素原子であるピリジン環、又は、E23Bが窒素原子であるピリジン環であることが好ましく、E22Bが窒素原子であるであるピリジン環であることがより好ましい。
 環L2Bがジアザベンゼン環である場合、環L2Bは、E22B及びE24Bが窒素原子であるピリミジン環、又は、E21B及びE23Bが窒素原子であるピリミジン環であることが好ましく、E22B及びE24Bが窒素原子であるピリミジン環であることがより好ましい。
 環L2Bは、ベンゼン環であることが好ましい。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アルケニル基、1価の複素環基、置換アミノ基又はフッ素原子であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、アルケニル基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基、又は、式(D-A)、式(D-B)若しくは式(D-C)で表される基であることが更に好ましく、水素原子、又は、式(D-A)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
 環L1Bがアリール基、1価の複素環基又は置換アミノ基を有する場合、R11B、R12B又はR13Bがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R12B又はR13Bがアリール基、1価の複素環基又は置換アミノ基であることがより好ましく、R13Bがアリール基、1価の複素環基又は置換アミノ基であることが更に好ましい。
 環L2Bがアリール基、1価の複素環基又は置換アミノ基を有する場合、R22B又はR23Bがアリール基、1価の複素環基又は置換アミノ基であることが好ましく、R22Bがアリール基、1価の複素環基又は置換アミノ基であることがより好ましい。
 式(1-B)で表される燐光発光性化合物は、本発明の発光素子の輝度寿命が更に優れるので、式(1-B1)~式(1-B5)で表される燐光発光性化合物であることが好ましく、式(1-B1)~式(1-B3)で表される燐光発光性化合物であることがより好ましく、式(1-B1)で表される燐光発光性化合物又は式(1-B2)で表される燐光発光性化合物であることが更に好ましく、式(1-B1)で表される燐光発光性化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000054
[式中、
 M、n1、n2、A1-G1-A2、R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、前記と同じ意味を表す。
 n11及びn12は、それぞれ独立に、1以上の整数を表す。但し、Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n11+n12は3であり、Mがパラジウム原子又は白金原子の場合、n11+n12は2である。
 R15B、R16B、R17B及びR18Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、アルケニル基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R15B、R16B、R17B及びR18Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R13BとR15B、R15BとR16B、R16BとR17B、R17BとR18B、及び、R18BとR21Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
 R15B、R16B、R17B及びR18Bで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L1及び環L2が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R15B、R16B、R17B及びR18Bが有していてもよい置換基の例及び好ましい範囲は、環L1及び環L2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 R15B、R16B、R17B及びR18Bは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子、アリール基、アルケニル基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 燐光発光性化合物としては、例えば、下記式で表される燐光発光性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
 ・第1の組成物
 第1の層は、式(C-1)で表される化合物と、前記燐光発光性化合物、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「第1の組成物」ともいう。)を含有する層であってもよい。但し、第1の組成物に含有される正孔輸送材料、正孔注入材料、電子輸送材料及び電子注入材料は、式(C-1)で表される化合物とは異なり、第1の組成物に含有される発光材料は、式(C-1)で表される化合物とは異なり、燐光発光性化合物とは異なる。
 ・正孔輸送材料
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは高分子化合物である。正孔輸送材料は、架橋基を有していてもよい。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。
 第1の組成物において、正孔輸送材料の配合量は、式(C-1)で表される化合物を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
 ・電子輸送材料
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 第1の組成物において、電子輸送材料の配合量は、式(C-1)で表される化合物を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
 ・正孔注入材料及び電子注入材料
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 第1の組成物において、正孔注入材料及び電子注入材料の配合量は、各々、式(C-1)で表される化合物を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子注入材料及び正孔注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
 ・イオンドープ
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
 ・発光材料
 発光材料は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、及び、ペリレン及びその誘導体が挙げられる。
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、後述の式(X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。
 第1の組成物において、発光材料の配合量は、式(C-1)で表される化合物を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 発光材料は、一種単独で用いても二種以上を併用してもよい。
 ・酸化防止剤
 酸化防止剤は、式(C-1)で表される化合物と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 第1の組成物において、酸化防止剤の配合量は、式(C-1)で表される化合物を100質量部とした場合、通常、0.001~10質量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
 ・第1のインク
 式(C-1)で表される化合物は、例えば、溶媒に溶解させて用いることができる。式(C-1)で表される化合物と、溶媒とを含有する組成物(以下、「第1のインク」ともいう。)は、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の塗布法に好適に使用することができる。
 第1のインクの粘度は、塗布法の種類によって調整すればよいが、インクジェット印刷法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりが起こりづらいので、好ましくは25℃において1~20mPa・sである。
 第1のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。
 第1のインクにおいて、溶媒の配合量は、式(C-1)で表される化合物を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
 [第2の層及び第3の層に含有される単体又は化合物]
 本発明の発光素子が有する第2の層及び第3の層は、各々、アルカリ金属元素のみからなる単体、第2族(周期表第2族を意味し、本明細書において、同様である。)元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する層である。
 第2の層及び第3の層の各々において、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物は、それぞれ、1種単独で含有されていてもよく、2種以上含有されていてもよい。
 本発明の発光素子において、第2の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種(以下、「第2の層の単体又は化合物」とも言う)と、第3の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種(以下、「第3の層の単体又は化合物」とも言う)とは、互いに異なる(以下、「互いに異なる関係」と言う)。
 「互いに異なる関係」とは、第2の層が「第2の層の単体又は化合物」を1種のみ含有し、第3の層が「第3の層の単体又は化合物」を1種のみ含有する場合、第2の層の単体又は化合物と、第3の層の単体又は化合物とが、互いに異なることを意味する。
 また、「互いに異なる関係」とは、第2の層が「第2の層の単体又は化合物」を2種以上含有する場合、第3の層が「第3の層の単体又は化合物」を少なくとも1種を含有することを意味する。
 また、「互いに異なる関係」とは、第3の層が「第3の層の単体又は化合物」を2種以上含有する場合、第2の層が「第2の層の単体又は化合物」を少なくとも1種を含有することを意味する。
 「互いに異なる関係」は、本発明の発光素子の輝度寿命がより優れるので、第2の層に含有される「第2の層の単体又は化合物」の全成分と、第3の層に含有される「第3の層の単体又は化合物」の全成分とが、完全に同一ではないことが好ましく、第2の層に含有される「第2の層の単体又は化合物」のうちの1種が、第3の層に含有されないことがより好ましく、第2の層に含有される「第2の層の単体又は化合物」の全成分が、第3の層に含有されないことが更に好ましい。
 アルカリ金属元素のみからなる単体及びアルカリ金属元素を含む化合物において、アルカリ金属元素としては、本発明の発光素子の輝度寿命がより優れるので、好ましくはリチウム、ナトリウム、カリウム又はセシウムであり、より好ましくはリチウム、ナトリウム又はセシウムである。
 第2族元素のみからなる単体及び第2族元素を含む化合物において、第2族元素としては、本発明の発光素子の輝度寿命がより優れるので、好ましくはベリリウム、マグネシウム、カルシウム又はバリウムであり、より好ましくはカルシウム又はバリウムである。
 アルカリ金属元素を含む化合物は、アルカリ金属元素を含む高分子化合物であってもよく、アルカリ金属元素を含む低分子化合物であってもよいが、本発明の発光素子を塗布法で作製できるので、好ましくは、アルカリ金属元素を含む高分子化合物である。
 アルカリ金属元素を含む化合物は、アルカリ金属元素を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 第2族元素を含む化合物は、第2族元素を含む高分子化合物であってもよく、第2族元素を含む低分子化合物であってもよいが、本発明の発光素子の輝度寿命がより優れるので、好ましくは、第2族元素を含む低分子化合物である。
 第2族元素を含む化合物は、第2族元素を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 アルカリ金属元素を含む化合物及び第2族元素を含む化合物は、各々、単塩、複塩及び錯塩のいずれであってもよい。
 アルカリ金属元素を含む低分子化合物としては、例えば、アルカリ金属元素を含む金属錯体及びアルカリ金属元素を含む無機化合物が挙げられる。
 アルカリ金属元素を含む無機化合物としては、例えば、アルカリ金属ハロゲン化物、アルカリ金属酸化物、アルカリ金属水酸化物、アルカリ金属シアン化物、リン酸のアルカリ金属塩、炭酸のアルカリ金属塩、硫酸のアルカリ金属塩及び硝酸のアルカリ金属塩が挙げられ、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属ハロゲン化物、アルカリ金属酸化物、アルカリ金属水酸化物又は炭酸のアルカリ金属塩が好ましく、アルカリ金属ハロゲン化物、アルカリ金属酸化物又は炭酸のアルカリ金属塩がより好ましく、アルカリ金属ハロゲン化物が更に好ましく、これらの化合物は水和物であっても、無水和物であってもよい。
 アルカリ金属ハロゲン化物は、好ましくは、アルカリ金属フッ化物又はアルカリ金属塩化物であり、より好ましくはアルカリ金属フッ化物であり、これらの化合物は水和物であっても、無水和物であってもよい。また、アルカリ金属ハロゲン化物は、好ましくは、ハロゲン化リチウム、ハロゲン化ナトリウム、ハロゲン化カリウム又はハロゲン化セシウムであり、より好ましくはハロゲン化リチウム又はハロゲン化ナトリウムである。すなわち、アルカリ金属ハロゲン化物は、好ましくはフッ化リチウム、フッ化ナトリウム、フッ化カリウム又はフッ化セシウムであり、より好ましくはフッ化リチウム又はフッ化ナトリウムである。
 アルカリ金属酸化物は、好ましくは、酸化リチウム、酸化ナトリウム、酸化カリウム又は酸化セシウムであり、より好ましくは酸化リチウム又は酸化セシウムであり、更に好ましくは酸化リチウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
 アルカリ金属水酸化物は、好ましくは、水酸化リチウム、水酸化ナトリウム、水酸化カリウム又は水酸化セシウムであり、より好ましくは水酸化リチウム又は水酸化セシウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
 アルカリ金属シアン化物は、好ましくは、シアン化リチウム、シアン化ナトリウム、シアン化カリウム又はシアン化セシウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
 リン酸のアルカリ金属塩としては、例えば、リン酸三アルカリ金属塩、リン酸水素二アルカリ金属塩及びリン酸二水素アルカリ金属塩が挙げられ、好ましくはリン酸三アルカリ金属塩であり、これらの化合物は水和物であっても、無水和物であってもよい。リン酸三アルカリ金属塩としては、例えば、リン酸三リチウム、リン酸三ナトリウム、リン酸三カリウム及びリン酸三セシウムが挙げられ、好ましくはリン酸三リチウム又はリン酸三セシウムである。リン酸水素二アルカリ金属塩としては、例えば、リン酸水素二リチウム、リン酸水素二ナトリウム、リン酸水素二カリウム及びリン酸水素二セシウムが挙げらる。リン酸二水素アルカリ金属塩としては、例えば、リン酸二水素リチウム、リン酸二水素ナトリウム、リン酸二水素カリウム及びリン酸二水素セシウムが挙げらる。
 炭酸のアルカリ金属塩としては、例えば、アルカリ金属炭酸塩及びアルカリ金属炭酸水素塩が挙げられ、好ましくはアルカリ金属炭酸塩であり、これらの化合物は水和物であっても、無水和物であってもよい。アルカリ金属炭酸塩としては、好ましくは、炭酸リチウム、炭酸ナトリウム、炭酸カリウム又は炭酸セシウムであり、より好ましくは炭酸セシウムである。アルカリ金属炭酸水素塩としては、好ましくは、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム又は炭酸水素セシウムである。
 硫酸のアルカリ金属塩としては、アルカリ金属硫酸塩及びアルカリ金属硫酸水素塩が挙げられ、好ましくはアルカリ金属硫酸塩であり、これらの化合物は水和物であっても、無水和物であってもよい。アルカリ金属硫酸塩としては、例えば、硫酸リチウム、硫酸ナトリウム、硫酸カリウム及び硫酸セシウムが挙げられ、好ましくは硫酸ナトリウム又は硫酸カリウムである。アルカリ金属硫酸水素塩としては、例えば、硫酸水素リチウム、硫酸水素ナトリウム、硫酸水素カリウム又は硫酸水素セシウムが挙げらる。
 硝酸のアルカリ金属塩としては、例えば、硝酸リチウム、硝酸ナトリウム、硝酸カリウム及び硝酸セシウムが挙げられ、好ましくは硝酸ナトリウム又は硝酸カリウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
 第2族元素を含む低分子化合物としては、例えば、第2族元素を含む金属錯体及び第2族元素を含む無機化合物が挙げられる。
 第2族元素を含む無機化合物としては、例えば、第2族元素のハロゲン化物、第2族元素の酸化物、第2族元素の水酸化物、第2族元素のシアン化物、リン酸の第2族元素塩、炭酸の第2族元素塩、硫酸の第2族元素塩、及び、硝酸の第2族元素塩が挙げられ、本発明の発光素子の輝度寿命がより優れるので、第2族元素のハロゲン化物、第2族元素の酸化物、第2族元素水酸化物、又は、炭酸の第2族元素塩が好ましく、第2族元素のハロゲン化物、第2族元素の酸化物、又は、炭酸の第2族元素塩がより好ましく、これらの化合物は水和物であっても、無水和物であってもよい。
 第2族元素のハロゲン化物は、好ましくは、第2族元素のフッ化物又は第2族元素の塩化物であり、より好ましくは第2族元素のフッ化物であり、これらの化合物は水和物であっても、無水和物であってもよい。また、アルカリ金属ハロゲン化物は、好ましくは、ハロゲン化ベリリウム、ハロゲン化マグネシウム、ハロゲン化カルシウム又はハロゲン化バリウムであり、より好ましくはハロゲン化カルシウム又はハロゲン化バリウムである。すなわち、第2族元素のハロゲン化物は、好ましくは、フッ化ベリリウム、フッ化マグネシウム、フッ化カルシウム又はフッ化バリウムであり、より好ましくはフッ化カルシウム又はフッ化バリウムである。
 第2族元素の酸化物は、好ましくは、酸化ベリリウム、酸化マグネシウム、酸化カルシウム又は酸化バリウムであり、より好ましくは酸化カルシウム又は酸化バリウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
 第2族元素の水酸化物は、好ましくは、水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム又は水酸化バリウムであり、より好ましくは水酸化カルシウム又は水酸化バリウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
 第2族元素シアン化物としては、例えば、シアン化マグネシウム、シアン化カルシウム又はシアン化バリウムが挙げられ、これらの化合物は水和物であっても、無水和物であってもよい。
 リン酸の第2族元素塩としては、例えば、第2族元素のリン酸塩、第2族元素のリン酸水素塩及び第2族元素のリン酸二水素塩が挙げられ、好ましく第2族元素のリン酸塩であり、これらの化合物は水和物であっても、無水和物であってもよい。第2族元素のリン酸塩は、好ましくはリン酸カルシウム又はリン酸バリウムである。第2族元素のリン酸水素塩としては、例えば、リン酸水素カルシウム及びリン酸水素バリウムが挙げらる。第2族元素のリン酸二水素塩としては、例えば、リン酸二水素カルシウム及びリン酸水素バリウムが挙げらる。
 炭酸の第2族元素塩としては、例えば、第2族元素の炭酸塩及び第2族元素の炭酸水素塩が挙げられ、好ましくは第2族元素の炭酸塩であり、これらの化合物は水和物であっても、無水和物であってもよい。第2族元素の炭酸塩としては、例えば、炭酸ベリリウム、炭酸マグネシウム、炭酸カルシウム又は炭酸バリウムが挙げられ、好ましくは炭酸カルシウム又は炭酸バリウムである。第2族元素の炭酸水素塩としては、例えば、炭酸水素ベリリウム、炭酸水素マグネシウム、炭酸水素カルシウム又は炭酸水素バリウムが挙げられ、好ましくは炭酸水素カルシウム又は炭酸水素バリウムである。
 硫酸の第2族元素塩としては、第2族元素の硫酸塩及び第2族元素の硫酸水素塩が挙げられ、好ましくは第2族元素の硫酸塩であり、これらの化合物は水和物であっても、無水和物であってもよい。第2族元素の硫酸塩としては、例えば、硫酸ベリリウム、硫酸マグネシウム、硫酸カルシウム又は硫酸バリウムが挙げられ、好ましくは硫酸カルシウム又は硫酸バリウムである。第2族元素の硫酸水素塩としては、例えば、硫酸ベリリウム、硫酸マグネシウム、硫酸カルシウム又は硫酸バリウムが挙げらる。
 硝酸の第2族元素塩としては、例えば、硝酸ベリリウム、硝酸マグネシウム、硝酸カルシウム又は硝酸バリウムが挙げられ、好ましくは硝酸カルシウム又は硝酸バリウムであり、これらの化合物は水和物であっても、無水和物であってもよい。
 アルカリ金属元素を含む金属錯体は、少なくとも1つの有機配位子を有し、この有機配位子とアルカリ金属原子との間に、イオン結合、配位結合及び共有結合からなる群から選ばれる少なくとも1種の結合を形成している金属錯体である。
 第2族元素を含む金属錯体は、少なくとも1つの有機配位子を有し、この有機配位子と周期表第2族の金属原子との間に、イオン結合、配位結合及び共有結合からなる群から選ばれる少なくとも1種の結合を形成している金属錯体である。
 アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体は、各々、ハロゲン化物イオン、水酸化物イオン、シアン化物イオン、リン酸イオン、炭酸イオン、炭酸水素イオン、硫酸イオン及び硝酸イオン等の無機配位子を更に有していてもよい。
 アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体が有機配位子を複数有する場合、それらは同一でも異なっていてもよい。
 アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体が無機配位子を複数有する場合、それらは同一でも異なっていてもよい。
 アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体は、各々、水和物であっても、無水和物であってもよい。
 アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体が有する有機配位子としては、アルカリ金属原子又は周期表第2族の金属原子との間に、イオン結合、配位結合及び共有結合からなる群から選ばれる少なくとも1種の結合を形成する、中性若しくはアニオン性の単座配位子、又は、中性若しくはアニオン性の多座配位子が挙げられる。アルカリ金属原子又は周期表第2族の金属原子と配位子との間の結合としては、例えば、金属-窒素結合、金属-酸素結合、金属-リン結合、及び、金属-硫黄結合が挙げられ、好ましくは、金属-窒素結合、金属-酸素結合又は金属-硫黄結合であり、より好ましくは金属-窒素結合又は金属-酸素結合である。多座配位子は、通常、2座以上6座以下の配位子であり、好ましくは2座以上4座以下の配位子であり、より好ましくは2座配位子である。
 アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体が有する有機配位子は、好ましくは単座以上4座以下の配位子であり、より好ましくは単座配位子又は2座配位子であり、更に好ましくは2座配位子である。
 アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体は、有機配位子のみからなる金属錯体であることが好ましい。すなわち、アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体は、無機配位子を有さないことが好ましい。
 アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体が有する有機配位子としては、例えば、ピリジン、ビピリジン、キノリン、イソキノリン、フェナントロリン及びアゾール等の含窒素複素環式化合物;酢酸、安息香酸、ピコリン酸、ヒドロキシキノリン、アセチルアセトン、フェノール、チオフェノール、メタノール等の有機ブレンステッド酸の共役塩基;並びに、クラウンエーテル、クリプタント、アザクラウンエーテル及びフタロシアニン等の複素環式大環状化合物が挙げられる。
 アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体は、本発明の発光素子の輝度寿命がより優れるので、式(S-1)で表される化合物であることが好ましい。すなわち、アルカリ金属元素を含む金属錯体は、式(S-1)で表される化合物であり、且つ、MES1がアルカリ金属原子であることが好ましい。また、第2族元素を含む金属錯体は、式(S-1)で表される化合物であり、且つ、MES1が周期表第2族の金属原子であることが好ましい。
 なお、式(S-1)で表される化合物は水和物であっても、無水和物であってもよい。
Figure JPOXMLDOC01-appb-C000066
[式中、
 MES1は、アルカリ金属原子又は周期表第2族の金属原子を表す。
 MES1がアルカリ金属原子である場合、nES1は1であり、MES2が周期表第2族の金属原子である場合、nES1は2である。
 AES1は、-XES1-、-(XES2=)C-XES1-、-(XES2=)2S-XES1-、-(XES2=)S-XES1-又は-(XES2=)P-XES1-で表される基を表す。AES1が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。XES1は、酸素原子、硫黄原子又は-N(RES2)-で表される基を表す。XES2は、酸素原子、硫黄原子又は=N(RES3)で表される基を表す。XES2が複数存在する場合、それらは同一でも異なっていてもよい。RES2及びRES3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
 GES1は、単結合又は2価の基を表す。GES1が複数存在する場合、それらは同一でも異なっていてもよい。
 RES1は、RES1'-(XES3=)C-で表される基、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。XES3は、酸素原子、硫黄原子又は=N(RES3)で表される基を表す。XES3が複数存在する場合、それらは同一でも異なっていてもよい。RES1'は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。RES3は前記と同じ意味を表す。
 MES1とRES1との間に化学結合が存在する場合、点線は実線を意味する。MES1とRES1との間に化学結合が存在しない場合、点線は存在しない。点線が複数存在する場合、それらは同一でも異なっていてもよい。]
 MES1で表されるアルカリ金属原子としては、本発明の発光素子の輝度寿命がより優れるので、好ましくは、リチウム原子、ナトリウム原子、カリウム原子又はセシウム原子であり、より好ましくは、リチウム原子、ナトリウム原子又はセシウム原子であり、更に好ましくは、リチウム原子又はナトリウム原子であり、特に好ましくはリチウム原子である。
 MES1で表される周期表第2族の金属原子としては、式(S-1)で表される化合物の合成が容易なので、好ましくは、ベリリウム原子、マグネシウム原子、カルシウム原子又はバリウム原子であり、より好ましくは、ベリリウム原子、カルシウム原子又はバリウム原子であり、更に好ましくはベリリウム原子である。
 MES1における周期表第2族の金属原子は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、ベリリウム原子、マグネシウム原子、カルシウム原子又はバリウム原子であり、より好ましくは、ベリリウム原子、カルシウム原子又はバリウム原子であり、更に好ましくは、ベリリウム原子である。
 MES1は、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属原子であることが好ましい。
 MES1は、本発明の発光素子の輝度寿命がより優れ、且つ、式(S-1)で表される化合物の合成が容易なので、好ましくは、リチウム原子、ナトリウム原子、セシウム原子、ベリリウム原子、カルシウム原子又はバリウム原子であり、より好ましくは、リチウム原子、ナトリウム原子、セシウム原子又はベリリウム原子である。
 AES1は、好ましくは、-XES1-、-(XES2=)C-XES1-、-(XES2=)2S-XES1-又は-(XES2=)P-XES1-で表される基であり、より好ましくは-XES1-又は-(XES2=)C-XES1-で表される基であり、更に好ましくは-XES1-で表される基である。
 XES1は、好ましくは酸素原子又は硫黄原子であり、より好ましくは酸素原子である。XES2は、好ましくは酸素原子又は硫黄原子であり、より好ましくは酸素原子である。
 RES2及びRES3は、好ましくは、アルキル基又はアリール基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 RES2及びRES3が有していてもよい置換基としては、式(S-1)で表される化合物の合成が容易なので、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はフッ素原子であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよい。
 RES2及びRES3が有していてもよい置換基であるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、後述のRES1で表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 GES1で表される2価の基としては、例えば、アルキレン基、シクロアルキレン基、アルケンジイル基、シクロアルケンジイル基、アルキンジイル基、シクロアルキンジイル基、アリーレン基、2価の複素環基、及び、これらの基が2~10個(好ましくは2~5個)直接結合した基が挙げられ、好ましくは、アルキレン基、アルケンジイル基、アリーレン基又は2価の複素環基であり、より好ましくはアルケンジイル基又はアリーレン基であり、これらの基は置換基を有していてもよい。
 GES1で表されるアルキレン基は、前述のアルキル基の炭素原子に直接結合する水素原子1個を除いた基であり、好ましくは、置換基を有していてもよいメチレン基である。
 GES1で表されるシクロアルキレン基は、前述のシクロアルキル基の炭素原子に直接結合する水素原子1個を除いた基である。
 GES1で表されるアルケンジイル基は、前述のアルケニル基の炭素原子に直接結合する水素原子1個を除いた基であり、好ましくは、置換基を有していてもよいビニリデン基又は置換基を有していてもよいビニレン基である。
 GES1で表されるシクロアルケンジイル基は、前述のシクロアルケニル基の炭素原子に直接結合する水素原子1個を除いた基である。
 GES1で表されるアルキンジイル基は、前述のアルキニル基の炭素原子に直接結合する水素原子1個を除いた基である。
 GES1で表されるシクロアルキンジイル基は、前述のシクロアルキニル基の炭素原子に直接結合する水素原子1個を除いた基である。
 GES1は、好ましくは、単結合、アルケンジイル基又はアリーレン基であり、より好ましくは、単結合、ビニレン基又はフェニレン基であり、更に好ましくは、単結合又はフェニレン基であり、特に好ましくは、単結合である。
 GES1が有していてもよい置換基の例及び好ましい範囲は、RES2及びRES3が有していてもよい置換基の例及び好ましい範囲と同じである。
 RES1は、好ましくは、RES1'-(XES3=)C-で表される基、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、RES1'-(XES3=)C-で表される基、アリール基又は1価の複素環基であり、更に好ましくは1価の複素環基であり、これらの基は置換基を有していてもよい。
 RES1で表されるアリール基及び置換アミノ基の例及び好ましい範囲は、それぞれ、前述の環L1及び環L2が有していてもよい置換基であるアリール基及び置換アミノ基の例及び好ましい範囲と同じである。
 RES1における1価の複素環基の例は、前述の環R1C、環R2C、環R3C及び環R4Cが有していてもよい置換基である1価の複素環基の例と同じである。RES1で表される1価の複素環基は、本発明の発光素子の輝度寿命がより優れるので、好ましくは、ベンゾジアゾール環、ベンゾトリアゾール環、ベンゾオキサジアゾール環、ベンゾチアジアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザアントラセン環、ジアザアントラセン環、トリアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環又はトリアザフェナントレン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、アザフェナントレン環、ジアザフェナントレン環又はトリアザフェナントレン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン環、アザナフタレン環又はアザフェナントレン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
 XES3は、好ましくは、酸素原子又は=N(RES3)で表される基であり、より好ましくは=N(RES3)で表される基である。
 RES1'は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、これらの基は置換基を有していてもよい。
 RES1及びRES1'が有していてもよい置換基の例及び好ましい範囲は、RES2及びRES3が有していてもよい置換基の例及び好ましい範囲と同じである。
 アルカリ金属元素を含む金属錯体及び第2族元素を含む金属錯体としては、例えば、下記式で表される化合物が挙げられ、これらの化合物は水和物であっても、無水和物であってもよい。
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
[式中、
 MS1はアルカリ金属原子を表す。MS2は周期表第2族の金属原子を表す。
 XS1は酸素原子又は硫黄原子を表す。XS1が複数存在する場合、それらは同一でも異なっていてもよい。]
 MS1は、好ましくは、リチウム原子、ナトリウム原子、カリウム原子又はセシウム原子であり、より好ましくはリチウム原子である。
 MS2は、ベリリウム原子、マグネシウム原子、カルシウム原子又はバリウム原子であり、好ましくはベリリウム原子である。
 XS1は、好ましくは酸素原子である。
 アルカリ金属元素を含む高分子化合物及び第2族元素を含む高分子化合物としては、本発明の発光素子の輝度寿命がより優れるので、式(ET-1)で表される構成単位を含む高分子化合物が好ましい。すなわち、アルカリ金属元素を含む高分子化合物は、式(ET-1)で表される構成単位を含む高分子化合物であり、且つ、式(ET-1)中のME1がアルカリ金属カチオンであることが好ましい。また、第2族元素を含む高分子化合物は、式(ET-1)で表される構成単位を含む高分子化合物であり、且つ、式(ET-1)中のME1が周期表第2族の金属カチオンであることが好ましい。
Figure JPOXMLDOC01-appb-C000070
[式中、
 nE1は、1以上の整数を表す。
 ArE1は、芳香族炭化水素基又は複素環基を表し、これらの基はRE1以外の置換基を有していてもよい。
 RE1は、式(ES-1)で表される基を表す。RE1が複数存在する場合、それらは同一でも異なっていてもよい。]
  -RE3-{(QE1nE3-YE1(ME1aE1(ZE1bE1mE1
  (ES-1)
[式中、
 nE3は0以上の整数を表し、aE1は1以上の整数を表し、bE1は0以上の整数を表し、mE1は1以上の整数を表す。nE3、aE1及びbE1が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、RE3が単結合である場合、mE1は1である。また、aE1及びbE1は、式(ES-1)で表される基の電荷が0となるように選択される。
 RE3は、単結合、炭化水素基、複素環基又はO-RE3’を表し(RE3’は、炭化水素基又は複素環基を表す。)、これらの基は置換基を有していてもよい。
 QE1は、アルキレン基、シクロアルキレン基、アリーレン基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。QE1が複数存在する場合、それらは同一でも異なっていてもよい。
 YE1は、CO2 -、SO3 -、SO2 -又はPO3 2-を表す。YE1が複数存在する場合、それらは同一でも異なっていてもよい。
 ME1は、アルカリ金属カチオン又は周期表第2族の金属カチオンを表す。ME1が複数存在する場合、それらは同一でも異なっていてもよい。
 ZE1は、F-、Cl-、Br-、I-、OH-、B(RE44 -、RE4SO3 -、RE4COO-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。RE4は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。ZE1が複数存在する場合、それらは同一でも異なっていてもよい。]
 nE1は、通常1~10の整数であり、好ましくは1~4の整数であり、より好ましくは1又は2である。
 ArE1で表される芳香族炭化水素基としては、例えば、前述のアリーレン基からnE1個の水素原子を除いた基が挙げられ、フェニレン基、ナフタレンジイル基、フルオレンジイル基又はフェナントレンジイル基から、環を構成する原子に直接結合する水素原子nE1個を除いた基が好ましく、フルオレンジイル基から、環を構成する原子に直接結合する水素原子nE1個を除いた基がより好ましく、これらの基はRE1以外の置換基を有していてもよい。
 ArE1で表される複素環基としては、例えば、前述の2価の複素環基からnE1個の水素原子を除いた基が挙げられ、カルバゾールジイル基から、環を構成する原子に直接結合する水素原子nE1個を除いた基が好ましく、RE1以外の置換基を有していてもよい。
 ArE1は、好ましくは、RE1以外の置換基を有していてもよい芳香族炭化水素基である。
 ArE1が有していてもよいRE1以外の置換基としては、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基、シクロアルキニル基、カルボキシル基及び式(ES-3)で表される基が挙げられ、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、又は、式(ES-3)で表される基であり、より好ましくは、より好ましくは、アルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
  -O-(Cn'2n'O)nx-Cm'2m'+1  (ES-3)
[式中、n'、m'及びnxは、それぞれ独立に、1以上の整数を表す。]
 nE3は、通常0~10の整数であり、式(ET-1)で表される構成単位を含む高分子化合物の合成が容易になるので、好ましくは0~8の整数であり、より好ましくは0~2の整数である。
 aE1は、通常1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1又は2である。
 bE1は、通常0~10の整数であり、好ましくは0~4の整数であり、より好ましくは0又は1である。
 mE1は、通常1~5の整数であり、式(ET-1)で表される構成単位を含む高分子化合物の合成が容易になるので、好ましくは1又は2であり、より好ましくは1である。
 RE3が-O-RE3’の場合、式(ES-1)で表される基は、下記式で表される基である。
  -O-RE3’-{(QE1nE3-YE1(ME1aE1(ZE1bE1mE1
 RE3及びRE3’において、炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、好ましくは1~20であり、より好ましくは1~10であり、更に好ましくは1~6である。
 RE3及びRE3’において、炭化水素基は、置換基を有していてもよい脂肪族炭化水素基であっても、置換基を有していてもよい芳香族炭化水素基であってもよい。
 RE3で表される炭化水素基は、式(ET-1)で表される構成単位を含む高分子化合物の電子輸送性が優れるので、置換基を有していてもよい芳香族炭化水素基であることが好ましい。
 RE3’で表される炭化水素基は、式(ET-1)で表される構成単位を含む高分子化合物の合成が容易になるので、置換基を有していてもよい脂肪族炭化水素基であることが好ましい。
 RE3及びRE3’における炭化水素基において、脂肪族炭化水素基は、例えば、前述のアルキル基の炭素原子に直接結合する水素原子mE1個を除いた基が挙げられ、この基は置換基を有していてもよい。
 RE3及びRE3’における炭化水素基において、芳香族炭化水素基は、例えば、前述のアリール基の炭素原子に直接結合する水素原子mE1個を除いた基が挙げられ、好ましくは、フェニル基の炭素原子に直接結合する水素原子mE1個を除いた基であり、これらの基は置換基を有していてもよい。
 RE3及びRE3’において、複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~20であり、より好ましくは3~15である。
 RE3及びRE3’において、複素環基は、式(ET-1)で表される構成単位を含む高分子化合物の合成が容易になるので、芳香族複素環基であることが好ましい。
 RE3及びRE3’において、複素環基は、例えば、前述の1価の複素環基の原子に直接結合する水素原子mE1個を除いた基が挙げられる。
 RE3は、本発明の発光素子の輝度寿命がより優れるので、好ましくは炭化水素基又は複素環基であり、より好ましくは芳香族炭化水素基又は芳香族複素環基であり、更に好ましくは芳香族炭化水素基であり、これらの基は置換基を有していてもよい。
 RE3’は、好ましくは炭化水素基であり、より好ましくは脂肪族炭化水素基であり、これらの基は置換基を有していてもよい。
 RE3及びRE3’が有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基及び式(ES-3)で表される基が好ましく、式(ES-3)で表される基がより好ましく、これらの基は更に置換基を有していてもよい。
 QE1としては、アルキレン基、アリーレン基又は酸素原子が好ましく、アルキレン基又は酸素原子がより好ましい。
 QE1におけるアルキレン基及びシクロアルキレン基の例及び好ましい範囲は、それぞれ、前述のGES1におけるアルキレン基及びシクロアルキレン基の例及び好ましい範囲と同じである。
 YE1としては、CO2 -、SO2 -又はPO3 2-が好ましく、CO2 -がより好ましい。
 ME1で表されるアルカリ金属カチオンとしては、例えば、Li+、Na+、K+、Rb+及びCs+が挙げられ、Li+、Na+、K+又はCs+が好ましく、Li+、Na+又はCs+がより好ましく、Cs+が更に好ましい。
 ME1で表される周期表第2族の金属カチオンとしては、例えば、Be2+、Mg2+、Ca2+、Sr2+、Ba2+が挙げられ、好ましくはBe2+、Mg2+、Ca2+又はBa2+であり、より好ましくはCa2+又はBa2+である。
 ME1は、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属カチオンである。
 ZE1としては、F-、Cl-、Br-、I-、OH-、B(RE44 -、RE4SO3 -、RE4COO-又はNO3 -が好ましく、F-、Cl-、Br-、I-、OH-、RE4SO3 -又はRE4COO-が好ましい。RE4としては、アルキル基が好ましい。
 式(ES-1)で表される基としては、例えば、下記式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
[式中、M+は、Li+、Na+、K+、又はCs+を表す。M+が複数存在する場合、それらは同一でも異なっていてもよい。]
 式(ET-1)で表される構成単位としては、例えば、下記式で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
 式(ET-1)で表される構成単位を含む高分子化合物は、本発明の発光素子の輝度寿命がより優れるので、更に、式(Y)で表される構成単位及び式(X)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含むことが好ましく、式(Y)で表される構成単位を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000084
[式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
 ArY1で表されるアリーレン基は、より好ましくは、式(A-1)、式(A-2)、式(A-6)-(A-10)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される2価の複素環基は、より好ましくは、式(AA-1)-(AA-4)、式(AA-10)-(AA-15)、式(AA-18)-(AA-21)、式(AA-33)又は式(AA-34)で表される基であり、更に好ましくは、式(AA-4)、式(AA-10)、式(AA-12)、式(AA-14)又は式(AA-33)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 「少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基」としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000085
[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RXXは、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 ArY1で表される基が有してもよい置換基は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-1)-(Y-10)で表される構成単位が挙げられ、発光素子の輝度寿命の観点からは、好ましくは式(Y-1)-(Y-3)で表される構成単位であり、電子輸送性の観点からは、好ましくは式(Y-4)-(Y-7)で表される構成単位であり、正孔輸送性の観点からは、好ましくは式(Y-8)-(Y-10)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000086
[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 式(Y-1)で表される構成単位は、好ましくは、式(Y-1')で表される構成単位である。
Figure JPOXMLDOC01-appb-C000087
[式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。]
 RY11は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000088
[式中、
 RY1は、前記と同じ意味を表す。
 XY1は、-C(RY2)2-、-C(RY2)=C(RY2)-又はC(RY2)2-C(RY2)2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基で他方がアリール基若しくは1価の複素環基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-で表される基としては、好ましくは式(Y-A1)-(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000089
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基もしくはシクロアルキル基、又は、一方がアルキル基もしくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-C(RY2)2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-C(RY2)2-で表される基は、好ましくは式(Y-B1)-(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000090
[式中、RY2は前記と同じ意味を表す。]
 式(Y-2)で表される構成単位は、式(Y-2')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000091
[式中、RY1及びXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000092
[式中、RY1及びXY1は前記と同じ意味を表す。]
 式(Y-3)で表される構成単位は、式(Y-3')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000093
[式中、RY11及びXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
[式中、RY1は前記と同じ意味を表す。RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y-4)で表される構成単位は、式(Y-4')で表される構成単位であることが好ましく、式(Y-6)で表される構成単位は、式(Y-6')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000096
[式中、RY1及びRY3は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000097
[式中、RY1は前記を同じ意味を表す。RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-101)-式(Y-121)で表されるアリーレン基からなる構成単位、式(Y-201)-式(Y-206)で表される2価の複素環基からなる構成単位、式(Y-300)-式(Y-304)で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基からなる構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、発光素子の輝度寿命がより優れるので、式(ET-1)で表される構成単位を含む高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは30~60モル%である。
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、発光素子の電荷輸送性が優れるので、式(ET-1)で表される構成単位を含む高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~30モル%であり、より好ましくは3~20モル%である。
 式(Y)で表される構成単位は、式(ET-1)で表される構成単位を含む高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
Figure JPOXMLDOC01-appb-C000107
[式中、
 aX1及びaX2は、それぞれ独立に、0以上の整数を表す。ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
 aX1は、発光素子の輝度寿命がより優れるので、好ましくは2以下であり、より好ましくは1である。
 aX2は、発光素子の輝度寿命がより優れるので、好ましくは2以下であり、より好ましくは0である。
 RX1、RX2及びRX3は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3で表されるアリーレン基は、より好ましくは式(A-1)又は式(A-9)で表される基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)又は式(AA-7)-(AA-26)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX2及びArX4で表されるアリーレン基としては、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)-(A-11)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArX2及びArX4で表される2価の複素環基のより好ましい範囲は、ArX1及びArX3で表される2価の複素環基のより好ましい範囲と同じである。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1及びArX3で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(Y)のArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
 ArX2及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 式(X)で表される構成単位は、好ましくは式(X-1)-(X-7)で表される構成単位であり、より好ましくは式(X-1)-(X-6)で表される構成単位であり、更に好ましくは式(X-3)-(X-6)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
[式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 式(X)で表される構成単位は、発光素子の輝度寿命がより優れるので、式(ET-1)で表される構成単位を含む高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは1~40モル%であり、更に好ましくは5~30モル%である。
 式(X)で表される構成単位としては、例えば、式(X1-1)-式(X1-11)で表される構成単位が挙げられ、好ましくは式(X1-3)-式(X1-10)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
 式(X)で表される構成単位は、式(ET-1)で表される構成単位を含む高分子化合物中に、1種のみ含まれていても、2種以上含まれていてもよい。
 式(ET-1)で表される構成単位を含む高分子化合物としては、例えば、高分子化合物P-1~P-14が挙げられる。ここで、「その他」の構成単位とは、式(ET-1)、式(X)及び式(Y)で表される構成単位以外の構成単位を意味する。
Figure JPOXMLDOC01-appb-T000117

[表中、p'、q'、r'、s'、t'及びu'は、各構成単位のモル比率を示す。p'+q'+r'+s'+t'+u'=100であり、かつ、100≧p'+q'+r'+s'+t'≧70である。]
 式(ET-1)で表される構成単位を含む高分子化合物は、例えば、特開2009-239279号公報、特開2012-033845号公報、特開2012-216821号公報、特開2012-216822号公報、特開2012-216815号公報に記載の方法に従って合成することができる。
 [第2の層]
 本発明の発光素子が有する第2の層は、輝度寿命がより優れるので、好ましくは、アルカリ金属元素を含む化合物及び第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する層であり、より好ましくはアルカリ金属元素を含む化合物を含有する層である。
 第2の層において、アルカリ金属元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属元素を含む金属錯体、アルカリ金属元素を含む無機化合物又はアルカリ金属元素を含む高分子化合物であることが好ましい。第2の層において、アルカリ金属元素を含む化合物は、本発明の発光素子を塗布法で作製できるので、アルカリ金属元素を含む高分子化合物であることが好ましい。
 第2の層において、第2族元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、第2族元素を含む金属錯体、第2族元素を含む無機化合物又は第2族元素を含む高分子化合物であることが好ましい。第2の層において、第2族元素を含む化合物は、本発明の発光素子を塗布法で作製できるので、第2族元素を含む高分子化合物であることが好ましい。
 本発明の発光素子の輝度寿命がより優れるので、第2の層は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、式(H-1)で表される化合物とを含む層(以下、「第2’の層」という。)であることが好ましい。
 第2’の層は、本発明の発光素子の輝度寿命が更に優れるので、好ましくは、アルカリ金属元素を含む化合物及び第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、式(H-1)で表される化合物とを含む層であり、より好ましくはアルカリ金属元素を含む化合物と、式(H-1)で表される化合物とを含む層である。
 第2’の層において、アルカリ金属元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属元素を含む金属錯体、アルカリ金属元素を含む無機化合物又はアルカリ金属元素を含む高分子化合物であることが好ましく、アルカリ金属元素を含む金属錯体であることがより好ましい。第2’の層において、第2族元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、第2族元素を含む金属錯体、第2族元素を含む無機化合物又は第2族元素を含む高分子化合物であることが好ましく、アルカリ金属元素を含む金属錯体であることがより好ましい。
 第2’の層は、式(H-1)で表される化合物を1種単独で含有していてもよく、2種以上を含有していてもよい。
 第2’の層において、式(H-1)で表される化合物の含有量は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物、並びに、式(H-1)で表される化合物の合計を100質量部とした場合、通常、1~99質量部であり、好ましくは10~95質量部であり、より好ましくは50~90質量部である。
Figure JPOXMLDOC01-appb-C000118
[式中、
 ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
 nH1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
 nH3は、0以上の整数を表す。
 LH1は、アリーレン基、2価の複素環基、又は、-[C(RH112]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 LH2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 ArH1及びArH2は、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、フリル基、ベンゾフリル基、ジベンゾフリル基、ピロリル基、インドリル基、アザインドリル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基であることが好ましく、フェニル基、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾチエニル基、ジベンゾフリル基、カルバゾリル基、アザカルバゾリル基又はジアザカルバゾリル基であることがより好ましく、アザカルバゾリル基又はジアザカルバゾリル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 ArH1及びArH2が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基がより好ましく、アルキル基又はシクロアルキル基が更に好ましく、これらの基は更に置換基を有していてもよい。
 nH1は、好ましくは1である。nH2は、好ましくは0である。
 nH3は、通常、0以上10以下の整数であり、好ましくは0以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1である。
 nH11は、好ましくは1以上5以下の整数であり、より好ましく1以上3以下の整数であり、更に好ましく1である。
 RH11は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 LH1は、アリーレン基又は2価の複素環基であることが好ましく、2価の複素環基がより好ましく、これらの基は置換基を有していてもよい。
 LH1におけるアリーレン基は、好ましくは、式(A-1)~式(A-3)又は式(A-8)~式(A-10)で表される基であり、より好ましくは式(A-1)、式(A-2)、式(A-8)又は式(A-9)で表される基であり、更に好ましくは式(A-1)又は式(A-2)で表される基である。
 LH1における2価の複素環基は、好ましくは、式(AA-1)~式(AA-6)、式(AA-10)~式(AA-21)又は式(AA-24)~式(AA-34)で表される基であり、より好ましくは、式(AA-1)~式(AA-4)、式(AA-10)~式(AA-15)又は式(AA-29)~式(AA-34)で表される基であり、更に好ましく式(AA-2)、式(AA-4)又は式(AA-10)~式(AA-15)で表される基であり、特に好ましくは、式(AA-12)又は式(AA-14)で表される基である。
 LH1が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、アルコキシ基、アリール基又は1価の複素環基がより好ましく、アルキル基、アリール基又は1価の複素環基が更に好ましく、アルキル基が特に好ましく、これらの基は更に置換基を有していてもよい。
 LH21は、単結合又はアリーレン基であることが好ましく、単結合であることがより好ましく、このアリーレン基は置換基を有していてもよい。
 LH21で表されるアリーレン基又は2価の複素環基の定義及び例は、LH1で表されるアリーレン基又は2価の複素環基の定義及び例と同様である。
 RH21は、アリール基又は1価の複素環基であることが好ましく、これらの基は置換基を有していてもよい。
 RH21で表されるアリール基及び1価の複素環基の定義及び例は、ArH1及びArH2で表されるアリール基及び1価の複素環基の定義及び例と同様である。
 RH21が有していてもよい置換基の定義及び例は、ArH1及びArH2が有していてもよい置換基の定義及び例と同様である。
 式(H-1)で表される化合物は、式(H-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000119
[式中、ArH1、ArH2、nH3及びLH1は、前記と同じ意味を表す。]
 式(H-1)で表される化合物としては、式(H-101)~式(H-121)で表される化合物が例示される。
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
 ・第2の組成物
 第2の層は、
 アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、
 式(H-1)で表される化合物、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「第2の組成物」ともいう。)を含有する層であってもよい。
 第2の組成物において、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、それぞれ、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、第2族元素を含む化合物、及び、式(H-1)で表される化合物とは異なる。
 第2の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲は、第1の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲と同じである。
 第2の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の配合量は、各々、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、1~10000質量部であり、好ましくは10~1000質量部であり、より好ましくは100~500質量部である。
 第2の組成物に含有される酸化防止剤の例及び好ましい範囲は、第1の組成物に含有される酸化防止剤の例及び好ましい範囲と同じである。第2の組成物において、酸化防止剤の配合量は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、0.001~10質量部である。
 [第2のインク]
 アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種の材料は、例えば、溶媒に溶解させて用いることができる。この材料と、溶媒とを含有する組成物(以下、「第2のインク」ともいう。)は、第1のインクの項で説明した塗布法に好適に使用することができる。第2のインクの粘度の好ましい範囲は、第1のインクの粘度の好ましい範囲と同じである。
 第2のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、下層(例えば、第1の層)の上に溶解性の差を利用して第2の層を積層できるので、水、アルコール、エーテル、エステル、ニトリル化合物、ニトロ化合物、フッ素化アルコール、チオール、スルフィド、スルホキシド、チオケトン、アミド、カルボン酸が好ましい。該溶媒の例としては、メタノール、エタノール、2-プロパノール、1-ブタノール、tert-ブチルアルコール、アセトニトリル、1,2-エタンジオール、N,N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ニトロメタン、炭酸プロピレン、ピリジン、二硫化炭素、及び、これらの溶媒の混合溶媒が挙げられる。混合溶媒を用いる場合、水、アルコール、エーテル、エステル、ニトリル化合物、ニトロ化合物、フッ素化アルコール、チオール、スルフィド、スルホキシド、チオケトン、アミド、カルボン酸等のうちの1種以上の溶媒と、塩素系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒及びケトン系溶媒のうちの1種以上の溶媒との混合溶媒であってもよい。
 第2のインクにおいて、溶媒の配合量は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
 [第3の層]
 本発明の発光素子が有する第3の層は、輝度寿命がより優れるので、アルカリ金属元素を含む化合物及び第2族元素のみからなる単体からなる群から選ばれる少なくとも1種を含有する層であることが好ましい。
 第3の層において、アルカリ金属元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、アルカリ金属元素を含む金属錯体、アルカリ金属元素を含む無機化合物又はアルカリ金属元素を含む高分子化合物であることが好ましく、アルカリ金属元素を含む金属錯体又はアルカリ金属元素を含む無機化合物であることがより好ましく、アルカリ金属元素を含む無機化合物であることが更に好ましい。
 第3の層において、第2族元素を含む化合物は、本発明の発光素子の輝度寿命がより優れるので、第2族元素を含む金属錯体、第2族元素を含む無機化合物又は第2族元素を含む高分子化合物であることが好ましく、第2族元素を含む金属錯体又は第2族元素を含む無機化合物であることがより好ましく、第2族元素を含む無機化合物であることが更に好ましい。
 第3の層は、
 アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、
 式(H-1)で表される化合物、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「第3の組成物」ともいう。)を含有する層であってもよい。
 第3の組成物において、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、それぞれ、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、第2族元素を含む化合物、及び、式(H-1)で表される化合物とは異なる。
 第3の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲は、第1の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲と同じである。
 第3の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の配合量は、各々、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、1~10000質量部であり、好ましくは10~1000質量部であり、より好ましくは100~500質量部である。
 第3の組成物に含有される酸化防止剤の例及び好ましい範囲は、第1の組成物に含有される酸化防止剤の例及び好ましい範囲と同じである。第3の組成物において、酸化防止剤の配合量は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、0.001~10質量部である。
 第3の層は、本発明の発光素子の輝度寿命が更に優れるので、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる1種又は2種以上のみからなる層であることが好ましく、アルカリ金属元素を含む化合物及び第2族元素のみからなる単体からなる群から選ばれる1種又は2種以上のみからなる層であることがより好ましい。
 また、第3の層は、本発明の発光素子を容易に製造できるので、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる1種以上5種以下のみからなる層であることが好ましく、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる1種以上3種以下のみからなる層であることが好ましく、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる1種のみからなる層であることが更に好ましい。
 [第3のインク]
 アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種の材料は、例えば、溶媒に溶解させて用いることができる。この材料と、溶媒とを含有する組成物(以下、「第3のインク」ともいう。)は、第1のインクの項で説明した塗布法に好適に使用することができる。第3のインクの粘度の好ましい範囲は、第1のインクの粘度の好ましい範囲と同じである。第3のインクに含有される溶媒の例及び好ましい範囲は、第1のインク又は第2のインクに含有される溶媒の例及び好ましい範囲と同じである。
 第3のインクにおいて、溶媒の配合量は、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物の合計を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
 [層構成]
 本発明の発光素子は、陽極と、陰極と、陽極及び陰極の間に設けられた第1の層と、第1の層及び陰極の間に設けられた第2の層と、第2の層及び陰極の間に前記陰極に接して設けられた第3の層とを有する。
 本発明の発光素子において、第2の層及び第3の層は、それぞれ、1層である。
 本発明の発光素子において、第1の層は2層以上設けられていてもよいが、本発明の発光素子の製造が容易になるので、1層であることが好ましい。
 本発明の発光素子は、陽極、陰極、第1の層、第2の層及び第3の層以外の層を有していてもよい。
 本発明の発光素子において、第1の層は、通常、発光層(以下、「第1の発光層」と言う。)である。
 本発明の発光素子において、第2の層は、好ましくは、発光層(第1の発光層とは別個の発光層であり、以下、「第2の発光層」と言う。)、電子輸送層又は電子注入層であり、より好ましくは電子輸送層又は電子注入層であり、更に好ましくは電子輸送層である。
 本発明の発光素子において、第3の層は、好ましくは、電子輸送層又は電子注入層であり、より好ましくは電子注入層ある。
 本発明の発光素子において、好ましくは、第1の層は発光層であり、第2の層は電子輸送層であり、且つ、第3の層は電子注入層である。
 本発明の発光素子において、第1の層と第2の層とは、本発明の発光素子の輝度寿命がより優れるので、隣接していることが好ましい。
 本発明の発光素子において、第2の層と第3の層とは、本発明の発光素子の輝度寿命がより優れるので、隣接していることが好ましい。
 本発明の発光素子において、第1の層と第2の層と第3の層とは、本発明の発光素子の輝度寿命が更に優れるので、隣接していることが好ましい。
 本発明の発光素子において、第2の層は、本発明の発光素子の輝度寿命がより優れるので、陰極及び第1の層の間に設けられた電子輸送層又は電子注入層であることが好ましく、陰極及び第1の層の間に設けられた電子輸送層であることがより好ましい。
 本発明の発光素子において、第3の層は、本発明の発光素子の輝度寿命がより優れるので、陰極及び第2の層の間に陰極に隣接して設けられた電子注入層であることが好ましい。
 本発明の発光素子は、輝度寿命がより優れるので、陽極と第1の層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましく、正孔注入層及び正孔輸送層の両方を更に有することがより好ましい。
 本発明の発光素子が陽極と第1の層との間に正孔注入層を有する場合、本発明の発光素子の輝度寿命がより優れるので、陽極と正孔注入層とは隣接していることが好ましい。本発明の発光素子が陽極と第1の層との間に正孔輸送層を有する場合、本発明の発光素子の輝度寿命がより優れるので、第1の層と正孔輸送層とは隣接していることが好ましい。本発明の発光素子が陽極と第1の層との間に正孔注入層及び正孔輸送層を有する場合、本発明の発光素子の輝度寿命がより優れるので、正孔注入層は、陽極と正孔輸送層との間に設けられた層であることが好ましく、陽極と正孔輸送層との間に、陽極又は正孔輸送層に隣接して設けられた層であることがより好ましく、陽極と正孔輸送層との間に、陽極及び正孔輸送層に隣接して設けられた層であることが更に好ましい。
 本発明の発光素子は、発光色を調整することできるので、第2の発光層を有することが好ましい。
 本発明の発光素子が第2の発光層を有する場合、輝度寿命がより優れるので、第1の発光層と第2の発光層とは隣接していることが好ましい。
 本発明の発光素子が第2の発光層を有する場合、輝度寿命がより優れるので、第2の発光層は、陽極及び第1の層の間に設けられた層であることが好ましく、陽極及び第1の層の間に、第1の層に隣接して設けられた層であることがより好ましい。
 本発明の発光素子が第2の発光層を有し、且つ、第2の発光層が陰極及び第1の層の間に設けられた層である場合、輝度寿命がより優れるので、陽極と第1の層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましく、正孔注入層及び正孔輸送層の両方を更に有することがより好ましい。
 本発明の発光素子が第2の発光層を有し、且つ、第2の発光層が陽極及び第1の層の間に設けられた層である場合、輝度寿命がより優れるので、陽極と第2の発光層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましく、正孔注入層を更に有することがより好ましい。
 本発明の発光素子が第2の発光層を有し、第2の発光層が陽極及び第1の層の間に設けられた層であり、且つ、陽極と第2の発光層との間に正孔注入層を有する場合、輝度寿命がより優れるので、正孔注入層は、陽極又は第2の発光層と隣接して設けられた層であることが好ましく、陽極と隣接して設けられた層であることが好ましい。本発明の発光素子が第2の発光層を有し、第2の発光層が陽極及び第1の層の間に設けられた層であり、且つ、陽極と第2の発光層との間に正孔輸送層を有する場合、輝度寿命がより優れるので、正孔輸送層は、陽極又は第2の発光層と隣接して設けられた層であることが好ましく、第2の発光層と隣接して設けられた層であることが好ましい。本発明の発光素子が第2の発光層を有し、第2の発光層が陽極及び第1の層の間に設けられた層であり、且つ、陽極と第2の発光層との間に正孔注入層及び正孔輸送層を有する場合、輝度寿命がより優れるので、正孔注入層は、陽極と正孔輸送層との間に設けられた層であることが好ましく、陽極と正孔輸送層との間に、陽極又は正孔輸送層に隣接して設けられた層であることがより好ましく、陽極と正孔輸送層との間に、陽極及び正孔輸送層に隣接して設けられた層であることが更に好ましい。
 本発明の発光素子の層構成としては、例えば、(D1)~(D9)で表される層構成が挙げられ、好ましくは、(D3)~(D6)で表される層構成である。本発明の発光素子は、通常、基板を有するが、基板上に陽極から積層されていてもよく、基板上に陰極から積層されていてもよい。
(D1)陽極/第1の発光層(第1の層)/第2の発光層(第2の層)/電子輸送層(第3の層)/陰極
(D2)陽極/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D3)陽極/正孔注入層/第2の発光層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D4)陽極/正孔輸送層/第2の発光層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D5)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D6)陽極/正孔注入層/正孔輸送層/第2の発光層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D7)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の層)/第2の発光層/電子輸送層(第2の層)/電子注入層(第3の層)/陰極
(D8)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子輸送層/電子注入層(第3の層)/陰極
(D9)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層/電子注入層(第3の層)/陰極
 (D1)~(D9)中、「/」は、その前後の層が隣接して積層していることを意味する。具体的には、「第1の発光層(第1の層)/電子輸送層(第2の層)/電子注入層(第3の層)」とは、第1の発光層(第1の層)と電子輸送層(第2の層)と電子注入層(第3の層)とが隣接して積層していることを意味する。
 本発明の発光素子において、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極は、それぞれ、必要に応じて、2層以上設けられていてもよいが、本発明の発光素子の製造が容易になるので、陽極、正孔注入層、正孔輸送層、電子輸送層、電子注入層及び陰極は、それぞれ、1層であることが好ましい。
 陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極の厚さは、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~150nmである。
 本発明の発光素子において、積層する層の順番、数、及び厚さは、発光素子の輝度寿命、駆動電圧及び素子寿命を勘案して調整すればよい。
 [第2の発光層]
 第2の発光層は、通常、第2の層又は発光材料を含有する層であり、好ましくは、発光材料を含有する層である。第2の発光層が発光材料を含有する層である場合、第2の発光層に含有される発光材料としては、例えば、前述の第1の組成物が含有していてもよい発光材料及び燐光発光性化合物が挙げられる。第2の発光層に含有される発光材料は、1種単独で含有されていてもよく、2種以上が含有されていてもよい。
 本発明の発光素子が第2の発光層を有し、且つ、第2の層が電子輸送層及び電子注入層ではない場合、第2の発光層は第2の層であることが好ましい。
 [正孔輸送層]
 正孔輸送層は、通常、正孔輸送材料を含有する層である。正孔輸送層が正孔輸送材料を含有する層である場合、正孔輸送材料としては、例えば、前述の第1の組成物が含有していてもよい正孔輸送材料が挙げられる。正孔輸送層に含有される正孔輸送材料は、1種単独で含有されていてもよく、2種以上が含有されていてもよい。
 [電子輸送層]
 電子輸送層は、通常、第2の層、第3の層又は電子輸送材料を含有する層であり、好ましくは第2の層又は第3の層であり、より好ましくは第2の層である。電子輸送層が電子輸送材料を含有する層である場合、電子輸送層に含有される電子輸送材料としては、例えば、前述の第1の組成物が含有していてもよい電子輸送材料が挙げられる。電子輸送層に含有される電子輸送材料は、1種単独で含有されていてもよく、2種以上が含有されていてもよい。
 本発明の発光素子が電子輸送層を有し、且つ、第2の層が第2の発光層及び電子注入層ではない場合、電子輸送層は第2の層であることが好ましい。
 本発明の発光素子が電子輸送層を有し、且つ、第3の層が電子注入層である場合、電子輸送層は第2の層であることが好ましい。
 本発明の発光素子が電子輸送層を有し、且つ、第3の層が電子注入層ではない場合、電子輸送層は第3の層であることが好ましい。
 本発明の発光素子が電子輸送層を有し、且つ、第2の層が第2の発光層である場合、電子輸送層は第3の層であることが好ましい。
 [正孔注入層及び電子注入層]
 正孔注入層は、通常、正孔注入材料を含有する層である。正孔注入層に含有される正孔注入材料としては、例えば、前述の第1の組成物が含有していてもよい正孔注入材料が挙げられる。正孔注入層に含有される正孔注入材料は、1種単独で含有されていてもよく、2種以上が含有されていてもよい。
 電子注入層は、通常、第2の層、第3の層又は電子注入材料を含有する層であり、好ましくは第2の層又は第3の層であり、より好ましくは第3の層である。電子注入層に含有される電子注入材料としては、例えば、前述の第1の組成物が含有していてもよい電子注入材料が挙げられる。電子注入層に含有される電子注入材料は、1種単独で含有されていてもよく、2種以上が含有されていてもよい。
 本発明の発光素子が電子注入層を有し、且つ、第2の層が第2の発光層及び電子輸送層ではない場合、電子注入層は第2の層であることが好ましい。
 本発明の発光素子が電子注入層を有し、且つ、第3の層が電子輸送層ではない場合、電子注入層は第3の層であることが好ましい。
 本発明の発光素子が電子注入層を有し、且つ、第2の層が第2の発光層又は電子輸送層である場合、電子注入層は第3の層であることが好ましい。
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板を使用する場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、インジウム-銀合金が挙げられる。
 本発明の発光素子において、陽極及び陰極の少なくとも一方は、通常、透明又は半透明であるが、陽極が透明又は半透明であることが好ましい。
 陽極及び陰極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及びラミネート法が挙げられる。
 [製造方法]
 本発明の発光素子において、第1の層、第2の層、第3の層、及び、その他の層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。第1の層、第2の層、第3の層、及び、その他の層は、上述した各種インク、各種材料を含むインクを用いて、前述の第1のインクの項で説明した塗布法により形成してもよいし、真空蒸着法等の乾式法により形成してもよい。
 第1の層を塗布法により形成する場合、第1のインクを用いることが好ましい。第1の層は、本発明の発光素子の製造が容易になるので、塗布法により形成することが好ましい。
 第2の層を塗布法により形成する場合、第2のインクを用いることが好ましい。第2の層は、本発明の発光素子の製造が容易になるので、塗布法により形成することが好ましい。
 第3の層を塗布法により形成する場合、第3のインクを用いることが好ましい。
 第3の層は、本発明の発光素子の輝度寿命がより優れるので、乾式法により形成することが好ましい。
 本実施形態の発光素子は、例えば、基板上に各層を順次積層することにより製造することができる。具体的には、基板上に陽極を設け、その上に正孔注入層、正孔輸送層等の層を設け、その上に発光層を設け、その上に電子輸送層、電子注入層等の層を設け、更にその上に、陰極を積層することにより、発光素子を製造することができる。他の製造方法としては、基板上に陰極を設け、その上に電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層等の層を設け、更にその上に、陽極を積層することにより、発光素子を製造することができる。更に他の製造方法としては、陽極または陽極上に各層を積層した陽極側基材と陰極または陰極上に各層を積層させた陰極側基材とを、対向させて接合することにより製造することができる。
 [用途]
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
 NMRは、下記の方法で測定した。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(JEOL RESONANCE製、商品名:JNM-ECZ400S/L1)を用いて測定した。
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、SUMIPAX ODS Z-CLUE(住化分析センター製、内径:4.6mm、長さ:250mm、粒径3μm)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
 本実施例において、化合物の発光スペクトルの最大ピーク波長は、分光光度計(日本分光株式会社製、FP-6500)により室温にて測定した。化合物をキシレンに、約0.8×10-4質量%の濃度で溶解させたキシレン溶液を試料として用いた。励起光としては、波長325nmのUV光を用いた。
 <合成例M1> 化合物M1~M9及び金属錯体RM1の合成
 化合物M1、M2及びM3は、国際公開第2013/146806号に記載の方法に従って合成した。
 化合物M4は、特開2012-33845号公報に記載の方法に従って合成した。
 化合物M5は、特開2010-189630号公報に記載の方法に従って合成した。
 化合物M6は特開2011―174062号公報に記載の方法に従って合成した。
 化合物M7は国際公開第2002/045184号に記載の方法に従って合成した。
 化合物M8は国際公開第2005/049546号に記載の方法に従って合成した
 化合物M9は特開2008-106241号公報に記載の方法に従って合成した。
 金属錯体RM1は、国際公開第2009/157424号に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
 <合成例HTL1> 高分子化合物HTL-1の合成
 反応容器内を不活性ガス雰囲気とした後、化合物M1(2.52g)、化合物M2(0.470g)、化合物M3(4.90g)、金属錯体RM1(0.530g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)及びトルエン(158mL)を加え、100℃に加熱した。その後、そこに、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、8時間還流させた。その後、そこに、フェニルボロン酸(116mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)を加え、15時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。得られた反応易を冷却した後、3.6質量%塩酸、2.5質量%アンモニア水、水でそれぞれ洗浄した。得られた溶液をメタノールに滴下したところ、沈殿が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-1を6.02g得た。高分子化合物HTL-1のMnは3.8×104であり、Mwは4.5×105であった。
 高分子化合物HTL-1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位と、金属錯体RM1から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。
 高分子化合物HTL-1の発光スペクトルは404nm及び600nmに極大波長を有し、高分子化合物HTL-1の発光スペクトルの最大ピーク波長は404nmであった。
 <合成例HTL2> 高分子化合物HTL-2の合成
 高分子化合物HTL-2は、化合物M6、化合物M7、化合物M8及び化合物M9を用いて、特開2011―174062号公報に記載の方法に従って合成した。高分子化合物HTL-2のMnは7.8×104であり、Mwは2.6×105であった。
 高分子化合物HTL-2は、仕込み原料の量から求めた理論値では、化合物M6から誘導される構成単位と、化合物M7から誘導される構成単位と、化合物M8から誘導される構成単位と、化合物M9から誘導される構成単位とが、50:12.5:30:7.5のモル比で構成される共重合体である。
 <合成例HTL3> 高分子化合物HTL-3の合成
 反応容器内を不活性ガス雰囲気とした後、化合物M1(0.800g)、化合物M2(0.149g)、化合物M3(1.66g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.4mg)及びトルエン(45mL)を加え、100℃に加熱した。その後、そこに、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、7時間還流させた。その後、そこに、2-エチルフェニルボロン酸(90mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、17.5時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。得られた反応液を冷却した後、3.6質量%塩酸、2.5質量%アンモニア水、水でそれぞれ洗浄した。得られた溶液をメタノールに滴下したところ、沈殿が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-1を1.64g得た。高分子化合物HTL-3のMnは3.5×104であり、Mwは2.2×105であった。
 高分子化合物HTL-3は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位とが、40:10:50のモル比で構成されてなる共重合体である。
 <合成例B1、B3、B4、G1~G4及びR1~R4> 燐光発光性化合物B1、B3、B4、G1~G4及びR1~R4の合成
 燐光発光性化合物B1は、国際公開第2006/121811号及び特開2013-048190号公報に記載の方法に準じて合成した。
 燐光発光性化合物B3は、国際公開第2016/185183号公報に記載の方法に準じて合成した。
 燐光発光性化合物B4は、国際公開第2006/121811号に記載の方法に準じて合成した。
 燐光発光性化合物G1は、国際公開第2009/131255号に記載の方法に準じて合成した。
 燐光発光性化合物G2は、特開2013-237789号公報に記載の方法に従って合成した。
 燐光発光性化合物G3及びG4は、特開2014-224101号公報に記載の方法に従って合成した。
 燐光発光性化合物R1は、特開2006-188673号公報に記載の方法に準じて合成した。
 燐光発光性化合物R2は、特開2008-179617号公報に記載の方法に従って合成した。
 燐光発光性化合物R3は、国際公開第2002/044189号に記載の方法に準じて合成した。
 燐光発光性化合物R4は、特開2011-105701号公報に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
 燐光発光性化合物B1の発光スペクトルの最大ピーク波長は471nmであった。
 燐光発光性化合物B3の発光スペクトルの最大ピーク波長は476nmであった。
 燐光発光性化合物B4の発光スペクトルの最大ピーク波長は469nmであった。
 燐光発光性化合物G1の発光スペクトルの最大ピーク波長は514nmであった。
 燐光発光性化合物G2の発光スペクトルの最大ピーク波長は508nmであった。
 燐光発光性化合物G3の発光スペクトルの最大ピーク波長は545nmであった。
 燐光発光性化合物G4の発光スペクトルの最大ピーク波長は514nmであった。
 燐光発光性化合物R1の発光スペクトルの最大ピーク波長は619nmであった。
 燐光発光性化合物R2の発光スペクトルの最大ピーク波長は594nmであった。
 燐光発光性化合物R3の発光スペクトルの最大ピーク波長は617nmであった。
 燐光発光性化合物R4の発光スペクトルの最大ピーク波長は611nmであった。
 <合成例B2> 燐光発光性化合物B2の合成
Figure JPOXMLDOC01-appb-C000133
 (化合物L2-3の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L2-1(21.4g)、トリエチルアミン(13.0mL)及びテトラヒドロフラン(300mL)を加え、0℃に冷却した。その後、そこへ、化合物L2-2(12.8mL)を滴下し、室温で16時間撹拌した。その後、そこへ、イオン交換水(100mL)を加えたところ、沈殿物が生じた。得られた沈殿物を含む反応液をろ過することにより、残渣L2-3-1及びろ液L2-3-2を得た。
 得られた残渣L2-3-1をトルエンで洗浄した後、減圧乾燥させることにより、固体L2-3’(24.5g)を得た。
 得られたろ液L2-3-2から水層を除去し、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮した後、トルエン及びヘプタンの混合溶媒で晶析を行った。得られた固体を減圧乾燥することにより、固体L2-3’’(3.9g)を得た。
 得られた固体L2-3’と固体L2-3’’とを合一した後、トルエン及びヘプタンの混合溶媒を用いて晶析した。得られた固体を減圧乾燥させることにより、化合物L2-3(27.8g、白色固体)を得た。化合物L2-3のHPLC面積百分率値は98.9%であった。
 化合物L2-3の分析結果は以下のとおりであった。
 H-NMR(600MHz,THF-d):δ(ppm)=7.57(d,2H),7.43(t,2H),7.35(s,2H),7.34(t,1H),6.82(brs,1H),3.08(septet,2H),1.73(q,2H),1.34(s,6H),1.25(d,12H),1.00(t,3H).
 (化合物L2-5の合成)
 化合物L2-5は、化合物L2-3(19.1g)、化合物L2-4(9.0g)、クロロベンゼン(150mL)、2-フルオロピリジン(5.15mL)及びトリフルオロメタンスルホン酸無水物(10.0mL)を用いて、Organic Letters,17巻,1184-1187頁,2015年に記載の方法に準じて合成した。
 化合物L2-5の分析結果は以下のとおりであった。
 H-NMR(600MHz,CDCl):δ(ppm)=7.68(d,2H),7.52(t,2H),7.50(s,2H),7.43(t,1H),7.26(s,1H),7.05-6.98(m,3H),2.53(septet,2H),2.15(s,3H),1.88(q,2H),1.28(d,6H),1.23(s,6H),0.89(t,3H),0.77(d,6H).
 (燐光発光性化合物B2の合成)
 反応容器内を窒素ガス雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(0.72g)、化合物L2-5(2.8g)及びペンタデカン(2mL)を加え、300℃で24時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(塩化メチレン及び酢酸エチルの混合溶媒)により精製し、次いで、アセトニトリル及びトルエンの混合溶媒、トルエン及びメタノールの混合溶媒、並びに、塩化メチレン及びアセトニトリルの混合溶媒を用いて順次晶析を行った。得られた固体を塩化メチレンで洗浄後、減圧乾燥させることにより、燐光発光性化合物B2(0.82g)を得た。燐光発光性化合物B2のHPLC面積百分率値は98.8%であった。
 燐光発光性化合物B2の分析結果は以下のとおりであった。
 H-NMR(600MHz,THF-d):δ(ppm)=7.74(d,6H),7.64(dd,6H),7.48(t,6H),7.38(t,3H),6.68(d,3H),6.30(d,3H),5.62(s,3H),2.94(septet,3H),2.37(septet,3H),1.75(s,9H),1.71-1.64(m,6H),1.34(d,9H),1.22-1.17(m,27H),0.98(d,9H),0.90(d,9H),0.81(d,9H).
 燐光発光性化合物B2の発光スペクトルの最大ピーク波長は474nmであった。
 <合成例B5> 燐光発光性化合物B5の合成
Figure JPOXMLDOC01-appb-C000134
 (化合物L5-2の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L5-1(50g)及びN-メチル-2-ピロリドン(200mL)を加え、0℃で撹拌した。その後、そこへ、N-メチル-2-ピロリドン(40mL)に溶解させた化合物L5-1’(40g)を滴下し、室温で18時間撹拌した。得られた反応液をイオン交換水(1.2L)に注いだところ、沈殿物が生じた。得られた沈殿物をろ取した後、1M塩酸水溶液、イオン交換水及びヘプタンで順次洗浄した。得られた固体を減圧乾燥させることにより、化合物L5-2(43g、白色固体)を得た。
 化合物L5-2の分析結果は以下のとおりであった。
 1H-NMR(600MHz、CDCl3)δ(ppm)=9.64(br,1H),8.90(br,1H),7.86(d,2H),7.56(t,1H),7.45(t,2H),7.02-7.08(m,3H),2.41(s,6H).
 (化合物L5-3の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L5-2(43g)及びトルエン(740mL)を加え、室温で撹拌した。その後、そこへ、五塩化リン(67g)を加えた後、110℃で21時間撹拌した。得られた反応液を室温まで冷却した後、氷水(500mL)に注ぎ、2時間撹拌した後、水層を除去した。得られた有機層をイオン交換水及び10質量%炭酸水素ナトリウム水溶液でそれぞれ洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、化合物L5-3(40g)を得た。
 (化合物L5-5の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L5-3(40g)、化合物L5-4(32g)及びキシレン(800mL)を加え、室温で撹拌した。その後、そこへ、p-トルエンスルホン酸(3g)を加え、120℃で116時間撹拌した。得られた反応液を室温まで冷却した後、イオン交換水(800mL)を加え、室温で1時間撹拌した。得られた反応液から水層を除去した後、得られた有機層を5質量%炭酸水素ナトリウム水溶液で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)及びシリカゲルカラムクロマトグラフィー(アセトニトリル及びテトラヒドロフラン)により順次精製することにより、化合物L4-5(1.3g、白色固体)を得た。化合物L5-5のHPLC面積百分率値は99.5%以上であった。上記操作を繰り返し行うことにより、必要量の化合物L4-5を得た。
 化合物L5-5の分析結果は以下のとおりであった。
 1H-NMR(600MHz、THF-d8)δ(ppm)=7.42(d,2H),7.30(t,1H),7.24(t,2H),7.15(t,1H),6.98(d,2H),6.85(s,2H),2.51(t,2H),2.07(s,6H),1.81(s,6H),1.56(m,2H),1.26-1.32(m,6H),0.88(t,3H).
 (燐光発光性化合物B5の合成)
 反応容器内を窒素ガス雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(0.6g)、化合物L5-5(2.0g)及びトリデカン(2mL)を加え、250℃で120時間攪拌した。得られた反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)により精製した後、塩化メチレン及びアセトニトリルの混合溶媒を用いて晶析を行った。得られた固体を減圧乾燥させることにより、燐光発光性化合物B5(0.6g、黄色固体)を得た。燐光発光性化合物B5のHPLC面積百分率値は99.2%であった。
 燐光発光性化合物B5の分析結果は以下のとおりであった。
 1H-NMR(600MHz、THF-d8)δ(ppm)=7.04-7.08(m, 6H),6.93(s,3H),6.92(s,3H),6.88(d,3H),6.84(d,3H),6.61(t,3H),6.43(t,3H),6.29(d,3H),2.57(t,6H),2.12(s,9H),1.95(s,9H),1.82(s,9H),1.70(s,9H),1.62(m,6H),1.28-1.36(m,18H),0.89(t,9H).
 燐光発光性化合物B5の発光スペクトルの最大ピーク波長は468nmであった。
 <合成例B6> 燐光発光性化合物B6の合成
Figure JPOXMLDOC01-appb-C000135
 (反応混合物L6-1’の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L6-1(50g)及び塩化チオニル(100mL)を加え、還流下で3時間撹拌した。得られた反応混合物を室温まで冷却した後、塩化チオニルを減圧留去することにより、反応混合物L6-1’を得た。
 (化合物L6-2の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L5-1(47g)及びテトラヒドロフラン(1L)を加え、0℃に冷却した。その後、そこへ、トリエチルアミン(54mL)を加え、0℃で45分間撹拌した。その後、そこへ、(反応混合物L6-1’の合成)で得られた反応混合物L6-1’(全量)を加え、室温で16時間撹拌した。得られた反応液をろ過した後、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を、酢酸エチル及びヘキサンの混合溶媒で洗浄した後、減圧乾燥させることにより、化合物L6-2(50g)を得た。化合物L6-2のHPLC面積百分率値は95.2%であった。上記操作を繰り返し行うことにより、必要量の化合物L6-2を得た。
 化合物L6-2の分析結果は以下のとおりであった。
 LC-MS(APCI,positive):m/z=263[M+H]+
 1H-NMR(300MHz,CDCl3):δ(ppm)=0.84(t,9H),1.64(q,6H),7.39-7.54(m,3H),7.81-7.84(m,2H),8.72-8.74(m,1H),9.66-9.68(m,1H).
 (化合物L6-3の合成)
 反応容器内を窒素ガス雰囲気とした後、化合物L6-2(58g)及びトルエン(600mL)を加え、室温で撹拌した。その後、そこへ、五塩化リン(92g)を加えた後、110℃で3時間撹拌した。得られた反応液を室温まで冷却した後、化合物L6-4(78.2g)及びp-トルエンスルホン酸(3g)を加え、130℃で4日間撹拌した。得られた反応液を室温まで冷却し、減圧濃縮した後、酢酸エチル(2L)を加え、10質量%炭酸水素ナトリウム水溶液で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(メタノール及びクロロホルムの混合溶媒)により精製した後、アセトニトリルを用いて晶析を行った後、減圧乾燥させることにより、化合物L6-3(6g)を得た。化合物L6-3のHPLC面積百分率値は99.1%であった。
 化合物L6-3の分析結果は以下のとおりであった。
 LC-MS(APCI,positive):m/z=404[M+H]+
 1H-NMR(400MHz,CDCl3):δ(ppm)=0.83(t,9H),1.34(s,9H),1.64(q,6H),1.96(s,6H),7.12(s,2H),7.20-7.23(m,2H),7.28-7.34(m,3H).
 (燐光発光性化合物B6の合成)
 反応容器内を窒素ガス雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(1.4g)、化合物L6-3(4.6g)及びペンタデカン(2mL)を加え、300℃で18時間撹拌した。得られた反応液を室温まで冷却し、トルエンに溶解させた後、減圧濃縮させることにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)により精製した後、アセトニトリル及びトルエンの混合溶媒を用いて晶析を行った。得られた固体を減圧乾燥させることにより、燐光発光性化合物B5(2.8g)を得た。燐光発光性化合物B6のHPLC面積百分率値は99.5%以上であった。
 燐光発光性化合物B6の分析結果は以下のとおりであった。
 1H-NMR(600MHz,THF-d8):δ(ppm)=7.30(s,6H),6.90(d,3H),6.44-6.48(m,3H),6.22-6.26(m,3H),5.77(d,3H),2.10(s,9H),1.89(s,9H),1.56(s,18H),1.38(s,27H),0.73(t,27H).
 燐光発光性化合物B6の発光スペクトルの最大ピーク波長は464nmであった。
 <化合物HM-1、化合物EM-1、化合物EM-3、化合物EM-4及び化合物EM-5の入手>
 化合物HM-1、化合物EM-1、化合物EM-3、化合物EM-4及び化合物EM-5は、Luminescence Technology社より購入した。
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
 <合成例HM-2> 化合物HM-2の合成
Figure JPOXMLDOC01-appb-C000138
 反応容器内を窒素ガス雰囲気とした後、化合物HM-2a(15.6g)、化合物HM-2b(10.3g)、トルエン(390mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.2g)及び20質量%水酸化テトラブチルアンモニウム水溶液(194g)を加え、90℃で4時間撹拌した。得られた反応液を室温まで冷却した後、セライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-2(15.2g)を得た。化合物HM-2のHPLC面積百分率値は99.5%以上であった。
 化合物HM-2の分析結果は以下のとおりであった。
 1H-NMR(CD2Cl2、400MHz):δ(ppm)=6.70-6.83(4H、m)、7.15(3H、t)、7.39(3H、t)、7.48(3H、t)、7.59(2H、t)、7.83-7.93(4H、m)、8.18-8.23(3H、m).
 <合成例HM-3> 化合物HM-3の合成
Figure JPOXMLDOC01-appb-C000139
 反応容器内を窒素ガス雰囲気とした後、化合物HM-3a(13.5g)、化合物HM-2b(8.9g)、トルエン(404mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.0g)及び20質量%水酸化テトラブチルアンモニウム水溶液(166g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、セライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)により精製し、更に、トルエン及びメタノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-3(10.5g)を得た。化合物HM-3のHPLC面積百分率値は99.5%以上であった。
 化合物HM-3の分析結果は以下のとおりであった。
 1H-NMR(CD2Cl2、400MHz):δ(ppm)=6.51(1H、d)、6.60(1H、d)、6.80(4H、m)、6.92(1H、t)、7.21(3H、m)、7.34(1H、d)、7.39-7.50(4H、m)、7.65(1H、d)、7.71(1H、t)、7.81(1H、d)、7.88(2H、d)、8.28-8.35(2H、m).
 <合成例HM-4> 化合物HM-4の合成
Figure JPOXMLDOC01-appb-C000140
 反応容器内を窒素ガス雰囲気とした後、化合物HM-4a(1.6g)、化合物HM-4b(1.3g)、キシレン(63mL)、酢酸パラジウム(II)(22mg)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(63mg)及びナトリウムtert-ブトキシド(1.9g)を加え、加熱還流下で54時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル及びセライトを敷いたろ過器でろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(ヘキサン及びクロロホルムの混合溶媒)により精製し、更に、クロロホルム及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-4(1.0g)を得た。化合物HM-4のHPLC面積百分率値は99.5%以上であった。
 化合物HM-4の分析結果は以下のとおりであった。
 1H-NMR(CD2Cl2、400MHz):δ(ppm)=7.08(4H、t)、7.34(6H、m)、7.47-7.57(12H、m)、8.02(2H、d)、8.12(2H、s)、8.22(4H、d).
 <合成例HM-5、化合物HM-6、化合物HM-8及び化合物HM-9> 化合物HM-5、化合物HM-6、化合物HM-8及び化合物HM-9の合成
 化合物HM-5は、国際公開第2014/023388号に記載の方法に準じて合成した。
 化合物HM-及6び化合物HM-8は、国際公開第2012/048820号に記載の方法に準じて合成した。
 化合物HM-9は、国際公開第2013/045411号に記載の方法に準じて合成した。
Figure JPOXMLDOC01-appb-C000141
 <合成例HM-7> 化合物HM-7の合成
Figure JPOXMLDOC01-appb-C000142
 反応容器内を窒素ガス雰囲気とした後、化合物HM-2a(1.64g)、化合物HM-7b(1.00g)、トルエン(40mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.24g)及び20質量%水酸化テトラブチルアンモニウム水溶液(20g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、トルエンを加え、イオン交換水で洗浄した。得られた有機層を無水硫酸マグネシウムで乾燥させた後、シリカゲル及びセライトを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-7(1.7g)を得た。化合物HM-7のHPLC面積百分率値は99.5%以上であった。
 化合物HM-7の分析結果は以下のとおりであった。
 H-NMR(CDCl、400MHz):δ(ppm)=8.36(d,1H),8.03-7.99(m,1H),7.98-7.93(m,2H),7.89-7.86(m,2H),7.70-7.60(m,3H),7.51-7.35(m,6H),7.17-7.12(m,3H),6.89(d,1H),6.86-6.82(m,2H),6.78(d,1H).
 <合成例HM-10> 化合物HM-10の合成
Figure JPOXMLDOC01-appb-C000143
 反応容器内を窒素ガス雰囲気とした後、化合物HM-10a(2.0g)、化合物HM-10b(1.2g)、トルエン(50mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.29g)及び20質量%水酸化テトラブチルアンモニウム水溶液(20g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、トルエン及びイオン交換水を加え、セライトを敷いたろ過器でろ過した。得られたろ液から水層を除去した後、得られた有機層をイオン交換水で洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液に活性炭を加えて、撹拌した後、セライト及びシリカゲルを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-10(1.9g)を得た。化合物HM-10のHPLC面積百分率値は99.5%以上であった。
 化合物HM-10の分析結果は以下のとおりであった。
 1H-NMR(CD2Cl2、400MHz):δ(ppm)= 6.65(1H、d)、6.74(2H、d)、7.01(1H、s)、7.12(3H、m)、7.28-7.53(8H、m)、7.73(1H、d)、7.87-7.99(6H、m).
 <合成例HM-11> 化合物HM-11の合成
Figure JPOXMLDOC01-appb-C000144
 反応容器内を窒素ガス雰囲気とした後、化合物HM-10a(5.0g)、化合物HM-11b(3.3g)、トルエン(125mL)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.73g)及び20質量%水酸化テトラブチルアンモニウム水溶液(49g)を加え、90℃で3時間撹拌した。得られた反応液を室温まで冷却した後、トルエン及びイオン交換水を加え、セライトを敷いたろ過器でろ過した。得られたろ液から水層を除去した後、得られた有機層をイオン交換水で洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液に活性炭を加えて、撹拌した後、セライト及びシリカゲルを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより、固体を得た。得られた固体をトルエン及び2-プロパノールの混合溶媒を用いて晶析した後、50℃で減圧乾燥させることにより、化合物HM-11(5.0g)を得た。化合物HM-11のHPLC面積百分率値は99.5%以上であった。
 化合物HM-11の分析結果は以下のとおりであった。
 H-NMR(CDCl,400MHz):δ(ppm)= 6.66(1H、d)、6.74(2H、d)、7.13(4H、m)、7.37-7.52(6H、m)、7.76-7.99(7H、m)、8.12(1H、d)、8.19(1H、s).
 <化合物EM-2> 化合物EM-2の合成
Figure JPOXMLDOC01-appb-C000145
 反応容器内を不活性ガス雰囲気とした後、化合物EM-2a(8.7g)、化合物EM-2b(8.1g)、ジメチルスルホキシド(218mL)、酸化銅(I)(Cu2O)(1.3g)、リン酸三カリウム(K3PO4)(16.7g)及びジピバロイルメタン(3.2g)を加え、150℃で10時間撹拌した。得られた反応液を室温まで冷却した後、トルエン及びイオン交換水を加え、セライトを敷いたグラスフィルターでろ過した。得られたろ液をイオン交換水で洗浄した後、得られた有機層を濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)により精製し、次いで、アセトニトリル及びトルエンの混合溶媒を用いて晶析を行った。得られた固体を50℃で減圧乾燥させることにより、化合物EM-2(8.0g)を得た。化合物EM-2のHPLC面積百分率値は99.5%以上であった。
 化合物EM-2の分析結果は以下のとおりであった。
 LC-MS(ESI,positive):m/z=573[M+H]+
 1H-NMR(400MHz,THF-d8):δ(ppm)=1.01(t,3H),1.58-1.68(m,2H),1.95-2.05(m,2H),3.14-3.19(m,2H),7.32-7.39(m,4H),7.49-7.57(m,4H),7.72(s,1H),7.79-7.88(m,3H),8.34-8.42(m,3H),8.55-8.68(m,4H).
 <合成例ETL1> 高分子化合物ETL-1の合成
 反応容器内を不活性ガス雰囲気とした後、化合物M4(9.23g)、化合物M5(4.58g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(8.6mg)、メチルトリオクチルアンモニウムクロライド(シグマアルドリッチ社製、商品名Aliquat336(登録商標))(0.098g)及びトルエン(175mL)を加え、105℃に加熱した。その後、そこに、12質量%炭酸ナトリウム水溶液(40.3mL)を滴下し、29時間還流させた。その後、そこに、フェニルボロン酸(0.47g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(8.7mg)を加え、14時間還流させた。その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却後、メタノールに滴下したところ、沈殿が生じた。得られた沈殿物をろ取し、メタノール、水でそれぞれ洗浄後、乾燥させた。得られた固体をクロロホルムに溶解させ、予めクロロホルムを通液したアルミナカラム及びシリカゲルカラムに順番に通すことにより精製した。得られた精製液をメタノールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物ETL-1a(7.15g)を得た。高分子化合物ETL-1aのMnは3.2×104、Mwは6.0×104であった。
 高分子化合物ETL-1aは、仕込み原料の量から求めた理論値では、化合物M4から誘導される構成単位と、化合物M5から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
 反応容器内をアルゴンガス雰囲気下とした後、高分子化合物ETL-1a(3.1g)、テトラヒドロフラン(130mL)、メタノール(66mL)、水酸化セシウム一水和物(2.1g)及び水(12.5mL)を加え、60℃で3時間撹拌した。その後、そこに、メタノール(220mL)を加え、2時間撹拌した。得られた反応混合物を濃縮した後、イソプロピルアルコールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物ETL-1(3.5g)を得た。高分子化合物ETL-1の1H-NMR解析により、高分子化合物ETL-1中のエチルエステル部位のシグナルが消失し、反応が完結したことを確認した。
 高分子化合物ETL-1は、高分子化合物ETL-1aの仕込み原料の量から求めた理論値では、下記式で表される構成単位と、化合物M5から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-C000146
 <実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(第2の発光層の形成)
 キシレンに高分子化合物HTL-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。この加熱により、高分子化合物HTL-1は、架橋体となった。
(第1の層の形成)
 トルエンに、化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物G1=74質量%/25質量%/1質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の層(第1の発光層)を形成した。
(第2の層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ETL-1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第2の層(電子輸送層)を形成した。
(第3の層の形成)
 第2の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上にフッ化ナトリウム(NaF)を4nm蒸着した。
(陰極の形成)
 第3の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、アルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(発光素子の評価)
 発光素子D1に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D2> 発光素子D2の作製と評価
 実施例D1において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-3」を用いた以外は、実施例D1と同様にして、発光素子D2を作製した。
 発光素子D2に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D3> 発光素子D3の作製と評価
 実施例D1において、(第3の層の形成)の「フッ化ナトリウム」に代えて、「バリウム(Ba)」を用いた以外は、実施例D1と同様にして、発光素子D3を作製した。
 発光素子D3に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D4> 発光素子D4の作製と評価
 実施例D2において、(第3の層の形成)の「フッ化ナトリウム」に代えて、「バリウム(Ba)」を用いた以外は、実施例D2と同様にして、発光素子D4を作製した。
 発光素子D4に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.42,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D5> 発光素子D5の作製と評価
 実施例D1において、(第3の層の形成)の「フッ化ナトリウム(NaF)を4nm蒸着した。」に代えて、「カルシウム(Ca)を5nm蒸着した」とする以外は、実施例D1と同様にして、発光素子D5を作製した。
 発光素子D5に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D6> 発光素子D6の作製と評価
 実施例D2において、(第3の層の形成)の「フッ化ナトリウム(NaF)を4nm蒸着した。」に代えて、「カルシウムを5nm蒸着した」とする以外は、実施例D2と同様にして、発光素子D6を作製した。
 発光素子D6に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.42,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD1> 発光素子CD1の作製と評価
 実施例D1において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-1」を用いた以外は、実施例D1と同様にして、発光素子CD1を作製した。
 発光素子CD1に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD2> 発光素子CD2の作製と評価
 比較例CD1において、(第3の層の形成)の「フッ化ナトリウム」に代えて、「バリウム(Ba)」を用いた以外は、比較例CD1と同様にして、発光素子CD2を作製した。
 発光素子CD2に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD3> 発光素子CD3の作製と評価
 比較例CD1において、(第3の層の形成)の「フッ化ナトリウム(NaF)を4nm蒸着した。」に代えて、「カルシウム(Ca)を5nm蒸着した」とする以外は、実施例D1と同様にして、発光素子CD3を作製した。
 発光素子CD3に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD4> 発光素子CD4の作製と評価
 実施例D2において、(第2の層の形成)を行わなかった以外は、実施例D2と同様にして、発光素子CD4を作製した。
 発光素子CD4に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD5> 発光素子CD5の作製と評価
 実施例D4において、(第2の層の形成)を行わなかった以外は、実施例D4と同様にして、発光素子CD5を作製した。
 発光素子CD5に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD6> 発光素子CD6の作製と評価
 実施例D6において、(第2の層の形成)を行わなかった以外は、実施例D6と同様にして、発光素子CD6を作製した。
 発光素子CD6に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.36,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 実施例D1~D6及び比較例CD1~CD6の結果を表2に示す。発光素子CD1の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1.0としたときの発光素子D1~D6及び発光素子CD2~CD6の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000147
 <実施例D7> 発光素子D7の作製と評価
 実施例D1において、(第3の層の形成)の「フッ化ナトリウム(NaF)を4nm蒸着した。」に代えて、「フッ化リチウム(LiF)を1.8nm蒸着した。」とする以外は、実施例D1と同様にして、発光素子D7を作製した。
 発光素子D7に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D8> 発光素子D8の作製と評価
 実施例D2において、(第3の層の形成)の「フッ化ナトリウム(NaF)を4nm蒸着した。」に代えて、「フッ化リチウム(LiF)を1.8nm蒸着した。」とする以外は、実施例D2と同様にして、発光素子D8を作製した。
 発光素子D8に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.41,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D9> 発光素子D9の作製と評価
 実施例D7において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-4」を用いた以外は、実施例D7と同様にして、発光素子D9を作製した。
 発光素子D9に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.50)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D10> 発光素子D10の作製と評価
 実施例D1の(第2の層の形成)を下記(第2の層の形成-D10)に変更し、更に、実施例D1の(第3の層の形成)を下記(第3の層の形成-D10)に変更したこと以外は、実施例D1と同様にして、発光素子D10を作製した。
(第2の層の形成-D10)
 第1の層を形成した基板を蒸着機内において1.0×10-4Pa以下にまで減圧した後、第2の層(電子輸送層)として、第1の層の上にフッ化ナトリウムを4nm蒸着した。
(第3の層の形成-D10)
 第2の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上にバリウムを1nm蒸着した。
 発光素子D10に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.49)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D11> 発光素子D11の作製と評価
 実施例D10において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-3」を用いた以外は、実施例D10と同様にして、発光素子D11を作製した。
 発光素子D11に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.48)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D12> 発光素子D12の作製と評価
 実施例D10において、(第2の層の形成-D10)の「フッ化ナトリウムを4nm蒸着した。」に代えて、「フッ化リチウムを1.8nm蒸着した。」とし、更に、(第3の層の形成-D10)の「バリウムを1nm蒸着した。」に代えて、「カルシウムを5nm蒸着した。」とする以外は、実施例D10と同様にして、発光素子D12を作製した。
 発光素子D12に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.39,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D13> 発光素子D13の作製と評価
 実施例D12において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-3」を用いた以外は、実施例D12と同様にして、発光素子D13を作製した。
 発光素子D13に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D14> 発光素子D14の作製と評価
 実施例D12において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-4」を用いた以外は、実施例D12と同様にして、発光素子D14を作製した。
 発光素子D14に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.48)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD7> 発光素子CD7の作製と評価
 実施例D8において、(第2の層の形成)を行わなかった以外は、実施例D7と同様にして、発光素子CD7を作成した。
 発光素子CD7に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 実施例D7~D14及び比較例CD7の結果を表3に示す。発光素子CD7の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1としたときの発光素子D7~D14の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000148
 <実施例D15> 発光素子D15の作製と評価
 実施例D1と同様にして、発光素子D1を作製した(本実施例では、「発光素子D15」と称する。)。
 発光素子D15に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D16> 発光素子D16の作製と評価
 実施例D1において、(第1の層の形成)の「燐光発光性化合物B1」に代えて、「燐光発光性化合物B4」を用いた以外は、実施例D1と同様にして、発光素子D16を作製した。
 発光素子D16に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.47,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D17> 発光素子D17の作製と評価
 実施例D1において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-7」を用いた以外は、実施例D1と同様にして、発光素子D17を作製した。
 発光素子D17に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.46,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D18> 発光素子D18の作製と評価
 実施例D1において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-5」を用いた以外は、実施例D1と同様にして、発光素子D18を作製した。
 発光素子D18に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.42,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D19> 発光素子D19の作製と評価
 実施例D1において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-3」を用いた以外は、実施例D1と同様にして、発光素子D19を作製した。
 発光素子D19に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D20> 発光素子D20の作製と評価
 実施例D1において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-8」を用いた以外は、実施例D1と同様にして、発光素子D20を作製した。
 発光素子D20に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.46,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D21> 発光素子D21の作製と評価
 実施例D1において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-6」を用いた以外は、実施例D1と同様にして、発光素子D21を作製した。
 発光素子D21に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.44,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <比較例CD8> 発光素子CD8の作製と評価
 実施例D1において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-1」を用いた以外は、実施例D1と同様にして、発光素子CD8を作製した。
 発光素子CD8に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.43,0.47)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 実施例D15~D21及び比較例CD8の結果を表4に示す。発光素子CD8の輝度が初期輝度の95%となるまでの時間(輝度寿命)を1.0としたときの発光素子D15~D21の輝度が初期輝度の95%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000149
 <実施例D22> 発光素子D22の作製と評価
 実施例D1において、(第1の層の形成)を下記(第1の層の形成―D22)とした以外は、実施例D1と同様にして、発光素子D22を作製した。
 (第1の層の形成―D22)
 キシレンに、化合物HM-2、燐光発光性化合物B3及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物B3/燐光発光性化合物G1=74質量%/25質量%/1質量%)を2.0質量%の濃度で溶解させた。得られたキシレン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の層(第1の発光層)を形成した。
 発光素子D22に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.41,0.46)であった。初期輝度6000cd/mで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <比較例CD9> 発光素子CD9の作製と評価
 実施例D22において、(第1の層の形成―D22)の「化合物HM-2」に代えて、「化合物HM-1」を用いた以外は、実施例D22と同様にして、発光素子CD9を作製した。
 発光素子CD9に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.41,0.44)であった。初期輝度6000cd/mで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 実施例D22及び比較例CD9の結果を表5に示す。発光素子CD9の輝度が初期輝度の70%となるまでの時間(輝度寿命)を1.0としたときの発光素子D22の輝度が初期輝度の70%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000150
 <実施例D23> 発光素子D23の作製と評価
 実施例D1において、(第1の層の形成)の「燐光発光性化合物B1」に代えて、「燐光発光性化合物B2」を用いた以外は、実施例D1と同様にして、発光素子D23を作製した。
 発光素子D23に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.46,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <実施例D24> 発光素子D24の作製と評価
 実施例D23において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-3」を用いた以外は、実施例D23と同様にして、発光素子D24を作製した。
 発光素子D24に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.45,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <実施例D25> 発光素子D25の作製と評価
 実施例D23において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-6」を用いた以外は、実施例D23と同様にして、発光素子D25を作製した。
 発光素子D25に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.45,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <実施例D26> 発光素子D26の作製と評価
 実施例D23において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-7」を用いた以外は、実施例D23と同様にして、発光素子D26を作製した。
 発光素子D26に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.47,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <実施例D27> 発光素子D27の作製と評価
 実施例D23において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-8」を用いた以外は、実施例D23と同様にして、発光素子D27を作製した。
 発光素子D27に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.46,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <比較例CD10> 発光素子CD10の作製と評価
 実施例D23において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-1」を用いた以外は、実施例D23と同様にして、発光素子CD10を作製した。
 発光素子CD10に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.48,0.45)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 実施例D23~D27及び比較例CD10の結果を表6に示す。発光素子CD10の輝度が初期輝度の75%となるまでの時間(輝度寿命)を1.00としたときの発光素子D23~D27の輝度が初期輝度の75%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000151
 <実施例D28> 発光素子D28の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(第2の発光層の形成)
 キシレンに高分子化合物HTL-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。この加熱により、高分子化合物HTL-1は、架橋体となった。
(第1の層の形成)
 トルエンに、化合物HM-2及び燐光発光性化合物B1(化合物HM-2/燐光発光性化合物B1=75質量%/25質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の層(第1の発光層)を形成した。
(第2の層の形成)
第1の有機層を形成した基板を蒸着機内において3.0×10-4Pa以下にまで減圧した後、第2の層(電子輸送層)として、第1の層の上に、化合物EM-1及び化合物EM-2(化合物EM-1/化合物EM-2=25質量%/75質量%)を10nm共蒸着した。
(第3の層の形成)
 第2の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上にバリウムを4nm蒸着した。
(陰極の形成)
 第3の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、アルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D28を作製した。
(発光素子の評価)
 発光素子D28に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD11> 発光素子CD11の作製と評価
 実施例D28において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-1」を用いた以外は、実施例D28と同様にして、発光素子CD11を作製した。
 発光素子CD11に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD12> 発光素子CD12の作製と評価
 実施例D28の(第3の層の形成)の(第3の層の形成)を下記(第3の層の形成-CD12)に変更したこと以外は、実施例D28と同様にして、発光素子CD12を作製した。
(第3の層の形成-CD12)
 第2の層を形成した基板を蒸着機内において、3.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上に化合物EM-1を4nm蒸着した。
(発光素子の評価)
 発光素子CD12に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD13> 発光素子CD13の作製と評価
 実施例D28において、(第2の層の形成)を行わなかった以外は、実施例D28と同様にして、発光素子CD13を作成した。
 発光素子CD13に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 実施例D28及び比較例CD11~CD13の結果を表7に示す。発光素子CD12の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1.0としたときの発光素子D28、びCD11及びCD13の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000152
 <実施例D29> 発光素子D29の作製と評価
 実施例D10の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物G1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-2、燐光発光性化合物B1(化合物HM-2/燐光発光性化合物B1=75質量%/25質量%)」を用いた以外は、実施例D10と同様にして、発光素子D29を作製した。
 発光素子D29に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.39,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の50%となるまでの時間を測定した。
 <比較例CD14> 発光素子CD14の作製と評価
 実施例D29において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-1」を用いた以外は、実施例D29と同様にして、発光素子CD14を作製した。
 発光素子CD14に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.40,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の50%となるまでの時間を測定した。
 実施例D29及び比較例CD14の結果を表8に示す。発光素子CD14の輝度が初期輝度の50%となるまでの時間(輝度寿命)を1.0としたときの発光素子D29の輝度が初期輝度の50%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000153
 <実施例D30> 発光素子D30の作製と評価
 実施例D3の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物G1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-2、燐光発光性化合物B1(化合物HM-2/燐光発光性化合物B1=75質量%/25質量%)」を用いた以外は、実施例D3と同様にして、発光素子D30を作製した。
 発光素子D30に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.47,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
 <実施例D31> 発光素子D31の作製と評価
 実施例D30の(第2の層の形成)を下記(第2の層の形成―D31)とした以外は、実施例D30と同様にして、発光素子D31を作成した。
(第2の層の形成―D31)
 第1の有機層を形成した基板を蒸着機内において3.0×10-4Pa以下にまで減圧した後、第2の層(電子輸送層)として、第1の層の上に、化合物EM-1を4nm蒸着した。
 発光素子D31に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
 <実施例D32> 発光素子D32の作製と評価
 実施例D31において、(第2の層の形成―D31)の「化合物EM-1」に代えて、「化合物EM-3」を用いた以外は、実施例D31と同様にして、発光素子D32を作製した。
 発光素子D32に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
 <実施例D33> 発光素子D33の作製と評価
 実施例D31において、(第2の層の形成―D31)の「化合物EM-1」に代えて、「化合物EM-4」を用いた以外は、実施例D31と同様にして、発光素子D33を作製した。
 発光素子D33に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.35,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
 <実施例D34> 発光素子D34の作製と評価
 実施例D31において、(第2の層の形成―D31)の「化合物EM-1」に代えて、「化合物EM-5」を用いた以外は、実施例D31と同様にして、発光素子D34を作製した。
 発光素子D34に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
 <比較例CD15> 発光素子CD15の作製と評価
 実施例D31において、(第3の層の形成)を行わなかったこと以外は、実施例D31と同様にして、発光素子CD15を作製した。
 発光素子CD15に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
 <比較例CD16> 発光素子CD16の作製と評価
 実施例D33において、(第3の層の形成)を行わなかったこと以外は、実施例D33と同様にして、発光素子CD16を作製した。
 発光素子CD16に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
 実施例D30~D34及び比較例CD15~CD16の結果を表9に示す。発光素子CD16の輝度が初期輝度の60%となるまでの時間(輝度寿命)を1.0としたときの発光素子D30~D34および発光素子CD15の輝度が初期輝度の60%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000154
 <実施例D35> 発光素子D35の作製と評価
 実施例D33の(第3の層の形成)を下記(第3の層の形成―D35)とした以外は、実施例D33と同様にして、発光素子D35を作成した。
(第3の層の形成―D35)
 第2の層を形成した基板を蒸着機内において1.0×10-4Pa以下にまで減圧した後、第3の層として、第2の層の上に、フッ化ナトリウム(NaF)を4nm蒸着した。
 発光素子D35に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の65%となるまでの時間を測定した。
 <実施例D36> 発光素子D36の作製と評価
 実施例D35の(第2の層の形成)を下記(第2の層の形成―D36)とした以外は、実施例D35と同様にして、発光素子D35を作成した。
(第2の層の形成―D36)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、化合物EM-5を0.1質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の層の上にスピンコート法により4nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第2の層を形成した。
 発光素子D36に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の65%となるまでの時間を測定した。
 <比較例CD17> 発光素子CD17の作製と評価
 実施例D36の(第3の層の形成)を下記(第3の層の形成―CD17)とした以外は、実施例D36と同様にして、発光素子CD17を作成した。
(第3の層の形成―CD17)
 第2の層を形成した基板を蒸着機内において3.0×10-4Pa以下にまで減圧した後、第3の層として、第2の層の上に、化合物EM-5を4nm蒸着した。
 発光素子CD17に電圧を印加することによりEL発光が観測された。電流値1mAで定電流駆動させ、輝度が初期輝度の65%となるまでの時間を測定した。
 実施例D35~D36及び比較例CD17の結果を表10に示す。発光素子CD17の輝度が初期輝度の65%となるまでの時間(輝度寿命)を1.0としたときの発光素子D35~D36の輝度が初期輝度の65%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000155
 <実施例D37> 発光素子D37の作製と評価
 実施例D30の(第3の層の形成)を下記(第3の層の形成―D37)とした以外は、実施例D30と同様にして、発光素子D37を作成した。
(第3の層の形成―D37)
 第2の層を形成した基板を蒸着機内において3.0×10-4Pa以下にまで減圧した後、第3の層として、第2の層の上に、化合物EM-1を4nm蒸着した。
 発光素子D37に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D38> 発光素子D38の作製と評価
 実施例D37において、(第3の層の形成―D37)の「化合物EM-1」に代えて、「化合物EM-3」を用いた以外は、実施例D37と同様にして、発光素子D38を作製した。
 発光素子D38に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.40,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D39> 発光素子D39の作製と評価
 実施例D37において、(第3の層の形成―D37)の「化合物EM-1」に代えて、「化合物EM-5」を用いた以外は、実施例D37と同様にして、発光素子D39を作製した。
 発光素子D39に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <比較例CD18> 発光素子CD18の作製と評価
 実施例D30の(第3の層の形成)を行わなかったこと以外は、実施例D30と同様にして、発光素子CD18を作成した。
 発光素子CD18に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 実施例D37~D39及び比較例CD18の結果を表11に示す。発光素子CD18の輝度が初期輝度の70%となるまでの時間(輝度寿命)を1.0としたときの発光素子D37~D39の輝度が初期輝度の70%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000156
 <実施例D40> 発光素子D40の作製と評価
 実施例D1の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物G1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-2、燐光発光性化合物B1(化合物HM-2/燐光発光性化合物B1=75質量%/25質量%)」を用いた以外は、実施例D1と同様にして、発光素子D40を作製した。
 発光素子D40に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.47,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <実施例D41> 発光素子D41の作製と評価
 実施例D40において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-3」を用いた以外は、実施例D40と同様にして、発光素子D41を作製した。
 発光素子D41に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.45,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <比較例CD19> 発光素子CD19の作製と評価
 実施例D40の(第2の層の形成)を行わなかったこと以外は、実施例D40と同様にして、発光素子CD19を作成した。
 発光素子CD19に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.37,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <比較例CD20> 発光素子CD20の作製と評価
 実施例D40において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-1」を用いた以外は、実施例D40と同様にして、発光素子CD20を作製した。
 発光素子CD20に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.45,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 実施例D40~D41及び比較例CD19~CD20の結果を表12に示す。発光素子CD20の輝度が初期輝度の75%となるまでの時間(輝度寿命)を1.0としたときの発光素子D40~D41および発光素子CD19の輝度が初期輝度の75%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000157
 <実施例D42> 発光素子D42の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに高分子化合物HTL-3を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。この加熱により、高分子化合物HTL-3は、架橋体となった。
(第1の層の形成)
 トルエンに、化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の層(発光層)を形成した。
(第2の層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ETL-1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第2の層(電子輸送層)を形成した。
(第3の層の形成)
 第2の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上にフッ化ナトリウム(NaF)を4nm蒸着した。
(陰極の形成)
 第3の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、アルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D42を作製した。
(発光素子の評価)
 発光素子D42に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.35,0.43)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の90%となるまでの時間を測定した。
 <比較例CD21> 発光素子CD21の作製と評価
 実施例D42において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-1」を用いた以外は、実施例D42と同様にして、発光素子CD21を作製した。
 発光素子CD21に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の90%となるまでの時間を測定した。
 実施例D42及び比較例CD21の結果を表13に示す。発光素子CD21の輝度が初期輝度の90%となるまでの時間(輝度寿命)を1.0としたときの発光素子D42の輝度が初期輝度の90%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000158
 <実施例D43> 発光素子D43の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-3、燐光発光性化合物B1及び燐光発光性化合物R1(化合物HM-3/燐光発光性化合物B1/燐光発光性化合物R1=74.9質量%/25質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D43を作製した。
 発光素子D43に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.35,0.42)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D44> 発光素子D44の作製と評価
 実施例D43の(第1の層の形成)における、「燐光発光性化合物R1」に代えて、「燐光発光性化合物R3」を用いた以外は、実施例D43と同様にして、発光素子D44を作製した。
 発光素子D44に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D45> 発光素子D45の作製と評価
 実施例D43の(第1の層の形成)における、「化合物HM-3」に代えて、「化合物HM-4」を用いた以外は、実施例D43と同様にして、発光素子D45を作製した。
 発光素子D45に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.33,0.43)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 実施例D43~D45の結果を表14に示す。発光素子D45の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1.0としたときの発光素子D43~D44の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000159
 <実施例D46> 発光素子D46の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-2、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R1(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R1=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D46を作製した。
 発光素子D46に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.52)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D47> 発光素子D47の作製と評価
 実施例D46の(第1の層の形成)における、「化合物HM-2」に代えて、「化合物HM-7」を用いた以外は、実施例D46と同様にして、発光素子D47を作製した。
 発光素子D47に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.52)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D48> 発光素子D48の作製と評価
 実施例D46の(第1の層の形成)における、「化合物HM-2」に代えて、「化合物HM-8」を用いた以外は、実施例D46と同様にして、発光素子D48を作製した。
 発光素子D48に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.52)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D49> 発光素子D49の作製と評価
 実施例D46の(第1の層の形成)における、「化合物HM-2」に代えて、「化合物HM-6」を用いた以外は、実施例D46と同様にして、発光素子D49を作製した。
 発光素子D49に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.51)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D50> 発光素子D50の作製と評価
 実施例D46の(第1の層の形成)における、「燐光発光性化合物G1」に代えて、「燐光発光性化合物G3」を用いた以外は、実施例D46と同様にして、発光素子D50を作製した。
 発光素子D50に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.51)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D51> 発光素子D51の作製と評価
 実施例D46の(第1の層の形成)における、「燐光発光性化合物G1」に代えて、「燐光発光性化合物G4」を用いた以外は、実施例D46と同様にして、発光素子D51を作製した。
 発光素子D51に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.48)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D52> 発光素子D52の作製と評価
 実施例D46の(第1の層の形成)における、「燐光発光性化合物B1」に代えて、「燐光発光性化合物B4」を用いた以外は、実施例D46と同様にして、発光素子D52を作製した。
 発光素子D52に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.32,0.52)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D53> 発光素子D53の作製と評価
 実施例D46の(第1の層の形成)における、「化合物HM-2」に代えて、「化合物HM-9」を用いた以外は、実施例D46と同様にして、発光素子D53を作製した。
 発光素子D53に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.50)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D54> 発光素子D54の作製と評価
 実施例D46の(第1の層の形成)における、「化合物HM-2」に代えて、「化合物HM-4」を用いた以外は、実施例D46と同様にして、発光素子D54を作製した。
 発光素子D53に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.36,0.50)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <実施例D55> 発光素子D55の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-4、燐光発光性化合物B1、燐光発光性化合物G2及び燐光発光性化合物R3(化合物HM-4/燐光発光性化合物B1/燐光発光性化合物G2/燐光発光性化合物R3=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D55を作製した。
 発光素子D55に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.53)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 実施例D46~D55の結果を表15に示す。発光素子D55の輝度が初期輝度の70%となるまでの時間(輝度寿命)を1.0としたときの発光素子D46~D54の輝度が初期輝度の70%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000160
 <実施例D56> 発光素子D56の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-2、燐光発光性化合物B1、燐光発光性化合物G2及び燐光発光性化合物R3(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物G2/燐光発光性化合物R3=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D56を作製した。
 発光素子D56に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.34,0.51)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D57> 発光素子D57の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-2、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R2=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D57を作製した。
 発光素子D57に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.49)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D58> 発光素子D58の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-2、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R4(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R4=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D58を作製した。
 発光素子D58に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.36,0.50)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D59> 発光素子D59の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-3、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R1(化合物HM-3/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R1=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D59を作製した。
 発光素子D59に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.39,0.49)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <実施例D60> 発光素子D60の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-5、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R1(化合物HM-5/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R1=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子D59を作製した。
 発光素子D60に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.51)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD22> 発光素子CD22の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-1、燐光発光性化合物B1、燐光発光性化合物G2及び燐光発光性化合物R3(化合物HM-1/燐光発光性化合物B1/燐光発光性化合物G2/燐光発光性化合物R3=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子CD22を作製した。
 発光素子CD22に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.30,0.51)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 <比較例CD23> 発光素子CD23の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-1、燐光発光性化合物B1、燐光発光性化合物G1及び燐光発光性化合物R2(化合物HM-1/燐光発光性化合物B1/燐光発光性化合物G1/燐光発光性化合物R2=73.9質量%/25質量%/1質量%/0.1質量%)」を用いた以外は、実施例D42と同様にして、発光素子CD23を作製した。
 発光素子CD23に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.38,0.49)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
 実施例D56~D60及び比較例CD22~CD23の結果を表16に示す。発光素子CD22の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1.0としたときの発光素子D56~D60及びCD23の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000161
 <実施例D61> 発光素子D61の作製と評価
 実施例D42の(第1の層の形成)における、「化合物HM-2、燐光発光性化合物B1及び燐光発光性化合物R2(化合物HM-2/燐光発光性化合物B1/燐光発光性化合物R2=74.9質量%/25質量%/0.1質量%)」に代えて、「化合物HM-3及び燐光発光性化合物B5(化合物HM-3/燐光発光性化合物B5=75質量%/25質量%)」を用いた以外は、実施例D42と同様にして、発光素子D61を作製した。
 発光素子D61に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.19,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 <比較例CD24> 発光素子CD24の作製と評価
 実施例D61の(第1の層の形成)における、「化合物HM-3」に代えて、「化合物HM-1」を用いた以外は、実施例D61と同様にして、発光素子CD24を作製した。
 発光素子CD24に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.19,0.41)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
 実施例D61及び比較例CD24の結果を表17に示す。発光素子CD24の輝度が初期輝度の70%となるまでの時間(輝度寿命)を1.0としたときの発光素子D61の輝度が初期輝度の70%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000162
 <実施例D62> 発光素子D62の作製と評価
 実施例D61の(第1の層の形成)における、「化合物HM-3及び燐光発光性化合物B5(化合物HM-3/燐光発光性化合物B5=75質量%/25質量%)」に代えて、「化合物HM-2及び燐光発光性化合物B1(化合物HM-2/燐光発光性化合物B1=75質量%/25質量%)」を用いた以外は、実施例D61と同様にして、発光素子D62を作製した。
 発光素子D62に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.20,0.43)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <比較例CD25> 発光素子CD25の作製と評価
 実施例D61の(第1の層の形成)における、「化合物HM-2」に代えて、「化合物HM-1」を用いた以外は、実施例D61と同様にして、発光素子CD25を作製した。
 発光素子CD25に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.20,0.46)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 実施例D62及び比較例CD25の結果を表18に示す。発光素子CD25の輝度が初期輝度の95%となるまでの時間(輝度寿命)を1.0としたときの発光素子D62の輝度が初期輝度の95%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000163
 <実施例D63> 発光素子D63の作製と評価
 実施例D61の(第1の層の形成)における、「燐光発光性化合物B5」に代えて、「燐光発光性化合物B6」を用いた以外は、実施例D61と同様にして、発光素子D63を作製した。
 発光素子D63に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.19,0.39)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <比較例CD26> 発光素子CD26の作製と評価
 実施例D63の(第1の層の形成)における、「化合物HM-3」に代えて、「化合物HM-1」を用いた以外は、実施例D63と同様にして、発光素子CD26を作製した。
 発光素子CD26に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.19,0.40)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 実施例D63及び比較例CD26の結果を表19に示す。発光素子CD26の輝度が初期輝度の95%となるまでの時間(輝度寿命)を1.0としたときの発光素子D63の輝度が初期輝度の95%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000164
 <実施例D64> 発光素子D64の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに高分子化合物HTL-2を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。この加熱により、高分子化合物HTL-2は、架橋体となった。
(第1の層の形成)
 トルエンに、化合物HM-2及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物G1=70質量%/30質量%)を2.0質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の層(第1の発光層)を形成した。
(第2の層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ETL-1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第2の層(電子輸送層)を形成した。
(第3の層の形成)
 第2の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、第3の層(電子注入層)として、第2の層の上にフッ化ナトリウム(NaF)を4nm蒸着した。
(陰極の形成)
 第3の層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、アルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D64を作製した。
(発光素子の評価)
 発光素子D64に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.63)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D65> 発光素子D15の作製と評価
 実施例D64において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-3」を用いた以外は、実施例D64と同様にして、発光素子D65を作製した。
 発光素子D65に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.30,0.63)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D66> 発光素子D66の作製と評価
 実施例D64において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-5」を用いた以外は、実施例D64と同様にして、発光素子D66を作製した。
 発光素子D66に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.30,0.64)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D67> 発光素子D67の作製と評価
 実施例D64において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-8」を用いた以外は、実施例D64と同様にして、発光素子D67を作製した。
 発光素子D67に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.63)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D68> 発光素子D68の作製と評価
 実施例D64において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-7」を用いた以外は、実施例D64と同様にして、発光素子D68を作製した。
 発光素子D68に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.63)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D69> 発光素子D69の作製と評価
 実施例D64において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-6」を用いた以外は、実施例D64と同様にして、発光素子D69を作製した。
 発光素子D69に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.30,0.64)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 <実施例D70> 発光素子D70の作製と評価
 実施例D64において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-10」を用いた以外は、実施例D64と同様にして、発光素子D70を作製した。
 発光素子D70に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.31,0.63)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の95%となるまでの時間を測定した。
 実施例D64~D70の結果を表20に示す。発光素子D70の輝度が初期輝度の95%となるまでの時間(輝度寿命)を1.0としたときの発光素子D64~D69の輝度が初期輝度の95%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000165
 <実施例D71> 発光素子D71の作製と評価
 実施例D64において、(第1の層の形成)の「化合物HM-2及び燐光発光性化合物G1(化合物HM-2/燐光発光性化合物G1=70質量%/30質量%)」に代えて、「化合物HM-2及び燐光発光性化合物R1(化合物HM-2/燐光発光性化合物R1=90質量%/10質量%)」を用いた以外は、実施例D64と同様にして、発光素子D71を作製した。
 発光素子D71に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.32)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <実施例D72> 発光素子D72の作製と評価
 実施例D71において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-3」を用いた以外は、実施例D71と同様にして、発光素子D72を作製した。
 発光素子D72に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.33)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <実施例D73> 発光素子D73の作製と評価
 実施例D71において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-11」を用いた以外は、実施例D71と同様にして、発光素子D73を作製した。
 発光素子D73に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.32)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <実施例D74> 発光素子D74の作製と評価
 実施例D71において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-7」を用いた以外は、実施例D71と同様にして、発光素子D74を作製した。
 発光素子D74に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.32)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <実施例D75> 発光素子D75の作製と評価
 実施例D71において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-6」を用いた以外は、実施例D71と同様にして、発光素子D75を作製した。
 発光素子D75に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.32)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 <実施例D76> 発光素子D76の作製と評価
 実施例D71において、(第1の層の形成)の「化合物HM-2」に代えて、「化合物HM-10」を用いた以外は、実施例D71と同様にして、発光素子D76を作製した。
 発光素子D76に電圧を印加することによりEL発光が観測された。100cd/m2におけるCIE色度座標(x,y)は(0.67,0.32)であった。電流値1mAで定電流駆動させ、輝度が初期輝度の75%となるまでの時間を測定した。
 実施例D71~D76の結果を表21に示す。発光素子D76の輝度が初期輝度の75%となるまでの時間(輝度寿命)を1.0としたときの発光素子D71~D75の輝度が初期輝度の75%となるまでの時間(輝度寿命)の相対値を示す。
Figure JPOXMLDOC01-appb-T000166
 本発明によれば、輝度寿命に優れる発光素子を提供することができる。

Claims (13)

  1.  陽極と、
     陰極と、
     陽極及び陰極の間に設けられており、式(C-1)で表される化合物を含有する第1の層と、
     第1の層及び陰極の間に設けられており、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する第2の層と、
     第2の層及び陰極の間に陰極に接して設けられており、アルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する第3の層とを有する発光素子であって、
     第2の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種と、第3の層に含有されるアルカリ金属元素のみからなる単体、第2族元素のみからなる単体、アルカリ金属元素を含む化合物、及び、第2族元素を含む化合物からなる群から選ばれる少なくとも1種とが互いに異なる、発光素子。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     環R1C、環R2C、環R3C及び環R4Cは、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     RCは、炭素原子、ケイ素原子、ゲルマニウム原子、スズ原子又は鉛原子を表す。]
  2.  前記環R1C、前記環R2C、前記環R3C及び前記環R4Cのうちの少なくとも1つが、置換基として式(D-1)で表される基を有する、請求項1に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     環RDは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     XD1及びXD2は、それぞれ独立に、単結合、酸素原子、硫黄原子、-N(RXD1)-で表される基、又は、-C(RXD2)2-で表される基を表す。RXD1及びRXD2は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRXD2は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
     E1D、E2D及びE3Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
     R1D、R2D及びR3Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
     E1Dが窒素原子の場合、R1Dは存在しない。E2Dが窒素原子の場合、R2Dは存在しない。E3Dが窒素原子の場合、R3Dは存在しない。
     R1DとR2Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R2DとR3Dとは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。R1DとRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R1DとRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD1とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RDが有していてもよい置換基とRXD2とは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
  3.  前記式(D-1)で表される基が、式(D-2)で表される基である、請求項2に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     XD1、XD2、E1D、E2D、E3D、R1D、R2D及びR3Dは、前記と同じ意味を表す。
     E4D、E5D、E6D及びE7Dは、それぞれ独立に、窒素原子又は炭素原子を表す。
     R4D、R5D、R6D及びR7Dは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
     E4Dが窒素原子の場合、R4Dは存在しない。E5Dが窒素原子の場合、R5Dは存在しない。E6Dが窒素原子の場合、R6Dは存在しない。E7Dが窒素原子の場合、R7Dは存在しない。
     R4DとR5D、R5DとR6D、R6DとR7D、R4DとRXD1、R4DとRXD2、R7DとRXD1、及び、R7DとRXD2は、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  4.  前記式(C-1)で表される化合物が、式(C-2)で表される化合物である、請求項1~3のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     RCは、前記と同じ意味を表す。
     E11C、E12C、E13C、E14C、E21C、E22C、E23C、E24C、E31C、E32C、E33C、E34C、E41C、E42C、E43C及びE44Cは、それぞれ独立に、窒素原子又は炭素原子を表す。
     環R1C'、環R2C'、環R3C'及び環R4C'は、それぞれ独立に、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。
     R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
     E11Cが窒素原子の場合、R11Cは存在しない。E12Cが窒素原子の場合、R12Cは存在しない。E13Cが窒素原子の場合、R13Cは存在しない。E14Cが窒素原子の場合、R14Cは存在しない。E21Cが窒素原子の場合、R21Cは存在しない。E22Cが窒素原子の場合、R22Cは存在しない。E23Cが窒素原子の場合、R23Cは存在しない。E24Cが窒素原子の場合、R24Cは存在しない。E31Cが窒素原子の場合、R31Cは存在しない。E32Cが窒素原子の場合、R32Cは存在しない。E33Cが窒素原子の場合、R33Cは存在しない。E34Cが窒素原子の場合、R34Cは存在しない。E41Cが窒素原子の場合、R41Cは存在しない。E42Cが窒素原子の場合、R42Cは存在しない。E43Cが窒素原子の場合、R43Cは存在しない。E44Cが窒素原子の場合、R44Cは存在しない。
     R11CとR12C、R12CとR13C、R13CとR14C、R14CとR34C、R34CとR33C、R33CとR32C、R32CとR31C、R31CとR41C、R41CとR42C、R42CとR43C、R43CとR44C、R44CとR24C、R24CとR23C、R23CとR22C、R22CとR21C、及び、R21CとR11Cは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
  5.  前記式(C-2)で表される化合物が、式(C-3)で表される化合物である、請求項4に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000005
    [式中、RC、R11C、R12C、R13C、R14C、R21C、R22C、R23C、R24C、R31C、R32C、R33C、R34C、R41C、R42C、R43C及びR44Cは、前記と同じ意味を表す。]
  6.  前記R11C、前記R12C、前記R14C、前記R21C、前記R22C、前記R24C、前記R31C、前記R32C、前記R34C、前記R41C、前記R42C及び前記R44Cのうちの少なくとも一つが、前記式(D-1)で表される基である、請求項4又は5に記載の発光素子。
  7.  前記第1の層が、更に燐光発光性化合物を含む、請求項1~6のいずれか一項に記載の発光素子。
  8.  前記燐光発光性化合物が、式(1)で表される燐光発光性化合物である、請求項7に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
     n1は1以上の整数を表し、n2は0以上の整数を表す。但し、Mがルテニウム原子、ロジウム原子又はイリジウム原子の場合、n1+n2は3であり、Mがパラジウム原子又は白金原子の場合、n1+n2は2である。
     E1及びE2は、それぞれ独立に、炭素原子又は窒素原子を表す。但し、E1及びE2の少なくとも一方は炭素原子である。E1及びE2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     環L1は、置換基を有していてもよい芳香族複素環を表す。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L1が複数存在する場合、それらは同一でも異なっていてもよい。
     環L2は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環L2が複数存在する場合、それらは同一でも異なっていてもよい。
     環L1が有していてもよい置換基と、環L2が有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     A1-G1-A2は、アニオン性の2座配位子を表す。A1及びA2は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。G1は、単結合、又は、A1及びA2とともに2座配位子を構成する原子団を表す。A1-G1-A2が複数存在する場合、それらは同一でも異なっていてもよい。]
  9.  前記式(1)で表される燐光発光性化合物が、式(1-A)で表される燐光発光性化合物又は式(1-B)で表される燐光発光性化合物である、請求項8に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000007
    [式中、
     M、n1、n2、E1及びA1-G1-A2は、前記と同じ意味を表す。
     E11A、E12A、E13A、E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E11A、E12A、E13A、E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。E13Aが窒素原子の場合、R13Aは存在しても存在しなくてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
     R11A、R12A、R13A、R21A、R22A、R23A及びR24Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、アルケニル基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A、R12A、R13A、R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11AとR12A、R12AとR13A、R11AとR21A、R21AとR22A、R22AとR23A、及び、R23AとR24Aは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     環L1Aは、トリアゾール環又はジアゾール環を表す。
     環L2Aは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
    Figure JPOXMLDOC01-appb-C000008
    [式中、
     M、n1、n2及びA1-G1-A2は、前記と同じ意味を表す。
     E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
     R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、アルケニル基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
     環L1Bは、ピリジン環又はジアザベンゼン環を表す。
     環L2Bは、ベンゼン環、ピリジン環又はジアザベンゼン環を表す。]
  10.  前記第2の層が、前記アルカリ金属元素を含む化合物及び前記第2族元素を含む化合物からなる群から選ばれる少なくとも1種を含有する層である、請求項1~9のいずれか一項に記載の発光素子。
  11.  前記第3の層が、前記アルカリ金属元素を含む化合物及び前記第2族元素のみからなる単体からなる群から選ばれる少なくとも1種を含有する層である、請求項1~10のいずれか一項に記載の発光素子。
  12.  前記第2の層と前記第3の層とが隣接している、請求項1~11のいずれか一項に記載の発光素子。
  13.  前記第1の層と前記第2の層とが隣接している、請求項1~12のいずれか一項に記載の発光素子。
PCT/JP2018/016311 2017-04-27 2018-04-20 発光素子 WO2018198976A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018568975A JP6642743B2 (ja) 2017-04-27 2018-04-20 発光素子
KR1020197034217A KR20190141210A (ko) 2017-04-27 2018-04-20 발광 소자
US16/500,982 US20200091438A1 (en) 2017-04-27 2018-04-20 Light emitting device
CN201880027306.2A CN110574181A (zh) 2017-04-27 2018-04-20 发光元件
EP18791146.6A EP3618133A4 (en) 2017-04-27 2018-04-20 ELECTROLUMINESCENT ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088012 2017-04-27
JP2017-088012 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198976A1 true WO2018198976A1 (ja) 2018-11-01

Family

ID=63919712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016311 WO2018198976A1 (ja) 2017-04-27 2018-04-20 発光素子

Country Status (6)

Country Link
US (1) US20200091438A1 (ja)
EP (1) EP3618133A4 (ja)
JP (2) JP6642743B2 (ja)
KR (1) KR20190141210A (ja)
CN (1) CN110574181A (ja)
WO (1) WO2018198976A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235562A1 (ja) * 2019-05-20 2020-11-26 三菱ケミカル株式会社 有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置
WO2022018572A1 (ja) * 2020-07-24 2022-01-27 株式会社半導体エネルギー研究所 発光デバイス、発光装置、電子機器および照明装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3618134A4 (en) * 2017-04-27 2021-01-06 Sumitomo Chemical Company Limited LIGHT EMITTING ELEMENT

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044189A1 (fr) 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Element luminescent et afficheur
WO2002045184A1 (en) 2000-11-28 2002-06-06 Avecia Limited Field effect transistors and materials and methods for their manufacture
WO2005049546A1 (en) 2003-11-14 2005-06-02 Sumitomo Chemical Company, Limited Halogenated bisdiarylaminopolycylic aromatic compounds and polymers thereof
JP2006188673A (ja) 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd 高分子材料およびそれを用いた素子
WO2006121811A1 (en) 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability
JP2008106241A (ja) 2006-09-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
JP2008179617A (ja) 2006-12-27 2008-08-07 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びこれらを含む素子
JP2009239279A (ja) 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
WO2009157424A1 (ja) 2008-06-23 2009-12-30 住友化学株式会社 金属錯体の残基を含む高分子化合物及びそれを用いた素子
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2011006574A1 (de) 2009-07-14 2011-01-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2011105701A (ja) 2009-10-19 2011-06-02 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びそれを用いた素子
JP2011174062A (ja) 2010-01-28 2011-09-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いてなる発光素子
WO2011111438A1 (ja) * 2010-03-09 2011-09-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス部材及び有機エレクトロルミネッセンス素子の製造方法
JP2012033845A (ja) 2009-09-30 2012-02-16 Sumitomo Chemical Co Ltd 積層構造体、重合体、電界発光素子及び光電変換素子
WO2012048820A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) A spirobifluorene compound for light emitting devices
WO2012048819A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) Novel spirobifluorene compounds
JP2012209464A (ja) * 2011-03-30 2012-10-25 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP2012216822A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2012216821A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2012216815A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
CN102911145A (zh) 2012-09-20 2013-02-06 苏州大学 一种二苯并杂环连螺双芴化合物及其制备方法以及一种有机电致磷光器件
JP2013048190A (ja) 2011-08-29 2013-03-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および照明装置
WO2013045411A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013045408A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2013237789A (ja) 2012-05-16 2013-11-28 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた発光素子
WO2014023388A1 (de) 2012-08-10 2014-02-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2014224101A (ja) 2013-04-15 2014-12-04 住友化学株式会社 金属錯体およびそれを用いた発光素子
WO2015159932A1 (ja) 2014-04-18 2015-10-22 住友化学株式会社 発光素子およびそれに用いる高分子化合物
JP2016523273A (ja) * 2013-07-02 2016-08-08 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 多環式化合物
WO2016185183A1 (en) 2015-05-15 2016-11-24 Cambridge Display Technology Limited Light-emitting compound
CN106221691A (zh) * 2016-04-25 2016-12-14 中节能万润股份有限公司 一种含有氮杂苯基类化合物的有机电致发光器件及其应用
CN107068887A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种有机电致发光器件及其应用
KR20180032294A (ko) * 2016-09-22 2018-03-30 엘지디스플레이 주식회사 인광 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011143127A2 (en) * 2010-05-13 2011-11-17 Sri International Cavity electroluminescent devices with integrated microlenses
US9203037B2 (en) * 2010-06-18 2015-12-01 Basf Se Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
JP5867580B2 (ja) * 2014-06-04 2016-02-24 住友化学株式会社 発光素子

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045184A1 (en) 2000-11-28 2002-06-06 Avecia Limited Field effect transistors and materials and methods for their manufacture
WO2002044189A1 (fr) 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Element luminescent et afficheur
WO2005049546A1 (en) 2003-11-14 2005-06-02 Sumitomo Chemical Company, Limited Halogenated bisdiarylaminopolycylic aromatic compounds and polymers thereof
JP2006188673A (ja) 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd 高分子材料およびそれを用いた素子
WO2006121811A1 (en) 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability
JP2008106241A (ja) 2006-09-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
JP2008179617A (ja) 2006-12-27 2008-08-07 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びこれらを含む素子
JP2009239279A (ja) 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
WO2009157424A1 (ja) 2008-06-23 2009-12-30 住友化学株式会社 金属錯体の残基を含む高分子化合物及びそれを用いた素子
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2011006574A1 (de) 2009-07-14 2011-01-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2012033845A (ja) 2009-09-30 2012-02-16 Sumitomo Chemical Co Ltd 積層構造体、重合体、電界発光素子及び光電変換素子
JP2011105701A (ja) 2009-10-19 2011-06-02 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びそれを用いた素子
JP2011174062A (ja) 2010-01-28 2011-09-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いてなる発光素子
WO2011111438A1 (ja) * 2010-03-09 2011-09-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス部材及び有機エレクトロルミネッセンス素子の製造方法
WO2012048820A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) A spirobifluorene compound for light emitting devices
WO2012048819A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) Novel spirobifluorene compounds
JP2012216815A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2012216822A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2012216821A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2012209464A (ja) * 2011-03-30 2012-10-25 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP2013048190A (ja) 2011-08-29 2013-03-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および照明装置
WO2013045411A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013045410A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013045408A1 (en) 2011-09-28 2013-04-04 Solvay Sa Spirobifluorene compounds for light emitting devices
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2013237789A (ja) 2012-05-16 2013-11-28 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた発光素子
WO2014023388A1 (de) 2012-08-10 2014-02-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
CN102911145A (zh) 2012-09-20 2013-02-06 苏州大学 一种二苯并杂环连螺双芴化合物及其制备方法以及一种有机电致磷光器件
JP2014224101A (ja) 2013-04-15 2014-12-04 住友化学株式会社 金属錯体およびそれを用いた発光素子
JP2016523273A (ja) * 2013-07-02 2016-08-08 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 多環式化合物
WO2015159932A1 (ja) 2014-04-18 2015-10-22 住友化学株式会社 発光素子およびそれに用いる高分子化合物
WO2016185183A1 (en) 2015-05-15 2016-11-24 Cambridge Display Technology Limited Light-emitting compound
CN106221691A (zh) * 2016-04-25 2016-12-14 中节能万润股份有限公司 一种含有氮杂苯基类化合物的有机电致发光器件及其应用
CN107068887A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种有机电致发光器件及其应用
KR20180032294A (ko) * 2016-09-22 2018-03-30 엘지디스플레이 주식회사 인광 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHANG ET AL.: "ITO-free large-area top-emission organic light-emitting diode by blade coating", SYNTHETIC METALS, vol. 212, 1 February 2016 (2016-02-01), pages 19 - 24, XP055527583 *
ORGANIC ELECTRONICS, vol. 14, 2013, pages 902 - 908
ORGANIC LETTERS, vol. 17, 2015, pages 1184 - 1187
See also references of EP3618133A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235562A1 (ja) * 2019-05-20 2020-11-26 三菱ケミカル株式会社 有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置
CN113874467A (zh) * 2019-05-20 2021-12-31 三菱化学株式会社 有机电致发光元件用组合物、有机电致发光元件及其制造方法、以及显示装置
WO2022018572A1 (ja) * 2020-07-24 2022-01-27 株式会社半導体エネルギー研究所 発光デバイス、発光装置、電子機器および照明装置

Also Published As

Publication number Publication date
JP2020065068A (ja) 2020-04-23
EP3618133A4 (en) 2021-01-13
KR20190141210A (ko) 2019-12-23
CN110574181A (zh) 2019-12-13
US20200091438A1 (en) 2020-03-19
JP6642743B2 (ja) 2020-02-12
JPWO2018198976A1 (ja) 2019-06-27
EP3618133A1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP2021120952A (ja) 組成物の製造方法
KR102468541B1 (ko) 발광 소자
WO2018062278A1 (ja) 発光素子及び該発光素子の製造に有用な組成物
JP5842989B2 (ja) 組成物およびそれを用いた発光素子
EP3288094B1 (en) Light emitting element and composition used in said light emitting element
KR102513175B1 (ko) 조성물 및 그것을 사용한 발광 소자
KR102558986B1 (ko) 조성물 및 그것을 사용한 발광 소자
JP2020065068A (ja) 発光素子
JP5880679B2 (ja) 発光素子の製造方法
WO2018198972A1 (ja) 組成物及びそれを用いた発光素子
JP6573041B2 (ja) 発光素子
JP6531386B2 (ja) 発光素子およびそれに用いる高分子化合物
JP7194072B2 (ja) 発光素子
JP6399243B2 (ja) 発光素子
JP6851189B2 (ja) 発光素子及び金属錯体
JP6708214B2 (ja) 組成物及びそれを用いた発光素子
JP7319251B2 (ja) 発光素子
WO2017099012A1 (ja) 発光素子
WO2017099013A1 (ja) 組成物及びそれを用いた発光素子
JP2016129140A (ja) 発光素子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018568975

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197034217

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018791146

Country of ref document: EP

Effective date: 20191127