WO2018186491A1 - Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide - Google Patents

Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide Download PDF

Info

Publication number
WO2018186491A1
WO2018186491A1 PCT/JP2018/014753 JP2018014753W WO2018186491A1 WO 2018186491 A1 WO2018186491 A1 WO 2018186491A1 JP 2018014753 W JP2018014753 W JP 2018014753W WO 2018186491 A1 WO2018186491 A1 WO 2018186491A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
silicon oxide
solid
carbon atoms
hydrocarbon group
Prior art date
Application number
PCT/JP2018/014753
Other languages
French (fr)
Japanese (ja)
Inventor
史一 山下
翔子 池田
卓也 小澤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2019511321A priority Critical patent/JP6970739B2/en
Priority to KR1020197032490A priority patent/KR102493560B1/en
Priority to CN201880022900.2A priority patent/CN110475748B/en
Publication of WO2018186491A1 publication Critical patent/WO2018186491A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/36Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing a titanium-containing silicon oxide, a method for producing an epoxide from an olefin using a titanium-containing silicon oxide produced by the method as a catalyst, and a titanium-containing silicon oxide.
  • a method for producing an epoxide from hydroperoxide and olefin in the presence of a catalyst is known.
  • a catalyst used in this method for example, in Patent Document 1, a silica source, a titanium source, and a mold agent are mixed in a liquid state to obtain a solid containing a catalyst component and a mold agent.
  • the second step of removing the mold from the obtained solid by solvent extraction operation, and the extraction solvent contained in the solid after removing the mold obtained in the second step are substantially the same as the silylating agent used in the following fourth step.
  • Containing titanium obtained by a production method comprising a third step of substituting with a chemically inert solvent and a fourth step of obtaining a silylated catalyst by subjecting the solid obtained in the third step to silylation treatment
  • a silicon oxide catalyst is described.
  • the problem to be solved by the present invention is to provide a method for producing a titanium-containing silicon oxide capable of maintaining a high catalytic activity over a long period of time when used as a catalyst in a reaction for producing an epoxide from an olefin and a hydroperoxide. There is in point to do.
  • One embodiment of the present invention includes the following steps: Step A: Mixing a mold, a silicon source, and a solvent to obtain a solid containing the mold and silicon oxide Step B: Removing the mold from the solid obtained through the process A to obtain a solid Process Step C: A treatment agent containing 0.01 to 20% by mass of water is brought into contact with the solid obtained through Step B to obtain a solid. Step D: The solid obtained through Step C is combined with a silylating agent. Contacting to obtain a solid, At least selected from the group consisting of Step A, Step B, Step C, Step D, Step A and Step B, Step B and Step C, and Step C and Step D In one or more, the present invention relates to a titanium-containing silicon oxide that introduces titanium into a solid.
  • a titanium-containing silicon oxide that can maintain a high catalytic activity over a long period of time when used as a catalyst in a reaction for producing an epoxide from an olefin and a hydroperoxide.
  • the method for producing a titanium-containing silicon oxide according to one embodiment of the present invention includes steps AD.
  • Titanium-containing silicon oxide refers to a compound having a bond represented by -Si-O-Ti.
  • Step A is a step of mixing a mold agent, a silicon source, and a solvent to obtain a solid containing the mold agent and silicon oxide, and may be referred to as a raw material mixing step.
  • Silicon source refers to silicon oxide and silicon oxide precursor.
  • the silicon oxide precursor refers to a compound in which part or all of the silicon oxide precursor is converted into silicon oxide by mixing the silicon oxide precursor and water.
  • Examples of the silicon oxide as the silicon source include amorphous silica.
  • Examples of the silicon oxide precursor as the silicon source include alkoxysilane, alkyltrialkoxysilane, dialkyldialkoxysilane, and 1,2-bis (trialkoxysilyl) alkane.
  • Alkoxysilanes include tetramethylorthosilicate, tetraethylorthosilicate, and tetrapropylorthosilicate.
  • Examples of the alkyltrialkoxysilane include trimethoxy (methyl) silane.
  • Examples of the dialkyl dialkoxysilane include dimethoxydimethylsilane.
  • a single silicon source may be used, or several types may be used in combination.
  • silicon oxide precursor When a silicon oxide precursor is used as the silicon source, water is used as a part or all of the solvent in the step. When the silicon oxide precursor is mixed with water, part or all of the silicon oxide precursor is changed to silicon oxide.
  • the mold agent refers to a substance that can form a pore structure in titanium-containing silicon oxide.
  • a surfactant is preferable.
  • the surfactant include a cationic surfactant, an anionic surfactant, and a nonionic surfactant.
  • the cationic surfactant include quaternary ammonium compounds containing quaternary ammonium ions and alkylamine salts.
  • the quaternary ammonium compound containing a quaternary ammonium ion include tetraalkylammonium hydrochloride, tetraalkylammonium acetate, and tetraalkylammonium hydroxide.
  • Alkylamine salts include monoalkylamine hydrochloride, monoalkylamine acetate, dialkylamine hydrochloride, dialkylamine acetate, trialkylamine hydrochloride, and trialkylamine acetate.
  • the anionic surfactant include alkylbenzene sulfonic acid and its salt, ⁇ -olefin sulfonic acid sodium salt, alkyl sulfate ester salt, alkyl ether sulfate ester salt, methyl tauric acid, alaninate and salt thereof, ether carboxylic acid and salt thereof, sulfosuccinate.
  • Nonionic surfactants include polyalkylene oxides or block copolymers of polyalkylene oxides, and alkylamines.
  • the cationic surfactant is preferably a salt containing a quaternary ammonium ion represented by the following formula (I).
  • the nonionic surfactant is preferably an amine represented by the following formula (II).
  • R 1 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms
  • R 2 to R 4 each independently represents a hydrocarbon group having 1 to 6 carbon atoms.
  • NR 5 R 6 R 7 (II)
  • R 5 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms
  • R 6 and R 7 are each independently a hydrogen atom or a carbon atom having 1 to 6 carbon atoms.
  • R 1 is a linear or branched hydrocarbon group having 2 to 36 carbon atoms, preferably a hydrocarbon group having 10 to 22 carbon atoms.
  • R 2 to R 4 are each independently a hydrocarbon group having 1 to 6 carbon atoms, and it is preferable that all of R 2 to R 4 are methyl groups.
  • quaternary ammonium ion represented by the formula (I) include tetraethylammonium, tetrapropylammonium, tetrabutylammonium, decyltrimethylammonium, dodecyltrimethylammonium, hexadecyltrimethylammonium, octadecyltrimethylammonium, eicosyltrimethyl. Mention may be made of cations such as ammonium, behenyltrimethylammonium, benzyltrimethylammonium, dimethyldidodecylammonium and hexadecylpyridinium.
  • the salt containing a quaternary ammonium ion represented by the formula (I) include tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, decyltrimethylammonium hydroxide, decyltrimethylammonium chloride, Decyltrimethylammonium bromide, dodecyltrimethylammonium hydroxide, dodecyltrimethylammonium chloride, dodecyltrimethylammonium bromide, hexadecyltrimethylammonium hydroxide, hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide, octadecyltrimethylammonium hydroxide, octadecyltrimethylammonium chloride , Octadec Contains trimethylammonium bromide, eicosyltri
  • R 5 is a linear or branched hydrocarbon group having 2 to 36 carbon atoms, preferably 10 to 22 carbon atoms.
  • R 6 and R 7 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and R 6 and R 7 are preferably hydrogen atoms.
  • amine represented by the formula (II) include ethylamine, propylamine, butylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecyl.
  • a single material may be used, or several types may be used in combination.
  • Mixing of mold and silicon source is performed in the presence of a solvent.
  • a solvent examples include water and alcohol.
  • examples of the alcohol include methanol, ethanol, 1-propanol, and 2-propanol.
  • the solid containing a mold agent and silicon oxide is obtained.
  • the solid containing the mold and silicon oxide obtained through step A can be taken out by filtration or the like.
  • the mixing in step A is preferably carried out in the temperature range of 20 to 200 ° C. over 2 to 1000 hours. Moreover, stirring can also be implemented during mixing.
  • the process B is a process of removing the mold from the solid containing the mold obtained through the process A and the silicon oxide to obtain a solid, and may be referred to as a mold removing process.
  • a mold removing process By performing the step B, a solid which does not contain a mold or substantially does not contain a mold is obtained.
  • the content of the mold in the solid obtained in Step B is preferably 10% by mass or less, and more preferably 1% by mass or less.
  • the removal of the mold can be achieved by firing the solid containing the mold in air at 300 to 800 ° C. or by extracting with a solvent. It is preferable to remove the template by extraction.
  • the solvent is not particularly limited as long as it can dissolve the compound used as the mold, and generally a compound having 1 to 12 carbon atoms that is liquid at room temperature or a mixture of two or more of these compounds can be used.
  • Suitable solvents include alcohols, ketones, acyclic and cyclic ethers and esters. Examples of the alcohol include methanol, ethanol, ethylene glycol, propylene glycol, 1-propanol, 2-propanol, 1-butanol and octanol.
  • Ketones include acetone, diethyl ketone, methyl ethyl ketone and methyl isobutyl ketone.
  • ethers include diisobutyl ether and tetrahydrofuran.
  • Esters include methyl acetate, ethyl acetate, butyl acetate and butyl propionate.
  • the solvent from the viewpoint of the solubility of the mold, for example, when the mold is a salt containing a quaternary ammonium ion, an alcohol is preferable, and methanol is more preferable.
  • the mass ratio of the solvent to the solid containing the mold is usually 1 to 1000, preferably 5 to 300.
  • an acid or a salt thereof may be added to these solvents.
  • the acid used include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and odorous acid, or organic acids such as formic acid, acetic acid, and propionic acid.
  • such salts include alkali metal salts, alkaline earth metal salts, and ammonium salts.
  • the concentration of the added acid or salt thereof in the solvent is preferably 30% by mass or less, and more preferably 15% by mass or less.
  • Examples of the method for removing the mold include a method in which the solvent and the solid containing the mold are sufficiently mixed, and then the liquid phase part is separated by a method such as filtration or decantation. This operation may be repeated a plurality of times. It is also possible to extract the mold by filling the solid containing the mold into a container such as a column and circulating the extraction solvent.
  • the extraction temperature is preferably 0 to 200 ° C, more preferably 20 to 100 ° C. When the boiling point of the extraction solvent is low, the extraction may be performed by applying pressure.
  • the template in the solution obtained by the extraction treatment can be recovered and reused as the template in step A.
  • the extraction solvent can be purified and reused by a normal distillation operation or the like.
  • Step C is a step of obtaining a solid by bringing a treatment agent containing 0.01 to 20% by mass of water into contact with the solid obtained through Step B, and is sometimes referred to as a water treatment step.
  • the water content in the treating agent is 0.01 to 20% by mass, more preferably 0.02 to 10% by mass, still more preferably 0.02 to 5% by mass, and more preferably 0.1 to Most preferably, it is 2 mass%. If the water content is too high, the catalyst performance of the titanium-containing silicon oxide, particularly the catalyst activity, will be adversely affected.
  • the weight of the treatment agent containing water is usually 1 to 1000, preferably 1 to 500, more preferably 1 to 200, where the weight of the solid obtained through the step B is 1. More preferably, it is ⁇ 100.
  • the treating agent contains, for example, at least one selected from nitrogen-containing basic compounds, alcohols, carboxylic acids, and these compounds.
  • the treating agent is an aprotic polar compound (for example, a nitrogen-containing base compound), a protic polar compound (for example, an alcohol, a carboxylic acid, or a compound thereof), or a mixture of a protic polar compound and an aprotic polar compound. possible.
  • Step C refers to a step of bringing water contained in the treatment agent into contact with the solid by bringing the treatment agent containing 0.01 to 20% by mass of water into contact with the solid.
  • the “treatment agent” used in Step C is distinguished from the “treatment liquid” used in other steps.
  • step C the treatment agent may be brought into contact with the solid obtained through step B one or more times.
  • the treatment agent may be the same or different.
  • step C after bringing the treatment agent containing water into contact with the solid obtained through step B one or more times, Replacement with a treatment solution containing less than 0.01% water containing a protic polar solvent, aprotic polar solvent, a protic polar solvent containing a nonpolar compound, or an aprotic polar solvent containing a nonpolar compound May be.
  • the protic polar solvent include alcohols described below
  • examples of the aprotic polar solvent include ketones, nitriles, and esters described below
  • examples of the nonpolar compound include toluene.
  • R 8 to R 10 are each independently a hydrogen atom, a linear hydrocarbon group having 1 to 18 carbon atoms, a branched hydrocarbon group having 3 to 18 carbon atoms, or carbon Represents a cyclic hydrocarbon group having 5 to 18 atoms.
  • nitrogen-containing base compound represented by the formula (III) include ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n- Propylamine, dimethylethylamine, dimethylpropylamine, diethylmethylamine, diethylbutylamine, methylethylpropylamine, methylethylbutylamine, dipropylmethylamine, methylpropylbutylamine, dibutylmethylamine, triethylamine, diethylpropylamine, dipropylethylamine, ethyl Propylbutylamine, dibutylethylamine, tripropylamine, dipropylbutylamine, dibutylpropylamine, tributylamine, pentyla Emissions, hexylamine, and tri -n-
  • R 11 to R 15 are each independently (a) a linear hydrocarbon group having 1 to 6 carbon atoms, a branched hydrocarbon group having 3 to 6 carbon atoms, and carbon.
  • nitrogen-containing base compound represented by the formula (IV) examples include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, and quinoline.
  • Preferred nitrogen-containing base compounds are tertiary amine, ammonia, and pyridine, and tri-n-octylamine, ammonia, and pyridine are more preferred. These nitrogen-containing base compounds may be used alone or in combination of two or more.
  • the treatment agent contains alcohol
  • examples of the alcohol include primary alcohols, secondary alcohols, and tertiary alcohols, alcohols having 1 to 12 carbon atoms are preferred, tertiary alcohols are more preferred, and tert-butyl alcohol is preferred. Further preferred.
  • the carboxylic acid is preferably a carboxylic acid having 1 to 12 carbon atoms, and more preferably formic acid, acetic acid and propionic acid.
  • solvents for dilution include non-polar organic solvents (non-polar compounds) such as hydrocarbons having 1 to 12 carbon atoms and halogenated hydrocarbons that are liquid at room temperature, ketones, ethers, esters, N, N-2 Aprotic polar organic solvents (aprotic polar compounds) such as substituted amides, nitriles and sulfoxides.
  • non-polar organic solvents non-polar compounds
  • hydrocarbons having 1 to 12 carbon atoms such as hydrocarbons having 1 to 12 carbon atoms and halogenated hydrocarbons that are liquid at room temperature
  • ketones, ethers, esters ketones, ethers, esters, N, N-2 Aprotic polar organic solvents (aprotic polar compounds) such as substituted amides, nitriles and sulfoxides.
  • hydrocarbon having 1 to 12 carbon atoms which are liquid at normal temperature include hexane, cyclohexane, benzene, toluene and
  • halogenated hydrocarbon is chloroform.
  • ketone include acetone, diethyl ketone, methyl ethyl ketone, and methyl isobutyl ketone.
  • ethers include diethyl ether, diisobutyl ether, tetrahydrofuran, and dioxane.
  • ester examples include methyl acetate and ethyl acetate.
  • N, N-disubstituted amides include dimethylformamide.
  • a nitrile includes acetonitrile.
  • the sulfoxide include dimethyl sulfoxide.
  • the organic compound is preferably an alcohol having 1 to 12 carbon atoms, a hydrocarbon having 1 to 12 carbon atoms which is liquid at room temperature, a ketone or a nitrile, and tert-butyl alcohol, 2-methyl-2-butanol, acetonitrile, hexane. , Cyclohexane, benzene, toluene, xylene, and acetone are preferred.
  • the contact temperature between the treating agent and the solid after removing the mold material is usually 0 to 200 ° C., more preferably 0 to 150 ° C. Such contact can be performed by, for example, a batch method and a distribution method. When the boiling point of the treatment agent is low, step C may be performed under pressure.
  • Step C After the completion of Step C, it is preferable to reduce the amount of components active against silylation contained in the solid obtained through Step C before the start of Step E below.
  • Examples of a method for reducing the amount of an active component for silylation include liquid replacement and / or drying described later.
  • Step E is a step of replacing the treatment agent and / or treatment liquid contained in the solid obtained through Step C with a liquid that is substantially inert to the silylating agent, and is referred to as a liquid substitution step.
  • the substantially inert liquid include hydrocarbons, haloalkanes, and ethers.
  • the hydrocarbon include aliphatic or aromatic hydrocarbons having 6 to 14 carbon atoms.
  • the haloalkane include dichloromethane and tetrachloroethylene.
  • ethers include diethyl ether and tetrahydrofuran.
  • the substantially inert liquid used in step E is preferably a hydrocarbon, and more preferably toluene.
  • the temperature of the replacement liquid in the liquid replacement is usually 0 to 200 ° C. Liquid replacement can be carried out by a batch method or a flow method.
  • the pressure is preferably normal pressure or reduced pressure.
  • a suitable temperature varies depending on the treatment liquid, it is generally 0 ° C. or higher and 700 ° C. or lower and preferably 0 ° C. or higher and 200 ° C. or lower from the viewpoint of catalyst performance. Drying can be carried out by a batch method or a gas flow method.
  • the drying of the solid is not limited to the drying after the step C.
  • the solid is dried under the same conditions as in the step F after the completion of any of these steps and before the next step. Drying may be performed. Moreover, you may perform either one or both of the process E and the process F before the process D after the process C.
  • Step D is a step of obtaining a solid by bringing the solid obtained through Step C into contact with a silylating agent. By performing Step D, the solid obtained through Step C is silylated.
  • the silylation may be performed by a gas phase method in which a gaseous silylating agent is brought into contact with the solid obtained through Step C and reacted, or the silylating agent and the solid are brought into contact in a solvent to be reacted.
  • the liquid phase method may be used, and in one embodiment of the present invention, the liquid phase method is more preferable.
  • a hydrocarbon is used suitably as a solvent in the process D.
  • drying may be performed thereafter.
  • a silylating agent is a silicon compound that is reactive to a solid, and a hydrolyzable group is bonded to silicon, and the silicon includes an allyl group such as an alkyl group or a vinyl group, a phenyl group, or the like. In which at least one group selected from the group consisting of an aryl group, a halogenated alkyl group, and a siloxy group is bonded.
  • the hydrolyzable group bonded to silicon include hydrogen, halogen, alkoxy group, acetoxy group, and amino group.
  • the number of hydrolyzable groups bonded to silicon is preferably one.
  • silylating agent examples include organic silane, organic silylamine, organic silylamide and derivatives thereof, and organic silazane.
  • organic silane examples include chlorotrimethylsilane, dichlorodimethylsilane, chlorobromodimethylsilane, nitrotrimethylsilane, chlorotriethylsilane, iododimethylbutylsilane, chlorodimethylphenylsilane, chlorodimethylsilane, dimethyl n-propylchlorosilane, and dimethylisopropyl.
  • organic silylamine examples include N- (trimethylsilyl) imidazole, N- (tert-butyldimethylsilyl) imidazole, N- (dimethylethylsilyl) imidazole, N- (dimethyln-propylsilyl) imidazole, N- (dimethylisopropyl).
  • Silyl) imidazole N- (trimethylsilyl) -N, N-dimethylamine, N- (trimethylsilyl) -N, N-diethylamine, N- (trimethylsilyl) pyrrole, N- (trimethylsilyl) pyrrolidine, N- (trimethylsilyl) piperidine, Examples thereof include 1-cyanoethyl (diethylamino) dimethylsilane and pentafluorophenyldimethylsilylamine.
  • organic silylamides and derivatives examples include N, O-bis (trimethylsilyl) acetamide, N, O-bis (trimethylsilyl) trifluoroacetamide, N- (trimethylsilyl) acetamide, N-methyl-N- (trimethylsilyl) acetamide, N -Methyl-N- (trimethylsilyl) trifluoroacetamide, N-methyl-N- (trimethylsilyl) heptafluorobutyramide, N- (tert-butyldimethylsilyl) -N-trifluoroacetamide, and N, O-bis (diethyl Hydrosilyl) trifluoroacetamide.
  • organic silazane examples include 1,1,1,3,3,3-hexamethyldisilazane, heptamethyldisilazane, 1,1,3,3-tetramethyldisilazane, 1,3-bis (chloromethyl). ) -1,1,3,3-tetramethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, and 1,3-diphenyl-1,1,3,3-tetra And methyl disilazane.
  • silylating agents include N-methoxy-N, O-bis (trimethylsilyl) trifluoroacetamide, N-methoxy-N, O-bis (trimethylsilyl) carbamate, N, O-bis (trimethylsilyl) sulfamate, Examples include trimethylsilyl trifluoromethanesulfonate and N, N′-bis (trimethylsilyl) urea.
  • a preferred silylating agent is an organic silazane, more preferably 1,1,1,3,3,3-hexamethyldisilazane.
  • Titanium may be introduced into the solid during any of steps A to F. Between step A and step B, between step B and step C, between step C and step E, between step C and step F, between step E and step D, or between step F and step D. In between, titanium may be introduced into the solid.
  • the introduction of titanium into the solid may be performed both during and between the steps described above.
  • titanium is introduced into a solid is expressed by —Si—O—Ti in the silicon oxide contained in the solid by mixing the solid containing the silicon oxide and the titanium source. Means that a bond is introduced.
  • titanium is introduced into the solid before the start of step D, and at least one selected from the group consisting of step A, step B and step C, and step C and step D. In the above, it is more preferable that titanium is introduced into the solid, and it is further preferable that titanium is introduced into the solid within the step A.
  • a silicon source, a titanium source and a mold agent are mixed in the process A.
  • titanium may be introduced into the solid by bringing the solid obtained through step A into contact with the titanium source.
  • titanium may be introduced into the solid by contacting the solid obtained through step B with a titanium source.
  • titanium may be introduced into the solid by bringing the solid obtained through step C into contact with the titanium source.
  • Titanium may be introduced into the solid by contacting the solid into which the titanium is introduced and the titanium source in a liquid phase, and the titanium containing the titanium is brought into contact with the solid into which titanium is introduced by contacting the solid. It may be introduced into a solid.
  • titanium source examples include titanium alkoxide, chelate-type titanium complex, titanium halide, and sulfate containing titanium.
  • titanium alkoxide examples include tetramethyl titanate, tetraethyl titanate, tetrapropyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetraisobutyl titanate, tetra (2-ethylhexyl) titanate, and tetraoctadecyl titanate.
  • examples of the chelate-type titanium complex include titanium (IV) oxyacetylacetonate and titanium (IV) diisopropoxybisacetylacetonate.
  • titanium halide examples include titanium tetrachloride, titanium tetrabromide, and titanium tetraiodide.
  • the sulfate containing titanium examples include titanyl sulfate.
  • the produced titanium-containing silicon oxide can be used as a catalyst for an oxidation reaction of an organic compound, for example, an epoxidation reaction of an olefin, and is particularly preferably used for the production of an epoxide in which an olefin and a hydroperoxide are reacted.
  • the olefin to be subjected to the epoxidation reaction may be an acyclic olefin, a monocyclic olefin, a bicyclic olefin, a tricyclic or higher polycyclic olefin, or a monoolefin, a diolefin, or a polyolefin.
  • these double bonds may be conjugated bonds or non-conjugated bonds.
  • Olefins having 2 to 60 carbon atoms are preferred.
  • the olefin may have a substituent.
  • olefins examples include ethylene, propylene, 1-butene, isobutylene, 1-hexene, 2-hexene, 3-hexene, 1-octene, 1-decene, styrene, and cyclohexene.
  • olefin there may be a substituent containing an oxygen atom, a sulfur atom, or a nitrogen atom together with a hydrogen atom or a carbon atom, or both.
  • examples of such an olefin include allyl alcohol, crotyl Alcohol and allyl chloride are mentioned.
  • diolefins examples include butadiene and isoprene.
  • Particularly preferred olefins include propylene.
  • An organic hydroperoxide is mentioned as an example of a hydroperoxide.
  • the organic hydroperoxide has the formula (V) R—O—O—H (V) (In the formula (V), R is a hydrocarbon group.) It is a compound which has this.
  • Organic hydroperoxides react with olefins to produce epoxides and hydroxyl compounds.
  • R in the formula (V) is preferably a hydrocarbon group having 3 to 20 carbon atoms, and more preferably a hydrocarbon group having 3 to 10 carbon atoms.
  • Specific examples of the organic hydroperoxide include tert-butyl hydroperoxide, 1-phenylethyl hydroperoxide, and cumene hydroperoxide. Cumene hydroperoxide may hereinafter be abbreviated as CMHP.
  • CMHP When CMHP is used as the organic hydroperoxide, the resulting hydroxyl compound is 2-phenyl-2-propanol.
  • This 2-phenyl-2-propanol produces cumene through a dehydration reaction and a hydrogenation reaction.
  • cumene may be abbreviated as CUM.
  • CUM cumene
  • CHMP is obtained again. From such a viewpoint, it is preferable to use CMHP as the organic hydroperoxide used in the epoxidation reaction.
  • the epoxidation reaction can be performed in a liquid phase using a solvent, a diluent, or a mixture thereof.
  • the solvent and diluent must be liquid under the temperature and pressure during the reaction and be substantially inert to the reactants and product.
  • CUM can be used as a solvent without particularly adding a solvent.
  • the epoxidation reaction temperature is generally 0 to 200 ° C., preferably 25 to 200 ° C.
  • the epoxidation reaction pressure may be a pressure sufficient to keep the reaction phase in a liquid state, and is generally preferably 100 to 10,000 kPa.
  • the liquid mixture containing the desired product can be separated from the catalyst composition.
  • the liquid mixture can then be purified by a suitable method. Examples of the purification method include distillation, extraction, and washing.
  • the solvent and unreacted olefin can be recycled and reused.
  • the reaction using the titanium-containing silicon oxide produced according to one embodiment of the present invention as a catalyst can be performed in the form of a slurry or a fixed bed, and in the case of a large-scale industrial operation, it is preferable to use a fixed bed.
  • the titanium-containing silicon oxide produced according to one embodiment of the present invention may be a powder or a molded body.
  • the reaction is performed on a fixed bed, the titanium-containing silicon oxide is preferably a molded body. This reaction can be carried out by a batch method, a semi-continuous method or a continuous method.
  • Hexadecyltrimethylammonium hydroxide, tetramethylorthosilicate, and tetraisopropyl titanate are the mold, silicon source, and titanium source, respectively.
  • Step B Subsequent to Step B, first, 53 g of pyridine containing 0.3% by mass of water as a treating agent was passed at a column temperature of 60 ° C. upward from the bottom of the column at a flow rate of 3.2 g / min. Thereafter, 170 g of the treatment agent was passed at a rate of 3.2 g / min while raising the column temperature to 95 ° C. Thereafter, the treating agent in the column was extracted from the lower part of the column.
  • the column temperature is equal to the contact temperature between the treating agent and the solid after removing the mold material.
  • a treating agent in which 272 g of tert-butyl alcohol, 48 g of acetone and 0.96 g of water were mixed was passed through the column at a column temperature of 45 ° C. from the bottom of the column upward at a flow rate of 2.6 g / min. .
  • Water contained in the treatment agent was 0.3% by mass.
  • the amount of treatment agent supplied to the column was 270 g.
  • the mixed solution of tert-butyl alcohol, acetone and water in the column was extracted from the lower part of the column.
  • Step C 47 g of toluene is passed through the column at a column temperature of 50 ° C. at a flow rate of 2.8 g / min, and then 157 g of toluene is passed while the column temperature is raised to 100 ° C. Liquid. Thereby, the mixed liquid remaining in the column at the end of Step C was replaced with toluene. Thereafter, toluene in the column was extracted from the bottom of the column.
  • Step E a mixed solution of 8 g of 1,1,1,3,3,3-hexamethyldisilazane (hereinafter also referred to as HMDS) and 93 g of toluene was added at a column temperature of 100 ° C. and a flow rate of 3.9 g.
  • the liquid was passed from the bottom of the column at / min.
  • the liquid passed through the column was collected by a receiver and continuously circulated through the column for 3 hours by a pump. Thereby, silylation of the molded body in the column was performed. Thereafter, the toluene and HMDS mixed solution in the column was extracted from the lower part of the column.
  • Life performance evaluation was performed by a series of methods described in (F) to (H) below.
  • TBA is an abbreviation for
  • TAA (230 g) / ACT (40 g) refers to a mixture of 230 g of tert-butyl alcohol and 40 g of acetone.
  • ATN is an abbreviation for acetonitrile
  • AMA is an abbreviation for tert-amyl alcohol (2-methyl-2-butanol).
  • Examples 2 to 9 For Examples 2 to 8, the methods described in (A), (B) and (E) were carried out in the same manner as in Example 1. The methods described in (C) and (D) were performed in the same manner as in Example 1 except that the treatment liquid and the treatment conditions were changed as shown in Tables 1 to 4.
  • Example 9 about the method as described in (A) and (B), it implements by the method similar to Example 1, and about the method as described in (E), the total time of the distribution
  • the procedure was the same as in Example 1 except that.
  • the life performance evaluation of Examples 2 to 9 was performed by the method described in (F) to (H) of Example 1. The evaluation results are shown in Tables 1 to 3.
  • Example 10 The tetraisopropyl titanate is not added in (A), and (B) and (C) are carried out in the same manner as in Example 1. Subsequent to (C), at a column temperature of about 120 ° C., nitrogen gas is flowed upward from the bottom of the column into the column to dry the molded body. Thereafter, nitrogen gas containing 50% by volume of titanium tetrachloride is allowed to flow upwardly from the bottom of the column at a column temperature of about 200 ° C. at a flow rate of about 10 NmL / min, and is brought into contact with the molded body for about 2 hours. Thereafter, nitrogen gas is allowed to flow upward from the bottom of the column into the column at a column temperature of about 500 ° C. at a flow rate of about 100 NmL / min. Thereafter, (E) is carried out in the same manner as in Example 1, whereby a titanium-containing silicon oxide catalyst can be obtained.
  • the method for producing a titanium-containing silicon oxide according to one embodiment of the present invention can be applied to the production of a catalyst used in a reaction for producing an epoxide from an olefin and a hydroperoxide, and titanium obtained by the method.
  • the contained silicon oxide can be used, for example, as a catalyst for the production of propylene oxide.

Abstract

Provided is a method for producing a titanium-containing silicon oxide that is capable of maintaining high catalytic activity for a long period of time in cases where the titanium-containing silicon oxide is used as a catalyst for a reaction in which an epoxide is produced from an olefin and a hydroperoxide. A method for producing a titanium-containing silicon oxide, which comprises step A, step B, step C and step D, while additionally comprising a step for introducing titanium.

Description

チタン含有珪素酸化物の製造方法、エポキシドの製造方法、及びチタン含有珪素酸化物Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
 本発明は、チタン含有珪素酸化物の製造方法、該方法により製造したチタン含有珪素酸化物を触媒として用いるオレフィンからのエポキシドの製造方法、及びチタン含有珪素酸化物に関する。 The present invention relates to a method for producing a titanium-containing silicon oxide, a method for producing an epoxide from an olefin using a titanium-containing silicon oxide produced by the method as a catalyst, and a titanium-containing silicon oxide.
 触媒の存在下、ハイドロパーオキサイドとオレフィンとからエポキシドを製造する方法は公知である。この方法に用いられる触媒として、例えば特許文献1には、シリカ源、チタン源及び型剤を液状で混合することにより触媒成分及び型剤を含有する固体を得る第一工程と、第一工程で得た固体から型剤を溶媒抽出操作により除去する第二工程と、第二工程で得た型剤除去後の固体に含まれる抽出溶媒を、下記第四工程で用いるシリル化剤に対して実質的に不活性な溶媒で置換する第三工程と、第三工程で得た固体にシリル化処理を付すことによりシリル化された触媒を得る第四工程とを含む製造方法により得られたチタン含有珪素酸化物触媒が記載されている。 A method for producing an epoxide from hydroperoxide and olefin in the presence of a catalyst is known. As a catalyst used in this method, for example, in Patent Document 1, a silica source, a titanium source, and a mold agent are mixed in a liquid state to obtain a solid containing a catalyst component and a mold agent. The second step of removing the mold from the obtained solid by solvent extraction operation, and the extraction solvent contained in the solid after removing the mold obtained in the second step are substantially the same as the silylating agent used in the following fourth step. Containing titanium obtained by a production method comprising a third step of substituting with a chemically inert solvent and a fourth step of obtaining a silylated catalyst by subjecting the solid obtained in the third step to silylation treatment A silicon oxide catalyst is described.
日本国公開特許公報「特開2004-195379号」(2004年7月15日公開)Japanese Patent Publication “JP 2004-195379” (released July 15, 2004)
 しかしながら、特許文献1に記載の触媒は、触媒の寿命の観点で十分ではない。 However, the catalyst described in Patent Document 1 is not sufficient from the viewpoint of the life of the catalyst.
 本発明が解決しようとする課題は、オレフィンとハイドロパーオキサイドとからエポキシドを生成する反応に触媒として用いた場合に高い触媒活性を長期に亘って維持し得るチタン含有珪素酸化物の製造方法を提供する点にある。 The problem to be solved by the present invention is to provide a method for producing a titanium-containing silicon oxide capable of maintaining a high catalytic activity over a long period of time when used as a catalyst in a reaction for producing an epoxide from an olefin and a hydroperoxide. There is in point to do.
 本発明の一態様は、下記の工程:
工程A:型剤と珪素源と溶媒とを混合し、型剤と珪素酸化物とを含む固体を得る工程
工程B:工程Aを経て得られた固体から上記型剤を除去し、固体を得る工程
工程C:工程Bを経て得られた固体に0.01~20質量%の水を含む処理剤を接触させ、固体を得る工程
工程D:工程Cを経て得られた固体をシリル化剤と接触させ、固体を得る工程
を有し、
 工程A内、工程B内、工程C内、工程D内、工程Aと工程Bとの間、工程Bと工程Cとの間、および工程Cと工程Dとの間からなる群から選ばれる少なくとも一つ以上において、固体にチタンを導入する、チタン含有珪素酸化物に関する。
One embodiment of the present invention includes the following steps:
Step A: Mixing a mold, a silicon source, and a solvent to obtain a solid containing the mold and silicon oxide Step B: Removing the mold from the solid obtained through the process A to obtain a solid Process Step C: A treatment agent containing 0.01 to 20% by mass of water is brought into contact with the solid obtained through Step B to obtain a solid. Step D: The solid obtained through Step C is combined with a silylating agent. Contacting to obtain a solid,
At least selected from the group consisting of Step A, Step B, Step C, Step D, Step A and Step B, Step B and Step C, and Step C and Step D In one or more, the present invention relates to a titanium-containing silicon oxide that introduces titanium into a solid.
 本発明の一態様により、オレフィンとハイドロパーオキサイドとからエポキシドを生成する反応に触媒として用いた場合に高い触媒活性を長期に亘って維持し得るチタン含有珪素酸化物が提供される。 According to one embodiment of the present invention, there is provided a titanium-containing silicon oxide that can maintain a high catalytic activity over a long period of time when used as a catalyst in a reaction for producing an epoxide from an olefin and a hydroperoxide.
 本発明の一態様に係るチタン含有珪素酸化物の製造方法は、工程A~Dを含む。 The method for producing a titanium-containing silicon oxide according to one embodiment of the present invention includes steps AD.
 チタン含有珪素酸化物とは、-Si-O-Tiで表される結合を有する化合物をいう。 Titanium-containing silicon oxide refers to a compound having a bond represented by -Si-O-Ti.
 <工程A>
 工程Aは、型剤と珪素源と溶媒とを混合し、型剤と珪素酸化物とを含む固体を得る工程であり、原料混合工程と称することもある。
<Process A>
Step A is a step of mixing a mold agent, a silicon source, and a solvent to obtain a solid containing the mold agent and silicon oxide, and may be referred to as a raw material mixing step.
 「珪素源」とは、珪素酸化物及び珪素酸化物前駆体を指す。珪素酸化物前駆体とは、珪素酸化物前駆体と水とを混合することにより、珪素酸化物前駆体の一部、乃至全部が珪素酸化物となる化合物をいう。 “Silicon source” refers to silicon oxide and silicon oxide precursor. The silicon oxide precursor refers to a compound in which part or all of the silicon oxide precursor is converted into silicon oxide by mixing the silicon oxide precursor and water.
 珪素源としての珪素酸化物としては、アモルファスシリカが挙げられる。珪素源としての珪素酸化物前駆体としては、アルコキシシラン、アルキルトリアルコキシシラン、ジアルキルジアルコキシシラン、及び1,2-ビス(トリアルコキシシリル)アルカンが挙げられる。アルコキシシランとしては、テトラメチルオルトシリケート、テトラエチルオルトシリケート、及びテトラプロピルオルトシリケートが挙げられる。アルキルトリアルコキシシランとしては、トリメトキシ(メチル)シランが挙げられる。ジアルキルジアルコキシシランとしては、ジメトキシジメチルシランが挙げられる。珪素源として、単一のものを用いてよく、数種を組み合わせて用いてもよい。 Examples of the silicon oxide as the silicon source include amorphous silica. Examples of the silicon oxide precursor as the silicon source include alkoxysilane, alkyltrialkoxysilane, dialkyldialkoxysilane, and 1,2-bis (trialkoxysilyl) alkane. Alkoxysilanes include tetramethylorthosilicate, tetraethylorthosilicate, and tetrapropylorthosilicate. Examples of the alkyltrialkoxysilane include trimethoxy (methyl) silane. Examples of the dialkyl dialkoxysilane include dimethoxydimethylsilane. A single silicon source may be used, or several types may be used in combination.
 珪素源として珪素酸化物前駆体を用いる場合には、該工程において溶媒の一部又は全部として水を用いる。珪素酸化物前駆体を水と混合すると、該珪素酸化物前駆体は一部、乃至全部が珪素酸化物に変化する。 When a silicon oxide precursor is used as the silicon source, water is used as a part or all of the solvent in the step. When the silicon oxide precursor is mixed with water, part or all of the silicon oxide precursor is changed to silicon oxide.
 型剤とは、チタン含有珪素酸化物中の細孔構造を形成し得る物質を指す。型剤としては、界面活性剤が好ましい。界面活性剤としては、カチオン界面活性剤、アニオン界面活性剤、ノニオン界面活性剤が挙げられる。カチオン界面活性剤としては、第4級アンモニウムイオンを含む第4級アンモニウム化合物、アルキルアミン塩が挙げられる。第4級アンモニウムイオンを含む第4級アンモニウム化合物としては、テトラアルキルアンモニウム塩酸塩、テトラアルキルアンモニウム酢酸塩、テトラアルキルアンモニウムヒドロキシドが挙げられる。アルキルアミン塩としては、モノアルキルアミン塩酸塩、モノアルキルアミン酢酸塩、ジアルキルアミン塩酸塩、ジアルキルアミン酢酸塩、トリアルキルアミン塩酸塩、及びトリアルキルアミン酢酸塩が挙げられる。アニオン界面活性剤としては、アルキルベンゼンスルホン酸及びその塩、α-オレフィンスルホン酸ナトリウム塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、メチルタウリン酸、アラニネート及びその塩、エーテルカルボン酸及びその塩、スルホコハク酸塩、硫酸化油、ポリオキシアルキレンエーテル硫酸エステル塩、及び石鹸などが挙げられる。ノニオン界面活性剤としては、ポリアルキレンオキサイド又はポリアルキレンオキサイドのブロックコポリマー、及びアルキルアミンが挙げられる。 The mold agent refers to a substance that can form a pore structure in titanium-containing silicon oxide. As the mold agent, a surfactant is preferable. Examples of the surfactant include a cationic surfactant, an anionic surfactant, and a nonionic surfactant. Examples of the cationic surfactant include quaternary ammonium compounds containing quaternary ammonium ions and alkylamine salts. Examples of the quaternary ammonium compound containing a quaternary ammonium ion include tetraalkylammonium hydrochloride, tetraalkylammonium acetate, and tetraalkylammonium hydroxide. Alkylamine salts include monoalkylamine hydrochloride, monoalkylamine acetate, dialkylamine hydrochloride, dialkylamine acetate, trialkylamine hydrochloride, and trialkylamine acetate. Examples of the anionic surfactant include alkylbenzene sulfonic acid and its salt, α-olefin sulfonic acid sodium salt, alkyl sulfate ester salt, alkyl ether sulfate ester salt, methyl tauric acid, alaninate and salt thereof, ether carboxylic acid and salt thereof, sulfosuccinate. Examples thereof include acid salts, sulfated oils, polyoxyalkylene ether sulfate salts, and soaps. Nonionic surfactants include polyalkylene oxides or block copolymers of polyalkylene oxides, and alkylamines.
 界面活性剤の中でも、カチオン界面活性剤、ノニオン界面活性剤が好ましい。カチオン界面活性剤は、下記の式(I)で表される第4級アンモニウムイオンを含む塩が好ましい。ノニオン界面活性剤は、下記の式(II)で表されるアミンが好ましい。 Among the surfactants, cationic surfactants and nonionic surfactants are preferable. The cationic surfactant is preferably a salt containing a quaternary ammonium ion represented by the following formula (I). The nonionic surfactant is preferably an amine represented by the following formula (II).
 [NR]+ (I)
 (式(I)中、Rは炭素原子数2~36の直鎖状又は分岐状の炭化水素基を表し、R~Rはそれぞれ独立して炭素原子数1~6の炭化水素基を表す。)
NR (II)
 (式(II)中、Rは炭素原子数2~36の直鎖状又は分岐状の炭化水素基を表し、R及びRはそれぞれ独立して水素原子又は炭素原子数1~6の炭化水素基を表す。)
 式(I)において、Rは炭素原子数2~36の直鎖状又は分岐状の炭化水素基であり、好ましくは炭素原子数10~22の炭化水素基である。R~Rはそれぞれ独立して炭素原子数1~6の炭化水素基であり、R~Rの全てがメチル基であることが好ましい。
[NR 1 R 2 R 3 R 4 ] + (I)
(In the formula (I), R 1 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and R 2 to R 4 each independently represents a hydrocarbon group having 1 to 6 carbon atoms. Represents.)
NR 5 R 6 R 7 (II)
(In the formula (II), R 5 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and R 6 and R 7 are each independently a hydrogen atom or a carbon atom having 1 to 6 carbon atoms. Represents a hydrocarbon group.)
In the formula (I), R 1 is a linear or branched hydrocarbon group having 2 to 36 carbon atoms, preferably a hydrocarbon group having 10 to 22 carbon atoms. R 2 to R 4 are each independently a hydrocarbon group having 1 to 6 carbon atoms, and it is preferable that all of R 2 to R 4 are methyl groups.
 式(I)で表される第4級アンモニウムイオンの具体例としては、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、デシルトリメチルアンモニウム、ドデシルトリメチルアンモニウム、ヘキサデシルトリメチルアンモニウム、オクタデシルトリメチルアンモニウム、エイコシルトリメチルアンモニウム、ベヘニルトリメチルアンモニウム、ベンジルトリメチルアンモニウム、ジメチルジドデシルアンモニウム、及びヘキサデシルピリジニウム等のカチオンを挙げることができる。 Specific examples of the quaternary ammonium ion represented by the formula (I) include tetraethylammonium, tetrapropylammonium, tetrabutylammonium, decyltrimethylammonium, dodecyltrimethylammonium, hexadecyltrimethylammonium, octadecyltrimethylammonium, eicosyltrimethyl. Mention may be made of cations such as ammonium, behenyltrimethylammonium, benzyltrimethylammonium, dimethyldidodecylammonium and hexadecylpyridinium.
 式(I)で表される第4級アンモニウムイオンを含む塩の具体例としては、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、デシルトリメチルアンモニウムヒドロキシド、デシルトリメチルアンモニウムクロリド、デシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムヒドロキシド、ドデシルトリメチルアンモニウムクロリド、ドデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムヒドロキシド、ヘキサデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムヒドロキシド、オクタデシルトリメチルアンモニウムクロリド、オクタデシルトリメチルアンモニウムブロミド、エイコシルトリメチルアンモニウムヒドロキシド、エイコシルトリメチルアンモニウムクロリド、エイコシルトリメチルアンモニウムブロミド、ベヘニルトリメチルアンモニウムヒドロキシド、ベヘニルトリメチルアンモニウムクロリド、及びベヘニルトリメチルアンモニウムブロミド、並びにこれらの第4級アンモニウムイオンを含む塩中の少なくとも1つのメチル基が炭素原子数2~22のアルキル基で置換されたジメチルジアルキルアンモニウム塩及びメチルトリアルキルアンモニウム塩等が挙げられる。 Specific examples of the salt containing a quaternary ammonium ion represented by the formula (I) include tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, decyltrimethylammonium hydroxide, decyltrimethylammonium chloride, Decyltrimethylammonium bromide, dodecyltrimethylammonium hydroxide, dodecyltrimethylammonium chloride, dodecyltrimethylammonium bromide, hexadecyltrimethylammonium hydroxide, hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide, octadecyltrimethylammonium hydroxide, octadecyltrimethylammonium chloride , Octadec Contains trimethylammonium bromide, eicosyltrimethylammonium hydroxide, eicosyltrimethylammonium chloride, eicosyltrimethylammonium bromide, behenyltrimethylammonium hydroxide, behenyltrimethylammonium chloride, and behenyltrimethylammonium bromide, and their quaternary ammonium ions Examples thereof include dimethyldialkylammonium salts and methyltrialkylammonium salts in which at least one methyl group in the salt is substituted with an alkyl group having 2 to 22 carbon atoms.
 式(II)において、Rは炭素原子数2~36の直鎖状又は分岐状の炭化水素基であり、好ましくは炭素原子数10~22のものである。R及びRはそれぞれ独立して水素原子又は炭素原子数1~6の炭化水素基であり、R及びRが水素原子であることが好ましい。 In the formula (II), R 5 is a linear or branched hydrocarbon group having 2 to 36 carbon atoms, preferably 10 to 22 carbon atoms. R 6 and R 7 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and R 6 and R 7 are preferably hydrogen atoms.
 式(II)で表されるアミンの具体例としては、エチルアミン、プロピルアミン、ブチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン、エイコシルアミン、及びベヘニルアミン、並びにこれらのアミン中の少なくとも1つの水素原子がメチル基で置換されたメチルアルキルアミン、及びジメチルアルキルアミン等を挙げることができる。 Specific examples of the amine represented by the formula (II) include ethylamine, propylamine, butylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecyl. Amine, heptadecylamine, octadecylamine, nonadecylamine, eicosylamine, and behenylamine, and methylalkylamine and dimethylalkylamine in which at least one hydrogen atom in these amines is substituted with a methyl group it can.
 型剤として、単一のものを用いてよく、数種を組み合わせて用いてもよい。 As the mold, a single material may be used, or several types may be used in combination.
 型剤と珪素源との混合は、溶媒の存在下に実施する。溶媒としては水、アルコールが挙げられる。アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノールが挙げられる。 Mixing of mold and silicon source is performed in the presence of a solvent. Examples of the solvent include water and alcohol. Examples of the alcohol include methanol, ethanol, 1-propanol, and 2-propanol.
 工程Aを経ることにより、型剤と珪素酸化物とを含む固体が得られる。工程Aを経て得られた型剤と珪素酸化物とを含む固体は、ろ過等により、取り出すことができる。工程Aの混合は、20~200℃の温度範囲で2~1000時間かけて実施することが好ましい。また、混合中に撹拌を実施することもできる。 By passing through the process A, the solid containing a mold agent and silicon oxide is obtained. The solid containing the mold and silicon oxide obtained through step A can be taken out by filtration or the like. The mixing in step A is preferably carried out in the temperature range of 20 to 200 ° C. over 2 to 1000 hours. Moreover, stirring can also be implemented during mixing.
 <工程B>
 工程Bは、工程Aを経て得られた型剤と珪素酸化物とを含む固体から型剤を除去し、固体を得る工程であり、型剤除去工程と称することもある。工程Bを実施することにより、型剤を含まないか、又は型剤を実質的に含まない固体が得られる。
<Process B>
The process B is a process of removing the mold from the solid containing the mold obtained through the process A and the silicon oxide to obtain a solid, and may be referred to as a mold removing process. By performing the step B, a solid which does not contain a mold or substantially does not contain a mold is obtained.
 工程Bで得られた固体中の型剤の含有量は、10質量%以下であることが好ましく、1質量%以下であることがより好ましい。 The content of the mold in the solid obtained in Step B is preferably 10% by mass or less, and more preferably 1% by mass or less.
 型剤の除去は、型剤を含む固体を空気下、300~800℃で焼成するか、又は溶媒による抽出を行うことにより達成できる。抽出により型剤を除去することが好ましい。 The removal of the mold can be achieved by firing the solid containing the mold in air at 300 to 800 ° C. or by extracting with a solvent. It is preferable to remove the template by extraction.
 溶媒により型剤を抽出する技術は、Whitehurstらによって報告されている(米国特許5143879号公報参照。)。溶媒は、型剤として用いた化合物を溶解し得るものであればよく、一般に常温で液状の炭素原子数1~12の化合物、又は2種以上のそれらの化合物の混合物を用いることができる。好適な溶媒としては、アルコール、ケトン、非環式及び環式のエーテル及びエステルが挙げられる。アルコールとしては、たとえば、メタノール、エタノール、エチレングリコール、プロピレングリコール、1-プロパノール、2-プロパノール、1-ブタノール及びオクタノールが挙げられる。ケトンとしては、アセトン、ジエチルケトン、メチルエチルケトン及びメチルイソブチルケトンが挙げられる。エーテルとしては、ジイソブチルエーテル及びテトラヒドロフランが挙げられる。エステルとしては、酢酸メチル、酢酸エチル、酢酸ブチル及びプロピオン酸ブチルが挙げられる。 A technique for extracting a template with a solvent has been reported by Whitehurst et al. (See US Pat. No. 5,143,879). The solvent is not particularly limited as long as it can dissolve the compound used as the mold, and generally a compound having 1 to 12 carbon atoms that is liquid at room temperature or a mixture of two or more of these compounds can be used. Suitable solvents include alcohols, ketones, acyclic and cyclic ethers and esters. Examples of the alcohol include methanol, ethanol, ethylene glycol, propylene glycol, 1-propanol, 2-propanol, 1-butanol and octanol. Ketones include acetone, diethyl ketone, methyl ethyl ketone and methyl isobutyl ketone. Examples of ethers include diisobutyl ether and tetrahydrofuran. Esters include methyl acetate, ethyl acetate, butyl acetate and butyl propionate.
 溶媒としては、型剤の溶解能という観点から、例えば、型剤が第4級アンモニウムイオンを含む塩の場合には、アルコールが好ましく、なかでもメタノールがより好ましい。型剤を含む固体に対する溶媒の質量比は、通常1~1000であり、好ましくは5~300である。抽出効果を向上させるために、これらの溶媒に酸又はそれらの塩を添加してもよい。用いる酸の例としては、塩酸、硫酸、硝酸、及び臭酸等の無機酸、又は蟻酸、酢酸、プロピオン酸などの有機酸が挙げられる。それらの塩の例としては、アルカリ金属塩、アルカリ土類金属塩、及びアンモニウム塩が挙げられる。添加した酸又はそれらの塩の溶媒中の濃度は30質量%以下が好ましく、15質量%以下が更に好ましい。 As the solvent, from the viewpoint of the solubility of the mold, for example, when the mold is a salt containing a quaternary ammonium ion, an alcohol is preferable, and methanol is more preferable. The mass ratio of the solvent to the solid containing the mold is usually 1 to 1000, preferably 5 to 300. In order to improve the extraction effect, an acid or a salt thereof may be added to these solvents. Examples of the acid used include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and odorous acid, or organic acids such as formic acid, acetic acid, and propionic acid. Examples of such salts include alkali metal salts, alkaline earth metal salts, and ammonium salts. The concentration of the added acid or salt thereof in the solvent is preferably 30% by mass or less, and more preferably 15% by mass or less.
 型剤の除去方法としては、溶媒と型剤を含む固体とを十分に混合した後、ろ過あるいはデカンテーションなどの方法により液相部を分離する方法が挙げられる。この操作を複数回繰り返してもよい。また型剤を含有する固体をカラム等の容器に充填し、抽出溶媒を流通させる方法により型剤を抽出することも可能である。抽出温度は0~200℃が好ましく、20~100℃が更に好ましい。抽出溶媒の沸点が低い場合は、加圧して抽出を行ってもよい。 Examples of the method for removing the mold include a method in which the solvent and the solid containing the mold are sufficiently mixed, and then the liquid phase part is separated by a method such as filtration or decantation. This operation may be repeated a plurality of times. It is also possible to extract the mold by filling the solid containing the mold into a container such as a column and circulating the extraction solvent. The extraction temperature is preferably 0 to 200 ° C, more preferably 20 to 100 ° C. When the boiling point of the extraction solvent is low, the extraction may be performed by applying pressure.
 抽出処理により得られた溶液中の型剤は、回収して工程Aの型剤として再使用することができる。また同様に抽出溶媒も通常の蒸留操作などにより精製して再使用することができる。 The template in the solution obtained by the extraction treatment can be recovered and reused as the template in step A. Similarly, the extraction solvent can be purified and reused by a normal distillation operation or the like.
 <工程C>
 工程Cは、工程Bを経て得られた固体に0.01~20質量%の水を含む処理剤を接触させ、固体を得る工程であり、水処理工程と称することもある。処理剤中の含水量は0.01~20質量%であるが、0.02~10質量%であることがより好ましく、0.02~5質量%であることがさらに好ましく、0.1~2質量%であることが最も好ましい。含水量が多すぎるとチタン含有珪素酸化物の触媒性能、特に触媒活性に悪影響を及ぼす。工程Bを経て得られた固体の重量を1として、水を含む処理剤の重量は、通常1~1000であり、1~500であることが好ましく、1~200であることがより好ましく、1~100であることがさらに好ましい。
<Process C>
Step C is a step of obtaining a solid by bringing a treatment agent containing 0.01 to 20% by mass of water into contact with the solid obtained through Step B, and is sometimes referred to as a water treatment step. The water content in the treating agent is 0.01 to 20% by mass, more preferably 0.02 to 10% by mass, still more preferably 0.02 to 5% by mass, and more preferably 0.1 to Most preferably, it is 2 mass%. If the water content is too high, the catalyst performance of the titanium-containing silicon oxide, particularly the catalyst activity, will be adversely affected. The weight of the treatment agent containing water is usually 1 to 1000, preferably 1 to 500, more preferably 1 to 200, where the weight of the solid obtained through the step B is 1. More preferably, it is ˜100.
 処理剤は、例えば、含窒素塩基化合物、アルコール、カルボン酸およびこれらの化合物から選択される少なくとも1つを含んでいる。処理剤は、非プロトン性極性化合物(例えば、含窒素塩基化合物)、プロトン性極性化合物(例えば、アルコール、カルボン酸およびこれらの化合物)、又はプロトン性極性化合物と非プロトン性極性化合物との混合物であり得る。 The treating agent contains, for example, at least one selected from nitrogen-containing basic compounds, alcohols, carboxylic acids, and these compounds. The treating agent is an aprotic polar compound (for example, a nitrogen-containing base compound), a protic polar compound (for example, an alcohol, a carboxylic acid, or a compound thereof), or a mixture of a protic polar compound and an aprotic polar compound. possible.
 工程Cは、0.01~20質量%の水を含んだ処理剤を固体に接触させることにより、処理剤に含まれている水を固体に接触させる工程を指す。本明細書において、工程Cに使用される「処理剤」は、他の工程において使用される「処理液」とは区別される。 Step C refers to a step of bringing water contained in the treatment agent into contact with the solid by bringing the treatment agent containing 0.01 to 20% by mass of water into contact with the solid. In this specification, the “treatment agent” used in Step C is distinguished from the “treatment liquid” used in other steps.
 工程Cにおいて、工程Bを経て得られた固体に処理剤を1回以上接触させてもよい。固体に2回以上処理剤を接触させる場合は、処理剤は同一であっても、異なっていてもよい。 In step C, the treatment agent may be brought into contact with the solid obtained through step B one or more times. When the treatment agent is brought into contact with the solid twice or more, the treatment agent may be the same or different.
 工程Cにおいて、工程Bを経て得られた固体に水を含む処理剤を1回以上接触させた後、
プロトン性極性溶媒、非プロトン性極性溶媒、非極性化合物を含むプロトン性極性溶媒、又は非極性化合物を含む非プロトン性極性溶媒を含む水の含有量が0.01%未満である処理液に置換してもよい。プロトン性極性溶媒としては、例えば、後述のアルコールが挙げられ、非プロトン性極性溶媒としては、後述のケトン、ニトリル、エステルが挙げられ、非極性化合物としては、のトルエン等が挙げられる。
In step C, after bringing the treatment agent containing water into contact with the solid obtained through step B one or more times,
Replacement with a treatment solution containing less than 0.01% water containing a protic polar solvent, aprotic polar solvent, a protic polar solvent containing a nonpolar compound, or an aprotic polar solvent containing a nonpolar compound May be. Examples of the protic polar solvent include alcohols described below, examples of the aprotic polar solvent include ketones, nitriles, and esters described below, and examples of the nonpolar compound include toluene.
 処理剤が含窒素塩基化合物を含む場合、下記式(III)で表される化合物又は下記式(IV)で表される化合物が好ましい。
NR10(III)
When the treating agent contains a nitrogen-containing base compound, a compound represented by the following formula (III) or a compound represented by the following formula (IV) is preferable.
NR 8 R 9 R 10 (III)
Figure JPOXMLDOC01-appb-C000002
 式(III)において、R~R10はそれぞれ独立して水素原子、炭素原子数1~18の直鎖状の炭化水素基、炭素原子数3~18の分岐状の炭化水素基、又は炭素原子数5~18の環状の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000002
In the formula (III), R 8 to R 10 are each independently a hydrogen atom, a linear hydrocarbon group having 1 to 18 carbon atoms, a branched hydrocarbon group having 3 to 18 carbon atoms, or carbon Represents a cyclic hydrocarbon group having 5 to 18 atoms.
 式(III)で表される含窒素塩基化合物の具体例としては、アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、n-プロピルアミン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、ジエチルメチルアミン、ジエチルブチルアミン、メチルエチルプロピルアミン、メチルエチルブチルアミン、ジプロピルメチルアミン、メチルプロピルブチルアミン、ジブチルメチルアミン、トリエチルアミン、ジエチルプロピルアミン、ジプロピルエチルアミン、エチルプロピルブチルアミン、ジブチルエチルアミン、トリプロピルアミン、ジプロピルブチルアミン、ジブチルプロピルアミン、トリブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、及びトリ-n-オクチルアミンが挙げられる。 Specific examples of the nitrogen-containing base compound represented by the formula (III) include ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n- Propylamine, dimethylethylamine, dimethylpropylamine, diethylmethylamine, diethylbutylamine, methylethylpropylamine, methylethylbutylamine, dipropylmethylamine, methylpropylbutylamine, dibutylmethylamine, triethylamine, diethylpropylamine, dipropylethylamine, ethyl Propylbutylamine, dibutylethylamine, tripropylamine, dipropylbutylamine, dibutylpropylamine, tributylamine, pentyla Emissions, hexylamine, and tri -n- octyl amine.
 式(IV)において、R11~R15はそれぞれ独立して(a)炭素原子数1~6の直鎖状の炭化水素基、炭素原子数3~6の分岐状の炭化水素基、及び炭素原子数5~6の環状の炭化水素基からなる群から選択される炭化水素基、(b)水素原子、(c)フッ素原子、塩素原子、臭素原子、及びヨウ素原子からなる群から選択されるハロゲン原子、(d)-OAで表される基、ならびに(e)-NAで表される基、からなる群から選択される基であり、式中A、A及びAはそれぞれ独立して水素原子、炭素原子数1~6の直鎖状の炭化水素基、炭素原子数3~6の分岐状の炭化水素基、又は炭素原子数5~6の環状の炭化水素基を表す。 In the formula (IV), R 11 to R 15 are each independently (a) a linear hydrocarbon group having 1 to 6 carbon atoms, a branched hydrocarbon group having 3 to 6 carbon atoms, and carbon. A hydrocarbon group selected from the group consisting of cyclic hydrocarbon groups of 5 to 6 atoms, (b) selected from the group consisting of hydrogen atoms, (c) fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms A group selected from the group consisting of a halogen atom, a group represented by (d) -OA 1 and a group represented by (e) -NA 2 A 3 , wherein A 1 , A 2 and A 3 are each independently a hydrogen atom, a linear hydrocarbon group having 1 to 6 carbon atoms, a branched hydrocarbon group having 3 to 6 carbon atoms, or a cyclic hydrocarbon group having 5 to 6 carbon atoms. Represents a group.
 式(IV)で表される含窒素塩基化合物の具体例としては、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、及びキノリンが挙げられる。 Specific examples of the nitrogen-containing base compound represented by the formula (IV) include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, and quinoline.
 好ましい含窒素塩基化合物は、第3級アミン、アンモニア、及びピリジンであり、トリ-n-オクチルアミン、アンモニア、及びピリジンが更に好ましい。これらの含窒素塩基化合物は、単独で使用してよいし、2種類以上を組み合わせて使用してもよい。 Preferred nitrogen-containing base compounds are tertiary amine, ammonia, and pyridine, and tri-n-octylamine, ammonia, and pyridine are more preferred. These nitrogen-containing base compounds may be used alone or in combination of two or more.
 処理剤がアルコールを含む場合、アルコールとしては1級アルコール、2級アルコール、及び3級アルコールが挙げられ、炭素原子数1~12のアルコールが好ましく、3級アルコールがより好ましく、tert-ブチルアルコールがさらに好ましい。 When the treatment agent contains alcohol, examples of the alcohol include primary alcohols, secondary alcohols, and tertiary alcohols, alcohols having 1 to 12 carbon atoms are preferred, tertiary alcohols are more preferred, and tert-butyl alcohol is preferred. Further preferred.
 処理剤がカルボン酸を含む場合、カルボン酸としては炭素原子数1~12のカルボン酸が好ましく、ギ酸、酢酸およびプロピオン酸がさらに好ましい。 When the treating agent contains a carboxylic acid, the carboxylic acid is preferably a carboxylic acid having 1 to 12 carbon atoms, and more preferably formic acid, acetic acid and propionic acid.
 処理剤は、含窒素塩基化合物、アルコールまたはカルボン酸を含む場合、これらは互いに混合されていてもよいし、別の溶媒で希釈されていてもよい。希釈を行う場合に好ましい溶媒は、常温で液状の炭素原子数1~12の炭化水素、ハロゲン化炭化水素等の非極性有機溶媒(非極性化合物)、ケトン、エーテル、エステル、N,N-二置換アミド、ニトリル、スルフォキシドなどの非プロトン性極性有機溶媒(非プロトン性極性化合物)である。常温で液状の炭素原子数1~12の炭化水素としては、ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレンが挙げられる。ハロゲン化炭化水素としては、クロロホルムが挙げられる。ケトンとしては、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトンが挙げられる。エーテルとしては、ジエチルエーテル、ジイソブチルエーテル、テトラヒドロフラン、ジオキサンが挙げられる。エステルとしては、酢酸メチル、酢酸エチルが挙げられる。N,N-二置換アミドとしては、ジメチルホルムアミドが挙げられる。ニトリルとしては、アセトニトリルが挙げられる。スルフォキシドとしては、ジメチルスルフォキシドが挙げられる。有機化合物としては、炭素原子数1~12のアルコール、常温で液状の炭素原子数1~12の炭化水素、ケトン及びニトリルが好ましく、tert-ブチルアルコール、2-メチル-2-ブタノール、アセトニトリル、ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン、及びアセトンが好ましい。 When the treating agent contains a nitrogen-containing base compound, alcohol or carboxylic acid, these may be mixed with each other or diluted with another solvent. Preferred solvents for dilution include non-polar organic solvents (non-polar compounds) such as hydrocarbons having 1 to 12 carbon atoms and halogenated hydrocarbons that are liquid at room temperature, ketones, ethers, esters, N, N-2 Aprotic polar organic solvents (aprotic polar compounds) such as substituted amides, nitriles and sulfoxides. Examples of the hydrocarbon having 1 to 12 carbon atoms which are liquid at normal temperature include hexane, cyclohexane, benzene, toluene and xylene. An example of the halogenated hydrocarbon is chloroform. Examples of the ketone include acetone, diethyl ketone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of ethers include diethyl ether, diisobutyl ether, tetrahydrofuran, and dioxane. Examples of the ester include methyl acetate and ethyl acetate. N, N-disubstituted amides include dimethylformamide. A nitrile includes acetonitrile. Examples of the sulfoxide include dimethyl sulfoxide. The organic compound is preferably an alcohol having 1 to 12 carbon atoms, a hydrocarbon having 1 to 12 carbon atoms which is liquid at room temperature, a ketone or a nitrile, and tert-butyl alcohol, 2-methyl-2-butanol, acetonitrile, hexane. , Cyclohexane, benzene, toluene, xylene, and acetone are preferred.
 処理剤と型材除去後の固体との接触温度は通常、0~200℃であり、0~150℃であることがより好ましい。かかる接触は、例えばバッチ法及び流通法で実施できる。処理剤の沸点が低い場合には、加圧下に工程Cを実施してもよい。 The contact temperature between the treating agent and the solid after removing the mold material is usually 0 to 200 ° C., more preferably 0 to 150 ° C. Such contact can be performed by, for example, a batch method and a distribution method. When the boiling point of the treatment agent is low, step C may be performed under pressure.
 工程Cの終了後、下記工程Eの開始の前に、工程Cを経て得られた固体に含まれるシリル化に対して活性な成分の量を低減することが好ましい。 After the completion of Step C, it is preferable to reduce the amount of components active against silylation contained in the solid obtained through Step C before the start of Step E below.
 シリル化に対して活性な成分の量を低減させる方法として、後述する液体置換および/または乾燥が挙げられる。 Examples of a method for reducing the amount of an active component for silylation include liquid replacement and / or drying described later.
 工程Eは、工程Cを経て得られた固体に含まれる処理剤および/または処理液を、シリル化剤に対して実質的に不活性な液体に置換する工程であり、液体置換工程と称することもある。実質的な不活性な液体としては、例えば、炭化水素、ハロアルカン、エーテルが挙げられる。炭化水素としては、炭素原子数6~14の脂肪族または芳香族炭化水素が挙げられる。ハロアルカンとしては、ジクロロメタン、テトラクロロエチレンが挙げられる。エーテルとしてはジエチルエーテル、テトラヒドロフランが挙げられる。工程Eで用いられる実質的に不活性な液体とは、炭化水素であることが好ましく、トルエンであることがさらに好ましい。液体置換における置換用液体の温度は、通常、0~200℃である。液体置換は、バッチ法又は流通法で実施できる。 Step E is a step of replacing the treatment agent and / or treatment liquid contained in the solid obtained through Step C with a liquid that is substantially inert to the silylating agent, and is referred to as a liquid substitution step. There is also. Examples of the substantially inert liquid include hydrocarbons, haloalkanes, and ethers. Examples of the hydrocarbon include aliphatic or aromatic hydrocarbons having 6 to 14 carbon atoms. Examples of the haloalkane include dichloromethane and tetrachloroethylene. Examples of ethers include diethyl ether and tetrahydrofuran. The substantially inert liquid used in step E is preferably a hydrocarbon, and more preferably toluene. The temperature of the replacement liquid in the liquid replacement is usually 0 to 200 ° C. Liquid replacement can be carried out by a batch method or a flow method.
 工程Cを経て得られた固体の乾燥を行う場合(工程F)、圧力は常圧または減圧下が好ましい。好適な温度は処理液によって異なるが、触媒性能の観点からは一般に0℃以上700℃以下であり、0℃以上200℃以下であることが好ましい。乾燥はバッチ法またはガス流通法で実施できる。 When drying the solid obtained through Step C (Step F), the pressure is preferably normal pressure or reduced pressure. Although a suitable temperature varies depending on the treatment liquid, it is generally 0 ° C. or higher and 700 ° C. or lower and preferably 0 ° C. or higher and 200 ° C. or lower from the viewpoint of catalyst performance. Drying can be carried out by a batch method or a gas flow method.
 固体の乾燥は、工程C後の乾燥のみならず、工程A~Cを行なう場合、これらの工程のうちいずれかの終了後、その次の工程の前に、工程Fと同様の条件によって固体の乾燥を行なってもよい。また、工程E及び工程Fの何れか一方又は両方を、工程C後、工程D前において行なってもよい。 The drying of the solid is not limited to the drying after the step C. When the steps A to C are performed, the solid is dried under the same conditions as in the step F after the completion of any of these steps and before the next step. Drying may be performed. Moreover, you may perform either one or both of the process E and the process F before the process D after the process C.
 <工程D>
 工程Dは、工程Cを経て得られた固体をシリル化剤と接触させ、固体を得る工程である。工程Dを実施することにより、工程Cを経て得られた固体がシリル化される。
<Process D>
Step D is a step of obtaining a solid by bringing the solid obtained through Step C into contact with a silylating agent. By performing Step D, the solid obtained through Step C is silylated.
 シリル化は、工程Cを経て得られた固体にガス状のシリル化剤を接触させて反応させる気相法で行ってもよいし、溶媒中でシリル化剤と固体とを接触させて反応させる液相法で行ってもよく、本発明の一態様においては液相法がより好ましい。通常、シリル化を液相法で行う場合は、炭化水素が工程Dにおいて溶媒として好適に用いられる。液相法でシリル化を行った際には、その後に乾燥を行ってもよい。 The silylation may be performed by a gas phase method in which a gaseous silylating agent is brought into contact with the solid obtained through Step C and reacted, or the silylating agent and the solid are brought into contact in a solvent to be reacted. The liquid phase method may be used, and in one embodiment of the present invention, the liquid phase method is more preferable. Usually, when performing silylation by a liquid phase method, a hydrocarbon is used suitably as a solvent in the process D. When silylation is performed by a liquid phase method, drying may be performed thereafter.
 シリル化剤とは、固体に対して反応性を有する珪素化合物であって、珪素に加水分解性基が結合しており、当該珪素には、アルキル基、ビニル基等のアリル基、フェニル基等のアリール基、ハロゲン化アルキル基、及びシロキシ基等からなる群から選択される少なくとも1つ以上の基が結合している化合物である。珪素に結合した加水分解性基としては、水素、ハロゲン、アルコキシ基、アセトキシ基、アミノ基が挙げられる。シリル化剤中、珪素に結合した加水分解性基は1つであることが好ましい。 A silylating agent is a silicon compound that is reactive to a solid, and a hydrolyzable group is bonded to silicon, and the silicon includes an allyl group such as an alkyl group or a vinyl group, a phenyl group, or the like. In which at least one group selected from the group consisting of an aryl group, a halogenated alkyl group, and a siloxy group is bonded. Examples of the hydrolyzable group bonded to silicon include hydrogen, halogen, alkoxy group, acetoxy group, and amino group. In the silylating agent, the number of hydrolyzable groups bonded to silicon is preferably one.
 シリル化剤としては、例えば、有機シラン、有機シリルアミン、有機シリルアミドとその誘導体、及び有機シラザンが挙げられる。 Examples of the silylating agent include organic silane, organic silylamine, organic silylamide and derivatives thereof, and organic silazane.
 有機シランとしては、例えば、クロロトリメチルシラン、ジクロロジメチルシラン、クロロブロモジメチルシラン、ニトロトリメチルシラン、クロロトリエチルシラン、ヨードジメチルブチルシラン、クロロジメチルフェニルシラン、クロロジメチルシラン、ジメチルn-プロピルクロロシラン、ジメチルイソプロピルクロロシラン、tert-ブチルジメチルクロロシラン、トリプロピルクロロシラン、ジメチルオクチルクロロシラン、トリブチルクロロシラン、トリヘキシルクロロシラン、ジメチルエチルクロロシラン、ジメチルオクタデシルクロロシラン、n-ブチルジメチルクロロシラン、ブロモメチルジメチルクロロシラン、クロロメチルジメチルクロロシラン、3-クロロプロピルジメチルクロロシラン、ジメトキシメチルクロロシラン、メチルフェニルクロロシラン、メチルフェニルビニルクロロシラン、ベンジルジメチルクロロシラン、ジフェニルクロロシラン、ジフェニルメチルクロロシラン、ジフェニルビニルクロロシラン、トリベンジルクロロシラン、メトキシトリメチルシラン、ジメトキシジメチルシラン、トリメトキシメチルシラン、エトキシトリメチルシラン、ジエトキシジメチルシラン、トリエトキシメチルシラン、トリメトキシエチルシラン、ジメトキシジエチルシラン、メトキシトリエチルシラン、エトキシトリエチルシラン、ジエトキシジエチルシラン、トリエトキシエチルシラン、メトキシトリフェニルシラン、ジメトキシジフェニルシラン、トリメトキシフェニルシラン、エトキシトリフェニルシラン、ジエトキシジフェニルシラン、トリエトキシフェニルシラン、ジクロロテトラメチルジシロキサン、3-シアノプロピルジメチルクロロシラン、1,3‐ジクロロ-1,1,3,3‐テトラメチルジシロキサン、及び1,3‐ジメトキシ-1,1,3,3‐テトラメチルジシロキサンが挙げられる。 Examples of the organic silane include chlorotrimethylsilane, dichlorodimethylsilane, chlorobromodimethylsilane, nitrotrimethylsilane, chlorotriethylsilane, iododimethylbutylsilane, chlorodimethylphenylsilane, chlorodimethylsilane, dimethyl n-propylchlorosilane, and dimethylisopropyl. Chlorosilane, tert-butyldimethylchlorosilane, tripropylchlorosilane, dimethyloctylchlorosilane, tributylchlorosilane, trihexylchlorosilane, dimethylethylchlorosilane, dimethyloctadecylchlorosilane, n-butyldimethylchlorosilane, bromomethyldimethylchlorosilane, chloromethyldimethylchlorosilane, 3-chloro Propyldimethylchlorosilane, dimethoxymethyl chloride Rosilane, methylphenylchlorosilane, methylphenylvinylchlorosilane, benzyldimethylchlorosilane, diphenylchlorosilane, diphenylmethylchlorosilane, diphenylvinylchlorosilane, tribenzylchlorosilane, methoxytrimethylsilane, dimethoxydimethylsilane, trimethoxymethylsilane, ethoxytrimethylsilane, diethoxydimethyl Silane, triethoxymethylsilane, trimethoxyethylsilane, dimethoxydiethylsilane, methoxytriethylsilane, ethoxytriethylsilane, diethoxydiethylsilane, triethoxyethylsilane, methoxytriphenylsilane, dimethoxydiphenylsilane, trimethoxyphenylsilane, ethoxytri Phenylsilane, diethoxydiphenylsilane, Riethoxyphenylsilane, dichlorotetramethyldisiloxane, 3-cyanopropyldimethylchlorosilane, 1,3-dichloro-1,1,3,3-tetramethyldisiloxane, and 1,3-dimethoxy-1,1,3, 3-tetramethyldisiloxane is mentioned.
 有機シリルアミンとしては、例えば、N-(トリメチルシリル)イミダゾール、N-(tert-ブチルジメチルシリル)イミダゾール、N-(ジメチルエチルシリル)イミダゾール、N-(ジメチルn-プロピルシリル)イミダゾール、N-(ジメチルイソプロピルシリル)イミダゾール、N-(トリメチルシリル)-N,N-ジメチルアミン、N-(トリメチルシリル)-N,N-ジエチルアミン、N-(トリメチルシリル)ピロール、N-(トリメチルシリル)ピロリジン、N-(トリメチルシリル)ピペリジン、1-シアノエチル(ジエチルアミノ)ジメチルシラン、及びペンタフルオロフェニルジメチルシリルアミンが挙げられる。 Examples of the organic silylamine include N- (trimethylsilyl) imidazole, N- (tert-butyldimethylsilyl) imidazole, N- (dimethylethylsilyl) imidazole, N- (dimethyln-propylsilyl) imidazole, N- (dimethylisopropyl). Silyl) imidazole, N- (trimethylsilyl) -N, N-dimethylamine, N- (trimethylsilyl) -N, N-diethylamine, N- (trimethylsilyl) pyrrole, N- (trimethylsilyl) pyrrolidine, N- (trimethylsilyl) piperidine, Examples thereof include 1-cyanoethyl (diethylamino) dimethylsilane and pentafluorophenyldimethylsilylamine.
 有機シリルアミド及び誘導体としては、例えば、N,O-ビス(トリメチルシリル)アセトアミド、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N-(トリメチルシリル)アセトアミド、N-メチル-N-(トリメチルシリル)アセトアミド、N-メチル-N-(トリメチルシリル)トリフルオロアセトアミド、N-メチル-N-(トリメチルシリル)ヘプタフルオロブチルアミド、N-(tert-ブチルジメチルシリル)-N-トリフルオロアセトアミド、及びN,O-ビス(ジエチルハイドロシリル)トリフルオロアセトアミドが挙げられる。 Examples of organic silylamides and derivatives include N, O-bis (trimethylsilyl) acetamide, N, O-bis (trimethylsilyl) trifluoroacetamide, N- (trimethylsilyl) acetamide, N-methyl-N- (trimethylsilyl) acetamide, N -Methyl-N- (trimethylsilyl) trifluoroacetamide, N-methyl-N- (trimethylsilyl) heptafluorobutyramide, N- (tert-butyldimethylsilyl) -N-trifluoroacetamide, and N, O-bis (diethyl Hydrosilyl) trifluoroacetamide.
 有機シラザンとしては、例えば、1,1,1,3,3,3-ヘキサメチルジシラザン、ヘプタメチルジシラザン、1,1,3,3-テトラメチルジシラザン、1,3-ビス(クロロメチル)-1,1,3,3-テトラメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、及び1,3-ジフェニル-1,1,3,3-テトラメチルジシラザンが挙げられる。 Examples of the organic silazane include 1,1,1,3,3,3-hexamethyldisilazane, heptamethyldisilazane, 1,1,3,3-tetramethyldisilazane, 1,3-bis (chloromethyl). ) -1,1,3,3-tetramethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, and 1,3-diphenyl-1,1,3,3-tetra And methyl disilazane.
 シリル化剤の更なる例としては、N-メトキシ-N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N-メトキシ-N,O-ビス(トリメチルシリル)カーバメート、N,O-ビス(トリメチルシリル)スルファメート、トリメチルシリルトリフルオロメタンスルホナート、及びN,N’-ビス(トリメチルシリル)尿素が挙げられる。
好ましいシリル化剤は有機シラザンであり、より好ましくは1,1,1,3,3,3-ヘキサメチルジシラザンである。
Further examples of silylating agents include N-methoxy-N, O-bis (trimethylsilyl) trifluoroacetamide, N-methoxy-N, O-bis (trimethylsilyl) carbamate, N, O-bis (trimethylsilyl) sulfamate, Examples include trimethylsilyl trifluoromethanesulfonate and N, N′-bis (trimethylsilyl) urea.
A preferred silylating agent is an organic silazane, more preferably 1,1,1,3,3,3-hexamethyldisilazane.
 工程A~Fいずれかの工程中に、チタンが固体に導入されてもよい。工程Aと工程Bとの間、工程Bと工程Cとの間、工程Cと工程Eとの間、工程Cと工程Fの間、工程Eと工程Dの間、または工程Fと工程Dの間で、チタンが固体に導入されてもよい。 Titanium may be introduced into the solid during any of steps A to F. Between step A and step B, between step B and step C, between step C and step E, between step C and step F, between step E and step D, or between step F and step D. In between, titanium may be introduced into the solid.
 チタンの固体への導入は、前述した工程中、及び工程の間の両方において行ってもよい。 The introduction of titanium into the solid may be performed both during and between the steps described above.
 本明細書において、「チタンが固体に導入される」とは、珪素酸化物を含む固体とチタン源とを混合することにより、固体に含まれる珪素酸化物に-Si-O-Tiで表される結合が導入されることを意味する。 In this specification, “titanium is introduced into a solid” is expressed by —Si—O—Ti in the silicon oxide contained in the solid by mixing the solid containing the silicon oxide and the titanium source. Means that a bond is introduced.
 工程Dの開始より前に、チタンが固体に導入されることが好ましく、工程A内、工程Bと工程Cとの間、および工程Cと工程Dとの間からなる群から選ばれる少なくとも一つ以上において固体にチタンが導入されることより好ましく、工程A内でチタンが固体に導入されることがさらに好ましい。 It is preferable that titanium is introduced into the solid before the start of step D, and at least one selected from the group consisting of step A, step B and step C, and step C and step D. In the above, it is more preferable that titanium is introduced into the solid, and it is further preferable that titanium is introduced into the solid within the step A.
 工程A内でチタンが固体に導入される場合には、工程A内で珪素源、チタン源及び型剤を混合する。 In the case where titanium is introduced into the solid in the process A, a silicon source, a titanium source and a mold agent are mixed in the process A.
 工程Aの終了後、工程Bの開始前に、工程Aを経て得られた固体とチタン源とを接触させることにより、チタンが固体に導入されてもよい。 After completion of step A, before the start of step B, titanium may be introduced into the solid by bringing the solid obtained through step A into contact with the titanium source.
 工程Bの終了後、工程Cの開始前に、工程Bを経て得られた固体とチタン源とを接触させることにより、チタンが固体に導入されてもよい。 After completion of step B, before starting step C, titanium may be introduced into the solid by contacting the solid obtained through step B with a titanium source.
 工程Cの終了後、工程Dの開始前に、工程Cを経て得られた固体とチタン源とを接触させることにより、チタンが固体に導入されてもよい。 After completion of step C, before starting step D, titanium may be introduced into the solid by bringing the solid obtained through step C into contact with the titanium source.
 チタンが導入される固体とチタン源とを液相中で接触させることにより、チタンを固体に導入してもよく、チタンが導入される固体にチタン源を含む気体を接触させることにより、チタンを固体に導入してもよい。 Titanium may be introduced into the solid by contacting the solid into which the titanium is introduced and the titanium source in a liquid phase, and the titanium containing the titanium is brought into contact with the solid into which titanium is introduced by contacting the solid. It may be introduced into a solid.
 チタン源としては、チタンアルコキサイド、キレート型チタン錯体、ハロゲン化チタン、及びチタンを含む硫酸塩が挙げられる。チタンアルコキサイドとしては、例えばチタン酸テトラメチル、チタン酸テトラエチル、チタン酸テトラプロピル、チタン酸テトライソプロピル、チタン酸テトラブチル、チタン酸テトライソブチル、チタン酸テトラ(2-エチルヘキシル)、及びチタン酸テトラオクタデシルが挙げられる。キレート型チタン錯体としては、チタニウム(IV)オキシアセチルアセトナート、及びチタニウム(IV)ジイソプロポキシビスアセチルアセトナートが挙げられる。ハロゲン化チタンとしては、例えば四塩化チタン、四臭化チタン、及び四沃化チタンが挙げられる。チタンを含む硫酸塩としては、例えば硫酸チタニルが挙げられる。 Examples of the titanium source include titanium alkoxide, chelate-type titanium complex, titanium halide, and sulfate containing titanium. Examples of titanium alkoxide include tetramethyl titanate, tetraethyl titanate, tetrapropyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetraisobutyl titanate, tetra (2-ethylhexyl) titanate, and tetraoctadecyl titanate. Is mentioned. Examples of the chelate-type titanium complex include titanium (IV) oxyacetylacetonate and titanium (IV) diisopropoxybisacetylacetonate. Examples of the titanium halide include titanium tetrachloride, titanium tetrabromide, and titanium tetraiodide. Examples of the sulfate containing titanium include titanyl sulfate.
 製造されたチタン含有珪素酸化物は、有機化合物の酸化反応、例えばオレフィンのエポキシ化反応の触媒として用いることができ、特にオレフィンとハイドロパーオキサイドとを反応させるエポキシドの製造に用いることが好ましい。 The produced titanium-containing silicon oxide can be used as a catalyst for an oxidation reaction of an organic compound, for example, an epoxidation reaction of an olefin, and is particularly preferably used for the production of an epoxide in which an olefin and a hydroperoxide are reacted.
 エポキシ化反応に供するオレフィンは、非環式オレフィン、単環式オレフィン、二環式オレフィン又は三環以上の多環式オレフィンであってよく、モノオレフィン、ジオレフィン又はポリオレフィンであってよい。オレフィンの分子内に二重結合が2個以上ある場合には、これらの二重結合は、共役結合であってよく、又は非共役結合であってよい。炭素原子2~60個のオレフィンが好ましい。オレフィンは、置換基を有していてもよい。このようなオレフィンの例には、エチレン、プロピレン、1-ブテン、イソブチレン、1-ヘキセン、2-ヘキセン、3-ヘキセン、1-オクテン、1-デセン、スチレン、及びシクロヘキセンが挙げられる。オレフィンには、酸素原子、硫黄原子、又は窒素原子を、水素原子もしくは炭素原子、又はそれら両方と共に含有する置換基が存在してもよく、そのようなオレフィンの例としては、アリルアルコール、クロチルアルコール、及び塩化アリルが挙げられる。ジオレフィンの例としては、ブタジエン、及びイソプレンが挙げられる。特に好ましいオレフィンとしては、プロピレンが挙げられる。 The olefin to be subjected to the epoxidation reaction may be an acyclic olefin, a monocyclic olefin, a bicyclic olefin, a tricyclic or higher polycyclic olefin, or a monoolefin, a diolefin, or a polyolefin. When there are two or more double bonds in the olefin molecule, these double bonds may be conjugated bonds or non-conjugated bonds. Olefins having 2 to 60 carbon atoms are preferred. The olefin may have a substituent. Examples of such olefins include ethylene, propylene, 1-butene, isobutylene, 1-hexene, 2-hexene, 3-hexene, 1-octene, 1-decene, styrene, and cyclohexene. In the olefin, there may be a substituent containing an oxygen atom, a sulfur atom, or a nitrogen atom together with a hydrogen atom or a carbon atom, or both. Examples of such an olefin include allyl alcohol, crotyl Alcohol and allyl chloride are mentioned. Examples of diolefins include butadiene and isoprene. Particularly preferred olefins include propylene.
 ハイドロパーオキサイドの例として、有機ハイドロパーオキサイドが挙げられる。有機ハイドロパーオキサイドは、式(V)
R-O-O-H (V)
 (式(V)中、Rは炭化水素基である。)
を有する化合物である。有機ハイドロパーオキサイドは、オレフィンと反応して、エポキシド及びヒドロキシル化合物を生成する。式(V)中のRは、好ましくは炭素原子数3~20の炭化水素基であり、より好ましくは、炭素原子数3~10の炭化水素基である。有機ハイドロパーオキサイドの具体例としては、tert-ブチルハイドロパーオキサイド、1-フェニルエチルハイドロパーオキサイド、及びクメンハイドロパーオキサイドが挙げられる。クメンハイドロパーオキサイドを、以下、CMHPと略記することがある。
An organic hydroperoxide is mentioned as an example of a hydroperoxide. The organic hydroperoxide has the formula (V)
R—O—O—H (V)
(In the formula (V), R is a hydrocarbon group.)
It is a compound which has this. Organic hydroperoxides react with olefins to produce epoxides and hydroxyl compounds. R in the formula (V) is preferably a hydrocarbon group having 3 to 20 carbon atoms, and more preferably a hydrocarbon group having 3 to 10 carbon atoms. Specific examples of the organic hydroperoxide include tert-butyl hydroperoxide, 1-phenylethyl hydroperoxide, and cumene hydroperoxide. Cumene hydroperoxide may hereinafter be abbreviated as CMHP.
 有機ハイドロパーオキサイドとしてCMHPを使用すると、得られるヒドロキシル化合物は2-フェニル-2-プロパノールである。この2-フェニル-2-プロパノールは、脱水反応及び水素化反応を経ることによりクメンを生成する。クメンを、以下、CUMと略記することがある。さらに、このCUMを酸化することにより、CHMPが再び得られる。このような観点から、エポキシ化反応に用いる有機ハイドロパーオキサイドとして、CMHPを使用することが好ましい。 When CMHP is used as the organic hydroperoxide, the resulting hydroxyl compound is 2-phenyl-2-propanol. This 2-phenyl-2-propanol produces cumene through a dehydration reaction and a hydrogenation reaction. Hereinafter, cumene may be abbreviated as CUM. Further, by oxidizing this CUM, CHMP is obtained again. From such a viewpoint, it is preferable to use CMHP as the organic hydroperoxide used in the epoxidation reaction.
 エポキシ化反応は、溶媒、希釈剤、又はそれらの混合物を用いて液相中で実施できる。溶媒及び希釈剤は、反応時の温度及び圧力の下で液体であり、かつ、反応体及び生成物に対して実質的に不活性でなければならない。CMHPを、その原料であるCUMの存在下にエポキシ化反応に供する場合には、特に溶媒を添加することなく、CUMを溶媒とすることもできる。 The epoxidation reaction can be performed in a liquid phase using a solvent, a diluent, or a mixture thereof. The solvent and diluent must be liquid under the temperature and pressure during the reaction and be substantially inert to the reactants and product. When CMHP is subjected to an epoxidation reaction in the presence of its raw material CUM, CUM can be used as a solvent without particularly adding a solvent.
 エポキシ化反応温度は一般に0~200℃であり、25~200℃の温度が好ましい。エポキシ化反応圧力は、反応相を液体の状態に保つのに充分な圧力でよく、一般には100~10000kPaであることが好ましい。 The epoxidation reaction temperature is generally 0 to 200 ° C., preferably 25 to 200 ° C. The epoxidation reaction pressure may be a pressure sufficient to keep the reaction phase in a liquid state, and is generally preferably 100 to 10,000 kPa.
 エポキシ化反応の終了後に、所望の生成物を含有する液状混合物を触媒組成物から分離することができる。次いで、液状混合物を適当な方法によって精製することができる。精製する方法としては、蒸留、抽出、洗浄が挙げられる。溶媒及び未反応オレフィンは、再循環して再び使用することができる。 After completion of the epoxidation reaction, the liquid mixture containing the desired product can be separated from the catalyst composition. The liquid mixture can then be purified by a suitable method. Examples of the purification method include distillation, extraction, and washing. The solvent and unreacted olefin can be recycled and reused.
 本発明の一態様により製造されたチタン含有ケイ素酸化物を触媒として用いる反応は、スラリー又は固定床の形式で行うことができ、大規模な工業的操作の場合には固定床を用いることが好ましい。本発明の一態様により製造されたチタン含有ケイ素酸化物を触媒として用いる場合は、粉体であってもよいし、成型体でもよい。固定床で反応させる場合は、チタン含有ケイ素酸化物は成型体であることが好ましい。本反応は、回分法、半連続法又は連続法によって実施できる。 The reaction using the titanium-containing silicon oxide produced according to one embodiment of the present invention as a catalyst can be performed in the form of a slurry or a fixed bed, and in the case of a large-scale industrial operation, it is preferable to use a fixed bed. . When the titanium-containing silicon oxide produced according to one embodiment of the present invention is used as a catalyst, it may be a powder or a molded body. When the reaction is performed on a fixed bed, the titanium-containing silicon oxide is preferably a molded body. This reaction can be carried out by a batch method, a semi-continuous method or a continuous method.
 以下、実施例により本発明の一態様をさらに詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in more detail by way of examples.
 〔実施例1〕
 (A)工程A及びチタン導入
 水:メタノール=72:28の混合比(質量比)を有する混合溶媒により16質量%の濃度に希釈されたヘキサデシルトリメチルアンモニウムヒドロキシド(16質量%濃度の溶液の量で125質量部)を撹拌し、これに、撹拌下、室温でチタン酸テトライソプロピル1.9質量部と2-プロパノール10質量部の混合溶液を滴下して加えた。滴下終了後に30分間撹拌した後、撹拌下にテトラメチルオルトシリケート38質量部を滴下した。その後、室温で3時間撹拌を続け、生じた固体をろ別した。得られた固体を減圧下、70℃で乾燥し、白色固体を得た。ヘキサデシルトリメチルアンモニウムヒドロキシド、テトラメチルオルソシリケート、及びチタン酸テトライソプロピルは、それぞれ型剤、珪素源、及びチタン源である。
[Example 1]
(A) Step A and introduction of titanium Hexadecyltrimethylammonium hydroxide diluted to a concentration of 16% by mass with a mixed solvent having a mixing ratio (mass ratio) of water: methanol = 72: 28 (of a solution having a concentration of 16% by mass) 125 parts by mass) was stirred, and a mixed solution of 1.9 parts by mass of tetraisopropyl titanate and 10 parts by mass of 2-propanol was added dropwise thereto at room temperature with stirring. After stirring for 30 minutes after completion of the dropping, 38 parts by mass of tetramethylorthosilicate was added dropwise with stirring. Thereafter, stirring was continued at room temperature for 3 hours, and the resulting solid was filtered off. The obtained solid was dried at 70 ° C. under reduced pressure to obtain a white solid. Hexadecyltrimethylammonium hydroxide, tetramethylorthosilicate, and tetraisopropyl titanate are the mold, silicon source, and titanium source, respectively.
 得られた白色固体10質量部に水分含量が1.3質量部となるよう水を加え、よく混合した。その後に、得られた混合物をロールプレス機で圧縮成型した。得られた成型体を破砕し、得られた破砕物を篩にかけ、粒子径が1.0~2.0mmの型剤を含む成型体を得た。粒子径が1.0mm以下の成型体は、前記の要領で再度圧縮成型し、破砕した。 Water was added to 10 parts by mass of the obtained white solid so that the water content became 1.3 parts by mass, and mixed well. Thereafter, the obtained mixture was compression molded with a roll press. The obtained molded product was crushed and the obtained crushed product was sieved to obtain a molded product containing a mold having a particle size of 1.0 to 2.0 mm. The molded body having a particle diameter of 1.0 mm or less was compression-molded again and crushed as described above.
 (B)工程B
 上記で得られた成型体20gを、垂直に設置した内径30mm(鞘管外径8mm)、高さ27cmの円筒状ガラス製カラムに充填した。そのとき、成型体の充填長は6.3cmであった。その後、以下の3種類の溶液を順次、カラムの下部から上向きに通液した。まず、カラム温度25℃で、141gのメタノールを通液速度=3.5g/分で通液した。次に、カラム温度60℃で、326gのメタノールと濃塩酸(塩化水素含量36質量%)8gとの混合溶液を通液速度=3.0g/分で通液した。次に、カラム温度60℃で、190gのメタノールを通液速度=3.5g/分で通液し、その後、カラムを25℃に冷却しながら、126gのメタノールを通液速度=3.5g/分で通液した。この後、カラム内のメタノールをカラム下部より抜き出した。
(B) Process B
20 g of the molded body obtained above was packed into a cylindrical glass column having an inner diameter of 30 mm (outer diameter of the sheath tube of 8 mm) and a height of 27 cm installed vertically. At that time, the filling length of the molded body was 6.3 cm. Thereafter, the following three types of solutions were sequentially passed upward from the bottom of the column. First, at a column temperature of 25 ° C., 141 g of methanol was passed at a flow rate of 3.5 g / min. Next, at a column temperature of 60 ° C., a mixed solution of 326 g of methanol and 8 g of concentrated hydrochloric acid (hydrogen chloride content 36% by mass) was passed at a rate of 3.0 g / min. Next, at a column temperature of 60 ° C., 190 g of methanol was passed at a flow rate of 3.5 g / min. Thereafter, 126 g of methanol was passed at a flow rate of 3.5 g / min while the column was cooled to 25 ° C. Liquid was passed in minutes. Thereafter, methanol in the column was extracted from the bottom of the column.
 (C)工程C
 工程Bに続けて、まずは、処理剤として水を0.3質量%含むピリジン53gを、カラム温度60℃で、カラム下部から上向きに通液速度=3.2g/分で通液した。その後、カラム温度を95℃に昇温しながら前記処理剤170gを通液速度=3.2g/分で通液した。その後、カラム内の処理剤をカラム下部より抜き出した。ここで、カラム温度は、処理剤と型材除去後の固体との接触温度に等しい。
(C) Process C
Subsequent to Step B, first, 53 g of pyridine containing 0.3% by mass of water as a treating agent was passed at a column temperature of 60 ° C. upward from the bottom of the column at a flow rate of 3.2 g / min. Thereafter, 170 g of the treatment agent was passed at a rate of 3.2 g / min while raising the column temperature to 95 ° C. Thereafter, the treating agent in the column was extracted from the lower part of the column. Here, the column temperature is equal to the contact temperature between the treating agent and the solid after removing the mold material.
 次に、カラムに、tert-ブチルアルコール272gとアセトン48gと水0.96gとを混合した処理剤をカラム温度45℃で、カラム下部から上向きに通液速度=2.6g/分で通液した。処理剤中に含まれる水は0.3質量%であった。処理剤のカラムへの供給量は270gであった。その後、カラム内のtert-ブチルアルコールとアセトンと水との前記混合液をカラム下部より抜き出した。 Next, a treating agent in which 272 g of tert-butyl alcohol, 48 g of acetone and 0.96 g of water were mixed was passed through the column at a column temperature of 45 ° C. from the bottom of the column upward at a flow rate of 2.6 g / min. . Water contained in the treatment agent was 0.3% by mass. The amount of treatment agent supplied to the column was 270 g. Thereafter, the mixed solution of tert-butyl alcohol, acetone and water in the column was extracted from the lower part of the column.
 (D)工程E
 工程Cに続けて、カラムに、47gのトルエンを、カラム温度50℃で通液速度=2.8g/分で通液し、その後、カラム温度を100℃まで昇温しながら157gのトルエンを通液した。これにより、工程Cの終了時にカラム内に残っていた前記混合液をトルエンで置換した。その後、カラム内のトルエンをカラム下部より抜き出した。
(D) Process E
Subsequent to Step C, 47 g of toluene is passed through the column at a column temperature of 50 ° C. at a flow rate of 2.8 g / min, and then 157 g of toluene is passed while the column temperature is raised to 100 ° C. Liquid. Thereby, the mixed liquid remaining in the column at the end of Step C was replaced with toluene. Thereafter, toluene in the column was extracted from the bottom of the column.
 (E)工程D
 工程Eに続けて、1,1,1,3,3,3-ヘキサメチルジシラザン(以下、HMDSとも称する)8gとトルエン93gの混合溶液を、カラム温度100℃、通液速度=3.9g/分でカラム下部より通液した。このとき、カラムを通液させた液は受器で回収し、連続的にポンプで3時間カラムを循環させた。これにより、カラム内の成型体のシリル化を行った。その後、カラム内のトルエンとHMDS混合溶液は、カラム下部より抜き出した。その後、カラム温度120℃で、50NmL/分の流速で窒素ガスをカラム内にカラム下部から上向きに流し、カラム上部からの液の留出が止まった事を確認したのち、150NmL/分の流速に変更し、合計で4時間窒素ガスを流通させて成型体を乾燥した。これにより、チタン含有珪素酸化物触媒の成型体を得た。
(E) Process D
Subsequent to Step E, a mixed solution of 8 g of 1,1,1,3,3,3-hexamethyldisilazane (hereinafter also referred to as HMDS) and 93 g of toluene was added at a column temperature of 100 ° C. and a flow rate of 3.9 g. The liquid was passed from the bottom of the column at / min. At this time, the liquid passed through the column was collected by a receiver and continuously circulated through the column for 3 hours by a pump. Thereby, silylation of the molded body in the column was performed. Thereafter, the toluene and HMDS mixed solution in the column was extracted from the lower part of the column. Thereafter, nitrogen gas was flowed upward from the bottom of the column at a column temperature of 120 ° C. at a flow rate of 50 NmL / min. After confirming that the liquid stopped distilling from the top of the column, the flow rate was increased to 150 NmL / min. The molded body was dried by circulating nitrogen gas for a total of 4 hours. Thereby, the molded object of the titanium containing silicon oxide catalyst was obtained.
 寿命性能評価は、以下の(F)~(H)に記載の一連の方法で行った。 Life performance evaluation was performed by a series of methods described in (F) to (H) below.
 (F)触媒の初期性能の評価[活性と選択性]
 (A)~(E)の工程を経て得られた触媒成型体の初期性能をバッチ式反応装置(オートクレーブ)で評価した。触媒成型体1.5ml、25質量%の濃度でCMHPをCUMに溶解させた溶液(以下、25質量%CMHP/CUMと称する)60g、及びプロピレン33gをオートクレーブに供給し、自生圧力下、反応温度100℃、反応時間1.5時間(昇温時間込み)で反応させた。反応成績を表1に示す。なお、表中の「転化率」とは、後述する「CMHP転化率(%)」のことである。
(F) Evaluation of initial performance of catalyst [activity and selectivity]
The initial performance of the molded catalyst obtained through the steps (A) to (E) was evaluated using a batch reactor (autoclave). A catalyst molded body 1.5 ml, 60 g of a solution in which CMHP was dissolved in CUM at a concentration of 25% by mass (hereinafter referred to as 25% by mass CMHP / CUM), and 33 g of propylene were supplied to the autoclave, and the reaction temperature was under autogenous pressure. The reaction was carried out at 100 ° C. for a reaction time of 1.5 hours (including the temperature rising time). The reaction results are shown in Table 1. The “conversion rate” in the table is “CMHP conversion rate (%)” described later.
 (G)固定床エポキシ化反応によるプロピレンオキサイドの合成
 内径16mm(鞘管外径5mm)のリアクターに、(A)~(E)の工程を経て得られた触媒成型体10ml(成型体間の空間体積も含めた見掛けの体積)を充填して触媒層を形成し、充填された触媒層にプロピレンとCMHPとCUMとを供給し、エポキシ化反応によるプロピレンオキサイドの合成を42時間行った。以下、プロピレンオキサイドをPOとも称する。反応圧力は6MPa-G、触媒層入口から2cmの位置が135℃となるように、リアクターの外側に備えられた電気炉によりリアクターを加温し、2時間経過した以降は電気炉設定温度を一定とした。触媒層の温度は99℃~139℃であった。
(G) Synthesis of propylene oxide by fixed bed epoxidation reaction 10 ml of catalyst molded body (space between the molded bodies) obtained through the steps (A) to (E) in a reactor having an inner diameter of 16 mm (outer diameter of sheath tube 5 mm) The catalyst layer was formed by filling the apparent volume including the volume), propylene, CMHP, and CUM were supplied to the filled catalyst layer, and propylene oxide was synthesized by epoxidation reaction for 42 hours. Hereinafter, propylene oxide is also referred to as PO. The reactor is heated by an electric furnace provided outside the reactor so that the reaction pressure is 6 MPa-G, and the position 2 cm from the catalyst layer inlet is 135 ° C. After 2 hours, the electric furnace set temperature remains constant. It was. The temperature of the catalyst layer was 99 ° C to 139 ° C.
 (H)PO合成に使用後の回収触媒の性能の評価[活性と選択性]
 上記(G)のPOの合成反応を42時間行った後、リアクターから触媒成型体を抜き出し回収した。回収触媒の性能をバッチ式反応装置で評価した。触媒成形体1.5mL、25質量%CMHP/CUM60g、プロピレン33gをオートクレーブに供給し、自生圧力下、反応温度100℃、反応時間1.5時間(昇温時間込み)で反応させた。反応成績を表1に示す。
(H) Evaluation of recovered catalyst performance after use for PO synthesis [activity and selectivity]
After the PO synthesis reaction (G) was carried out for 42 hours, the molded catalyst was extracted from the reactor and recovered. The performance of the recovered catalyst was evaluated with a batch reactor. 1.5 mL of a catalyst molded body, 60 g of 25% by mass CMHP / CUM, and 33 g of propylene were supplied to an autoclave and reacted at a reaction temperature of 100 ° C. and a reaction time of 1.5 hours (including a temperature increase time) under an autogenous pressure. The reaction results are shown in Table 1.
 CMHPの転化率及びPOの選択率は以下のようにして求めた。
・CMHP転化率(%)=M/(M-M)×100
:原料CMHPモル量
:反応後の液中のCMHPモル量
・PO選択率(%)=MPO/(M-M
PO:生成POモル量
ここで、MPO=M-(Mph+Mac+Mpg+2×Mdpg+3×Mtpg
:反応したCMHPモル量
ph:生成したフェノールモル量
ac:生成したアセトフェノンモル量
pg:生成したプロピレングリコールモル量
dpg:生成したジプロピレングリコールモル量
tpg:生成したトリプロピレングリコールモル量
 表1において、TBAはtert-ブチルアルコール、ACTはアセトンの略称である。表中、例えば「TBA(230g)/ACT(40g)」は、230gのtert-ブチルアルコールと40gのアセトンとの混合液を指す。また、表3において、ATNはアセトニトリルの略称であり、AMAはtert-アミルアルコール(2-メチル-2-ブタノール)の略称である。
The conversion rate of CMHP and the selectivity of PO were determined as follows.
CMHP conversion rate (%) = M 1 / (M 0 −M 1 ) × 100
M 0 : Raw material CMHP molar amount M 1 : CMHP molar amount in liquid after reaction and PO selectivity (%) = M PO / (M 0 -M 1 )
M PO : Molecular amount of produced PO, where M PO = M 2 − (M ph + M ac + M pg + 2 × M dpg + 3 × M tpg )
M 2 : reacted CMHP molar amount M ph : generated phenol molar amount M ac : generated acetophenone molar amount M pg : generated propylene glycol molar amount M dpg : generated dipropylene glycol molar amount M tpg : generated tripropylene Glycol molar amount In Table 1, TBA is an abbreviation for tert-butyl alcohol, and ACT is an abbreviation for acetone. In the table, for example, “TBA (230 g) / ACT (40 g)” refers to a mixture of 230 g of tert-butyl alcohol and 40 g of acetone. In Table 3, ATN is an abbreviation for acetonitrile, and AMA is an abbreviation for tert-amyl alcohol (2-methyl-2-butanol).
 〔実施例2~9〕
 実施例2~8について、(A)、(B)及び(E)に記載の方法ついては、実施例1と同様の方法で実施した。(C)、(D)に記載の方法ついては、処理液、及び処理条件を、表1~4に記載の通りに変えた以外は、実施例1と同様の方法で実施した。
[Examples 2 to 9]
For Examples 2 to 8, the methods described in (A), (B) and (E) were carried out in the same manner as in Example 1. The methods described in (C) and (D) were performed in the same manner as in Example 1 except that the treatment liquid and the treatment conditions were changed as shown in Tables 1 to 4.
 実施例9について、(A)及び(B)に記載の方法については、実施例1と同様の方法で実施し、(E)に記載の方法については、窒素ガスの流通の合計時間を3時間とした以外は実施例1と同様の方法で実施した。また、(C)、(D)に記載の方法ついては、処理液、及び処理条件を、表4に記載の通りに変えた以外は、実施例1と同様の方法で実施した。さらに、実施例2~9の寿命性能評価は実施例1の(F)~(H)に記載の方法で実施した。評価結果を表1~3に示す。 About Example 9, about the method as described in (A) and (B), it implements by the method similar to Example 1, and about the method as described in (E), the total time of the distribution | circulation of nitrogen gas is 3 hours. The procedure was the same as in Example 1 except that. Moreover, about the method as described in (C) and (D), it implemented by the method similar to Example 1 except having changed the process liquid and the process conditions as shown in Table 4. Further, the life performance evaluation of Examples 2 to 9 was performed by the method described in (F) to (H) of Example 1. The evaluation results are shown in Tables 1 to 3.
 〔実施例10〕
 チタン酸テトライソプロピルを(A)で添加せず、(B)と(C)を実施例1と同様の方法で実施する。(C)に続けて、カラム温度約120℃で、窒素ガスをカラム内にカラム下部から上向きに流し成型体を乾燥する。その後、四塩化チタンを50体積%含む窒素ガスを約10NmL/分の流速でカラム温度約200℃でカラム内にカラム下部から上向きに流し、成型体に約2時間接触させる。その後、窒素ガスを約100NmL/分の流速でカラム温度約500℃でカラム内にカラム下部から上向きに流す。その後、(E)を実施例1と同様に実施することにより、チタン含有珪素酸化物触媒を得ることができる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Example 10
The tetraisopropyl titanate is not added in (A), and (B) and (C) are carried out in the same manner as in Example 1. Subsequent to (C), at a column temperature of about 120 ° C., nitrogen gas is flowed upward from the bottom of the column into the column to dry the molded body. Thereafter, nitrogen gas containing 50% by volume of titanium tetrachloride is allowed to flow upwardly from the bottom of the column at a column temperature of about 200 ° C. at a flow rate of about 10 NmL / min, and is brought into contact with the molded body for about 2 hours. Thereafter, nitrogen gas is allowed to flow upward from the bottom of the column into the column at a column temperature of about 500 ° C. at a flow rate of about 100 NmL / min. Thereafter, (E) is carried out in the same manner as in Example 1, whereby a titanium-containing silicon oxide catalyst can be obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 〔比較例〕
 比較例では、(A)、(B)及び(E)に記載の方法については、実施例1と同様の方法で実施し、(C)~(D)に記載の方法ついては、処理液、及び処理条件を、表5の通りに変えた以外は、実施例1と同様の方法で実施した。さらに、寿命性能評価は実施例1の(F)~(H)に記載の方法で実施した。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000006
[Comparative Example]
In the comparative example, the methods described in (A), (B) and (E) were carried out in the same manner as in Example 1, and the methods described in (C) to (D) were treated liquids and The processing was performed in the same manner as in Example 1 except that the processing conditions were changed as shown in Table 5. Further, the life performance evaluation was performed by the method described in (F) to (H) of Example 1. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000007
 本発明の一態様に係るチタン含有ケイ素酸化物の製造方法は、オレフィンとハイドロパーオキサイドとからエポキシドを生成させる反応に使用される触媒の製造に適用することができ、該方法により得られたチタン含有ケイ素酸化物は、例えば触媒としてプロピレンオキサイドの製造に利用することができる。 The method for producing a titanium-containing silicon oxide according to one embodiment of the present invention can be applied to the production of a catalyst used in a reaction for producing an epoxide from an olefin and a hydroperoxide, and titanium obtained by the method. The contained silicon oxide can be used, for example, as a catalyst for the production of propylene oxide.
 本出願の優先権主張の基礎出願である日本国特許出願第2017-076970号(出願日2017年4月7日)の明細書は、本明細書に参照することによって、それらの全体が本明細書中へ組み込まれるものとする。 The specification of Japanese Patent Application No. 2017-076970 (filing date: April 7, 2017), which is the basic application for priority claim of the present application, is hereby incorporated by reference in its entirety. It shall be incorporated into the book.

Claims (11)

  1.  下記の工程:
    工程A:型剤と珪素源と溶媒とを混合し、型剤と珪素酸化物とを含む固体を得る工程
    工程B:工程Aを経て得られた固体から上記型剤を除去し、固体を得る工程
    工程C:工程Bを経て得られた固体に0.01~20質量%の水を含む処理剤を接触させ、固体を得る工程
    工程D:工程Cを経て得られた固体をシリル化剤と接触させ、固体を得る工程
    を有し、
     工程A内、工程B内、工程C内、工程D内、工程Aと工程Bとの間、工程Bと工程Cとの間、および工程Cと工程Dとの間からなる群から選ばれる少なくとも一つ以上において、固体にチタンを導入する、チタン含有珪素酸化物の製造方法。
    The following steps:
    Step A: Mixing a mold, a silicon source, and a solvent to obtain a solid containing the mold and silicon oxide Step B: Removing the mold from the solid obtained through the process A to obtain a solid Process Step C: A treatment agent containing 0.01 to 20% by mass of water is brought into contact with the solid obtained through Step B to obtain a solid. Step D: The solid obtained through Step C is combined with a silylating agent. Contacting to obtain a solid,
    At least selected from the group consisting of Step A, Step B, Step C, Step D, Step A and Step B, Step B and Step C, and Step C and Step D In one or more methods, a method for producing a titanium-containing silicon oxide, wherein titanium is introduced into a solid.
  2.  工程A内、工程Bと工程Cとの間、および工程Cと工程Dとの間からなる群から選ばれる少なくとも一つ以上において固体にチタンが導入される、請求項1に記載のチタン含有珪素酸化物の製造方法。 The titanium-containing silicon according to claim 1, wherein titanium is introduced into the solid in at least one selected from the group consisting of Step A, Step B and Step C, and Step C and Step D. Production method of oxide.
  3.  工程A内で、固体にチタンが導入される、請求項1または2に記載のチタン含有珪素酸化物の製造方法。 3. The method for producing a titanium-containing silicon oxide according to claim 1 or 2, wherein titanium is introduced into the solid in step A.
  4.  上記型剤が、界面活性剤である、請求項1~3のいずれか一項に記載のチタン含有珪素酸化物の製造方法。 The method for producing a titanium-containing silicon oxide according to any one of claims 1 to 3, wherein the mold is a surfactant.
  5.  上記型剤が、下記式(I)で表される第4級アンモニウムイオンを含む塩又は下記式(II)で表されるアミンである請求項1~4のいずれか一項に記載のチタン含有珪素酸化物の製造方法。
     [NR]+   (I)
     (式(I)中、Rは炭素原子数2~36の直鎖状又は分岐状の炭化水素基を表し、R~Rはそれぞれ独立して炭素原子数1~6の炭化水素基を表す。)
    NR  (II)
     (式(II)中、Rは炭素原子数2~36の直鎖状又は分岐状の炭化水素基を表し、R及びRはそれぞれ独立して水素原子又は炭素原子数1~6の炭化水素基を表す。)
    The titanium-containing composition according to any one of claims 1 to 4, wherein the mold is a salt containing a quaternary ammonium ion represented by the following formula (I) or an amine represented by the following formula (II). A method for producing silicon oxide.
    [NR 1 R 2 R 3 R 4 ] + (I)
    (In the formula (I), R 1 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and R 2 to R 4 each independently represents a hydrocarbon group having 1 to 6 carbon atoms. Represents.)
    NR 5 R 6 R 7 (II)
    (In the formula (II), R 5 represents a linear or branched hydrocarbon group having 2 to 36 carbon atoms, and R 6 and R 7 are each independently a hydrogen atom or a carbon atom having 1 to 6 carbon atoms. Represents a hydrocarbon group.)
  6.  工程Cで用いる上記処理剤が下記式(III)で表される化合物又は下記式(IV)で表される化合物を含む、請求項1~5のいずれか一項に記載のチタン含有珪素酸化物の製造方法。
    NR10  (III)
     (式(III)中、R~R10はそれぞれ独立して水素原子、炭素原子数1~18の直鎖状の炭化水素基、炭素原子数3~18の分岐状の炭化水素基、又は炭素原子数5~18の環状の炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000001
     (式(IV)中、R11~R15はそれぞれ独立して(a)炭素原子数1~6の直鎖状の炭化水素基、炭素原子数3~6の分岐状の炭化水素基、及び炭素原子数5~6の環状の炭化水素基からなる群から選択される炭化水素基、(b)水素原子、(c)フッ素原子、塩素原子、臭素原子、及びヨウ素原子からなる群から選択されるハロゲン原子、(d)-OAで表される基、ならびに(e)-NAで表される基、からなる群から選択される基であり、式中、A、A及びAはそれぞれ独立して水素原子、炭素原子数1~6の直鎖状の炭化水素基、炭素原子数3~6の分岐状の炭化水素基、又は炭素原子数5~6の環状の炭化水素基を表す。)
    The titanium-containing silicon oxide according to any one of claims 1 to 5, wherein the treating agent used in step C contains a compound represented by the following formula (III) or a compound represented by the following formula (IV): Manufacturing method.
    NR 8 R 9 R 10 (III)
    (In formula (III), R 8 to R 10 are each independently a hydrogen atom, a linear hydrocarbon group having 1 to 18 carbon atoms, a branched hydrocarbon group having 3 to 18 carbon atoms, or Represents a cyclic hydrocarbon group having 5 to 18 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (IV), R 11 to R 15 are each independently (a) a linear hydrocarbon group having 1 to 6 carbon atoms, a branched hydrocarbon group having 3 to 6 carbon atoms, and A hydrocarbon group selected from the group consisting of cyclic hydrocarbon groups of 5 to 6 carbon atoms, (b) selected from the group consisting of hydrogen atoms, (c) fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms A group selected from the group consisting of a group represented by (d) -OA 1 and a group represented by (e) -NA 2 A 3 , wherein A 1 , A 2 And A 3 are each independently a hydrogen atom, a linear hydrocarbon group having 1 to 6 carbon atoms, a branched hydrocarbon group having 3 to 6 carbon atoms, or a cyclic hydrocarbon group having 5 to 6 carbon atoms. Represents a hydrocarbon group.)
  7.  工程Cで用いる上記処理剤がアルコールを含む、請求項1~6のいずれか一項に記載のチタン含有珪素酸化物の製造方法。 The method for producing a titanium-containing silicon oxide according to any one of claims 1 to 6, wherein the treating agent used in Step C contains alcohol.
  8.  上記アルコールが、3級アルコールである請求項7に記載のチタン含有珪素酸化物の製造方法。 The method for producing a titanium-containing silicon oxide according to claim 7, wherein the alcohol is a tertiary alcohol.
  9.  工程Cで用いる上記処理剤がカルボン酸を含む、請求項1~6のいずれか一項に記載のチタン含有珪素酸化物の製造方法。 The method for producing a titanium-containing silicon oxide according to any one of claims 1 to 6, wherein the treating agent used in Step C contains a carboxylic acid.
  10.  工程Cの終了後、工程Dの開始前に、工程Eおよび/または工程Fを有する請求項1~9のいずれか一項に記載のチタン含有珪素酸化物の製造方法。
    工程E:工程Cを経て得られた固体に含まれる処理剤および/または処理液を、シリル化剤に対して実質的に不活性な液体に置換する工程
    工程F:工程Cを経て得られた固体の乾燥を行う工程
    The method for producing a titanium-containing silicon oxide according to any one of claims 1 to 9, further comprising a step E and / or a step F after the completion of the step C and before the start of the step D.
    Step E: Step F: obtained through Step C, replacing the treatment agent and / or treatment liquid contained in the solid obtained through Step C with a liquid that is substantially inert to the silylating agent. The process of drying the solid
  11.  請求項1~10のいずれか一項に記載の方法でチタン含有珪素酸化物を製造し、製造されたチタン含有珪素酸化物の存在下でオレフィンとハイドロパーオキサイドとを反応させる工程を有するエポキシドの製造方法。 An epoxide comprising a step of producing a titanium-containing silicon oxide by the method according to any one of claims 1 to 10 and reacting an olefin and a hydroperoxide in the presence of the produced titanium-containing silicon oxide. Production method.
PCT/JP2018/014753 2017-04-07 2018-04-06 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide WO2018186491A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019511321A JP6970739B2 (en) 2017-04-07 2018-04-06 A method for producing a titanium-containing silicon oxide, a method for producing an epoxide, and a titanium-containing silicon oxide.
KR1020197032490A KR102493560B1 (en) 2017-04-07 2018-04-06 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
CN201880022900.2A CN110475748B (en) 2017-04-07 2018-04-06 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017076970 2017-04-07
JP2017-076970 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018186491A1 true WO2018186491A1 (en) 2018-10-11

Family

ID=63712676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014753 WO2018186491A1 (en) 2017-04-07 2018-04-06 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide

Country Status (4)

Country Link
JP (1) JP6970739B2 (en)
KR (1) KR102493560B1 (en)
CN (1) CN110475748B (en)
WO (1) WO2018186491A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241052A1 (en) * 2019-05-29 2020-12-03 住友化学株式会社 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
RU2805109C2 (en) * 2019-05-29 2023-10-11 Сумитомо Кемикал Компани, Лимитед Method for producing titanium-containing silicon oxide, method for producing epoxide and titanium-containing silicon oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286768A (en) * 2000-02-02 2001-10-16 Sumitomo Chem Co Ltd Catalyst molding body, production method of catalyst molding body thereof, and production method of oxirane compound
US20020164283A1 (en) * 2000-12-22 2002-11-07 Jones Christopher W. Synthesis of molecular sieves by hydrothermal treatment with acid
JP2003200056A (en) * 2002-01-10 2003-07-15 Sumitomo Chem Co Ltd Method for producing titanium-containing silicone oxide catalyst and the catalyst
JP2004195379A (en) * 2002-12-19 2004-07-15 Sumitomo Chem Co Ltd Method for manufacturing titanium-containing silicon oxide catalyst, and catalyst
JP2006159057A (en) * 2004-12-06 2006-06-22 Sumitomo Chemical Co Ltd Method for manufacturing titanium-containing silicon oxide catalyst and catalyst
JP2010179279A (en) * 2009-02-09 2010-08-19 Sumitomo Chemical Co Ltd METHOD FOR ACTIVATING Ti-MWW PRECURSOR

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0211796A (en) * 2001-08-01 2004-08-03 Dow Global Technologies Inc Method for extending the life of a hydro-oxidation catalyst
CN104437450B (en) * 2013-09-24 2017-12-15 中国石油化工股份有限公司 Titaniferous SiO 2 catalyst, preparation method and its usage
CN105272945A (en) * 2014-07-03 2016-01-27 中国石油化工股份有限公司 Production method for epichlorohydrin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286768A (en) * 2000-02-02 2001-10-16 Sumitomo Chem Co Ltd Catalyst molding body, production method of catalyst molding body thereof, and production method of oxirane compound
US20020164283A1 (en) * 2000-12-22 2002-11-07 Jones Christopher W. Synthesis of molecular sieves by hydrothermal treatment with acid
JP2003200056A (en) * 2002-01-10 2003-07-15 Sumitomo Chem Co Ltd Method for producing titanium-containing silicone oxide catalyst and the catalyst
JP2004195379A (en) * 2002-12-19 2004-07-15 Sumitomo Chem Co Ltd Method for manufacturing titanium-containing silicon oxide catalyst, and catalyst
JP2006159057A (en) * 2004-12-06 2006-06-22 Sumitomo Chemical Co Ltd Method for manufacturing titanium-containing silicon oxide catalyst and catalyst
JP2010179279A (en) * 2009-02-09 2010-08-19 Sumitomo Chemical Co Ltd METHOD FOR ACTIVATING Ti-MWW PRECURSOR

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241052A1 (en) * 2019-05-29 2020-12-03 住友化学株式会社 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
CN113905987A (en) * 2019-05-29 2022-01-07 住友化学株式会社 Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
RU2805109C2 (en) * 2019-05-29 2023-10-11 Сумитомо Кемикал Компани, Лимитед Method for producing titanium-containing silicon oxide, method for producing epoxide and titanium-containing silicon oxide

Also Published As

Publication number Publication date
CN110475748A (en) 2019-11-19
JP6970739B2 (en) 2021-11-24
JPWO2018186491A1 (en) 2020-02-27
CN110475748B (en) 2022-12-30
KR20190138653A (en) 2019-12-13
KR102493560B1 (en) 2023-01-30

Similar Documents

Publication Publication Date Title
DE60015781T2 (en) HETEROGENIC EPOXIDATION CATALYST
JP4355404B2 (en) Method for producing oxirane compound
JP4889865B2 (en) Method for producing titanium-containing silicon oxide catalyst
KR101254352B1 (en) Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin oxide compound with the catalyst
JP4251666B2 (en) Epoxidation process using improved heterogeneous catalyst composition
JP6970739B2 (en) A method for producing a titanium-containing silicon oxide, a method for producing an epoxide, and a titanium-containing silicon oxide.
JP4265212B2 (en) Method for producing titanium-containing silicon oxide catalyst
EP1539346B1 (en) Heterogeneous catalyst regeneration
EP1252928B1 (en) Molded catalyst, process for producing the molded catalyst, and process for producing oxirane compound
JP4834982B2 (en) Method for producing titanium-containing silicon oxide catalyst and catalyst
JP2006255586A (en) Method for production of titanium-containing silicon oxide catalyst, and catalyst
JP3797107B2 (en) Catalyst molded body, method for producing the catalyst molded body, and method for producing oxirane compound
JP2002239381A (en) Method for producing titanium-containing silicon oxide catalyst and catalyst prepared thereby
JP3731384B2 (en) Titanium-containing silicon oxide catalyst, method for producing the catalyst, and method for producing propylene oxide
RU2805109C2 (en) Method for producing titanium-containing silicon oxide, method for producing epoxide and titanium-containing silicon oxide
JP2006289341A (en) Method for storing titanium-containing silicon oxide catalyst
WO2020241052A1 (en) Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
JP7128884B2 (en) Manufacturing method of titanium-containing silicon oxide molded body, and titanium-containing silicon oxide molded body
WO2023210199A1 (en) Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide
JP4495272B2 (en) Method for producing oxirane compound
JP2006159058A (en) Method for manufacturing titanium-containing silicon oxide catalyst and catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197032490

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18780490

Country of ref document: EP

Kind code of ref document: A1