JP6035957B2 - Rotating machine - Google Patents

Rotating machine Download PDF

Info

Publication number
JP6035957B2
JP6035957B2 JP2012168261A JP2012168261A JP6035957B2 JP 6035957 B2 JP6035957 B2 JP 6035957B2 JP 2012168261 A JP2012168261 A JP 2012168261A JP 2012168261 A JP2012168261 A JP 2012168261A JP 6035957 B2 JP6035957 B2 JP 6035957B2
Authority
JP
Japan
Prior art keywords
stator
rotor
permanent magnet
rotor core
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012168261A
Other languages
Japanese (ja)
Other versions
JP2014027834A (en
Inventor
琢磨 野見山
琢磨 野見山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2012168261A priority Critical patent/JP6035957B2/en
Publication of JP2014027834A publication Critical patent/JP2014027834A/en
Application granted granted Critical
Publication of JP6035957B2 publication Critical patent/JP6035957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、永久磁石を付帯させたロータをステータに対して回転させる回転機に関するものである。   The present invention relates to a rotating machine that rotates a rotor with a permanent magnet attached to a stator.

従来より、永久磁石を有するロータと、このロータとの間に磁気的なギャップ(エアギャップとも称される狭い隙間であり、以下では「磁気ギャップ」と称す)を空けて配置されるステータとを備えた回転機(例えばPMモータ)が知られている。回転機のステータには、周方向に等ピッチで並ぶ複数のステータ極を設け、隣り合うステータ極間に形成された各スロットに巻線(ステータ巻線)が配置されている。そして、ステータ巻線に電力を供給することによってステータに磁界が発生し、この磁界とロータが有する永久磁石の磁束との相互作用によってロータが回転するようになっている。   Conventionally, a rotor having a permanent magnet and a stator disposed with a magnetic gap (a narrow gap also referred to as an air gap, hereinafter referred to as a “magnetic gap”) between the rotor and the rotor are provided. A rotating machine (for example, a PM motor) provided is known. A stator of a rotating machine is provided with a plurality of stator poles arranged at equal pitches in the circumferential direction, and windings (stator windings) are arranged in slots formed between adjacent stator poles. A magnetic field is generated in the stator by supplying electric power to the stator winding, and the rotor is rotated by the interaction between the magnetic field and the magnetic flux of the permanent magnet of the rotor.

近時では、このような回転機をハイブリッド車や電気自動車などに搭載したり、或いはハイブリッド車や電気自動車などに搭載されるモータの負荷試験を行う試験装置の負荷装置(例えば試験装置用磁石ダイナモ)、或いは風力発電機として適用されることも多い(例えば特許文献1)。   Recently, such a rotating machine is mounted on a hybrid vehicle, an electric vehicle, or the like, or a load device of a test device that performs a load test on a motor mounted on a hybrid vehicle, an electric vehicle, or the like (for example, a magnet dynamo for a test device). ) Or as a wind power generator (for example, Patent Document 1).

ところで、自動車用駆動モータなどをはじめとした負荷変動が大きい用途で使用される回転機では、出力領域の拡大と高効率化が要求されている。   By the way, in a rotating machine used in an application having a large load fluctuation such as a drive motor for an automobile, it is required to expand an output region and increase efficiency.

永久磁石をロータに配置した従来の回転機(永久磁石同期回転機)では、回転する際に発生する磁界である界磁の磁束量と回転数で決定される誘起電圧はロータの回転数に比例して増加するが、低速域で大きな出力(大トルク)を得るために高い誘起電圧を確保できるように設定すれば、高速域では電圧制限により(電源の供給電圧を超過して)駆動できず、一方、高速域まで駆動できるようにすれば、低速域では誘起電圧が低くなり、必要な高い出力(大トルク)を確保できない。   In a conventional rotating machine (permanent magnet synchronous rotating machine) in which a permanent magnet is arranged on the rotor, the induced voltage determined by the amount of magnetic flux of the field, which is a magnetic field generated when rotating, and the rotational speed is proportional to the rotational speed of the rotor. However, if a setting is made so that a high induced voltage can be secured in order to obtain a large output (large torque) in the low speed range, driving cannot be performed in the high speed range due to voltage limitation (exceeding the power supply voltage). On the other hand, if it is possible to drive up to the high speed range, the induced voltage becomes low in the low speed range, and the required high output (large torque) cannot be secured.

そこで、従来の永久磁石同期回転機では、高速域において電圧制限を超えない程度の誘起電圧を確保しつつ、回転数(出力)をゼロから所定値まで上げることが要求される低速域では、不足する誘起電圧をステータ電力で補うことで高い出力を確保するとともに、高速域ではステータ電力で弱め界磁することで誘起電圧を抑えるように構成されている。   Therefore, the conventional permanent magnet synchronous rotating machine is insufficient in the low speed range where it is required to increase the rotation speed (output) from zero to a predetermined value while ensuring an induced voltage that does not exceed the voltage limit in the high speed range. Complementing the induced voltage with the stator power ensures a high output, and suppresses the induced voltage by weakening the field with the stator power in the high speed range.

ここで、一般的な従来の永久磁石同期回転機のトルク−回転数(T−N)曲線及び出力曲線を図21に示し、従来の永久磁石同期回転機の回転数に対する誘起電圧、ステータ電力の特性を図22に示す。これら各図では、説明の便宜上、モータの運転領域(速度領域)を低速回転領域(低速域)、中速回転領域(中速域)、高速回転領域(高速域)に分割し、トルクを相対的に細い実線で示すとともに、出力を相対的に太い実線で示している。また、図22では、誘起電圧を点線(実際の誘起電圧を相対的に太い点線、界磁制御を行わない場合の誘起電圧を相対的に細い点線)で示し、ステータ電力を1点鎖線で示している。   Here, a torque-rotation number (TN) curve and an output curve of a general conventional permanent magnet synchronous rotating machine are shown in FIG. 21, and the induced voltage and stator power of the conventional permanent magnet synchronous rotating machine with respect to the rotational speed are shown. The characteristics are shown in FIG. In these figures, for convenience of explanation, the motor operating region (speed region) is divided into a low-speed rotation region (low-speed region), a medium-speed rotation region (medium-speed region), and a high-speed rotation region (high-speed region). The output is indicated by a thin solid line and the output is indicated by a relatively thick solid line. In FIG. 22, the induced voltage is indicated by a dotted line (the actual induced voltage is a relatively thick dotted line, the induced voltage when the field control is not performed is a relatively thin dotted line), and the stator power is indicated by a one-dot chain line. .

図22に示すように、回転数(出力)をゼロから所定値まで上げることが要求される低速域では、誘起電圧が低いため、大トルクを発生させるためにステータ電力が必要となる。回転数(出力)がゼロに近いほど大きいステータ電力が必要である。   As shown in FIG. 22, since the induced voltage is low in the low speed range where the rotation speed (output) is required to be increased from zero to a predetermined value, stator power is required to generate a large torque. The closer the rotation speed (output) is to zero, the larger the stator power is required.

中速域では、低速域よりも回転数が高くなり、トルクは小さくなるため、誘起電圧の不足量も低減し、低速域よりも小さいステータ電力で対応することが可能である。   In the medium speed range, the rotational speed is higher than in the low speed range, and the torque is reduced. Therefore, the insufficient amount of the induced voltage is reduced, and it is possible to cope with the stator power smaller than that in the low speed range.

また、高速域では、中速域よりもさらにトルクは小さくなるため、誘起電圧不足は解消される。しかしながら、高速域では、ステータに鎖交する永久磁石の磁束が多過ぎて誘起電圧が高過ぎる状態になるため、ステータ電力で弱め界磁することで誘起電圧を抑える必要がある。   In addition, since the torque is further reduced in the high speed range than in the medium speed range, the shortage of induced voltage is eliminated. However, in the high speed region, the induced magnet has too much magnetic flux linked to the stator and the induced voltage becomes too high. Therefore, it is necessary to suppress the induced voltage by field weakening with the stator power.

特開2009−047250号公報JP 2009-047250 A

このように、従来の永久磁石同期回転機は、低速域において不足する誘起電圧をステータ電力で補う必要があったり、高速域において高くなり過ぎる誘起電圧を抑えるためにステータ電力で弱め界磁する必要があった。特に、高速域において弱め界磁制御に要するステータ電力はトルクの発生に寄与しないものであり、従来の永久磁石同期回転機の回転数に対する損失特性を示す図23からも把握できるように、このステータ電力が大きいほど効率が低下する。なお、図23では、トルクを相対的に細い実線で示し、出力を相対的に太い実線で示し、鉄損を点線で示し、ステータ銅損を相対的に細い1点鎖線で示し、総損を相対的に太い1点鎖線で示している。   As described above, the conventional permanent magnet synchronous rotating machine needs to compensate for the insufficient induced voltage in the low speed range with the stator power, or to weaken the field with the stator power in order to suppress the induced voltage that becomes too high in the high speed range. was there. In particular, the stator power required for field-weakening control at high speeds does not contribute to torque generation. As can be seen from FIG. 23 showing the loss characteristics with respect to the rotational speed of the conventional permanent magnet synchronous rotating machine, this stator power is The larger the value, the lower the efficiency. In FIG. 23, the torque is indicated by a relatively thin solid line, the output is indicated by a relatively thick solid line, the iron loss is indicated by a dotted line, the stator copper loss is indicated by a relatively thin one-dot chain line, and the total loss is indicated. It is indicated by a relatively thick one-dot chain line.

このような問題点の主要因は、ロータに永久磁石を付帯させた回転機において永久磁石の磁束を調整することができないことにある。   The main cause of such a problem is that the magnetic flux of the permanent magnet cannot be adjusted in a rotating machine with a permanent magnet attached to the rotor.

そこで、誘起電圧が高くなるように永久磁石の数量を増やすことによって低速域でも誘起電圧の不足分をステータ電力で補う必要のない回転機を構成することが考えられる。しかしながら、永久磁石を増量すればその分だけコストが増加するとともに、高速域では高い誘起電圧を抑えるためにやはり弱め界磁を行う必要があり、トルクに寄与しないステータ電力がより一層増大してしまう。そして、トルクに寄与しないステータ電力の増加に伴い、ステータ銅損が増加するとともに、弱め界磁によって高い誘起電圧を抑えながらロータを回転させることで鉄損も増加し、作動効率の低下を招来するという問題が生じる。   Therefore, it is conceivable to construct a rotating machine that does not need to compensate for the shortage of the induced voltage with the stator power even in the low speed range by increasing the number of permanent magnets so that the induced voltage becomes high. However, if the number of permanent magnets is increased, the cost increases accordingly, and in order to suppress high induced voltage in the high speed range, it is necessary to perform field weakening, and the stator power that does not contribute to torque further increases. . As the stator power that does not contribute to the torque increases, the stator copper loss increases, and the iron loss increases by rotating the rotor while suppressing a high induced voltage by the field weakening, resulting in a decrease in operating efficiency. The problem arises.

また、コストを削減するとともに、高速域で弱め界磁を行わなくてもよいように永久磁石の数量を減らした場合には、低速域における誘起電圧の不足量が増大し、誘起電圧を補うステータ電力も増大してしまうという問題が生じる。   In addition, when the number of permanent magnets is reduced so that the field is not required to be weakened in the high speed range, the amount of insufficient induced voltage in the low speed range increases and the stator that compensates for the induced voltage is reduced. There arises a problem that electric power also increases.

ところで、特開2006−047250号公報には、回転軸の径方向において磁気ギャップを介してロータに対向するステータの両端(軸方向両端)に界磁巻線を設け、各界磁巻線に流す電流の方向を変更することでステータ巻線に鎖交する磁束量(磁束鎖交数)を調整できるように構成された回転機が開示されている。   In JP-A-2006-047250, field windings are provided at both ends (both ends in the axial direction) of the stator facing the rotor via a magnetic gap in the radial direction of the rotating shaft, and currents flow through the field windings. A rotating machine configured to adjust the amount of magnetic flux interlinked with the stator winding (the number of magnetic flux linkages) by changing the direction is disclosed.

具体的に、上記公報に開示されているインナー可動型の回転機は、回転軸の軸方向に並ぶロータコア同士の間に永久磁石をN極とS極が回転軸の軸方向に向かい合う姿勢で配置するとともに、各ロータコアの内周側領域(反ステータ側領域)と、ステータの反ロータ側領域(外周側領域)及びこの外周側領域に一体的に連続し且つ軸方向にロータコアに対向する領域(ロータコア対向領域)をそれぞれ塊状コアによって構成したものである。   Specifically, in the inner movable type rotating machine disclosed in the above publication, the permanent magnets are arranged between the rotor cores arranged in the axial direction of the rotating shaft so that the north and south poles face each other in the axial direction of the rotating shaft. In addition, the inner peripheral side region (anti-stator side region) of each rotor core, the anti-rotor side region (outer peripheral side region) of the stator, and the region that is integrally continuous with the outer peripheral side region and faces the rotor core in the axial direction ( Each of the rotor core facing regions) is constituted by a massive core.

そして、軸方向において対向するロータコアとステータのロータ対向領域との間に、ロータとステータとの磁気ギャップよりも大きいギャップが形成されており、界磁巻線に電流を流していない状態では、永久磁石の磁束が、永久磁石のN極、一方のロータコアの内周側領域(塊状コア)、一方のロータコアの外周側領域(突極部:非塊状コア)、ロータとステータとの磁気ギャップ、ステータの内周側領域(非塊状コア)、ステータの外周側領域(塊状コア)、ステータの内周側領域(非塊状コア)、ロータとステータとの磁気ギャップ、他方のロータコアの外周側領域(突極部:非塊状コア)、他方のロータコアの内周軸側領域(塊状コア)、永久磁石のS極をこの順路で流れる。   In addition, a gap larger than the magnetic gap between the rotor and the stator is formed between the rotor core facing the axial direction and the rotor facing region of the stator. The magnetic flux of the magnet is the N pole of the permanent magnet, the inner peripheral side region (bulk core) of one rotor core, the outer peripheral side region (saliency pole part: non-bulk core) of one rotor core, the magnetic gap between the rotor and the stator, the stator Inner peripheral region (non-lumpy core), stator outer peripheral region (lumped core), stator inner peripheral region (non-lumpy core), magnetic gap between the rotor and stator, and other rotor core outer peripheral region (protrusion) The pole portion: a non-lumpy core), the inner peripheral axis side region (lumpy core) of the other rotor core, and the south pole of the permanent magnet flow along this route.

また、ステータの両端に設けた各界磁巻線に界磁弱め方向の電流を流した場合には、永久磁石の磁束は、界磁巻線の起磁力に誘導されることによってロータとステータとの磁気ギャップに流れ難くなり、永久磁石のN極、一方のロータコアの内周側領域(塊状コア)、一方のロータコアとステータのロータ対向領域とのギャップ、ステータのロータ対向領域(塊状コア)、ステータの外周側領域(塊状コア)、ステータのロータ対向領域(塊状コア)、他方のロータコアとロータ対向領域とのギャップ、他方のロータコアの内周側領域(塊状コア)、永久磁石のS極をこの順路で流れる。すなわち、永久磁石の磁束は、ロータとステータとの磁気ギャップを流れず(ステータ巻線に鎖交せず)、塊状コアで構成した領域を通って短絡されることになり、界磁弱めと同等の効果を得ることができる。   In addition, when a current in a field weakening direction is passed through each field winding provided at both ends of the stator, the magnetic flux of the permanent magnet is induced by the magnetomotive force of the field winding, thereby It becomes difficult to flow into the magnetic gap, the N pole of the permanent magnet, the inner peripheral side region (bulk core) of one rotor core, the gap between the one rotor core and the rotor facing region of the stator, the rotor facing region of the stator (bulk core), the stator The outer peripheral side region (bulk core) of the stator, the rotor facing region of the stator (bulk core), the gap between the other rotor core and the rotor facing region, the inner peripheral side region of the other rotor core (bulk core), and the S pole of the permanent magnet It flows along the route. That is, the magnetic flux of the permanent magnet does not flow through the magnetic gap between the rotor and the stator (not linked to the stator winding), and is short-circuited through the area formed by the massive core, which is equivalent to field weakening. The effect of can be obtained.

一方、各界磁巻線に界磁強め方向の電流を流した場合には、各界磁巻線の起磁力は永久磁石の起磁力とは逆方向に与えられ、永久磁石の磁束は、永久磁石のN極、一方のロータコアの内周側領域(塊状コア)、一方のロータコアの外周側領域(突極部:非塊状コア)、ロータとステータとの磁気ギャップ、ステータの内周側領域(非塊状コア)、ステータの外周側領域(塊状コア)、ステータの内周側領域(非塊状コア)、ロータとステータとの磁気ギャップ、他方のロータコアの外周側領域(突極部:非塊状コア)、他方のロータコアの内周側領域(塊状コア)、永久磁石のS極をこの順路で流れる。すなわち、永久磁石の磁束は、各界磁巻線に電流を流していない状態と同じ流れになり、ステータ巻線に鎖交する。そして、界磁巻線によって発生する磁束もまたステータ巻線に鎖交し、界磁巻線に流す電流を調整することでステータ巻線への磁束鎖交数を増加でき、トルクを増大させることができる。   On the other hand, when a current in a field strengthening direction is passed through each field winding, the magnetomotive force of each field winding is applied in the opposite direction to the magnetomotive force of the permanent magnet, and the magnetic flux of the permanent magnet is N pole, inner peripheral area of one rotor core (lumpy core), outer peripheral area of one rotor core (saliency pole portion: non-lumpy core), magnetic gap between rotor and stator, inner peripheral area of stator (non-lumped) Core), outer peripheral side region of the stator (bulk core), inner peripheral side region of the stator (non-bulk core), magnetic gap between the rotor and the stator, outer peripheral side region of the other rotor core (saliency pole part: non-bulk core), The other rotor core inner circumferential side region (lumped core) flows through the south pole of the permanent magnet along this route. That is, the magnetic flux of the permanent magnet flows in the same manner as when no current is passed through each field winding, and is linked to the stator winding. The magnetic flux generated by the field winding is also linked to the stator winding, and the number of flux linkages to the stator winding can be increased and the torque increased by adjusting the current flowing through the field winding. Can do.

このような回転機であれば、上述したように各界磁巻線に流す電流の方向を変更して界磁弱め制御又は界磁強め制御を実行することで、ステータ巻線に鎖交する磁束量(磁束鎖交数)を調整できる点で従来の永久磁石同期回転機と比較して有利である。   In such a rotating machine, the amount of magnetic flux interlinked with the stator winding is changed by executing the field weakening control or the field strengthening control by changing the direction of the current flowing through each field winding as described above. This is advantageous in comparison with a conventional permanent magnet synchronous rotating machine in that (the number of magnetic flux linkages) can be adjusted.

しかしながら、ロータ及びステータの各所定領域を、永久磁石の磁束がステータ巻線に鎖交しないように迂回させるバイパスとして機能させるために塊状コアで構成しなければならない点、ステータの両端にそれぞれ界磁巻線を配置しなければならない点については、さらなる構造簡素化の余地があるといえる。   However, in order to make each predetermined region of the rotor and the stator function as a bypass that bypasses the magnetic flux of the permanent magnet so as not to interlink with the stator windings, it is necessary to configure it with a massive core. It can be said that there is room for further simplification of the point where the windings must be arranged.

また、回転領域(運転領域)の変動に伴って界磁巻線に流す電流の方向を切り替え、磁束を変化させて界磁弱め制御又は界磁強め制御を適切に実行しなければならないこの種の界磁巻線形同期回転機では、電流の2乗に比例する界磁巻線の銅損(界磁銅損)が、界磁強め制御時のみならず、界磁弱め制御時でも増加するため、この界磁銅損の増加が効率を低下させる要因になっている。   In addition, this type of control must be performed appropriately by switching the direction of the current flowing through the field winding in accordance with the fluctuation of the rotation region (operation region) and changing the magnetic flux to appropriately perform the field weakening control or the field strengthening control. In the field winding type synchronous rotating machine, the copper loss of the field winding (field copper loss) proportional to the square of the current increases not only in the field strengthening control but also in the field weakening control. This increase in field copper loss is a factor that reduces efficiency.

本発明は、このような検討結果に基づき、永久磁石の大幅な増量を回避しつつ、ステータ巻線に鎖交する磁束量を調整することができ、低速・高トルクの状態から高速・低トルクの状態に亘る広範な運転領域に対応する何れの回転領域でも高い効率を実現可能な回転機を提供することを主たる目的とするものである。   The present invention can adjust the amount of magnetic flux interlinked with the stator windings while avoiding a significant increase in permanent magnets based on the results of such studies, and from high speed / low torque to low speed / high torque conditions. The main object of the present invention is to provide a rotating machine capable of realizing high efficiency in any rotation region corresponding to a wide range of operation over this state.

すなわち本発明は、ステータ極及びステータ巻線を有するステータと、ステータと同軸上に配置され且つステータとの間に磁気ギャップを形成するロータと、ロータをステータに対して回転可能に支持するロータ支持部材とを備えた回転機に関するものである。ここで、「ステータ極」の数は、ロータの極数、相数、係数に基づいて決定される。   That is, the present invention relates to a stator having a stator pole and a stator winding, a rotor arranged coaxially with the stator and forming a magnetic gap between the stator, and a rotor support that rotatably supports the rotor with respect to the stator. The present invention relates to a rotating machine provided with a member. Here, the number of “stator poles” is determined based on the number of poles, the number of phases, and the coefficients of the rotor.

そして、本発明に係る回転機は、ロータとして、対をなす第1ロータコア及び第2ロータコアと、永久磁石列と、磁性リングと、界磁巻線とを備えたものを適用している点、ロータ支持部材を磁性体で構成している点、界磁巻線に電流を流していない状態において各永久磁石、各ロータコア、磁性リング、及びロータ支持部材を通って短絡する永久磁石列の磁束を、界磁巻線に所定方向の電流を流すことで生じる界磁巻線の磁束とともにステータ巻線に鎖交する磁束に変化可能に構成している点、これらの点に以下に述べるような特徴を有するものである。   And the rotating machine which concerns on this invention is applying the thing provided with the 1st rotor core and 2nd rotor core which make a pair, a permanent magnet row | line | column, a magnetic ring, and a field winding as a rotor, The magnetic flux of the permanent magnet array that is short-circuited through each permanent magnet, each rotor core, the magnetic ring, and the rotor support member in a state in which the rotor support member is made of a magnetic material and no current is passed through the field winding. In addition, it is possible to change to a magnetic flux interlinked with the stator winding along with the magnetic flux of the field winding generated by passing a current in a predetermined direction through the field winding. It is what has.

本発明に係る回転機は、回転軸の径方向においてロータをステータの内周側に配置したインナー可動型、及び回転軸の径方向においてロータをステータの外周側に配置したアウター可動型の何れをも包含するものであり、以下に本願発明の技術的特徴について具体的に説明する。   The rotating machine according to the present invention includes either an inner movable type in which the rotor is disposed on the inner peripheral side of the stator in the radial direction of the rotating shaft and an outer movable type in which the rotor is disposed on the outer peripheral side of the stator in the radial direction of the rotating shaft. The technical features of the present invention will be specifically described below.

ロータを構成する第1ロータコア及び第2ロータコアは、何れもリング状のヨーク及びヨークからステータに向かって突出し且つ周方向に等ピッチで複数設けた突極部を有する磁性体である。そして、本発明の回転機では、これら第1ロータコア及び第2ロータコアを相互に周方向に1極ピッチ分ずらした状態で回転軸の軸方向に離間して配置している。なお、1極ピッチ分は、一回転360度を各ロータコアの突極部の数(第1ロータコアの突極部及び第2ロータコアの突極部の総数ではない)で除した値に相当する。   Each of the first rotor core and the second rotor core constituting the rotor is a magnetic body having a ring-shaped yoke and a plurality of salient pole portions that protrude from the yoke toward the stator and are provided at a constant pitch in the circumferential direction. In the rotating machine of the present invention, the first rotor core and the second rotor core are arranged apart from each other in the axial direction of the rotating shaft in a state where they are shifted from each other by one pole pitch in the circumferential direction. One pole pitch corresponds to a value obtained by dividing one rotation of 360 degrees by the number of salient pole parts of each rotor core (not the total number of salient pole parts of the first rotor core and second rotor core).

また、永久磁石列は、第1ロータコアのヨークとロータ支持部材との間に配置され且つヨークに対向するヨーク対向面とロータ支持部材に対向するロータ支持部材対向面に相対応する異なった極性を持たせた第1永久磁石と、第2ロータコアのヨークとロータ支持部材との間に配置され且つヨーク対向面とロータ支持部材対向面の各極性が第1永久磁石の極性と異なる第2永久磁石とを回転軸の軸方向に沿って並べたものである。   Further, the permanent magnet row is disposed between the yoke of the first rotor core and the rotor support member, and has different polarities corresponding to the yoke facing surface facing the yoke and the rotor supporting member facing surface facing the rotor support member. A first permanent magnet provided, and a second permanent magnet disposed between the yoke of the second rotor core and the rotor support member, wherein each polarity of the yoke facing surface and the rotor support member facing surface is different from the polarity of the first permanent magnet. Are arranged along the axial direction of the rotation axis.

磁性リングは、第1ロータコアと第2ロータコアの間であって且つ第1永久磁石及び第2永久磁石に跨がる位置に配置したものであり、界磁巻線は、第1ロータコアと第2ロータコアの間であって且つ磁性リングのうちステータ側の周面に巻回したものである。   The magnetic ring is disposed between the first rotor core and the second rotor core and in a position straddling the first permanent magnet and the second permanent magnet, and the field winding includes the first rotor core and the second rotor core. It is between the rotor cores and wound around the stator-side peripheral surface of the magnetic ring.

また、磁性体で構成したロータ支持部材の一例としては、インナー可動型であれば回転軸(シャフト)を挙げることができ、アウター可動型であれば例えばロータの外周に配置されるフレームを挙げることができる。   Further, as an example of a rotor support member made of a magnetic material, a rotary shaft (shaft) can be cited if it is an inner movable type, and a frame disposed on the outer periphery of the rotor is exemplified if it is an outer movable type. Can do.

このような各部材から構成した本発明の回転機では、界磁巻線に電流を流していない状態(界磁巻線非励磁状態)であれば、永久磁石列の磁束は、例えば第1永久磁石のヨーク対向面がN極である場合にこの第1永久磁石のヨーク対向面を始点として捉えると、第1永久磁石のヨーク対向面、第1ロータコアのヨーク、磁性リング、第2ロータコアのヨーク、第2永久磁石のヨーク対向面、第2永久磁石のロータ支持部材対向面、磁性体であるロータ支持部材、第1永久磁石のロータ支持部材対向面、第1永久磁石のヨーク対向面をこの順で流れる。すなわち、界磁巻線の起磁力がゼロの場合には、永久磁石列の磁束がステータ巻線に鎖交しない。言い換えれば、ステータ巻線に界磁磁束(モータが回転する際に発生する磁界である界磁の磁束)が流れない。   In the rotating machine of the present invention composed of such members, the magnetic flux of the permanent magnet array is, for example, the first permanent if the current is not passed through the field winding (the field winding is not excited). When the yoke-facing surface of the magnet is N-pole, if the yoke-facing surface of the first permanent magnet is taken as a starting point, the yoke-facing surface of the first permanent magnet, the yoke of the first rotor core, the magnetic ring, and the yoke of the second rotor core The second permanent magnet yoke facing surface, the second permanent magnet rotor supporting member facing surface, the rotor supporting member that is a magnetic body, the first permanent magnet rotor supporting member facing surface, and the first permanent magnet yoke facing surface. It flows in order. That is, when the magnetomotive force of the field winding is zero, the magnetic flux of the permanent magnet row does not interlink with the stator winding. In other words, field magnetic flux (field magnetic flux that is a magnetic field generated when the motor rotates) does not flow in the stator winding.

一方、界磁巻線に所定方向の電流を流した場合、界磁巻線の磁束は、例えば界磁巻線をステータ側の周面に配置している磁性リングを流れる。この磁性リングを流れる界磁巻線の磁束の向きが、界磁巻線非励磁状態において磁性リングを流れる永久磁石列の磁束の向きと反対になる方向(永久磁石列の磁束とぶつかる方向)の電流を界磁巻線に流す。界磁巻線非励磁状態における永久磁石列の磁束の流れが上述した流れである場合、界磁巻線に所定方向の電流を流すことで生じる界磁巻線の磁束は、磁性リングを第2ロータコアのヨーク側から第1ロータコアのヨークに向かって流れる磁束であり、磁性リングを起点として捉えると、磁性リング、第1ロータコアのヨーク、第1ロータコアの突極部、第1ロータコアの突極部とステータ極の磁気ギャップ、ステータ極、ステータ極と第2ロータコアの突極部の磁気ギャップ、第2ロータコアの突極部、第2ロータコアのヨーク、磁性リングをこの順で流れる。そして、界磁巻線に流す電流量を調節して界磁巻線の起磁力の大きさを調節することができ、界磁巻線の起磁力によって生じる磁束が永久磁石列の磁束よりも大きければ、磁性リングを流れようとする永久磁石の磁束は、界磁巻線の磁束にぶつかって磁性リングを流れず、界磁巻線の磁束に誘導されてロータコアの突極部とステータ極との隙間である磁気ギャップを流れる。その結果、界磁巻線の磁束の流れが上述した流れである場合、界磁巻線の磁束に誘導される永久磁石の磁束は、磁性リングを流れず、界磁巻線の磁束とともに、第1ロータコアのヨーク、第1ロータコアの突極部、第1ロータコアの突極部とステータ極の磁気ギャップ、ステータ極、ステータ極と第2ロータコアの突極部の磁気ギャップ、第2ロータコアの突極部、第2ロータコアのヨークをこの順で流れ、第2ロータコアから第2永久磁石、磁性体であるロータ支持部材、第1永久磁石を流れて第1ロータコアのヨークに至る。   On the other hand, when a current in a predetermined direction is passed through the field winding, the magnetic flux of the field winding flows, for example, through a magnetic ring in which the field winding is disposed on the peripheral surface on the stator side. The direction of the magnetic flux of the field winding flowing through the magnetic ring is opposite to the direction of the magnetic flux of the permanent magnet array flowing through the magnetic ring in the non-excited state of the field winding (the direction of colliding with the magnetic flux of the permanent magnet array). Current is passed through the field winding. When the flow of the magnetic flux of the permanent magnet array in the non-excited state of the field winding is the flow described above, the magnetic flux of the field winding generated by passing a current in a predetermined direction through the field winding Magnetic flux that flows from the yoke side of the rotor core toward the yoke of the first rotor core. When the magnetic ring is taken as a starting point, the magnetic ring, the yoke of the first rotor core, the salient pole part of the first rotor core, and the salient pole part of the first rotor core And the stator pole, the stator pole, the magnetic gap between the stator pole and the salient pole part of the second rotor core, the salient pole part of the second rotor core, the yoke of the second rotor core, and the magnetic ring in this order. The magnitude of the magnetomotive force of the field winding can be adjusted by adjusting the amount of current flowing through the field winding, and the magnetic flux generated by the magnetomotive force of the field winding is larger than the magnetic flux of the permanent magnet array. For example, the magnetic flux of the permanent magnet that is going to flow through the magnetic ring does not flow through the magnetic ring by colliding with the magnetic flux of the field winding, but is induced by the magnetic flux of the field winding, and between the salient pole part of the rotor core and the stator pole. It flows through a magnetic gap that is a gap. As a result, when the flow of the magnetic flux of the field winding is the flow described above, the magnetic flux of the permanent magnet induced by the magnetic flux of the field winding does not flow through the magnetic ring, 1 rotor core yoke, salient pole part of first rotor core, magnetic gap between salient pole part of first rotor core and stator pole, stator pole, magnetic gap between salient pole part of stator pole and second rotor core, salient pole of second rotor core And the yoke of the second rotor core in this order, and flows from the second rotor core to the yoke of the first rotor core through the second permanent magnet, the rotor support member that is a magnetic body, and the first permanent magnet.

このように、本発明に係る回転機は、界磁巻線に所定方向の電流を流していない状態であればステータ巻線に界磁磁束が鎖交していない状態を確保することができる。したがって、本発明に係る回転機では、界磁巻線に所定方向の電流を流していない状態において誘起電圧が発生せず、安全な状態を確保することができる。また、界磁巻線に所定方向の電流を流した場合には、永久磁石列の磁束と界磁巻線の磁束をステータ巻線に鎖交させる(永久磁石列の磁束を界磁巻線の磁束とともにステータ巻線に鎖交する界磁磁束に変化させる)ことができ、誘起電圧を発生させてロータを回転させることができる。   As described above, the rotating machine according to the present invention can ensure a state in which the field magnetic flux is not linked to the stator winding as long as a current in a predetermined direction is not passed through the field winding. Therefore, in the rotating machine according to the present invention, an induced voltage is not generated in a state where a current in a predetermined direction is not passed through the field winding, and a safe state can be ensured. When a current in a predetermined direction is passed through the field winding, the magnetic flux of the permanent magnet array and the magnetic flux of the field winding are linked to the stator winding (the magnetic flux of the permanent magnet array is The magnetic flux can be changed to a magnetic field flux interlinked with the stator winding together with the magnetic flux), and an induced voltage can be generated to rotate the rotor.

そして、本発明の回転機であれば、要求される回転数(出力)やトルクに応じて界磁巻線に流す電流量を調節することで、ステータ巻線に鎖交する磁束量(永久磁石列の磁束に界磁巻線の磁束を重畳した磁束量であり、永久磁石列の磁束と界磁巻線の磁束の総和である磁束量)を増減することができる。この際、永久磁石列の界磁を弱める弱め界磁は不要であるため、永久磁石列を構成する永久磁石の減磁現象を防止することができるとともに、弱め界磁制御と強め界磁制御を選択して行う態様と比較して、界磁巻線に流す電流方向は一定方向のみであるため、界磁巻線に流す電流方向を切り替える処理が不要である。そして、弱め界磁制御時に要する「トルクに寄与しないステータ電力」が不要となり、界磁巻線の銅損(界磁銅損)の減少を実現できる。   In the rotating machine of the present invention, the amount of magnetic flux interlinked with the stator winding (permanent magnet) is adjusted by adjusting the amount of current flowing through the field winding according to the required number of rotations (output) and torque. The amount of magnetic flux obtained by superimposing the magnetic flux of the field winding on the magnetic flux of the row, and the amount of magnetic flux that is the sum of the magnetic flux of the permanent magnet row and the magnetic flux of the field winding can be increased or decreased. At this time, since the field weakening that weakens the field of the permanent magnet array is unnecessary, the demagnetization phenomenon of the permanent magnets constituting the permanent magnet array can be prevented, and the field weakening control and the field strengthening control are selectively performed. Compared with the aspect, the direction of the current flowing through the field winding is only a fixed direction, so that it is not necessary to switch the direction of the current flowing through the field winding. Further, the “stator power that does not contribute to torque” required for field weakening control becomes unnecessary, and a reduction in copper loss (field copper loss) of the field winding can be realized.

さらに、本発明の回転機は、ステータに対してロータを回転可能に支持するロータ支持部材を磁性体にし、このロータ支持部材と、回転軸の軸方向に並ぶ第1ロータコア、磁性リング及び第2ロータコアの間に、永久磁石列を回転軸の径方向に挟むように配置することで、永久磁石列の磁束を磁気短絡させており、ステータの一部を永久磁石の磁束が流れるバイパスとして機能させる構成と比較して短い磁路を実現することができるとともに、バイパス機能を発揮させるためにステータの所定領域を他の領域よりも抵抗を低くして磁束が流れ易くする特殊な構造にする処理も不要であり、構造の簡素化の点においても有利である。   Further, in the rotating machine of the present invention, the rotor support member that rotatably supports the rotor with respect to the stator is made of a magnetic material, and the rotor support member, the first rotor core, the magnetic ring, and the second lined in the axial direction of the rotation shaft. By arranging the permanent magnet row between the rotor cores in the radial direction of the rotating shaft, the magnetic flux of the permanent magnet row is magnetically short-circuited, and a part of the stator functions as a bypass through which the magnetic flux of the permanent magnet flows. Compared to the configuration, a short magnetic path can be realized, and in order to exert a bypass function, a predetermined region of the stator is made a special structure that makes the magnetic flux flow easier by lowering the resistance than other regions. This is unnecessary and is advantageous in terms of simplification of the structure.

このような本発明に係る回転機であれば、界磁巻線の起磁力がゼロの場合にはステータ巻線に鎖交しない永久磁石の磁束を、界磁巻線に電流を流すことで界磁巻線の磁束に重畳させて、ステータ巻線に鎖交する磁束(界磁磁束)に変化させることが可能であり、且つ永久磁石の大幅な増量を回避しつつ、低速・高トルクの状態から高速・低トルクの状態に亘る広範な運転領域に対応する何れの回転領域でも高い効率を実現することができる。   In such a rotating machine according to the present invention, when the magnetomotive force of the field winding is zero, the magnetic field of the permanent magnet not interlinked with the stator winding is caused to flow through the field winding by passing a current through the field winding. It is possible to change to a magnetic flux (field magnetic flux) interlinked with the stator winding by superimposing it on the magnetic flux of the magnetic winding, and avoiding a significant increase in permanent magnets, while at low speed and high torque High efficiency can be realized in any rotation region corresponding to a wide range of operation from high speed to low torque.

本発明によれば、永久磁石列及び界磁巻線をロータに配置し、界磁巻線非励磁状態では磁性リング及び磁性体のロータ支持部材によってステータ巻線に鎖交しないように磁気短絡させた永久磁石列の磁束を、界磁巻線に所定方向の電流を流すことで界磁巻線の磁束とともにステータ巻線に鎖交する磁束(界磁磁束)に変化可能に構成しているため、永久磁石の大幅な増量を回避しつつ、広範な運転領域に対応する何れの回転領域でも高効率で作動する回転機を提供することができる。   According to the present invention, the permanent magnet array and the field winding are arranged in the rotor, and in a non-excited state of the field winding, the magnetic ring and the magnetic rotor support member are magnetically short-circuited so as not to be linked to the stator winding. Because the magnetic flux of the permanent magnet array can be changed to the magnetic flux (field magnetic flux) interlinked with the stator winding together with the magnetic flux of the field winding by passing a current in a predetermined direction through the field winding. Thus, it is possible to provide a rotating machine that operates with high efficiency in any rotation region corresponding to a wide range of operation while avoiding a significant increase in the number of permanent magnets.

本発明の第1実施形態に係る回転機の一部を破断して模式的に示す図。The figure which fractures | ruptures and partially shows the rotary machine which concerns on 1st Embodiment of this invention. 同実施形態に係る回転機を軸方向から見た正面図。The front view which looked at the rotary machine which concerns on the same embodiment from the axial direction. 同実施形態に係る回転機の断面模式図。The cross-sectional schematic diagram of the rotary machine which concerns on the same embodiment. 同実施形態におけるロータユニットの全体図。The whole rotor unit in the embodiment. 界磁巻線無励磁状態における磁石磁束の流れを図1に対応させて模式的に示す図。The figure which shows typically the flow of the magnet magnetic flux in a field winding non-excitation state corresponding to FIG. 界磁巻線無励磁状態における磁石磁束の流れを図3に対応させて模式的に示す図。The figure which shows typically the flow of the magnet magnetic flux in a field winding non-excitation state corresponding to FIG. 界磁巻線励磁状態における磁石磁束及び界磁巻線磁束の流れを図1に対応させて模式的に示す図。The figure which shows typically the flow of the magnet magnetic flux and field winding magnetic flux in a field winding excitation state corresponding to FIG. 界磁巻線励磁状態における磁石磁束及び界磁巻線磁束の流れを図3に対応させて模式的に示す図。The figure which shows typically the flow of the magnet magnetic flux and field winding magnetic flux in a field winding excitation state corresponding to FIG. 同実施形態に係る回転機の回転数に対する誘起電圧、界磁電力、ステータ電力の特性を示す図。The figure which shows the characteristic of the induced voltage with respect to the rotation speed of the rotary machine which concerns on the same embodiment, field power, and stator power. 同実施形態に係る回転機の回転数に対する損失特性を示す図。The figure which shows the loss characteristic with respect to the rotation speed of the rotary machine which concerns on the same embodiment. 本発明の第2実施形態に係る回転機の一部を破断して模式的に示す図。The figure which fractures | ruptures and partially shows the rotary machine which concerns on 2nd Embodiment of this invention. 同実施形態に係る回転機を軸方向から見た正面図。The front view which looked at the rotary machine which concerns on the same embodiment from the axial direction. 同実施形態に係る回転機の断面模式図。The cross-sectional schematic diagram of the rotary machine which concerns on the same embodiment. 同実施形態におけるロータユニットの全体図。The whole rotor unit in the embodiment. 界磁巻線無励磁状態における磁石磁束の流れを図11に対応させて模式的に示す図。The figure which shows typically the flow of the magnet magnetic flux in a field winding non-excitation state corresponding to FIG. 界磁巻線無励磁状態における磁石磁束の流れを図13に対応させて模式的に示す図。The figure which shows typically the flow of the magnet magnetic flux in a field winding non-excitation state corresponding to FIG. 界磁巻線励磁状態における磁石磁束及び界磁巻線磁束の流れを図11に対応させて模式的に示す図。The figure which shows typically the flow of the magnet magnetic flux and field winding magnetic flux in a field winding excitation state corresponding to FIG. 界磁巻線励磁状態における磁石磁束及び界磁巻線磁束の流れを図3に対応させて模式的に示す図。The figure which shows typically the flow of the magnet magnetic flux and field winding magnetic flux in a field winding excitation state corresponding to FIG. 同実施形態に係る回転機の回転数に対する誘起電圧、界磁電力、ステータ電力の特性を示す図。The figure which shows the characteristic of the induced voltage with respect to the rotation speed of the rotary machine which concerns on the same embodiment, field power, and stator power. 同実施形態に係る回転機の回転数に対する損失特性を示す図。The figure which shows the loss characteristic with respect to the rotation speed of the rotary machine which concerns on the same embodiment. 従来の永久磁石同期回転機のトルク−回転数曲線及び出力曲線を示す図。The figure which shows the torque-rotation speed curve and output curve of the conventional permanent magnet synchronous rotary machine. 従来の永久磁石同期回転機の回転数に対する誘起電圧、ステータ電力の特性を示す図。The figure which shows the characteristic of the induced voltage with respect to the rotation speed of a conventional permanent magnet synchronous rotary machine, and stator electric power. 従来の永久磁石同期回転機の回転数に対する損失特性を示す図。The figure which shows the loss characteristic with respect to the rotation speed of the conventional permanent magnet synchronous rotary machine.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る回転機Xは、例えば図示しない電気自動車(EV)やハイブリッド車(HEV)の駆動モータとして適用可能なものである。   The rotating machine X according to the present embodiment can be applied as a drive motor of an electric vehicle (EV) or a hybrid vehicle (HEV) (not shown), for example.

回転機Xは、図1乃至図3に示すように、ステータ1と、ステータ1と同軸上に配置され且つステータ1との間に磁気ギャップを形成するロータ2と、ロータ2をステータ1に対して回転可能に支持するロータ支持部材3とを備えたものである。本実施形態に係る回転機Xは、ロータ2をステータ1よりも回転軸Wの径方向C内側に配置したインナー可動型の回転機である。   As shown in FIGS. 1 to 3, the rotating machine X includes a stator 1, a rotor 2 arranged coaxially with the stator 1 and forming a magnetic gap between the stator 1, and the rotor 2 with respect to the stator 1. And a rotor support member 3 that is rotatably supported. The rotating machine X according to the present embodiment is an inner movable rotating machine in which the rotor 2 is disposed on the inner side in the radial direction C of the rotating shaft W than the stator 1.

ステータ1は、リング状のステータコア11と、ステータコア11からロータ2側に向かって突出し且つ周方向Bに等角ピッチで配列された複数のステータティース12(本発明のステータ極に相当)と、周方向Bに隣り合うステータティース12同士の間に形成されるスロットに配置したステータ巻線13とを有するものである。本実施形態の回転機Xは、ステータ1の外周面を被覆する円筒状の磁性フレーム(図示省略)を備えている。本実施形態では、磁性フレームの内周面とステータ1の外周面(ステータコア11の外周面)の隙間がゼロ又は略ゼロとなるように磁性フレームの内径及びステータコア11の外径を設定している。   The stator 1 includes a ring-shaped stator core 11, a plurality of stator teeth 12 (corresponding to the stator poles of the present invention) that protrude from the stator core 11 toward the rotor 2 and are arranged at an equiangular pitch in the circumferential direction B, And stator windings 13 arranged in slots formed between the stator teeth 12 adjacent in the direction B. The rotating machine X of the present embodiment includes a cylindrical magnetic frame (not shown) that covers the outer peripheral surface of the stator 1. In the present embodiment, the inner diameter of the magnetic frame and the outer diameter of the stator core 11 are set so that the gap between the inner peripheral surface of the magnetic frame and the outer peripheral surface of the stator 1 (the outer peripheral surface of the stator core 11) is zero or substantially zero. .

ロータ2は、図1乃至図4に示すように、対となる磁性体の第1ロータコア4及び第2ロータコア5と、永久磁石列6と、磁性リング7と、界磁巻線8とを備えている。   As shown in FIGS. 1 to 4, the rotor 2 includes a first rotor core 4 and a second rotor core 5, a permanent magnet array 6, a magnetic ring 7, and a field winding 8. ing.

第1ロータコア4及び第2ロータコア5は同一形状であり、それぞれリング状のヨーク41,ヨーク51と、各ヨーク41,51のそれぞれからステータ1側に向かって突出し且つ周方向Bに等角ピッチで複数設けた突極部42,突極部52を有するものである。そして、本実施形態では、図4に示すように、これら第1ロータコア4及び第2ロータコア5を周方向Bに互いに1極ピッチ分ずらした状態でシャフト3の軸方向Aに並べて配置している。図4に示す各ロータコア(第1ロータコア4,第2ロータコア5)はそれぞれ4つの突極部42,突極部52を有するものであり、これらロータコア(第1ロータコア4,第2ロータコア5)を周方向Bに互いに90度(一回転360を4で除した値)ずらした状態で回転軸Wの軸方向A(以下、単に「軸方向A」と称する場合がある)に並べて配置している。ここで、本実施形態の回転機Xは、軸方向Aに所定距離離間して並ぶ第1ロータコア4と第2ロータコア5との間に磁性リング7を介在させている。   The first rotor core 4 and the second rotor core 5 have the same shape, and protrude from the ring-shaped yoke 41, yoke 51, and each of the yokes 41, 51 toward the stator 1, respectively, and at an equiangular pitch in the circumferential direction B. A plurality of salient pole portions 42 and salient pole portions 52 are provided. In the present embodiment, as shown in FIG. 4, the first rotor core 4 and the second rotor core 5 are arranged side by side in the axial direction A of the shaft 3 while being shifted by one pole pitch in the circumferential direction B. . Each rotor core (first rotor core 4 and second rotor core 5) shown in FIG. 4 has four salient pole portions 42 and salient pole portions 52, and these rotor cores (first rotor core 4 and second rotor core 5) are provided. Arranged in the axial direction A of the rotation axis W (hereinafter sometimes simply referred to as “axial direction A”) in a state where they are shifted from each other in the circumferential direction B by 90 degrees (value obtained by dividing one rotation 360 by 4). . Here, in the rotating machine X of the present embodiment, the magnetic ring 7 is interposed between the first rotor core 4 and the second rotor core 5 that are arranged at a predetermined distance apart in the axial direction A.

ここで、本実施形態の回転機Xでは、ステータ1とロータ2の間、より具体的にはステータ1のステータティース12と各ロータコア(第1ロータコア4,第2ロータコア5の突極部42,突極部52)の間に、回転軸Wの周方向Bに周回する磁気ギャップを形成している。   Here, in the rotating machine X of the present embodiment, between the stator 1 and the rotor 2, more specifically, the stator teeth 12 of the stator 1 and each rotor core (the salient pole portions 42 of the first rotor core 4 and the second rotor core 5, Between the salient pole portions 52), a magnetic gap is formed that circulates in the circumferential direction B of the rotating shaft W.

また、本実施形態ではロータ支持部材として、ロータ2の回転軸Wそのものとして機能する磁性体のシャフト3を適用している。すなわち、シャフト3及びロータ2は一体回転可能に構成されている。本実施形態では、図1及び図3に示すように、シャフト3のうち径方向Cにおいてロータ2及びステータ1と重なり得る領域を他の領域よりも外径が大きい大径部31に設定し、この大径部31のうちシャフト3の軸方向A一端部には径方向C外側に突出する鍔部32を形成している。   In this embodiment, a magnetic shaft 3 that functions as the rotation axis W itself of the rotor 2 is applied as the rotor support member. That is, the shaft 3 and the rotor 2 are configured to be integrally rotatable. In this embodiment, as shown in FIG.1 and FIG.3, the area | region which can overlap with the rotor 2 and the stator 1 in radial direction C among the shafts 3 is set to the large diameter part 31 whose outer diameter is larger than another area | region, A flange 32 protruding outward in the radial direction C is formed at one end of the shaft 3 in the axial direction A of the large diameter portion 31.

永久磁石列6は、回転軸W(シャフト3)の軸方向Aに並べて配置した第1永久磁石61及び第2永久磁石62を用いて構成したものである。本実施形態では、第1ロータコア4のヨーク41とシャフト3(具体的にはシャフト3の大径部31)との間に第1永久磁石61を配置するとともに、第2ロータコア5のヨーク51とシャフト3(具体的にはシャフト3の大径部31)との間に第2永久磁石62を配置している。本実施形態の回転機Xでは、何れもリング状をなす第1永久磁石61及び第2永久磁石62の外径を各ロータコア(第1ロータコア4,第2ロータコア5)の内径(具体的にはヨーク41,ヨーク51の内径)よりも僅かに大きい値に設定し、第1永久磁石61及び第2永久磁石62の内径をシャフト3のうち大径部31の外径よりも僅かに小さい値に設定している。   The permanent magnet row 6 is configured by using a first permanent magnet 61 and a second permanent magnet 62 arranged side by side in the axial direction A of the rotation axis W (shaft 3). In the present embodiment, the first permanent magnet 61 is disposed between the yoke 41 of the first rotor core 4 and the shaft 3 (specifically, the large diameter portion 31 of the shaft 3), and the yoke 51 of the second rotor core 5 A second permanent magnet 62 is disposed between the shaft 3 (specifically, the large diameter portion 31 of the shaft 3). In the rotating machine X of the present embodiment, the outer diameters of the first permanent magnet 61 and the second permanent magnet 62, both of which are ring-shaped, are the inner diameters (specifically, the first rotor core 4 and the second rotor core 5) of each rotor core. The inner diameter of the first permanent magnet 61 and the second permanent magnet 62 is set to a value slightly smaller than the outer diameter of the large-diameter portion 31 of the shaft 3. It is set.

第1永久磁石61は、ヨーク41に対向するヨーク対向面61aとシャフト3に対向するシャフト対向面61b(本発明のロータ支持部材対向面に相当)に相対応する異なった極性を持たせたものであり、本実施形態では、例えばヨーク対向面61aをN極、シャフト対向面61bをS極に着磁した第1永久磁石61を適用している。また、第2永久磁石62は、ヨーク対向面62aとシャフト対向面62bの各極性が第1永久磁石61の極性と異なるように着磁した(つまり、ヨーク対向面62aをS極、シャフト対向面62bをN極に着磁した)ものである。   The first permanent magnet 61 has different polarities corresponding to the yoke facing surface 61a facing the yoke 41 and the shaft facing surface 61b facing the shaft 3 (corresponding to the rotor supporting member facing surface of the present invention). In this embodiment, for example, the first permanent magnet 61 is applied in which the yoke facing surface 61a is magnetized to the N pole and the shaft facing surface 61b is magnetized to the S pole. The second permanent magnet 62 is magnetized so that the polarities of the yoke facing surface 62a and the shaft facing surface 62b are different from the polarities of the first permanent magnet 61 (that is, the yoke facing surface 62a is the S pole and the shaft facing surface). 62b is magnetized to the N pole).

本実施形態の回転機Xは、シャフト3の大径部31のうち、シャフト3の軸方向Aに沿って上述の鍔部32側から第1永久磁石61及び第2永久磁石62をこの順番に配置している。つまり、第1永久磁石61及び第2永久磁石62をこの順にシャフト3の大径部31のうち鍔部32を設けていない側の端部から大径部31を外嵌するように挿入することで、上述した配置条件及び着磁条件を満たす永久磁石列6を実現している。第1永久磁石61及び第2永久磁石62はシャフト3の軸方向Aに隙間無く並んだ状態で配置される。そして、このような構成をなす永久磁石列6はシャフト3と一体回転可能である。   In the rotating machine X of the present embodiment, the first permanent magnet 61 and the second permanent magnet 62 are arranged in this order from the flange portion 32 side along the axial direction A of the shaft 3 in the large diameter portion 31 of the shaft 3. It is arranged. That is, the first permanent magnet 61 and the second permanent magnet 62 are inserted in this order from the end of the large-diameter portion 31 of the shaft 3 on the side where the flange portion 32 is not provided so as to externally fit the large-diameter portion 31. Thus, the permanent magnet array 6 that satisfies the above-described arrangement conditions and magnetization conditions is realized. The first permanent magnet 61 and the second permanent magnet 62 are arranged in a state where there is no gap in the axial direction A of the shaft 3. The permanent magnet row 6 having such a configuration can rotate integrally with the shaft 3.

また、本実施形態に係る回転機Xは、第1ロータコア4と第2ロータコア5の間に磁性リング7を配置している。具体的に、この磁性リング7は、第1ロータコア4のヨーク41と第2ロータコア5のヨーク51の間であって且つシャフト3の軸方向Aに沿って第1永久磁石61及び第2永久磁石62を跨ぐ位置に配置したものである。本実施形態の回転機Xでは、磁性リング7の内径を各ロータコア(第1ロータコア4,第2ロータコア5)の内径(具体的にはヨーク41,ヨーク51の内径)と同一または略同一に設定し、磁性リング7の外径を各ロータコア(第1ロータコア4,第2ロータコア5)のヨーク41,ヨーク51の外径と同一または略同一に設定している。また、磁性リング7の厚み自体は、各永久磁石(第1永久磁石61,第2永久磁石62)の厚みよりも薄い。   In the rotating machine X according to this embodiment, the magnetic ring 7 is disposed between the first rotor core 4 and the second rotor core 5. Specifically, the magnetic ring 7 includes a first permanent magnet 61 and a second permanent magnet between the yoke 41 of the first rotor core 4 and the yoke 51 of the second rotor core 5 and along the axial direction A of the shaft 3. 62 is disposed at a position straddling 62. In the rotating machine X of the present embodiment, the inner diameter of the magnetic ring 7 is set to be the same or substantially the same as the inner diameter of each rotor core (the first rotor core 4 and the second rotor core 5) (specifically, the inner diameter of the yoke 41 and the yoke 51). The outer diameter of the magnetic ring 7 is set to be the same or substantially the same as the outer diameter of the yoke 41 and the yoke 51 of each rotor core (first rotor core 4 and second rotor core 5). Further, the thickness of the magnetic ring 7 itself is thinner than the thickness of each permanent magnet (the first permanent magnet 61 and the second permanent magnet 62).

本実施形態の磁性リング7は、これら永久磁石(第1永久磁石61,第2永久磁石62)を上述した順でシャフト3の大径部31に外嵌させた後に、第1ロータコア4及び第2ロータコア5と同様に永久磁石列6を外嵌するように挿入することで、第1ロータコア4のヨーク41と第2ロータコア5のヨーク51の間に配置することができる。具体的には、第1ロータコア4、磁性リング7、第2ロータコア5の順にシャフト3の大径部31のうち鍔部32を設けていない側の端部から大径部31を外嵌するように挿入すると、第1ロータコア4が鍔部32に当接してそれ以上の挿入動作が規制され、この第1ロータコア4に続いて磁性リング7及び第2ロータコア5をシャフト3の軸方向Aに隙間無く並べて配置することができる。この磁性リング7は、各ロータコア(第1ロータコア4,第2ロータコア5)に挟持された状態で各ロータコア4,5及び永久磁石列6とともにシャフト3と一体回転可能である。   In the magnetic ring 7 of the present embodiment, these permanent magnets (the first permanent magnet 61 and the second permanent magnet 62) are externally fitted to the large-diameter portion 31 of the shaft 3 in the order described above, and then the first rotor core 4 and the first Like the two-rotor core 5, the permanent magnet row 6 is inserted so as to be fitted outside, so that it can be disposed between the yoke 41 of the first rotor core 4 and the yoke 51 of the second rotor core 5. Specifically, the large-diameter portion 31 is externally fitted from the end of the large-diameter portion 31 of the shaft 3 where the flange portion 32 is not provided in the order of the first rotor core 4, the magnetic ring 7, and the second rotor core 5. When the first rotor core 4 is inserted into the first rotor core 4, the further insertion operation is restricted, and the magnetic ring 7 and the second rotor core 5 are subsequently spaced in the axial direction A of the shaft 3. They can be placed side by side without any problems. The magnetic ring 7 can rotate integrally with the shaft 3 together with the rotor cores 4, 5 and the permanent magnet row 6 while being sandwiched between the rotor cores (first rotor core 4, second rotor core 5).

本実施形態に係る回転機Xは、磁性リング7のうちステータ1側の周面、すなわちインナー可動型の回転機Xであれば磁性リング7の外周面に、界磁巻線8を巻回している。界磁巻線8は、図1乃至図4に示すように、回転軸Wの径方向Cにおいて磁性リング7と重なり、回転軸Wの軸方向Aにおいて第1ロータコア4と第2ロータコア5に挟まれる位置に配置される。本実施形態では、界磁巻線8のうち径方向Cにおいて最も内側の領域を磁性リング7の外周面に接触させ、界磁巻線8のうち径方向Cにおいて最も外側の領域を各ロータコア(第1ロータコア4,第2ロータコア5)の突極部42(突極部42,突極部52)の先端面(外周面)よりもステータ1から離間した位置に設定している。なお、図2では、説明の便宜上、回転軸W回りに周回する界磁巻線8に共通のパターンを付している。   In the rotating machine X according to the present embodiment, the field winding 8 is wound around the outer surface of the magnetic ring 7 in the case of the inner surface of the magnetic ring 7, that is, the inner movable rotating machine X. Yes. The field winding 8 overlaps the magnetic ring 7 in the radial direction C of the rotating shaft W and is sandwiched between the first rotor core 4 and the second rotor core 5 in the axial direction A of the rotating shaft W, as shown in FIGS. It is arranged at the position. In the present embodiment, the innermost region of the field winding 8 in the radial direction C is brought into contact with the outer peripheral surface of the magnetic ring 7, and the outermost region of the field winding 8 in the radial direction C is set to each rotor core ( The first rotor core 4 and the second rotor core 5) are set at a position farther from the stator 1 than the front end surface (outer peripheral surface) of the salient pole portion 42 (the salient pole portion 42 and the salient pole portion 52). In FIG. 2, for convenience of explanation, a common pattern is given to the field windings 8 that circulate around the rotation axis W.

そして、本実施形態に係る回転機Xは、シャフト3の軸方向Aに沿った永久磁石列6の幅寸法と、第1ロータコア4、磁性リング7及び第2ロータコア5の並び方向(軸方向A)における幅寸法の総和が同一または略同一になるように設定している。すなわち、本実施形態では、各ロータコア(第1ロータコア4,第2ロータコア5)の軸方向Aに沿った幅寸法を各永久磁石(第1永久磁石61,第2永久磁石62)の幅寸法よりも小さく設定している。   And the rotary machine X which concerns on this embodiment is the width dimension of the permanent magnet row | line | column 6 along the axial direction A of the shaft 3, and the arrangement direction (axial direction A of the 1st rotor core 4, the magnetic ring 7, and the 2nd rotor core 5). ) Are set so that the sum of the width dimensions is the same or substantially the same. That is, in the present embodiment, the width dimension along the axial direction A of each rotor core (first rotor core 4, second rotor core 5) is determined from the width dimension of each permanent magnet (first permanent magnet 61, second permanent magnet 62). Is set too small.

ここで、図4に示すように、シャフト3に永久磁石列6、ロータ2、磁性リング7及び界磁巻線8を組み付けたユニットは、ステータ1に対して回転可能な部材のみを組み付けたものであることからロータユニットUと捉えることができる。そして、このロータユニットUは、ステータ1の径方向C内側に挿通され、ステータティース12との間に形成される磁気ギャップを介してステータ1に対してシャフト3の軸心回りに回転自在に設けられる。   Here, as shown in FIG. 4, the unit in which the permanent magnet array 6, the rotor 2, the magnetic ring 7, and the field winding 8 are assembled to the shaft 3 is an assembly in which only a rotatable member is assembled to the stator 1. Therefore, it can be regarded as the rotor unit U. The rotor unit U is inserted inside the stator 1 in the radial direction C, and is rotatably provided around the axis of the shaft 3 with respect to the stator 1 via a magnetic gap formed between the stator unit 12 and the rotor unit U. It is done.

次に、このような構成を有する本実施形態に係る回転機Xの動作及び作用について説明する。   Next, the operation and action of the rotating machine X according to this embodiment having such a configuration will be described.

本実施形態の回転機Xにおいて、磁性リング7を周回する位置に設けた界磁巻線8に電流が流れていない場合(界磁巻線非励磁状態)、永久磁石列6の磁束(以下では「磁石磁束」と称する場合がある)は、図5及び図6に点線で示すように、例えば第1永久磁石61のヨーク対向面61a(N極)を始点として捉えると、この第1永久磁石61のヨーク対向面61a、第1ロータコア4のヨーク41、磁性リング7、第2ロータコア5のヨーク51、第2永久磁石62のヨーク対向面62a(S極)、第2永久磁石62のシャフト対向面62b(N極)、シャフト3、第1永久磁石61のシャフト対向面61b(S極)、第1永久磁石61のヨーク対向面61a(N極)を流れる。すなわち、永久磁石列6の磁束の経路(磁路)は、常に全体の磁気抵抗が最も小さくなる磁路が必然的に選ばれるため、界磁巻線非励磁状態における磁石磁束は、ロータ2とステータ1の磁気ギャップを避けて流れることになる。したがって、界磁巻線非励磁状態では永久磁石列6の磁束がステータ巻線13に鎖交することはない。特に、本実施形態では、各永久磁石(第1永久磁石61,第2永久磁石62)及び各ロータコア(第1ロータコア4,第2ロータコア5)を回転軸Wの径方向Cに流れる永久磁石列6の磁束が、第1ロータコア4と第2ロータコア5の間に配置した磁性リング7、及び磁性体であるシャフト3では軸方向Aに流れるように設定し、永久磁石列6の磁束を短絡させている。この界磁巻線非励磁状態における永久磁石列6の磁束を以下では「非励磁状態磁石磁束」と称す。このように、非励磁状態磁石磁束はロータ2内におさまり、ステータ巻線13に鎖交しない。したがって、誘起電圧が発生せず、安全な状態であるといえる。なお、永久磁石列6の磁束量は常に一定である。   In the rotating machine X of the present embodiment, when no current is flowing through the field winding 8 provided at a position that circulates around the magnetic ring 7 (field winding non-excited state), the magnetic flux of the permanent magnet row 6 (below, For example, when the yoke-facing surface 61a (N pole) of the first permanent magnet 61 is taken as a starting point, as shown by a dotted line in FIGS. 61 yoke facing surface 61 a, first rotor core 4 yoke 41, magnetic ring 7, second rotor core 5 yoke 51, second permanent magnet 62 yoke facing surface 62 a (S pole), second permanent magnet 62 shaft facing. It flows through the surface 62b (N pole), the shaft 3, the shaft facing surface 61b (S pole) of the first permanent magnet 61, and the yoke facing surface 61a (N pole) of the first permanent magnet 61. In other words, the magnetic flux path (magnetic path) of the permanent magnet array 6 is inevitably selected as the magnetic path that minimizes the overall magnetic resistance. It flows while avoiding the magnetic gap of the stator 1. Therefore, the magnetic flux of the permanent magnet row 6 does not interlink with the stator winding 13 in the field winding non-excited state. In particular, in the present embodiment, the permanent magnet row that flows in the radial direction C of the rotation axis W through each permanent magnet (first permanent magnet 61, second permanent magnet 62) and each rotor core (first rotor core 4, second rotor core 5). 6 is set to flow in the axial direction A in the magnetic ring 7 disposed between the first rotor core 4 and the second rotor core 5 and the shaft 3 which is a magnetic body, and the magnetic flux in the permanent magnet row 6 is short-circuited. ing. Hereinafter, the magnetic flux of the permanent magnet row 6 in the non-excited state of the field winding is referred to as “non-excited state magnetic flux”. Thus, the non-excited state magnet magnetic flux is contained in the rotor 2 and does not interlink with the stator winding 13. Therefore, it can be said that an induced voltage is not generated and it is a safe state. The amount of magnetic flux in the permanent magnet row 6 is always constant.

一方、本実施形態の回転機Xにおいて、界磁巻線8に所定方向の電流を流した場合(界磁巻線励磁状態)、具体的には、図7及び図8に示すように、磁性リング7における界磁巻線8の磁束(同図において二点鎖線で示す磁束であり、以下では「界磁巻線磁束」と称する場合がある)の向きが非励磁状態磁石磁束の向きと反対になる方向の電流を界磁巻線8に流した場合、界磁巻線磁束は、例えば第1ロータコア4のヨーク41を始点として捉えると、この第1ロータコア4のヨーク41、第1ロータコア4の突極部42、磁気ギャップ、ステータティース12、ステータコア11、ステータティース12、磁気ギャップ、第2ロータコア5の突極部52、第2ロータコア5のヨーク51、磁性リング7、第1ロータコア4のヨーク41を流れる。そして、界磁巻線8の起磁力の大きさに依存する界磁巻線8の磁束量(界磁電力の大きさに依存する界磁巻線8の磁束量)が永久磁石列6の磁束量よりも大きい場合に、上述した非励磁状態磁石磁束のうち、第1ロータコア4のヨーク41から磁性リング7を経て第2ロータコア5のヨーク51に向かう永久磁石列6の磁束が、界磁巻線8の磁束によって誘導されて、第1ロータコア4のヨーク41から磁性リング7及び第2ロータコア5のヨーク51に向かわずに、界磁巻線8の磁束と同一方向、つまり、第1ロータコア4のヨーク41、第1ロータコア4の突極部42、磁気ギャップ、ステータティース12、ステータコア11、ステータティース12、磁気ギャップ、第2ロータコア5の突極部52、第2ロータコア5のヨーク51へと流れる磁束(以下では「励磁状態磁石磁束」と称す)となる。この励磁状態磁石磁束は、第2ロータコア5のヨーク51から、第2永久磁石62のヨーク対向面62a(S極)、第2永久磁石62のシャフト対向面62b(N極)、シャフト3、第1永久磁石61のシャフト対向面61b(S極)、第1永久磁石61のヨーク対向面61a(N極)へと流れる。   On the other hand, in the rotating machine X of the present embodiment, when a current in a predetermined direction is passed through the field winding 8 (field winding excitation state), specifically, as shown in FIG. 7 and FIG. The direction of the magnetic flux of the field winding 8 in the ring 7 (which is a magnetic flux indicated by a two-dot chain line in the drawing and may be referred to as “field winding magnetic flux” hereinafter) is opposite to the direction of the non-excited state magnetic flux. When the current in the direction to flow is applied to the field winding 8, the field winding magnetic flux, for example, when the yoke 41 of the first rotor core 4 is taken as a starting point, the yoke 41 of the first rotor core 4, the first rotor core 4 Salient pole part 42, magnetic gap, stator teeth 12, stator core 11, stator teeth 12, magnetic gap, salient pole part 52 of second rotor core 5, yoke 51 of second rotor core 5, magnetic ring 7, and first rotor core 4 Flow through the yoke 41 That. The magnetic flux amount of the field winding 8 depending on the magnitude of the magnetomotive force of the field winding 8 (the magnetic flux amount of the field winding 8 depending on the magnitude of the field power) is the magnetic flux of the permanent magnet row 6. When the magnetic flux is larger than the amount, the magnetic flux of the permanent magnet array 6 from the yoke 41 of the first rotor core 4 to the yoke 51 of the second rotor core 5 from the yoke 41 of the first rotor core 4 to the yoke 51 of the second rotor core 5 is increased. The first rotor core 4 is guided in the same direction as the magnetic flux of the field winding 8 without being directed from the yoke 41 of the first rotor core 4 to the magnetic ring 7 and the yoke 51 of the second rotor core 5 by being induced by the magnetic flux of the wire 8. Yoke 41, salient pole portion 42 of first rotor core 4, magnetic gap, stator teeth 12, stator core 11, stator teeth 12, magnetic gap, salient pole portion 52 of second rotor core 5, and yoke 51 of second rotor core 5. Flux (hereinafter referred to as "excitation state magnetic flux") flowing a. This magnetized magnet flux is generated from the yoke 51 of the second rotor core 5 to the yoke facing surface 62a (S pole) of the second permanent magnet 62, the shaft facing surface 62b (N pole) of the second permanent magnet 62, the shaft 3, It flows to the shaft facing surface 61b (S pole) of the first permanent magnet 61 and the yoke facing surface 61a (N pole) of the first permanent magnet 61.

そして、本実施形態に係る回転機Xにおいて、このような励磁状態磁石磁束が、界磁巻線8の磁束とともにステータ巻線13に鎖交することによって、誘起電圧を発生させてロータ2を回転させることができる。さらに、本実施形態に係る回転機Xは、要求される回転数(出力)やトルクに応じて界磁巻線8に流す電流量(界磁電力)を調節することで、ステータ巻線13に鎖交する磁束量(永久磁石列6の磁束と界磁巻線8の磁束の総和である磁束量)を増減することができる。   Then, in the rotating machine X according to the present embodiment, such an excited state magnetic flux is linked to the stator winding 13 together with the magnetic flux of the field winding 8 to generate an induced voltage to rotate the rotor 2. Can be made. Further, the rotating machine X according to the present embodiment adjusts the amount of current (field power) that flows through the field winding 8 according to the required number of rotations (output) and torque, so that the stator winding 13 The amount of magnetic flux interlinked (the amount of magnetic flux that is the sum of the magnetic flux of the permanent magnet array 6 and the magnetic flux of the field winding 8) can be increased or decreased.

したがって、このような回転機Xを電気自動車やハイブリッド車の駆動モータとして適用した場合、回転機Xの回転数に対する誘起電圧、界磁電力、ステータ電力の特性を示す図9からも把握できるように、始動時を含む低速域では、ステータ1のコイル(ステータ巻線13)に通電するとともに、界磁巻線8に所定方向の電流を流して非励磁状態から界磁巻線励磁状態に切り替えることで励磁されたロータ2が回転駆動する。なお、図9では、トルクを相対的に細い実線で示し、出力を相対的に太い実線で示し、誘起電圧を点線(実際の誘起電圧を相対的に太い点線、界磁制御を行わない場合の誘起電圧を相対的に細い点線)で示し、界磁電力を2点鎖線で示し、ステータ電力を1点鎖線で示している。   Therefore, when such a rotating machine X is applied as a drive motor for an electric vehicle or a hybrid vehicle, it can be understood from FIG. 9 that shows the characteristics of the induced voltage, the field power, and the stator power with respect to the rotational speed of the rotating machine X. In the low speed range including the start time, the coil of the stator 1 (stator winding 13) is energized, and a current in a predetermined direction is supplied to the field winding 8 to switch from the non-excited state to the field winding excited state. The rotor 2 excited in step 1 is rotated. In FIG. 9, the torque is indicated by a relatively thin solid line, the output is indicated by a relatively thick solid line, the induced voltage is a dotted line (the actual induced voltage is a relatively thick dotted line, and the induced voltage when field control is not performed). Is indicated by a relatively thin dotted line), the field power is indicated by a two-dot chain line, and the stator power is indicated by a one-dot chain line.

本実施形態に係る回転機Xは、大トルクが要求される低速域において、界磁巻線8に流す電流量を上げる(界磁電力を大きくする)ことによって、その界磁電力に応じた大きい界磁巻線8の磁束と、この界磁巻線8の磁束に誘導される永久磁石列6の磁束をステータ巻線13に鎖交させることができ、ステータ1巻線に鎖交する磁束量を増大させる(磁束密度を高める)ことができる。したがって、例えばステータ巻線13に流す電流を大きくすることに依らずとも、界磁巻線8に所定方向の電流を流す界磁制御を行うことで大トルクを得ることができ、界磁制御を行わない場合に比べて誘起電圧を高くすることができる。図9には、比較対象として界磁制御を行わない場合の誘起電圧を実際の誘起電圧を示す点線よりも細い点線で示している。   The rotating machine X according to the present embodiment increases the amount of current flowing through the field winding 8 (increases the field power) in a low speed range where a large torque is required, thereby increasing the magnitude according to the field power. The magnetic flux of the field winding 8 and the magnetic flux of the permanent magnet row 6 induced by the magnetic flux of the field winding 8 can be linked to the stator winding 13, and the amount of magnetic flux linked to the stator 1 winding Can be increased (the magnetic flux density can be increased). Therefore, for example, even when the current flowing through the stator winding 13 is not increased, a large torque can be obtained by performing field control for flowing current in a predetermined direction through the field winding 8, and when field control is not performed. Compared to the induced voltage, the induced voltage can be increased. In FIG. 9, the induced voltage when the field control is not performed as a comparison target is indicated by a dotted line thinner than the dotted line indicating the actual induced voltage.

また、本実施形態の回転機Xは、中速域において、界磁巻線励磁状態で運転しつつ、低速域時よりも界磁電力を少なくすることで誘起電圧を一定に保ち、トルクを必要としない領域に到達した時点で界磁電力をさらに少なくすることでステータ巻線13に鎖交する磁束量を低速域よりも減少させて、ステータ1における磁束密度を抑えることができる。そして、本実施形態の回転機Xにおける回転数に対する鉄損、界磁巻線8の銅損、ステータ1の銅損の特性(損失特性)を示す図10に示すように、ステータ1の磁束密度を抑えることによって、鉄損を低減することができる。なお、図10では、トルクを相対的に細い実線で示し、出力を相対的に太い実線で示し、鉄損を点線で示し、ステータ銅損を相対的に細い1点鎖線で示し、界磁銅損(界磁巻線8の銅損)を2点鎖線で示し、総損を相対的に太い1点鎖線で示している。   Further, the rotating machine X of the present embodiment operates in the field winding excitation state in the medium speed range, and maintains the induced voltage constant by reducing the field power as compared with the low speed range, and requires torque. The magnetic flux density in the stator 1 can be suppressed by reducing the amount of magnetic flux interlinked with the stator winding 13 from the low speed region by further reducing the field power when reaching the region that is not. Then, as shown in FIG. 10 showing the characteristics (loss characteristics) of the iron loss with respect to the rotational speed, the copper loss of the field winding 8, and the copper loss of the stator 1 in the rotating machine X of the present embodiment, the magnetic flux density of the stator 1. By suppressing the iron loss, iron loss can be reduced. In FIG. 10, the torque is indicated by a relatively thin solid line, the output is indicated by a relatively thick solid line, the iron loss is indicated by a dotted line, the stator copper loss is indicated by a relatively thin one-dot chain line, and the field copper The loss (copper loss of the field winding 8) is indicated by a two-dot chain line, and the total loss is indicated by a relatively thick one-dot chain line.

また、本実施形態に係る回転機Xは、高速域では、図9に示すように、界磁電力をゼロに近付けることで、リラクタンストルクのみで回転させる。すなわち、界磁電力をゼロに近付けることによって、界磁巻線8の磁束量がゼロに近付き、ステータ巻線13に鎖交する磁束量が中速域よりも減少し、ステータ1における磁束密度をさらに抑えることができる。また、図10に示すように、界磁電力をゼロに近付けることで低速域や中速域と比較して界磁巻線8の銅損も減少するとともに、高速域では磁束密度の低減に伴って鉄損を低減できることから、本実施形態に係る回転機Xでは、高速回転領域で誘起電圧が低い(磁束密度が低い)ため、鉄損を低減することができる。   Further, as shown in FIG. 9, the rotating machine X according to the present embodiment is rotated only by reluctance torque by bringing the field power close to zero as shown in FIG. That is, by bringing the field power close to zero, the amount of magnetic flux in the field winding 8 approaches zero, the amount of magnetic flux interlinked with the stator winding 13 is reduced from the middle speed range, and the magnetic flux density in the stator 1 is reduced. It can be further suppressed. In addition, as shown in FIG. 10, the field loss is brought close to zero, so that the copper loss of the field winding 8 is reduced as compared with the low speed region and the medium speed region, and the magnetic flux density is reduced in the high speed region. Therefore, in the rotating machine X according to the present embodiment, the induced voltage is low (magnetic flux density is low) in the high-speed rotation region, so that the iron loss can be reduced.

このような各部材から構成した本実施形態に係る回転機Xは、界磁巻線非励磁状態において永久磁石列6の磁束がステータ巻線13に鎖交しないように構成しているため、この界磁巻線非励磁状態では誘起電圧が発生せず、安全な状態を確保することができ、制御機器(電源、インバータなど)が停止したときには自ずと誘起電圧が発生しない状態を確保することができ、制御機器の破損防止に役立つ。また、本実施形態の回転機Xでは、界磁巻線8に一方向の電流を流した場合に、磁気ギャップを介してステータ1とロータ2との間を流れる界磁巻線8の磁束に誘導されて永久磁石列6の磁束をステータ1に流すことができ、誘起電圧を発生させてロータ2を回転させることができ、要求される回転数(出力)やトルクに応じて界磁巻線8に流す電流量を調節することで、ステータ巻線13に鎖交する磁束量を増減することができる。この際、永久磁石列6の界磁を弱める弱め界磁は不要であるため、永久磁石列6を構成する永久磁石の減磁現象を防止することができる。そして、本実施形態に係る回転機Xは、弱め界磁制御実行時に生じ得る界磁銅損の発生を防止・抑制することができ、弱め界磁制御と強め界磁制御を選択して行う態様と比較して、界磁巻線8に流す電流方向は一定方向のみであるため、界磁巻線8に流す電流方向を切り替える処理が不要であり、高速域において、弱め界磁制御であれば必要な「トルクに寄与しないステータ電力」が不要となり、ステータ銅損を低減させることができる。   The rotating machine X according to the present embodiment configured from such members is configured so that the magnetic flux of the permanent magnet row 6 does not interlink with the stator winding 13 in the field winding non-excited state. No induced voltage is generated in the field winding non-excited state, so that a safe state can be secured, and when the control device (power supply, inverter, etc.) is stopped, a state where no induced voltage is naturally generated can be secured. Helps prevent damage to control equipment. Further, in the rotating machine X of the present embodiment, when a current in one direction is passed through the field winding 8, the magnetic flux of the field winding 8 flowing between the stator 1 and the rotor 2 through the magnetic gap is changed. The induced magnetic flux of the permanent magnet array 6 can be induced to flow through the stator 1, the induced voltage can be generated to rotate the rotor 2, and the field windings according to the required rotation speed (output) and torque By adjusting the amount of current flowing through 8, the amount of magnetic flux linked to the stator winding 13 can be increased or decreased. At this time, since the field weakening that weakens the field of the permanent magnet row 6 is unnecessary, the demagnetization phenomenon of the permanent magnets constituting the permanent magnet row 6 can be prevented. The rotating machine X according to the present embodiment can prevent / suppress the occurrence of field copper loss that may occur when the field weakening control is executed. Compared with a mode in which the field weakening control and the field strengthening control are selected and performed, Since the direction of the current flowing through the magnetic winding 8 is only a fixed direction, there is no need to switch the direction of the current flowing through the field winding 8, and a “stator that does not contribute to torque” is required for field weakening control at high speeds. "Electric power" becomes unnecessary, and the stator copper loss can be reduced.

さらに、本実施形態の回転機Xは、ステータ1に対してロータ2を回転可能に支持するロータ支持部材3であるシャフト3を磁性体にし、このシャフト3と、軸方向Aに並ぶ第1ロータコア4、磁性リング7及び第2ロータコア5の間に、永久磁石列6を回転軸Wの径方向Cに挟むように配置することで、永久磁石列6の磁束を短絡させており、ステータ1の一部を永久磁石の磁束がステータ1とロータ2との磁気ギャップを回避して流れるバイパスとして機能させる構成と比較して、短い磁路を実現することができるとともに、バイパス機能を発揮させるためにステータ1の所定領域を他の領域よりも抵抗を低くして磁束が流れ易くする特殊な構造にする処理も不要であり、構造の簡素化の点においても有利である。   Further, in the rotating machine X of the present embodiment, the shaft 3 that is the rotor support member 3 that rotatably supports the rotor 2 with respect to the stator 1 is made of a magnetic material, and the first rotor core aligned with the shaft 3 in the axial direction A is used. 4, by arranging the permanent magnet row 6 between the magnetic ring 7 and the second rotor core 5 in the radial direction C of the rotation axis W, the magnetic flux of the permanent magnet row 6 is short-circuited. Compared with a configuration in which a part of the magnetic flux of the permanent magnet functions as a bypass that avoids the magnetic gap between the stator 1 and the rotor 2, a short magnetic path can be realized and the bypass function can be exhibited. There is no need for a special structure in which the predetermined region of the stator 1 has a lower resistance than other regions to facilitate the flow of magnetic flux, which is advantageous in terms of simplification of the structure.

このように、本実施形態の回転機Xであれば、第1ロータコア4及び第2ロータコア5の構造及び配置に加えて、一対の永久磁石の組み合わせ及び配置、さらには界磁巻線8及び磁性リング7の配置を上述の各条件に合致させることで、界磁巻線8の起磁力がゼロの場合にはステータ巻線13に鎖交しない永久磁石列6の磁束を、界磁巻線8に電流を流すことで界磁巻線8の磁束に重畳させて、ステータ巻線13に鎖交する磁束(界磁磁束)に変えることが可能であり、永久磁石の大幅な増量を回避しつつ、低速・高トルクの状態から高速・低トルクの状態に亘る広範な運転領域に対応する何れの回転領域でも高い効率を実現できる。   Thus, in the rotating machine X of the present embodiment, in addition to the structure and arrangement of the first rotor core 4 and the second rotor core 5, the combination and arrangement of a pair of permanent magnets, and further the field winding 8 and the magnetic By matching the arrangement of the ring 7 with each of the above-described conditions, when the magnetomotive force of the field winding 8 is zero, the magnetic flux of the permanent magnet row 6 not interlinked with the stator winding 13 is changed to the field winding 8. Can be superposed on the magnetic flux of the field winding 8 by passing a current through the stator winding 13 and changed to a magnetic flux (field magnetic flux) interlinked with the stator winding 13 while avoiding a significant increase in the permanent magnets. High efficiency can be realized in any rotation region corresponding to a wide range of operation ranging from a low speed / high torque state to a high speed / low torque state.

次に、上記実施形態とは異なる実施形態(第2実施形態と称する場合がある)を、図面を参照して説明する。なお、上記実施形態と第2実施形態の説明において符号は重複(共通)しているが、各符号はそれぞれの実施形態に関連付けて付した符号であり、共通の符号であっても、その符号が表す部材や部分が各実施形態で共通しているということではない。   Next, an embodiment (sometimes referred to as a second embodiment) different from the above embodiment will be described with reference to the drawings. In addition, although the code | symbol overlaps (common) in description of the said embodiment and 2nd Embodiment, each code | symbol is a code | symbol attached | subjected linked | related with each embodiment, Even if it is a common code | symbol, the code | symbol This does not mean that the members and parts represented by are common to the respective embodiments.

第2実施形態に係る回転機Xは、例えば図示しない電気自動車やハイブリッド車の駆動モータ、或いは産業機器や大型風力発電装置に適用可能なものである。   The rotating machine X according to the second embodiment is applicable to, for example, a drive motor of an electric vehicle or a hybrid vehicle (not shown), an industrial device, or a large wind power generator.

回転機Xは、図11乃至図13に示すように、ステータ1と、ステータ1と同軸上に配置され且つステータ1との間に磁気ギャップを形成するロータ2と、ロータ2をステータ1に対して回転可能に支持するロータ支持部材3とを備えたものである。本実施形態に係る回転機Xは、ロータ2をステータ1よりも回転軸Wの径方向C外側に配置したアウター可動型の回転機である。   As shown in FIGS. 11 to 13, the rotating machine X includes a stator 1, a rotor 2 that is arranged coaxially with the stator 1 and that forms a magnetic gap between the stator 1, and the rotor 2 with respect to the stator 1. And a rotor support member 3 that is rotatably supported. The rotating machine X according to the present embodiment is an outer movable rotating machine in which the rotor 2 is disposed outside the stator 1 in the radial direction C of the rotating shaft W.

ステータ1は、円柱状のステータコア11と、ステータコア11からロータ2側に向かって突出し且つ周方向Bに等角ピッチで配列された複数のステータティース12(本発明のステータ極)と、周方向Bに隣り合うステータティース12同士の間に形成されるスロットに配置したステータ巻線13とを有するものである。   The stator 1 includes a cylindrical stator core 11, a plurality of stator teeth 12 (stator poles of the present invention) that protrude from the stator core 11 toward the rotor 2 and are arranged at an equiangular pitch in the circumferential direction B, and a circumferential direction B And stator windings 13 arranged in slots formed between adjacent stator teeth 12.

ロータ2は、図11乃至図14に示すように、対となる磁性体の第1ロータコア4及び第2ロータコア5と、永久磁石列6と、磁性リング7と、界磁巻線8とを備えている。   As shown in FIGS. 11 to 14, the rotor 2 includes a first rotor core 4 and a second rotor core 5, a permanent magnet row 6, a magnetic ring 7, and a field winding 8 that are paired magnetic bodies. ing.

第1ロータコア4及び第2ロータコア5は同一形状であり、それぞれリング状のヨーク41,ヨーク51と、各ヨーク41,51のそれぞれからステータ1側に向かって突出し且つ周方向Bに等角ピッチで複数設けた突極部42,突極部52を有するものである。そして、本実施形態では、図14に示すように、これら第1ロータコア4及び第2ロータコア5を周方向Bに互いに1極ピッチ分ずらした状態で回転軸Wの軸方向Aに並べて配置している。図14に示す各ロータコア(第1ロータコア4,第2ロータコア5)はそれぞれ8つの突極部42,突極部52を有するものであり、これらロータコア(第1ロータコア4,第2ロータコア5)を周方向Bに互いに45度(一回転360を8で除した値)ずらした状態で回転軸Wの軸方向A(以下、単に「軸方向A」と称する場合がある)に並べて配置している。ここで、本実施形態の回転機Xは、軸方向Aに所定距離離間して並ぶ第1ロータコア4と第2ロータコア5との間に磁性リング7を介在させている。   The first rotor core 4 and the second rotor core 5 have the same shape, and protrude from the ring-shaped yoke 41, yoke 51, and each of the yokes 41, 51 toward the stator 1, respectively, and at an equiangular pitch in the circumferential direction B. A plurality of salient pole portions 42 and salient pole portions 52 are provided. In this embodiment, as shown in FIG. 14, the first rotor core 4 and the second rotor core 5 are arranged side by side in the axial direction A of the rotating shaft W in a state of being shifted by one pole pitch in the circumferential direction B. Yes. Each rotor core (first rotor core 4 and second rotor core 5) shown in FIG. 14 has eight salient pole portions 42 and salient pole portions 52, and these rotor cores (first rotor core 4 and second rotor core 5) are provided. They are arranged side by side in the axial direction A of the rotation axis W (hereinafter sometimes simply referred to as “axial direction A”) in a state shifted from each other in the circumferential direction B by 45 degrees (a value obtained by dividing one rotation 360 by 8). . Here, in the rotating machine X of the present embodiment, the magnetic ring 7 is interposed between the first rotor core 4 and the second rotor core 5 that are arranged at a predetermined distance apart in the axial direction A.

ここで、本実施形態の回転機Xでは、ステータ1とロータ2の間、より具体的にはステータ1のステータティース12と各ロータコア(第1ロータコア4,第2ロータコア5の突極部42,突極部52)の間に、回転軸Wの周方向Bに周回する磁気ギャップを形成している。   Here, in the rotating machine X of the present embodiment, between the stator 1 and the rotor 2, more specifically, the stator teeth 12 of the stator 1 and each rotor core (the salient pole portions 42 of the first rotor core 4 and the second rotor core 5, Between the salient pole portions 52), a magnetic gap is formed that circulates in the circumferential direction B of the rotating shaft W.

また、本実施形態ではロータ支持部材として、ロータ2の外周面を被覆する円筒状の磁性フレーム3を適用している。この磁性フレーム3はロータ2と一体回転可能に構成されている。本実施形態では、磁性フレーム3の内周面とロータ2の外周面(永久磁石61,62の外周面)の隙間がゼロ又は略ゼロとなるように磁性フレーム3の内径及び各永久磁石61,62の外径を設定している。   In this embodiment, a cylindrical magnetic frame 3 that covers the outer peripheral surface of the rotor 2 is applied as the rotor support member. The magnetic frame 3 is configured to be rotatable integrally with the rotor 2. In the present embodiment, the inner diameter of each magnetic frame 3 and each permanent magnet 61, so that the gap between the inner peripheral surface of the magnetic frame 3 and the outer peripheral surface of the rotor 2 (the outer peripheral surface of the permanent magnets 61, 62) is zero or substantially zero. An outer diameter of 62 is set.

永久磁石列6は、回転軸Wの軸方向Aに並べて配置した第1永久磁石61及び第2永久磁石62を用いて構成したものである。本実施形態では、第1ロータコア4のヨーク41と磁性フレーム3との間に第1永久磁石61を配置するとともに、第2ロータコア5のヨーク51と磁性フレーム3との間に第2永久磁石62を配置している。本実施形態の回転機Xでは、何れもリング状をなす第1永久磁石61及び第2永久磁石62の外径を磁性フレーム3の内径よりも僅かに小さい値に設定し、第1永久磁石61及び第2永久磁石62の内径を各ロータコア(第1ロータコア4,第2ロータコア5)の外径(具体的にはヨーク41,ヨーク51の外径)よりも僅かに大きい値に設定している。   The permanent magnet row 6 is configured by using a first permanent magnet 61 and a second permanent magnet 62 arranged side by side in the axial direction A of the rotation axis W. In the present embodiment, the first permanent magnet 61 is disposed between the yoke 41 of the first rotor core 4 and the magnetic frame 3, and the second permanent magnet 62 is disposed between the yoke 51 of the second rotor core 5 and the magnetic frame 3. Is arranged. In the rotating machine X of the present embodiment, the outer diameters of the first permanent magnet 61 and the second permanent magnet 62, both of which are ring-shaped, are set to values slightly smaller than the inner diameter of the magnetic frame 3, and the first permanent magnet 61 The inner diameter of the second permanent magnet 62 is set to a value slightly larger than the outer diameter of each rotor core (the first rotor core 4 and the second rotor core 5) (specifically, the outer diameter of the yoke 41 and the yoke 51). .

第1永久磁石61は、ヨーク41に対向するヨーク対向面61aと磁性フレーム3に対向するフレーム対向面61b(本発明のロータ支持部材対向面に相当)に相対応する異なった極性を持たせたものであり、本実施形態では、例えばヨーク対向面61aをS極、フレーム対向面61bをN極に着磁した第1永久磁石61を適用している。また、第2永久磁石62は、ヨーク対向面62aとフレーム対向面62bの各極性が第1永久磁石61の極性と異なるように着磁した(つまり、ヨーク対向面62aをN極、フレーム対向面62bをS極に着磁した)ものである。本実施形態の回転機Xは、回転軸Wの軸方向Aに沿って第1永久磁石61及び第2永久磁石62を隙間無く順番に並べて配置している。このような構成をなす永久磁石列6は、各ロータコア4,5と一体回転可能である。   The first permanent magnet 61 has different polarities corresponding to the yoke facing surface 61a facing the yoke 41 and the frame facing surface 61b facing the magnetic frame 3 (corresponding to the rotor supporting member facing surface of the present invention). In this embodiment, for example, the first permanent magnet 61 is applied in which the yoke facing surface 61a is magnetized to the S pole and the frame facing surface 61b is magnetized to the N pole. Further, the second permanent magnet 62 is magnetized so that the polarities of the yoke facing surface 62a and the frame facing surface 62b are different from the polarities of the first permanent magnet 61 (that is, the yoke facing surface 62a is an N pole and the frame facing surface). 62b is magnetized to the south pole). In the rotating machine X of the present embodiment, the first permanent magnet 61 and the second permanent magnet 62 are arranged side by side without any gap along the axial direction A of the rotating shaft W. The permanent magnet array 6 having such a configuration can rotate integrally with the rotor cores 4 and 5.

また、本実施形態に係る回転機Xは、第1ロータコア4と第2ロータコア5の間に磁性リング7を配置している。具体的に、この磁性リング7は、第1ロータコア4のヨーク41と第2ロータコア5のヨーク51の間であって且つ回転軸Wの軸方向Aに沿って第1永久磁石61及び第2永久磁石62を跨ぐ位置に配置したものである。本実施形態の回転機Xでは、磁性リング7の外径を各ロータコア(第1ロータコア4,第2ロータコア5)の外径(具体的にはヨーク41,ヨーク51の外径)と同一または略同一に設定し、磁性リング7の内径を各ロータコア(第1ロータコア4,第2ロータコア5)のヨーク41,ヨーク51の内径と同一または略同一に設定している。また、磁性リング7の厚み自体は、各永久磁石(第1永久磁石61,第2永久磁石62)の厚みよりも薄い。   In the rotating machine X according to this embodiment, the magnetic ring 7 is disposed between the first rotor core 4 and the second rotor core 5. Specifically, the magnetic ring 7 includes the first permanent magnet 61 and the second permanent magnet between the yoke 41 of the first rotor core 4 and the yoke 51 of the second rotor core 5 and along the axial direction A of the rotation axis W. It is arranged at a position straddling the magnet 62. In the rotating machine X of the present embodiment, the outer diameter of the magnetic ring 7 is the same as or substantially the same as the outer diameter of each rotor core (first rotor core 4, second rotor core 5) (specifically, the outer diameter of the yoke 41 and the yoke 51). The inner diameter of the magnetic ring 7 is set to be the same as or substantially the same as the inner diameter of the yoke 41 and the yoke 51 of each rotor core (first rotor core 4 and second rotor core 5). Further, the thickness of the magnetic ring 7 itself is thinner than the thickness of each permanent magnet (the first permanent magnet 61 and the second permanent magnet 62).

本実施形態では、第1ロータコア4、磁性リング7及び第2ロータコア5を回転軸Wの軸方向Aに隙間無く並べて配置し、第1ロータコア4と第2ロータコア5の間に挟持した磁性リング7を各ロータコア(第1ロータコア4,第2ロータコア5)と一体回転可能に構成している。   In the present embodiment, the first rotor core 4, the magnetic ring 7, and the second rotor core 5 are arranged side by side with no gap in the axial direction A of the rotation axis W, and are sandwiched between the first rotor core 4 and the second rotor core 5. Are configured to be rotatable integrally with each rotor core (the first rotor core 4 and the second rotor core 5).

本実施形態に係る回転機Xは、磁性リング7のうちステータ1側の周面、すなわちアウター可動型の回転機Xであれば磁性リング7の内周面に、界磁巻線8を巻回している。界磁巻線8は、図11乃至図14に示すように、回転軸Wの径方向Cにおいて磁性リング7と重なり、回転軸Wの軸方向Aにおいて第1ロータコア4と第2ロータコア5に挟まれる位置に配置される。本実施形態では、界磁巻線8のうち径方向Cにおいて最も外側の領域を磁性リング7の内周面に接触させ、界磁巻線8のうち径方向Cにおいて最も内側の領域を各ロータコア(第1ロータコア4,第2ロータコア5)の突極部42(突極部42,突極部52)の先端面(内周面)と同一または突極部42の先端面よりも若干ステータ1から離間した位置に設定している。なお、図12では、説明の便宜上、回転軸W回りに周回する界磁巻線8に共通のパターンを付している。   In the rotating machine X according to the present embodiment, the field winding 8 is wound around the peripheral surface of the magnetic ring 7 on the stator 1 side, that is, the inner peripheral surface of the magnetic ring 7 in the case of the outer movable rotating machine X. ing. The field winding 8 overlaps with the magnetic ring 7 in the radial direction C of the rotation axis W and is sandwiched between the first rotor core 4 and the second rotor core 5 in the axial direction A of the rotation axis W, as shown in FIGS. It is arranged at the position. In the present embodiment, the outermost region in the radial direction C of the field winding 8 is brought into contact with the inner peripheral surface of the magnetic ring 7, and the innermost region in the radial direction C of the field winding 8 is each rotor core. The stator 1 is the same as the tip surface (inner peripheral surface) of the salient pole part 42 (salient pole part 42, salient pole part 52) of the (first rotor core 4, second rotor core 5) or slightly more than the tip surface of the salient pole part 42. The position is set apart from the center. In FIG. 12, for convenience of explanation, a common pattern is given to the field windings 8 that circulate around the rotation axis W.

そして、本実施形態に係る回転機Xは、回転軸Wの軸方向Aに沿った永久磁石列6の幅寸法と、第1ロータコア4、磁性リング7及び第2ロータコア5の並び方向(軸方向A)における幅寸法の総和が同一または略同一になるように設定している。すなわち、本実施形態では、各ロータコア(第1ロータコア4,第2ロータコア5)の軸方向Aに沿った幅寸法を各永久磁石(第1永久磁石61,第2永久磁石62)の幅寸法よりも小さく設定している。   And the rotary machine X which concerns on this embodiment is the width dimension of the permanent magnet row | line | column 6 along the axial direction A of the rotating shaft W, and the arrangement direction (axial direction) of the 1st rotor core 4, the magnetic ring 7, and the 2nd rotor core 5. The sum of the width dimensions in A) is set to be the same or substantially the same. That is, in the present embodiment, the width dimension along the axial direction A of each rotor core (first rotor core 4, second rotor core 5) is determined from the width dimension of each permanent magnet (first permanent magnet 61, second permanent magnet 62). Is set too small.

ここで、図14に示すように、磁性フレーム3の内側領域に永久磁石列6、ロータ2、磁性リング7及び界磁巻線8を組み付けたユニットは、ステータ1に対して回転可能な部材のみを組み付けたものであることからロータユニットUと捉えることができる。そして、このロータユニットUは、ステータ1の径方向C外側に挿通され、ステータティース12との間に形成される磁気ギャップを介してステータ1に対して回転軸Wの軸心回りに回転自在に設けられる。   Here, as shown in FIG. 14, the unit in which the permanent magnet array 6, the rotor 2, the magnetic ring 7, and the field winding 8 are assembled in the inner region of the magnetic frame 3 is only a member that can rotate with respect to the stator 1. Can be regarded as a rotor unit U. The rotor unit U is inserted outside in the radial direction C of the stator 1 and is rotatable about the axis of the rotation axis W with respect to the stator 1 through a magnetic gap formed between the stator unit 12 and the rotor unit U. Provided.

次に、このような構成を有する本実施形態に係る回転機Xの動作及び作用について説明する。   Next, the operation and action of the rotating machine X according to this embodiment having such a configuration will be described.

本実施形態の回転機Xにおいて、磁性リング7を周回する位置に設けた界磁巻線8に電流が流れていない場合(界磁巻線非励磁状態)、永久磁石列6の磁束(以下では「磁石磁束」と称する場合がある)は、図15及び図16に点線で示すように、第1永久磁石61のフレーム対向面61b(N極)を始点として捉えると、この第1永久磁石61のフレーム対向面61b、フレーム3、第2永久磁石62のフレーム対向面62b(S極)、第2永久磁石62のヨーク対向面62b(N極)、第2ロータコア5のヨーク51、磁性リング7、第1ロータコア4のヨーク41、第1永久磁石61のヨーク対向面61a(S極)、第1永久磁石61のフレーム対向面61b(N極)を流れる。すなわち、界磁巻線非励磁状態における磁石磁束は、ロータ2とステータ1の磁気ギャップを避けて流れることになる。したがって、界磁巻線非励磁状態では永久磁石列6の磁束がステータ巻線13に鎖交することはない。特に、本実施形態では、各永久磁石(第1永久磁石61,第2永久磁石62)及び各ロータコア(第1ロータコア4,第2ロータコア5)を回転軸Wの径方向Cに流れる永久磁石列6の磁束が、第1ロータコア4と第2ロータコア5の間に配置した磁性リング7、及び磁性体であるフレーム3では軸方向Aに流れるように設定し、永久磁石列6の磁束を短絡させている。この界磁巻線非励磁状態における永久磁石列6の磁束を以下では「非励磁状態磁石磁束」と称す。このように、非励磁状態磁石磁束はロータ2内におさまり、ステータ巻線13に鎖交しない。したがって、誘起電圧が発生せず、安全な状態であるといえる。なお、永久磁石列6の磁束量は常に一定である。   In the rotating machine X of the present embodiment, when no current is flowing through the field winding 8 provided at a position that circulates around the magnetic ring 7 (field winding non-excited state), the magnetic flux of the permanent magnet row 6 (below, As may be referred to as “magnet magnetic flux”), as shown by dotted lines in FIGS. 15 and 16, when the frame facing surface 61b (N pole) of the first permanent magnet 61 is taken as a starting point, the first permanent magnet 61 Frame facing surface 61b, frame 3, frame facing surface 62b (S pole) of second permanent magnet 62, yoke facing surface 62b (N pole) of second permanent magnet 62, yoke 51 of second rotor core 5, magnetic ring 7 , The yoke 41 of the first rotor core 4, the yoke facing surface 61 a (S pole) of the first permanent magnet 61, and the frame facing surface 61 b (N pole) of the first permanent magnet 61 flow. That is, the magnetic flux in the field winding non-excited state flows while avoiding the magnetic gap between the rotor 2 and the stator 1. Therefore, the magnetic flux of the permanent magnet row 6 does not interlink with the stator winding 13 in the field winding non-excited state. In particular, in the present embodiment, the permanent magnet row that flows in the radial direction C of the rotation axis W through each permanent magnet (first permanent magnet 61, second permanent magnet 62) and each rotor core (first rotor core 4, second rotor core 5). 6 is set to flow in the axial direction A in the magnetic ring 7 disposed between the first rotor core 4 and the second rotor core 5 and the frame 3 which is a magnetic body, and the magnetic flux in the permanent magnet row 6 is short-circuited. ing. Hereinafter, the magnetic flux of the permanent magnet row 6 in the non-excited state of the field winding is referred to as “non-excited state magnetic flux”. Thus, the non-excited state magnet magnetic flux is contained in the rotor 2 and does not interlink with the stator winding 13. Therefore, it can be said that an induced voltage is not generated and it is a safe state. The amount of magnetic flux in the permanent magnet row 6 is always constant.

一方、本実施形態の回転機Xにおいて、界磁巻線8に所定方向の電流を流した場合(界磁巻線励磁状態)、具体的には、図17及び図18に示すように、磁性リング7における界磁巻線8の磁束(同図において二点鎖線で示す磁束であり、以下では「界磁巻線磁束」と称する場合がある)の向きが非励磁状態磁石磁束の向きと反対になる方向の電流を界磁巻線8に流した場合、界磁巻線磁束は、例えば第1ロータコア4のヨーク41を始点として捉えると、この第1ロータコア4のヨーク41、磁性リング7、第2ロータコア5のヨーク51、第2ロータコア5の突極部52、磁気ギャップ、ステータティース12、ステータコア11、ステータティース12、磁気ギャップ、第1ロータコア4の突極部42、第1ロータコア4のヨーク41を流れる。そして、界磁巻線8の起磁力の大きさに依存する磁束量(界磁電力の大きさに依存する界磁巻線8の磁束量)が永久磁石列6の磁束量よりも大きい場合に、上述した非励磁状態磁石磁束のうち、第2ロータコア5のヨーク51から磁性リング7を経て第1ロータコア4のヨーク41に向かう永久磁石列6の磁束が、界磁巻線8の磁束によって誘導されて、第2ロータコア5のヨーク51から磁性リング7及び第1ロータコア4のヨーク41に向かわずに、界磁巻線8の磁束と同一方向、つまり、第2ロータコア5のヨーク51、第2ロータコア5の突極部52、磁気ギャップ、ステータティース12、ステータコア11、ステータティース12、磁気ギャップ、第1ロータコア4の突極部42、第1ロータコア4のヨーク41へと流れる磁束(以下では「励磁状態磁石磁束」と称す)となる。この励磁状態磁石磁束は、第1ロータコア4のヨーク41から、第1永久磁石61のヨーク対向面61a(S極)、第1永久磁石61のフレーム対向面61b(N極)、第2永久磁石62のフレーム対向面62b(S極)、第2永久磁石62のヨーク対向面62a(N極)へと流れる。   On the other hand, in the rotating machine X of the present embodiment, when a current in a predetermined direction is passed through the field winding 8 (field winding excitation state), specifically, as shown in FIG. 17 and FIG. The direction of the magnetic flux of the field winding 8 in the ring 7 (which is a magnetic flux indicated by a two-dot chain line in the drawing and may be referred to as “field winding magnetic flux” hereinafter) is opposite to the direction of the non-excited state magnetic flux. When the current in the direction to be passed through the field winding 8, the field winding magnetic flux, for example, when the yoke 41 of the first rotor core 4 is regarded as a starting point, the yoke 41 of the first rotor core 4, the magnetic ring 7, The yoke 51 of the second rotor core 5, the salient pole portion 52 of the second rotor core 5, the magnetic gap, the stator teeth 12, the stator core 11, the stator teeth 12, the magnetic gap, the salient pole portion 42 of the first rotor core 4, and the first rotor core 4 York 41 It flows. When the amount of magnetic flux depending on the magnitude of the magnetomotive force of the field winding 8 (the amount of magnetic flux of the field winding 8 depending on the magnitude of the field power) is larger than the amount of magnetic flux of the permanent magnet row 6. Of the above-described non-excited state magnet magnetic flux, the magnetic flux of the permanent magnet array 6 from the yoke 51 of the second rotor core 5 through the magnetic ring 7 to the yoke 41 of the first rotor core 4 is induced by the magnetic flux of the field winding 8. Thus, the direction from the yoke 51 of the second rotor core 5 to the magnetic ring 7 and the yoke 41 of the first rotor core 4 is the same as the magnetic flux of the field winding 8, that is, the yoke 51 of the second rotor core 5, the second Magnetic flux flowing to the salient pole portion 52 of the rotor core 5, the magnetic gap, the stator teeth 12, the stator core 11, the stator teeth 12, the magnetic gap, the salient pole portion 42 of the first rotor core 4, and the yoke 41 of the first rotor core 4. The following will be referred to) and "excited state magnet flux". The magnetized magnetic flux is excited from the yoke 41 of the first rotor core 4 to the yoke facing surface 61a (S pole) of the first permanent magnet 61, the frame facing surface 61b (N pole) of the first permanent magnet 61, and the second permanent magnet. It flows to the frame facing surface 62b (S pole) 62 and the yoke facing surface 62a (N pole) of the second permanent magnet 62.

そして、本実施形態に係る回転機Xにおいて、このような励磁状態磁石磁束が、界磁巻線8の磁束とともにステータ巻線13に鎖交することによって、誘起電圧を発生させてロータ2を回転させることができる。さらに、本実施形態に係る回転機Xは、要求される回転数(出力)やトルクに応じて界磁巻線8に流す電流量を調節することで、ステータ巻線13に鎖交する磁束量(永久磁石列6の磁束と界磁巻線8の磁束の総和である磁束量)を増減することができる。   Then, in the rotating machine X according to the present embodiment, such an excited state magnetic flux is linked to the stator winding 13 together with the magnetic flux of the field winding 8 to generate an induced voltage to rotate the rotor 2. Can be made. Furthermore, the rotating machine X according to the present embodiment adjusts the amount of current flowing through the field winding 8 according to the required number of rotations (output) and torque, so that the amount of magnetic flux linked to the stator winding 13 is increased. (The amount of magnetic flux that is the sum of the magnetic flux of the permanent magnet array 6 and the magnetic flux of the field winding 8) can be increased or decreased.

したがって、このような回転機Xを電気自動車やハイブリッド車の駆動モータとして適用した場合、回転機Xの回転数に対する誘起電圧、界磁電力、ステータ電力の特性を示す図19からも把握できるように、始動時を含む低速域では、ステータ1のコイル(ステータ巻線13)に通電するとともに、界磁巻線8に所定方向の電流を流して非励磁状態から界磁巻線励磁状態に切り替えることで励磁されたロータ2が回転駆動する。なお、図19では、トルクを相対的に細い実線で示し、出力を相対的に太い実線で示し、誘起電圧を点線で示し、界磁電力を2点鎖線で示し、ステータ電力を1点鎖線で示している。   Therefore, when such a rotating machine X is applied as a drive motor for an electric vehicle or a hybrid vehicle, it can be understood from FIG. 19 that shows characteristics of induced voltage, field power, and stator power with respect to the rotational speed of the rotating machine X. In the low speed range including the start time, the coil of the stator 1 (stator winding 13) is energized, and a current in a predetermined direction is supplied to the field winding 8 to switch from the non-excited state to the field winding excited state. The rotor 2 excited in step 1 is rotated. In FIG. 19, the torque is indicated by a relatively thin solid line, the output is indicated by a relatively thick solid line, the induced voltage is indicated by a dotted line, the field power is indicated by a two-dot chain line, and the stator power is indicated by a one-dot chain line. Show.

本実施形態に係る回転機Xは、大トルクが要求される低速域において、界磁巻線8に流す電流量を上げる(界磁電力を大きくする)ことによって、その界磁電力に応じた大きい界磁巻線8の磁束と、この界磁巻線8の磁束に誘導される永久磁石列6の磁束をステータ巻線13に鎖交させることができ、ステータ1巻線に鎖交する磁束量を増大させる(磁束密度を高める)ことができる。したがって、例えばステータ巻線13に流す電流を大きくすることに依らずとも、界磁巻線8に所定方向の電流を流す界磁制御を行うことで大トルクを得ることができ、界磁制御を行わない場合に比べて誘起電圧を高くすることができる。図19には、比較対象として界磁制御を行わない場合の誘起電圧を実際の誘起電圧を示す点線よりも細い点線で示している。   The rotating machine X according to the present embodiment increases the amount of current flowing through the field winding 8 (increases the field power) in a low speed range where a large torque is required, thereby increasing the magnitude according to the field power. The magnetic flux of the field winding 8 and the magnetic flux of the permanent magnet row 6 induced by the magnetic flux of the field winding 8 can be linked to the stator winding 13, and the amount of magnetic flux linked to the stator 1 winding Can be increased (the magnetic flux density can be increased). Therefore, for example, even when the current flowing through the stator winding 13 is not increased, a large torque can be obtained by performing field control for flowing current in a predetermined direction through the field winding 8, and when field control is not performed. Compared to the induced voltage, the induced voltage can be increased. In FIG. 19, the induced voltage when the field control is not performed as a comparison target is indicated by a dotted line thinner than the dotted line indicating the actual induced voltage.

また、本実施形態の回転機Xは、中速域では、界磁巻線励磁状態で運転しつつ、低速域運転時よりも界磁電力を少なくすることで誘起電圧を一定に保ち、トルクを必要としない領域に到達した時点で界磁電力をさらに少なくすることでステータ巻線13に鎖交する磁束量が低速域よりも減少し、ステータ1における磁束密度を抑えることができる。そして、本実施形態の回転機Xにおける回転数に対する鉄損、界磁巻線8の銅損、ステータ1の銅損の特性(損失特性)を示す図20に示すように、ステータ1の磁束密度を抑えることによって、鉄損を低減することができる。なお、図20では、トルクを相対的に細い実線で示し、出力を相対的に太い実線で示し、鉄損を点線で示し、ステータ銅損を相対的に細い1点鎖線で示し、界磁銅損(界磁巻線8の銅損)を2点鎖線で示し、総損を相対的に太い1点鎖線で示している。   In addition, the rotating machine X of the present embodiment operates in the field winding excitation state in the medium speed region, while maintaining the induced voltage constant by reducing the field power as compared with the low speed region operation, and the torque By reducing the field power further when reaching a region where it is not necessary, the amount of magnetic flux interlinked with the stator winding 13 is reduced from the low speed region, and the magnetic flux density in the stator 1 can be suppressed. And as shown in FIG. 20 which shows the characteristic (loss characteristic) of the iron loss with respect to the rotation speed in the rotary machine X of this embodiment, the copper loss of the field winding 8, and the copper loss of the stator 1, the magnetic flux density of the stator 1 By suppressing the iron loss, iron loss can be reduced. In FIG. 20, torque is indicated by a relatively thin solid line, output is indicated by a relatively thick solid line, iron loss is indicated by a dotted line, stator copper loss is indicated by a relatively thin one-dot chain line, field copper The loss (copper loss of the field winding 8) is indicated by a two-dot chain line, and the total loss is indicated by a relatively thick one-dot chain line.

また、本実施形態に係る回転機Xは、高速域では、図19に示すように、界磁電力をゼロに近付けることで、リラクタンストルクのみで回転させる。すなわち、界磁電力をゼロに近付けることによって、界磁巻線8の磁束量がゼロに近付き、ステータ巻線13に鎖交する磁束量が中速域よりも減少し、ステータ1における磁束密度をさらに抑えることができる。また、図20に示すように、界磁電力をゼロに近付けることで低速域や中速域と比較して界磁巻線8の銅損も減少するとともに、高速域では磁束密度の低減に伴って鉄損を低減できることから、本実施形態に係る回転機Xでは、高速回転領域で誘起電圧が低い(磁束密度が低い)ため、鉄損を低減することができる。   Further, as shown in FIG. 19, the rotating machine X according to the present embodiment is rotated only by the reluctance torque by bringing the field power close to zero as shown in FIG. That is, by bringing the field power close to zero, the amount of magnetic flux in the field winding 8 approaches zero, the amount of magnetic flux interlinked with the stator winding 13 is reduced from the middle speed range, and the magnetic flux density in the stator 1 is reduced. It can be further suppressed. In addition, as shown in FIG. 20, the field power is brought close to zero, so that the copper loss of the field winding 8 is reduced as compared with the low speed region and the medium speed region, and the magnetic flux density is reduced in the high speed region. Therefore, in the rotating machine X according to the present embodiment, the induced voltage is low (magnetic flux density is low) in the high-speed rotation region, so that the iron loss can be reduced.

このような各部材から構成した本実施形態に係る回転機Xは、界磁巻線非励磁状態において永久磁石列6の磁束がステータ巻線13に鎖交しないように構成しているため、この界磁巻線非励磁状態では誘起電圧が発生せず、安全な状態を確保することができ、制御機器(電源、インバータなど)が停止したときには自ずと誘起電圧が発生しない状態を確保することができ、制御機器の破損防止に役立つ。また、本実施形態の回転機Xでは、界磁巻線8に一方向の電流を流した場合に、磁気ギャップを介してステータ1とロータ2との間を流れる界磁巻線8の磁束に誘導されて永久磁石列6の磁束をステータ1に流すことができ、誘起電圧を発生させてロータ2を回転させることができ、要求される回転数(出力)やトルクに応じて界磁巻線8に流す電流量を調節することで、ステータ巻線13に鎖交する磁束量(永久磁石列6の磁束と界磁巻線8の磁束の総和である磁束量)を増減することができる。この際、永久磁石列6の界磁を弱める(永久磁石列6の磁束を打ち消す)弱め界磁は不要であるため、永久磁石列6を構成する永久磁石の減磁現象を防止することができるとともに、弱め界磁制御実行時に生じ得る界磁銅損の発生を防止・抑制することができ、弱め界磁制御と強め界磁制御を選択して行う態様と比較して、界磁巻線8に流す電流方向は一定方向のみであるため、界磁巻線8に流す電流方向を切り替える処理が不要であり、高速域において、弱め界磁制御であれば必要な「トルクに寄与しないステータ電力」が不要となり、ステータ銅損を低減させることができる。   The rotating machine X according to the present embodiment configured from such members is configured so that the magnetic flux of the permanent magnet row 6 does not interlink with the stator winding 13 in the field winding non-excited state. No induced voltage is generated in the field winding non-excited state, so that a safe state can be secured, and when the control device (power supply, inverter, etc.) is stopped, a state where no induced voltage is naturally generated can be secured. Helps prevent damage to control equipment. Further, in the rotating machine X of the present embodiment, when a current in one direction is passed through the field winding 8, the magnetic flux of the field winding 8 flowing between the stator 1 and the rotor 2 through the magnetic gap is changed. The induced magnetic flux of the permanent magnet array 6 can be induced to flow through the stator 1, the induced voltage can be generated to rotate the rotor 2, and the field windings according to the required rotation speed (output) and torque By adjusting the amount of current flowing through 8, the amount of magnetic flux linked to the stator winding 13 (the amount of magnetic flux that is the sum of the magnetic flux of the permanent magnet row 6 and the magnetic flux of the field winding 8) can be increased or decreased. At this time, since the field weakening that weakens the field of the permanent magnet row 6 (cancels the magnetic flux of the permanent magnet row 6) is unnecessary, the demagnetization phenomenon of the permanent magnets constituting the permanent magnet row 6 can be prevented. In addition, the occurrence of field copper loss that may occur when performing field weakening control can be prevented / suppressed, and the direction of the current flowing through the field winding 8 is constant as compared with a mode in which field weakening control and field strengthening control are selected. Since the direction is only the direction, there is no need to switch the direction of the current flowing through the field winding 8, and the "stator power that does not contribute to torque", which is necessary for field-weakening control in the high-speed range, is unnecessary, and the stator copper loss is reduced. Can be reduced.

さらに、本実施形態の回転機Xは、ステータ1に対してロータ2を回転可能に支持するロータ支持部材3であるフレーム3を磁性体にし、このフレーム3と、軸方向Aに並ぶ第1ロータコア4、磁性リング7及び第2ロータコア5の間に、永久磁石列6を回転軸Wの径方向Cに挟むように配置することで、永久磁石列6の磁束を短絡させており、ステータ1の一部を永久磁石の磁束が流れるバイパスとして機能させる構成と比較して短い磁路を実現することができるとともに、バイパス機能を発揮させるためにステータ1の所定領域を他の領域よりも抵抗を低くして磁束が流れ易くする特殊な構造にする処理も不要であり、構造の簡素化の点においても有利である。   Further, in the rotating machine X of the present embodiment, a frame 3 that is a rotor support member 3 that rotatably supports the rotor 2 with respect to the stator 1 is made a magnetic body, and the first rotor core aligned with the frame 3 in the axial direction A is used. 4, by arranging the permanent magnet row 6 between the magnetic ring 7 and the second rotor core 5 in the radial direction C of the rotation axis W, the magnetic flux of the permanent magnet row 6 is short-circuited. A short magnetic path can be realized as compared with a configuration in which a part functions as a bypass through which the magnetic flux of the permanent magnet flows, and a predetermined region of the stator 1 has a lower resistance than other regions in order to exhibit the bypass function. Thus, there is no need for a special structure for facilitating the flow of magnetic flux, which is advantageous in terms of simplification of the structure.

このように、本実施形態の回転機Xであれば、ロータ2を構成する第1ロータコア4及び第2ロータコア5の構造及び配置に加えて、一対の永久磁石の組み合わせ及び配置、さらには界磁巻線8及び磁性リング7の配置を上述の各条件に合致させることで、界磁巻線8の起磁力がゼロの場合にはステータ巻線13に鎖交しない永久磁石列6の磁束を、界磁巻線8に電流を流すことで界磁巻線8の磁束に重畳させて、ステータ巻線13に鎖交する磁束(界磁磁束)に変えることが可能であり、永久磁石の大幅な増量を回避しつつ、低速・高トルクの状態から高速・低トルクの状態に亘る広範な運転領域に対応する何れの回転領域でも高効率化を実現できる。   Thus, in the rotating machine X of the present embodiment, in addition to the structure and arrangement of the first rotor core 4 and the second rotor core 5 constituting the rotor 2, a combination and arrangement of a pair of permanent magnets, and further a field magnet By matching the arrangement of the winding 8 and the magnetic ring 7 with the above-mentioned conditions, the magnetic flux of the permanent magnet row 6 not interlinked with the stator winding 13 when the magnetomotive force of the field winding 8 is zero, By passing an electric current through the field winding 8, it can be superposed on the magnetic flux of the field winding 8 and changed to a magnetic flux (field magnetic flux) interlinked with the stator winding 13. While avoiding the increase, high efficiency can be realized in any rotation region corresponding to a wide range of operation from the low speed / high torque state to the high speed / low torque state.

なお、本発明は上述した各実施形態に限定されるものではない。例えば、上述した各実施形態の回転機を、電気自動車やハイブリッド車等の車両用駆動モータ以外の用途、例示すれば、或いはハイブリッド車や電気自動車などに搭載されるモータの負荷試験を行う試験装置の負荷装置や、VSCF(Variable Speed Constant Frequencyの略で可変速・定周波定電圧電源装置)、風力発電機、大型発電機、スタータジェネレータ(航空機)或いは建設機械向け旋回用電動機等、速度や出力変動が激しい各種負荷装置、発電機や電動機として用いることができる。   The present invention is not limited to the above-described embodiments. For example, the rotating machine of each embodiment described above is used for applications other than vehicle drive motors such as electric vehicles and hybrid vehicles, for example, or a test apparatus for performing a load test on a motor mounted on a hybrid vehicle or electric vehicle. Speed and output of load devices, VSCF (variable speed constant frequency power supply device for short), wind power generators, large generators, starter generators (aircraft), or electric motors for construction machinery It can be used as various load devices, generators and electric motors that vary greatly.

また、各ロータコアは、磁性を有する板状部材を積層して形成した積層体であってもよいし、全体として1つのブロックである塊状体であってもよい。各ロータコアの突極部の数や回転軸の周方向に隣り合う突極部同士のピッチは適宜変更することができる。   Each rotor core may be a laminated body formed by laminating magnetic plate-like members, or may be a lump that is one block as a whole. The number of salient pole portions of each rotor core and the pitch between salient pole portions adjacent to each other in the circumferential direction of the rotating shaft can be appropriately changed.

磁性リングは、磁束が流れ易いように全体として1つの塊状体であることが好ましいが、磁束の流れを阻害しない条件下であれば積層体にしてもよい。   The magnetic ring is preferably a single block as a whole so that the magnetic flux can easily flow. However, the magnetic ring may be a laminated body as long as it does not hinder the flow of the magnetic flux.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…ステータ
12…ステータ極(ステータティース)
13…ステータ巻線
2…ロータ
3…ロータ支持部材(磁性シャフト、磁性フレーム)
4…第1ロータコア
5…第2ロータコア
41,51…ヨーク
42,52…突極部
6…永久磁石列
61…第1永久磁石
62…第2永久磁石
61a,62a…ヨーク対向面
61b,62b…ロータ支持部材対向面(シャフト対向面、フレーム対向面)
7…磁性リング
8…界磁巻線
X…回転機
1 ... Stator 12 ... Stator pole (stator teeth)
13 ... stator winding 2 ... rotor 3 ... rotor support member (magnetic shaft, magnetic frame)
4 ... 1st rotor core 5 ... 2nd rotor core 41, 51 ... Yoke 42, 52 ... Salient pole part 6 ... Permanent magnet row | line | column 61 ... 1st permanent magnet 62 ... 2nd permanent magnet 61a, 62a ... Yoke opposing surface 61b, 62b ... Rotor support member facing surface (shaft facing surface, frame facing surface)
7 ... Magnetic ring 8 ... Field winding X ... Rotating machine

Claims (3)

ステータ極及びステータ巻線を有するステータと、前記ステータと同軸上に配置され且つ前記ステータとの間に磁気ギャップを形成するロータと、前記ロータを前記ステータに対して回転可能に支持するロータ支持部材とを備えた回転機であって、
前記ロータは、
リング状のヨーク及び前記ヨークから前記ステータに向かって突出し且つ周方向に等ピッチで複数設けた突極部をそれぞれ有する磁性体であり且つ相互に周方向に1極ピッチ分ずらした状態で回転軸の軸方向に離間して配置した第1ロータコア及び第2ロータコアと、
前記第1ロータコアの前記ヨークと前記ロータ支持部材との間に配置され且つ前記ヨークに対向するヨーク対向面と前記ロータ支持部材に対向するロータ支持部材対向面に相対応する異なった極性を持たせた第1永久磁石、及び前記第2ロータコアの前記ヨークと前記ロータ支持部材との間に配置され且つ前記ヨーク対向面と前記ロータ支持部材対向面の各極性が前記第1永久磁石の極性と異なる第2永久磁石を回転軸の軸方向に沿って並べた永久磁石列と、
前記第1ロータコアと前記第2ロータコアの間であって且つ前記第1永久磁石及び前記第2永久磁石に跨がる位置に配置した磁性リングと、
前記第1ロータコアと前記第2ロータコアの間であって且つ前記磁性リングのうち前記ステータ側の周面に巻回した界磁巻線とを備えたものであり、
前記界磁巻線に電流を流していない状態において前記各永久磁石、前記各ロータコア、前記磁性リング、及び磁性体で構成した前記ロータ支持部材を通って短絡する前記永久磁石列の磁束を、前記界磁巻線に所定方向の電流を流すことで生じる界磁巻線の磁束とともに前記ステータ巻線に鎖交する磁束に変化可能に構成していることを特徴とする回転機。
A stator having a stator pole and a stator winding; a rotor disposed coaxially with the stator and forming a magnetic gap with the stator; and a rotor support member that rotatably supports the rotor with respect to the stator A rotating machine equipped with
The rotor is
A magnetic material having a ring-shaped yoke and a plurality of salient pole portions projecting from the yoke toward the stator and provided at equal pitches in the circumferential direction, and rotating shafts in a state shifted from each other by one pole pitch in the circumferential direction. A first rotor core and a second rotor core that are spaced apart in the axial direction of
The yoke opposing surface disposed between the yoke of the first rotor core and the rotor supporting member and opposing the yoke and the rotor supporting member opposing surface opposing the rotor supporting member have different polarities. The first permanent magnet is disposed between the yoke of the second rotor core and the rotor support member, and the polarities of the yoke facing surface and the rotor support member facing surface are different from the polarities of the first permanent magnet. A permanent magnet row in which the second permanent magnets are arranged along the axial direction of the rotation axis;
A magnetic ring disposed between the first rotor core and the second rotor core and in a position straddling the first permanent magnet and the second permanent magnet;
A field winding between the first rotor core and the second rotor core and wound around the stator-side peripheral surface of the magnetic ring;
The magnetic flux of the permanent magnet row that is short-circuited through the rotor support member composed of the permanent magnets, the rotor cores, the magnetic rings, and a magnetic body in a state where no current is passed through the field windings, A rotating machine configured to be able to change to a magnetic flux interlinked with the stator winding together with a magnetic flux of a field winding generated by passing a current in a predetermined direction through the field winding.
前記ロータを前記ステータよりも回転軸の径方向内側に配置したインナー可動型である請求項1に記載の回転機。 The rotating machine according to claim 1, wherein the rotor is an inner movable type in which the rotor is disposed radially inward of the rotation shaft with respect to the stator. 前記ロータを前記ステータよりも回転軸の径方向外側に配置したアウター可動型である請求項1に記載の回転機。

2. The rotating machine according to claim 1, wherein the rotating machine is an outer movable type in which the rotor is disposed radially outside the rotating shaft with respect to the stator.

JP2012168261A 2012-07-30 2012-07-30 Rotating machine Active JP6035957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168261A JP6035957B2 (en) 2012-07-30 2012-07-30 Rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168261A JP6035957B2 (en) 2012-07-30 2012-07-30 Rotating machine

Publications (2)

Publication Number Publication Date
JP2014027834A JP2014027834A (en) 2014-02-06
JP6035957B2 true JP6035957B2 (en) 2016-11-30

Family

ID=50200976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168261A Active JP6035957B2 (en) 2012-07-30 2012-07-30 Rotating machine

Country Status (1)

Country Link
JP (1) JP6035957B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941763B1 (en) * 2017-02-24 2018-04-10 Chad Ashley Vandenberg Permanent magnet offset systems and methods
JP7461018B2 (en) 2019-02-26 2024-04-03 株式会社アーミス Permanent magnet motor
CN111509668B (en) * 2020-04-23 2022-06-28 南京南瑞继保电气有限公司 Phase modulator loss-of-field protection method and device and electronic equipment
CN117239969B (en) * 2023-11-15 2024-03-15 湖南大学 Outer rotor variable magnetic flux alternating pole permanent magnet synchronous motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59604144D1 (en) * 1995-02-21 2000-02-17 Siemens Ag Hybrid excited electrical machine
JP3724416B2 (en) * 2001-11-27 2005-12-07 株式会社デンソー Axial division hybrid magnetic pole type brushless rotating electrical machine
US7064466B2 (en) * 2001-11-27 2006-06-20 Denso Corporation Brushless rotary electric machine having tandem rotary cores
JP4556408B2 (en) * 2003-09-19 2010-10-06 いすゞ自動車株式会社 Claw pole type rotating machine
FR2931318B1 (en) * 2008-05-16 2010-04-23 Valeo Equip Electr Moteur ROTATING ELECTRIC MACHINE WITH MAGNETS INCORPORATED IN THE ROTOR

Also Published As

Publication number Publication date
JP2014027834A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5299679B2 (en) Motor generator
JP5477161B2 (en) Double stator type motor
JP4369384B2 (en) Rotating electric machine
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
US9444317B2 (en) Electric rotating machine
JP6035957B2 (en) Rotating machine
JP2012165540A (en) Rotary electric machine
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP6083307B2 (en) Rotating machine
US10424981B2 (en) Rotating electric machine with magnetic gaps
JP6191375B2 (en) Motor generator and engine unit including the same
WO2012081392A1 (en) Rotary electrical machine
JP6201405B2 (en) Rotating electric machine
JP6638615B2 (en) Synchronous rotating electric machine
JP2002191157A (en) Synchronous rotating electric machine with combined use of permanent magnet
JP5612632B2 (en) Permanent magnet rotating electric machine
JP6658707B2 (en) Rotating electric machine
JP5114135B2 (en) Axial gap type motor
JP6074980B2 (en) Rotating machine
JP6079395B2 (en) Rotating machine
JP6089606B2 (en) Rotating machine
JP6763312B2 (en) Rotating electric machine
JP6984164B2 (en) Rotating machine
WO2021182088A1 (en) Permanent magnet synchronous motor
JP6984165B2 (en) Rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6035957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250