WO2018188419A1 - 一种基于石墨烯的多孔碳网络的制备方法 - Google Patents

一种基于石墨烯的多孔碳网络的制备方法 Download PDF

Info

Publication number
WO2018188419A1
WO2018188419A1 PCT/CN2018/077170 CN2018077170W WO2018188419A1 WO 2018188419 A1 WO2018188419 A1 WO 2018188419A1 CN 2018077170 W CN2018077170 W CN 2018077170W WO 2018188419 A1 WO2018188419 A1 WO 2018188419A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
graphene
porous carbon
carbon network
mold
Prior art date
Application number
PCT/CN2018/077170
Other languages
English (en)
French (fr)
Inventor
高超
陈琛
韩燚
Original Assignee
杭州高烯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州高烯科技有限公司 filed Critical 杭州高烯科技有限公司
Publication of WO2018188419A1 publication Critical patent/WO2018188419A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/0675Vegetable refuse; Cellulosic materials, e.g. wood chips, cork, peat, paper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention belongs to the field of graphene materials and relates to a preparation method of a graphene-based porous carbon network.
  • Activated carbon is a material with high carbon content and relatively developed voids, such as coal, nutshell, wood, bone, petroleum residue, etc., which is first carbonized and then subjected to high temperature activation treatment at 800 to 1500 degrees to form a developed micro.
  • the pores and mesopores make their specific surface area and adsorption capacity meet certain requirements.
  • Activated carbon is divided into hundreds of kinds of decolorizing activated carbon, water-purifying activated carbon, air-purifying activated carbon, heavy metal recycling activated carbon, etc. It is widely used and is the most effective adsorbing material that can be achieved at the current scientific level.
  • graphene As a new type of two-dimensional carbon material, graphene has attracted more and more attention from the world. Due to its superior mechanical properties, electrical properties, thermal properties and unique electromagnetic properties, graphene has shown broad application prospects in many fields and has gradually moved to practical applications. In particular, the ultra-high specific surface area of graphene (2600 m 2 /g) has great application potential in the field of adsorbent materials. However, at present, graphene materials are faced with problems such as low strength and difficulty in maintaining pore structure. Therefore, combining graphene with other materials can achieve an effect of one plus one greater than one.
  • Patent 201310590113.7 "Preparation method of graphene modified activated carbon” adopts simple mixing to match graphene with traditional wood or straw activated carbon, and obtains graphene-modified activated carbon after activation, which has high specific surface area and can be used in capacitor field. . However, it is more promising to simply mix and match the high specific surface area of graphene itself and explore new composite methods.
  • the object of the present invention is to provide a method for preparing a porous carbon network based on graphene in view of the deficiencies of the prior art.
  • a method for preparing a graphene-based porous carbon network comprising the following steps:
  • the atomization drying temperature described in the step (1) is 100 to 200 °C.
  • potassium hydroxide is further added to the graphene oxide dispersion described in the step (1), and the mass ratio of potassium hydroxide to graphene oxide is 0.1 to 1:1.
  • the biomass carbon source described in the step (2) is one or more of straw, coconut shell, sucrose residue, wood chips, walnut shell, apricot shell, and hay, and the activator is potassium hydroxide or sodium hydroxide.
  • the activator is potassium hydroxide or sodium hydroxide.
  • the carbonization temperature in the step (3) is 300 to 500 ° C
  • the carbonization time is 1 to 6 hours
  • the activation temperature is 500 to 1000 ° C
  • the activation time is 1 to 4 hours.
  • the invention has the beneficial effects that the present invention firstly prepares the graphene oxide microspheres by the atomization drying method, and then mixes with the biomass carbon source and the activator uniformly, and performs high temperature treatment together to obtain a porous carbon network.
  • the surface of the graphene oxide has a rich oxygen-containing functional group, and the group is rapidly removed under the heated condition to generate a gas, so that the graphene layer stack structure is opened to obtain a microporous structure.
  • the graphene oxide microspheres obtained by atomization drying rapidly expand like popcorn during heat treatment to produce a rich pore structure, and at the same time, the gas released by the biomass carbon source during carbonization can further expand the graphene sphere.
  • the activated carbon between the expanded graphene sphere and the sphere is squeezed such that a uniform layer of activated carbon is formed between the sphere and the sphere to form a carbon network.
  • the activator (potassium hydroxide) reacts with both activated carbon and graphene to create new pores.
  • the porous material obtained by the invention has high specific surface area, high porosity and low density, and has good stability, and can be used in the fields of air purification, water treatment, catalytic carrier, electrochemical material and the like.
  • a method of preparing a graphene-based porous carbon network includes the following steps:
  • the atomization drying temperature is 100 to 200 ° C; and the potassium oxide oxide dispersion is further added with potassium hydroxide.
  • the mass ratio of potassium hydroxide to graphene oxide is 0.1 to 1:1;
  • the graphene oxide microspheres obtained in the step (1) are mixed with the biomass carbon source and the activator, and the mass ratio is 100:10 ⁇ 200: 100 ⁇ 300, grinding to 300 ⁇ 400 mesh, transferred to the mold, the filling rate is 90 ⁇ 100%;
  • the biomass carbon source is straw, coconut shell, sucrose residue, wood chips, walnut shell, apricot shell, One or more kinds of dry grass, the activator is one of potassium hydroxide and sodium hydroxide;
  • the carbonization temperature The temperature is from 300 to 500 ° C, the carbonization time is from 1 to 6 hours, the activation temperature is from 500 to 1000
  • microspheres described in the present invention are common technical terms in the art and are not intended to define the diameter.
  • the diameter of the microspheres is not the object of the present invention.
  • the diameter of the microspheres prepared by the method of the present invention varies from 100 nm to 50 um.
  • the graphene oxide microspheres obtained in the step (1) are mixed with a coconut shell and potassium hydroxide at a mass ratio of 100:10:100, ground to 300-400 mesh, and transferred to a mold at a filling ratio of 90. %;
  • a graphene-based porous carbon network is obtained, which is a black fluffy block.
  • the density was 0.17 g/cm 3
  • the specific surface area was 1840 m 2 /g
  • the pore volume was 1.75 cm 3 /g.
  • the graphene oxide microspheres obtained in the step (1) are mixed with a coconut shell and potassium hydroxide at a mass ratio of 100:10:100, ground to 300-400 mesh, and transferred to a mold at a filling ratio of 90. %;
  • a graphene-based porous carbon network is obtained, which is a black fluffy block.
  • the density was 0.14 g/cm 3
  • the specific surface area was 2030 m 2 /g
  • the pore volume was 2.28 cm 3 /g.
  • the graphene oxide microspheres obtained in the step (1) are mixed with a coconut shell and potassium hydroxide at a mass ratio of 100:120:200, ground to 300-400 mesh, and transferred to a mold at a filling ratio of 90. %;
  • the mixture was carbonized at 300 ° C for 6 h, activated at 800 ° C for 2 h, and washed to obtain a porous carbon network.
  • a graphene-based porous carbon network is obtained, which is a black fluffy block.
  • the density was 0.37 g/cm 3
  • the specific surface area was 1510 m 2 /g
  • the pore volume was 1.24 cm 3 /g.
  • the graphene oxide microspheres obtained in the step (1) are mixed with a coconut shell and potassium hydroxide at a mass ratio of 100:200:300, ground to 300-400 mesh, and transferred to a mold at a filling ratio of 90. %;
  • a graphene-based porous carbon network is obtained, which is a black fluffy block.
  • the density was 0.46 g/cm 3
  • the specific surface area was 1270 m 2 /g
  • the pore volume was 0.94 cm 3 /g.
  • the graphene oxide microspheres obtained in the step (1) are mixed with straw and potassium hydroxide at a mass ratio of 100:60:150, ground to 300-400 mesh, transferred to a mold, and the filling ratio is 100%. ;
  • a graphene-based porous carbon network is obtained, which is a black fluffy block.
  • the density was 0.22 g/cm 3
  • the specific surface area was 1360 m 2 /g
  • the pore volume was 0.97 cm 3 /g.
  • the graphene oxide microspheres obtained in the step (1) are mixed with wood chips and potassium hydroxide at a mass ratio of 100:60:150, ground to 300-400 mesh, and transferred to a mold at a filling rate of 95%. ;
  • a graphene-based porous carbon network is obtained, which is a black fluffy block.
  • the density was 0.19 g/cm 3
  • the specific surface area was 1480 m 2 /g
  • the pore volume was 1.02 cm 3 /g.
  • the graphene oxide microspheres obtained in the step (1) are mixed with a coconut shell and potassium hydroxide at a mass ratio of 100:60:110, ground to 300-400 mesh, and transferred to a mold at a filling ratio of 95. %;
  • the mixture was carbonized at 300 ° C for 2 h, activated at 1000 ° C for 2 h, and washed to obtain a porous carbon network.
  • a graphene-based porous carbon network is obtained, which is a black fluffy block.
  • the density was 0.16 g/cm 3
  • the specific surface area was 1870 m 2 /g
  • the pore volume was 2.17 cm 3 /g.

Abstract

一种基于石墨烯的多孔碳网络的制备方法。该方法包括:首先用单层氧化石墨烯分散液通过雾化干燥法制备得到氧化石墨烯微球,该氧化石墨烯微球再与生物质碳源和活化剂混合均匀,在限定空间内经高温处理后得到。该基于石墨烯的多孔碳网络具有丰富的孔结构,比表面积和孔体积很大,密度低,可被用于空气净化、水处理、吸波材料、电化学材料等领域。

Description

一种基于石墨烯的多孔碳网络的制备方法 技术领域
本发明属于石墨烯材料领域,涉及一种基于石墨烯的多孔碳网络的制备方法。
背景技术
随着工业社会的不断发展,空气污染成为影响人类生活的重要威胁之一,例如装修后室内涂层和家具会散发的甲醛,具有高致癌性,以及近年来受到广泛关注的PM2.5,对人们的呼吸道和肺功能造成难以恢复的影响。因此,研究高效吸附材料是一大热点。活性炭是以含炭量较高和空隙比较发达的物质,如煤、果壳、木材、骨、石油残渣等为原料,先经过炭化,再经过800到1500度的高温活化处理,形成发达的微孔和中孔,使其比表面积及吸附能力达到一定的要求。普通活性炭的生产一般分为两个过程,第一:炭化,第二:活化。活性炭分为脱色活性炭、水净化活性炭、空气净化活性炭、重金属回收活性炭等几百个种类,用途及其广泛,是目前科学水平所能达到的最有效的吸附材料。
作为一种新型的二维碳材料,石墨烯越来越受到世人的关注。由于其出众的力学性能,电学性能,热学性能和独特的电磁学性能,石墨烯在许多领域显示出广阔的应用前景,并已逐步走向实际应用。特别是石墨烯超高的比表面积(2600m 2/g)在吸附材料领域具有很大的应用潜力。但是目前石墨烯材料面临强度不高,孔结构难保持等问题,因此将石墨烯与其他材料相结合可实现一加一大于一的效应。专利201310590113.7《一种石墨烯改性活性炭的制备方法》中采用简单混合将石墨烯和传统木质或者秸秆活性炭相匹配,经活化后得到石墨烯改性的活性炭,具有高比表面积,可用于电容器领域。但是简单地混合难以利用石墨烯本身高比表面积的性能,探索新的复合方法更加具有前景。
发明内容
本发明的目的是针对现有的技术不足,提供一种基于石墨烯的多孔碳网络的制备方法。
本发明的目的是通过以下技术方案实现的:一种基于石墨烯的多孔碳网络的制备方法,包括以下步骤:
(1)通过雾化干燥法将单层氧化石墨烯分散液干燥,得到氧化石墨烯微球;
(2)将步骤(1)得到的氧化石墨烯微球,与生物质碳源、活化剂混合,质量比为100:10~200:100~300,研磨至300~400目,转移到模具中,填充率为90~100%;
(3)将模具密封后,对其中的混合物进行炭化、活化、洗涤得到多孔碳网络。
进一步地,步骤(1)中所述的雾化干燥温度为100~200℃。
进一步地,步骤(1)中所述的氧化石墨烯分散液中还加入氢氧化钾,氢氧化钾和氧化石墨烯的质量比为0.1~1:1。
进一步地,步骤(2)中所述的生物质碳源为秸秆、椰子壳、蔗糖渣、木屑、核桃壳、杏壳、枯草的一种或多种,活化剂为氢氧化钾、氢氧化钠的一种。
进一步地,步骤(3)中所述的炭化温度为300~500℃,炭化时间为1~6h,活化温度为500~1000℃,活化时间为1~4h。
本发明的有益效果在于:本发明首先通过雾化干燥法制备得到氧化石墨烯微球,再与生物质碳源、活化剂混合均匀,一起进行高温处理得到多孔碳网络。氧化石墨烯表面具有丰富的含氧官能团,在受热条件下基团快速脱除,产生气体,使石墨烯层层堆叠结构撑开得到微孔结构。通过雾化干燥得到的氧化石墨烯微球在热处理时会像爆米花一样急剧膨胀,产生丰富的孔结构,同时,生物质碳源在碳化时放出的气体能进一步膨胀石墨烯球。膨胀的石墨烯球与球之间的活性碳受到挤压,使得球与球之间形成均匀的活性炭层,形成碳网络。活化剂(氢氧化钾)同时与活性炭和石墨烯反应,产生新的孔洞。本发明所得多孔材料具有高比表面积、高孔隙率和低密度,稳定性好,可用于空气净化、水处理、催化载体、电化学材料等领域。
具体实施方式
制备基于石墨烯的多孔碳网络的方法包括如下步骤:
(1)通过雾化干燥法将单层氧化石墨烯分散液干燥,得到氧化石墨烯微球;雾化干燥温度为100~200℃;所述的氧化石墨烯分散液中还加入氢氧化钾,氢氧化钾和氧化石墨烯的质量比为0.1~1:1;(2)将步骤(1)得到的氧化石墨烯微球,与生物质碳源、活化剂混合,质量比为100:10~200:100~300,研磨至300~400目,转移到模具中,填充率为90~100%;所述的生物质碳源为秸秆、椰子壳、蔗糖渣、木屑、核桃壳、杏壳、枯草的一种或多种,活化剂为氢氧化钾、氢氧化钠的一种; (3)将模具密封后,对其中的混合物进行炭化、活化、洗涤得到多孔碳网络;所述的炭化温度为300~500℃,炭化时间为1~6h,活化温度为500~1000℃,活化时间为1~4h。
下面通过实施例对本发明进行具体描述,本实施例只用于对本发明做进一步的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据上述发明的内容做出一些非本质的改变和调整均属本发明的保护范围。
本发明中所述的微球为本领域的常用技术术语,并不是对直径的限定,微球直径不是本发明研究的目的。此外,本发明所述方法制备得到的微球直径在100nm~50um不等。
实施例1:
(1)通过雾化干燥法将单层氧化石墨烯和氢氧化钾的混合分散液干燥,其中,氢氧化钾和氧化石墨烯的质量比为0.1:1,得到氧化石墨烯微球,雾化温度为130℃;
(2)将步骤(1)得到的氧化石墨烯微球,与椰子壳、氢氧化钾混合,质量比为100:10:100,研磨至300~400目,转移到模具中,填充率为90%;
(3)将模具密封后,对其中的混合物进行500℃炭化2h,800℃活化2h,洗涤得到多孔碳网络。
经以上步骤,得到基于石墨烯的多孔碳网络,为黑色蓬松块体。密度为0.17g/cm 3,比表面积为1840m 2/g,孔体积为1.75cm 3/g。
实施例2:
(1)通过雾化干燥法将单层氧化石墨烯和氢氧化钾的混合分散液干燥,其中,氢氧化钾和氧化石墨烯的质量比为1:1,得到氧化石墨烯微球,雾化温度为130℃;
(2)将步骤(1)得到的氧化石墨烯微球,与椰子壳、氢氧化钾混合,质量比为100:10:100,研磨至300~400目,转移到模具中,填充率为90%;
(3)将模具密封后,对其中的混合物进行500℃炭化2h,800℃活化2h,洗涤得到多孔碳网络。
经以上步骤,得到基于石墨烯的多孔碳网络,为黑色蓬松块体。密度为0.14g/cm 3,比表面积为2030m 2/g,孔体积为2.28cm 3/g。
实施例3:
(1)通过雾化干燥法将单层氧化石墨烯分散液干燥,得到氧化石墨烯微球, 雾化温度为130℃;
(2)将步骤(1)得到的氧化石墨烯微球,与椰子壳、氢氧化钾混合,质量比为100:120:200,研磨至300~400目,转移到模具中,填充率为90%;
(3)将模具密封后,对其中的混合物进行300℃炭化6h,800℃活化2h,洗涤得到多孔碳网络。
经以上步骤,得到基于石墨烯的多孔碳网络,为黑色蓬松块体。密度为0.37g/cm 3,比表面积为1510m 2/g,孔体积为1.24cm 3/g。
实施例4:
(1)通过雾化干燥法将单层氧化石墨烯分散液干燥,得到氧化石墨烯微球,雾化温度为130℃;
(2)将步骤(1)得到的氧化石墨烯微球,与椰子壳、氢氧化钾混合,质量比为100:200:300,研磨至300~400目,转移到模具中,填充率为90%;
(3)将模具密封后,对其中的混合物进行500℃炭化1h,500℃活化4h,洗涤得到多孔碳网络。
经以上步骤,得到基于石墨烯的多孔碳网络,为黑色蓬松块体。密度为0.46g/cm 3,比表面积为1270m 2/g,孔体积为0.94cm 3/g。
实施例5:
(1)通过雾化干燥法将单层氧化石墨烯分散液干燥,得到氧化石墨烯微球,雾化温度为200℃;
(2)将步骤(1)得到的氧化石墨烯微球,与秸秆、氢氧化钾混合,质量比为100:60:150,研磨至300~400目,转移到模具中,填充率为100%;
(3)将模具密封后,对其中的混合物进行500℃炭化2h,1000℃活化1h,洗涤得到多孔碳网络。
经以上步骤,得到基于石墨烯的多孔碳网络,为黑色蓬松块体。密度为0.22g/cm 3,比表面积为1360m 2/g,孔体积为0.97cm 3/g。
实施例6:
(1)通过雾化干燥法将单层氧化石墨烯分散液干燥,得到氧化石墨烯微球,雾化温度为100℃;
(2)将步骤(1)得到的氧化石墨烯微球,与木屑、氢氧化钾混合,质量比为100:60:150,研磨至300~400目,转移到模具中,填充率为95%;
(3)将模具密封后,对其中的混合物进行300℃炭化2h,1000℃活化2h, 洗涤得到多孔碳网络。
经以上步骤,得到基于石墨烯的多孔碳网络,为黑色蓬松块体。密度为0.19g/cm 3,比表面积为1480m 2/g,孔体积为1.02cm 3/g。
实施例7:
(1)通过雾化干燥法将单层氧化石墨烯分散液干燥,将单层氧化石墨烯和氢氧化钾的混合分散液干燥,其中,氢氧化钾和氧化石墨烯的质量比为1:1,得到氧化石墨烯微球,雾化温度为100℃;
(2)将步骤(1)得到的氧化石墨烯微球,与椰子壳、氢氧化钾混合,质量比为100:60:110,研磨至300~400目,转移到模具中,填充率为95%;
(3)将模具密封后,对其中的混合物进行300℃炭化2h,1000℃活化2h,洗涤得到多孔碳网络。
经以上步骤,得到基于石墨烯的多孔碳网络,为黑色蓬松块体。密度为0.16g/cm 3,比表面积为1870m 2/g,孔体积为2.17cm 3/g。

Claims (5)

  1. 一种基于石墨烯的多孔碳网络的制备方法,其特征在于,包括以下步骤:
    (1)通过雾化干燥法将单层氧化石墨烯分散液干燥,得到氧化石墨烯微球;
    (2)将步骤(1)得到的氧化石墨烯微球,与生物质碳源、活化剂混合,质量比为100:10~200:100~300,研磨至300~400目,转移到模具中,填充率为90~100%;
    (3)将模具密封后,对其中的混合物进行炭化、活化、洗涤得到多孔碳网络。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中所述的雾化干燥温度为100~200℃。
  3. 根据权利要求1所述的方法,其特征在于,步骤(1)中所述的氧化石墨烯分散液中还加入氢氧化钾,氢氧化钾和氧化石墨烯的质量比为0.1~1:1。
  4. 根据权利要求1所述的方法,其特征在于,步骤(2)中所述的生物质碳源为秸秆、椰子壳、蔗糖渣、木屑、核桃壳、杏壳、枯草的一种或多种,活化剂为氢氧化钾、氢氧化钠的一种。
  5. 根据权利要求1所述的方法,其特征在于,步骤(3)中所述的炭化温度为300~500℃,炭化时间为1~6h,活化温度为500~1000℃,活化时间为1~4h。
PCT/CN2018/077170 2017-04-14 2018-02-26 一种基于石墨烯的多孔碳网络的制备方法 WO2018188419A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710244352.5A CN106986647B (zh) 2017-04-14 2017-04-14 一种基于石墨烯的多孔碳网络的制备方法
CN201710244352.5 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018188419A1 true WO2018188419A1 (zh) 2018-10-18

Family

ID=59415017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077170 WO2018188419A1 (zh) 2017-04-14 2018-02-26 一种基于石墨烯的多孔碳网络的制备方法

Country Status (2)

Country Link
CN (1) CN106986647B (zh)
WO (1) WO2018188419A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950520A (zh) * 2019-03-15 2019-06-28 深圳市本征方程石墨烯技术股份有限公司 一种含氮石墨烯包覆生物质碳负极材料及其制备方法
CN113023723A (zh) * 2021-02-04 2021-06-25 南京航空航天大学 一种利用柚子皮制得的电磁吸波材料及其制备方法
US11814292B2 (en) 2021-07-23 2023-11-14 Nanotech Energy, Inc. Methods of graphene production and compositions thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106986647B (zh) * 2017-04-14 2019-09-06 杭州高烯科技有限公司 一种基于石墨烯的多孔碳网络的制备方法
CN108031436A (zh) * 2017-12-22 2018-05-15 湖南工业大学 一种氧化铝复合活性炭材料及其制备方法和应用
CN108383106A (zh) * 2018-01-16 2018-08-10 湖南国盛石墨科技有限公司 一种石墨烯/活性炭微球的制备方法
CN108557799B (zh) * 2018-06-04 2020-10-09 高彪峰 一种高纯高电导率类石墨烯分级孔多孔炭及其制备方法
CN108795020A (zh) * 2018-06-30 2018-11-13 杭州高烯科技有限公司 一种石墨烯-发泡聚氨酯复合材料及其制备方法
CN108865061A (zh) * 2018-07-14 2018-11-23 合肥艾飞新材料有限公司 一种空心石墨烯微球及其制备方法
CN108975791B (zh) * 2018-09-03 2020-11-06 洛阳炼化奥油化工股份有限公司 一种抗冻性能优异的再生型加气混凝土及其制备方法
CN109455715B (zh) * 2018-11-14 2022-07-05 中山火炬职业技术学院 一种石墨烯改性的憎水活性炭的制备方法
CN114408922B (zh) * 2021-12-30 2023-08-25 海南大学 一种利用封装辅助化学活化制备活性炭的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140183415A1 (en) * 2012-12-31 2014-07-03 Cheil Industries Inc. Graphene-Based Composite and Method of Preparing the Same
CN106241778A (zh) * 2016-07-15 2016-12-21 浙江大学 一种高比表面积多褶皱中空石墨烯微球及其制备方法
CN106486295A (zh) * 2016-10-29 2017-03-08 大英聚能科技发展有限公司 高比电容的石墨烯/高表面活性炭复合材料的制备方法
CN106532026A (zh) * 2016-12-19 2017-03-22 中国科学院山西煤炭化学研究所 一种硫‑活性炭/石墨烯复合材料及其应用
CN106986647A (zh) * 2017-04-14 2017-07-28 杭州高烯科技有限公司 一种基于石墨烯的多孔碳网络的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253658B (zh) * 2013-05-13 2016-06-29 常州第六元素材料科技股份有限公司 一种高体积比电容石墨烯及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140183415A1 (en) * 2012-12-31 2014-07-03 Cheil Industries Inc. Graphene-Based Composite and Method of Preparing the Same
CN106241778A (zh) * 2016-07-15 2016-12-21 浙江大学 一种高比表面积多褶皱中空石墨烯微球及其制备方法
CN106486295A (zh) * 2016-10-29 2017-03-08 大英聚能科技发展有限公司 高比电容的石墨烯/高表面活性炭复合材料的制备方法
CN106532026A (zh) * 2016-12-19 2017-03-22 中国科学院山西煤炭化学研究所 一种硫‑活性炭/石墨烯复合材料及其应用
CN106986647A (zh) * 2017-04-14 2017-07-28 杭州高烯科技有限公司 一种基于石墨烯的多孔碳网络的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950520A (zh) * 2019-03-15 2019-06-28 深圳市本征方程石墨烯技术股份有限公司 一种含氮石墨烯包覆生物质碳负极材料及其制备方法
CN109950520B (zh) * 2019-03-15 2022-05-31 深圳市本征方程石墨烯技术股份有限公司 一种含氮石墨烯包覆生物质碳负极材料及其制备方法
CN113023723A (zh) * 2021-02-04 2021-06-25 南京航空航天大学 一种利用柚子皮制得的电磁吸波材料及其制备方法
CN113023723B (zh) * 2021-02-04 2023-12-01 南京航空航天大学 一种利用柚子皮制得的电磁吸波材料及其制备方法
US11814292B2 (en) 2021-07-23 2023-11-14 Nanotech Energy, Inc. Methods of graphene production and compositions thereof

Also Published As

Publication number Publication date
CN106986647A (zh) 2017-07-28
CN106986647B (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2018188419A1 (zh) 一种基于石墨烯的多孔碳网络的制备方法
CN109516458A (zh) 一种生物质基分级多孔碳及其制备方法
WO2021027100A1 (zh) 一种氮掺杂多孔炭材料及其制备方法与应用
CN104289179B (zh) 一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法
US20120083403A1 (en) Method for manufacturing photocatalyst multifunctional dust-free active carbon color ball
CN108217733B (zh) 一种碳-二氧化锰复合材料的制备方法
CN109081342A (zh) 一种海枣叶生物质多孔活性炭及其制备方法和应用
CN101961644B (zh) 一种氯化物-碳质骨架复合吸附剂及其制备方法
CN111099587B (zh) 一种高比表面积竹叶基炭材料的制备方法
CN102702566A (zh) 一种利用离子液体制备木质纤维素气凝胶的方法
CN109437202A (zh) 一种二维过渡族金属碳(氮)化物气凝胶及其制备方法和应用
CN101993056A (zh) 基于石墨烯的多孔宏观体碳材料及其制备方法
CN108773844A (zh) 一种微量钙添加催化活化制备煤基多孔碳材料的方法
CN103979533A (zh) 一种用于超级电容器的氮硫双掺杂活性炭的制备方法
CN103641111A (zh) 一种超级电容器用分级多孔石墨烯材料的制备方法
CN107081127A (zh) 一种石墨烯/活性炭复合多孔微球的制备方法
CN106629723A (zh) 一种生物质基含n,s,p共掺杂多孔碳及其应用
CN106356204B (zh) 一种碳基复合电极材料及其制备方法
CN106334502A (zh) 一种还原氧化石墨烯/黑曲霉菌纤维素气凝胶的制备方法
CN105709689B (zh) 碳基功能材料及其制备方法
CN107456948A (zh) 一种空气净化用石墨烯复合活性炭的制备方法
CN106115697B (zh) 一种表面富含花瓣状石墨烯的活性炭的制备方法
CN108046254A (zh) 一种玉米芯衍生活性炭电极材料及其制备方法
CN110156013B (zh) 一种活性炭表面造孔方法
CN106076260A (zh) 一种金属有机骨架‑氧化石墨复合材料的室温快速制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784329

Country of ref document: EP

Kind code of ref document: A1