WO2018193881A1 - Motor driving device - Google Patents

Motor driving device Download PDF

Info

Publication number
WO2018193881A1
WO2018193881A1 PCT/JP2018/014743 JP2018014743W WO2018193881A1 WO 2018193881 A1 WO2018193881 A1 WO 2018193881A1 JP 2018014743 W JP2018014743 W JP 2018014743W WO 2018193881 A1 WO2018193881 A1 WO 2018193881A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
motor
drive
state
coil
Prior art date
Application number
PCT/JP2018/014743
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 浩介
啓貴 落合
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2018193881A1 publication Critical patent/WO2018193881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking

Definitions

  • the present invention relates to a motor drive device applicable to, for example, an automobile damper.
  • electromagnetic damper devices electrostatic suspension devices
  • the electromagnetic damper device has a magnet member provided on one side of the vehicle body side and the wheel side and a coil member provided on the other side, and receives the force in the vertical direction of the wheel to receive the coil member and the magnet member.
  • a motor that generates a damping force by an electromagnetic force generated by relatively displacing them.
  • a linear motor or a rotary motor is used as the motor (see, for example, Patent Document 1).
  • This type of electromagnetic damper device typically includes a motor having three-phase windings of U, V, and W, and applies a sine wave voltage to each of these three-phase windings by an inverter. And a drive circuit that performs PWM (Pulse Width Modulation) control.
  • the damping force can be adjusted according to the amount of current flowing through the coil member. For example, a large damping force can be obtained by actively passing a current through the coil member using a battery power source (for example, a patent). Reference 2).
  • an object of the present invention is to provide a motor drive device that can ensure a predetermined damper function even when power is lost.
  • a motor driving apparatus includes a first coil unit that can be energized with a first driving current having a first phase, and a second coil that is different from the first phase.
  • a second coil part that can be energized by a second drive current having a phase and a third coil part that can be energized by a third drive current having a third phase different from the first and second phases.
  • the motor drive device which drives the motor containing these, Comprising: A drive circuit and a switch circuit are comprised.
  • the drive circuit includes a first output terminal electrically connectable to the first coil portion, a second output terminal electrically connectable to the second coil portion, and the third coil. And a third output terminal electrically connectable to the unit.
  • the drive circuit generates the first to third drive currents supplied to the first to third coil sections via the first to third output terminals, respectively.
  • the switch circuit is interposed between the motor and the drive circuit.
  • the switch circuit includes a connection state in which the first to third output terminals and the first to third coil sections are connected to each other, the first to third output terminals, and the first to third coils. And a short-circuit state in which the first to third coil portions are short-circuited with each other by blocking each other from the three coil portions.
  • the switch circuit when the switch circuit is in a short circuit state, the coil portions of the phases constituting the electromagnetic coil are in a short circuit state with each other. An induced electromotive force is generated in the portion, and a predetermined electromagnetic force that inhibits the relative displacement is generated. Therefore, for example, even when the external power supply is lost, the switch circuit is switched to a short-circuit state, thereby ensuring a predetermined damper function by the motor.
  • the motor driving device may further include a power monitoring unit that monitors power supply to the driving circuit.
  • the power monitoring unit outputs a first switching signal for switching from the connected state to the short-circuited state to the switch circuit when power supply to the drive circuit is interrupted.
  • the switch circuit is automatically switched to a short-circuited state when the power is shut off, so that the expected damper function is ensured even when the external power source is lost.
  • the power supply monitoring unit may be configured to output a second switching signal for switching from the short circuit state to the connection state to the switch circuit when power supply to the drive circuit is resumed. Thereby, the switch circuit can be automatically returned to the connected state when the power is restored.
  • the motor drive device may further include a control circuit that controls the drive circuit and the switch circuit.
  • the control circuit is configured to switch the switch circuit from the short circuit state to the connection state when the first to third drive currents are zero. As a result, it is possible to prevent arcs and the like between the first to third output terminals and the switch circuit at the time of switching from the short-circuit state to the connected state, thereby protecting the switch circuit.
  • FIG. 1 is a block diagram schematically showing a configuration of an electromagnetic damper device 100 including a motor drive device 1 according to a first embodiment of the present invention.
  • the motor drive device 1 of this embodiment includes a drive circuit 20 that drives the motor 10 and a switch circuit 30.
  • the motor drive device 1 further includes a control circuit 40 and a power supply monitoring unit 50.
  • the electromagnetic damper device 100 is configured as an electromagnetic suspension device installed on each wheel of a vehicle, and maintains the posture of the vehicle body stably by attenuating the vibration in the vertical direction of the wheel by electromagnetic force, so that a comfortable ride for the occupant This is to provide comfort and stable maneuverability.
  • the motor 10 is composed of a linear motor or a rotary motor, and in this embodiment is composed of a cylindrical linear motor as will be described later.
  • the motor 10 includes a three-phase motor, and includes an electromagnetic coil 11 that can be energized with a three-phase drive current that is 120 degrees out of phase.
  • the electromagnetic coil 11 includes a first coil portion 11A capable of energizing a U-phase (first phase) first drive current, and a V-phase (second phase) second drive current. And a second coil portion 11B and a third coil portion 11C capable of passing a W-phase (third phase) third drive current.
  • FIG. 2 is a schematic configuration diagram of the drive circuit 20.
  • the drive circuit 20 is a circuit for driving the motor 10, and is composed of a three-phase inverter circuit connected to a battery E as an external power source.
  • the drive circuit 20 includes switching elements 211, 212, 221, 222, 231, and 232 that correspond to the three-phase coil portions 11 ⁇ / b> A, 11 ⁇ / b> B, and 11 ⁇ / b> C of the motor 10, respectively. These switching elements are constituted by MOSFETs in this embodiment.
  • the switching elements 211, 212, 221, 222, 231, and 232 are on / off controlled by a control signal from the control circuit 40, so that the first drive current (U phase) and the second drive current (V phase) are controlled. ) And a third drive current (W phase), respectively.
  • the drive circuit 20 outputs first to third output currents 24A, 24B, 24B for outputting first to third drive currents to the first to third coil portions 11A to 11C of the motor 10 via the switch circuit 30, respectively. 24C.
  • the drive circuit 20 is configured by an independent circuit for each wheel, but is not limited thereto, and some wheels may be configured by a common circuit.
  • the control circuit 40 is configured by a computer including a CPU, a memory, and the like.
  • the control circuit 40 generates first to third drive currents to be supplied to the respective coil portions of the motor 10 based on outputs of a plurality of acceleration sensors (not shown) installed on the unsprung or sprung of the wheel.
  • the control signal for output is output to the drive circuit 20.
  • control circuit 40 is configured as a logical operation unit that calculates the control amount of the motor 10 so as to suppress the vertical vibration of the vehicle.
  • the calculation method is not particularly limited.
  • the unsprung acceleration signal and the unsprung acceleration signal are input for each wheel, and the unsprung and unsprung velocities are obtained by integrating and filtering each acceleration signal.
  • a sum of values obtained by multiplying the lower speed and the sprung speed by a predetermined gain is calculated as the control amount.
  • This control amount corresponds to the energization control amount to the motor 10 and is calculated independently for each wheel.
  • control circuit 40 performs on / off control of the switching elements 211, 212, 221, 222, 231, 232 of the drive circuit 20 with a pulse width corresponding to the control amount.
  • the drive circuit 20 generates first to third drive currents based on the power supply voltage of the battery E. If the generated current from the motor 10 is larger than the target energization amount, the regenerative current flows through the battery E by the difference, and conversely, if the generated current from the motor 10 is less than the target energization amount, the difference is the battery. The motor 10 is energized from E.
  • the battery E is electrically connected to a generator (alternator) (not shown), and the battery E is configured to be rechargeable by starting an engine (not shown).
  • FIG. 3 is a schematic configuration diagram of the switch circuit 30.
  • the switch circuit 30 is interposed between the motor 10 and the drive circuit 20.
  • the switch circuit 30 is electrically connected between the motor 10 and the drive circuit 20. It is configured to be able to selectively switch between an off state (short circuit state) in which the gap is electrically cut off.
  • the switch circuit 30 has three fixed contacts 31A, 31B, 31C and three movable contacts 32A, 32B, 32C corresponding to each phase.
  • the fixed contacts 31A to 31C are electrically connected to each other via the short-circuit line 33, and the movable contacts 32A to 32C are electrically connected to the first to third coil portions 11A to 11C, respectively.
  • the switch circuit 30 When the switch circuit 30 is in the ON state, the movable contacts 32A to 32C are connected to the first to third output terminals 24A to 21C, respectively, as indicated by solid lines in FIG. As a result, the first to third drive currents are supplied from the drive circuit 20 to the coil portions 11A to 11C of the motor 10, respectively.
  • the movable contacts 32A to 32C are typically constituted by mechanical switches or electromagnetic switches.
  • the output terminal 24A, the fixed contact 31A, and the movable contact 32A can be configured by a switch unit SA that is unitized with each other.
  • the output terminal 24C, the fixed contact 31B, and the movable contact 32B are configured by the switch unit SB, and the output terminal 21C, the fixed contact 31C, and the movable contact 32C are configured by the switch unit SC.
  • these switch units SA to SC may be configured by semiconductor switching elements such as MOSFETs.
  • the switch circuit 30 is configured to be switched between an on state and an off state based on the output of the power supply monitoring unit 50.
  • the power supply monitoring unit 50 monitors the power supply from the battery E to the drive circuit 20, and maintains the switch circuit 30 in the on state when the power supply continues, and switches the switch circuit 30 from the on state when the power supply stops.
  • a first switching signal for switching to the off state is output to the switch circuit 30.
  • the power monitoring unit 50 is configured to output a second switching signal for switching from the off state to the on state to the switch circuit 30 when the power supply to the drive circuit 20 is resumed.
  • the stoppage of power supply typically means stoppage of power supply due to disconnection of a power line connecting the battery E and the drive circuit 20, but in addition to this, the deterioration of the battery E and the charge amount A state where a drive current corresponding to the energization control amount calculated in the control circuit 40 cannot be generated in the drive circuit 20, such as a decrease beyond a predetermined value, may be targeted.
  • a voltage signal adjusted based on the power supply voltage of the battery E is typically used as the first and second switching signals output from the power supply monitoring unit 50 to the switch circuit 30.
  • the switch sections SA to SC of the switch circuit 30 are preferably constituted by a normally-off (B contact) type switch mechanism in which the movable contacts 32A to 32C are urged to the fixed contacts 31A to 31C when there is no power supply.
  • the power supply monitoring unit 50 can be simply configured with a simple power supply line connecting the power supply line and the movable contacts 32A to 32C.
  • the power supply line may include appropriate passive elements such as a resistance element and a rectifying element.
  • the power supply monitoring unit 50 includes a voltage detection unit that detects the voltage (line voltage) of the power supply line and a comparator that compares the line voltage with the reference voltage, and when the line voltage is equal to or lower than the reference voltage, the switch circuit It may be configured by a circuit that cuts off the voltage supply to 30. Alternatively, the power monitoring unit 50 may be configured as a part of the control circuit 40.
  • FIG. 4 is a schematic cross-sectional view of a cylindrical linear motor showing one configuration example of the motor 10.
  • X, Y, and Z axes indicate three axial directions orthogonal to each other, and the Z axis corresponds to the axial direction of the motor 10.
  • the motor 10 includes a fixed portion 110 and a movable portion 120 and is configured as a vehicle damper that is attached between each wheel of the vehicle and the vehicle body.
  • the fixed portion 110 is connected to the vehicle body side
  • the movable portion 120 is connected to the wheel side.
  • the present invention is not limited to this, and the fixed portion 110 may be connected to the wheel side and the movable portion 120 may be connected to the vehicle body side.
  • the fixed portion 110 includes a cylindrical first tube member 111 having a hollow portion 111a, and a plurality of electromagnetic coils 11 disposed inside the first tube member 111 (corresponding to the electromagnetic coils 11 in FIGS. 1 and 3). ).
  • the first cylindrical member 111 has an axis parallel to the Z-axis direction, and holds the electromagnetic coil 11 via a coil holder 112 made of a magnetic material on the inner peripheral surface thereof.
  • One end (upper end in FIG. 4) of the first cylindrical member 111 is opened, and the other end (lower end in FIG. 4) is fixed to the base 115 via the adapter 114.
  • the movable part 120 includes a second cylindrical member 121 and a shaft 123 (magnetic body part) that supports the permanent magnet 125.
  • the second cylinder member 121 has an axis parallel to the Z-axis direction, and is attached to the outer peripheral surface of the first cylinder member 111 so as to be relatively displaceable in the Z-axis direction with respect to the first cylinder member 111.
  • One end portion (lower end portion in FIG. 4) of the second cylindrical member 121 is opened, and a cover portion 122 is attached to the other end portion (upper end portion in FIG. 4).
  • the shaft 123 extends along the Z-axis direction inside the first cylindrical member 111 and is fixed to the second cylindrical member 121 via the cover portion 122.
  • One end portion (upper end portion in FIG. 4) of the shaft 123 is connected to the vibration receiving portion 124.
  • the first cylinder member 111 is inserted into the second cylinder member 121 and abuts against the inner peripheral surface of the second cylinder member 121.
  • a first slide ring R ⁇ b> 1 is provided on the outer peripheral surface of the first cylindrical member 111 on the one end side.
  • the first slide ring R ⁇ b> 1 has an annular shape, and is configured such that an outer peripheral surface thereof abuts on an inner peripheral surface of the second cylindrical member 121.
  • the first cylindrical member 111 has a function of guiding sliding in the Z-axis direction with respect to the fixed portion 110 of the movable portion 120.
  • the coil holder 112 is formed in a cylindrical shape concentric with the first cylinder member 111, and is fixed to the inner peripheral surface of the first cylinder member 111.
  • the coil holder 112 holds the electromagnetic coil 11 composed of a plurality of ring-shaped windings (coil portions 11A to 11C) on the inner peripheral surface side.
  • Each ring-shaped winding has an air core portion that is arranged at a predetermined interval along the Z-axis direction and communicates with the hollow portion 111a.
  • each ring-shaped winding is divided into three coil portions 11A to 11C of U phase, V phase and W phase, and the coil portions 11A to 11C of each phase are movable contacts 32A to 32A of the switch circuit 30. 32C is connected to each.
  • the base part 115 is supported by the support S on the vehicle body side via the support part 116.
  • the base portion 115 has a substantially cylindrical shape, the adapter 114 is fixed to one end portion thereof, and the bottom guide portion 117 is fixed to the other end portion on the opposite side.
  • the support portion 116 is attached to each of two locations on the outer peripheral surface of the base portion 115 facing each other in the X-axis direction, and connects the base portion 115 and the support S to each other.
  • the support part 116 is comprised with the trunnion which supports the base part 115 rotatably around the X-axis.
  • the adapter 114 has an annular shape and is attached to one end (upper end in FIG. 4) of the base portion 115 to connect the base portion 115 and the first cylindrical member 111.
  • the adapter 114 is configured to be able to contact a flange portion 124 ⁇ / b> A provided at the one end portion of the second cylindrical member 121 so as to protrude radially outward.
  • the adapter 114 functions as a locking portion that defines the closest position of the movable portion 120 to the base portion 115, and the position where the second cylindrical member 121 contacts the adapter 114 corresponds to the maximum contracted position of the motor 10 ( (See FIG. 4).
  • the bottom guide portion 117 is a cylindrical member concentric with the first cylindrical member 111 and functions to guide the movement of the stopper 126 attached to the other end of the shaft 123 of the movable portion 120 along the Z-axis direction.
  • An annular protruding portion 117a that protrudes radially inward so as to come into contact with the stopper 126 is provided.
  • the bottom guide portion 117 functions as a locking portion that defines the maximum separation position of the movable portion 120 with respect to the base portion 115, and the position where the stopper 126 abuts on the protruding portion 117 a of the bottom guide portion 117 is the maximum extension position of the motor 10. It corresponds to.
  • the second cylinder member 121 is configured by a cylindrical member concentric with the first cylinder member 111.
  • a second slide ring R ⁇ b> 2 is provided at the end of the second cylindrical member 121 near the flange portion 124 ⁇ / b> A.
  • the second slide ring R ⁇ b> 2 has an annular shape, and is configured such that its inner peripheral surface comes into contact with the outer peripheral surface of the first cylindrical member 111.
  • the movable part 120 since it has 1st slide ring R1 contact
  • the relative movement (relative displacement) in the Z-axis direction with respect to the fixed portion 110 can be stably guided.
  • the cover portion 122 closes one end portion of the second cylindrical member 121 and prevents entry of foreign matter or the like into the inside of the motor 10 (hollow portion 111a).
  • a cylindrical holding portion 122 a that holds one end of the shaft 123 is provided at the center of the cover portion 122, and the shaft 123 is fixed to the second cylindrical member 121 through the holding portion 122 a.
  • the stopper 126 is connected to the other end of the shaft 123, and is formed in a disk shape having a slidable peripheral edge on the inner peripheral surface of the bottom guide 117.
  • An annular protrusion 126a extending in the Z-axis direction toward the cover part 122 is provided at the peripheral edge of the stopper 126 so that the stopper 126 can come into contact with the protrusion 117a of the bottom guide part 117 at the maximum extension position of the motor 10. Composed. Therefore, the maximum extension position of the motor 10 can be arbitrarily adjusted by the dimension of the protrusion 126a in the Z-axis direction.
  • the shaft 123 is a cylindrical rod-shaped member whose longitudinal direction is the Z-axis direction, and is inserted through the hollow portion 111a and penetrates the air core portions of a plurality of ring-shaped windings constituting the electromagnetic coil 11.
  • the shaft 123 is positioned on the axial center of the first cylindrical member 111 by having both ends thereof held by the cover portion 122 and the stopper 126, respectively. As a result, the shaft 123 can move in the Z-axis direction without causing an axial runout, and further, durability against an uneven load from a direction orthogonal to the Z-axis is ensured.
  • the shaft 123 includes a shaft main body 123a, a plurality of cylindrical permanent magnets 125 inserted through the shaft main body 123a, and an annular yoke F interposed between each of the plurality of permanent magnets 125.
  • the shaft portion main body 123 a passes through the holding portion 122 a of the cover portion 122 and is connected to the vibration receiving portion 124.
  • the vibration receiving unit 124 is configured to have an arbitrary structure that transmits vibrations of a vibration system such as a wheel to the motor 10.
  • the plurality of permanent magnets 125 are arranged along the Z-axis direction and held by the shaft 123 so that the same poles face each other in the Z-axis direction.
  • the kind of permanent magnet 125 is not specifically limited, For example, an alnico magnet, a ferrite magnet, a neodymium magnet, etc. may be employ
  • the size and number of the permanent magnets 125 are not particularly limited, and can be appropriately set according to the number of ring-shaped windings constituting the electromagnetic coil 11 and the arrangement pitch.
  • the permanent magnets 125 are arranged over almost the entire axial length range of the shaft 123.
  • the permanent magnets 125 are arranged at least over the axial length range that can pass through the air core portion of the electromagnetic coil 11. Just do it.
  • the position and displacement of the shaft 123 along the Z-axis direction are detected by the detection unit 210.
  • the detection unit 210 is provided at an arbitrary position within the fixed unit 110 (for example, the protrusion 117a of the bottom guide unit 117), and faces the permanent magnet 125 held by the shaft 123 in a direction orthogonal to the Z-axis direction. .
  • the detection unit 210 detects the magnetic flux density of the magnetic flux from the N pole to the S pole of the permanent magnet 125, and outputs a detection signal including relative position information of the movable unit 120 (shaft 123) with respect to the fixed unit 110 to the control circuit 40. .
  • the members constituting the fixed part 110 and the movable part 120 are non-magnetic. From the viewpoint of ensuring the rigidity and durability of the motor 10, it is preferably a metal material.
  • the drive circuit 20 and the control circuit 40 are supplied with power from the battery E, and the switch circuit 30 is switched to the ON state indicated by the solid line in FIG.
  • the movable portion 120 (shaft 123) of the motor 10 receives a force acting in the stroke direction (Z-axis direction) and acts on the fixed portion 110 (electromagnetic coil 11). Relative displacement.
  • the control circuit 40 calculates the energization control amount for the motor 10 for each wheel based on the unsprung acceleration signal and sprung acceleration signal of each wheel and the output of the detection unit 210 of the motor 10, and the control circuit 40 It outputs to each switching element 211,212,221,222,231,232.
  • the switching elements 211, 212, 221, 222, 231, 232 of the drive circuit 20 are on / off controlled based on a control signal from the control circuit 40, and the electromagnetic coil 11 (first to third coils) of the motor 10 is controlled.
  • the generated first to third drive currents are supplied to the electromagnetic coil 11 of the motor 10 via the switch circuit 30 in the on state.
  • the motor 10 is optimally attenuated according to the vibration speed of each wheel. In addition to being adjusted to the force, it is variably controlled so as to obtain an optimum damping force according to the vibration state of the wheel. This improves the ride comfort and handling stability of the vehicle.
  • the power supply monitoring unit 50 performs the first switching for switching the switch circuit 30 to the off state indicated by the two-dot chain line in FIG.
  • the signal is output to the switch circuit 30.
  • the movable contacts 32A to 32C are short-circuited to each other via the short-circuit line 33 by being connected to the fixed contacts 31A to 31C.
  • the power monitoring unit 50 outputs to the switch circuit 30 a second switching signal for switching the switch circuit 30 to the ON state indicated by the solid line in FIG.
  • the switch circuit 30 is automatically returned to the on state when the power is restored, and the above-described desired damping force control can be quickly executed.
  • the switch circuit 30 is switched to the OFF state, so that a predetermined damper function by the motor 10 is ensured.
  • the ride comfort and the handling stability of the vehicle are ensured even when the power supply is lost.
  • the switch circuit 30 when the switch circuit 30 is in the OFF state, the connection between the coil portions 11A to 11C of the motor 10 and the drive circuit 20 (output terminals 24A to 21C) is cut off, so that the current generated by the motor 10 is driven. Without being leaked to the circuit 20, it can be efficiently used as a generation source of vibration damping force.
  • a resistance element having an appropriate electrical resistance value may be interposed in the short-circuit line 33, whereby the resistance of the current in the short-circuit line 33 can be adjusted, so that the vibration damping force by the motor 10 is optimized. be able to.
  • the motor 10 is constituted by a cylindrical linear motor to which the linear vibration of the vibration system is directly input. Therefore, the rotary type includes a ball screw mechanism that converts the linear vibration into a rotational motion. Compared with the motor of this type, there is no backlash, so that a stable damping action can be obtained even for minute vibrations having a small amplitude. Further, since it can sufficiently follow high-speed vibration, stable vibration attenuation characteristics can be obtained even in a relatively high frequency band.
  • the electromagnetic damper device 100 of the present embodiment since the trunnion structure is adopted for the support portion 116 of the motor 10, the rotation of the motor 10 around the X axis is allowed. As a result, a predetermined vibration damping action can be obtained while tilting around the X-axis, so that the electromagnetic damper device 100 suitable for use in a vehicle suspension system can be provided.
  • FIG. 5 is a block diagram schematically showing the configuration of the electromagnetic damper device 200 including the motor driving device 2 according to the second embodiment of the present invention.
  • the configuration different from the first embodiment will be mainly described, and the same configuration as the first embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
  • the motor drive device 2 of the present embodiment is different from the first embodiment in that the control circuit 41 includes the function of the power supply monitoring unit 50.
  • the control circuit 41 includes the function of the power supply monitoring unit 50.
  • the control circuit 41 when the power supply from the battery E to the drive circuit 20 is interrupted, the control circuit 41 is switched to the first state for switching from the on state (connected state) to the off state (short circuit state).
  • the switching signal is configured to be output to the switch circuit 30.
  • the control circuit 41 is configured to output a second switching signal for switching from the off state to the on state to the switch circuit 30 when the power supply to the drive circuit 20 is resumed.
  • control circuit 41 outputs the second switching signal when the first to third drive currents are zero when the power is restored, and switches the switch circuit 30 from the off state to the on state.
  • FIG. 6 is a flowchart showing an example of a second switching signal generation procedure executed in the control circuit 41.
  • the control circuit 41 When the power supply monitoring unit 50 detects that the power supply from the battery E to the drive circuit 20 has been resumed, the control circuit 41 maintains the switch circuit 30 in the OFF state, while driving the drive current (first to Preliminary control commands for on / off control of the switching elements 211, 212, 221, 222, 231, 232 so that the third drive current) is zero (for example, 50% duty ratio in PWM control). It is generated and output to the drive circuit 20 (step 101). Subsequently, the control circuit 41 determines whether or not a predetermined time has elapsed since the output of the preliminary control command. When the predetermined time has elapsed, the control circuit 41 switches a second switching signal for turning on the switch circuit 30. Output to the circuit 30 (steps 102 and 103).
  • the predetermined time is not particularly limited. Typically, an appropriate time during which a drive current having a current value of zero is generated in each phase after the preliminary control command is output is set, for example, about 0.5 seconds. The This prevents arcs from being generated between the output terminals 24A to 24C and the movable contacts 32A to 32C when the switch circuit 30 is switched to the on state, and enables stable electric power while protecting these terminals. Connection is possible.
  • control circuit 41 may be configured to execute a control different from the control for switching the switch circuit 30 to the on state after a predetermined time has elapsed from the preliminary control command as described above.
  • a current sensor capable of detecting the driving current of each phase is used, and the switch circuit 30 is switched to the ON state when the control circuit 41 detects the driving current of each phase based on the outputs of these current sensors. It may be configured.
  • the linear motor illustrated in FIG. 4 is described as an example of the motor 10, but the present invention is not limited to this, and a rotary motor may be employed.
  • the application examples to the electromagnetic damper devices 100 and 200 have been described as the motor drive devices 1 and 2.
  • the present invention is not limited to this, and the present invention is also applied to various actuators provided on the control surface of an aircraft, for example. Applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

The motor driving device 1 according to one embodiment of the present invention drives a motor 10 including three-phase coil portions 11A-11C and is provided with a drive circuit 20 and a switch circuit 30. The drive circuit 20 has three output terminals 24A-24C capable of being electrically connected to the coil portions 11A-11C and generates three-phase drive currents supplied to the respective coil portions via the output terminals. The switch circuit 30 is set between the motor and the drive circuit. The switch circuit 30 is configured to be selectively switchable between a connection state in which the output terminals 24A-24C and the coil portions 11A-11C are connected to each other and a short-circuit state in which the output terminals and the coil portions are disconnected from each other and the coil portions are mutually short-circuited.

Description

モータ駆動装置Motor drive device
 本発明は、例えば自動車用ダンパ等に適用可能なモータ駆動装置に関する。 The present invention relates to a motor drive device applicable to, for example, an automobile damper.
 従来より、電磁力により減衰力を発生させるいわゆる電磁ダンパ装置(電磁サスペンション装置)が知られている。この電磁ダンパ装置は、車体側と車輪側のうち一方側に設けられた磁石部材と、他方側に設けられたコイル部材とを有し、車輪の上下方向の力を受けてコイル部材と磁石部材とが相対的に変位することにより生じる電磁力によって減衰力を発生させるモータを備える。モータには、例えば、リニアモータや回転モータが用いられる(例えば特許文献1参照)。 Conventionally, so-called electromagnetic damper devices (electromagnetic suspension devices) that generate a damping force by electromagnetic force are known. The electromagnetic damper device has a magnet member provided on one side of the vehicle body side and the wheel side and a coil member provided on the other side, and receives the force in the vertical direction of the wheel to receive the coil member and the magnet member. And a motor that generates a damping force by an electromagnetic force generated by relatively displacing them. For example, a linear motor or a rotary motor is used as the motor (see, for example, Patent Document 1).
 この種の電磁ダンパ装置は、典型的には、U、V、Wの3相の巻線を備えたモータと、これら3相の各巻線にインバータによって正弦波でなる電圧を印加してモータをPWM(Pulse Width Modulation)制御する駆動回路とを有する。コイル部材に流れる電流量によって、その減衰力を調整することが可能であり、例えば、バッテリ電源を使って積極的にコイル部材に電流を流すことで、大きな減衰力を得ることができる(例えば特許文献2参照)。 This type of electromagnetic damper device typically includes a motor having three-phase windings of U, V, and W, and applies a sine wave voltage to each of these three-phase windings by an inverter. And a drive circuit that performs PWM (Pulse Width Modulation) control. The damping force can be adjusted according to the amount of current flowing through the coil member. For example, a large damping force can be obtained by actively passing a current through the coil member using a battery power source (for example, a patent). Reference 2).
特開2008-62738号公報JP 2008-62738 A 特開2007-161100号公報JP 2007-161100 A
 特許文献2に記載のように従来の電磁ダンパ装置においては、インバータ回路とモータとが直接的に接続されている。このため、例えば外部電源(バッテリ)が喪失すると、モータの各相の電磁コイルがオープン状態となり、その結果、モータがフリー状態になることでダンパ機能が喪失するという問題がある。 As described in Patent Document 2, in a conventional electromagnetic damper device, an inverter circuit and a motor are directly connected. For this reason, for example, when the external power supply (battery) is lost, there is a problem that the electromagnetic coil of each phase of the motor is in an open state, and as a result, the damper function is lost because the motor is in a free state.
 以上のような事情に鑑み、本発明の目的は、電源喪失時においても所定のダンパ機能を確保することができるモータ駆動装置を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a motor drive device that can ensure a predetermined damper function even when power is lost.
 上記目的を達成するため、本発明の一形態に係るモータ駆動装置は、第1の位相を有する第1の駆動電流が通電可能な第1のコイル部と、前記第1の位相と異なる第2の位相を有する第2の駆動電流が通電可能な第2のコイル部と、前記第1及び第2の位相と異なる第3の位相を有する第3の駆動電流が通電可能な第3のコイル部とを含むモータを駆動するモータ駆動装置であって、駆動回路と、スイッチ回路とを具備する。
 上記駆動回路は、上記第1のコイル部に電気的に接続可能な第1の出力端子と、上記第2のコイル部に電気的に接続可能な第2の出力端子と、上記第3のコイル部に電気的に接続可能な第3の出力端子とを有する。上記駆動回路は、上記第1~第3の出力端子を介して上記第1~第3のコイル部へそれぞれ供給される上記第1~第3の駆動電流を生成する。
 上記スイッチ回路は、上記モータと上記駆動回路との間に介装される。上記スイッチ回路は、上記第1~第3の出力端子と上記第1~第3のコイル部との間を各々接続する接続状態と、上記第1~第3の出力端子と上記第1~第3のコイル部との間を各々遮断し上記第1~第3のコイル部を相互に短絡させる短絡状態とを選択的に切り替え可能に構成される。
In order to achieve the above object, a motor driving apparatus according to an aspect of the present invention includes a first coil unit that can be energized with a first driving current having a first phase, and a second coil that is different from the first phase. A second coil part that can be energized by a second drive current having a phase and a third coil part that can be energized by a third drive current having a third phase different from the first and second phases. The motor drive device which drives the motor containing these, Comprising: A drive circuit and a switch circuit are comprised.
The drive circuit includes a first output terminal electrically connectable to the first coil portion, a second output terminal electrically connectable to the second coil portion, and the third coil. And a third output terminal electrically connectable to the unit. The drive circuit generates the first to third drive currents supplied to the first to third coil sections via the first to third output terminals, respectively.
The switch circuit is interposed between the motor and the drive circuit. The switch circuit includes a connection state in which the first to third output terminals and the first to third coil sections are connected to each other, the first to third output terminals, and the first to third coils. And a short-circuit state in which the first to third coil portions are short-circuited with each other by blocking each other from the three coil portions.
 上記モータ駆動装置において、スイッチ回路が短絡状態のとき、電磁コイルを構成する各相のコイル部は相互に短絡状態になるため、電磁コイルに対する磁性体部の相対変位の際、電磁誘導により各コイル部に誘導起電力が発生し、上記相対変位を阻害する所定の電磁力が生じる。したがって、例えば外部電源の喪失時においても、スイッチ回路が短絡状態に切り替えられることで、モータによる所定のダンパ機能が確保される。 In the above motor drive device, when the switch circuit is in a short circuit state, the coil portions of the phases constituting the electromagnetic coil are in a short circuit state with each other. An induced electromotive force is generated in the portion, and a predetermined electromagnetic force that inhibits the relative displacement is generated. Therefore, for example, even when the external power supply is lost, the switch circuit is switched to a short-circuit state, thereby ensuring a predetermined damper function by the motor.
 上記モータ駆動装置は、上記駆動回路への電源供給を監視する電源監視部をさらに具備してもよい。上記電源監視部は、上記駆動回路への電源供給が遮断されたとき、上記接続状態から上記短絡状態へ切り替えるための第1の切替信号を上記スイッチ回路へ出力する。
 これにより、電源遮断時にスイッチ回路が短絡状態へ自動的に切り替えられるため、外部電源の喪失時においても所期のダンパ機能が確保される。
The motor driving device may further include a power monitoring unit that monitors power supply to the driving circuit. The power monitoring unit outputs a first switching signal for switching from the connected state to the short-circuited state to the switch circuit when power supply to the drive circuit is interrupted.
As a result, the switch circuit is automatically switched to a short-circuited state when the power is shut off, so that the expected damper function is ensured even when the external power source is lost.
 上記電源監視部は、上記駆動回路への電源供給が再開されたとき、上記短絡状態から上記接続状態へ切り替えるための第2の切替信号を上記スイッチ回路へ出力するように構成されてもよい。
 これにより、電源復旧時においてスイッチ回路を接続状態へ自動的に復帰させることができる。
The power supply monitoring unit may be configured to output a second switching signal for switching from the short circuit state to the connection state to the switch circuit when power supply to the drive circuit is resumed.
Thereby, the switch circuit can be automatically returned to the connected state when the power is restored.
 上記モータ駆動装置は、上記駆動回路及び上記スイッチ回路を制御する制御回路をさらに具備してもよい。上記制御回路は、上記第1~第3の駆動電流がゼロのときに、上記スイッチ回路を上記短絡状態から上記接続状態へ切り替えるように構成される。
 これにより、短絡状態から接続状態への切り替え時において第1~第3の出力端子とスイッチ回路との間におけるアーク等の発生を防止し、スイッチ回路の保護を図ることができる。
The motor drive device may further include a control circuit that controls the drive circuit and the switch circuit. The control circuit is configured to switch the switch circuit from the short circuit state to the connection state when the first to third drive currents are zero.
As a result, it is possible to prevent arcs and the like between the first to third output terminals and the switch circuit at the time of switching from the short-circuit state to the connected state, thereby protecting the switch circuit.
本発明の第1の実施形態に係るモータ駆動装置を備えた電磁ダンパ装置の構成を概略的に示すブロック図である。It is a block diagram showing roughly the composition of the electromagnetic damper device provided with the motor drive concerning a 1st embodiment of the present invention. 上記モータ駆動装置における駆動回路の概略構成図である。It is a schematic block diagram of the drive circuit in the said motor drive device. 上記モータ駆動装置におけるスイッチ回路の概略構成図である。It is a schematic block diagram of the switch circuit in the said motor drive device. 上記モータ駆動装置におけるモータの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the motor in the said motor drive device. 本発明の第2の実施形態に係るモータ駆動装置を備えた電磁ダンパ装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the electromagnetic damper apparatus provided with the motor drive device which concerns on the 2nd Embodiment of this invention. 上記モータ駆動装置における制御回路において実行される制御フローである。It is a control flow performed in the control circuit in the said motor drive device.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<第1の実施形態>
 図1は、本発明の第1の実施形態に係るモータ駆動装置1を備えた電磁ダンパ装置100の構成を概略的に示すブロック図である。
<First Embodiment>
FIG. 1 is a block diagram schematically showing a configuration of an electromagnetic damper device 100 including a motor drive device 1 according to a first embodiment of the present invention.
[モータ駆動装置]
 本実施形態のモータ駆動装置1は、モータ10を駆動する駆動回路20と、スイッチ回路30とを備える。モータ駆動装置1はさらに、制御回路40と、電源監視部50とを備える。
[Motor drive device]
The motor drive device 1 of this embodiment includes a drive circuit 20 that drives the motor 10 and a switch circuit 30. The motor drive device 1 further includes a control circuit 40 and a power supply monitoring unit 50.
 電磁ダンパ装置100は、車両の各車輪に設置される電磁サスペンション装置として構成され、車輪の上下方向の振動を電磁力により減衰させることで、車体の姿勢を安定に維持し、乗員に快適な乗り心地や安定した操縦性を提供するためのものである。 The electromagnetic damper device 100 is configured as an electromagnetic suspension device installed on each wheel of a vehicle, and maintains the posture of the vehicle body stably by attenuating the vibration in the vertical direction of the wheel by electromagnetic force, so that a comfortable ride for the occupant This is to provide comfort and stable maneuverability.
 モータ10は、リニアモータあるいは回転モータで構成され、本実施形態では後述するように円筒型リニアモータで構成される。モータ10は、3相モータで構成され、位相が各々120°異なる3相の駆動電流が通電可能な電磁コイル11を有する。電磁コイル11は、U相(第1の位相)の第1の駆動電流が通電可能な第1のコイル部11Aと、V相(第2の位相)の第2の駆動電流が通電可能な第2のコイル部11Bと、W相(第3の位相)の第3の駆動電流が通電可能な第3のコイル部11Cとを含む。 The motor 10 is composed of a linear motor or a rotary motor, and in this embodiment is composed of a cylindrical linear motor as will be described later. The motor 10 includes a three-phase motor, and includes an electromagnetic coil 11 that can be energized with a three-phase drive current that is 120 degrees out of phase. The electromagnetic coil 11 includes a first coil portion 11A capable of energizing a U-phase (first phase) first drive current, and a V-phase (second phase) second drive current. And a second coil portion 11B and a third coil portion 11C capable of passing a W-phase (third phase) third drive current.
 図2は、駆動回路20の概略構成図である。 FIG. 2 is a schematic configuration diagram of the drive circuit 20.
 図2に示すように、駆動回路20は、モータ10を駆動する回路であって、外部電源としてのバッテリEに接続された3相インバータ回路で構成される。駆動回路20は、モータ10の3相のコイル部11A,11B,11Cにそれぞれ対応したスイッチング素子211,212,221,222,231,232を有する。これらのスイッチング素子は、本実施形態ではMOSFETで構成される。 As shown in FIG. 2, the drive circuit 20 is a circuit for driving the motor 10, and is composed of a three-phase inverter circuit connected to a battery E as an external power source. The drive circuit 20 includes switching elements 211, 212, 221, 222, 231, and 232 that correspond to the three-phase coil portions 11 </ b> A, 11 </ b> B, and 11 </ b> C of the motor 10, respectively. These switching elements are constituted by MOSFETs in this embodiment.
 スイッチング素子211,212,221,222,231,232は、制御回路40からの制御信号によりオン・オフ制御されることで、第1の駆動電流(U相)、第2の駆動電流(V相)、第3の駆動電流(W相)をそれぞれ生成する。駆動回路20は、スイッチ回路30を介して第1~第3の駆動電流をモータ10の第1~第3のコイル部11A~11Cへそれぞれ出力する第1~第3の出力端子24A,24B,24Cを有する。 The switching elements 211, 212, 221, 222, 231, and 232 are on / off controlled by a control signal from the control circuit 40, so that the first drive current (U phase) and the second drive current (V phase) are controlled. ) And a third drive current (W phase), respectively. The drive circuit 20 outputs first to third output currents 24A, 24B, 24B for outputting first to third drive currents to the first to third coil portions 11A to 11C of the motor 10 via the switch circuit 30, respectively. 24C.
 駆動回路20は、各車輪について各々独立した回路で構成されるが、これに限られず、一部の車輪については共通の回路で構成されてもよい。 The drive circuit 20 is configured by an independent circuit for each wheel, but is not limited thereto, and some wheels may be configured by a common circuit.
 制御回路40は、CPUやメモリ等を含むコンピュータで構成される。制御回路40は、車輪のばね下やばね上等に設置される複数の図示しない加速度センサの出力に基づいて、モータ10の各コイル部へ供給される第1~第3の駆動電流を生成するための制御信号を駆動回路20へ出力する。 The control circuit 40 is configured by a computer including a CPU, a memory, and the like. The control circuit 40 generates first to third drive currents to be supplied to the respective coil portions of the motor 10 based on outputs of a plurality of acceleration sensors (not shown) installed on the unsprung or sprung of the wheel. The control signal for output is output to the drive circuit 20.
 より具体的に、制御回路40は、車両の上下振動を抑制するようにモータ10の制御量を算出する論理演算部として構成される。演算方法は特に限定されず、例えば、ばね下加速度信号及びばね上加速度信号を車輪ごとに入力し、各加速度信号に積分処理やフィルタリング処理を施してばね下速度及びばね上速度を求め、これらばね下速度及びばね上速度に各々所定のゲインを乗じた値の和を上記制御量として算出する。この制御量は、モータ10への通電制御量に相当し、車輪ごとに独立して算出される。 More specifically, the control circuit 40 is configured as a logical operation unit that calculates the control amount of the motor 10 so as to suppress the vertical vibration of the vehicle. The calculation method is not particularly limited. For example, the unsprung acceleration signal and the unsprung acceleration signal are input for each wheel, and the unsprung and unsprung velocities are obtained by integrating and filtering each acceleration signal. A sum of values obtained by multiplying the lower speed and the sprung speed by a predetermined gain is calculated as the control amount. This control amount corresponds to the energization control amount to the motor 10 and is calculated independently for each wheel.
 制御回路40はさらに、上記制御量に応じたパルス幅で駆動回路20のスイッチング素子211,212,221,222,231,232をオン・オフ制御する。これにより駆動回路20において、バッテリEの電源電圧を基に第1~第3の駆動電流が生成される。モータ10からの発電電流が目標通電量に対して多ければ、その差分だけバッテリEに回生電流が流れ、逆に、モータ10からの発電電流が目標通電量に対して少なければ、その差分だけバッテリEからモータ10に通電される。 Further, the control circuit 40 performs on / off control of the switching elements 211, 212, 221, 222, 231, 232 of the drive circuit 20 with a pulse width corresponding to the control amount. As a result, the drive circuit 20 generates first to third drive currents based on the power supply voltage of the battery E. If the generated current from the motor 10 is larger than the target energization amount, the regenerative current flows through the battery E by the difference, and conversely, if the generated current from the motor 10 is less than the target energization amount, the difference is the battery. The motor 10 is energized from E.
 なお、バッテリEは、図示しない発電機(オルタネータ)に電気的に接続されており、図示しないエンジンの始動によりバッテリEは充電可能に構成される。 The battery E is electrically connected to a generator (alternator) (not shown), and the battery E is configured to be rechargeable by starting an engine (not shown).
 図3は、スイッチ回路30の概略構成図である。 FIG. 3 is a schematic configuration diagram of the switch circuit 30.
 スイッチ回路30は、モータ10と駆動回路20との間に介装され、モータ10と駆動回路20との間を電気的に接続するオン状態(接続状態)と、モータ10と駆動回路20との間を電気的に遮断するオフ状態(短絡状態)とを選択的に切り替えることが可能に構成される。 The switch circuit 30 is interposed between the motor 10 and the drive circuit 20. The switch circuit 30 is electrically connected between the motor 10 and the drive circuit 20. It is configured to be able to selectively switch between an off state (short circuit state) in which the gap is electrically cut off.
 図3に示すように、スイッチ回路30は、各相に対応する3つの固定接点31A,31B,31C及び3つの可動接点32A,32B,32Cを有する。固定接点31A~31Cは、短絡ライン33を介して相互に電気的に接続されており、可動接点32A~32Cは、第1~第3のコイル部11A~11Cにそれぞれ電気的に接続される。 As shown in FIG. 3, the switch circuit 30 has three fixed contacts 31A, 31B, 31C and three movable contacts 32A, 32B, 32C corresponding to each phase. The fixed contacts 31A to 31C are electrically connected to each other via the short-circuit line 33, and the movable contacts 32A to 32C are electrically connected to the first to third coil portions 11A to 11C, respectively.
 スイッチ回路30がオン状態のとき、可動接点32A~32Cは、図3において実線で示すように第1~第3の出力端子24A~21Cにそれぞれ接続される。これにより、駆動回路20からモータ10のコイル部11A~11Cへ第1~第3の駆動電流がそれぞれ供給される。 When the switch circuit 30 is in the ON state, the movable contacts 32A to 32C are connected to the first to third output terminals 24A to 21C, respectively, as indicated by solid lines in FIG. As a result, the first to third drive currents are supplied from the drive circuit 20 to the coil portions 11A to 11C of the motor 10, respectively.
 一方、スイッチ回路30がオフ状態のとき、可動接点32A~32Cは、図3において二点鎖線で示すように、固定接点31A~31Cへそれぞれ接続される。これにより、モータ10の各コイル部11A~11Cは、駆動回路20(出力端子24A~21C)と遮断されるとともに、短絡ライン33を介して相互に接続される。 On the other hand, when the switch circuit 30 is in the OFF state, the movable contacts 32A to 32C are connected to the fixed contacts 31A to 31C, respectively, as indicated by the two-dot chain line in FIG. As a result, the coil portions 11A to 11C of the motor 10 are disconnected from the drive circuit 20 (output terminals 24A to 21C) and connected to each other via the short circuit line 33.
 可動接点32A~32Cは、典型的には、メカニカルスイッチや電磁スイッチ等で構成される。この場合、出力端子24A、固定接点31A及び可動接点32Aは相互にユニット化されたスイッチ部SAで構成することができる。同様に、出力端子24C、固定接点31B及び可動接点32Bはスイッチ部SBで、また、出力端子21C、固定接点31C及び可動接点32Cはスイッチ部SCで、それぞれ構成される。なお、これらスイッチ部SA~SCは、MOSFET等の半導体スイッチング素子で構成されてもよい。 The movable contacts 32A to 32C are typically constituted by mechanical switches or electromagnetic switches. In this case, the output terminal 24A, the fixed contact 31A, and the movable contact 32A can be configured by a switch unit SA that is unitized with each other. Similarly, the output terminal 24C, the fixed contact 31B, and the movable contact 32B are configured by the switch unit SB, and the output terminal 21C, the fixed contact 31C, and the movable contact 32C are configured by the switch unit SC. Note that these switch units SA to SC may be configured by semiconductor switching elements such as MOSFETs.
 本実施形態においてスイッチ回路30は、電源監視部50の出力に基づいて、オン状態とオフ状態との間で切り替えられるように構成される。電源監視部50は、バッテリEから駆動回路20への給電を監視し、給電が継続しているときはスイッチ回路30をオン状態に維持し、給電が停止したときはスイッチ回路30をオン状態からオフ状態へ切り替える第1の切替信号をスイッチ回路30へ出力する。また、電源監視部50は、駆動回路20への電源供給が再開されたとき、オフ状態からオン状態へ切り替えるための第2の切替信号をスイッチ回路30へ出力するように構成される。 In the present embodiment, the switch circuit 30 is configured to be switched between an on state and an off state based on the output of the power supply monitoring unit 50. The power supply monitoring unit 50 monitors the power supply from the battery E to the drive circuit 20, and maintains the switch circuit 30 in the on state when the power supply continues, and switches the switch circuit 30 from the on state when the power supply stops. A first switching signal for switching to the off state is output to the switch circuit 30. The power monitoring unit 50 is configured to output a second switching signal for switching from the off state to the on state to the switch circuit 30 when the power supply to the drive circuit 20 is resumed.
 給電の停止とは、典型的には、バッテリEと駆動回路20との間を接続する電源ラインの断線等による給電の停止を意味するが、これに加えて、バッテリEの劣化や充電量の所定以上の低下など、制御回路40において算定された通電制御量に相当する駆動電流を駆動回路20において生成することができない状態が対象とされてもよい。 The stoppage of power supply typically means stoppage of power supply due to disconnection of a power line connecting the battery E and the drive circuit 20, but in addition to this, the deterioration of the battery E and the charge amount A state where a drive current corresponding to the energization control amount calculated in the control circuit 40 cannot be generated in the drive circuit 20, such as a decrease beyond a predetermined value, may be targeted.
 電源監視部50からスイッチ回路30へ出力される第1及び第2の切り替え信号には、典型的には、バッテリEの電源電圧を基に調整された電圧信号が用いられる。 A voltage signal adjusted based on the power supply voltage of the battery E is typically used as the first and second switching signals output from the power supply monitoring unit 50 to the switch circuit 30.
 スイッチ回路30の各スイッチ部SA~SCは、無給電時に可動接点32A~32Cが固定接点31A~31Cへ付勢されるノーマリオフ(B接点)タイプのスイッチ機構で構成されるのが好ましい。この場合、電源監視部50は、上記電源ラインと各可動接点32A~32Cとの間を接続する単純な給電ラインで簡素に構成することができる。当該給電ラインには、抵抗素子や整流素子等の適宜の受動素子が含まれてもよい。 The switch sections SA to SC of the switch circuit 30 are preferably constituted by a normally-off (B contact) type switch mechanism in which the movable contacts 32A to 32C are urged to the fixed contacts 31A to 31C when there is no power supply. In this case, the power supply monitoring unit 50 can be simply configured with a simple power supply line connecting the power supply line and the movable contacts 32A to 32C. The power supply line may include appropriate passive elements such as a resistance element and a rectifying element.
 あるいは、電源監視部50は、上記電源ラインの電圧(ライン電圧)を検出する電圧検出部と、ライン電圧と基準電圧とを比較する比較器とを含み、ライン電圧が基準電圧以下のときスイッチ回路30への電圧供給を遮断する回路で構成されてもよい。あるいは、電源監視部50は、制御回路40の一部として構成されてもよい。 Alternatively, the power supply monitoring unit 50 includes a voltage detection unit that detects the voltage (line voltage) of the power supply line and a comparator that compares the line voltage with the reference voltage, and when the line voltage is equal to or lower than the reference voltage, the switch circuit It may be configured by a circuit that cuts off the voltage supply to 30. Alternatively, the power monitoring unit 50 may be configured as a part of the control circuit 40.
[モータ]
 続いて、モータ10の詳細について説明する。図4は、モータ10の一構成例を示す円筒型リニアモータの概略断面図である。図においてX、Y及びZ軸は相互に直交する3軸方向を示し、Z軸はモータ10の軸心方向に相当する。
[motor]
Next, details of the motor 10 will be described. FIG. 4 is a schematic cross-sectional view of a cylindrical linear motor showing one configuration example of the motor 10. In the figure, X, Y, and Z axes indicate three axial directions orthogonal to each other, and the Z axis corresponds to the axial direction of the motor 10.
 モータ10は、図4に示すように、固定部110と、可動部120とを有し、車両の各車輪と車体との間に取り付けられる車両用ダンパとして構成される。モータ10は、例えば、固定部110が車体側に、可動部120が車輪側にそれぞれ接続される。なおこれに限られず、固定部110が車輪側に、可動部120が車体側にそれぞれ接続されてもよい。 As shown in FIG. 4, the motor 10 includes a fixed portion 110 and a movable portion 120 and is configured as a vehicle damper that is attached between each wheel of the vehicle and the vehicle body. In the motor 10, for example, the fixed portion 110 is connected to the vehicle body side, and the movable portion 120 is connected to the wheel side. However, the present invention is not limited to this, and the fixed portion 110 may be connected to the wheel side and the movable portion 120 may be connected to the vehicle body side.
 固定部110は、中空部111aを有する円筒状の第1の筒部材111と、第1の筒部材111の内部に配置された複数の電磁コイル11(図1及び図3の電磁コイル11に相当)とを有する。第1の筒部材111は、Z軸方向に平行な軸心を有し、その内周面に磁性材料で構成されたコイルホルダ112を介して電磁コイル11を保持する。第1の筒部材111の一端部(図4において上端部)は開口し、他端部(図4において下端部)はアダプタ114を介してベース部115に固定される。 The fixed portion 110 includes a cylindrical first tube member 111 having a hollow portion 111a, and a plurality of electromagnetic coils 11 disposed inside the first tube member 111 (corresponding to the electromagnetic coils 11 in FIGS. 1 and 3). ). The first cylindrical member 111 has an axis parallel to the Z-axis direction, and holds the electromagnetic coil 11 via a coil holder 112 made of a magnetic material on the inner peripheral surface thereof. One end (upper end in FIG. 4) of the first cylindrical member 111 is opened, and the other end (lower end in FIG. 4) is fixed to the base 115 via the adapter 114.
 可動部120は、第2の筒部材121と、永久磁石125を支持するシャフト123(磁性体部)とを有する。第2の筒部材121は、Z軸方向に平行な軸心を有し、第1の筒部材111に対してZ軸方向に相対変位可能に第1の筒部材111の外周面に取り付けられる。第2の筒部材121の一端部(図4において下端部)は開口し、他端部(図4において上端部)にはカバー部122が取り付けられている。シャフト123は、第1の筒部材111の内部をZ軸方向に沿って延び、カバー部122を介して第2の筒部材121に固定される。シャフト123の一端部(図4において上端部)は振動受け部124と接続される。 The movable part 120 includes a second cylindrical member 121 and a shaft 123 (magnetic body part) that supports the permanent magnet 125. The second cylinder member 121 has an axis parallel to the Z-axis direction, and is attached to the outer peripheral surface of the first cylinder member 111 so as to be relatively displaceable in the Z-axis direction with respect to the first cylinder member 111. One end portion (lower end portion in FIG. 4) of the second cylindrical member 121 is opened, and a cover portion 122 is attached to the other end portion (upper end portion in FIG. 4). The shaft 123 extends along the Z-axis direction inside the first cylindrical member 111 and is fixed to the second cylindrical member 121 via the cover portion 122. One end portion (upper end portion in FIG. 4) of the shaft 123 is connected to the vibration receiving portion 124.
 以下、モータ10の各部の詳細な構成について説明する。 Hereinafter, a detailed configuration of each part of the motor 10 will be described.
 第1の筒部材111は、第2の筒部材121の内部に挿入され、第2の筒部材121の内周面に当接する。第1の筒部材111の上記一端部側の外周面には、第1スライドリングR1が設けられている。第1スライドリングR1は環状形状を有し、その外周面が第2の筒部材121の内周面に当接するように構成される。第1の筒部材111は、可動部120の固定部110に対するZ軸方向の摺動をガイドする機能を有する。 The first cylinder member 111 is inserted into the second cylinder member 121 and abuts against the inner peripheral surface of the second cylinder member 121. A first slide ring R <b> 1 is provided on the outer peripheral surface of the first cylindrical member 111 on the one end side. The first slide ring R <b> 1 has an annular shape, and is configured such that an outer peripheral surface thereof abuts on an inner peripheral surface of the second cylindrical member 121. The first cylindrical member 111 has a function of guiding sliding in the Z-axis direction with respect to the fixed portion 110 of the movable portion 120.
 コイルホルダ112は、第1の筒部材111と同心的な円筒状に形成され、第1の筒部材111の内周面に固定される。コイルホルダ112は、その内周面側において複数のリング状巻線(コイル部11A~11C)で構成された電磁コイル11を保持する。各リング状巻線は、Z軸方向に沿って所定の間隔を空けて配列され、中空部111aと連通する空芯部を有する。 The coil holder 112 is formed in a cylindrical shape concentric with the first cylinder member 111, and is fixed to the inner peripheral surface of the first cylinder member 111. The coil holder 112 holds the electromagnetic coil 11 composed of a plurality of ring-shaped windings (coil portions 11A to 11C) on the inner peripheral surface side. Each ring-shaped winding has an air core portion that is arranged at a predetermined interval along the Z-axis direction and communicates with the hollow portion 111a.
 電磁コイル11を構成する各コイル部11A~11Cは、スイッチ回路30に接続される。本実施形態において各リング状巻線は、U相、V相及びW相の3つのコイル部11A~11Cに分けられており、各相のコイル部11A~11Cがスイッチ回路30の可動接点32A~32Cにそれぞれ接続されている。 The coil portions 11A to 11C constituting the electromagnetic coil 11 are connected to the switch circuit 30. In this embodiment, each ring-shaped winding is divided into three coil portions 11A to 11C of U phase, V phase and W phase, and the coil portions 11A to 11C of each phase are movable contacts 32A to 32A of the switch circuit 30. 32C is connected to each.
 ベース部115は、支持部116を介して車体側の支持体Sに支持される。ベース部115は概略円筒形状を有し、その一端部にアダプタ114が固定され、反対側の他端部にボトムガイド部117が固定される。支持部116は、ベース部115の外周面のX軸方向に対向する2か所にそれぞれ取り付けられ、ベース部115と支持体Sとの間を相互に連結する。本実施形態において支持部116は、ベース部115をX軸まわりに回転可能に支持するトラニオンで構成される。 The base part 115 is supported by the support S on the vehicle body side via the support part 116. The base portion 115 has a substantially cylindrical shape, the adapter 114 is fixed to one end portion thereof, and the bottom guide portion 117 is fixed to the other end portion on the opposite side. The support portion 116 is attached to each of two locations on the outer peripheral surface of the base portion 115 facing each other in the X-axis direction, and connects the base portion 115 and the support S to each other. In this embodiment, the support part 116 is comprised with the trunnion which supports the base part 115 rotatably around the X-axis.
 アダプタ114は環状形状を有し、ベース部115の一端(図4において上端)に取り付けられ、ベース部115と第1の筒部材111とを連結させる。アダプタ114は、第2の筒部材121の上記一端部に径外方へ突出するように設けられたフランジ部124Aに当接可能に構成される。アダプタ114は、可動部120のベース部115に対する最近接位置を規定する係止部として機能し、第2の筒部材121がアダプタ114に当接する位置は、モータ10の最大収縮位置に相当する(図4参照)。 The adapter 114 has an annular shape and is attached to one end (upper end in FIG. 4) of the base portion 115 to connect the base portion 115 and the first cylindrical member 111. The adapter 114 is configured to be able to contact a flange portion 124 </ b> A provided at the one end portion of the second cylindrical member 121 so as to protrude radially outward. The adapter 114 functions as a locking portion that defines the closest position of the movable portion 120 to the base portion 115, and the position where the second cylindrical member 121 contacts the adapter 114 corresponds to the maximum contracted position of the motor 10 ( (See FIG. 4).
 ボトムガイド部117は、第1の筒部材111と同心的な円筒状の部材であり、可動部120のシャフト123の他端に取り付けられたストッパ126のZ軸方向に沿った移動をガイドする機能を有する。ボトムガイド部117のベース部115側の一端部には、ストッパ126と当接可能に径内方に突出する環状の突出部117aが設けられている。ボトムガイド部117は、可動部120のベース部115に対する最大離間位置を規定する係止部として機能し、ストッパ126がボトムガイド部117の突出部117aに当接する位置は、モータ10の最大伸長位置に相当する。 The bottom guide portion 117 is a cylindrical member concentric with the first cylindrical member 111 and functions to guide the movement of the stopper 126 attached to the other end of the shaft 123 of the movable portion 120 along the Z-axis direction. Have At one end of the bottom guide portion 117 on the base portion 115 side, an annular protruding portion 117a that protrudes radially inward so as to come into contact with the stopper 126 is provided. The bottom guide portion 117 functions as a locking portion that defines the maximum separation position of the movable portion 120 with respect to the base portion 115, and the position where the stopper 126 abuts on the protruding portion 117 a of the bottom guide portion 117 is the maximum extension position of the motor 10. It corresponds to.
 第2の筒部材121は、第1の筒部材111と同心的な円筒状の部材で構成される。第2の筒部材121のフランジ部124A近傍の端部には、第2スライドリングR2が設けられている。第2スライドリングR2は環状形状を有し、その内周面が第1の筒部材111の外周面に当接するように構成される。 The second cylinder member 121 is configured by a cylindrical member concentric with the first cylinder member 111. A second slide ring R <b> 2 is provided at the end of the second cylindrical member 121 near the flange portion 124 </ b> A. The second slide ring R <b> 2 has an annular shape, and is configured such that its inner peripheral surface comes into contact with the outer peripheral surface of the first cylindrical member 111.
 本実施形態では、第2の筒部材121の内周面に当接する第1スライドリングR1と、第1の筒部材111の外周面に当接する第2スライドリングR2とを有するため、可動部120の固定部110に対するZ軸方向への相対移動(相対変位)を安定にガイドすることができる。 In this embodiment, since it has 1st slide ring R1 contact | abutted to the internal peripheral surface of the 2nd cylinder member 121, and 2nd slide ring R2 contact | abutted to the outer peripheral surface of the 1st cylinder member 111, the movable part 120 is provided. The relative movement (relative displacement) in the Z-axis direction with respect to the fixed portion 110 can be stably guided.
 カバー部122は、第2の筒部材121の一端部を閉塞し、モータ10の内部(中空部111a)への異物等の侵入を防止する。カバー部122の中心部には、シャフト123の一端部を保持する円筒状の保持部122aが設けられており、この保持部122aを介してシャフト123が第2の筒部材121に固定される。 The cover portion 122 closes one end portion of the second cylindrical member 121 and prevents entry of foreign matter or the like into the inside of the motor 10 (hollow portion 111a). A cylindrical holding portion 122 a that holds one end of the shaft 123 is provided at the center of the cover portion 122, and the shaft 123 is fixed to the second cylindrical member 121 through the holding portion 122 a.
 ストッパ126は、シャフト123の他端部に接続され、ボトムガイド部117の内周面に摺動可能な周縁部を有する円盤状に形成される。ストッパ126の周縁部には、カバー部122に向かってZ軸方向に延びる環状の突出部126aが設けられており、モータ10の最大伸長位置においてボトムガイド部117の突出部117aに当接可能に構成される。したがって、突出部126aのZ軸方向の寸法により、モータ10の最大伸長位置を任意に調整することができる。 The stopper 126 is connected to the other end of the shaft 123, and is formed in a disk shape having a slidable peripheral edge on the inner peripheral surface of the bottom guide 117. An annular protrusion 126a extending in the Z-axis direction toward the cover part 122 is provided at the peripheral edge of the stopper 126 so that the stopper 126 can come into contact with the protrusion 117a of the bottom guide part 117 at the maximum extension position of the motor 10. Composed. Therefore, the maximum extension position of the motor 10 can be arbitrarily adjusted by the dimension of the protrusion 126a in the Z-axis direction.
 シャフト123は、Z軸方向を長手方向とする円筒棒状の部材であり、中空部111aに挿通され、電磁コイル11を構成する複数のリング状巻線の空芯部を貫通する。シャフト123は、その両端がカバー部122及びストッパ126にそれぞれ保持されることで、第1の筒部材111の軸心上に位置決めされる。これにより、シャフト123が軸振れを起こすことなくZ軸方向に移動可能となり、さらに、Z軸と直交する方向からの偏荷重に対する耐久性が確保される。 The shaft 123 is a cylindrical rod-shaped member whose longitudinal direction is the Z-axis direction, and is inserted through the hollow portion 111a and penetrates the air core portions of a plurality of ring-shaped windings constituting the electromagnetic coil 11. The shaft 123 is positioned on the axial center of the first cylindrical member 111 by having both ends thereof held by the cover portion 122 and the stopper 126, respectively. As a result, the shaft 123 can move in the Z-axis direction without causing an axial runout, and further, durability against an uneven load from a direction orthogonal to the Z-axis is ensured.
 シャフト123は、軸部本体123aと、軸部本体123aに挿通された筒状の複数の永久磁石125と、複数の永久磁石125各々の間に介装された環状の継鉄Fとを有する。軸部本体123aはカバー部122の保持部122aを貫通し、振動受け部124に接続される。振動受け部124は、車輪等の振動系の振動をモータ10へ伝達する任意の構造に構成される。 The shaft 123 includes a shaft main body 123a, a plurality of cylindrical permanent magnets 125 inserted through the shaft main body 123a, and an annular yoke F interposed between each of the plurality of permanent magnets 125. The shaft portion main body 123 a passes through the holding portion 122 a of the cover portion 122 and is connected to the vibration receiving portion 124. The vibration receiving unit 124 is configured to have an arbitrary structure that transmits vibrations of a vibration system such as a wheel to the motor 10.
 複数の永久磁石125は、Z軸方向に沿って配列され、同極同士がZ軸方向に対向するようにシャフト123に保持される。永久磁石125の種類は特に限定されず、例えば、アルニコ磁石、フェライト磁石又はネオジム磁石等が採用されてもよい。 The plurality of permanent magnets 125 are arranged along the Z-axis direction and held by the shaft 123 so that the same poles face each other in the Z-axis direction. The kind of permanent magnet 125 is not specifically limited, For example, an alnico magnet, a ferrite magnet, a neodymium magnet, etc. may be employ | adopted.
 永久磁石125の大きさや数は特に限定されず、電磁コイル11を構成するリング状巻線の数や配列ピッチ等に応じて適宜設定可能である。また、本実施形態ではシャフト123のほぼ全軸長の範囲にわたって永久磁石125が配列されるが、少なくとも、電磁コイル11の空芯部を通過し得る軸長の範囲にわたって永久磁石125が配列されていればよい。 The size and number of the permanent magnets 125 are not particularly limited, and can be appropriately set according to the number of ring-shaped windings constituting the electromagnetic coil 11 and the arrangement pitch. In the present embodiment, the permanent magnets 125 are arranged over almost the entire axial length range of the shaft 123. However, the permanent magnets 125 are arranged at least over the axial length range that can pass through the air core portion of the electromagnetic coil 11. Just do it.
 シャフト123のZ軸方向に沿った位置や変位は、検出部210によって検出される。検出部210は、固定部110内の任意の位置(例えば、ボトムガイド部117の突出部117a)に設けられ、シャフト123が保持する永久磁石125とZ軸方向と直交する方向に対向している。検出部210は、永久磁石125のN極からS極に向かう磁束の磁束密度を検出し、固定部110に対する可動部120(シャフト123)の相対位置情報を含む検出信号を制御回路40へ出力する。 The position and displacement of the shaft 123 along the Z-axis direction are detected by the detection unit 210. The detection unit 210 is provided at an arbitrary position within the fixed unit 110 (for example, the protrusion 117a of the bottom guide unit 117), and faces the permanent magnet 125 held by the shaft 123 in a direction orthogonal to the Z-axis direction. . The detection unit 210 detects the magnetic flux density of the magnetic flux from the N pole to the S pole of the permanent magnet 125, and outputs a detection signal including relative position information of the movable unit 120 (shaft 123) with respect to the fixed unit 110 to the control circuit 40. .
 固定部110及び可動部120を構成する部材(第1の筒部材111、第2の筒部材121、アダプタ114、ベース部115、ボトムガイド部117、カバー部122、ストッパ126等)は非磁性体で構成され、モータ10の剛性及び耐久性を確保する観点から金属材料であることが好ましい。 The members constituting the fixed part 110 and the movable part 120 (the first cylindrical member 111, the second cylindrical member 121, the adapter 114, the base part 115, the bottom guide part 117, the cover part 122, the stopper 126, etc.) are non-magnetic. From the viewpoint of ensuring the rigidity and durability of the motor 10, it is preferably a metal material.
[電磁ダンパ装置の動作]
 続いて、本実施形態の電磁ダンパ装置100の典型的な動作について説明する。
[Operation of electromagnetic damper device]
Subsequently, a typical operation of the electromagnetic damper device 100 of the present embodiment will be described.
 図示しないエンジンの始動により、駆動回路20及び制御回路40は、バッテリEから電源供給を受け、スイッチ回路30は、電源監視部50を介して、図3において実線で示すオン状態に切り替えられる。 When the engine (not shown) is started, the drive circuit 20 and the control circuit 40 are supplied with power from the battery E, and the switch circuit 30 is switched to the ON state indicated by the solid line in FIG.
 走行する車両の各車輪が上下方向に振動すると、モータ10の可動部120(シャフト123)は、ストローク方向(Z軸方向)に作用する力を受けて、固定部110(電磁コイル11)に対して相対変位する。制御回路40は、各車輪のばね下加速度信号やばね上加速度信号、モータ10の検出部210の出力に基づいて、モータ10に対する通電制御量を車輪ごとに算出し、制御信号として駆動回路20の各スイッチング素子211,212,221,222,231,232へ出力する。 When each wheel of the traveling vehicle vibrates in the vertical direction, the movable portion 120 (shaft 123) of the motor 10 receives a force acting in the stroke direction (Z-axis direction) and acts on the fixed portion 110 (electromagnetic coil 11). Relative displacement. The control circuit 40 calculates the energization control amount for the motor 10 for each wheel based on the unsprung acceleration signal and sprung acceleration signal of each wheel and the output of the detection unit 210 of the motor 10, and the control circuit 40 It outputs to each switching element 211,212,221,222,231,232.
 駆動回路20の各スイッチング素子211,212,221,222,231,232は、制御回路40からの制御信号に基づいてオン・オフ制御され、モータ10の電磁コイル11(第1~第3のコイル部11A~11C)へ供給される第1~第3の駆動電流を生成する。生成された第1~第3の駆動電流は、オン状態にあるスイッチ回路30を介して、モータ10の電磁コイル11へ供給される。 The switching elements 211, 212, 221, 222, 231, 232 of the drive circuit 20 are on / off controlled based on a control signal from the control circuit 40, and the electromagnetic coil 11 (first to third coils) of the motor 10 is controlled. First to third drive currents supplied to the units 11A to 11C). The generated first to third drive currents are supplied to the electromagnetic coil 11 of the motor 10 via the switch circuit 30 in the on state.
 このように電磁コイル11の第1~第3のコイル部11A~11Cが第1~第3の駆動電流で通電制御されることにより、モータ10は、各車輪の振動速度に応じた最適な減衰力に調整されるとともに、車輪の振動状態に応じて最適な減衰力となるように可変に制御される。これにより車両の乗り心地や操縦安定性の向上が実現される。 As described above, when the first to third coil portions 11A to 11C of the electromagnetic coil 11 are energized and controlled with the first to third drive currents, the motor 10 is optimally attenuated according to the vibration speed of each wheel. In addition to being adjusted to the force, it is variably controlled so as to obtain an optimum damping force according to the vibration state of the wheel. This improves the ride comfort and handling stability of the vehicle.
 一方、何等かの理由によりバッテリEによる駆動回路20への給電が遮断されると、電源監視部50は、スイッチ回路30を図3において二点鎖線で示すオフ状態に切り替えるための第1の切替信号をスイッチ回路30へ出力する。これにより、各可動接点32A~32Cは、固定接点31A~31Cへ接続されることで、短絡ライン33を介して相互に短絡する。 On the other hand, when power supply to the drive circuit 20 by the battery E is interrupted for some reason, the power supply monitoring unit 50 performs the first switching for switching the switch circuit 30 to the off state indicated by the two-dot chain line in FIG. The signal is output to the switch circuit 30. As a result, the movable contacts 32A to 32C are short-circuited to each other via the short-circuit line 33 by being connected to the fixed contacts 31A to 31C.
 これにより、モータ10においては、電磁コイル11に対するシャフト123(永久磁石125)の相対変位の際、電磁誘導により電磁コイル11に誘導起電力が発生する。電磁コイル11の各端子間は、オフ状態にあるスイッチ回路30において短絡しているため、各コイル部11A~11Cに誘導電流が流れることで、シャフト123に対しその移動を阻害する所定の電磁力が作用する。このようにしてモータ10による振動減衰作用が得られる。 Thereby, in the motor 10, when the shaft 123 (permanent magnet 125) is relatively displaced with respect to the electromagnetic coil 11, an induced electromotive force is generated in the electromagnetic coil 11 by electromagnetic induction. Since the terminals of the electromagnetic coil 11 are short-circuited in the switch circuit 30 in the off state, a predetermined electromagnetic force that inhibits the movement of the shaft 123 when an induced current flows through each of the coil portions 11A to 11C. Act. In this way, the vibration damping action by the motor 10 is obtained.
 一方、バッテリEの給電が復旧すると、電源監視部50は、スイッチ回路30を図3において実線で示すオン状態に切り替えるための第2の切り替え信号をスイッチ回路30へ出力する。これにより、電源復旧時においてスイッチ回路30をオン状態へ自動的に復帰させて、上述した所期の減衰力制御を速やかに実行することが可能となる。 On the other hand, when the power supply of the battery E is restored, the power monitoring unit 50 outputs to the switch circuit 30 a second switching signal for switching the switch circuit 30 to the ON state indicated by the solid line in FIG. As a result, the switch circuit 30 is automatically returned to the on state when the power is restored, and the above-described desired damping force control can be quickly executed.
 以上のように本実施形態の電磁ダンパ装置100によれば、外部電源(バッテリE)の喪失時においても、スイッチ回路30がオフ状態に切り替えられることで、モータ10による所定のダンパ機能が確保される。これにより、電源喪失時においても車両の乗り心地や操縦安定性が確保される。 As described above, according to the electromagnetic damper device 100 of the present embodiment, even when the external power source (battery E) is lost, the switch circuit 30 is switched to the OFF state, so that a predetermined damper function by the motor 10 is ensured. The As a result, the ride comfort and the handling stability of the vehicle are ensured even when the power supply is lost.
 しかも、スイッチ回路30のオフ状態において、モータ10の各コイル部11A~11Cと駆動回路20(出力端子24A~21C)との間の接続が遮断されるため、モータ10で発電された電流を駆動回路20へ漏出させることなく、振動減衰力の発生源として効率よく利用することができる。この場合、短絡ライン33に適宜の電気抵抗値を有する抵抗素子が介装されてもよく、これにより短絡ライン33での電流の抵抗を調整できるため、モータ10による振動減衰力の最適化を図ることができる。 In addition, when the switch circuit 30 is in the OFF state, the connection between the coil portions 11A to 11C of the motor 10 and the drive circuit 20 (output terminals 24A to 21C) is cut off, so that the current generated by the motor 10 is driven. Without being leaked to the circuit 20, it can be efficiently used as a generation source of vibration damping force. In this case, a resistance element having an appropriate electrical resistance value may be interposed in the short-circuit line 33, whereby the resistance of the current in the short-circuit line 33 can be adjusted, so that the vibration damping force by the motor 10 is optimized. be able to.
 また、本実施形態によれば、モータ10は、振動系の直線振動がダイレクトに入力される円筒型リニアモータで構成されているため、直線振動を回転運動に変換するボールネジ機構を備えた回転型のモータと比較してバックラッシュが存在せず、したがって振幅が小さい微小な振動に対しても安定した減衰作用を得ることができる。また、高速度の振動にも十分に追従することができるため、比較的高い周波数帯域においても安定した振動減衰特性が得られる。 Further, according to the present embodiment, the motor 10 is constituted by a cylindrical linear motor to which the linear vibration of the vibration system is directly input. Therefore, the rotary type includes a ball screw mechanism that converts the linear vibration into a rotational motion. Compared with the motor of this type, there is no backlash, so that a stable damping action can be obtained even for minute vibrations having a small amplitude. Further, since it can sufficiently follow high-speed vibration, stable vibration attenuation characteristics can be obtained even in a relatively high frequency band.
 さらに本実施形態の電磁ダンパ装置100によれば、モータ10の支持部116にトラニオン構造が採用されているため、モータ10のX軸周りの回動が許容される。これにより、X軸まわりに傾動しつつ所定の振動減衰作用が得られることから、車両用サスペンションシステムに用いて好適な電磁ダンパ装置100を提供することができる。 Furthermore, according to the electromagnetic damper device 100 of the present embodiment, since the trunnion structure is adopted for the support portion 116 of the motor 10, the rotation of the motor 10 around the X axis is allowed. As a result, a predetermined vibration damping action can be obtained while tilting around the X-axis, so that the electromagnetic damper device 100 suitable for use in a vehicle suspension system can be provided.
<第2の実施形態>
 図5は、本発明の第2の実施形態に係るモータ駆動装置2を備えた電磁ダンパ装置200の構成を概略的に示すブロック図である。以下、第1の実施形態と異なる構成について主に説明し、第1の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
<Second Embodiment>
FIG. 5 is a block diagram schematically showing the configuration of the electromagnetic damper device 200 including the motor driving device 2 according to the second embodiment of the present invention. Hereinafter, the configuration different from the first embodiment will be mainly described, and the same configuration as the first embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
 本実施形態のモータ駆動装置2は、制御回路41が電源監視部50の機能を含む点で、第1の実施形態と異なる。制御回路41は、第1の実施形態と同様に、バッテリEから駆動回路20への電源供給が遮断されたとき、オン状態(接続状態)からオフ状態(短絡状態)へ切り替えるための第1の切替信号をスイッチ回路30へ出力するように構成される。また、制御回路41は、駆動回路20への電源供給が再開されたとき、オフ状態からオン状態へ切り替えるための第2の切替信号をスイッチ回路30へ出力するように構成される。 The motor drive device 2 of the present embodiment is different from the first embodiment in that the control circuit 41 includes the function of the power supply monitoring unit 50. As in the first embodiment, when the power supply from the battery E to the drive circuit 20 is interrupted, the control circuit 41 is switched to the first state for switching from the on state (connected state) to the off state (short circuit state). The switching signal is configured to be output to the switch circuit 30. The control circuit 41 is configured to output a second switching signal for switching from the off state to the on state to the switch circuit 30 when the power supply to the drive circuit 20 is resumed.
 特に本実施形態では、制御回路41は、電源復旧時において、第1~第3の駆動電流がゼロのときに第2の切り替え信号を出力して、スイッチ回路30をオフ状態からオン状態へ切り替えるように構成される。これにより、オフ状態からオン状態への切り替え時において第1~第3の出力端子24A~21Cと可動接点32A~32Cとの間におけるアーク等の発生を防止し、スイッチ回路30の保護を図ることができる。 In particular, in the present embodiment, the control circuit 41 outputs the second switching signal when the first to third drive currents are zero when the power is restored, and switches the switch circuit 30 from the off state to the on state. Configured as follows. This prevents arcs and the like between the first to third output terminals 24A to 21C and the movable contacts 32A to 32C when switching from the off state to the on state, and protects the switch circuit 30. Can do.
 図6は、制御回路41において実行される第2の切り替え信号の生成手順の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of a second switching signal generation procedure executed in the control circuit 41.
 制御回路41は、電源監視部50においてバッテリEから駆動回路20への電源供給が再開されたことを検出すると、スイッチ回路30のオフ状態を維持したまま、UVW各相の駆動電流(第1~第3の駆動電流)がゼロ(例えば、PWM制御でデューティ比50%)となるように、各スイッチング素子211,212,221,222,231,232をオン・オフ制御するための予備制御指令を生成し、これを駆動回路20へ出力する(ステップ101)。続いて制御回路41は、予備制御指令を出力してから所定時間経過したか否かを判定し、所定時間が経過したときはスイッチ回路30をオン状態にするための第2の切り替え信号をスイッチ回路30へ出力する(ステップ102,103)。 When the power supply monitoring unit 50 detects that the power supply from the battery E to the drive circuit 20 has been resumed, the control circuit 41 maintains the switch circuit 30 in the OFF state, while driving the drive current (first to Preliminary control commands for on / off control of the switching elements 211, 212, 221, 222, 231, 232 so that the third drive current) is zero (for example, 50% duty ratio in PWM control). It is generated and output to the drive circuit 20 (step 101). Subsequently, the control circuit 41 determines whether or not a predetermined time has elapsed since the output of the preliminary control command. When the predetermined time has elapsed, the control circuit 41 switches a second switching signal for turning on the switch circuit 30. Output to the circuit 30 (steps 102 and 103).
 上記所定時間は特に限定されず、典型的には、予備制御指令が出力されてから電流値がゼロの駆動電流を各相において生成できる適宜の時間が設定され、例えば0.5秒程度とされる。これにより、スイッチ回路30をオン状態に切り替えたときに出力端子24A~24Cと可動接点32A~32Cとの間にアークが発生することを防止して、これら端子間の保護を図りながら安定した電気的接続が可能となる。 The predetermined time is not particularly limited. Typically, an appropriate time during which a drive current having a current value of zero is generated in each phase after the preliminary control command is output is set, for example, about 0.5 seconds. The This prevents arcs from being generated between the output terminals 24A to 24C and the movable contacts 32A to 32C when the switch circuit 30 is switched to the on state, and enables stable electric power while protecting these terminals. Connection is possible.
 なお、制御回路41は、上述のように予備制御指令から所定時間経過後にスイッチ回路30をオン状態に切り替える制御とは異なる制御を実行するように構成されてもよい。例えば、各相の駆動電流を検出可能な電流センサを利用し、これら電流センサの出力に基づき、制御回路41が各相の駆動電流ゼロを検出した時点でスイッチ回路30をオン状態へ切り替えるように構成されてもよい。 Note that the control circuit 41 may be configured to execute a control different from the control for switching the switch circuit 30 to the on state after a predetermined time has elapsed from the preliminary control command as described above. For example, a current sensor capable of detecting the driving current of each phase is used, and the switch circuit 30 is switched to the ON state when the control circuit 41 detects the driving current of each phase based on the outputs of these current sensors. It may be configured.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, a various change can be added.
 例えば以上の実施形態では、モータ10として図4に示したリニアモータを例に挙げて説明したが、これに限られず、回転型のモータが採用されてもよい。 For example, in the above-described embodiment, the linear motor illustrated in FIG. 4 is described as an example of the motor 10, but the present invention is not limited to this, and a rotary motor may be employed.
 また以上の実施形態では、モータ駆動装置1,2として、電磁ダンパ装置100,200への適用例を説明したが、これに限られず、例えば航空機の舵面に設けられる各種アクチュエータにも本発明は適用可能である。 In the above embodiment, the application examples to the electromagnetic damper devices 100 and 200 have been described as the motor drive devices 1 and 2. However, the present invention is not limited to this, and the present invention is also applied to various actuators provided on the control surface of an aircraft, for example. Applicable.

Claims (4)

  1.  第1の位相を有する第1の駆動電流が通電可能な第1のコイル部と、前記第1の位相と異なる第2の位相を有する第2の駆動電流が通電可能な第2のコイル部と、前記第1及び第2の位相と異なる第3の位相を有する第3の駆動電流が通電可能な第3のコイル部とを含むモータを駆動するモータ駆動装置であって、
     前記第1のコイル部に電気的に接続可能な第1の出力端子と、前記第2のコイル部に電気的に接続可能な第2の出力端子と、前記第3のコイル部に電気的に接続可能な第3の出力端子とを有し、前記第1~第3の出力端子を介して前記第1~第3のコイル部へそれぞれ供給される前記第1~第3の駆動電流を生成する駆動回路と、
     前記第1~第3の出力端子と前記第1~第3のコイル部との間を各々接続する接続状態と、前記第1~第3の出力端子と前記第1~第3のコイル部との間を各々遮断し前記第1~第3のコイル部を相互に短絡させる短絡状態とを選択的に切り替え可能に構成され、前記モータと前記駆動回路との間に介装されたスイッチ回路と
     を具備するモータ駆動装置。
    A first coil part capable of energizing a first drive current having a first phase, and a second coil part capable of energizing a second drive current having a second phase different from the first phase; A motor driving device for driving a motor including a third coil portion through which a third driving current having a third phase different from the first and second phases can be energized,
    A first output terminal electrically connectable to the first coil part, a second output terminal electrically connectable to the second coil part, and electrically to the third coil part A third output terminal connectable to generate the first to third drive currents to be supplied to the first to third coil sections via the first to third output terminals, respectively. A driving circuit to
    A connection state in which the first to third output terminals and the first to third coil sections are connected to each other; the first to third output terminals and the first to third coil sections; A switch circuit interposed between the motor and the drive circuit, which is configured to be selectively switchable between a short-circuit state in which the first to third coil portions are mutually short-circuited. A motor drive device comprising:
  2.  請求項1に記載のモータ駆動装置であって、
     前記駆動回路への電源供給を監視する電源監視部をさらに具備し、
     前記電源監視部は、前記駆動回路への電源供給が遮断されたとき、前記接続状態から前記短絡状態へ切り替えるための第1の切替信号を前記スイッチ回路へ出力するように構成される
     モータ駆動装置。
    The motor driving device according to claim 1,
    A power monitoring unit that monitors power supply to the drive circuit;
    The power monitoring unit is configured to output a first switching signal for switching from the connected state to the short-circuited state to the switch circuit when power supply to the drive circuit is interrupted. .
  3.  請求項2に記載のモータ駆動装置であって、
     前記電源監視部は、前記駆動回路への電源供給が再開されたとき、前記短絡状態から前記接続状態へ切り替えるための第2の切替信号を前記スイッチ回路へ出力するように構成される
     モータ駆動装置。
    The motor drive device according to claim 2,
    The power supply monitoring unit is configured to output a second switching signal for switching from the short circuit state to the connection state to the switch circuit when power supply to the drive circuit is resumed. .
  4.  請求項1に記載のモータ駆動装置であって、
     前記駆動回路及び前記スイッチ回路を制御する制御回路をさらに具備し、
     前記制御回路は、前記第1~第3の駆動電流がゼロのときに、前記スイッチ回路を前記短絡状態から前記接続状態へ切り替えるように構成される
     モータ駆動装置。
    The motor driving device according to claim 1,
    A control circuit for controlling the drive circuit and the switch circuit;
    The control circuit is configured to switch the switch circuit from the short-circuited state to the connected state when the first to third drive currents are zero.
PCT/JP2018/014743 2017-04-20 2018-04-06 Motor driving device WO2018193881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017083364A JP2018182988A (en) 2017-04-20 2017-04-20 Motor driving device
JP2017-083364 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018193881A1 true WO2018193881A1 (en) 2018-10-25

Family

ID=63856603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014743 WO2018193881A1 (en) 2017-04-20 2018-04-06 Motor driving device

Country Status (2)

Country Link
JP (1) JP2018182988A (en)
WO (1) WO2018193881A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711040B2 (en) * 2019-02-21 2023-07-25 Mitsubishi Electric Corporation Motor driving apparatus and refrigeration cycle equipment
JP6964638B2 (en) 2019-10-02 2021-11-10 本田技研工業株式会社 Electric suspension device
JP6964639B2 (en) 2019-10-02 2021-11-10 本田技研工業株式会社 Electric suspension device
JP7054714B2 (en) 2020-02-17 2022-04-14 本田技研工業株式会社 Electric suspension device
WO2024071207A1 (en) * 2022-09-28 2024-04-04 Tdk株式会社 Control device for motor, motor, control device for power generator, power generator, and wind turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013794A (en) * 2014-07-03 2016-01-28 本田技研工業株式会社 Electromagnetic damper
US20170100979A1 (en) * 2015-10-09 2017-04-13 Audi Ag Method for operating a rotation damper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013794A (en) * 2014-07-03 2016-01-28 本田技研工業株式会社 Electromagnetic damper
US20170100979A1 (en) * 2015-10-09 2017-04-13 Audi Ag Method for operating a rotation damper

Also Published As

Publication number Publication date
JP2018182988A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2018193881A1 (en) Motor driving device
JP5404029B2 (en) Linear motor
US7479722B2 (en) Relative drive device
WO2016084803A1 (en) Vehicle
US20120200184A1 (en) Relative driving device, moving vehicle, and robot
US11926185B2 (en) Electrically powered suspension system
WO2018173779A1 (en) Electromagnetic damper
US9787144B2 (en) Rotating electrical motor using transverse magnetic flux
US11060576B2 (en) Electric linear motion actuator
US10056859B2 (en) Control device for switched reluctance motor
JP5700193B2 (en) Linear actuator and suspension device using the same
US9059624B2 (en) Active dynamic vibration absorber
JP6323220B2 (en) Synchronous motor drive device
JP6187823B2 (en) Electromagnetic suspension device
JP6035957B2 (en) Rotating machine
JP2013121286A (en) Rotating electrical machine system
JP5327498B2 (en) Rotating electric machine drive system
JP2011030368A (en) Linear actuator
JP2010130823A (en) Field-winding motor with permanent magnet and motor drive controller
JP2004357464A (en) Linear motor
JP2019146422A (en) Variable field motor
JP7363554B2 (en) motor control device
JP2013021814A (en) Brushless motor and vehicle including the same
CA2944544A1 (en) Magnetic coupling, coupling assembly, and method
JP2008118743A (en) Permanent magnet type generator using weak field and magnetic path air gap control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788312

Country of ref document: EP

Kind code of ref document: A1